Sample records for global complex evolution

  1. Evolution of complexity following a global quench

    NASA Astrophysics Data System (ADS)

    Moosa, Mudassir

    2018-03-01

    The rate of complexification of a quantum state is conjectured to be bounded from above by the average energy of the state. A different conjecture relates the complexity of a holographic CFT state to the on-shell gravitational action of a certain bulk region. We use `complexity equals action' conjecture to study the time evolution of the complexity of the CFT state after a global quench. We find that the rate of growth of complexity is not only consistent with the conjectured bound, but it also saturates the bound soon after the system has achieved local equilibrium.

  2. Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network

    PubMed Central

    Wang, Minggang; Fang, Guochang; Shao, Shuai

    2016-01-01

    We study the overall topological structure properties of global oil trade network, such as degree, strength, cumulative distribution, information entropy and weight clustering. The structural evolution of the network is investigated as well. We find the global oil import and export networks do not show typical scale-free distribution, but display disassortative property. Furthermore, based on the monthly data of oil import values during 2005.01–2014.12, by applying random matrix theory, we investigate the complex spatiotemporal dynamic from the country level and fitness evolution of the global oil market from a demand-side analysis. Abundant information about global oil market can be obtained from deviating eigenvalues. The result shows that the oil market has experienced five different periods, which is consistent with the evolution of country clusters. Moreover, we find the changing trend of fitness function agrees with that of gross domestic product (GDP), and suggest that the fitness evolution of oil market can be predicted by forecasting GDP values. To conclude, some suggestions are provided according to the results. PMID:27706147

  3. ICPP: Approach for Understanding Complexity of Plasma

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuya

    2000-10-01

    In this talk I wish to present an IT system that could promote Science of Complexity. In order to deal with a seemingly `complex' phenomenon, which means `beyond analytical manipulation', computer simulation is a viable powerful tool. However, complexity implies a concept beyond the horizon of reductionism. Therefore, rather than simply solving a complex phenomenon for a given boundary condition, one must establish an intelligent way of attacking mutual evolution of a system and its environment. NIFS-TCSC has been developing a prototype system that consists of supercomputers, virtual reality devices and high-speed network system. Let us explain this by picking up a global atmospheric circulation group, global oceanic circulation group and local weather prediction group. Local weather prediction group predicts the local change of the weather such as the creation of cloud and rain in the near future under the global conditions obtained by the global atmospheric and ocean groups. The global groups run simulations by modifying the local heat source/sink evaluated by the local weather prediction and then obtain the global conditions in the next time step. By repeating such a feedback performance one can predict the mutual evolution of the local system and its environment. Mutual information exchanges among multiple groups are carried out instantaneously by the networked common virtual reality space in which 3-D global and local images of the atmospheric and oceanic circulation and the cloud and rain maps are arbitrarily manipulated by any of the groups and commonly viewed. The present networking system has a great advantage that any simulation groups can freely and arbitrarily change their alignment, so that mutual evolution of any stratum system can become tractable by utilizing this network system.

  4. Computational complexity of the landscape II-Cosmological considerations

    NASA Astrophysics Data System (ADS)

    Denef, Frederik; Douglas, Michael R.; Greene, Brian; Zukowski, Claire

    2018-05-01

    We propose a new approach for multiverse analysis based on computational complexity, which leads to a new family of "computational" measure factors. By defining a cosmology as a space-time containing a vacuum with specified properties (for example small cosmological constant) together with rules for how time evolution will produce the vacuum, we can associate global time in a multiverse with clock time on a supercomputer which simulates it. We argue for a principle of "limited computational complexity" governing early universe dynamics as simulated by this supercomputer, which translates to a global measure for regulating the infinities of eternal inflation. The rules for time evolution can be thought of as a search algorithm, whose details should be constrained by a stronger principle of "minimal computational complexity". Unlike previously studied global measures, ours avoids standard equilibrium considerations and the well-known problems of Boltzmann Brains and the youngness paradox. We also give various definitions of the computational complexity of a cosmology, and argue that there are only a few natural complexity classes.

  5. Modeling Global Spatial-Temporal Evolution of Society: Hyperbolic Growth and Historical Cycles

    NASA Astrophysics Data System (ADS)

    Kurkina, E. S.

    2011-09-01

    The global historical processes are under consideration; and laws of global evolution of the world community are studied. The world community is considered as a united complex self-developing and self-organizing system. It supposed that the main driving force of social-economical evolution was the positive feedback between the population size and the level of technological development, which was a cause of growth in blow-up regime both of population and of global economic indexes. The study is supported by the results of mathematical modeling founded on a nonlinear heat equation with a source. Every social-economical epoch characterizes by own specific spatial distributed structures. So the global dynamics of world community during the whole history is investigated throughout the prism of the developing of spatial-temporal structures. The model parameters have been chosen so that 1) total population follows stable hyperbolic growth, consistently with the demographic data; 2) the evolution of the World-System goes through 11 stages corresponding to the main historical epochs.

  6. The Rise of China in the International Trade Network: A Community Core Detection Approach

    PubMed Central

    Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo

    2014-01-01

    Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995–2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism. PMID:25136895

  7. The rise of China in the International Trade Network: a community core detection approach.

    PubMed

    Zhu, Zhen; Cerina, Federica; Chessa, Alessandro; Caldarelli, Guido; Riccaboni, Massimo

    2014-01-01

    Theory of complex networks proved successful in the description of a variety of complex systems ranging from biology to computer science and to economics and finance. Here we use network models to describe the evolution of a particular economic system, namely the International Trade Network (ITN). Previous studies often assume that globalization and regionalization in international trade are contradictory to each other. We re-examine the relationship between globalization and regionalization by viewing the international trade system as an interdependent complex network. We use the modularity optimization method to detect communities and community cores in the ITN during the years 1995-2011. We find rich dynamics over time both inter- and intra-communities. In particular, the Asia-Oceania community disappeared and reemerged over time along with a switch in leadership from Japan to China. We provide a multilevel description of the evolution of the network where the global dynamics (i.e., communities disappear or reemerge) and the regional dynamics (i.e., community core changes between community members) are related. Moreover, simulation results show that the global dynamics can be generated by a simple dynamic-edge-weight mechanism.

  8. Towards physical principles of biological evolution

    NASA Astrophysics Data System (ADS)

    Katsnelson, Mikhail I.; Wolf, Yuri I.; Koonin, Eugene V.

    2018-03-01

    Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. Such systems are characterized by frustration whereby local state with minimal free energy conflict with the global minimum, resulting in ‘emergent phenomena’. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. These frustration effects appear to drive the evolution of biological complexity. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort. However, it is unrealistic to expect that such a theory can be created in one scoop; if it ever comes to being, this can only happen through integration of multiple physical models of evolutionary processes. Furthermore, the existing framework of theoretical physics is unlikely to suffice for adequate modeling of the biological level of complexity, and new developments within physics itself are likely to be required.

  9. Voids and the Cosmic Web: cosmic depression & spatial complexity

    NASA Astrophysics Data System (ADS)

    van de Weygaert, Rien

    2016-10-01

    Voids form a prominent aspect of the Megaparsec distribution of galaxies and matter. Not only do theyrepresent a key constituent of the Cosmic Web, they also are one of the cleanest probesand measures of global cosmological parameters. The shape and evolution of voids are highly sensitive tothe nature of dark energy, while their substructure and galaxy population provides a direct key to thenature of dark matter. Also, the pristine environment of void interiors is an important testing groundfor our understanding of environmental influences on galaxy formation and evolution. In this paper, we reviewthe key aspects of the structure and dynamics ofvoids, with a particular focus on the hierarchical evolution of the void population. We demonstratehow the rich structural pattern of the Cosmic Web is related to the complex evolution and buildupof voids.

  10. Brazilian exchange rate complexity: Financial crisis effects

    NASA Astrophysics Data System (ADS)

    Piqueira, José Roberto C.; Mortoza, Letícia Pelluci D.

    2012-04-01

    With the financial market globalization, foreign investments became vital for the economies, mainly in emerging countries. In the last decades, Brazilian exchange rates appeared as a good indicator to measure either investors' confidence or risk aversion. Here, some events of global or national financial crisis are analyzed, trying to understand how they influenced the "dollar-real" rate evolution. The theoretical tool to be used is the López-Mancini-Calbet (LMC) complexity measure that, applied to real exchange rate data, has shown good fitness between critical events and measured patterns.

  11. Diversity, structure and convergent evolution of the global sponge microbiome

    PubMed Central

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R.; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B.; Erwin, Patrick M.; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J.; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W.; Thacker, Robert W.; Montoya, Jose M.; Hentschel, Ute; Webster, Nicole S.

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  12. Global change and the evolution of phenotypic plasticity in plants.

    PubMed

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.

  13. Perfection and complexity in the lower Brazos River

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2007-11-01

    The "perfect landscape" concept is based on the notion that any specific geomorphic system represents the combined, interacting effects of a set of generally applicable global laws and a set of geographically and historically contingent local controls. Because the joint probability of any specific combination of local and global controls is low, and the local controls are inherently idiosyncratic, the probability of existence of any given landscape is vanishingly small. A perfect landscape approach to geomorphic complexity views landscapes as circumstantial, contingent outcomes of deterministic laws operating in a specific environmental and historical context. Thus, explaining evolution of complex landscapes requires the integration of global and local approaches. Because perfection in this sense is the most important and pervasive form of complexity, the study of geomorphic complexity is not restricted to nonlinear dynamics, self-organization, or any other aspects of complexity theory. Beyond what can be achieved via complexity theory, the details of historical and geographic contexts must be addressed. One way to approach this is via synoptic analyses, where the relevant global laws are applied in specific situational contexts. A study of non-acute tributary junctions in the lower Brazos River, Texas illustrates this strategy. The application of generalizations about tributary junction angles, and of relevant theories, does not explain the unexpectedly high occurrence or the specific instances of barbed or straight junctions in the study area. At least five different causes for the development of straight or obtuse junction angles are evident in the lower Brazos. The dominant mechanism, however, is associated with river bank erosion and lateral channel migration which encroaches on upstream-oriented reaches of meandering tributaries. Because the tributaries are generally strongly incised in response to Holocene incision of the Brazos, the junctions are not readily reoriented to the expected acute angle. The findings are interpreted in the context of nonlinear divergent evolution, geographical and historical contingency, synoptic frameworks for generalizing results, and applicability of the dominant processes concept in geomorphology.

  14. Evolutions of fluctuation modes and inner structures of global stock markets

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Wang, Lei; Liu, Maoxin; Chen, Xiaosong

    2016-09-01

    The paper uses empirical data, including 42 globally main stock indices in the period 1996-2014, to systematically study the evolution of fluctuation modes and inner structures of global stock markets. The data are large in scale considering both time and space. A covariance matrix-based principle fluctuation mode analysis (PFMA) is used to explore the properties of the global stock markets. It has been ignored by previous studies that covariance matrix is more suitable than the correlation matrix to be the basis of PFMA. It is found that the principle fluctuation modes of global stock markets are in the same directions, and global stock markets are divided into three clusters, which are found to be closely related to the countries’ locations with exceptions of China, Russia and Czech Republic. A time-stable correlation network constructing method is proposed to solve the problem of high-level statistical uncertainty when the estimated periods are very short, and the complex dynamic network (CDN) is constructed to investigate the evolution of inner structures. The results show when the clusters emerge and how long the clusters exist. When the 2008 financial crisis broke out, the indices form one cluster. After these crises, only the European cluster still exists. These findings complement the previous studies, and can help investors and regulators to understand the global stock markets.

  15. Complex hybrid inflation and baryogenesis.

    PubMed

    Delepine, David; Martínez, Carlos; Ureña-López, L Arturo

    2007-04-20

    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated with the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vacuum expectation value of the waterfall field, which is well constrained by diverse cosmological observations.

  16. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    PubMed Central

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-01-01

    Understanding the spatio-temporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well-characterized1-7 but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here, based on analyses of 9,604 hemagglutinin sequences of human seasonal influenza viruses from 2000–2012, we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses. While genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast (E-SE) Asia, genetic variants of A/H1N1 and B viruses persisted across multiple seasons and exhibited complex global dynamics with E-SE Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as likely drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology and human behavior. PMID:26053121

  17. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    NASA Astrophysics Data System (ADS)

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Klimov, Alexander; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-07-01

    Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.

  18. Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor.

    PubMed

    Mitra, Avik; Ghosh, Arindam; Das, Ranabir; Patel, Apoorva; Kumar, Anil

    2005-12-01

    Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.

  19. Cosmology and Globalization

    NASA Astrophysics Data System (ADS)

    Perkins, D. K.

    2006-08-01

    Microbes swarming on a sand grain planet or integral complex organisms evolving consciousness at the forefront of cosmic evolution? How is our new cosmology contributing to redefining who we see ourselves to be at the edge of the 21^st century, as globalization and capitalism speed forward? How is the evolution of stardust and the universe offering new paradigms of process and identity regarding the role, function and emergence of life in space-time? What are the cultural and philosophical questions that are arising and how might astronomy be contributing to the creation of new visions for cooperation and community at a global scale? What is the significance of including astronomy in K-12 education and what can it offer youth regarding values in light of the present world situation? Exploring our new cosmological concepts and the emergence of life at astronomical scales may offer much of valuable orientation toward reframing the human role in global evolution. Considering new insight from astrobiology each diverse species has a definitive role to play in the facilitation and functioning of the biosphere. Thus the question may arise: Is there any sort of ethic implied by natural science and offered by our rapidly expanding cosmic frontier?

  20. Analysis of high-order SNP barcodes in mitochondrial D-loop for chronic dialysis susceptibility.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Da; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2016-10-01

    Positively identifying disease-associated single nucleotide polymorphism (SNP) markers in genome-wide studies entails the complex association analysis of a huge number of SNPs. Such large numbers of SNP barcode (SNP/genotype combinations) continue to pose serious computational challenges, especially for high-dimensional data. We propose a novel exploiting SNP barcode method based on differential evolution, termed IDE (improved differential evolution). IDE uses a "top combination strategy" to improve the ability of differential evolution to explore high-order SNP barcodes in high-dimensional data. We simulate disease data and use real chronic dialysis data to test four global optimization algorithms. In 48 simulated disease models, we show that IDE outperforms existing global optimization algorithms in terms of exploring ability and power to detect the specific SNP/genotype combinations with a maximum difference between cases and controls. In real data, we show that IDE can be used to evaluate the relative effects of each individual SNP on disease susceptibility. IDE generated significant SNP barcode with less computational complexity than the other algorithms, making IDE ideally suited for analysis of high-order SNP barcodes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. High-resolution method for evolving complex interface networks

    NASA Astrophysics Data System (ADS)

    Pan, Shucheng; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2018-04-01

    In this paper we describe a high-resolution transport formulation of the regional level-set approach for an improved prediction of the evolution of complex interface networks. The novelty of this method is twofold: (i) construction of local level sets and reconstruction of a global level set, (ii) local transport of the interface network by employing high-order spatial discretization schemes for improved representation of complex topologies. Various numerical test cases of multi-region flow problems, including triple-point advection, single vortex flow, mean curvature flow, normal driven flow, dry foam dynamics and shock-bubble interaction show that the method is accurate and suitable for a wide range of complex interface-network evolutions. Its overall computational cost is comparable to the Semi-Lagrangian regional level-set method while the prediction accuracy is significantly improved. The approach thus offers a viable alternative to previous interface-network level-set method.

  2. Global migration of influenza A viruses in swine

    PubMed Central

    Nelson, Martha I.; Viboud, Cécile; Vincent, Amy L.; Culhane, Marie R.; Detmer, Susan E.; Wentworth, David E.; Rambaut, Andrew; Suchard, Marc A.; Holmes, Edward C.; Lemey, Philippe

    2015-01-01

    The complex and unresolved evolutionary origins of the 2009 H1N1 influenza pandemic exposed major gaps in our knowledge of the global spatial ecology and evolution of influenza A viruses in swine (swIAVs). Here we undertake an expansive phylogenetic analysis of swIAV sequence data and demonstrate that the global live swine trade strongly predicts the spatial dissemination of swIAVs, with Europe and North America acting as sources of viruses in Asian countries. In contrast, China has the world’s largest swine population but is not a major exporter of live swine, and is not an important source of swIAVs in neighboring Asian countries or globally. A meta-population simulation model incorporating trade data predicts that the global ecology of swIAVs is more complex than previously thought, and the US and China’s large swine populations are unlikely to be representative of swIAV diversity in their respective geographic regions, requiring independent surveillance efforts throughout Latin America and Asia. PMID:25813399

  3. From Internationalisation to Education for Global Citizenship: A Multi-Layered History

    ERIC Educational Resources Information Center

    Haigh, Martin

    2014-01-01

    The evolving narrative on internationalisation in higher education is complex and multi-layered. This overview explores the evolution of thinking about internationalisation among different stakeholder groups in universities. It parses out eight coexisting layers that progress from concerns based largely upon institutional survival and competition…

  4. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    NASA Astrophysics Data System (ADS)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  5. Networks as systems.

    PubMed

    Best, Allan; Berland, Alex; Greenhalgh, Trisha; Bourgeault, Ivy L; Saul, Jessie E; Barker, Brittany

    2018-03-19

    Purpose The purpose of this paper is to present a case study of the World Health Organization's Global Healthcare Workforce Alliance (GHWA). Based on a commissioned evaluation of GHWA, it applies network theory and key concepts from systems thinking to explore network emergence, effectiveness, and evolution to over a ten-year period. The research was designed to provide high-level strategic guidance for further evolution of global governance in human resources for health (HRH). Design/methodology/approach Methods included a review of published literature on HRH governance and current practice in the field and an in-depth case study whose main data sources were relevant GHWA background documents and key informant interviews with GHWA leaders, staff, and stakeholders. Sampling was purposive and at a senior level, focusing on board members, executive directors, funders, and academics. Data were analyzed thematically with reference to systems theory and Shiffman's theory of network development. Findings Five key lessons emerged: effective management and leadership are critical; networks need to balance "tight" and "loose" approaches to their structure and processes; an active communication strategy is key to create and maintain support; the goals, priorities, and membership must be carefully focused; and the network needs to support shared measurement of progress on agreed-upon goals. Shiffman's middle-range network theory is a useful tool when guided by the principles of complex systems that illuminate dynamic situations and shifting interests as global alliances evolve. Research limitations/implications This study was implemented at the end of the ten-year funding cycle. A more continuous evaluation throughout the term would have provided richer understanding of issues. Experience and perspectives at the country level were not assessed. Practical implications Design and management of large, complex networks requires ongoing attention to key issues like leadership, and flexible structures and processes to accommodate the dynamic reality of these networks. Originality/value This case study builds on growing interest in the role of networks to foster large-scale change. The particular value rests on the longitudinal perspective on the evolution of a large, complex global network, and the use of theory to guide understanding.

  6. Global regularizing flows with topology preservation for active contours and polygons.

    PubMed

    Sundaramoorthi, Ganesh; Yezzi, Anthony

    2007-03-01

    Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.

  7. The Evolution of Strain Typing in the Mycobacterium tuberculosis Complex.

    PubMed

    Merker, Matthias; Kohl, Thomas A; Niemann, Stefan; Supply, Philip

    2017-01-01

    Tuberculosis (TB) is a contagious disease with a complex epidemiology. Therefore, molecular typing (genotyping) of Mycobacterium tuberculosis complex (MTBC) strains is of primary importance to effectively guide outbreak investigations, define transmission dynamics and assist global epidemiological surveillance of the disease. Large-scale genotyping is also needed to get better insights into the biological diversity and the evolution of the pathogen. Thanks to its shorter turnaround and simple numerical nomenclature system, mycobacterial interspersed repetitive unit-variable-number tandem repeat (MIRU-VNTR) typing, based on 24 standardized plus 4 hypervariable loci, optionally combined with spoligotyping, has replaced IS6110 DNA fingerprinting over the last decade as a gold standard among classical strain typing methods for many applications. With the continuous progress and decreasing costs of next-generation sequencing (NGS) technologies, typing based on whole genome sequencing (WGS) is now increasingly performed for near complete exploitation of the available genetic information. However, some important challenges remain such as the lack of standardization of WGS analysis pipelines, the need of databases for sharing WGS data at a global level, and a better understanding of the relevant genomic distances for defining clusters of recent TB transmission in different epidemiological contexts. This chapter provides an overview of the evolution of genotyping methods over the last three decades, which culminated with the development of WGS-based methods. It addresses the relative advantages and limitations of these techniques, indicates current challenges and potential directions for facilitating standardization of WGS-based typing, and provides suggestions on what method to use depending on the specific research question.

  8. Probing Mechanism of Evolution of Simple Genomes

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Ditzler, Mark; Popovic, Milena; Wei, Chenyu

    2016-01-01

    Our overarching goal is to discover how the structure of the genotypic space of RNA polymers affects their ability to evolve. Specifically, we will address several fundamental questions that, so far, have remained largely unanswered. Was the genotypic space explored globally or only locally? Was the outcome of early evolution predictable or was it, instead, govern by chance? What was the role of neutral mutations in the evolution of increasing complex systems? As the first step, we study the problem in the example of RNA ligases. We obtain the complete, empirical fitness landscapes for short ligases and examine possible evolutionary paths for RNA molecules that are sufficiently long to preclude exhaustive search of the genotypic space.

  9. A coevolving model based on preferential triadic closure for social media networks

    PubMed Central

    Li, Menghui; Zou, Hailin; Guan, Shuguang; Gong, Xiaofeng; Li, Kun; Di, Zengru; Lai, Choy-Heng

    2013-01-01

    The dynamical origin of complex networks, i.e., the underlying principles governing network evolution, is a crucial issue in network study. In this paper, by carrying out analysis to the temporal data of Flickr and Epinions–two typical social media networks, we found that the dynamical pattern in neighborhood, especially the formation of triadic links, plays a dominant role in the evolution of networks. We thus proposed a coevolving dynamical model for such networks, in which the evolution is only driven by the local dynamics–the preferential triadic closure. Numerical experiments verified that the model can reproduce global properties which are qualitatively consistent with the empirical observations. PMID:23979061

  10. Playing evolution in the laboratory: From the first major evolutionary transition to global warming

    NASA Astrophysics Data System (ADS)

    Fragata, Inês; Simões, Pedro; Matos, Margarida; Szathmáry, Eörs; Santos, Mauro

    2018-05-01

    Experimental evolution allows testing hypotheses derived from theory or from observed patterns in nature. We have designed a droplet-based microfluidic “evolution machine” to test how transient compartmentalization (“trait-groups”) of independent molecular replicators (likely a critical step in the origin of life) could have prevented the spread of parasitic mutants; that is, inactive RNAs that have been reported to spoil a system of free replicators. In remarkable agreement with the theory, we show that this simple population structure was sufficient to prevent takeover by inactive RNAs. A more complex scenario arises when we use experimental evolution to test field-derived hypotheses; for instance, the idea that temperature is driving genetic spatiotemporal patterns of climate change. In the fly Drosophila subobscura, latitudinal clines in gene arrangement frequencies occur worldwide, and more equatorial gene arrangements are becoming more frequent at higher latitudes as a correlated response to climate change. However, the evolution at different constant temperatures in the laboratory was not consistent with patterns in nature, suggesting some limitations of experimental evolution. Finally, also in D. subobscura, we show that repeatability in experimental evolution is staggeringly consistent for life history traits, making evolution quite predictable and suggesting that laboratory selection can quickly erase differences between populations. Yet, the genetic paths used to attain the same adaptive phenotypes are complex and unpredictable. Contribution to the Focus Issue Evolutionary Modeling and Experimental Evolution edited by José Cuesta, Joachim Krug and Susanna Manrubia.

  11. Global Value Trees

    PubMed Central

    Zhu, Zhen; Puliga, Michelangelo; Cerina, Federica; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    The fragmentation of production across countries has become an important feature of the globalization in recent decades and is often conceptualized by the term “global value chains” (GVCs). When empirically investigating the GVCs, previous studies are mainly interested in knowing how global the GVCs are rather than how the GVCs look like. From a complex networks perspective, we use the World Input-Output Database (WIOD) to study the evolution of the global production system. We find that the industry-level GVCs are indeed not chain-like but are better characterized by the tree topology. Hence, we compute the global value trees (GVTs) for all the industries available in the WIOD. Moreover, we compute an industry importance measure based on the GVTs and compare it with other network centrality measures. Finally, we discuss some future applications of the GVTs. PMID:25978067

  12. The Lego Story: Remolding Education Policy and Practice

    ERIC Educational Resources Information Center

    Pirrie, Anne

    2017-01-01

    The aim of this article is to develop a more nuanced understanding of the complex nature of learning as it relates to both the educational and social aims of education as manifested in contemporary European education policy. The article explores tensions in education policy and practice by exploring the evolution of the global brand Lego. The…

  13. The natural science underlying big history.

    PubMed

    Chaisson, Eric J

    2014-01-01

    Nature's many varied complex systems-including galaxies, stars, planets, life, and society-are islands of order within the increasingly disordered Universe. All organized systems are subject to physical, biological, or cultural evolution, which together comprise the grander interdisciplinary subject of cosmic evolution. A wealth of observational data supports the hypothesis that increasingly complex systems evolve unceasingly, uncaringly, and unpredictably from big bang to humankind. These are global history greatly extended, big history with a scientific basis, and natural history broadly portrayed across ∼14 billion years of time. Human beings and our cultural inventions are not special, unique, or apart from Nature; rather, we are an integral part of a universal evolutionary process connecting all such complex systems throughout space and time. Such evolution writ large has significant potential to unify the natural sciences into a holistic understanding of who we are and whence we came. No new science (beyond frontier, nonequilibrium thermodynamics) is needed to describe cosmic evolution's major milestones at a deep and empirical level. Quantitative models and experimental tests imply that a remarkable simplicity underlies the emergence and growth of complexity for a wide spectrum of known and diverse systems. Energy is a principal facilitator of the rising complexity of ordered systems within the expanding Universe; energy flows are as central to life and society as they are to stars and galaxies. In particular, energy rate density-contrasting with information content or entropy production-is an objective metric suitable to gauge relative degrees of complexity among a hierarchy of widely assorted systems observed throughout the material Universe. Operationally, those systems capable of utilizing optimum amounts of energy tend to survive, and those that cannot are nonrandomly eliminated.

  14. The Natural Science Underlying Big History

    PubMed Central

    Chaisson, Eric J.

    2014-01-01

    Nature's many varied complex systems—including galaxies, stars, planets, life, and society—are islands of order within the increasingly disordered Universe. All organized systems are subject to physical, biological, or cultural evolution, which together comprise the grander interdisciplinary subject of cosmic evolution. A wealth of observational data supports the hypothesis that increasingly complex systems evolve unceasingly, uncaringly, and unpredictably from big bang to humankind. These are global history greatly extended, big history with a scientific basis, and natural history broadly portrayed across ∼14 billion years of time. Human beings and our cultural inventions are not special, unique, or apart from Nature; rather, we are an integral part of a universal evolutionary process connecting all such complex systems throughout space and time. Such evolution writ large has significant potential to unify the natural sciences into a holistic understanding of who we are and whence we came. No new science (beyond frontier, nonequilibrium thermodynamics) is needed to describe cosmic evolution's major milestones at a deep and empirical level. Quantitative models and experimental tests imply that a remarkable simplicity underlies the emergence and growth of complexity for a wide spectrum of known and diverse systems. Energy is a principal facilitator of the rising complexity of ordered systems within the expanding Universe; energy flows are as central to life and society as they are to stars and galaxies. In particular, energy rate density—contrasting with information content or entropy production—is an objective metric suitable to gauge relative degrees of complexity among a hierarchy of widely assorted systems observed throughout the material Universe. Operationally, those systems capable of utilizing optimum amounts of energy tend to survive, and those that cannot are nonrandomly eliminated. PMID:25032228

  15. Simple versus complex models of trait evolution and stasis as a response to environmental change

    NASA Astrophysics Data System (ADS)

    Hunt, Gene; Hopkins, Melanie J.; Lidgard, Scott

    2015-04-01

    Previous analyses of evolutionary patterns, or modes, in fossil lineages have focused overwhelmingly on three simple models: stasis, random walks, and directional evolution. Here we use likelihood methods to fit an expanded set of evolutionary models to a large compilation of ancestor-descendant series of populations from the fossil record. In addition to the standard three models, we assess more complex models with punctuations and shifts from one evolutionary mode to another. As in previous studies, we find that stasis is common in the fossil record, as is a strict version of stasis that entails no real evolutionary changes. Incidence of directional evolution is relatively low (13%), but higher than in previous studies because our analytical approach can more sensitively detect noisy trends. Complex evolutionary models are often favored, overwhelmingly so for sequences comprising many samples. This finding is consistent with evolutionary dynamics that are, in reality, more complex than any of the models we consider. Furthermore, the timing of shifts in evolutionary dynamics varies among traits measured from the same series. Finally, we use our empirical collection of evolutionary sequences and a long and highly resolved proxy for global climate to inform simulations in which traits adaptively track temperature changes over time. When realistically calibrated, we find that this simple model can reproduce important aspects of our paleontological results. We conclude that observed paleontological patterns, including the prevalence of stasis, need not be inconsistent with adaptive evolution, even in the face of unstable physical environments.

  16. Chaotic evolution of prisoner's dilemma game with volunteering on interdependent networks

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhang, Xiaolin; Zheng, YuanJie

    2017-06-01

    In this article, the evolution of prisoner's dilemma game with volunteering on interdependent networks is investigated. Different from the traditional two-strategy game, voluntary participation as an additional strategy is involved in repeated game, that can introduce more complex evolutionary dynamics. And, interdependent networks provide a more generalized network architecture to study the intricate variability of dynamics. We have showed that voluntary participation could effectively promote the density of co-operation, that is also greatly affected by interdependent strength between two coupled networks. We further discussed the influence of interdependent strength on the densities of different strategies and found that an intermediate interdependence would play a bigger role on the evolution of dynamics. Subsequently, the critical values of the defection temptation for phase transitions under different conditions have been studied. Moreover, the global oscillations induced by the circle of dominance of three strategies on interdependent networks have been quantitatively investigated. Counter-intuitively, the oscillations of strategy densities are not periodic or stochastic, but have rich dynamical behaviors. By means of various analysis tools, we have demonstrated the global oscillations of strategy densities possessed chaotic characteristics.

  17. Magnetic Evolution Linked to the Interrelated Activity Complexes Involving Transequatorial Coronal Holes

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Heidy; Taliashvili, Lela; Lazarian, Alexandre

    2018-06-01

    We studied a magnetic evolution linked to a cadence of interrelated activities developed in a large solar region during Carrington rotations, CRs 2119 - 2121, based on multi-wavelength and multi-spacecraft observations. Three coronal holes (CHs), two transequatorial and one isolated, eight filaments and some active regions were distributed closely in the region. Every of these filaments partial and/or complete eruption was linked to a Coronal Mass Ejection (CME) or coronal jet. We found different types of interrelated activities: eruptions of three pairs of interrelated filaments close to a CH and eruptions of two filaments close to the active region and CH. Some indicators of the magnetic reconnection were observed frequently during the pre- as well as post-filament eruptions. Additionally, post-filament eruption and/or post-CME processes show their implication in the evolution of nearby CHs and newly formed transient CHs or dimming regions, including a new CH formation. We discussed the small- and large-scale magnetic reconfigurations associated with these interrelated activity complexes, the ones involving long-lived transequatorial CHs, and their possible implication in the evolution of the global solar magnetic field, especially with the starting processes of quadruple configuration and polarity reversal of the solar cycle 24.

  18. Quantum population and entanglement evolution in photosynthetic process

    NASA Astrophysics Data System (ADS)

    Zhu, Jing

    Applications of the concepts of quantum information theory are usually related to the powerful and counter-intuitive quantum mechanical effects of superposition, interference and entanglement. In this thesis, I examine the role of coherence and entanglement in complex chemical systems. The research has focused mainly on two related projects: The first project is developing a theoretical model to explain the recent ultrafast experiments on excitonic migration in photosynthetic complexes that show long-lived coherence of the order of hundreds of femtoseconds and the second project developing the Grover algorithm for global optimization of complex systems. The first part can be divided into two sections. The first section is investigating the theoretical frame about the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex. The new developed modified scaled hierarchical equation of motion (HEOM) approach is employed for simulating the open quantum system. The second section is investigating the evolution of entanglement in the FMO complex based on the simulation result via scaled HEOM approach. We examine the role of multipartite entanglement in the FMO complex by direct computation of the convex roof optimization for a number of different measures, including pairwise, triplet, quadruple and quintuple sites entanglement. Our results support the hypothesis that multipartite entanglement is maximum primary along the two distinct electronic energy transfer pathways. The second part of this thesis can be separated into two sections. The first section demonstrated that a modified Grover's quantum algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits. Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on a quantum computer simulator using a modified Grover's algorithm. The second section is implementing the basic quantum logical gates upon arrays of trapped ultracold polar molecules as qubits for the quantum computer. Utilized herein is the Multi-Target Optimal Control Theory (MTOCT) as a means of manipulating the initial-to-target transition probability via external laser field. The detailed calculation is applied for the SrO molecule, an ideal candidate in proposed quantum computers using arrays of trapped ultra-cold polar molecules.

  19. ISECG Global Exploration Roadmap: A Stepwise Approach to Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    Martinez, Roland; Goodliff, Kandyce; Whitley, Ryan

    2013-01-01

    In 2011, ISECG released the Global Exploration Roadmap (GER), advancing the "Global Exploration Strategy: The Framework for Coordination" by articulating the perspectives of participating agencies on exploration goals and objectives, mission scenarios, and coordination of exploration preparatory activities. The GER featured a stepwise development and demonstration of capabilities ultimately required for human exploration of Mars. In 2013 the GER was updated to reflect the ongoing evolution of agency's exploration policies and plans, informed by individual agency and coordinated analysis activities that are relevant to various elements of the GER framework as well as coordinated stakeholder engagement activities. For this release of version 2 of the GER in the mid 2013 timeframe, a modified mission scenario is presented, more firmly reflecting the importance of a stepwise evolution of critical capabilities provided by multiple partners necessary for executing increasingly complex missions to multiple destinations and leading to human exploration of Mars. This paper will describe the updated mission scenario, the changes since the release of version 1, the mission themes incorporated into the scenario, and risk reduction for Mars missions provided by exploration at various destinations.

  20. Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome.

    PubMed

    Hernández-Hernández, Tania; Brown, Joseph W; Schlumpberger, Boris O; Eguiarte, Luis E; Magallón, Susana

    2014-06-01

    Succulent plants are widely distributed, reaching their highest diversity in arid and semi-arid regions. Their origin and diversification is thought to be associated with a global expansion of aridity. We test this hypothesis by investigating the tempo and pattern of Cactaceae diversification. Our results contribute to the understanding of the evolution of New World Succulent Biomes. We use the most taxonomically complete dataset currently available for Cactaceae. We estimate divergence times and utilize Bayesian and maximum likelihood methods that account for nonrandom taxonomic sampling, possible extinction scenarios and phylogenetic uncertainty to analyze diversification rates, and evolution of growth form and pollination syndrome. Cactaceae originated shortly after the Eocene-Oligocene global drop in CO2 , and radiation of its richest genera coincided with the expansion of aridity in North America during the late Miocene. A significant correlation between growth form and pollination syndrome was found, as well as a clear state dependence between diversification rate, and pollination and growth-form evolution. This study suggests a complex picture underlying the diversification of Cactaceae. It not only responded to the availability of new niches resulting from aridification, but also to the correlated evolution of novel growth forms and reproductive strategies. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  1. Inferring the Limit Behavior of Some Elementary Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.

  2. A Molecular Phylogeny of Living Primates

    PubMed Central

    Perelman, Polina; Johnson, Warren E.; Roos, Christian; Seuánez, Hector N.; Horvath, Julie E.; Moreira, Miguel A. M.; Kessing, Bailey; Pontius, Joan; Roelke, Melody; Rumpler, Yves; Schneider, Maria Paula C.; Silva, Artur; O'Brien, Stephen J.; Pecon-Slattery, Jill

    2011-01-01

    Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species. PMID:21436896

  3. NASA MEVTV Program Working Group Meeting: Volcanism on Mars

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The purpose of this working group meeting is to focus predominantly on volcanism on Mars, prior to considering the more complex issues of interactions between volcanism and tectonism or between volcanism and global or regional volatile evolution. It is also hoped that the topical areas of research identified will aid the planetary geology community in understanding volcanism on Mars and its relationship to other physical processes.

  4. Dynamics of Markets

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2009-09-01

    Preface; 1. Econophysics: why and what; 2. Neo-classical economic theory; 3. Probability and stochastic processes; 4. Introduction to financial economics; 5. Introduction to portfolio selection theory; 6. Scaling, pair correlations, and conditional densities; 7. Statistical ensembles: deducing dynamics from time series; 8. Martingale option pricing; 9. FX market globalization: evolution of the dollar to worldwide reserve currency; 10. Macroeconomics and econometrics: regression models vs. empirically based modeling; 11. Complexity; Index.

  5. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  6. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  7. History, Evolution, and Continuing Innovations of Intracranial Aneurysm Surgery.

    PubMed

    Lai, Leon T; O'Neill, Anthea H

    2017-06-01

    Evolution in the surgical treatment of intracranial aneurysms is driven by the need to refine and innovate. From an early application of the Hunterian carotid ligation to modern-day sophisticated aneurysm clip designs, progress has been made through dedication and technical maturation of cerebrovascular neurosurgeons to overcome challenges in their practices. The global expansion of endovascular services has challenged the existence of aneurysm surgery, changing the complexity of the aneurysm case mix and volume that are referred for surgical repair. Concepts of how to best treat intracranial aneurysms have evolved over generations and will continue to do so with further technological innovations. As with the evolution of any type of surgery, innovations frequently arise from the criticism of current techniques. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

    PubMed Central

    Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby

    2014-01-01

    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610

  9. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  10. The direction of evolution: the rise of cooperative organization.

    PubMed

    Stewart, John E

    2014-09-01

    Two great trends are evident in the evolution of life on Earth: towards increasing diversification and towards increasing integration. Diversification has spread living processes across the planet, progressively increasing the range of environments and free energy sources exploited by life. Integration has proceeded through a stepwise process in which living entities at one level are integrated into cooperative groups that become larger-scale entities at the next level, and so on, producing cooperative organizations of increasing scale (for example, cooperative groups of simple cells gave rise to the more complex eukaryote cells, groups of these gave rise to multi-cellular organisms, and cooperative groups of these organisms produced animal societies). The trend towards increasing integration has continued during human evolution with the progressive increase in the scale of human groups and societies. The trends towards increasing diversification and integration are both driven by selection. An understanding of the trajectory and causal drivers of the trends suggests that they are likely to culminate in the emergence of a global entity. This entity would emerge from the integration of the living processes, matter, energy and technology of the planet into a global cooperative organization. Such an integration of the results of previous diversifications would enable the global entity to exploit the widest possible range of resources across the varied circumstances of the planet. This paper demonstrates that it's case for directionality meets the tests and criticisms that have proven fatal to previous claims for directionality in evolution. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Phase Transitions of an Epidemic Spreading Model in Small-World Networks

    NASA Astrophysics Data System (ADS)

    Hua, Da-Yin; Gao, Ke

    2011-06-01

    We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts—Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatio-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.

  12. Star formation in a hierarchical model for Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Sanchez, N.; Parravano, A.

    The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.

  13. Diverse mechanisms shape the evolution of virulence factors in the potato late blight pathogen Phytophthora infestans sampled from China

    PubMed Central

    Wu, E-Jiao; Yang, Li-Na; Zhu, Wen; Chen, Xiao-Mei; Shang, Li-Ping; Zhan, Jiasui

    2016-01-01

    Evolution of virulence in plant pathogens is still poorly understood but the knowledge is important for the effective use of plant resistance and sustainable disease management. Spatial population dynamics of virulence, race and SSR markers in 140 genotypes sampled from seven geographic locations in China were compared to infer the mechanisms driving the evolution of virulence in Phytophthora infestans (P. infestans). All virulence types and a full spectrum of race complexity, ranging from the race able to infect the universally susceptible cultivar only to all differentials, were detected. Eight and two virulence factors were under diversifying and constraining selection respectively while no natural selection was detected in one of the virulence types. Further analyses revealed excesses in simple and complex races but deficiency in intermediate race and negative associations of annual mean temperature at the site from which pathogen isolates were collected with frequency of virulence to differentials and race complexity in the pathogen populations. These results suggest that host selection may interact with other factors such as climatic conditions in determining the evolutionary trajectory of virulence and race structure in P. infestans and global warming may slow down the emergence of new virulence in the pathogen. PMID:27193142

  14. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    PubMed

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  15. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  16. Global epidemiology of capsular group W meningococcal disease (1970-2015): Multifocal emergence and persistence of hypervirulent sequence type (ST)-11 clonal complex.

    PubMed

    Mustapha, Mustapha M; Marsh, Jane W; Harrison, Lee H

    2016-03-18

    Following an outbreak in Mecca Saudi Arabia in 2000, meningococcal strains expressing capsular group W (W) emerged as a major cause of invasive meningococcal disease (IMD) worldwide. The Saudi Arabian outbreak strain (Hajj clone) belonging to the ST-11 clonal complex (cc11) is similar to W cc11 causing occasional sporadic disease before 2000. Since 2000, W cc11 has caused large meningococcal disease epidemics in the African meningitis belt and endemic disease in South America, Europe and China. Traditional molecular epidemiologic typing suggested that a majority of current W cc11 burden represented global spread of the Hajj clone. However, recent whole genome sequencing (WGS) analyses revealed significant genetic heterogeneity among global W cc11 strains. While continued spread of the Hajj clone occurs in the Middle East, the meningitis belt and South Africa have co-circulation of the Hajj clone and other unrelated W cc11 strains. Notably, South America, the UK, and France share a genetically distinct W cc11 strain. Other W lineages persist in low numbers in Europe, North America and the meningitis belt. In summary, WGS is helping to unravel the complex genomic epidemiology of group W meningococcal strains. Wider application of WGS and strengthening of global IMD surveillance is necessary to monitor the continued evolution of group W lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Star formation in evolving molecular clouds

    NASA Astrophysics Data System (ADS)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  18. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  19. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery.

    PubMed

    Liu, Jun; Hu, Shi-Xue; Rieppel, Olivier; Jiang, Da-Yong; Benton, Michael J; Kelley, Neil P; Aitchison, Jonathan C; Zhou, Chang-Yong; Wen, Wen; Huang, Jin-Yuan; Xie, Tao; Lv, Tao

    2014-11-27

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic.

  20. A Differential Evolution Based Approach to Estimate the Shape and Size of Complex Shaped Anomalies Using EIT Measurements

    NASA Astrophysics Data System (ADS)

    Rashid, Ahmar; Khambampati, Anil Kumar; Kim, Bong Seok; Liu, Dong; Kim, Sin; Kim, Kyung Youn

    EIT image reconstruction is an ill-posed problem, the spatial resolution of the estimated conductivity distribution is usually poor and the external voltage measurements are subject to variable noise. Therefore, EIT conductivity estimation cannot be used in the raw form to correctly estimate the shape and size of complex shaped regional anomalies. An efficient algorithm employing a shape based estimation scheme is needed. The performance of traditional inverse algorithms, such as the Newton Raphson method, used for this purpose is below par and depends upon the initial guess and the gradient of the cost functional. This paper presents the application of differential evolution (DE) algorithm to estimate complex shaped region boundaries, expressed as coefficients of truncated Fourier series, using EIT. DE is a simple yet powerful population-based, heuristic algorithm with the desired features to solve global optimization problems under realistic conditions. The performance of the algorithm has been tested through numerical simulations, comparing its results with that of the traditional modified Newton Raphson (mNR) method.

  1. Evolution of Software-Only-Simulation at NASA IV and V

    NASA Technical Reports Server (NTRS)

    McCarty, Justin; Morris, Justin; Zemerick, Scott

    2014-01-01

    Software-Only-Simulations have been an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations that have ranged from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).This paper describes the evolution of ITCs technologies and processes that have been utilized to design, implement, and deploy end-to-end simulation environments for various NASA missions. A comparison of mission simulators are discussed with focus on technology and lessons learned in complexity, hardware modeling, and continuous integration. The paper also describes the methods for executing the missions unmodified flight software binaries (not cross-compiled) for verification and validation activities.

  2. Protein and genome evolution in Mammalian cells for biotechnology applications.

    PubMed

    Majors, Brian S; Chiang, Gisela G; Betenbaugh, Michael J

    2009-06-01

    Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.

  3. Morphological evolution in land plants: new designs with old genes

    PubMed Central

    Pires, Nuno D.; Dolan, Liam

    2012-01-01

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms. PMID:22232763

  4. Morphological evolution in land plants: new designs with old genes.

    PubMed

    Pires, Nuno D; Dolan, Liam

    2012-02-19

    The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.

  5. Antibiotic resistance in the wild: an eco-evolutionary perspective.

    PubMed

    Hiltunen, Teppo; Virta, Marko; Laine, Anna-Liisa

    2017-01-19

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'. © 2016 The Authors.

  6. Antibiotic resistance in the wild: an eco-evolutionary perspective

    PubMed Central

    Virta, Marko

    2017-01-01

    The legacy of the use and misuse of antibiotics in recent decades has left us with a global public health crisis: antibiotic-resistant bacteria are on the rise, making it harder to treat infections. At the same time, evolution of antibiotic resistance is probably the best-documented case of contemporary evolution. To date, research on antibiotic resistance has largely ignored the complexity of interactions that bacteria engage in. However, in natural populations, bacteria interact with other species; for example, competition and grazing are import interactions influencing bacterial population dynamics. Furthermore, antibiotic leakage to natural environments can radically alter bacterial communities. Overall, we argue that eco-evolutionary feedback loops in microbial communities can be modified by residual antibiotics and evolution of antibiotic resistance. The aim of this review is to connect some of the well-established key concepts in evolutionary biology and recent advances in the study of eco-evolutionary dynamics to research on antibiotic resistance. We also identify some key knowledge gaps related to eco-evolutionary dynamics of antibiotic resistance, and review some of the recent technical advantages in molecular microbiology that offer new opportunities for tackling these questions. Finally, we argue that using the full potential of evolutionary theory and active communication across the different fields is needed for solving this global crisis more efficiently. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences'. PMID:27920384

  7. Remote Sensing and halocene Vegetation: History of Global Change

    NASA Technical Reports Server (NTRS)

    D'Antoni, Hector L.; Schaebitz, Frank

    1995-01-01

    Predictions of the future evolution of the earth's atmospheric chemistry and its impact on global circulation patterns are based on Global Climate Models (GCMs) that integrate the complex interactions of the biosphere, atmosphere and the oceans. Most of the available records of climate and environment are short-term records (from decades to a few hundred years) with convolved information of real trends and short-term fluctuations. GCMs must be tested beyond the short-term record of climate and environment to insure that predictions are based on trends and therefore are appropriate to support long term policy making. Unfortunately different parts of the world, weather stations are scattered, records extend over a period of only few years, and there are no systematic climate records for large portions of the globe.

  8. Presenting Global Warming and Evolution as Public Health Issues to Encourage Acceptance of Scientific Evidence

    ERIC Educational Resources Information Center

    Stover, Shawn K.; McArthur, Laurence B.; Mabry, Michelle L.

    2013-01-01

    Although evidence supporting anthropogenic global warming and evolution by natural selection is considerable, the public does not embrace these concepts. The current study explores the hypothesis that individuals will become more receptive to scientific viewpoints if evidence for evolution and implications of global warming are presented as issues…

  9. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed.

    PubMed

    Boykin, Laura M; Bell, Charles D; Evans, Gregory; Small, Ian; De Barro, Paul J

    2013-10-18

    Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world's most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes. The idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification. Our analysis suggests that the major lineages within the complex arose approximately 60-30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the divergence dates coincide with a period of global diversification that occurred broadly across the plant and animal kingdoms and was most likely associated with major climatic and tectonic events.

  10. The Evolution of Al Qaeda

    DTIC Science & Technology

    2007-06-15

    Al Qaeda is a product of the forces of globalization. Increasing access to global finances , international travel, and sophisticated technology is...evolution. Al Qaeda is a product of the forces of globalization. Increasing access to global finances , international travel, and sophisticated technology...75 Finance

  11. An Actor-Network Theory Analysis of Policy Innovation for Smoke-Free Places: Understanding Change in Complex Systems

    PubMed Central

    Borland, Ron; Coghill, Ken

    2010-01-01

    Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems. PMID:20466949

  12. An actor-network theory analysis of policy innovation for smoke-free places: understanding change in complex systems.

    PubMed

    Young, David; Borland, Ron; Coghill, Ken

    2010-07-01

    Complex, transnational issues like the tobacco epidemic are major challenges that defy analysis and management by conventional methods, as are other public health issues, such as those associated with global food distribution and climate change. We examined the evolution of indoor smoke-free regulations, a tobacco control policy innovation, and identified the key attributes of those jurisdictions that successfully pursued this innovation and those that to date have not. In doing so, we employed the actor-network theory, a comprehensive framework for the analysis of fundamental system change. Through our analysis, we identified approaches to help overcome some systemic barriers to the solution of the tobacco problem and comment on other complex transnational problems.

  13. Hypercompetitive Environments: An Agent-based model approach

    NASA Astrophysics Data System (ADS)

    Dias, Manuel; Araújo, Tanya

    Information technology (IT) environments are characterized by complex changes and rapid evolution. Globalization and the spread of technological innovation have increased the need for new strategic information resources, both from individual firms and management environments. Improvements in multidisciplinary methods and, particularly, the availability of powerful computational tools, are giving researchers an increasing opportunity to investigate management environments in their true complex nature. The adoption of a complex systems approach allows for modeling business strategies from a bottom-up perspective — understood as resulting from repeated and local interaction of economic agents — without disregarding the consequences of the business strategies themselves to individual behavior of enterprises, emergence of interaction patterns between firms and management environments. Agent-based models are at the leading approach of this attempt.

  14. The Ebola Outbreak: Catalyzing a "Shift" in Global Health Governance?

    PubMed

    Mackey, Tim K

    2016-11-24

    As the 2014 Ebola virus disease outbreak (EVD) transitions to its post-endemic phase, its impact on the future of global public health, particularly the World Health Organization (WHO), is the subject of continued debate. Criticism of WHO's performance grew louder in the outbreak's wake, placing this international health UN-specialized agency in the difficult position of navigating a complex series of reform recommendations put forth by different stakeholders. Decisions on WHO governance reform and the broader role of the United Nations could very well shape the future landscape of 21st century global health and how the international community responds to health emergencies. In order to better understand the implications of the EVD outbreak on global health and infectious disease governance, this debate article critically examines a series of reports issued by four high-level commissions/panels convened to specifically assess WHO's performance post-Ebola. Collectively, these recommendations add increasing complexity to the urgent need for WHO reform, a process that the agency must carry out in order to maintain its legitimacy. Proposals that garnered strong support included the formation of an independent WHO Centre for Emergency Preparedness and Response, the urgent need to increase WHO infectious disease funding and capacity, and establishing better operational and policy coordination between WHO, UN agencies, and other global health partners. The recommendations also raise more fundamental questions about restructuring the global health architecture, and whether the UN should play a more active role in global health governance. Despite the need for a fully modernized WHO, reform proposals recently announced by WHO fail to achieve the "evolution" in global health governance needed in order to ensure that global society is adequately protected against the multifaceted and increasingly complex nature of modern public health emergencies. Instead, the lasting legacy of the EVD outbreak may be its foreshadowing of a governance "shift" in formal sharing of the complex responsibilities of global health, health security, outbreak response, and managing health emergencies to other international structures, most notably the United Nations. Only time will tell if the legacy of EVD will include a WHO that has the full support of the international community and is capable of leading human society in this brave new era of the globalization of infectious diseases.

  15. Hierarchical Model for the Evolution of Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Sánchez D., Néstor M.; Parravano, Antonio

    1999-01-01

    The structure of cloud complexes appears to be well described by a tree structure (i.e., a simplified ``stick man'') representation when the image is partitioned into ``clouds.'' In this representation, the parent-child relationships are assigned according to containment. Based on this picture, a hierarchical model for the evolution of cloud complexes, including star formation, is constructed. The model follows the mass evolution of each substructure by computing its mass exchange with its parent and children. The parent-child mass exchange (evaporation or condensation) depends on the radiation density at the interphase. At the end of the ``lineage,'' stars may be born or die, so that there is a nonstationary mass flow in the hierarchical structure. For a variety of parameter sets the system follows the same series of steps to transform diffuse gas into stars, and the regulation of the mass flux in the tree by previously formed stars dominates the evolution of the star formation. For the set of parameters used here as a reference model, the system tends to produce initial mass functions (IMFs) that have a maximum at a mass that is too high (~2 Msolar) and the characteristic times for evolution seem too long. We show that these undesired properties can be improved by adjusting the model parameters. The model requires further physics (e.g., allowing for multiple stellar systems and clump collisions) before a definitive comparison with observations can be made. Instead, the emphasis here is to illustrate some general properties of this kind of complex nonlinear model for the star formation process. Notwithstanding the simplifications involved, the model reveals an essential feature that will likely remain if additional physical processes are included, that is, the detailed behavior of the system is very sensitive to the variations on the initial and external conditions, suggesting that a ``universal'' IMF is very unlikely. When an ensemble of IMFs corresponding to a variety of initial or external conditions is examined, the slope of the IMF at high masses shows variations comparable to the range derived from observational data. These facts suggest that the considered physical processes (phase transitions regulated by the radiation field) may play a role in the global evolution of molecular complexes.

  16. Computing Pathways for Urban Decarbonization.

    NASA Astrophysics Data System (ADS)

    Cremades, R.; Sommer, P.

    2016-12-01

    Urban areas emit roughly three quarters of global carbon emissions. Cities are crucial elements for a decarbonized society. Urban expansion and related transportation needs lead to increased energy use, and to carbon-intensive lock-ins that create barriers for climate change mitigation globally. The authors present the Integrated Urban Complexity (IUC) model, based on self-organizing Cellular Automata (CA), and use it to produce a new kind of spatially explicit Transformation Pathways for Urban Decarbonization (TPUD). IUC is based on statistical evidence relating the energy needed for transportation with the spatial distribution of population, specifically IUC incorporates variables from complexity science related to urban form, like the slope of the rank-size rule or spatial entropy, which brings IUC a step beyond existing models. The CA starts its evolution with real-world urban land use and population distribution data from the Global Human Settlement Layer. Thus, the IUC model runs over existing urban settlements, transforming the spatial distribution of population so the energy consumption for transportation is minimized. The statistical evidence that governs the evolution of the CA departs from the database of the International Association of Public Transport. A selected case is presented using Stuttgart (Germany) as an example. The results show how IUC varies urban density in those places where it improves the performance of crucial parameters related to urban form, producing a TPUD that shows where the spatial distribution of population should be modified with a degree of detail of 250 meters of cell size. The TPUD shows how the urban complex system evolves over time to minimize energy consumption for transportation. The resulting dynamics or urban decarbonization show decreased energy per capita, although total energy increases for increasing population. The results provide innovative insights: by checking current urban planning against a TPUD, urban planners could understand where existing plans contradict the Agenda 2030, primarily the Sustainable Development Goals (SDGs) Climate Action (SDG 13), and Sustainable Cities and Communities (SDG 11). For the first time, evidence-based transformation pathways are produced to decarbonize cities.

  17. Primordial Evolution in the Finitary Process Soup

    NASA Astrophysics Data System (ADS)

    Görnerup, Olof; Crutchfield, James P.

    A general and basic model of primordial evolution—a soup of reacting finitary and discrete processes—is employed to identify and analyze fundamental mechanisms that generate and maintain complex structures in prebiotic systems. The processes—ɛ-machines as defined in computational mechanics—and their interaction networks both provide well defined notions of structure. This enables us to quantitatively demonstrate hierarchical self-organization in the soup in terms of complexity. We found that replicating processes evolve the strategy of successively building higher levels of organization by autocatalysis. Moreover, this is facilitated by local components that have low structural complexity, but high generality. In effect, the finitary process soup spontaneously evolves a selection pressure that favors such components. In light of the finitary process soup's generality, these results suggest a fundamental law of hierarchical systems: global complexity requires local simplicity.

  18. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates

    USGS Publications Warehouse

    Greenberg, Russell; Maldonado, Jesus; Droege, Sam; McDonald, M.V.

    2006-01-01

    Globally, tidal marshes are found in small pockets or narrow bands totaling only approximately 45,000 square kilometers. The combination of salinity, low floristic and structural complexity, and regular tidal inundation, as well as unpredictable catastrophic flooding, provides a unique selective environment that shapes local adaptations, including those that are morphological, physiological, demographic, and behavioral. Although tidal marshes support a low diversity of nonaquatic vertebrate species, a high proportion of these inhabitants, at least along North American coastlines, are restricted to or have subspecies restricted to tidal marshes. Tidal marshes and their endemic fauna face broad threats from a variety of human-caused environmental changes. Future research should focus on global inventories, intercontinental comparative work, and investigation to determine why almost all presently described endemic taxa appear to be found in North America.

  19. Possible impact of global warming on the evolution of hemagglutinins from influenza a viruses.

    PubMed

    Yan, Shaomin; Wu, Guang

    2011-02-01

    To determine if global warming has an impact on the evolution of hemagglutinins from influenza A viruses, because both global warming and influenza pandemics/epidemics threaten the world. 4 706 hemagglutinins from influenza A viruses sampled from 1956 to 2009 were converted to a time-series to show their evolutionary process and compared with the global, northern hemisphere and southern hemisphere temperatures, to determine if their trends run in similar or opposite directions. Point-to-point comparisons between temperature and quantified hemagglutinins were performed for all species and for the major prevailing species. The comparisons show that the trends for both hemagglutinin evolution and temperature change run in a similar direction. Global warming has a consistent and progressive impact on the hemagglutinin evolution of influenza A viruses.

  20. Evolution of the PWWP-domain encoding genes in the plant and animal lineages

    PubMed Central

    2012-01-01

    Background Conserved domains are recognized as the building blocks of eukaryotic proteins. Domains showing a tendency to occur in diverse combinations (‘promiscuous’ domains) are involved in versatile architectures in proteins with different functions. Current models, based on global-level analyses of domain combinations in multiple genomes, have suggested that the propensity of some domains to associate with other domains in high-level architectures increases with organismal complexity. Alternative models using domain-based phylogenetic trees propose that domains have become promiscuous independently in different lineages through convergent evolution and are, thus, random with no functional or structural preferences. Here we test whether complex protein architectures have occurred by accretion from simpler systems and whether the appearance of multidomain combinations parallels organismal complexity. As a model, we analyze the modular evolution of the PWWP domain and ask whether its appearance in combinations with other domains into multidomain architectures is linked with the occurrence of more complex life-forms. Whether high-level combinations of domains are conserved and transmitted as stable units (cassettes) through evolution is examined in the genomes of plant or metazoan species selected for their established position in the evolution of the respective lineages. Results Using the domain-tree approach, we analyze the evolutionary origins and distribution patterns of the promiscuous PWWP domain to understand the principles of its modular evolution and its existence in combination with other domains in higher-level protein architectures. We found that as a single module the PWWP domain occurs only in proteins with a limited, mainly, species-specific distribution. Earlier, it was suggested that domain promiscuity is a fast-changing (volatile) feature shaped by natural selection and that only a few domains retain their promiscuity status throughout evolution. In contrast, our data show that most of the multidomain PWWP combinations in extant multicellular organisms (humans or land plants) are present in their unicellular ancestral relatives suggesting they have been transmitted through evolution as conserved linear arrangements (‘cassettes’). Among the most interesting biologically relevant results is the finding that the genes of the two plant Trithorax family subgroups (ATX1/2 and ATX3/4/5) have different phylogenetic origins. The two subgroups occur together in the earliest land plants Physcomitrella patens and Selaginella moellendorffii. Conclusion Gain/loss of a single PWWP domain is observed throughout evolution reflecting dynamic lineage- or species-specific events. In contrast, higher-level protein architectures involving the PWWP domain have survived as stable arrangements driven by evolutionary descent. The association of PWWP domains with the DNA methyltransferases in O. tauri and in the metazoan lineage seems to have occurred independently consistent with convergent evolution. Our results do not support models wherein more complex protein architectures involving the PWWP domain occur with the appearance of more evolutionarily advanced life forms. PMID:22734652

  1. Molecular Evolution of Grass Stomata.

    PubMed

    Chen, Zhong-Hua; Chen, Guang; Dai, Fei; Wang, Yizhou; Hills, Adrian; Ruan, Yong-Ling; Zhang, Guoping; Franks, Peter J; Nevo, Eviatar; Blatt, Michael R

    2017-02-01

    Grasses began to diversify in the late Cretaceous Period and now dominate more than one third of global land area, including three-quarters of agricultural land. We hypothesize that their success is likely attributed to the evolution of highly responsive stomata capable of maximizing productivity in rapidly changing environments. Grass stomata harness the active turgor control mechanisms present in stomata of more ancient plant lineages, maximizing several morphological and developmental features to ensure rapid responses to environmental inputs. The evolutionary development of grass stomata appears to have been a gradual progression. Therefore, understanding the complex structures, developmental events, regulatory networks, and combinations of ion transporters necessary to drive rapid stomatal movement may inform future efforts towards breeding new crop varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Modeling the Pre-Industrial Roots of Modern Super-Exponential Population Growth

    PubMed Central

    Stutz, Aaron Jonas

    2014-01-01

    To Malthus, rapid human population growth—so evident in 18th Century Europe—was obviously unsustainable. In his Essay on the Principle of Population, Malthus cogently argued that environmental and socioeconomic constraints on population rise were inevitable. Yet, he penned his essay on the eve of the global census size reaching one billion, as nearly two centuries of super-exponential increase were taking off. Introducing a novel extension of J. E. Cohen's hallmark coupled difference equation model of human population dynamics and carrying capacity, this article examines just how elastic population growth limits may be in response to demographic change. The revised model involves a simple formalization of how consumption costs influence carrying capacity elasticity over time. Recognizing that complex social resource-extraction networks support ongoing consumption-based investment in family formation and intergenerational resource transfers, it is important to consider how consumption has impacted the human environment and demography—especially as global population has become very large. Sensitivity analysis of the consumption-cost model's fit to historical population estimates, modern census data, and 21st Century demographic projections supports a critical conclusion. The recent population explosion was systemically determined by long-term, distinctly pre-industrial cultural evolution. It is suggested that modern globalizing transitions in technology, susceptibility to infectious disease, information flows and accumulation, and economic complexity were endogenous products of much earlier biocultural evolution of family formation's embeddedness in larger, hierarchically self-organizing cultural systems, which could potentially support high population elasticity of carrying capacity. Modern super-exponential population growth cannot be considered separately from long-term change in the multi-scalar political economy that connects family formation and intergenerational resource transfers to wider institutions and social networks. PMID:25141019

  3. Energy supplies and future engines for land, sea, and air.

    PubMed

    Hidy, George M; Chow, Judith C; England, Glen C; Legge, Alan H; Lloyd, Alan C; Watson, John G

    2012-11-01

    The 2012 Critical Review Discussion complements Wilson, (2012), provides pointers to more detailed treatments of different topics and adds additional dimensions to the area of "energy". These include broader aspects of technologies driven by fuel resources and environmental issues, the concept of energy technology innovation, evolution in transportation resources, and complexities of energy policies addressing carbon taxes or carbon trading. National and global energy data bases are identified and evaluated and conversion factors are given to allow their comparability.

  4. Multiple-Objective Stepwise Calibration Using Luca

    USGS Publications Warehouse

    Hay, Lauren E.; Umemoto, Makiko

    2007-01-01

    This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.

  5. Venus tectonics - An overview of Magellan observations

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Smrekar, Suzanne E.; Bindschadler, Duane L.; Grimm, Robert E.; Kaula, William M.; Mcgill, George E.; Phillips, Roger J.; Saunders, R. S.; Schubert, Gerald; Squyres, Steven W.

    1992-01-01

    Magellan observations of the tectonic characteristics of highland regions on Venus are discussed with reference to competing theories for highland formation and evolution. Complex rigid terrain, or tessera, and the extent to which these elevated blocks of intensely deformed crust may be genetically related to highlands are then considered. Further, the tectonics of plains and lowland regions are examined, including deformation belts and coronae, and possible relations between such features and mantle dynamics. Implications of these observations for the global tectonics of Venus are discussed.

  6. A gigantic nothosaur (Reptilia: Sauropterygia) from the Middle Triassic of SW China and its implication for the Triassic biotic recovery

    PubMed Central

    Liu, Jun; Hu, Shi-xue; Rieppel, Olivier; Jiang, Da-yong; Benton, Michael J.; Kelley, Neil P.; Aitchison, Jonathan C.; Zhou, Chang-yong; Wen, Wen; Huang, Jin-yuan; Xie, Tao; Lv, Tao

    2014-01-01

    The presence of gigantic apex predators in the eastern Panthalassic and western Tethyan oceans suggests that complex ecosystems in the sea had become re-established in these regions at least by the early Middle Triassic, after the Permian-Triassic mass extinction (PTME). However, it is not clear whether oceanic ecosystem recovery from the PTME was globally synchronous because of the apparent lack of such predators in the eastern Tethyan/western Panthalassic region prior to the Late Triassic. Here we report a gigantic nothosaur from the lower Middle Triassic of Luoping in southwest China (eastern Tethyan ocean), which possesses the largest known lower jaw among Triassic sauropterygians. Phylogenetic analysis suggests parallel evolution of gigantism in Triassic sauropterygians. Discovery of this gigantic apex predator, together with associated diverse marine reptiles and the complex food web, indicates global recovery of shallow marine ecosystems from PTME by the early Middle Triassic. PMID:25429609

  7. Combining pressure and temperature control in dynamics on energy landscapes

    NASA Astrophysics Data System (ADS)

    Hoffmann, Karl Heinz; Christian Schön, J.

    2017-05-01

    Complex systems from science, technology or mathematics usually appear to be very different in their specific dynamical evolution. However, the concept of an energy landscape with its basins corresponding to locally ergodic regions separated by energy barriers provides a unifying approach to the description of complex systems dynamics. In such systems one is often confronted with the task to control the dynamics such that a certain basin is reached with the highest possible probability. Typically one aims for the global minimum, e.g. when dealing with global optimization problems, but frequently other local minima such as the metastable compounds in materials science are of primary interest. Here we show how this task can be solved by applying control theory using magnesium fluoride as an example system, where different modifications of MgF2 are considered as targets. In particular, we generalize previous work restricted to temperature controls only and present controls which simultaneously adjust temperature and pressure in an optimal fashion.

  8. Dynamical Evolution of the Inner Heliosphere Approaching Solar Activity Maximum: Interpreting Ulysses Observations Using a Global MHD Model. Appendix 1

    NASA Technical Reports Server (NTRS)

    Riley, Pete; Mikic, Z.; Linker, J. A.

    2003-01-01

    In this study we describe a series of MHD simulations covering the time period from 12 January 1999 to 19 September 2001 (Carrington Rotation 1945 to 1980). This interval coincided with: (1) the Sun s approach toward solar maximum; and (2) Ulysses second descent to the southern polar regions, rapid latitude scan, and arrival into the northern polar regions. We focus on the evolution of several key parameters during this time, including the photospheric magnetic field, the computed coronal hole boundaries, the computed velocity profile near the Sun, and the plasma and magnetic field parameters at the location of Ulysses. The model results provide a global context for interpreting the often complex in situ measurements. We also present a heuristic explanation of stream dynamics to describe the morphology of interaction regions at solar maximum and contrast it with the picture that resulted from Ulysses first orbit, which occurred during more quiescent solar conditions. The simulation results described here are available at: http://sun.saic.com.

  9. It's a Sooty Problem: Black Carbon and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.

  10. Coupled land surface/hydrologic/atmospheric models

    NASA Technical Reports Server (NTRS)

    Pielke, Roger; Steyaert, Lou; Arritt, Ray; Lahtakia, Mercedes; Smith, Chris; Ziegler, Conrad; Soong, Su Tzai; Avissar, Roni; Wetzel, Peter; Sellers, Piers

    1993-01-01

    The topics covered include the following: prototype land cover characteristics data base for the conterminous United States; surface evapotranspiration effects on cumulus convection and implications for mesoscale models; the use of complex treatment of surface hydrology and thermodynamics within a mesoscale model and some related issues; initialization of soil-water content for regional-scale atmospheric prediction models; impact of surface properties on dryline and MCS evolution; a numerical simulation of heavy precipitation over the complex topography of California; representing mesoscale fluxes induced by landscape discontinuities in global climate models; emphasizing the role of subgrid-scale heterogeneity in surface-air interaction; and problems with modeling and measuring biosphere-atmosphere exchanges of energy, water, and carbon on large scales.

  11. Rivers of the Andes and the Amazon Basin: Deciphering global change from the hydroclimatic variability in the critical zone

    NASA Astrophysics Data System (ADS)

    Moreira-Turcq, Patricia; Carlo Espinoza, Jhan; Filizola, Naziano; Martinez, Jean-Michel

    2018-01-01

    The Critical Zone has been defined as the thin layer of the continental surfaces extending from fresh bedrock and the bottom of groundwater up to vegetation canopy, where soil, rock, water, air, and living organisms interact (Banwart et al., 2012; Lin et al., 2011). Despite the Critical Zone's importance to terrestrial life, it remains poorly understood. In this context, understanding the complex interactions between physical, chemical, and biological processes of the Critical Zone requires long-term observations (Anderson et al., 2012; Brantley et al., 2017), not only because different mechanisms have varying time frames, but also because it is necessary to monitor its natural and anthropogenic evolution in response to global climate and environmental changes.

  12. The Origin and Early Evolution of Membrane Proteins

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Schweighofter, Karl; Wilson, Michael A.

    2006-01-01

    The origin and early evolution of membrane proteins, and in particular ion channels, are considered from the point of view that the transmembrane segments of membrane proteins are structurally quite simple and do not require specific sequences to fold. We argue that the transport of solute species, especially ions, required an early evolution of efficient transport mechanisms, and that the emergence of simple ion channels was protobiologically plausible. We also argue that, despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. These properties can be subtly modulated by local modifications to the sequence rather than global changes in molecular architecture. In order to address the evolution and development of ion channels, we focus on identifying those protein domains that are commonly associated with ion channel proteins and are conserved throughout the three main domains of life (Eukarya, Prokarya, and Archaea). We discuss the potassium-sodium-calcium superfamily of voltage-gated ion channels, mechanosensitive channels, porins, and ABC-transporters and argue that these families of membrane channels have sufficiently universal architectures that they can readily adapt to the diverse functional demands arising during evolution.

  13. The Weakly Nonlinear Magnetorotational Instability in a Global, Cylindrical Taylor–Couette Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, S. E.; Oishi, Jeffrey S., E-mail: seclark@astro.columbia.edu

    We conduct a global, weakly nonlinear analysis of the magnetorotational instability (MRI) in a Taylor–Couette flow. This is a multiscale, perturbative treatment of the nonideal, axisymmetric MRI near threshold, subject to realistic radial boundary conditions and cylindrical geometry. We analyze both the standard MRI, initialized by a constant vertical background magnetic field, and the helical MRI, with an azimuthal background field component. This is the first weakly nonlinear analysis of the MRI in a global Taylor–Couette geometry, as well as the first weakly nonlinear analysis of the helical MRI. We find that the evolution of the amplitude of the standardmore » MRI is described by a real Ginzburg–Landau equation (GLE), whereas the amplitude of the helical MRI takes the form of a complex GLE. This suggests that the saturated state of the helical MRI may itself be unstable on long spatial and temporal scales.« less

  14. Physical Complexity and Cognitive Evolution

    NASA Astrophysics Data System (ADS)

    Jedlicka, Peter

    Our intuition tells us that there is a general trend in the evolution of nature, a trend towards greater complexity. However, there are several definitions of complexity and hence it is difficult to argue for or against the validity of this intuition. Christoph Adami has recently introduced a novel measure called physical complexity that assigns low complexity to both ordered and random systems and high complexity to those in between. Physical complexity measures the amount of information that an organism stores in its genome about the environment in which it evolves. The theory of physical complexity predicts that evolution increases the amount of `knowledge' an organism accumulates about its niche. It might be fruitful to generalize Adami's concept of complexity to the entire evolution (including the evolution of man). Physical complexity fits nicely into the philosophical framework of cognitive biology which considers biological evolution as a progressing process of accumulation of knowledge (as a gradual increase of epistemic complexity). According to this paradigm, evolution is a cognitive `ratchet' that pushes the organisms unidirectionally towards higher complexity. Dynamic environment continually creates problems to be solved. To survive in the environment means to solve the problem, and the solution is an embodied knowledge. Cognitive biology (as well as the theory of physical complexity) uses the concepts of information and entropy and views the evolution from both the information-theoretical and thermodynamical perspective. Concerning humans as conscious beings, it seems necessary to postulate an emergence of a new kind of knowledge - a self-aware and self-referential knowledge. Appearence of selfreflection in evolution indicates that the human brain reached a new qualitative level in the epistemic complexity.

  15. A generalized theory of preferential linking

    NASA Astrophysics Data System (ADS)

    Hu, Haibo; Guo, Jinli; Liu, Xuan; Wang, Xiaofan

    2014-12-01

    There are diverse mechanisms driving the evolution of social networks. A key open question dealing with understanding their evolution is: How do various preferential linking mechanisms produce networks with different features? In this paper we first empirically study preferential linking phenomena in an evolving online social network, find and validate the linear preference. We propose an analyzable model which captures the real growth process of the network and reveals the underlying mechanism dominating its evolution. Furthermore based on preferential linking we propose a generalized model reproducing the evolution of online social networks, and present unified analytical results describing network characteristics for 27 preference scenarios. We study the mathematical structure of degree distributions and find that within the framework of preferential linking analytical degree distributions can only be the combinations of finite kinds of functions which are related to rational, logarithmic and inverse tangent functions, and extremely complex network structure will emerge even for very simple sublinear preferential linking. This work not only provides a verifiable origin for the emergence of various network characteristics in social networks, but bridges the micro individuals' behaviors and the global organization of social networks.

  16. Structural symmetry and protein function.

    PubMed

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.

  17. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    PubMed

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus. © 2010 Blackwell Verlag GmbH.

  18. Photosystems and global effects of oxygenic photosynthesis.

    PubMed

    Nelson, Nathan

    2011-08-01

    Because life on earth is governed by the second law of thermodynamics, it is subject to increasing entropy. Oxygenic photosynthesis, the earth's major producer of both oxygen and organic matter, is a principal player in the development and maintenance of life, and thus results in increased order. The primary steps of oxygenic photosynthesis are driven by four multi-subunit membrane protein complexes: photosystem I, photosystem II, cytochrome b(6)f complex, and F-ATPase. Photosystem II generates the most positive redox potential found in nature and thus capable of extracting electrons from water. Photosystem I generates the most negative redox potential found in nature; thus, it largely determines the global amount of enthalpy in living systems. The recent structural determination of PSII and PSI complexes from cyanobacteria and plants sheds light on the evolutionary forces that shaped oxygenic photosynthesis. This newly available structural information complements knowledge gained from genomic and proteomic data, allowing for a more precise description of the scenario in which the evolution of life systems took place. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The Evolution of Campylobacter jejuni and Campylobacter coli

    PubMed Central

    Sheppard, Samuel K.; Maiden, Martin C.J.

    2015-01-01

    The global significance of Campylobacter jejuni and Campylobacter coli as gastrointestinal human pathogens has motivated numerous studies to characterize their population biology and evolution. These bacteria are a common component of the intestinal microbiota of numerous bird and mammal species and cause disease in humans, typically via consumption of contaminated meat products, especially poultry meat. Sequence-based molecular typing methods, such as multilocus sequence typing (MLST) and whole genome sequencing (WGS), have been instructive for understanding the epidemiology and evolution of these bacteria and how phenotypic variation relates to the high degree of genetic structuring in C. coli and C. jejuni populations. Here, we describe aspects of the relatively short history of coevolution between humans and pathogenic Campylobacter, by reviewing research investigating how mutation and lateral or horizontal gene transfer (LGT or HGT, respectively) interact to create the observed population structure. These genetic changes occur in a complex fitness landscape with divergent ecologies, including multiple host species, which can lead to rapid adaptation, for example, through frame-shift mutations that alter gene expression or the acquisition of novel genetic elements by HGT. Recombination is a particularly strong evolutionary force in Campylobacter, leading to the emergence of new lineages and even large-scale genome-wide interspecies introgression between C. jejuni and C. coli. The increasing availability of large genome datasets is enhancing understanding of Campylobacter evolution through the application of methods, such as genome-wide association studies, but MLST-derived clonal complex designations remain a useful method for describing population structure. PMID:26101080

  20. Spectral properties of the temporal evolution of brain network structure.

    PubMed

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  1. Evolutionary history and functional implications of protein domains and their combinations in eukaryotes.

    PubMed

    Itoh, Masumi; Nacher, Jose C; Kuma, Kei-ichi; Goto, Susumu; Kanehisa, Minoru

    2007-01-01

    In higher multicellular eukaryotes, complex protein domain combinations contribute to various cellular functions such as regulation of intercellular or intracellular signaling and interactions. To elucidate the characteristics and evolutionary mechanisms that underlie such domain combinations, it is essential to examine the different types of domains and their combinations among different groups of eukaryotes. We observed a large number of group-specific domain combinations in animals, especially in vertebrates. Examples include animal-specific combinations in tyrosine phosphorylation systems and vertebrate-specific combinations in complement and coagulation cascades. These systems apparently underwent extensive evolution in the ancestors of these groups. In extant animals, especially in vertebrates, animal-specific domains have greater connectivity than do other domains on average, and contribute to the varying number of combinations in each animal subgroup. In other groups, the connectivities of older domains were greater on average. To observe the global behavior of domain combinations during evolution, we traced the changes in domain combinations among animals and fungi in a network analysis. Our results indicate that there is a correlation between the differences in domain combinations among different phylogenetic groups and different global behaviors. Rapid emergence of animal-specific domains was observed in animals, contributing to specific domain combinations and functional diversification, but no such trends were observed in other clades of eukaryotes. We therefore suggest that the strategy for achieving complex multicellular systems in animals differs from that of other eukaryotes.

  2. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels.

    PubMed

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Clausmeyer, Till; Tekkaya, A Erman

    2018-05-09

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  3. Spectral properties of the temporal evolution of brain network structure

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying

    2015-12-01

    The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.

  4. A holistic approach to study the effects of natural antioxidants on inflammation and liver cancer.

    PubMed

    Costantini, Susan; Colonna, Giovanni; Castello, Giuseppe

    2014-01-01

    The limited effectiveness of chemotherapy and the high recurrence rate of cancers highlight the urgent need to identify new molecular targets and to develop new treatments. Numerous epidemiological studies have recently highlighted the existence of an inverse association between fruit and vegetable consumption, natural antioxidants, and cancer risk; in fact, antioxidant intake through diet or supplements of plant origin is strongly recommended for cancer prevention and cure. In general, antioxidants are substances of vegetable, mineral, or animal origin that neutralize free radicals and protect the body from their negative actions on the plasma membrane, proteins, and DNA. Hence, cancer can be prevented by the stimulation of the immune system to destroy cancer cells or to block their proliferation. Since living organisms may be studied as a whole complex system by the "omics sciences" which tend toward understanding and describing the global information of genes, mRNA, proteins, and metabolites, our aim is to use bioinformatics and systems biology to study cytokinome, which plays an important role in the evolution of inflammatory processes and is also a key component in the evolution of cancer, a disease recognized as depending on chronic inflammation and also with the concomitant presence of type 2 diabetes and obesity. On the whole, we define cytokinome as the totality of these proteins and their interactions in and around biological cells. Understanding the complex interaction network of cytokines in patients affected by cancers should be very useful both to follow the evolution of cancer from its early stages and to define innovative therapeutic strategies by using systems biology approaches. In this paper, we review some results of our group in the light of the "omics" logic, and in particular (1) the need for a global approach to study complex systems such as multifactorial cancer and, in particular, hepatocellular carcinoma, (2) the correlation between natural antioxidants, inflammation, and liver cancer, (3) the challenge and significance of the cytokinome profile, (4) the evaluation of the cytokinome profile of patients with type 2 diabetes and/or chronic hepatitis C infection, and (5) adipokine interactome.

  5. Molecular Epidemiology and Phylogeny Reveal Complex Spatial Dynamics in Areas Where Canine Parvovirus Is Endemic ▿†

    PubMed Central

    Clegg, S. R.; Coyne, K. P.; Parker, J.; Dawson, S.; Godsall, S. A.; Pinchbeck, G.; Cripps, P. J.; Gaskell, R. M.; Radford, A. D.

    2011-01-01

    Canine parvovirus type 2 (CPV-2) is a severe enteric pathogen of dogs, causing high mortality in unvaccinated dogs. After emerging, CPV-2 spread rapidly worldwide. However, there is now some evidence to suggest that international transmission appears to be more restricted. In order to investigate the transmission and evolution of CPV-2 both nationally and in relation to the global situation, we have used a long-range PCR to amplify and sequence the full VP2 gene of 150 canine parvoviruses obtained from a large cross-sectional sample of dogs presenting with severe diarrhea to veterinarians in the United Kingdom, over a 2-year period. Among these 150 strains, 50 different DNA sequence types (S) were identified, and apart from one case, all appeared unique to the United Kingdom. Phylogenetic analysis provided clear evidence for spatial clustering at the international level and for the first time also at the national level, with the geographical range of some sequence types appearing to be highly restricted within the United Kingdom. Evolution of the VP2 gene in this data set was associated with a lack of positive selection. In addition, the majority of predicted amino acid sequences were identical to those found elsewhere in the world, suggesting that CPV VP2 has evolved a highly fit conformation. Based on typing systems using key amino acid mutations, 43% of viruses were CPV-2a, and 57% CPV-2b, with no type 2 or 2c found. However, phylogenetic analysis suggested complex antigenic evolution of this virus, with both type 2a and 2b viruses appearing polyphyletic. As such, typing based on specific amino acid mutations may not reflect the true epidemiology of this virus. The geographical restriction that we observed both within the United Kingdom and between the United Kingdom and other countries, together with the lack of CPV-2c in this population, strongly suggests the spread of CPV within its population may be heterogeneously subject to limiting factors. This cross-sectional study of national and global CPV phylogeographic segregation reveals a substantially more complex epidemic structure than previously described. PMID:21593180

  6. Evolution of biological complexity

    PubMed Central

    Adami, Christoph; Ofria, Charles; Collier, Travis C.

    2000-01-01

    To make a case for or against a trend in the evolution of complexity in biological evolution, complexity needs to be both rigorously defined and measurable. A recent information-theoretic (but intuitively evident) definition identifies genomic complexity with the amount of information a sequence stores about its environment. We investigate the evolution of genomic complexity in populations of digital organisms and monitor in detail the evolutionary transitions that increase complexity. We show that, because natural selection forces genomes to behave as a natural “Maxwell Demon,” within a fixed environment, genomic complexity is forced to increase. PMID:10781045

  7. Global change, parasite transmission and disease control: lessons from ecology

    PubMed Central

    Boag, Brian; Ellison, Amy R.; Morgan, Eric R.; Murray, Kris; Pascoe, Emily L.; Sait, Steven M.; Booth, Mark

    2017-01-01

    Parasitic infections are ubiquitous in wildlife, livestock and human populations, and healthy ecosystems are often parasite rich. Yet, their negative impacts can be extreme. Understanding how both anticipated and cryptic changes in a system might affect parasite transmission at an individual, local and global level is critical for sustainable control in humans and livestock. Here we highlight and synthesize evidence regarding potential effects of ‘system changes’ (both climatic and anthropogenic) on parasite transmission from wild host–parasite systems. Such information could inform more efficient and sustainable parasite control programmes in domestic animals or humans. Many examples from diverse terrestrial and aquatic natural systems show how abiotic and biotic factors affected by system changes can interact additively, multiplicatively or antagonistically to influence parasite transmission, including through altered habitat structure, biodiversity, host demographics and evolution. Despite this, few studies of managed systems explicitly consider these higher-order interactions, or the subsequent effects of parasite evolution, which can conceal or exaggerate measured impacts of control actions. We call for a more integrated approach to investigating transmission dynamics, which recognizes these complexities and makes use of new technologies for data capture and monitoring, and to support robust predictions of altered parasite dynamics in a rapidly changing world. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289256

  8. Third nature: the co-evolution of human behavior, culture, and technology.

    PubMed

    Johnston, William A

    2005-07-01

    Within a dynamical-systems framework, human behavior is seen as emergent from broad evolutionary processes associated with three basic forms of nature. First nature, matter, emerged from the big bang some 12-15 billion years ago; second nature, life, from the first bacteria up to 4 billion years ago; third nature, ideology and cultural artifacts (e.g., institutions and technology), with a shift to self-reflective, symbolic thought and agrarianism in humans some 8-40 thousand years ago. The co-evolution of these three natures has dramatically altered human behavior and its relationship to the whole planet. Third nature has infused human minds with several powerful ideas, or memes, including the idea of progress. These ideas have fueled the evolution of a complex institutional order (e.g., political systems and technology) and myriad attendant global problems (e.g., wars and environmental degradation). The human brain/mind is seen as the primary medium by which third nature governs human behavior and, therefore, self perpetuates.

  9. Evolution and complexity: the double-edged sword.

    PubMed

    Miconi, Thomas

    2008-01-01

    We attempt to provide a comprehensive answer to the question of whether, and when, an arrow of complexity emerges in Darwinian evolution. We note that this expression can be interpreted in different ways, including a passive, incidental growth, or a pervasive bias towards complexification. We argue at length that an arrow of complexity does indeed occur in evolution, which can be most reasonably interpreted as the result of a passive trend rather than a driven one. What, then, is the role of evolution in the creation of this trend, and under which conditions will it emerge? In the later sections of this article we point out that when certain proper conditions (which we attempt to formulate in a concise form) are met, Darwinian evolution predictably creates a sustained trend of increase in maximum complexity (that is, an arrow of complexity) that would not be possible without it; but if they are not, evolution will not only fail to produce an arrow of complexity, but may actually prevent any increase in complexity altogether. We conclude that, with regard to the growth of complexity, evolution is very much a double-edged sword.

  10. Science education in a secular age

    NASA Astrophysics Data System (ADS)

    Long, David E.

    2013-03-01

    A college science education instructor tells his students he rejects evolution. What should we think? The scene unfolds in one of the largest urban centers in the world. If we are surprised, why? Expanding on Federica Raia's (2012) first-hand experience with this scenario, I broaden her discussion by considering the complexity of science education in a secular age. Enjoining Raia within the framework of Charles Taylor's A Secular Age, I task the science education community to consider the broad strokes of science, religious faith, and the complexity of modernity in its evolving, hybridized forms. Building upon anthropological approaches to science education research, I articulate a framework to more fully account for who, globally, is a Creationist, and what this means for our views of ethically responsive science education.

  11. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  12. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    PubMed

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  13. Magnetic Protostars

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2015-09-01

    A possible variant of the evolution of magnetic protostars "before the Hayashi phase" is discussed. Arguments are given in support of the following major properties of magnetic stars: (1) global magnetic dipole fields with predominant orientation of the magnetic lines of force in the plane of the equator of revolution; (2) slow rotation; (3) complex, two and three dipole structures of the magnetic field in a large part of the stars; (4) partition of stars into magnetic and normal in a proportion of 1:10 occurs during the period when the protostellar clouds undergo gravitational collapse "before the Hayashi phase."

  14. Technology, the evolution of the transnational corporation, and the nation-state: A speculative essay

    NASA Technical Reports Server (NTRS)

    Miller, A. S.

    1972-01-01

    This study deals with two exceedingly complex matters; first, the causal connection between technology and the rise of giant transnational or multinational corporations, and second, the impact that development is having on the political order called the nation-state. It is concluded that the multinational enterprise and the nation-state are the major participants in the planetary order; that the enterprise has a political role and the state has an economic role; and that they are conjoined ever increasingly into a system of global corporativism.

  15. [New infectious diseases in Finland--caused by climate change?].

    PubMed

    Vapalahti, Olli; Ruuhela, Reija; Henttonen, Heikki

    2012-01-01

    Although the appearance and spreading of most new infectious diseases are likely to be due to globalization or socio-economic changes, the occurrence of tick-, insect- and rodent-borne infections is at least partially dependent on climate variability and change. Climate influences the distribution and life cycle of vectors of arthropod-borne viruses as well as viral evolution and efficacy of transmission. The natural circulation of many pathogens and the development of epidemics are dependent on complex ecological factors, such as biodiversity and predator-prey cycles that in turn are indirectly linked to climate.

  16. The evolution of complex life.

    PubMed

    Billingham, J

    1989-01-01

    In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.

  17. Galactic-scale civilization

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.

    1980-01-01

    Evolutionary arguments are presented in favor of the existence of civilization on a galactic scale. Patterns of physical, chemical, biological, social and cultural evolution leading to increasing levels of complexity are pointed out and explained thermodynamically in terms of the maximization of free energy dissipation in the environment of the organized system. The possibility of the evolution of a global and then a galactic human civilization is considered, and probabilities that the galaxy is presently in its colonization state and that life could have evolved to its present state on earth are discussed. Fermi's paradox of the absence of extraterrestrials in light of the probability of their existence is noted, and a variety of possible explanations is indicated. Finally, it is argued that although mankind may be the first occurrence of intelligence in the galaxy, it is unjustified to presume that this is so.

  18. Moonage Daydream: Reassessing the Simple Model for Lunar Magma Ocean Crystallization

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Draper, D. S.

    2016-01-01

    Details of the differentiation of a global-scale lunar magma ocean (LMO) remain enigmatic, as the Moon is not simply composed of highlands anorthosite and a suite of mare basalts as inferred from early studies. Results from recent orbital missions, and the increasingly detailed study of lunar samples, have revealed a much larger range of lithologies, from relatively MgO-rich and "purest anorthosite" discovered on the lunar far side by the M3 instrument on Chandraayan-1 to more exotic lithologies such as Si-rich domes and spinel-rich clasts distributed globally. To understand this increasingly complex geology, we must understand the initial formation and evolution of the LMO, and the composition of the cumulates this differentiation could have produced. Several attempts at modelling such a crystallization sequence have been made, and have raised as many questions as they have answered. We present results from our ongoing experimental simulations of magma ocean crystallization, investigating two end-member bulk compositions (TWM and LPUM) under fully fractional crystallization conditions. These simulations represent melting of the entire silicate portion of the Moon, as an end-member starting point from which to begin assessing the evolution of the lunar interior and formation of the lunar crust.

  19. A Network of Networks Perspective on Global Trade.

    PubMed

    Maluck, Julian; Donner, Reik V

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990-2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector's role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network's substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to "normal" annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks.

  20. A Network of Networks Perspective on Global Trade

    PubMed Central

    Maluck, Julian; Donner, Reik V.

    2015-01-01

    Mutually intertwined supply chains in contemporary economy result in a complex network of trade relationships with a highly non-trivial topology that varies with time. In order to understand the complex interrelationships among different countries and economic sectors, as well as their dynamics, a holistic view on the underlying structural properties of this network is necessary. This study employs multi-regional input-output data to decompose 186 national economies into 26 industry sectors and utilizes the approach of interdependent networks to analyze the substructure of the resulting international trade network for the years 1990–2011. The partition of the network into national economies is observed to be compatible with the notion of communities in the sense of complex network theory. By studying internal versus cross-subgraph contributions to established complex network metrics, new insights into the architecture of global trade are obtained, which allow to identify key elements of global economy. Specifically, financial services and business activities dominate domestic trade whereas electrical and machinery industries dominate foreign trade. In order to further specify each national sector’s role individually, (cross-)clustering coefficients and cross-betweenness are obtained for different pairs of subgraphs. The corresponding analysis reveals that specific industrial sectors tend to favor distinct directionality patterns and that the cross-clustering coefficient for geographically close country pairs is remarkably high, indicating that spatial factors are still of paramount importance for the organization of trade patterns in modern economy. Regarding the evolution of the trade network’s substructure, globalization is well-expressed by trends of several structural characteristics (e.g., link density and node strength) in the interacting network framework. Extreme events, such as the financial crisis 2008/2009, are manifested as anomalies superimposed to these trends. The marked reorganization of trade patterns, associated with this economic crisis in comparison to “normal” annual fluctuations in the network structure is traced and quantified by a new widely applicable generalization of the Hamming distance to weighted networks. PMID:26197439

  1. Insights into the Ecology and Evolution of Polyploid Plants through Network Analysis.

    PubMed

    Gallagher, Joseph P; Grover, Corrinne E; Hu, Guanjing; Wendel, Jonathan F

    2016-06-01

    Polyploidy is a widespread phenomenon throughout eukaryotes, with important ecological and evolutionary consequences. Although genes operate as components of complex pathways and networks, polyploid changes in genes and gene expression have typically been evaluated as either individual genes or as a part of broad-scale analyses. Network analysis has been fruitful in associating genomic and other 'omic'-based changes with phenotype for many systems. In polyploid species, network analysis has the potential not only to facilitate a better understanding of the complex 'omic' underpinnings of phenotypic and ecological traits common to polyploidy, but also to provide novel insight into the interaction among duplicated genes and genomes. This adds perspective to the global patterns of expression (and other 'omic') change that accompany polyploidy and to the patterns of recruitment and/or loss of genes following polyploidization. While network analysis in polyploid species faces challenges common to other analyses of duplicated genomes, present technologies combined with thoughtful experimental design provide a powerful system to explore polyploid evolution. Here, we demonstrate the utility and potential of network analysis to questions pertaining to polyploidy with an example involving evolution of the transgressively superior cotton fibres found in polyploid Gossypium hirsutum. By combining network analysis with prior knowledge, we provide further insights into the role of profilins in fibre domestication and exemplify the potential for network analysis in polyploid species. © 2016 John Wiley & Sons Ltd.

  2. A heterogeneous computing accelerated SCE-UA global optimization method using OpenMP, OpenCL, CUDA, and OpenACC.

    PubMed

    Kan, Guangyuan; He, Xiaoyan; Ding, Liuqian; Li, Jiren; Liang, Ke; Hong, Yang

    2017-10-01

    The shuffled complex evolution optimization developed at the University of Arizona (SCE-UA) has been successfully applied in various kinds of scientific and engineering optimization applications, such as hydrological model parameter calibration, for many years. The algorithm possesses good global optimality, convergence stability and robustness. However, benchmark and real-world applications reveal the poor computational efficiency of the SCE-UA. This research aims at the parallelization and acceleration of the SCE-UA method based on powerful heterogeneous computing technology. The parallel SCE-UA is implemented on Intel Xeon multi-core CPU (by using OpenMP and OpenCL) and NVIDIA Tesla many-core GPU (by using OpenCL, CUDA, and OpenACC). The serial and parallel SCE-UA were tested based on the Griewank benchmark function. Comparison results indicate the parallel SCE-UA significantly improves computational efficiency compared to the original serial version. The OpenCL implementation obtains the best overall acceleration results however, with the most complex source code. The parallel SCE-UA has bright prospects to be applied in real-world applications.

  3. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  4. Education and Poverty in the Global Development Agenda: Emergence, Evolution and Consolidation

    ERIC Educational Resources Information Center

    Tarabini, Aina

    2010-01-01

    The objective of this paper is to analyse the role of education and poverty in the current global development agenda. It intends to analyse the emergence, evolution and consolidation of a global agenda, which attributes a key role to education in the fight against poverty. With this objective, the paper addresses four main issues: first, it…

  5. SeaRISE: A Multidisciplinary Research Initiative to Predict Rapid Changes in Global Sea Level Caused by Collapse of Marine Ice Sheets

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert A. (Editor)

    1990-01-01

    The results of a workshop held to discuss the role of the polar ice sheets in global climate change are reported. The participants agreed that the most important aspect of the ice sheets' involvement in climate change is the potential of marine ice sheets to cause a rapid change in global sea level. To address this concern, a research initiative is called for that considers the full complexity of the coupled atmosphere-ocean-cryosphere-lithosphere system. This initiative, called SeaRISE (Sea-level Response to Ice Sheet Evolution) has the goal of predicting the contribution of marine ice sheets to rapid changes in global sea level in the next decade to few centuries. To attain this goal, a coordinated program of multidisciplinary investigations must be launched with the linked objectives of understanding the current state, internal dynamics, interactions, and history of this environmental system. The key questions needed to satisfy these objectives are presented and discussed along with a plan of action to make the SeaRISE project a reality.

  6. Thermal Evolution of the Earth from a Plate Tectonics Point of View

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.

    2011-12-01

    Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.

  7. Is sociality required for the evolution of communicative complexity? Evidence weighed against alternative hypotheses in diverse taxonomic groups

    PubMed Central

    Ord, Terry J.; Garcia-Porta, Joan

    2012-01-01

    Complex social communication is expected to evolve whenever animals engage in many and varied social interactions; that is, sociality should promote communicative complexity. Yet, informal comparisons among phylogenetically independent taxonomic groups seem to cast doubt on the putative role of social factors in the evolution of complex communication. Here, we provide a formal test of the sociality hypothesis alongside alternative explanations for the evolution of communicative complexity. We compiled data documenting variations in signal complexity among closely related species for several case study groups—ants, frogs, lizards and birds—and used new phylogenetic methods to investigate the factors underlying communication evolution. Social factors were only implicated in the evolution of complex visual signals in lizards. Ecology, and to some degree allometry, were most likely explanations for complexity in the vocal signals of frogs (ecology) and birds (ecology and allometry). There was some evidence for adaptive evolution in the pheromone complexity of ants, although no compelling selection pressure was identified. For most taxa, phylogenetic null models were consistently ranked above adaptive models and, for some taxa, signal complexity seems to have accumulated in species via incremental or random changes over long periods of evolutionary time. Becoming social presumably leads to the origin of social communication in animals, but its subsequent influence on the trajectory of signal evolution has been neither clear-cut nor general among taxonomic groups. PMID:22641820

  8. Evolution of the axial system in craniates: morphology and function of the perivertebral musculature

    PubMed Central

    2011-01-01

    The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system. PMID:21306656

  9. Is globalization undermining the welfare state? The evolution of the welfare state in developed capitalist countries during the 1990s.

    PubMed

    Navarro, Vicente; Schmitt, John; Astudillo, Javier

    2004-01-01

    The authors analyze the evolution of macro-indicators of social and economic well-being during the 1990s in the majority of developed capitalist countries, grouped according to their dominant political traditions since the end of World War II. Their analysis shows that, despite the economic globalization of commerce and finance, "politics still matters" in explaining the evolution of the welfare states and labor markets in these countries; the impact of the globalization of financial capital in forcing reductions in the financial resources available for welfare state purposes has been exaggerated.

  10. Evolution Under Environmental Stress at Macro- and Microscales

    PubMed Central

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589–610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717–745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) “Evolution Canyon”; 5) human brain evolution, and 6) global warming. PMID:21979157

  11. Evolution under environmental stress at macro- and microscales.

    PubMed

    Nevo, Eviatar

    2011-01-01

    Environmental stress has played a major role in the evolution of living organisms (Hoffman AA, Parsons PA. 1991. Evolutionary genetics and environmental stress. Oxford: Oxford University Press; Parsons PA. 2005. Environments and evolution: interactions between stress, resource inadequacy, and energetic efficiency. Biol Rev Camb Philos Soc. 80:589-610). This is reflected by the massive and background extinctions in evolutionary time (Nevo E. 1995a. Evolution and extinction. Encyclopedia of Environmental Biology. New York: Academic Press, Inc. 1:717-745). The interaction between organism and environment is central in evolution. Extinction ensues when organisms fail to change and adapt to the constantly altering abiotic and biotic stressful environmental changes as documented in the fossil record. Extreme environmental stress causes extinction but also leads to evolutionary change and the origination of new species adapted to new environments. I will discuss a few of these global, regional, and local stresses based primarily on my own research programs. These examples will include the 1) global regional and local experiment of subterranean mammals; 2) regional experiment of fungal life in the Dead Sea; 3) evolution of wild cereals; 4) "Evolution Canyon"; 5) human brain evolution, and 6) global warming.

  12. Comparative empirical analysis of flow-weighted transit route networks in R-space and evolution modeling

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Zang, Guangzhi; He, Zhengbing; Guan, Wei

    2017-05-01

    Urban public transit system is a typical mixed complex network with dynamic flow, and its evolution should be a process coupling topological structure with flow dynamics, which has received little attention. This paper presents the R-space to make a comparative empirical analysis on Beijing’s flow-weighted transit route network (TRN) and we found that both the Beijing’s TRNs in the year of 2011 and 2015 exhibit the scale-free properties. As such, we propose an evolution model driven by flow to simulate the development of TRNs with consideration of the passengers’ dynamical behaviors triggered by topological change. The model simulates that the evolution of TRN is an iterative process. At each time step, a certain number of new routes are generated driven by travel demands, which leads to dynamical evolution of new routes’ flow and triggers perturbation in nearby routes that will further impact the next round of opening new routes. We present the theoretical analysis based on the mean-field theory, as well as the numerical simulation for this model. The results obtained agree well with our empirical analysis results, which indicate that our model can simulate the TRN evolution with scale-free properties for distributions of node’s strength and degree. The purpose of this paper is to illustrate the global evolutional mechanism of transit network that will be used to exploit planning and design strategies for real TRNs.

  13. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    PubMed Central

    Heibel, Sebastian; Dettinger, Thomas; Nester, Winfried; Tekkaya, A. Erman

    2018-01-01

    The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP) and dual-phase (DP) steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties. PMID:29747417

  14. The evolution of life cycle complexity in aphids: Ecological optimization or historical constraint?

    PubMed

    Hardy, Nate B; Peterson, Daniel A; von Dohlen, Carol D

    2015-06-01

    For decades, biologists have debated why many parasites have obligate multihost life cycles. Here, we use comparative phylogenetic analyses of aphids to evaluate the roles of ecological optimization and historical constraint in the evolution of life cycle complexity. If life cycle complexity is adaptive, it should be evolutionarily labile, that is, change in response to selection. We provide evidence that this is true in some aphids (aphidines), but not others (nonaphidines)-groups that differ in the intensity of their relationships with primary hosts. Next, we test specific mechanisms by which life cycle complexity could be adaptive or a constraint. We find that among aphidines there is a strong association between complex life cycles and polyphagy but only a weak correlation between life cycle complexity and reproductive mode. In contrast, among nonaphidines the relationship between life cycle complexity and host breadth is weak but the association between complex life cycles and sexual reproduction is strong. Thus, although the adaptiveness of life cycle complexity appears to be lineage specific, across aphids, life cycle evolution appears to be tightly linked with the evolution of other important natural history traits. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  15. The fossil record of evolution: Data on diversification and extinction

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J., Jr.

    1991-01-01

    Understanding of the evolution of complex life, and of the roles that changing terrestrial and extraterrestrial environments played in life's history, is dependent upon synthetic knowledge of the fossil record. Paleontologists have been describing fossils for more that two centuries. However, much of this information is dispersed in monographs and journal articles published throughout the world. Over the past several years, this literature was surveyed, and a data base on times of origination and extinction of fossil genera was compiled. The data base, which now holds approximately 32,000 genera, covers all taxonomic groups of marine animals, incorporates the most recent taxonomic assignments, and uses a detailed global time framework that can resolve originations and extinctions to intervals averaging three million years in duration. These data can be used to compile patterns of global biodiversity, measure rates of taxic evolution, and test hypotheses concerning adaptive radiations, mass extinctions, etc. Thus far, considerable effort was devoted to using the data to test the hypothesis of periodicity of mass extinction. Rates of extinction measured from the data base have also been used to calibrate models of evolutionary radiations in marine environments. It was observed that new groups, or clades of animals (i.e., orders and classes) tend to reach appreciable diversity first in nearshore environments and then to radiate in more offshore environments; during decline, these clades may disappear from the nearshore while persisting in offshore, deep water habitats. These observations have led to suggestions that there is something special about stressful or perturbed environments that promotes the evolution of novel kinds of animals that can rapidly replace their predecessors. The numerical model that is being investigated to study this phenomenon treats environments along onshore-offshore gradients as if they were discrete habitats. Other aspects of this investigation are presented.

  16. Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr

    During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less

  17. The Co-Evolution of Life & Environment, and the Astrobiological Quest

    NASA Astrophysics Data System (ADS)

    Cabrol, N. A.

    2016-12-01

    Physicochemical and environmental conditions determine the range of possible biogeochemistries on planets and moons. Yet, the Earth shows that as soon as life took hold, it modified its environment, from the mineralogy of sediments to the global composition of the atmosphere. In their evolution, life and environment are intertwined and cannot be separated. This coevolution is one of the most fundamental concepts in astrobiology, one that is central to our understanding of what, where, and how to search for life beyond Earth. In that quest, Mars will be the first destination for planetary missions seeking biosignatures. Both Earth and Mars had shared traits during the Archean/Noachian period. However, for Mars, the impact of a different environmental evolution on the development of life and the preservation of biosignatures remains unclear. In addition to an irreversible global climate change, Mars always had greater environmental variability than Earth due to its astronomical characteristics. Biological evolution, if any, would have had to proceed in this distinct context. If parallels can be drawn, the major metabolisms supporting Earth's biogeochemical cycles had evolved early. Understanding the succession of physical and environmental processes and their combination in the first 700 million years of Mars history is, therefore, essential to envision possible metabolisms, adaptation strategies life would have required to survive changes, and the biosignatures that could still be preserved today. Ultimately, the astrobiological significance of exploring Mars is also about teaching us invaluable lessons about the uniqueness of each planetary experiment, regardless of similarities. Beyond the Solar System, this notion can be expanded to the search for earth-like exoplanets, and for what it means to search for life as we know it, simple or complex.

  18. Trade liberalization and the diet transition: a public health response.

    PubMed

    Rayner, Geof; Hawkes, Corinna; Lang, Tim; Bello, Walden

    2006-12-01

    Trade liberalization remains at the forefront of debates around globalization, particularly around the impact on agriculture and food. These debates, which often focus on how poorer countries can 'trade their way' out of poverty, pay limited attention to dietary health, especially in the light of the WHO's Global Strategy for Diet, Physical Activity and Health (2004), which warned that future health burdens will be increasingly determined by diet-related chronic diseases. This article examines the diet transition as the absent factor within debates on liberalizing trade and commerce. We describe the evolution of trade agreements, noting those relevant to food. We review the association between trade liberalization and changes in the global dietary and disease profile. We illustrate some of the complex linkages between trade liberalization and the 'diet transition', illustrated by factors such as foreign direct investment, supermarketization and cultural change. Finally, we offer three scenarios for change, suggesting the need for more effective 'food governance' and engagement by public health advocates in policy making in the food and agriculture arena.

  19. Present-day Galaxy Evolution through Baryon Flows in the Circumgalactic Medium of the Galactic-Magellanic System

    NASA Astrophysics Data System (ADS)

    Barger, Kathleen Ann

    Galaxy evolution is governed by an intricate ballet of gas flows. To sustain star formation over many billions of years, more gas must inflow than outflow. Although numerous gas clouds surround the Milky Way, their attributes, origins, destinations, and responses to their surroundings need thorough investigation on an individual basis to realize how the entire population affects Galactic evolution. This dissertation hones in on two circumgalactic gas structures near the Milky Way: Complex A and the Magellanic Bridge. Complex A is an elongated gas structure that is traversing the hot Halo of the Milky Way, plummeting towards the Galaxy's disk. The Magellanic Bridge is a bridge of gas and stars that connects the Magellanic Clouds, created by galaxy interactions. In this thesis, I present the results of the highest sensitivity and kinematically resolved Halpha emission-line survey of Complex A and Halpha, [S II], and [N II] surveys of the Magellanic Bridge using the Wisconsin Halpha Mapper to explore their properties, surroundings, origins, and fates to unravel how circumgalactic structures influence galaxy evolution. I find that the observational properties of Complex A closely match with radiative transfer model predictions of a cloud ionized by the Milky Way and extragalactic background, implying a 5% escape fraction of ionizing photons from the Galactic disk. The multiline observations and modeling place the cloud's metallicity below solar. These results combined with other studies suggests the cloud has an intergalactic medium origin. I find that the global distribution of the warm ionized gas traces the neutral gas in the Magellanic Bridge. These observations place the ionized gas mass between (0.7 -- 1.6) x 108 solar masses, implying an ionization fraction of 25 -- 33% and a 5% maximum escape fraction of ionizing photons from the Magellanic Clouds. The line ratios reveal that the physical state of the the SMC-Tail and the LMC-Bridge interface regions differ from the Magellanic Bridge. The multiple component structure and line ratios reveal that at least two coherent structures with different physical properties exist throughout the Bridge.

  20. An examination of conceptual change in undergraduate biology majors while learning science concepts including biological evolution

    NASA Astrophysics Data System (ADS)

    McQuaide, Glenn G.

    2006-12-01

    Without adequate understanding of science, we cannot make responsible personal, regional, national, or global decisions about any aspect of life dealing with science. Better understanding how we learn about science can contribute to improving the quality of our educational experiences. Promoting pathways leading to life-long learning and deep understanding in our world should be a goal for all educators. This dissertation project was a phenomenological investigation into undergraduate understanding and acceptance of scientific theories, including biological evolution. Specifically, student descriptions of conceptual change while learning science theory were recorded and analyzed. These qualitative investigations were preceded by a survey that provided a means of selecting students who had a firmer understanding of science theory. Background information and survey data were collected in an undergraduate biology class at a small, Southern Baptist-affiliated liberal arts school located in south central Kentucky. Responses to questions on the MATE (Rutledge and Warden, 1999) instrument were used to screen students for interviews, which investigated the way by which students came to understand and accept scientific theories. This study identifies some ways by which individuals learn complex science theories, including biological evolution. Initial understanding and acceptance often occurs by the conceptual change method described by Posner et al. (1982). Three principle ways by which an individual may reach a level of understanding and acceptance of science theory were documented in this study. They were conceptual change through application of logic and reasoning; conceptual change through modification of religious views; and conceptual change through acceptance of authoritative knowledge. Development of a deeper, richer understanding and acceptance of complex, multi-faceted concepts such as biological evolution occurs in some individuals by means of conceptual enrichment. Conceptual enrichment occurs through addition of new knowledge, and then examining prior knowledge through the perspective of this new knowledge. In the field of science, enrichment reinforces complex concepts when multiple, convergent lines of supporting evidences point to the same rational scientific conclusion.

  1. Global effects of interactions on galaxy evolution

    NASA Technical Reports Server (NTRS)

    Kennicutt, Robert C., Jr.

    1990-01-01

    Recent observations of the evolutionary properties of paired and interacting galaxies are reviewed, with special emphasis on their global emission properties and star formation rates. Data at several wavelengths provide strong confirmation of the hypothesis, proposed originally by Larson and Tinsley, that interactions trigger global bursts of star formation in galaxies. The nature and properties of the starbursts, and their overall role in galactic evolution are also discussed.

  2. Approaches to Legacy System Evolution.

    DTIC Science & Technology

    1997-12-01

    such as migrating legacy systems, to more distributed open environments. This framework draws out the important global issues early in the planning...ongoing system evolution initiatives, for drawing out important global issues early in the planning cycle using the checklists as a guide, and for

  3. Evolution of INMARSAT systems and applications: The land mobile experience

    NASA Technical Reports Server (NTRS)

    Staffa, Eugene; Subramaniam, Ram

    1993-01-01

    Inmarsat has provided mobile satellite communication services for land mobile applications for well over a decade. Having started with the Inmarsat-A voice and telex system, Inmarsat is committed to the evolution of services towards a global personal, handheld satellite communicator. Over the years, users have benefitted from the evolution of technologies, increased user friendliness and portability of terminals and ever decreasing cost of operations. This paper describes the various present systems, their characteristics and applications, and outlines their contributions in the evolution towards the personal global communicator.

  4. What Is a Complex Innovation System?

    PubMed Central

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  5. Lighting design for globally illuminated volume rendering.

    PubMed

    Zhang, Yubo; Ma, Kwan-Liu

    2013-12-01

    With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.

  6. Simulating evolution of protein complexes through gene duplication and co-option.

    PubMed

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Sovereign public debt crisis in Europe. A network analysis

    NASA Astrophysics Data System (ADS)

    Matesanz, David; Ortega, Guillermo J.

    2015-10-01

    In this paper we analyse the evolving network structure of the quarterly public debt-to-GDP ratio from 2000 to 2014. By applying tools and concepts coming from complex systems we study the effects of the global financial crisis over public debt network connections and communities. Two main results arise from this analysis: firstly, countries public debts tend to synchronize their evolution, increasing global connectivity in the network and dramatically decreasing the number of communities. Secondly, a disruption in previous structure is observed at the time of the shock, emerging a more centralized and less diversify network topological organization which might be more prone to suffer contagion effects. This last fact is evidenced by an increasing tendency in countries of similar level of public debt to be connected between them, which we have quantified by the network assortativity.

  8. Evolution of Self-Organized Task Specialization in Robot Swarms

    PubMed Central

    Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom

    2015-01-01

    Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as “task partitioning”, whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization. PMID:26247819

  9. Evolution of Self-Organized Task Specialization in Robot Swarms.

    PubMed

    Ferrante, Eliseo; Turgut, Ali Emre; Duéñez-Guzmán, Edgar; Dorigo, Marco; Wenseleers, Tom

    2015-08-01

    Division of labor is ubiquitous in biological systems, as evidenced by various forms of complex task specialization observed in both animal societies and multicellular organisms. Although clearly adaptive, the way in which division of labor first evolved remains enigmatic, as it requires the simultaneous co-occurrence of several complex traits to achieve the required degree of coordination. Recently, evolutionary swarm robotics has emerged as an excellent test bed to study the evolution of coordinated group-level behavior. Here we use this framework for the first time to study the evolutionary origin of behavioral task specialization among groups of identical robots. The scenario we study involves an advanced form of division of labor, common in insect societies and known as "task partitioning", whereby two sets of tasks have to be carried out in sequence by different individuals. Our results show that task partitioning is favored whenever the environment has features that, when exploited, reduce switching costs and increase the net efficiency of the group, and that an optimal mix of task specialists is achieved most readily when the behavioral repertoires aimed at carrying out the different subtasks are available as pre-adapted building blocks. Nevertheless, we also show for the first time that self-organized task specialization could be evolved entirely from scratch, starting only from basic, low-level behavioral primitives, using a nature-inspired evolutionary method known as Grammatical Evolution. Remarkably, division of labor was achieved merely by selecting on overall group performance, and without providing any prior information on how the global object retrieval task was best divided into smaller subtasks. We discuss the potential of our method for engineering adaptively behaving robot swarms and interpret our results in relation to the likely path that nature took to evolve complex sociality and task specialization.

  10. Magnetospheric Substorm Evolution in the Magnetotail: Challenge to Global MHD Modeling.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Dorelli, J.; Rastaetter, L.

    2003-12-01

    Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at CCMC. We perform simulations of magnetotail dynamics using global MHD models residing at CCMC. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. We will analyze the effects of spatial resolution in the plasma sheet on modeled expansion phase evolution, maximum energy stored in the tail, and details of magnetotail reconnection. We will pay special attention to current sheet thinning and multiple plasmoid formation.

  11. Highlights of Astronomy, Vol. 16

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  12. Global patterns of diversity and selection in human tyrosinase gene.

    PubMed

    Hudjashov, Georgi; Villems, Richard; Kivisild, Toomas

    2013-01-01

    Global variation in skin pigmentation is one of the most striking examples of environmental adaptation in humans. More than two hundred loci have been identified as candidate genes in model organisms and a few tens of these have been found to be significantly associated with human skin pigmentation in genome-wide association studies. However, the evolutionary history of different pigmentation genes is rather complex: some loci have been subjected to strong positive selection, while others evolved under the relaxation of functional constraints in low UV environment. Here we report the results of a global study of the human tyrosinase gene, which is one of the key enzymes in melanin production, to assess the role of its variation in the evolution of skin pigmentation differences among human populations. We observe a higher rate of non-synonymous polymorphisms in the European sample consistent with the relaxation of selective constraints. A similar pattern was previously observed in the MC1R gene and concurs with UV radiation-driven model of skin color evolution by which mutations leading to lower melanin levels and decreased photoprotection are subject to purifying selection at low latitudes while being tolerated or even favored at higher latitudes because they facilitate UV-dependent vitamin D production. Our coalescent date estimates suggest that the non-synonymous variants, which are frequent in Europe and North Africa, are recent and have emerged after the separation of East and West Eurasian populations.

  13. Rethinking foundations of language from a multidisciplinary perspective.

    PubMed

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2018-04-21

    The issue of language foundations has been of great controversy ever since it was first raised in Lenneberg's (1967) monograph Biological Foundations of Language. Based on a survey of recent findings relevant to the study of language acquisition and evolution, we propose that: (i) the biological predispositions for language are largely domain-general, not necessarily language-specific or human-unique; (ii) the socio-cultural environment of language serves as another important foundation of language, which helps shape language components, induce and drive language shift; and (iii) language must have coevolved with the cognitive mechanisms associated with it through intertwined biological and cultural evolution. In addition to theoretical issues, this paper also evaluates the primary approaches recently joining the endeavor of studying language foundations and evolution, including human experiments and computer simulations. Most of the evidence surveyed in this paper comes from a variety of disciplines, and methodology therein complements each other to form a global picture of language foundations. These reflect the complexity of the issue of language foundations and the necessity of taking a multidisciplinary perspective to address it. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Geometry Genetics and Evolution

    NASA Astrophysics Data System (ADS)

    Siggia, Eric

    2011-03-01

    Darwin argued that highly perfected organs such as the vertebrate eye could evolve by a series of small changes, each of which conferred a selective advantage. In the context of gene networks, this idea can be recast into a predictive algorithm, namely find networks that can be built by incremental adaptation (gradient search) to perform some task. It embodies a ``kinetic'' view of evolution where a solution that is quick to evolve is preferred over a global optimum. Examples of biochemical kinetic networks were evolved for temporal adaptation, temperature compensated entrainable clocks, explore-exploit trade off in signal discrimination, will be presented as well as networks that model the spatially periodic somites (vertebrae) and HOX gene expression in the vertebrate embryo. These models appear complex by the criterion of 19th century applied mathematics since there is no separation of time or spatial scales, yet they are all derivable by gradient optimization of simple functions (several in the Pareto evolution) often based on the Shannon entropy of the time or spatial response. Joint work with P. Francois, Physics Dept. McGill University. With P. Francois, Physics Dept. McGill University

  15. Urban landscapes can change virus gene flow and evolution in a fragmentation-sensitive carnivore

    USGS Publications Warehouse

    Fountain-Jones, Nicholas M.; Craft, Meggan E.; Funk, W. Chris; Kozakiewicz, Chris; Trumbo, Daryl; Boydston, Erin E.; Lyren, Lisa M.; Crooks, Kevin R.; Lee, Justin S.; VandeWoude, Sue; Carver, Scott

    2017-01-01

    Urban expansion has widespread impacts on wildlife species globally, including the transmission and emergence of infectious diseases. However, there is almost no information about how urban landscapes shape transmission dynamics in wildlife. Using an innovative phylodynamic approach combining host and pathogen molecular data with landscape characteristics and host traits, we untangle the complex factors that drive transmission networks of Feline Immunodeficiency Virus (FIV) in bobcats (Lynx rufus). We found that the urban landscape played a significant role in shaping FIV transmission. Even though bobcats were often trapped within the urban matrix, FIV transmission events were more likely to occur in areas with more natural habitat elements. Urban fragmentation also resulted in lower rates of pathogen evolution, possibly owing to a narrower range of host genotypes in the fragmented area. Combined, our findings show that urban landscapes can have impacts on a pathogen and its evolution in a carnivore living in one of the most fragmented and urban systems in North America. The analytical approach used here can be broadly applied to other host-pathogen systems, including humans.

  16. Inverse Symmetry in Complete Genomes and Whole-Genome Inverse Duplication

    PubMed Central

    Kong, Sing-Guan; Fan, Wen-Lang; Chen, Hong-Da; Hsu, Zi-Ting; Zhou, Nengji; Zheng, Bo; Lee, Hoong-Chien

    2009-01-01

    The cause of symmetry is usually subtle, and its study often leads to a deeper understanding of the bearer of the symmetry. To gain insight into the dynamics driving the growth and evolution of genomes, we conducted a comprehensive study of textual symmetries in 786 complete chromosomes. We focused on symmetry based on our belief that, in spite of their extreme diversity, genomes must share common dynamical principles and mechanisms that drive their growth and evolution, and that the most robust footprints of such dynamics are symmetry related. We found that while complement and reverse symmetries are essentially absent in genomic sequences, inverse–complement plus reverse–symmetry is prevalent in complex patterns in most chromosomes, a vast majority of which have near maximum global inverse symmetry. We also discovered relations that can quantitatively account for the long observed but unexplained phenomenon of -mer skews in genomes. Our results suggest segmental and whole-genome inverse duplications are important mechanisms in genome growth and evolution, probably because they are efficient means by which the genome can exploit its double-stranded structure to enrich its code-inventory. PMID:19898631

  17. Impact of the volume of rooms on shock wave propagation within a multi-chamber system

    NASA Astrophysics Data System (ADS)

    Julien, B.; Sochet, I.; Vaillant, T.

    2016-03-01

    The behavior of a shock wave generated by a hemispherical gaseous charge and propagating within a confined multi-chamber system is analyzed through the evolution of some of the shock parameters (maximum overpressure and positive impulse). The influence of a variation in the volume of the rooms on the pressure history inside the building is also studied. Several small-scale experiments have been carried out using an adjustable model representative of a pyrotechnic workshop. The experimental results show that the pressure histories are very complex. Yet, using a global approach, we were able to link the evolution of the arrival time of the shock wave within the building with the reference obtained in the free field. New parameters were developed to best fit the experimental maximal overpressure in the cells and in the corridor leading to two predictive laws used to estimate the maximal overpressure in the model.

  18. Ancient human microbiomes

    PubMed Central

    Warinner, Christina; Speller, Camilla; Collins, Matthew J.; Lewis, Cecil M.

    2015-01-01

    Very recently, we discovered a vast new microbial self: the human microbiome. Our native microbiota interface with our biology and culture to influence our health, behavior, and quality of life, and yet we know very little about their origin, evolution, or ecology. With the advent of industrialization, globalization, and modern sanitation, it is intuitive that we have changed our relationship with microbes, but we have little information about the ancestral state of our microbiome, and therefore, we lack a foundation for characterizing this change. High-throughput sequencing has opened up new opportunities in the field of paleomicrobiology, allowing us to investigate the evolution of the complex microbial ecologies that inhabit our bodies. By focusing on recent coprolite and dental calculus research, we explore how emerging research on ancient human microbiomes is changing the way we think about ancient disease and how archaeological studies can contribute to a medical understanding of health and nutrition today. PMID:25559298

  19. Global analysis of genes involved in freshwater adaptation in threespine sticklebacks (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Goto, Akira; Merilä, Juha

    2011-06-01

    Examples of parallel evolution of phenotypic traits have been repeatedly demonstrated in threespine sticklebacks (Gasterosteus aculeatus) across their global distribution. Using these as a model, we performed a targeted genome scan--focusing on physiologically important genes potentially related to freshwater adaptation--to identify genetic signatures of parallel physiological evolution on a global scale. To this end, 50 microsatellite loci, including 26 loci within or close to (<6 kb) physiologically important genes, were screened in paired marine and freshwater populations from six locations across the Northern Hemisphere. Signatures of directional selection were detected in 24 loci, including 17 physiologically important genes, in at least one location. Although no loci showed consistent signatures of selection in all divergent population pairs, several outliers were common in multiple locations. In particular, seven physiologically important genes, as well as reference ectodysplasin gene (EDA), showed signatures of selection in three or more locations. Hence, although these results give some evidence for consistent parallel molecular evolution in response to freshwater colonization, they suggest that different evolutionary pathways may underlie physiological adaptation to freshwater habitats within the global distribution of the threespine stickleback. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  20. A spatial socio-ecosystem approach to analyse human-environment interactions on climate change adaptation for water resources management

    NASA Astrophysics Data System (ADS)

    Giupponi, Carlo; Mojtahed, Vahid

    2017-04-01

    Global climate and socio-economic drivers determine the future patterns of the allocation and the trade of resources and commodities in all markets. The agricultural sector is an emblematic case in which natural (e.g. climate), social (e.g. demography) and economic (e.g. the market) drivers of change interact, determining the evolution of social and ecological systems (or simply socio-ecosystems; SES) over time. In order to analyse the dynamics and possible future evolutions of SES, the combination of local complex systems and global drivers and trends require the development of multiscale approaches. At global level, climatic general circulation models (CGM) and computable general equilibrium or partial equilibrium models have been used for many years to explore the effects of global trends and generate future climate and socio-economic scenarios. Al local level, the inherent complexity of SESs and their spatial and temporal variabilities require different modelling approaches of physical/environmental sub-systems (e.g. field scale crop modelling, GIS-based models, etc.) and of human agency decision makers (e.g. agent based models). Global and local models have different assumption, limitations, constrains, etc., but in some cases integration is possible and several attempts are in progress to couple different models within the so-called Integrated Assessment Models. This work explores an innovative proposal to integrate the global and local approaches, where agent-based models (ABM) are used to simulate spatial (i.e. grid-based) and temporal dynamics of land and water resource use spatial and temporal dynamics, under the effect of global drivers. We focus in particular on how global change may affect land-use allocation at the local to regional level, under the influence of limited natural resources, land and water in particular. We specifically explore how constrains and competition for natural resources may induce non-linearities and discontinuities in socio-ecosystems behaviour. Our general ambition is to explore the feasibility of an approach that could be implemented worldwide through the identification of representative cases described by means of spatially explicit integrated simulations in communication with global modelling. Our specific objective is to test how ABMs can support scenario analysis at regional scale, and in particular how this can facilitate understanding of the role of human agency and its behavioural characteristics in local to global dynamics. The SES of interest is the agro-ecosystem with its relationships with other land uses. In order to test the feasibility of application at global level, all the information about land uses, natural resources, local climate, crop potential productions, etc. were derived from freely available spatial data sets covering the whole planet, which provided the ABM model with spatial information as matrices of pixels. Input maps were extracted from the Global Agro-Ecological Zone (GAEZ) web site of the Food and Agriculture Organization of the United Nations and compiled in the local GIS from where they were then converted in a format compatible with Matlab. In this initial application, an ABM prototype was developed in three test areas around the Mediterranean Basin, in agricultural regions of Tunisia, Italy and Spain.

  1. Are species' responses to global change predicted by past niche evolution?

    PubMed Central

    Lavergne, Sébastien; Evans, Margaret E. K.; Burfield, Ian J.; Jiguet, Frederic; Thuiller, Wilfried

    2013-01-01

    Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change. PMID:23209172

  2. Compensation opportunities and waste-to-energy plants

    NASA Astrophysics Data System (ADS)

    Rada, E. C.; Castagna, G.; Adami, L.; Torretta, V.; Ragazzi, M.

    2018-05-01

    Compensations are part of the pathway of design of a thermochemical plant. The evolution of the technology of this sector, integrated with adequate mitigations, can allow reaching a level of environmental impact that can be negligible locally. In spite of that, the local acceptance of modern plants is still critical. The global impact on the environment is more complex to define because of the variability of input of the plants. In this context, the role of compensations is very important, opening also to interesting opportunities for the territory, as demonstrated by the analysis reported in this article.

  3. Comparative phyloinformatics of virus genes at micro and macro levels in a distributed computing environment.

    PubMed

    Singh, Dadabhai T; Trehan, Rahul; Schmidt, Bertil; Bretschneider, Timo

    2008-01-01

    Preparedness for a possible global pandemic caused by viruses such as the highly pathogenic influenza A subtype H5N1 has become a global priority. In particular, it is critical to monitor the appearance of any new emerging subtypes. Comparative phyloinformatics can be used to monitor, analyze, and possibly predict the evolution of viruses. However, in order to utilize the full functionality of available analysis packages for large-scale phyloinformatics studies, a team of computer scientists, biostatisticians and virologists is needed--a requirement which cannot be fulfilled in many cases. Furthermore, the time complexities of many algorithms involved leads to prohibitive runtimes on sequential computer platforms. This has so far hindered the use of comparative phyloinformatics as a commonly applied tool in this area. In this paper the graphical-oriented workflow design system called Quascade and its efficient usage for comparative phyloinformatics are presented. In particular, we focus on how this task can be effectively performed in a distributed computing environment. As a proof of concept, the designed workflows are used for the phylogenetic analysis of neuraminidase of H5N1 isolates (micro level) and influenza viruses (macro level). The results of this paper are hence twofold. Firstly, this paper demonstrates the usefulness of a graphical user interface system to design and execute complex distributed workflows for large-scale phyloinformatics studies of virus genes. Secondly, the analysis of neuraminidase on different levels of complexity provides valuable insights of this virus's tendency for geographical based clustering in the phylogenetic tree and also shows the importance of glycan sites in its molecular evolution. The current study demonstrates the efficiency and utility of workflow systems providing a biologist friendly approach to complex biological dataset analysis using high performance computing. In particular, the utility of the platform Quascade for deploying distributed and parallelized versions of a variety of computationally intensive phylogenetic algorithms has been shown. Secondly, the analysis of the utilized H5N1 neuraminidase datasets at macro and micro levels has clearly indicated a pattern of spatial clustering of the H5N1 viral isolates based on geographical distribution rather than temporal or host range based clustering.

  4. Sustainability, collapse and oscillations in a simple World-Earth model

    NASA Astrophysics Data System (ADS)

    Nitzbon, Jan; Heitzig, Jobst; Parlitz, Ulrich

    2017-07-01

    The Anthropocene is characterized by close interdependencies between the natural Earth system and the global human society, posing novel challenges to model development. Here we present a conceptual model describing the long-term co-evolution of natural and socio-economic subsystems of Earth. While the climate is represented via a global carbon cycle, we use economic concepts to model socio-metabolic flows of biomass and fossil fuels between nature and society. A well-being-dependent parametrization of fertility and mortality governs human population dynamics. Our analysis focuses on assessing possible asymptotic states of the Earth system for a qualitative understanding of its complex dynamics rather than quantitative predictions. Low dimension and simple equations enable a parameter-space analysis allowing us to identify preconditions of several asymptotic states and hence fates of humanity and planet. These include a sustainable co-evolution of nature and society, a global collapse and everlasting oscillations. We consider different scenarios corresponding to different socio-cultural stages of human history. The necessity of accounting for the ‘human factor’ in Earth system models is highlighted by the finding that carbon stocks during the past centuries evolved opposing to what would ‘naturally’ be expected on a planet without humans. The intensity of biomass use and the contribution of ecosystem services to human well-being are found to be crucial determinants of the asymptotic state in a (pre-industrial) biomass-only scenario without capital accumulation. The capitalistic, fossil-based scenario reveals that trajectories with fundamentally different asymptotic states might still be almost indistinguishable during even a centuries-long transient phase. Given current human population levels, our study also supports the claim that besides reducing the global demand for energy, only the extensive use of renewable energies may pave the way into a sustainable future.

  5. Undecidability and Irreducibility Conditions for Open-Ended Evolution and Emergence.

    PubMed

    Hernández-Orozco, Santiago; Hernández-Quiroz, Francisco; Zenil, Hector

    2018-01-01

    Is undecidability a requirement for open-ended evolution (OEE)? Using methods derived from algorithmic complexity theory, we propose robust computational definitions of open-ended evolution and the adaptability of computable dynamical systems. Within this framework, we show that decidability imposes absolute limits on the stable growth of complexity in computable dynamical systems. Conversely, systems that exhibit (strong) open-ended evolution must be undecidable, establishing undecidability as a requirement for such systems. Complexity is assessed in terms of three measures: sophistication, coarse sophistication, and busy beaver logical depth. These three complexity measures assign low complexity values to random (incompressible) objects. As time grows, the stated complexity measures allow for the existence of complex states during the evolution of a computable dynamical system. We show, however, that finding these states involves undecidable computations. We conjecture that for similar complexity measures that assign low complexity values, decidability imposes comparable limits on the stable growth of complexity, and that such behavior is necessary for nontrivial evolutionary systems. We show that the undecidability of adapted states imposes novel and unpredictable behavior on the individuals or populations being modeled. Such behavior is irreducible. Finally, we offer an example of a system, first proposed by Chaitin, that exhibits strong OEE.

  6. Tectonic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.

  7. Within-Host Evolution of Human Influenza Virus.

    PubMed

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. An Assessment of Direct and Indirect Economic Losses of Climatic Extreme Events

    NASA Astrophysics Data System (ADS)

    Otto, C.; Willner, S. N.; Wenz, L.; Levermann, A.

    2015-12-01

    Risk of extreme weather events like storms, heat extremes, and floods has already risen due to anthropogenic climate change and is likely to increase further under future global warming. Additionally, the structure of the global economy has changed importantly in the last decades. In the process of globalization, local economies have become more and more interwoven forming a complex network. Together with a trend towards lean production, this has resulted in a strong dependency of local manufacturers on global supply and value added chains, which may render the economic network more vulnerable to climatic extremes; outages of local manufacturers trigger indirect losses, which spread along supply chains and can even outstrip direct losses. Accordingly, in a comprehensive climate risk assessment these inter-linkages should be considered. Here, we present acclimate, an agent based dynamic damage propagation model. Its agents are production and consumption sites, which are interlinked by economic flows accounting for the complexity as well as the heterogeneity of the global supply network. Assessing the economic response on the timescale of the adverse event, the model permits to study temporal and spatial evolution of indirect production losses during the disaster and in the subsequent recovery phase of the economy. In this study, we focus on the dynamic economic resilience defined here as the ratio of direct to total losses. This implies that the resilience of the system under consideration is low if the high indirect losses are high. We find and assess a nonlinear dependence of the resilience on the disaster size. Further, we analyze the influence of the network structure upon resilience and discuss the potential of warehousing as an adaptation option.

  9. Evolution combined with genomic study elucidates genetic bases of isobutanol tolerance in Escherichia coli

    PubMed Central

    2011-01-01

    Background Isobutanol is a promising next-generation biofuel with demonstrated high yield microbial production, but the toxicity of this molecule reduces fermentation volumetric productivity and final titer. Organic solvent tolerance is a complex, multigenic phenotype that has been recalcitrant to rational engineering approaches. We apply experimental evolution followed by genome resequencing and a gene expression study to elucidate genetic bases of adaptation to exogenous isobutanol stress. Results The adaptations acquired in our evolved lineages exhibit antagonistic pleiotropy between minimal and rich medium, and appear to be specific to the effects of longer chain alcohols. By examining genotypic adaptation in multiple independent lineages, we find evidence of parallel evolution in marC, hfq, mdh, acrAB, gatYZABCD, and rph genes. Many isobutanol tolerant lineages show reduced RpoS activity, perhaps related to mutations in hfq or acrAB. Consistent with the complex, multigenic nature of solvent tolerance, we observe adaptations in a diversity of cellular processes. Many adaptations appear to involve epistasis between different mutations, implying a rugged fitness landscape for isobutanol tolerance. We observe a trend of evolution targeting post-transcriptional regulation and high centrality nodes of biochemical networks. Collectively, the genotypic adaptations we observe suggest mechanisms of adaptation to isobutanol stress based on remodeling the cell envelope and surprisingly, stress response attenuation. Conclusions We have discovered a set of genotypic adaptations that confer increased tolerance to exogenous isobutanol stress. Our results are immediately useful to further efforts to engineer more isobutanol tolerant host strains of E. coli for isobutanol production. We suggest that rpoS and post-transcriptional regulators, such as hfq, RNA helicases, and sRNAs may be interesting mutagenesis targets for future global phenotype engineering. PMID:21435272

  10. Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution

    NASA Astrophysics Data System (ADS)

    Zhuo, Zhao; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-04-01

    One of the most challenging problems in network science is to accurately detect communities at distinct hierarchical scales. Most existing methods are based on structural analysis and manipulation, which are NP-hard. We articulate an alternative, dynamical evolution-based approach to the problem. The basic principle is to computationally implement a nonlinear dynamical process on all nodes in the network with a general coupling scheme, creating a networked dynamical system. Under a proper system setting and with an adjustable control parameter, the community structure of the network would "come out" or emerge naturally from the dynamical evolution of the system. As the control parameter is systematically varied, the community hierarchies at different scales can be revealed. As a concrete example of this general principle, we exploit clustered synchronization as a dynamical mechanism through which the hierarchical community structure can be uncovered. In particular, for quite arbitrary choices of the nonlinear nodal dynamics and coupling scheme, decreasing the coupling parameter from the global synchronization regime, in which the dynamical states of all nodes are perfectly synchronized, can lead to a weaker type of synchronization organized as clusters. We demonstrate the existence of optimal choices of the coupling parameter for which the synchronization clusters encode accurate information about the hierarchical community structure of the network. We test and validate our method using a standard class of benchmark modular networks with two distinct hierarchies of communities and a number of empirical networks arising from the real world. Our method is computationally extremely efficient, eliminating completely the NP-hard difficulty associated with previous methods. The basic principle of exploiting dynamical evolution to uncover hidden community organizations at different scales represents a "game-change" type of approach to addressing the problem of community detection in complex networks.

  11. The Evolution of Integrated Assessment and Emerging Challenges in the Assessment of Human and Natural System Interactions

    NASA Astrophysics Data System (ADS)

    Clarke, L.

    2017-12-01

    Integrated assessment (IA) modeling and research has a long history, spanning over 30 years since its inception and addressing a wide range of contemporary issues along the way. Over the last decade, IA modeling and research has emerged as one of the primary analytical methods for understanding the complex interactions between human and natural systems, from the interactions between energy, water, and land/food systems to the interplay between health, climate, and air pollution. IA modeling and research is particularly well-suited for the analysis of these interactions because it is a discipline that strives to integrate representations of multiple systems into consistent computational platforms or frameworks. In doing so, it explicitly confronts the many tradeoffs that are frequently necessary to manage complexity and computational cost while still representing the most important interactions and overall, coupled system behavior. This talk explores the history of IA modeling and research as a means to better understand its role in the assessment of contemporary issues at the confluence of human and natural systems. It traces the evolution of IA modeling and research from initial exploration of long-term emissions pathways, to the role of technology in the global evolution of the energy system, to the key linkages between land and energy systems and, more recently, the linkages with water, air pollution, and other key systems and issues. It discusses the advances in modeling that have emerged over this evolution and the biggest challenges that still present themselves as we strive to better understand the most important interactions between human and natural systems and the implications of these interactions for human welfare and decision making.

  12. Design and analysis of forward and reverse models for predicting defect accumulation, defect energetics, and irradiation conditions

    DOE PAGES

    Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent; ...

    2018-03-06

    The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less

  13. Design and analysis of forward and reverse models for predicting defect accumulation, defect energetics, and irradiation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent

    The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less

  14. Model criticism based on likelihood-free inference, with an application to protein network evolution.

    PubMed

    Ratmann, Oliver; Andrieu, Christophe; Wiuf, Carsten; Richardson, Sylvia

    2009-06-30

    Mathematical models are an important tool to explain and comprehend complex phenomena, and unparalleled computational advances enable us to easily explore them without any or little understanding of their global properties. In fact, the likelihood of the data under complex stochastic models is often analytically or numerically intractable in many areas of sciences. This makes it even more important to simultaneously investigate the adequacy of these models-in absolute terms, against the data, rather than relative to the performance of other models-but no such procedure has been formally discussed when the likelihood is intractable. We provide a statistical interpretation to current developments in likelihood-free Bayesian inference that explicitly accounts for discrepancies between the model and the data, termed Approximate Bayesian Computation under model uncertainty (ABCmicro). We augment the likelihood of the data with unknown error terms that correspond to freely chosen checking functions, and provide Monte Carlo strategies for sampling from the associated joint posterior distribution without the need of evaluating the likelihood. We discuss the benefit of incorporating model diagnostics within an ABC framework, and demonstrate how this method diagnoses model mismatch and guides model refinement by contrasting three qualitative models of protein network evolution to the protein interaction datasets of Helicobacter pylori and Treponema pallidum. Our results make a number of model deficiencies explicit, and suggest that the T. pallidum network topology is inconsistent with evolution dominated by link turnover or lateral gene transfer alone.

  15. Marine turtle mitogenome phylogenetics and evolution.

    PubMed

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A

    2012-10-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. Published by Elsevier Inc.

  16. The advent of animals: The view from the Ediacaran

    NASA Astrophysics Data System (ADS)

    Droser, Mary L.; Gehling, James G.

    2015-04-01

    Patterns of origination and evolution of early complex life on this planet are largely interpreted from the fossils of the Precambrian soft-bodied Ediacara Biota. These fossils occur globally and represent a diverse suite of organisms living in marine environments. Although these exceptionally preserved fossil assemblages are typically difficult to reconcile with modern phyla, examination of the morphology, ecology, and taphonomy of these taxa provides keys to their relationships with modern taxa. Within the more than 30 million y range of the Ediacara Biota, fossils of these multicellular organisms demonstrate the advent of mobility, heterotrophy by multicellular animals, skeletonization, sexual reproduction, and the assembly of complex ecosystems, all of which are attributes of modern animals. This approach to these fossils, without the constraint of attempting phylogenetic reconstructions, provides a mechanism for comparing these taxa with both living and extinct animals.

  17. The advent of animals: The view from the Ediacaran

    PubMed Central

    Droser, Mary L.; Gehling, James G.

    2015-01-01

    Patterns of origination and evolution of early complex life on this planet are largely interpreted from the fossils of the Precambrian soft-bodied Ediacara Biota. These fossils occur globally and represent a diverse suite of organisms living in marine environments. Although these exceptionally preserved fossil assemblages are typically difficult to reconcile with modern phyla, examination of the morphology, ecology, and taphonomy of these taxa provides keys to their relationships with modern taxa. Within the more than 30 million y range of the Ediacara Biota, fossils of these multicellular organisms demonstrate the advent of mobility, heterotrophy by multicellular animals, skeletonization, sexual reproduction, and the assembly of complex ecosystems, all of which are attributes of modern animals. This approach to these fossils, without the constraint of attempting phylogenetic reconstructions, provides a mechanism for comparing these taxa with both living and extinct animals. PMID:25901306

  18. Different Evolutionary Paths to Complexity for Small and Large Populations of Digital Organisms

    PubMed Central

    2016-01-01

    A major aim of evolutionary biology is to explain the respective roles of adaptive versus non-adaptive changes in the evolution of complexity. While selection is certainly responsible for the spread and maintenance of complex phenotypes, this does not automatically imply that strong selection enhances the chance for the emergence of novel traits, that is, the origination of complexity. Population size is one parameter that alters the relative importance of adaptive and non-adaptive processes: as population size decreases, selection weakens and genetic drift grows in importance. Because of this relationship, many theories invoke a role for population size in the evolution of complexity. Such theories are difficult to test empirically because of the time required for the evolution of complexity in biological populations. Here, we used digital experimental evolution to test whether large or small asexual populations tend to evolve greater complexity. We find that both small and large—but not intermediate-sized—populations are favored to evolve larger genomes, which provides the opportunity for subsequent increases in phenotypic complexity. However, small and large populations followed different evolutionary paths towards these novel traits. Small populations evolved larger genomes by fixing slightly deleterious insertions, while large populations fixed rare beneficial insertions that increased genome size. These results demonstrate that genetic drift can lead to the evolution of complexity in small populations and that purifying selection is not powerful enough to prevent the evolution of complexity in large populations. PMID:27923053

  19. Global search in photoelectron diffraction structure determination using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Viana, M. L.; Díez Muiño, R.; Soares, E. A.; Van Hove, M. A.; de Carvalho, V. E.

    2007-11-01

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 × 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  20. Resolution of Infinite-Loop in Hyperincursive and Nonlocal Cellular Automata: Introduction to Slime Mold Computing

    NASA Astrophysics Data System (ADS)

    Aono, Masashi; Gunji, Yukio-Pegio

    2004-08-01

    How can non-algorithmic/non-deterministic computational syntax be computed? "The hyperincursive system" introduced by Dubois is an anticipatory system embracing the contradiction/uncertainty. Although it may provide a novel viewpoint for the understanding of complex systems, conventional digital computers cannot run faithfully as the hyperincursive computational syntax specifies, in a strict sense. Then is it an imaginary story? In this paper we try to argue that it is not. We show that a model of complex systems "Elementary Conflictable Cellular Automata (ECCA)" proposed by Aono and Gunji is embracing the hyperincursivity and the nonlocality. ECCA is based on locality-only type settings basically as well as other CA models, and/but at the same time, each cell is required to refer to globality-dominant regularity. Due to this contradictory locality-globality loop, the time evolution equation specifies that the system reaches the deadlock/infinite-loop. However, we show that there is a possibility of the resolution of these problems if the computing system has parallel and/but non-distributed property like an amoeboid organism. This paper is an introduction to "the slime mold computing" that is an attempt to cultivate an unconventional notion of computation.

  1. Diversity and Evolution of Mycobacterium tuberculosis: Moving to Whole-Genome-Based Approaches

    PubMed Central

    Niemann, Stefan; Supply, Philip

    2014-01-01

    Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools. PMID:25190252

  2. Improving Secondary Organic Aerosol (SOA) Models using Global Sensitivity Analysis and by Comparison to Chamber Data.

    NASA Astrophysics Data System (ADS)

    Miller, D. O.; Brune, W. H.

    2017-12-01

    Accurate estimates of secondary organic aerosol (SOA) from atmospheric models is a major research challenge due to the complexity of the chemical and physical processes involved in the SOA formation and continuous aging. The primary uncertainties of SOA models include those associated with the formation of gas-phase products, the conversion between gas phase and particle phase, the aging mechanisms of SOA, and other processes related to the heterogeneous and particle-phase reactions. To address this challenge, we us a modular modeling framework that combines both simple and near-explicit gas-phase reactions and a two-dimensional volatility basis set (2D-VBS) to simulate the formation and evolution of SOA. Global sensitivity analysis is used to assess the relative importance of the model input parameters. In addition, the model is compared to the measurements from the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT).

  3. The evolution of genital complexity and mating rates in sexually size dimorphic spiders.

    PubMed

    Kuntner, Matjaž; Cheng, Ren-Chung; Kralj-Fišer, Simona; Liao, Chen-Pan; Schneider, Jutta M; Elgar, Mark A

    2016-11-09

    Genital diversity may arise through sexual conflict over polyandry, where male genital features function to manipulate female mating frequency against her interest. Correlated genital evolution across animal groups is consistent with this view, but a link between genital complexity and mating rates remains to be established. In sexually size dimorphic spiders, golden orbweaving spiders (Nephilidae) males mutilate their genitals to form genital plugs, but these plugs do not always prevent female polyandry. In a comparative framework, we test whether male and female genital complexity coevolve, and how these morphologies, as well as sexual cannibalism, relate to the evolution of mating systems. Using a combination of comparative tests, we show that male genital complexity negatively correlates with female mating rates, and that levels of sexual cannibalism negatively correlate with male mating rates. We also confirm a positive correlation between male and female genital complexity. The macroevolutionary trajectory is consistent with a repeated evolution from polyandry to monandry coinciding with the evolution towards more complex male genitals. These results are consistent with the predictions from sexual conflict theory, although sexual conflict may not be the only mechanism responsible for the evolution of genital complexity and mating systems. Nevertheless, our comparative evidence suggests that in golden orbweavers, male genital complexity limits female mating rates, and sexual cannibalism by females coincides with monogyny.

  4. The global network on dental education: a new vision for IFDEA.

    PubMed

    De Vries, J; Murtomaa, H; Butler, M; Cherrett, H; Ferrillo, P; Ferro, M B; Gadbury-Amyot, C; Haden, N K; Manogue, M; Mintz, J; Mulvihill, J E; Murray, B; Nattestad, A; Nielsen, D; Ogunbodede, E; Parkash, H; Plasschaert, F; Reed, M T; Rupp, R L; Tandon, S; Wang, B; Wang, S; Yucel, T; Valachovic, R W; Watkinson, A; Shanley, D

    2008-02-01

    The advent of globalization has changed our perspectives radically. It presents increased understanding of world affairs, new challenges and exciting opportunities. The inequitable distribution and use of finite energy resources and global warming are just two examples of challenges that can only be addressed by concerted international collaboration. Globalization has become an increasingly important influence on dentistry and dental education. The International Federation for Dental Educators and Associations (IFDEA) welcomes the challenges it now faces as a player in a complex multifaceted global community. This report addresses the new circumstances in which IFDEA must operate, taking account of the recommendations made by other working groups. The report reviews the background and evolution of IFDEA and describes the extensive developments that have taken place in IFDEA over the past year with the introductions of a new Constitution and Bylaws overseen by a newly established Board of Directors. These were the consequence of a new mission, goals and objectives for IFDEA. An expanded organization is planned using http://www.IFDEA.org as the primary instrument to facilitate the exchange of knowledge, programmes and expertise between colleagues and federated associations throughout the world, thereby promoting higher standards in oral health through education in low-, middle- and high-income countries of the world. Such aspirations are modified by the reality and enormity of poverty-related global ill health.

  5. Evolution of complex adaptations in molecular systems

    PubMed Central

    Pál, Csaba; Papp, Balázs

    2017-01-01

    A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044

  6. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses.

    PubMed

    Tabachnick, Walter J

    2016-09-29

    The impact of anticipated changes in global climate on the arboviruses and the diseases they cause poses a significant challenge for public health. The past evolution of the dengue and yellow fever viruses provides clues about the influence of changes in climate on their future evolution. The evolution of both viruses has been influenced by virus interactions involving the mosquito species and the primate hosts involved in virus transmission, and by their domestic and sylvatic cycles. Information is needed on how viral genes in general influence phenotypic variance for important viral functions. Changes in global climate will alter the interactions of mosquito species with their primate hosts and with the viruses in domestic cycles, and greater attention should be paid to the sylvatic cycles. There is great danger for the evolution of novel viruses, such as new serotypes, that could compromise vaccination programs and jeopardize public health. It is essential to understand (a) both sylvatic and domestic cycles and (b) the role of virus genetic and environmental variances in shaping virus phenotypic variance to more fully assess the impact of global climate change.

  7. Sexual selection and the evolution of genital shape and complexity in water striders.

    PubMed

    Rowe, Locke; Arnqvist, Göran

    2012-01-01

    Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.

  8. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    Ganopolski, Andrey; Brovkin, Victor

    2017-11-01

    In spite of significant progress in paleoclimate reconstructions and modelling of different aspects of the past glacial cycles, the mechanisms which transform regional and seasonal variations in solar insolation into long-term and global-scale glacial-interglacial cycles are still not fully understood - in particular, in relation to CO2 variability. Here using the Earth system model of intermediate complexity CLIMBER-2 we performed simulations of the co-evolution of climate, ice sheets, and carbon cycle over the last 400 000 years using the orbital forcing as the only external forcing. The model simulates temporal dynamics of CO2, global ice volume, and other climate system characteristics in good agreement with paleoclimate reconstructions. These results provide strong support for the idea that long and strongly asymmetric glacial cycles of the late Quaternary represent a direct but strongly nonlinear response of the Northern Hemisphere ice sheets to orbital forcing. This response is strongly amplified and globalised by the carbon cycle feedbacks. Using simulations performed with the model in different configurations, we also analyse the role of individual processes and sensitivity to the choice of model parameters. While many features of simulated glacial cycles are rather robust, some details of CO2 evolution, especially during glacial terminations, are sensitive to the choice of model parameters. Specifically, we found two major regimes of CO2 changes during terminations: in the first one, when the recovery of the Atlantic meridional overturning circulation (AMOC) occurs only at the end of the termination, a pronounced overshoot in CO2 concentration occurs at the beginning of the interglacial and CO2 remains almost constant during the interglacial or even declines towards the end, resembling Eemian CO2 dynamics. However, if the recovery of the AMOC occurs in the middle of the glacial termination, CO2 concentration continues to rise during the interglacial, similar to the Holocene. We also discuss the potential contribution of the brine rejection mechanism for the CO2 and carbon isotopes in the atmosphere and the ocean during the past glacial termination.

  9. Topology of molecular interaction networks.

    PubMed

    Winterbach, Wynand; Van Mieghem, Piet; Reinders, Marcel; Wang, Huijuan; de Ridder, Dick

    2013-09-16

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks.Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs.Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes.Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further.

  10. Topology of molecular interaction networks

    PubMed Central

    2013-01-01

    Molecular interactions are often represented as network models which have become the common language of many areas of biology. Graphs serve as convenient mathematical representations of network models and have themselves become objects of study. Their topology has been intensively researched over the last decade after evidence was found that they share underlying design principles with many other types of networks. Initial studies suggested that molecular interaction network topology is related to biological function and evolution. However, further whole-network analyses did not lead to a unified view on what this relation may look like, with conclusions highly dependent on the type of molecular interactions considered and the metrics used to study them. It is unclear whether global network topology drives function, as suggested by some researchers, or whether it is simply a byproduct of evolution or even an artefact of representing complex molecular interaction networks as graphs. Nevertheless, network biology has progressed significantly over the last years. We review the literature, focusing on two major developments. First, realizing that molecular interaction networks can be naturally decomposed into subsystems (such as modules and pathways), topology is increasingly studied locally rather than globally. Second, there is a move from a descriptive approach to a predictive one: rather than correlating biological network topology to generic properties such as robustness, it is used to predict specific functions or phenotypes. Taken together, this change in focus from globally descriptive to locally predictive points to new avenues of research. In particular, multi-scale approaches are developments promising to drive the study of molecular interaction networks further. PMID:24041013

  11. Habitability of the Paleo-Earth as a Model for Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Mendez, A.

    2013-05-01

    The Phanerozoic is the current eon of Earth's geological history, from 542 million years ago to today, when large and complex life started to populate the ocean and land areas. Our planet became more hospitable and life took the opportunity to evolve and spread globally, especially on land. This had an impact on surface and atmospheric bio-signatures. Future observations of exoplanets might be able to detect similar changes on nearby exoplanets. Therefore, the application of the evolution of terrestrial habitability might help to determine the potential for life on Earth-like exoplanets. Here we evaluated the habitability of Earth during the Phanerozoic as a model for comparison with future observations of Earth-like exoplanets. Vegetation was used as a global indicator of habitability because as a primary producer it provides the energy for many other simple to complex life forms in the trophic scale. Our first proxy for habitability was the Relative Vegetation Density (RVD) derived from our vegetation datasets of the Visible Paleo-Earth. The RVD is a measure similar to vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), that gives a general idea of the global area-weighted fraction of vegetation cover. Our second habitability proxy was the Standard Primary Habitability (SPH) derived from mean global surface temperatures and relative humidity. The RVD is a more direct measure of the habitability of a planet but the SPH is easier to measure by remote sensors. Our analysis shows that terrestrial habitability has been greater than today for most of the Phanerozoic as demonstrated by both the RVD and SPH, with the Devonian and Cretaceous particularly more habitable. The RVD and SPH are generally correlated except around the Permian-Triassic, matching the P-Tr extinction. There has been a marked decrease in terrestrial habitability during the last 100 million years, even superseding the K-Pg extinction. Additional metrics were used to examine the habitability of Earth for more extended periods. The evolution of terrestrial habitability may be used to recognize and characterize similar features on future observations of Earth-like exoplanets. Habitability of Earth during the Phanerozoic as measured by two methods, the Relative Vegetation Density (RVD) and the Standard Primary Habitability (SPH). Future observations of exoplanets might provide estimates of the SPH that could be compared to Earth.

  12. The evolution of location and data collection systems in the United States.

    NASA Technical Reports Server (NTRS)

    Morakis, J. C.; Cote, C. E.

    1973-01-01

    Satellite location and data collection systems development began in the early 1960's in NASA and the French CNES. These systems were initially developed for application to meteorology and oceanography as a means of tracking moving platforms on a global scale. Additional applications such as geology, hydrology, and ecology have since evolved. To date, five successful missions have been completed. With each successive launch, systems improved in accordance with user requirements - particularly reduction in cost and complexity of platform equipment. With planned launches, facilities will be available to the user community through 1980; NASA is currently forecasting needs beyond 1980.

  13. Directed evolution and synthetic biology applications to microbial systems.

    PubMed

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Wind-Driven Global Evolution of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    It has been realized in the recent years that magnetized disk winds disk- likely play a decisive role in the global evolution of protoplanetary disks protoplanetary evolution (PPDs). Motivated by recent local simulations local , we first describe a global magnetized disk wind model, from which wind-driven accretion rate -rate wind-driven and wind mass loss rate can be reliably estimated. Both rates are shown to strongly depend on the amount of magnetic flux magnetic threading the disk. Wind kinematics is also affected by thermodynamics in the wind zone (particularly far UV heating/ionization), and the mass loss process loss- can be better termed as "magneto-photoevaporation." We then construct a framework of PPD global evolution global that incorporates wind-driven and viscously driven accretion viscously-driven as well as wind mass loss. For typical PPD accretion rates, the required field strength would lead to wind mass loss rate at least comparable to disk accretion rate, and mass loss is most significant in the outer disk (beyond ˜ 10 AU). Finally, we discuss the transport of magnetic flux in PPDs, which largely governs the long-term evolution long-term of PPDs.

  15. A Universal Definition of Life: Autonomy and Open-Ended Evolution

    NASA Astrophysics Data System (ADS)

    Ruiz-Mirazo, Kepa; Peretó, Juli; Moreno, Alvaro

    2004-06-01

    Life is a complex phenomenon that not only requires individual self-producing and self-sustaining systems but also a historical-collective organization of those individual systems, which brings about characteristic evolutionary dynamics. On these lines, we propose to define universally living beings as autonomous systems with open-ended evolution capacities, and we claim that all such systems must have a semi-permeable active boundary (membrane), an energy transduction apparatus (set of energy currencies) and, at least, two types of functionally interdependent macromolecular components (catalysts and records). The latter is required to articulate a `phenotype-genotype' decoupling that leads to a scenario where the global network of autonomous systems allows for an open-ended increase in the complexity of the individual agents. Thus, the basic-individual organization of biological systems depends critically on being instructed by patterns (informational records) whose generation and reliable transmission cannot be explained but take into account the complete historical network of relationships among those systems. We conclude that a proper definition of life should consider both levels, individual and collective: living systems cannot be fully constituted without being part of the evolutionary process of a whole ecosystem. Finally, we also discuss a few practical implications of the definition for different programs of research.

  16. Ecological extinction and evolution in the brave new ocean

    PubMed Central

    Jackson, Jeremy B. C.

    2008-01-01

    The great mass extinctions of the fossil record were a major creative force that provided entirely new kinds of opportunities for the subsequent explosive evolution and diversification of surviving clades. Today, the synergistic effects of human impacts are laying the groundwork for a comparably great Anthropocene mass extinction in the oceans with unknown ecological and evolutionary consequences. Synergistic effects of habitat destruction, overfishing, introduced species, warming, acidification, toxins, and massive runoff of nutrients are transforming once complex ecosystems like coral reefs and kelp forests into monotonous level bottoms, transforming clear and productive coastal seas into anoxic dead zones, and transforming complex food webs topped by big animals into simplified, microbially dominated ecosystems with boom and bust cycles of toxic dinoflagellate blooms, jellyfish, and disease. Rates of change are increasingly fast and nonlinear with sudden phase shifts to novel alternative community states. We can only guess at the kinds of organisms that will benefit from this mayhem that is radically altering the selective seascape far beyond the consequences of fishing or warming alone. The prospects are especially bleak for animals and plants compared with metabolically flexible microbes and algae. Halting and ultimately reversing these trends will require rapid and fundamental changes in fisheries, agricultural practice, and the emissions of greenhouse gases on a global scale. PMID:18695220

  17. Colloquium paper: ecological extinction and evolution in the brave new ocean.

    PubMed

    Jackson, Jeremy B C

    2008-08-12

    The great mass extinctions of the fossil record were a major creative force that provided entirely new kinds of opportunities for the subsequent explosive evolution and diversification of surviving clades. Today, the synergistic effects of human impacts are laying the groundwork for a comparably great Anthropocene mass extinction in the oceans with unknown ecological and evolutionary consequences. Synergistic effects of habitat destruction, overfishing, introduced species, warming, acidification, toxins, and massive runoff of nutrients are transforming once complex ecosystems like coral reefs and kelp forests into monotonous level bottoms, transforming clear and productive coastal seas into anoxic dead zones, and transforming complex food webs topped by big animals into simplified, microbially dominated ecosystems with boom and bust cycles of toxic dinoflagellate blooms, jellyfish, and disease. Rates of change are increasingly fast and nonlinear with sudden phase shifts to novel alternative community states. We can only guess at the kinds of organisms that will benefit from this mayhem that is radically altering the selective seascape far beyond the consequences of fishing or warming alone. The prospects are especially bleak for animals and plants compared with metabolically flexible microbes and algae. Halting and ultimately reversing these trends will require rapid and fundamental changes in fisheries, agricultural practice, and the emissions of greenhouse gases on a global scale.

  18. The evolution of communities in the international oil trade network

    NASA Astrophysics Data System (ADS)

    Zhong, Weiqiong; An, Haizhong; Gao, Xiangyun; Sun, Xiaoqi

    2014-11-01

    International oil trade is a subset of global trade and there exist oil trade communities. These communities evolve over time and provide clues of international oil trade patterns. A better understanding of the international oil trade patterns is necessary for governments in policy making. To study the evolution of trade communities in the international oil trade network, we set up unweighted and weighted oil trade network models based on complex network theory using data from 2002 to 2011. We detected the communities in the oil trade networks and analyzed their evolutionary properties and stabilities over time. We found that the unweighted and weighted international oil trade networks show many different features in terms of community number, community scale, distribution of countries, quality of partitions, and stability of communities. Two turning points occurred in the evolution of community stability in the international oil trade network. One is the year 2004-2005 which correlates with changes in demand and supply in the world oil market after the Iraq War, and the other is the year 2008-2009 which is connected to the 2008 financial crisis. Different causations of instability show different features and this should be considered by policy makers.

  19. Time-resolved X-Ray Absorption Spectroscopy of a Cobalt-Based Hydrogen Evolution System for Artificial Photosynthesis

    NASA Astrophysics Data System (ADS)

    Moonshiram, Dooshaye; Gimbert, Carolina; Lehmann, Carl; Southworth, Stephen; Llobet, Antoni; Argonne National Laboratory Team; Institut Català d'Investigació Química Collaboration

    2015-03-01

    Production of cost-effective hydrogen gas through solar power is an important challenge of the Department of Energy among other global industry initiatives. In natural photosynthesis, the oxygen evolving complex(OEC) can carry out four-electron water splitting to hydrogen with an efficiency of around 60%. Although, much progress has been carried out in determining mechanistic pathways of the OEC, biomimetic approaches have not duplicated Nature's efficiency in function. Over the past years, we have witnessed progress in developments of light harvesting modules, so called chromophore/catalytic assemblies. In spite of reportedly high catalytic activity of these systems, quantum yields of hydrogen production are below 40 % when using monochromatic light. Proper understanding of kinetics and bond making/breaking steps has to be achieved to improve efficiency of hydrogen evolution systems. This project shows the timing implementation of ultrafast X-ray absorption spectroscopy to visualize in ``real time'' the photo-induced kinetics accompanying a sequence of redox reactions in a cobalt-based molecular photocatalytic system. Formation of a Co(I) species followed by a Co(III) hydride species all the way towards hydrogen evolution is shown through time-resolved XANES.

  20. Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.

    PubMed

    Avilés, Leticia; Abbot, Patrick; Cutter, Asher D

    2002-02-01

    Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.

  1. Tracking Local Spatiotemporal Microfracturing Processes and Stress Field Evolution Before and After Laboratory Fault Slip

    NASA Astrophysics Data System (ADS)

    Kwiatek, G.; Orlecka-Sikora, B.; Goebel, T.; Martínez-Garzón, P.; Dresen, G.; Bohnhoff, M.

    2017-12-01

    In this study we investigate details of spatial and temporal evolution of the stress field and damage at a pre-existing fault plane in laboratory stick-slip friction experiments performed on Westerly Granite sample. Specimen of 10 cm height and 4 cm diameter was deformed at a constant strain rate of 3×10-6 s-1 and confining pressure of 150 MPa. Here we analyze a series of 6 macroscopic slip events occurring on a rough fault during the course of experiment. Each macroscopic slip was associated with an intense femtoseismic acoustic emission (AE) activity recorded using a 16-channel transient recording system. To monitor the the spatiotemporal damage evolution, and unravel the micromechanical processes governing nucleation and propagation of slip events, we analyzed AE source characteristics (magnitude, seismic moment tensors, focal mechanisms), as well as the statistical properties (b-, c-, d- value) of femtoseismicity. In addition, the calculated AE focal mechanisms were used to reveal the spatiotemporal evolution of local stress field orientations and stress shape ratio coefficients over the fault plane, as well as additional parameters quantifying proximity to failure of individual fault patches. The calculated characteristics are used to comprehensively describe the complexity of the spatial and temporal evolution of the stress over the fault plane, and properties of the corresponding seismicity before and after the macroscopic slips. The observed faulting processes and characteristics are discussed in the context of global strain and stress changes, fault maturation, and earthquake stress drop.

  2. Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila.

    PubMed

    Lee, Yuh Chwen G; Leek, Courtney; Levine, Mia T

    2017-02-01

    Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Society, sex, and STIs: human behavior and the evolution of sexually transmitted diseases and their agents.

    PubMed

    Nahmias, Susa Beckman; Nahmias, Daniella

    2011-08-01

    The last few decades have provided new perspectives on the increasingly complex interrelationships between the evolutionary epidemiology of STDs and their agents, human sexuality, and economic, social, cultural, and technological developments. Rapidly emerging HIV/AIDS, globalization, migration, and information technology are some factors that stress the importance of focusing on how old and new sexually transmitted infections (STIs) are spread, both in and between networks and populations. This review of determinants of STI transmission emphasizes their impact on disease prevalence and transmission, as well as their potential for affecting the agents themselves--directly or indirectly. Interventions aiming to control the spread of STIs and HIV on the different levels of society need to be adapted to the specific environment and need to integrate social structures, such as economic and gender inequality and mobility, as well as the great variability and complexity of sexual behavior. © 2011 New York Academy of Sciences.

  4. Deciphering the evolution of herbicide resistance in weeds.

    PubMed

    Délye, Christophe; Jasieniuk, Marie; Le Corre, Valérie

    2013-11-01

    Resistance to herbicides in arable weeds is increasing rapidly worldwide and threatening global food security. Resistance has now been reported to all major herbicide modes of action despite the development of resistance management strategies in the 1990s. We review here recent advances in understanding the genetic bases and evolutionary drivers of herbicide resistance that highlight the complex nature of selection for this adaptive trait. Whereas early studied cases of resistance were highly herbicide-specific and largely under monogenic control, cases of greatest concern today generally involve resistance to multiple modes of action, are under polygenic control, and are derived from pre-existing stress response pathways. Although 'omics' approaches should enable unraveling the genetic bases of complex resistances, the appearance, selection, and spread of herbicide resistance in weed populations can only be fully elucidated by focusing on evolutionary dynamics and implementing integrative modeling efforts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Network Analysis: Applications for the Developing Brain

    PubMed Central

    Chu-Shore, Catherine J.; Kramer, Mark A.; Bianchi, Matt T.; Caviness, Verne S.; Cash, Sydney S.

    2011-01-01

    Development of the human brain follows a complex trajectory of age-specific anatomical and physiological changes. The application of network analysis provides an illuminating perspective on the dynamic interregional and global properties of this intricate and complex system. Here, we provide a critical synopsis of methods of network analysis with a focus on developing brain networks. After discussing basic concepts and approaches to network analysis, we explore the primary events of anatomical cortical development from gestation through adolescence. Upon this framework, we describe early work revealing the evolution of age-specific functional brain networks in normal neurodevelopment. Finally, we review how these relationships can be altered in disease and perhaps even rectified with treatment. While this method of description and inquiry remains in early form, there is already substantial evidence that the application of network models and analysis to understanding normal and abnormal human neural development holds tremendous promise for future discovery. PMID:21303762

  6. Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  7. A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1978-01-01

    The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.

  8. Time evolution of photon-pulse propagation in scattering and absorbing media: The dynamic radiative transfer system

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.

    2018-03-01

    A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.

  9. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent

    PubMed Central

    Imamura, Hideo; Downing, Tim; Van den Broeck, Frederik; Sanders, Mandy J; Rijal, Suman; Sundar, Shyam; Mannaert, An; Vanaerschot, Manu; Berg, Maya; De Muylder, Géraldine; Dumetz, Franck; Cuypers, Bart; Maes, Ilse; Domagalska, Malgorzata; Decuypere, Saskia; Rai, Keshav; Uranw, Surendra; Bhattarai, Narayan Raj; Khanal, Basudha; Prajapati, Vijay Kumar; Sharma, Smriti; Stark, Olivia; Schönian, Gabriele; De Koning, Harry P; Settimo, Luca; Vanhollebeke, Benoit; Roy, Syamal; Ostyn, Bart; Boelaert, Marleen; Maes, Louis; Berriman, Matthew; Dujardin, Jean-Claude; Cotton, James A

    2016-01-01

    Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment. DOI: http://dx.doi.org/10.7554/eLife.12613.001 PMID:27003289

  10. Cloned animal products in the human food chain: FDA should protect American consumers.

    PubMed

    Butler, Jennifer E F

    2009-01-01

    Animal cloning is "complex process that lets one exactly copy the genetic, or inherited, traits of an animal." In 1997, Dolly the sheep was the first animal cloned and since then "scientists have used animal cloning to breed dairy cows, beef cattle, poultry, hogs and other species of livestock." Cloned animals are highly attractive to livestock breeders because "cloning essentially produces an identical copy of an animal with superior traits." The main purpose of cloning livestock is "more focused on efficiency and economic benefits of the producer rather than the overall effect of cloning on an animal's physical and mental welfare." The focus of this article is threefold. First, the science behind animal cloning is explained and some potential uses and risks of this technology are explored. Second, FDA's historical evolution, current regulatory authority, and limitations of that authority, is described. Lastly, a new regulatory vision recognizes the realities of 21st century global markets and the dynamic evolution of scientific discovery and technology.

  11. Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent.

    PubMed

    Imamura, Hideo; Downing, Tim; Van den Broeck, Frederik; Sanders, Mandy J; Rijal, Suman; Sundar, Shyam; Mannaert, An; Vanaerschot, Manu; Berg, Maya; De Muylder, Géraldine; Dumetz, Franck; Cuypers, Bart; Maes, Ilse; Domagalska, Malgorzata; Decuypere, Saskia; Rai, Keshav; Uranw, Surendra; Bhattarai, Narayan Raj; Khanal, Basudha; Prajapati, Vijay Kumar; Sharma, Smriti; Stark, Olivia; Schönian, Gabriele; De Koning, Harry P; Settimo, Luca; Vanhollebeke, Benoit; Roy, Syamal; Ostyn, Bart; Boelaert, Marleen; Maes, Louis; Berriman, Matthew; Dujardin, Jean-Claude; Cotton, James A

    2016-03-22

    Leishmania donovani causes visceral leishmaniasis (VL), the second most deadly vector-borne parasitic disease. A recent epidemic in the Indian subcontinent (ISC) caused up to 80% of global VL and over 30,000 deaths per year. Resistance against antimonial drugs has probably been a contributing factor in the persistence of this epidemic. Here we use whole genome sequences from 204 clinical isolates to track the evolution and epidemiology of L. donovani from the ISC. We identify independent radiations that have emerged since a bottleneck coincident with 1960s DDT spraying campaigns. A genetically distinct population frequently resistant to antimonials has a two base-pair insertion in the aquaglyceroporin gene LdAQP1 that prevents the transport of trivalent antimonials. We find evidence of genetic exchange between ISC populations, and show that the mutation in LdAQP1 has spread by recombination. Our results reveal the complexity of L. donovani evolution in the ISC in response to drug treatment.

  12. The Impact of Globalization on the Formation of a Global Political System

    ERIC Educational Resources Information Center

    Ilyin, Ilya V.; Rozanov, Alexander Sergeevich

    2013-01-01

    Purpose: The purpose of this paper is to analyze the impact of globalization on the formation of a global political system. Design/methodology/approach: Taking into account the fact of global political evolution, the authors of the paper point out that the global political structures tend to change. Findings: During the past millennium the global…

  13. Computational Role of Tunneling in a Programmable Quantum Annealer

    NASA Technical Reports Server (NTRS)

    Boixo, Sergio; Smelyanskiy, Vadim; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Amin, Mohammad; Mohseni, Masoud; Denchev, Vasil S.; Neven, Hartmut

    2016-01-01

    Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We developed a theoretical model based on a NIBA Quantum Master Equation to describe the multi-qubit dissipative cotunneling effects under the complex noise characteristics of such quantum devices.We start by considering a computational primitive, the simplest non-convex optimization problem consisting of just one global and one local minimum. The quantum evolutions enable tunneling to the global minimum while the corresponding classical paths are trapped in a false minimum. In our study the non-convex potentials are realized by frustrated networks of qubit clusters with strong intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed in the critical phase during the evolution where quantum tunneling decides the right path to solution. In a later stage dissipation facilitates the multiqubit cotunneling leading to the solution state. The predictions of the model accurately describe the experimental data from the D-WaveII quantum annealer at NASA Ames. In our computational primitive the temperature dependence of the probability of success in the quantum model is opposite to that of the classical paths with thermal hopping. Specially, we provide an analysis of an optimization problem with sixteen qubits,demonstrating eight qubit cotunneling that increases success probabilities. Furthermore, we report results for larger problems with up to 200 qubits that contain the primitive as subproblems.

  14. Hydrogen storage and evolution catalysed by metal hydride complexes.

    PubMed

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  15. Evolution of disorder in Mediator complex and its functional relevance

    PubMed Central

    Nagulapalli, Malini; Maji, Sourobh; Dwivedi, Nidhi; Dahiya, Pradeep; Thakur, Jitendra K.

    2016-01-01

    Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of ‘junction-MoRF’ has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein–protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms. PMID:26590257

  16. The evolution of global disaster risk assessments: from hazard to global change

    NASA Astrophysics Data System (ADS)

    Peduzzi, Pascal

    2013-04-01

    The perception of disaster risk as a dynamic process interlinked with global change is a fairly recent concept. It gradually emerged as an evolution from new scientific theories, currents of thinking and lessons learned from large disasters since the 1970s. The interest was further heighten, in the mid-1980s, by the Chernobyl nuclear accident and the discovery of the ozone layer hole, both bringing awareness that dangerous hazards can generate global impacts. The creation of the UN International Decade for Natural Disaster Reduction (IDNDR) and the publication of the first IPCC report in 1990 reinforced the interest for global risk assessment. First global risk models including hazard, exposure and vulnerability components were available since mid-2000s. Since then increased computation power and more refined datasets resolution, led to more numerous and sophisticated global risk models. This article presents a recent history of global disaster risk models, the current status of researches for the Global Assessment Report on Disaster Risk Reduction (GAR 2013) and future challenges and limitations for the development of next generation global disaster risk models.

  17. Intrinsic limits to gene regulation by global crosstalk

    NASA Astrophysics Data System (ADS)

    Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper

    Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).

  18. The evolution of phenotypic integration: How directional selection reshapes covariation in mice.

    PubMed

    Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel

    2017-10-01

    Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  19. Synaptic scaffold evolution generated components of vertebrate cognitive complexity

    PubMed Central

    Nithianantharajah, J.; Komiyama, N.H.; McKechanie, A.; Johnstone, M.; Blackwood, D. H.; St Clair, D.; Emes, R.D.; van de Lagemaat, L. N.; Saksida, L.M.; Bussey, T.J.; Grant, S.G.N.

    2014-01-01

    The origins and evolution of higher cognitive functions including complex forms of learning, attention and executive functions are unknown. A potential mechanism driving the evolution of vertebrate cognition early in the vertebrate lineage (550 My ago) was genome duplication and subsequent diversification of postsynaptic genes. Here we report the first genetic analysis of a vertebrate gene family in cognitive functions measured using computerized touchscreens. Comparison of mice carrying mutations in all four Dlg paralogs show simple associative learning required Dlg4, while Dlg2 and Dlg3 diversified to play opposing roles in complex cognitive processes. Exploiting the translational utility of touchscreens in humans and mice, testing Dlg2 mutations in both species showed Dlg2’s role in complex learning, cognitive flexibility and attention has been highly conserved over 100 My. Dlg family mutations underlie psychiatric disorders suggesting genome evolution expanded the complexity of vertebrate cognition at the cost of susceptibility to mental illness. PMID:23201973

  20. A White Paper on Global Wheat Health Based on Scenario Development and Analysis.

    PubMed

    Savary, S; Djurle, A; Yuen, J; Ficke, A; Rossi, V; Esker, P D; Fernandes, J M C; Del Ponte, E M; Kumar, J; Madden, L V; Paul, P; McRoberts, N; Singh, P K; Huber, L; Pope de Vallavielle, C; Saint-Jean, S; Willocquet, L

    2017-10-01

    Scenario analysis constitutes a useful approach to synthesize knowledge and derive hypotheses in the case of complex systems that are documented with mainly qualitative or very diverse information. In this article, a framework for scenario analysis is designed and then, applied to global wheat health within a timeframe from today to 2050. Scenario analysis entails the choice of settings, the definition of scenarios of change, and the analysis of outcomes of these scenarios in the chosen settings. Three idealized agrosystems, representing a large fraction of the global diversity of wheat-based agrosystems, are considered, which represent the settings of the analysis. Several components of global changes are considered in their consequences on global wheat health: climate change and climate variability, nitrogen fertilizer use, tillage, crop rotation, pesticide use, and the deployment of host plant resistances. Each idealized agrosystem is associated with a scenario of change that considers first, a production situation and its dynamics, and second, the impacts of the evolving production situation on the evolution of crop health. Crop health is represented by six functional groups of wheat pathogens: the pathogens associated with Fusarium head blight; biotrophic fungi, Septoria-like fungi, necrotrophic fungi, soilborne pathogens, and insect-transmitted viruses. The analysis of scenario outcomes is conducted along a risk-analytical pattern, which involves risk probabilities represented by categorized probability levels of disease epidemics, and risk magnitudes represented by categorized levels of crop losses resulting from these levels of epidemics within each production situation. The results from this scenario analysis suggest an overall increase of risk probabilities and magnitudes in the three idealized agrosystems. Changes in risk probability or magnitude however vary with the agrosystem and the functional groups of pathogens. We discuss the effects of global changes on the six functional groups, in terms of their epidemiology and of the crop losses they cause. Scenario analysis enables qualitative analysis of complex systems, such as plant pathosystems that are evolving in response to global changes, including climate change and technology shifts. It also provides a useful framework for quantitative simulation modeling analysis for plant disease epidemiology.

  1. Taiwan High School Biology Teachers' Acceptance and Understanding of Evolution and the Nature of Science

    ERIC Educational Resources Information Center

    Chen, Li-Hua

    2015-01-01

    Evolution is the cornerstone of biological sciences, but anti-evolution teaching has become a global controversy since the introduction of evolutionary ideas into the United States high school science curricula in 1914. It is suggested that teachers' attitude toward and acceptance of the theory of evolution will influence their effect of teaching…

  2. Localized Principal Component Analysis based Curve Evolution: A Divide and Conquer Approach

    PubMed Central

    Appia, Vikram; Ganapathy, Balaji; Yezzi, Anthony; Faber, Tracy

    2014-01-01

    We propose a novel localized principal component analysis (PCA) based curve evolution approach which evolves the segmenting curve semi-locally within various target regions (divisions) in an image and then combines these locally accurate segmentation curves to obtain a global segmentation. The training data for our approach consists of training shapes and associated auxiliary (target) masks. The masks indicate the various regions of the shape exhibiting highly correlated variations locally which may be rather independent of the variations in the distant parts of the global shape. Thus, in a sense, we are clustering the variations exhibited in the training data set. We then use a parametric model to implicitly represent each localized segmentation curve as a combination of the local shape priors obtained by representing the training shapes and the masks as a collection of signed distance functions. We also propose a parametric model to combine the locally evolved segmentation curves into a single hybrid (global) segmentation. Finally, we combine the evolution of these semilocal and global parameters to minimize an objective energy function. The resulting algorithm thus provides a globally accurate solution, which retains the local variations in shape. We present some results to illustrate how our approach performs better than the traditional approach with fully global PCA. PMID:25520901

  3. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  4. Historical and contingent factors affect re-evolution of a complex feature lost during mass extinction in communities of digital organisms.

    PubMed

    Yedid, G; Ofria, C A; Lenski, R E

    2008-09-01

    Re-evolution of complex biological features following the extinction of taxa bearing them remains one of evolution's most interesting phenomena, but is not amenable to study in fossil taxa. We used communities of digital organisms (computer programs that self-replicate, mutate and evolve), subjected to periods of low resource availability, to study the evolution, loss and re-evolution of a complex computational trait, the function EQU (bit-wise logical equals). We focused our analysis on cases where the pre-extinction EQU clade had surviving descendents at the end of the extinction episode. To see if these clades retained the capacity to re-evolve EQU, we seeded one set of multiple subreplicate 'replay' populations using the most abundant survivor of the pre-extinction EQU clade, and another set with the actual end-extinction ancestor of the organism in which EQU re-evolved following the extinction episode. Our results demonstrate that stochastic, historical, genomic and ecological factors can lead to constraints on further adaptation, and facilitate or hinder re-evolution of a complex feature.

  5. Evolution of complex fruiting-body morphologies in homobasidiomycetes.

    PubMed Central

    Hibbett, David S; Binder, Manfred

    2002-01-01

    The fruiting bodies of homobasidiomycetes include some of the most complex forms that have evolved in the fungi, such as gilled mushrooms, bracket fungi and puffballs ('pileate-erect') forms. Homobasidiomycetes also include relatively simple crust-like 'resupinate' forms, however, which account for ca. 13-15% of the described species in the group. Resupinate homobasidiomycetes have been interpreted either as a paraphyletic grade of plesiomorphic forms or a polyphyletic assemblage of reduced forms. The former view suggests that morphological evolution in homobasidiomycetes has been marked by independent elaboration in many clades, whereas the latter view suggests that parallel simplification has been a common mode of evolution. To infer patterns of morphological evolution in homobasidiomycetes, we constructed phylogenetic trees from a dataset of 481 species and performed ancestral state reconstruction (ASR) using parsimony and maximum likelihood (ML) methods. ASR with both parsimony and ML implies that the ancestor of the homobasidiomycetes was resupinate, and that there have been multiple gains and losses of complex forms in the homobasidiomycetes. We also used ML to address whether there is an asymmetry in the rate of transformations between simple and complex forms. Models of morphological evolution inferred with ML indicate that the rate of transformations from simple to complex forms is about three to six times greater than the rate of transformations in the reverse direction. A null model of morphological evolution, in which there is no asymmetry in transformation rates, was rejected. These results suggest that there is a 'driven' trend towards the evolution of complex forms in homobasidiomycetes. PMID:12396494

  6. Time evolution of complexity in Abelian gauge theories

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro; Sugishita, Sotaro

    2017-12-01

    Quantum complexity is conjectured to probe inside of black hole horizons (or wormholes) via gauge gravity correspondence. In order to have a better understanding of this correspondence, we study time evolutions of complexities for Abelian pure gauge theories. For this purpose, we discretize the U (1 ) gauge group as ZN and also the continuum spacetime as lattice spacetime, and this enables us to define a universal gate set for these gauge theories and to evaluate time evolutions of the complexities explicitly. We find that to achieve a large complexity ˜exp (entropy), which is one of the conjectured criteria necessary to have a dual black hole, the Abelian gauge theory needs to be maximally nonlocal.

  7. Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria

    PubMed Central

    Ibarra-Arellano, Miguel A.; Campos-González, Adrián I.; Treviño-Quintanilla, Luis G.; Tauch, Andreas; Freyre-González, Julio A.

    2016-01-01

    The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy (Across-bacteria systems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them. Database URL: http://abasy.ccg.unam.mx PMID:27242034

  8. Social evolution. Genomic signatures of evolutionary transitions from solitary to group living.

    PubMed

    Kapheim, Karen M; Pan, Hailin; Li, Cai; Salzberg, Steven L; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M; Hudson, Matthew E; Venkat, Aarti; Fischman, Brielle J; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D; Kemp, William P; Bosch, Jordi; Waterhouse, Robert M; Zdobnov, Evgeny M; Stolle, Eckart; Kraus, F Bernhard; Helbing, Sophie; Moritz, Robin F A; Glastad, Karl M; Hunt, Brendan G; Goodisman, Michael A D; Hauser, Frank; Grimmelikhuijzen, Cornelis J P; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D; Barribeau, Seth M; Johnson, Reed M; Massey, Jonathan H; Southey, Bruce R; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J Spencer; Hanrahan, Shawn J; Kocher, Sarah D; Wang, Jun; Robinson, Gene E; Zhang, Guojie

    2015-06-05

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. Copyright © 2015, American Association for the Advancement of Science.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, R.W.; Fernandez-Mendiola, P.A.; Gili, E.

    During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thicketsmore » that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.« less

  10. Discussion of examination of a cored hydraulic fracture in a deep gas well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolte, K.G.

    Warpinski et al. document information found from a core through a formation after a hydraulic fracture treatment. As they indicate, the core provides the first detailed evaluation of an actual propped hydraulic fracture away from the well and at a significant depth, and this evaluation leads to findings that deviate substantially from the assumptions incorporated into current fracturing models. In this discussion, a defense of current fracture design assumptions is developed. The affirmation of current assumptions, for general industry applications, is based on an assessment of the global impact of the local complexity found in the core. The assessment leadsmore » to recommendations for the evolution of fracture design practice.« less

  11. Strategies for sustainable development of industrial park in Ulsan, South Korea--from spontaneous evolution to systematic expansion of industrial symbiosis.

    PubMed

    Park, Hung-Suck; Rene, Eldon R; Choi, Soo-Mi; Chiu, Anthony S F

    2008-04-01

    The Korea National Cleaner Production Center (KNCPC) affiliated to the Korea Institute of Industrial Technology (KITECH) has started a 15 year, 3-phase EIP master plan with the support of Ministry of Commerce, Industry, and Energy (MOCIE). A total of 6 industrial parks, including industrial parks in Ulsan city, known as the industrial capital of South Korea, are planning projects to find the feasibility of shifting existing industrial parks to eco-industrial parks. The basic survey shows that Ulsan industrial complex has been continuously evolving from conventional industrial complexes to eco-industrial parks by spontaneous industrial symbiosis. This paper describes the Korean national policies and the developmental activities of this vision to drive the global trend of innovation for converting the existing industrial parks to eco-industrial parks through inter-industry waste, energy, and material exchange in Ulsan Industrial complexes. In addition, the primary and supportive components of the Ulsan EIP pilot project, which will be implemented for 5 years is elaborated with its schedules and economic benefits.

  12. A New Model for the Seasonal Evolution of Triton

    NASA Astrophysics Data System (ADS)

    Forget, F.; Decamp, N.; Berthier, J.; Le Guyader, C.

    2000-10-01

    The seasonal evolution of Triton's surface and atmosphere remains poorly understood. No model [1] has been able to fully reproduce the main characterictics of the Voyager 2 observations in 1989 in combination with the "Global warming" recently inferred from stellar occultations [2]. Within this context, we have developped a new thermal model to study the seasonal nitrogen cycle on Triton. The model is the surface part of a Triton atmosphere General circulation model developped at LMD [3]. The nitrogen cycle was found to be very sensitive to Triton complex seasonal variations of the subsolar point latitude, especially during the current decade (south summer solstice). Since only pre-Voyager formulations were available for such a study, this has motivated some new calculations of Triton's motion based on more recent rotationnal elements combined with a relatively complete dynamic solution [4] adapted to Triton. A new analytic formulation suitable for climate modelling has been derived. On this basis, we wish to suggest a new, realistic scenario to explain Triton's apparence and evolution based on solar-induced variation of the frost albedo. Such variations have been observed in Mars CO2 ice seasonal polar caps [5]. Although they seem to result from complex microphysical behavior, they are likely to occur on Triton since both Triton and Mars polar caps are composed of weakly absorbing ice (N2 or CO2) in vapor pressure equilibrium with the main constituant of the atmosphere. [1] e.g. Hansen and Paige, Icarus 99, 273-288 (1992); Brown and Kirk, J. Geophys. Res. 99, 1965-1981 (1994); Spencer and Moore, Icarus 99, 261-272 (1992). [2] Elliot et al., Nature 393, 765-767 (1998). [3] Forget, Descamp and Hourdin, in ``Pluto and Triton, comparisons and evolution over time", Lowell Observatory's fourth annual workshop, Flagstaff, Arizona. (1999) [4] Le Guyader, Astron. Astrophys. 272, 687-694 (1993). [5] Kieffer et al., J. Geophys. Res. 105, 9653-9700 (2000).

  13. The Evolution of Public Health Emergency Management as a Field of Practice.

    PubMed

    Rose, Dale A; Murthy, Shivani; Brooks, Jennifer; Bryant, Jeffrey

    2017-09-01

    The health impacts of recent global infectious disease outbreaks and other disasters have demonstrated the importance of strengthening public health systems to better protect communities from naturally occurring and human-caused threats. Public health emergency management (PHEM) is an emergent field of practice that draws on specific sets of knowledge, techniques, and organizing principles necessary for the effective management of complex health events. We highlight how the nascent field of PHEM has evolved in recent years. We explore this development by first examining multiple sites of intersection between the fields of public health and emergency management. We then analyze 2 of the principal pillars on which PHEM was built: organizational and programmatic (i.e., industry) standards and the incident management system. This is followed by a sketch of the key domains, or functional areas, of PHEM and their application to the emergency management cycle. We conclude with some observations about PHEM in a global context and discuss how the field might continue to evolve.

  14. The Evolution of Public Health Emergency Management as a Field of Practice

    PubMed Central

    Murthy, Shivani; Brooks, Jennifer; Bryant, Jeffrey

    2017-01-01

    The health impacts of recent global infectious disease outbreaks and other disasters have demonstrated the importance of strengthening public health systems to better protect communities from naturally occurring and human-caused threats. Public health emergency management (PHEM) is an emergent field of practice that draws on specific sets of knowledge, techniques, and organizing principles necessary for the effective management of complex health events. We highlight how the nascent field of PHEM has evolved in recent years. We explore this development by first examining multiple sites of intersection between the fields of public health and emergency management. We then analyze 2 of the principal pillars on which PHEM was built: organizational and programmatic (i.e., industry) standards and the incident management system. This is followed by a sketch of the key domains, or functional areas, of PHEM and their application to the emergency management cycle. We conclude with some observations about PHEM in a global context and discuss how the field might continue to evolve. PMID:28892444

  15. Evolution of complexity following a quantum quench in free field theory

    NASA Astrophysics Data System (ADS)

    Alves, Daniel W. F.; Camilo, Giancarlo

    2018-06-01

    Using a recent proposal of circuit complexity in quantum field theories introduced by Jefferson and Myers, we compute the time evolution of the complexity following a smooth mass quench characterized by a time scale δ t in a free scalar field theory. We show that the dynamics has two distinct phases, namely an early regime of approximately linear evolution followed by a saturation phase characterized by oscillations around a mean value. The behavior is similar to previous conjectures for the complexity growth in chaotic and holographic systems, although here we have found that the complexity may grow or decrease depending on whether the quench increases or decreases the mass, and also that the time scale for saturation of the complexity is of order δ t (not parametrically larger).

  16. Network morphospace

    PubMed Central

    Avena-Koenigsberger, Andrea; Goñi, Joaquín; Solé, Ricard; Sporns, Olaf

    2015-01-01

    The structure of complex networks has attracted much attention in recent years. It has been noted that many real-world examples of networked systems share a set of common architectural features. This raises important questions about their origin, for example whether such network attributes reflect common design principles or constraints imposed by selectional forces that have shaped the evolution of network topology. Is it possible to place the many patterns and forms of complex networks into a common space that reveals their relations, and what are the main rules and driving forces that determine which positions in such a space are occupied by systems that have actually evolved? We suggest that these questions can be addressed by combining concepts from two currently relatively unconnected fields. One is theoretical morphology, which has conceptualized the relations between morphological traits defined by mathematical models of biological form. The second is network science, which provides numerous quantitative tools to measure and classify different patterns of local and global network architecture across disparate types of systems. Here, we explore a new theoretical concept that lies at the intersection between both fields, the ‘network morphospace’. Defined by axes that represent specific network traits, each point within such a space represents a location occupied by networks that share a set of common ‘morphological’ characteristics related to aspects of their connectivity. Mapping a network morphospace reveals the extent to which the space is filled by existing networks, thus allowing a distinction between actual and impossible designs and highlighting the generative potential of rules and constraints that pervade the evolution of complex systems. PMID:25540237

  17. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  18. Evolution of disorder in Mediator complex and its functional relevance.

    PubMed

    Nagulapalli, Malini; Maji, Sourobh; Dwivedi, Nidhi; Dahiya, Pradeep; Thakur, Jitendra K

    2016-02-29

    Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of 'junction-MoRF' has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein-protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. KSC-02pd2030

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of a Delta II rocket arrives at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  20. KSC-02pd2032

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., watch as the first stage of the Delta II rocket is raised to a vertical position. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  1. KSC-02pd2046

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the second stage of a Delta II rocket sits mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  2. KSC-02pd2036

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is ready to be lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  3. KSC-02pd2038

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The interstage of the Delta II rocket arrives at NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  4. KSC-02pd2037

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is moved into place in the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  5. KSC-02pd2033

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is raised to a vertical position at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  6. KSC-02pd2044

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket toward the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  7. Large-Scale Dynamics of the Magnetospheric Boundary: Comparisons between Global MHD Simulation Results and ISTP Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.

  8. Cosmological backreaction within the Szekeres model and emergence of spatial curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolejko, Krzysztof, E-mail: krzysztof.bolejko@sydney.edu.au

    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature Ω{sub R} (in the FLRW limit Ω{sub R} → Ω {sub k} ). If averaged over global scales the result depends on the assumed global model of the Universe. Withinmore » the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from Ω{sub R} =0 at the CMB to Ω{sub R} ∼ 0.1 at 0 z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ω {sub k} ≠ 0, even if in the early Universe Ω {sub k} = 0) and therefore when analysing low- z cosmological data one should keep Ω {sub k} as a free parameter and independent from the CMB constraints.« less

  9. Cosmological backreaction within the Szekeres model and emergence of spatial curvature

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2017-06-01

    This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature ΩScript R (in the FLRW limit ΩScript R → Ωk). If averaged over global scales the result depends on the assumed global model of the Universe. Within the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from ΩScript R =0 at the CMB to ΩScript R ~ 0.1 at 0z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ωk ≠ 0, even if in the early Universe Ωk = 0) and therefore when analysing low-z cosmological data one should keep Ωk as a free parameter and independent from the CMB constraints.

  10. Evolution of an RNP assembly system: A minimal SMN complex facilitates formation of UsnRNPs in Drosophila melanogaster

    PubMed Central

    Kroiss, Matthias; Schultz, Jörg; Wiesner, Julia; Chari, Ashwin; Sickmann, Albert; Fischer, Utz

    2008-01-01

    In vertebrates, assembly of spliceosomal uridine-rich small nuclear ribonucleoproteins (UsnRNPs) is mediated by the SMN complex, a macromolecular entity composed of the proteins SMN and Gemins 2–8. Here we have studied the evolution of this machinery using complete genome assemblies of multiple model organisms. The SMN complex has gained complexity in evolution by a blockwise addition of Gemins onto an ancestral core complex composed of SMN and Gemin2. In contrast to this overall evolutionary trend to more complexity in metazoans, orthologs of most Gemins are missing in dipterans. In accordance with these bioinformatic data a previously undescribed biochemical purification strategy elucidated that the dipteran Drosophila melanogaster contains an SMN complex of remarkable simplicity. Surprisingly, this minimal complex not only mediates the assembly reaction in a manner very similar to its vertebrate counterpart, but also prevents misassembly onto nontarget RNAs. Our data suggest that only a minority of Gemins are required for the assembly reaction per se, whereas others may serve additional functions in the context of UsnRNP biogenesis. The evolution of the SMN complex is an interesting example of how the simplification of a biochemical process contributes to genome compaction. PMID:18621711

  11. A Network Mission: Completing the Scientific Foundation for the Exploration of Mars

    NASA Technical Reports Server (NTRS)

    W. B. Banerdt

    2000-01-01

    Despite recent setbacks and vacillations in the Mars Surveyor Program, in many respects the exploration of Mars has historically followed a relatively logical path. Early fly-bys provided brief glimpses of the planet and paved the way for the initial orbital reconnaissance of Mariner 9. The Viking orbiters completed the initial survey, while the Viking landers provided our first close-up look at the surface. Essentially, Mars Pathfinder served a similar role, giving a brief look at another place on the surface. And finally, Mars Global Surveyor (and the up-coming orbital mission in 2001) are taking the next step in providing in-depth, global observations of many of the fundamental characteristics of the planet, as well as selected high-resolution views of the surface. With this last step we are well on our way to acquiring the global scientific context that is necessary both for understanding Mars in general, its origin and evolution, and for use as a basis to plan and execute the next level of focused investigations. However, even with the successful completion of these missions this context will be incomplete. Whereas we now know a great deal about the surface of Mars in a global sense, we know very little about its interior, even at depths of only a meter or so. Also, as most of this information has been acquire by remote sensing, we still lack much of the bridging knowledge between the global view and the processes and character of the surface environments themselves. Thus, in many ways we lack sufficient fundamental understanding to intelligently cast the critical investigations into important questions of the origins and evolution of Mars in general, and in particular, life. The next step in building our understanding of Mars has been identified by several previous groups who were charged with creating a strategy for Mars exploration (e.g., COMPLEX, MarSWG, Planetary Roadmap Team). This is a so-called "network" mission, which places a large number of science platforms simultaneously on the surface.

  12. Disentangling synergistic climate drivers on the evolution of two species of planktonic foraminifera on regional and global scales

    NASA Astrophysics Data System (ADS)

    Brombacher, A.; Wilson, P. A.; Bailey, I.; Ezard, T. H. G.

    2016-02-01

    Evolution is driven by a combination of biotic and abiotic factors. When quantifying the effects of abiotic drivers, evolutionary change is generally described as a response to a single environmental parameter assumed to represent global climate. However, climate is a complex system of many interacting factors and characterized by high regional variability. Therefore, to understand the role of climate in evolutionary change, we need to consider multiple environmental parameters, across local, regional and global scales, as well as their interactions. The deep-sea microfossil record is sufficiently complete that sufficiently continuous multivariate climatic and multivariate trait data can be obtained from the same samples. Here we present morphological records of the planktonic foraminifera species Globoconella puncticulata and Truncorotalia crassaformis over a 500,000-year interval directly preceding the extinction of G. puncticulata (2.41 Ma). Material was collected from five North Atlantic sites (ODP Sites 659 [18° N], 925 [3° N] and 981 [55° N], IODP Site U1313 [41° N] and DSDP Site 606 [37° N]). Test size and shape of over 35,000 individuals were measured and compared to site-specific records of sea surface temperature, primary productivity and marine aeolian dust deposition, as well as to global records of ice volume, ocean circulation and atmospheric CO2, and all two-way interactions. Morphological parameters respond weakly to individual climate parameters. Once interactions among all studied climate parameters were incorporated, abiotic change explained around 35% of the evolutionary variance. Observed covariances between environmental parameters vary strongly with glacial-interglacial cyclicity, implying that the relationships among climate variables and their relative influences on evolutionary change varied through time. This time dependence cautions against unfettered use of dimension reduction techniques, such as principal components analysis, to extract a single, supposedly dominant, proxy. Furthermore species' responses differed between geographic locations, impressing the need to test how interactions among multiple climate variables at different regional settings shape the biotic microevolutionary response to local and global abiotic change.

  13. Diversifying mechanisms in the on-farm evolution of crop mixtures.

    PubMed

    Thomas, Mathieu; Thépot, Stéphanie; Galic, Nathalie; Jouanne-Pin, Sophie; Remoué, Carine; Goldringer, Isabelle

    2015-06-01

    While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes. © 2015 John Wiley & Sons Ltd.

  14. Complex quantum network geometries: Evolution and phase transitions

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  15. Complex quantum network geometries: Evolution and phase transitions.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao

    2015-08-01

    Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.

  16. Volcanism on Io: Insights from Global Geologic Mapping

    NASA Technical Reports Server (NTRS)

    Williams, D. A.; Keszthelyi, L. P.; Crown, D. A.; Geissler, P. E.; Schenk, P. M.; Yff, Jessica; Jaeger, W. L.

    2009-01-01

    We are preparing a new global geo-logic map of Jupiter s volcanic moon, Io. Here we report the type of data that are now available from our global mapping efforts, and how these data can be used to investigate questions regarding the volcano-tectonic evolution of Io. We are using the new map to investigate several specific questions about the geologic evolution of Io that previously could not be well addressed, including (for example) a comparison of the areas vs. the heights of Ionian mountains to assess their stability and evolution (Fig. 1). The area-height relationships of Io s visible mountains show the low abundance and low relief of volcanic mountains (tholi) relative to tectonic mountains, consistent with formation from low-viscosity lavas less likely to build steep edifices. Mottled mountains are generally less high than lineated mountains, consistent with a degradational formation.

  17. Understanding the Global Structure and Evolution of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Pete

    2004-01-01

    This report summarizes the technical progress made during the first six months of the second year of the NASA Living with a Star program contract Understanding the global structure and evolution of coronal mass ejections in the solar wind, between NASA and Science Applications International Corporation, and covers the period November 18, 2003 - May 17,2004. Under this contract SAIC has conducted numerical and data analysis related to fundamental issues concerning the origin, intrinsic properties, global structure, and evolution of coronal mass ejections in the solar wind. During this working period we have focused on a quantitative assessment of 5 flux rope fitting techniques. In the following sections we summarize the main aspects of this work and our proposed investigation plan for the next reporting period. Thus far, our investigation has resulted in 6 refereed scientific publications and we have presented the results at a number of scientific meetings and workshops.

  18. Self-organized criticality in forest-landscape evolution

    Treesearch

    J.C. Sprott; Janine Bolliger; David J. Mladenoff

    2002-01-01

    A simple cellular automaton replicates the fractal pattern of a natural forest landscape and predicts its evolution. Spatial distributions and temporal fluctuations in global quantities show power-law spectra, implying scale-invariance, characteristic of self-organized criticality. The evolution toward the SOC state and the robustness of that state to perturbations...

  19. Environmental Influence on the Evolution of Morphological Complexity in Machines

    PubMed Central

    Auerbach, Joshua E.; Bongard, Josh C.

    2014-01-01

    Whether, when, how, and why increased complexity evolves in biological populations is a longstanding open question. In this work we combine a recently developed method for evolving virtual organisms with an information-theoretic metric of morphological complexity in order to investigate how the complexity of morphologies, which are evolved for locomotion, varies across different environments. We first demonstrate that selection for locomotion results in the evolution of organisms with morphologies that increase in complexity over evolutionary time beyond what would be expected due to random chance. This provides evidence that the increase in complexity observed is a result of a driven rather than a passive trend. In subsequent experiments we demonstrate that morphologies having greater complexity evolve in complex environments, when compared to a simple environment when a cost of complexity is imposed. This suggests that in some niches, evolution may act to complexify the body plans of organisms while in other niches selection favors simpler body plans. PMID:24391483

  20. Time-ordered exponential on the complex plane and Gell-Mann—Low formula as a mathematical theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakuchi, Shinichiro; Usui, Kouta

    2016-04-15

    The time-ordered exponential representation of a complex time evolution operator in the interaction picture is studied. Using the complex time evolution, we prove the Gell-Mann—Low formula under certain abstract conditions, in mathematically rigorous manner. We apply the abstract results to quantum electrodynamics with cutoffs.

  1. Acquisition of Complex Systemic Thinking: Mental Models of Evolution

    ERIC Educational Resources Information Center

    d'Apollonia, Sylvia T.; Charles, Elizabeth S.; Boyd, Gary M.

    2004-01-01

    We investigated the impact of introducing college students to complex adaptive systems on their subsequent mental models of evolution compared to those of students taught in the same manner but with no reference to complex systems. The students' mental models (derived from similarity ratings of 12 evolutionary terms using the pathfinder algorithm)…

  2. Ornament Complexity Is Correlated with Sexual Selection: (A Comment on Raia et al., "Cope's Rule and the Universal Scaling Law of Ornament Complexity").

    PubMed

    Holman, Luke; Bro-Jørgensen, Jakob

    2016-08-01

    Raia et al. propose that the evolution of the shape and complexity of animal ornaments (e.g., deer antlers) can be explained by interspecific variation in body size and is not influenced by sexual selection. They claim to show that ornament complexity is related to body size by an 0.25-power law and argue that this finding precludes a role for sexual selection in the evolution of ornament complexity. However, their study does not test alternative hypotheses and mismeasures antler shape allometry by omitting much of the published data. We show that an index of sexual selection (sexual size dimorphism) is positively correlated with size-corrected antler complexity and that the allometric slope of complexity is substantially greater than 0.25, contra Raia et al. We conclude that sexual selection and physical constraints both affect the evolution of antler shape.

  3. Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity.

    PubMed

    Speijer, Dave

    2011-05-01

    Recently, constructive neutral evolution has been touted as an important concept for the understanding of the emergence of cellular complexity. It has been invoked to help explain the development and retention of, amongst others, RNA splicing, RNA editing and ribosomal and mitochondrial respiratory chain complexity. The theory originated as a welcome explanation of isolated small scale cellular idiosyncrasies and as a reaction to 'overselectionism'. Here I contend, that in its extended form, it has major conceptual problems, can not explain observed patterns of complex processes, is too easily dismissive of alternative selectionist models, underestimates the creative force of complexity as such, and--if seen as a major evolutionary mechanism for all organisms--could stifle further thought regarding the evolution of highly complex biological processes. Copyright © 2011 WILEY Periodicals, Inc.

  4. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  5. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE PAGES

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; ...

    2017-06-15

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  6. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2017-06-01

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.

  7. Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende

    2014-01-01

    Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.

  8. The Role of Reticulate Evolution in Creating Innovation and Complexity

    PubMed Central

    Swithers, Kristen S.; Soucy, Shannon M.; Gogarten, J. Peter

    2012-01-01

    Reticulate evolution encompasses processes that conflict with traditional Tree of Life efforts. These processes, horizontal gene transfer (HGT), gene and whole-genome duplications through allopolyploidization, are some of the main driving forces for generating innovation and complexity. HGT has a profound impact on prokaryotic and eukaryotic evolution. HGTs can lead to the invention of new metabolic pathways and the expansion and enhancement of previously existing pathways. It allows for organismal adaptation into new ecological niches and new host ranges. Although many HGTs appear to be selected for because they provide some benefit to their recipient lineage, other HGTs may be maintained by chance through random genetic drift. Moreover, some HGTs that may initially seem parasitic in nature can cause complexity to arise through pathways of neutral evolution. Another mechanism for generating innovation and complexity, occurring more frequently in eukaryotes than in prokaryotes, is gene and genome duplications, which often occur through allopolyploidizations. We discuss how these different evolutionary processes contribute to generating innovation and complexity. PMID:22844638

  9. Exponential evolution: implications for intelligent extraterrestrial life.

    PubMed

    Russell, D A

    1983-01-01

    Some measures of biologic complexity, including maximal levels of brain development, are exponential functions of time through intervals of 10(6) to 10(9) yrs. Biological interactions apparently stimulate evolution but physical conditions determine the time required to achieve a given level of complexity. Trends in brain evolution suggest that other organisms could attain human levels within approximately 10(7) yrs. The number (N) and longevity (L) terms in appropriate modifications of the Drake Equation, together with trends in the evolution of biological complexity on Earth, could provide rough estimates of the prevalence of life forms at specified levels of complexity within the Galaxy. If life occurs throughout the cosmos, exponential evolutionary processes imply that higher intelligence will soon (10(9) yrs) become more prevalent than it now is. Changes in the physical universe become less rapid as time increases from the Big Bang. Changes in biological complexity may be most rapid at such later times. This lends a unique and symmetrical importance to early and late universal times.

  10. The evolution of resistance genes in multi-protein plant resistance systems.

    PubMed

    Friedman, Aaron R; Baker, Barbara J

    2007-12-01

    The genomic perspective aids in integrating the analysis of single resistance (R-) genes into a higher order model of complex plant resistance systems. The majority of R-genes encode a class of proteins with nucleotide binding (NB) and leucine-rich repeat (LRR) domains. Several R-proteins act in multi-protein R-complexes that mediate interaction with pathogen effectors to induce resistance signaling. The complexity of these systems seems to have resulted from multiple rounds of plant-pathogen co-evolution. R-gene evolution is thought to be facilitated by the formation of R-gene clusters, which permit sequence exchanges via recombinatorial mispairing and generate high haplotypic diversity. This pattern of evolution may also generate diversity at other loci that contribute to the R-complex. The rate of recombination at R-clusters is not necessarily homogeneous or consistent over evolutionary time: recent evidence suggests that recombination at R-clusters is increased following pathogen infection, suggesting a mechanism that induces temporary genome instability in response to extreme stress. DNA methylation and chromatin modifications may allow this instability to be conditionally regulated and targeted to specific genome regions. Knowledge of natural R-gene evolution may contribute to strategies for artificial evolution of novel resistance specificities.

  11. A novel way to detect correlations on multi-time scales, with temporal evolution and for multi-variables

    NASA Astrophysics Data System (ADS)

    Yuan, Naiming; Xoplaki, Elena; Zhu, Congwen; Luterbacher, Juerg

    2016-06-01

    In this paper, two new methods, Temporal evolution of Detrended Cross-Correlation Analysis (TDCCA) and Temporal evolution of Detrended Partial-Cross-Correlation Analysis (TDPCCA), are proposed by generalizing DCCA and DPCCA. Applying TDCCA/TDPCCA, it is possible to study correlations on multi-time scales and over different periods. To illustrate their properties, we used two climatological examples: i) Global Sea Level (GSL) versus North Atlantic Oscillation (NAO); and ii) Summer Rainfall over Yangtze River (SRYR) versus previous winter Pacific Decadal Oscillation (PDO). We find significant correlations between GSL and NAO on time scales of 60 to 140 years, but the correlations are non-significant between 1865-1875. As for SRYR and PDO, significant correlations are found on time scales of 30 to 35 years, but the correlations are more pronounced during the recent 30 years. By combining TDCCA/TDPCCA and DCCA/DPCCA, we proposed a new correlation-detection system, which compared to traditional methods, can objectively show how two time series are related (on which time scale, during which time period). These are important not only for diagnosis of complex system, but also for better designs of prediction models. Therefore, the new methods offer new opportunities for applications in natural sciences, such as ecology, economy, sociology and other research fields.

  12. Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi

    NASA Astrophysics Data System (ADS)

    Matthews, John Philip; Ostrovsky, Lev; Yoshikawa, Yutaka; Komori, Satoru; Tamura, Hitoshi

    2017-08-01

    The devastating tsunami triggered by the Tōhoku-Oki earthquake of 11 March 2011 caused a crisis at the Fukushima Daiichi nuclear power station where it overtopped the seawall defences. On retreating, the tsunami carried loose debris and wreckage seaward and marshalled buoyant material into extensive plumes. Widespread concern over the fate of these and numerous other Tōhoku tsunami depositions prompted attempts to simulate debris dispersion throughout the wider Pacific. However, the effects of locally perturbed wind and wave fields, active Langmuir circulation and current-induced attrition determine a complex and poorly understood morphology for large floating agglomerations. Here we show that the early post-tsunami evolution of marine-debris plumes near Fukushima Daiichi was also shaped by near-surface wind modifications that took place above relatively calm (lower surface roughness) waters covered by surface films derived from oil and other contaminants. High-spatial-resolution satellite tracking reveals faster-than-expected floating-debris motions and invigorated plume evolution within these regions, while numerical modelling of turbulent air flow over the low-drag, film-covered surface predicts typically metre-per-second wind strengthening at centimetric heights, sufficient to explain the observed debris-speed increases. Wind restructuring probably stimulates the dispersion of flotsam from both biological and anthropogenic sources throughout a global ocean of highly variable surface roughness.

  13. Restructuring and Hydrogen Evolution on Pt Nanoparticle† †Electronic supplementary information (ESI) available: Discussions on the structures of Pt clusters and the stability of the subsurface H atoms in Pt cluster, TS structure of H–H coupling on {111} facets of Pt44H80, XYZ coordinate of Pt44 and Pt44H80. Movie of structure evolution at Pt44H50 See DOI: 10.1039/c4sc02806f Click here for additional data file. Click here for additional data file.

    PubMed Central

    Wei, Guang-Feng

    2015-01-01

    The restructuring of nanoparticles at the in situ condition is a common but complex phenomenon in nanoscience. Here, we present the first systematic survey on the structure dynamics and its catalytic consequence for hydrogen evolution reaction (HER) on Pt nanoparticles, as represented by a magic number Pt44 octahedron (∼1 nm size). Using a first principles calculation based global structure search method, we stepwise follow the significant nanoparticle restructuring under HER conditions as driven by thermodynamics to expose {100} facets, and reveal the consequent large activity enhancement due to the marked increase of the concentration of the active site, being identified to be apex atoms. The enhanced kinetics is thus a “byproduct” of the thermodynamical restructuring. Based on the results, the best Pt catalyst for HER is predicted to be ultrasmall Pt particles without core atoms, a size below ∼20 atoms. PMID:29560237

  14. Temporal-spatial evolution of the hydrologic drought characteristics of the karst drainage basins in South China

    NASA Astrophysics Data System (ADS)

    He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo

    2018-02-01

    Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.

  15. Complexity and the Arrow of Time

    NASA Astrophysics Data System (ADS)

    Lineweaver, Charles H.; Davies, Paul C. W.; Ruse, Michael

    2013-08-01

    1. What is complexity? Is it increasing? Charles H. Lineweaver, Paul C. W. Davies and Michael Ruse; 2. Directionality principles from cancer to cosmology Paul C. W. Davies; 3. A simple treatment of complexity: cosmological entropic boundary conditions on increasing complexity Charles H. Lineweaver; 4. Using complexity science to search for unity in the natural sciences Eric J. Chaisson; 5. On the spontaneous generation of complexity in the universe Seth Lloyd; 6. Emergent spatiotemporal complexity in field theory Marcelo Gleiser; 7. Life: the final frontier for complexity? Simon Conway Morris; 8. Evolution beyond Newton, Darwin, and entailing law: the origin of complexity in the evolving biosphere Stuart A. Kauffman; 9. Emergent order in processes: the interplay of complexity, robustness, correlation, and hierarchy in the biosphere D. Eric Smith; 10. The inferential evolution of biological complexity: forgetting nature by learning to nurture David C. Krakauer; 11. Information width: a way for the second law to increase complexity David Wolpert; 12. Wrestling with biological complexity: from Darwin to Dawkins Michael Ruse; 13. The role of generative entrenchment and robustness in the evolution of complexity William C. Wimsatt; 14. On the plurality of complexity-producing mechanisms Philip Clayton; Index.

  16. Enterprise Framework for the Disciplined Evolution of Legacy Systems

    DTIC Science & Technology

    1997-10-01

    out important global issues early in the planning cycle and provides insight for developing a synergistic set of management and technical practices to achieve a disciplined approach to system evolution.

  17. Analysis of World Economic Variables Using Multidimensional Scaling

    PubMed Central

    Machado, J.A. Tenreiro; Mata, Maria Eugénia

    2015-01-01

    Waves of globalization reflect the historical technical progress and modern economic growth. The dynamics of this process are here approached using the multidimensional scaling (MDS) methodology to analyze the evolution of GDP per capita, international trade openness, life expectancy, and education tertiary enrollment in 14 countries. MDS provides the appropriate theoretical concepts and the exact mathematical tools to describe the joint evolution of these indicators of economic growth, globalization, welfare and human development of the world economy from 1977 up to 2012. The polarization dance of countries enlightens the convergence paths, potential warfare and present-day rivalries in the global geopolitical scene. PMID:25811177

  18. Commercial Complexity and Local and Global Involvement in Programs: Effects on Viewer Responses.

    ERIC Educational Resources Information Center

    Oberman, Heiko; Thorson, Esther

    A study investigated the effects of local (momentary) and global (whole program) involvement in program context and the effects of message complexity on the retention of television commercials. Sixteen commercials, categorized as simple video/simple audio through complex video/complex audio were edited into two globally high- and two globally…

  19. Evolution of complex dynamics

    NASA Astrophysics Data System (ADS)

    Wilds, Roy; Kauffman, Stuart A.; Glass, Leon

    2008-09-01

    We study the evolution of complex dynamics in a model of a genetic regulatory network. The fitness is associated with the topological entropy in a class of piecewise linear equations, and the mutations are associated with changes in the logical structure of the network. We compare hill climbing evolution, in which only mutations that increase the fitness are allowed, with neutral evolution, in which mutations that leave the fitness unchanged are allowed. The simple structure of the fitness landscape enables us to estimate analytically the rates of hill climbing and neutral evolution. In this model, allowing neutral mutations accelerates the rate of evolutionary advancement for low mutation frequencies. These results are applicable to evolution in natural and technological systems.

  20. Thermal control design of the Galaxy Evolution Explorer (GALEX)

    NASA Technical Reports Server (NTRS)

    Tsuyuki, G. T.; Lee, S. C.

    2001-01-01

    This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.

  1. Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses.

    PubMed

    Gilbertson, Robert L; Batuman, Ozgur; Webster, Craig G; Adkins, Scott

    2015-11-01

    Emergence of insect-transmitted plant viruses over the past 10-20 years has been disproportionately driven by two so-called supervectors: the whitefly, Bemisia tabaci, and the Western flower thrips, Frankliniella occidentalis. High rates of reproduction and dispersal, extreme polyphagy, and development of insecticide resistance, together with human activities, have made these insects global pests. These supervectors transmit a diversity of plant viruses by different mechanisms and mediate virus emergence through local evolution, host shifts, mixed infections, and global spread. Associated virus evolution involves reassortment, recombination, and component capture. Emergence of B. tabaci-transmitted geminiviruses (begomoviruses), ipomoviruses, and torradoviruses has led to global disease outbreaks as well as multiple paradigm shifts. Similarly, F. occidentalis has mediated tospovirus host shifts and global dissemination and the emergence of pollen-transmitted ilarviruses. The plant virus-supervector interaction offers exciting opportunities for basic research and global implementation of generalized disease management strategies to reduce economic and environmental impacts.

  2. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  3. On the nature of the variability in the Martian thermospheric mass density: Results from the Mars Global Surveyor Electron Reflectometer

    NASA Astrophysics Data System (ADS)

    England, S.; Lillis, R. J.

    2011-12-01

    Knowledge of Mars' thermospheric mass density (~120--200 km altitude) is important for understanding the current state and evolution of the Martian atmosphere and for spacecraft such as the upcoming MAVEN mission that will fly through this region every orbit. Global-scale atmospheric models have been shown thus far to do an inconsistent job of matching mass density observations at these altitudes, especially on the nightside. Thus there is a clear need for a data-driven estimate of the mass density in this region. Given the wide range of conditions and locations over which these must be defined, the dataset of thermospheric mass densities derived from energy and angular distributions of super-thermal electrons measured by the MAG/ER experiment on Mars Global Surveyor, spanning 4 full Martian years, is an extremely valuable resource that can be used to enhance our prediction of these densities beyond what is given by such global-scale models. Here we present an empirical model of the thermospheric density structure based on the MAG/ER dataset. Using this new model, we assess the global-scale response of the thermosphere to dust storms in the lower atmosphere and show that this varies with latitude. Further, we examine the short- and longer-term variability of the thermospheric density and show that it exhibits a complex behavior with latitude and season that is indicative of both atmospheric conditions at lower altitudes and possible lower atmosphere wave sources.

  4. Complex Homology and the Evolution of Nervous Systems

    PubMed Central

    Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.

    2016-01-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806

  5. Anatomical Network Analysis Shows Decoupling of Modular Lability and Complexity in the Evolution of the Primate Skull

    PubMed Central

    Esteve-Altava, Borja; Boughner, Julia C.; Diogo, Rui; Villmoare, Brian A.; Rasskin-Gutman, Diego

    2015-01-01

    Modularity and complexity go hand in hand in the evolution of the skull of primates. Because analyses of these two parameters often use different approaches, we do not know yet how modularity evolves within, or as a consequence of, an also-evolving complex organization. Here we use a novel network theory-based approach (Anatomical Network Analysis) to assess how the organization of skull bones constrains the co-evolution of modularity and complexity among primates. We used the pattern of bone contacts modeled as networks to identify connectivity modules and quantify morphological complexity. We analyzed whether modularity and complexity evolved coordinately in the skull of primates. Specifically, we tested Herbert Simon’s general theory of near-decomposability, which states that modularity promotes the evolution of complexity. We found that the skulls of extant primates divide into one conserved cranial module and up to three labile facial modules, whose composition varies among primates. Despite changes in modularity, statistical analyses reject a positive feedback between modularity and complexity. Our results suggest a decoupling of complexity and modularity that translates to varying levels of constraint on the morphological evolvability of the primate skull. This study has methodological and conceptual implications for grasping the constraints that underlie the developmental and functional integration of the skull of humans and other primates. PMID:25992690

  6. The evolution of phenotypic integration: How directional selection reshapes covariation in mice

    PubMed Central

    Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel

    2017-01-01

    Abstract Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. PMID:28685813

  7. MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simard, Corinne; Charbonneau, Paul; Bouchat, Amelie, E-mail: corinne@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca, E-mail: amelie.bouchat@mail.mcgill.ca

    We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields thatmore » share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.« less

  8. Predictable transcriptome evolution in the convergent and complex bioluminescent organs of squid

    PubMed Central

    Pankey, M. Sabrina; Minin, Vladimir N.; Imholte, Greg C.; Suchard, Marc A.; Oakley, Todd H.

    2014-01-01

    Despite contingency in life’s history, the similarity of evolutionarily convergent traits may represent predictable solutions to common conditions. However, the extent to which overall gene expression levels (transcriptomes) underlying convergent traits are themselves convergent remains largely unexplored. Here, we show strong statistical support for convergent evolutionary origins and massively parallel evolution of the entire transcriptomes in symbiotic bioluminescent organs (bacterial photophores) from two divergent squid species. The gene expression similarities are so strong that regression models of one species’ photophore can predict organ identity of a distantly related photophore from gene expression levels alone. Our results point to widespread parallel changes in gene expression evolution associated with convergent origins of complex organs. Therefore, predictable solutions may drive not only the evolution of novel, complex organs but also the evolution of overall gene expression levels that underlie them. PMID:25336755

  9. Genomic signatures of evolutionary transitions from solitary to group living

    PubMed Central

    Kapheim, Karen M.; Pan, Hailin; Li, Cai; Salzberg, Steven L.; Puiu, Daniela; Magoc, Tanja; Robertson, Hugh M.; Hudson, Matthew E.; Venkat, Aarti; Fischman, Brielle J.; Hernandez, Alvaro; Yandell, Mark; Ence, Daniel; Holt, Carson; Yocum, George D.; Kemp, William P.; Bosch, Jordi; Waterhouse, Robert M.; Zdobnov, Evgeny M.; Stolle, Eckart; Kraus, F. Bernhard; Helbing, Sophie; Moritz, Robin F. A.; Glastad, Karl M.; Hunt, Brendan G.; Goodisman, Michael A. D.; Hauser, Frank; Grimmelikhuijzen, Cornelis J. P.; Pinheiro, Daniel Guariz; Nunes, Francis Morais Franco; Soares, Michelle Prioli Miranda; Tanaka, Érica Donato; Simões, Zilá Luz Paulino; Hartfelder, Klaus; Evans, Jay D.; Barribeau, Seth M.; Johnson, Reed M.; Massey, Jonathan H.; Southey, Bruce R.; Hasselmann, Martin; Hamacher, Daniel; Biewer, Matthias; Kent, Clement F.; Zayed, Amro; Blatti, Charles; Sinha, Saurabh; Johnston, J. Spencer; Hanrahan, Shawn J.; Kocher, Sarah D.; Wang, Jun; Robinson, Gene E.; Zhang, Guojie

    2017-01-01

    The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks. PMID:25977371

  10. Global Health Diplomacy, "San Francisco Values," and HIV/AIDS: From the Local to the Global.

    PubMed

    Kevany, Sebastian

    2015-01-01

    San Francisco has a distinguished history as a cosmopolitan, progressive, and international city, including extensive associations with global health. These circumstances have contributed to new, interdisciplinary scholarship in the field of global health diplomacy (GHD). In the present review, we describe the evolution and history of GHD at the practical and theoretical levels within the San Francisco medical community, trace related associations between the local and the global, and propose a range of potential opportunities for further development of this dynamic field. We provide a historical overview of the development of the "San Francisco Model" of collaborative, community-owned HIV/AIDS treatment and care programs as pioneered under the "Ward 86" paradigm of the 1980s. We traced the expansion and evolution of this model to the national level under the Ryan White Care Act, and internationally via the President's Emergency Plan for AIDS Relief. In parallel, we describe the evolution of global health diplomacy practices, from the local to the global, including the integration of GHD principles into intervention design to ensure social, political, and cultural acceptability and sensitivity. Global health programs, as informed by lessons learned from the San Francisco Model, are increasingly aligned with diplomatic principles and practices. This awareness has aided implementation, allowed policymakers to pursue related and progressive social and humanitarian issues in conjunction with medical responses, and elevated global health to the realm of "high politics." In the 21st century, the integration between diplomatic, medical, and global health practices will continue under "smart global health" and GHD paradigms. These approaches will enhance intervention cost-effectiveness by addressing and optimizing, in tandem with each other, a wide range of (health and non-health) foreign policy, diplomatic, security, and economic priorities in a synergistic manner--without sacrificing health outcomes. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  11. Consanguinity, human evolution, and complex diseases

    PubMed Central

    Bittles, A. H.; Black, M. L.

    2010-01-01

    There is little information on inbreeding during the critical early years of human existence. However, given the small founding group sizes and restricted mate choices it seems inevitable that intrafamilial reproduction occurred and the resultant levels of inbreeding would have been substantial. Currently, couples related as second cousins or closer (F ≥ 0.0156) and their progeny account for an estimated 10.4% of the global population. The highest rates of consanguineous marriage occur in north and sub-Saharan Africa, the Middle East, and west, central, and south Asia. In these regions even couples who regard themselves as unrelated may exhibit high levels of homozygosity, because marriage within clan, tribe, caste, or biraderi boundaries has been a long-established tradition. Mortality in first-cousin progeny is ≈3.5% higher than in nonconsanguineous offspring, although demographic, social, and economic factors can significantly influence the outcome. Improving socioeconomic conditions and better access to health care will impact the effects of consanguinity, with a shift from infant and childhood mortality to extended morbidity. At the same time, a range of primarily social factors, including urbanization, improved female education, and smaller family sizes indicate that the global prevalence of consanguineous unions will decline. This shift in marriage patterns will initially result in decreased homozygosity, accompanied by a reduction in the expression of recessive single-gene disorders. Although the roles of common and rare gene variants in the etiology of complex disease remain contentious, it would be expected that declining consanguinity would also be reflected in reduced prevalence of complex diseases, especially in population isolates. PMID:19805052

  12. Thermal design and test verification of GALAXY evolution explorer (GALEX)

    NASA Technical Reports Server (NTRS)

    Wu, P. S.; Lee, S. -C.

    2002-01-01

    This paper describes the thermal control design of GALEX, an ultraviolet telescope that investigates the UV properties of local galaxies, history of star formation, and global causes of star formation and evolution.

  13. Telecommunications systems evolution for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  14. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks

    PubMed Central

    Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy

    2013-01-01

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial. PMID:23563395

  15. Clustured regularly interspersed short palindromic repeats (CRISPR) genetic diversity studies as a mean to reconstruct the evolution of the Mycobacterium tuberculosis complex.

    PubMed

    Sola, Christophe

    2015-06-01

    The natural history of tuberculosis may be tackled by various means, among which the record of molecular scars that have been registered by the Mycobacterium tuberculosis complex (MTBC) genomes transmitted from patient to patient for tens of thousands years and possibly more. Recently discovered polymorphic loci, the CRISPR sequences, are indirect witnesses of the historical phage-bacteria struggle, and may be related to the time when the ancestor of today's tubercle bacilli were environmental bacteria, i.e. before becoming intracellular parasites. In this article, we present what are CRISPRs and try to summarize almost 20 years of research results obtained using the genetic diversity of the CRISPR loci in MTBC as a perspective for studying new models. We show that the study of the diversity of CRISPR sequences, thanks to «spoligotyping», has played a great role in our global understanding of the population structure of MTBC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Experimental Simulations of Lunar Magma Ocean Crystallization: The Plot (But Not the Crust) Thickens

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Rapp, J. F.; Elardo, S. M.; Shearer, C. K., Jr.; Neal, C. R.

    2016-01-01

    Numerical models of differentiation of a global-scale lunar magma ocean (LMO) have raised as many questions as they have answered. Recent orbital missions and sample studies have provided new context for a large range of lithologies, from the comparatively magnesian "purest anorthosite" reported by to Si-rich domes and spinel-rich clasts with widespread areal distributions. In addition, the GRAIL mission provided strong constraints on lunar crustal density and average thickness. Can this increasingly complex geology be accounted for via the formation and evolution of the LMO? We have in recent years been conducting extensive sets of petrologic experiments designed to fully simulate LMO crystallization, which had not been attempted previously. Here we review the key results from these experiments, which show that LMO differentiation is more complex than initial models suggested. Several important features expected from LMO crystallization models have yet to be reproduced experimentally; combined modelling and experimental work by our group is ongoing.

  17. From link-prediction in brain connectomes and protein interactomes to the local-community-paradigm in complex networks.

    PubMed

    Cannistraci, Carlo Vittorio; Alanis-Lobato, Gregorio; Ravasi, Timothy

    2013-01-01

    Growth and remodelling impact the network topology of complex systems, yet a general theory explaining how new links arise between existing nodes has been lacking, and little is known about the topological properties that facilitate link-prediction. Here we investigate the extent to which the connectivity evolution of a network might be predicted by mere topological features. We show how a link/community-based strategy triggers substantial prediction improvements because it accounts for the singular topology of several real networks organised in multiple local communities - a tendency here named local-community-paradigm (LCP). We observe that LCP networks are mainly formed by weak interactions and characterise heterogeneous and dynamic systems that use self-organisation as a major adaptation strategy. These systems seem designed for global delivery of information and processing via multiple local modules. Conversely, non-LCP networks have steady architectures formed by strong interactions, and seem designed for systems in which information/energy storage is crucial.

  18. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803

    PubMed Central

    Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan

    2014-01-01

    Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems—photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSIPsaJF. PSIPsaJF is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSIPsaJF and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001 PMID:24473073

  19. Crystal structures of virus-like photosystem I complexes from the mesophilic cyanobacterium Synechocystis PCC 6803.

    PubMed

    Mazor, Yuval; Nataf, Daniel; Toporik, Hila; Nelson, Nathan

    2013-01-01

    Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems-photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSI(PsaJF). PSI(PsaJF) is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSI(PsaJF) and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001.

  20. Whole-Genome Characterization of Epidemic Neisseria meningitidis Serogroup C and Resurgence of Serogroup W, Niger, 2015.

    PubMed

    Kretz, Cecilia B; Retchless, Adam C; Sidikou, Fati; Issaka, Bassira; Ousmane, Sani; Schwartz, Stephanie; Tate, Ashley H; Pana, Assimawè; Njanpop-Lafourcade, Berthe-Marie; Nzeyimana, Innocent; Nse, Ricardo Obama; Deghmane, Ala-Eddine; Hong, Eva; Brynildsrud, Ola Brønstad; Novak, Ryan T; Meyer, Sarah A; Oukem-Boyer, Odile Ouwe Missi; Ronveaux, Olivier; Caugant, Dominique A; Taha, Muhamed-Kheir; Wang, Xin

    2016-10-01

    In 2015, Niger reported the largest epidemic of Neisseria meningitidis serogroup C (NmC) meningitis in sub-Saharan Africa. The NmC epidemic coincided with serogroup W (NmW) cases during the epidemic season, resulting in a total of 9,367 meningococcal cases through June 2015. To clarify the phylogenetic association, genetic evolution, and antibiotic determinants of the meningococcal strains in Niger, we sequenced the genomes of 102 isolates from this epidemic, comprising 81 NmC and 21 NmW isolates. The genomes of 82 isolates were completed, and all 102 were included in the analysis. All NmC isolates had sequence type 10217, which caused the outbreaks in Nigeria during 2013-2014 and for which a clonal complex has not yet been defined. The NmC isolates from Niger were substantially different from other NmC isolates collected globally. All NmW isolates belonged to clonal complex 11 and were closely related to the isolates causing recent outbreaks in Africa.

  1. Superposed epoch analysis of ion temperatures during CME- and CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.

    2012-12-01

    The NASA Two Wide-angle Imaging Neutral atom Spectrometers (TWINS) Mission provides a global view of the magnetosphere with near-continuous coverage. Utilizing a novel technique to calculate ion temperatures from the TWINS energetic neutral atom (ENA) measurements, we generate ion temperature maps of the magnetosphere. These maps can be used to study ion temperature evolution during geomagnetic storms. A superposed epoch analysis of the ion temperature evolution during 48 storms will be presented. Zaniewski et al. [2006] performed a superposed epoch analysis of ion temperatures by storm interval using data from the MENA instrument on the IMAGE mission, demonstrating significant dayside ion heating during the main phase. The TWINS measurements provide more continuous coverage and improved spatial and temporal resolution. Denton and Borovsky [2008] noted differences in ion temperature evolution at geosynchronous orbit between coronal mass ejection (CME)- and corotating interaction region (CIR)/high speed stream (HSS)- driven storms. Using our global ion temperature maps, we have found consistent results for select individual storms [Keesee et al., 2012]. We will present superposed epoch analyses for the subgroups of CME- and CIR/HSS-driven storms to compare global ion temperature evolution during the two types of storms.

  2. Additive Manufacturing: Unlocking the Evolution of Energy Materials

    PubMed Central

    Zhakeyev, Adilet; Wang, Panfeng; Shu, Wenmiao; Wang, Huizhi

    2017-01-01

    Abstract The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near‐complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage. PMID:29051861

  3. The genomic and epidemiological dynamics of human influenza A virus.

    PubMed

    Rambaut, Andrew; Pybus, Oliver G; Nelson, Martha I; Viboud, Cecile; Taubenberger, Jeffery K; Holmes, Edward C

    2008-05-29

    The evolutionary interaction between influenza A virus and the human immune system, manifest as 'antigenic drift' of the viral haemagglutinin, is one of the best described patterns in molecular evolution. However, little is known about the genome-scale evolutionary dynamics of this pathogen. Similarly, how genomic processes relate to global influenza epidemiology, in which the A/H3N2 and A/H1N1 subtypes co-circulate, is poorly understood. Here through an analysis of 1,302 complete viral genomes sampled from temperate populations in both hemispheres, we show that the genomic evolution of influenza A virus is characterized by a complex interplay between frequent reassortment and periodic selective sweeps. The A/H3N2 and A/H1N1 subtypes exhibit different evolutionary dynamics, with diverse lineages circulating in A/H1N1, indicative of weaker antigenic drift. These results suggest a sink-source model of viral ecology in which new lineages are seeded from a persistent influenza reservoir, which we hypothesize to be located in the tropics, to sink populations in temperate regions.

  4. Additive Manufacturing: Unlocking the Evolution of Energy Materials.

    PubMed

    Zhakeyev, Adilet; Wang, Panfeng; Zhang, Li; Shu, Wenmiao; Wang, Huizhi; Xuan, Jin

    2017-10-01

    The global energy infrastructure is undergoing a drastic transformation towards renewable energy, posing huge challenges on the energy materials research, development and manufacturing. Additive manufacturing has shown its promise to change the way how future energy system can be designed and delivered. It offers capability in manufacturing complex 3D structures, with near-complete design freedom and high sustainability due to minimal use of materials and toxic chemicals. Recent literatures have reported that additive manufacturing could unlock the evolution of energy materials and chemistries with unprecedented performance in the way that could never be achieved by conventional manufacturing techniques. This comprehensive review will fill the gap in communicating on recent breakthroughs in additive manufacturing for energy material and device applications. It will underpin the discoveries on what 3D functional energy structures can be created without design constraints, which bespoke energy materials could be additively manufactured with customised solutions, and how the additively manufactured devices could be integrated into energy systems. This review will also highlight emerging and important applications in energy additive manufacturing, including fuel cells, batteries, hydrogen, solar cell as well as carbon capture and storage.

  5. Ancient Recombination Events between Human Herpes Simplex Viruses.

    PubMed

    Burrel, Sonia; Boutolleau, David; Ryu, Diane; Agut, Henri; Merkel, Kevin; Leendertz, Fabian H; Calvignac-Spencer, Sébastien

    2017-07-01

    Herpes simplex viruses 1 and 2 (HSV-1 and HSV-2) are seen as close relatives but also unambiguously considered as evolutionary independent units. Here, we sequenced the genomes of 18 HSV-2 isolates characterized by divergent UL30 gene sequences to further elucidate the evolutionary history of this virus. Surprisingly, genome-wide recombination analyses showed that all HSV-2 genomes sequenced to date contain HSV-1 fragments. Using phylogenomic analyses, we could also show that two main HSV-2 lineages exist. One lineage is mostly restricted to subSaharan Africa whereas the other has reached a global distribution. Interestingly, only the worldwide lineage is characterized by ancient recombination events with HSV-1. Our findings highlight the complexity of HSV-2 evolution, a virus of putative zoonotic origin which later recombined with its human-adapted relative. They also suggest that coinfections with HSV-1 and 2 may have genomic and potentially functional consequences and should therefore be monitored more closely. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Metabolic depression and the evolution of hypoxia tolerance in threespine stickleback, Gasterosteus aculeatus.

    PubMed

    Regan, Matthew D; Gill, Ivan S; Richards, Jeffrey G

    2017-11-01

    Anthropogenic increases in global temperature and agricultural runoff are increasing the prevalence of aquatic hypoxia throughout the world. We investigated the potential for a relatively rapid evolution of hypoxia tolerance using two isolated (for less than 11 000 years) populations of threespine stickleback: one from a lake that experiences long-term hypoxia (Alta Lake, British Columbia) and one from a lake that does not (Trout Lake, British Columbia). Loss-of-equilibrium (LOE) experiments revealed that the Alta Lake stickleback were significantly more tolerant of hypoxia than the Trout Lake stickleback, and calorimetry experiments revealed that the enhanced tolerance of Alta Lake stickleback may be associated with their ability to depress metabolic rate (as indicated by metabolic heat production) by 33% in hypoxia. The two populations showed little variation in their capacities for O 2 extraction and anaerobic metabolism. These results reveal that intraspecific variation in hypoxia tolerance can develop over relatively short geological timescales, as can metabolic rate depression, a complex biochemical response that may be favoured in long-term hypoxic environments. © 2017 The Author(s).

  7. Structure and evolution of a European Parliament via a network and correlation analysis

    NASA Astrophysics Data System (ADS)

    Puccio, Elena; Pajala, Antti; Piilo, Jyrki; Tumminello, Michele

    2016-11-01

    We present a study of the network of relationships among elected members of the Finnish parliament, based on a quantitative analysis of initiative co-signatures, and its evolution over 16 years. To understand the structure of the parliament, we constructed a statistically validated network of members, based on the similarity between the patterns of initiatives they signed. We looked for communities within the network and characterized them in terms of members' attributes, such as electoral district and party. To gain insight on the nested structure of communities, we constructed a hierarchical tree of members from the correlation matrix. Afterwards, we studied parliament dynamics yearly, with a focus on correlations within and between parties, by also distinguishing between government and opposition. Finally, we investigated the role played by specific individuals, at a local level. In particular, whether they act as proponents who gather consensus, or as signers. Our results provide a quantitative background to current theories in political science. From a methodological point of view, our network approach has proven able to highlight both local and global features of a complex social system.

  8. Step wise, multiple objective calibration of a hydrologic model for a snowmelt dominated basin

    USGS Publications Warehouse

    Hay, L.E.; Leavesley, G.H.; Clark, M.P.; Markstrom, S.L.; Viger, R.J.; Umemoto, M.

    2006-01-01

    The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated, consistently with measured values.

  9. [An epidemiological but invisibilized marker: indebtedness within an Afromexican town in Oaxaca].

    PubMed

    Hersch-Martínez, Paul; Rodríguez-Hernández, Berenice

    2017-01-01

    To explore indebtedness dynamics in an Afromexican town by an inclusive epidemiological approach. Qualitative study through 75 questionnaires, 20 interviews to depth and six focal groups in a support process to the Municipal Health Commission in Santiago Tapextla, Oaxaca. Catastrophic expenses due to insufficient medical care were the principal causal item. Indebtedness processes with patrimonial loss are dominant, generating dependence spirals of difficult resolution that impact the familiar dynamics and the pathology evolution. In spite of its inexistence within sanitary official programs, indebtedness dynamics constitute an epidemiological marker by the uncovering of structural inattention conditions that reflect the imposed, naturalized and pathogenic hierarchization proper of coloniality. To analyze this process at local and global levels is a complex but essential public health task.

  10. Andean subduction orogeny: feedbacks between tectonics, relief evolution and global climate

    NASA Astrophysics Data System (ADS)

    Lacassin, Robin; Armijo, Rolando; Coudurier-Curveur, Aurélie; Carrizo, Daniel

    2016-04-01

    The Andean subduction margin, largest tectonic relief on the Earth (13 km vertically from the trench to the Altiplano) has a stepped morphology, which results of the evolution over the past 50 Myr of two parallel flat-ramp thrust systems, at the - previously unidentified - West Andean Thrust (WAT), and at the subduction interface. The evolution of those thrusts appears concomitant with increasing aridity in the Atacama Desert, which keeps a large-scale record of interplaying tectonics and Cenozoic climate change. The coastal morphology is dominated by the Atacama Bench, a giant uplifted terrace at 1-2km asl. Geomorphic and climatic data, numerical experiments of drainage formation are consistent with the development of a flat Atacama morphology close to sea level, interrupted at ≤10 Ma by tectonic uplift prevailing to the present. This suggests recent trench-ward relief growth by incorporation of the coastal Atacama Bench to the Andes reliefs. Thrust splay structures and other complexities above the subduction interface may explain this relief growth, as well as the distribution of asperities under the oceanward forearc, and the down-dip segmentation of coupling and seismicity on the megathrust. Combining those results with geological knowledge at the scale of the whole Central Andes, we show that the Andean orogeny results from protracted processes of bivergent crustal shortening in a wide region squeezed between the rigid Marginal Block and the S America Plate. The overall growth curve of Andean orogeny over the past 50 Myr appears synchronous with the onset of the "ramp-shaped" temperature decrease since the Early Eocene climatic optimum. Andean growth and global cooling may have operated under the same forcing mechanism at plate-scale, involving viscous flow in the mantle. But Andean growth appears modulated by climatic feedbacks causative of stepwise reductions of erosive power over the Andean margin. The first of such events is coeval with Late Eocene cooling and promoted the eastward propagation of deformation towards the continent interior. The second one, coeval with Late Miocene cooling, is associated with the establishment of hyper-aridity in the Atacama Desert, and is responsible of a tectonic "freezing" which promoted since the triggering of subduction of the Brazilian craton, the Andean bivergent growth, and rapid uplift throughout the Andes-Altiplano. Armijo R., Lacassin R., Coudurier-Curveur A., Carrizo D., Coupled tectonic evolution of Andean orogeny and global climate, Earth Science Reviews, 143, 1-35, doi:10.1016/j.earscirev.2015.01.005, 2015.

  11. Predicting the evolution of sex on complex fitness landscapes.

    PubMed

    Misevic, Dusan; Kouyos, Roger D; Bonhoeffer, Sebastian

    2009-09-01

    Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, Delta Var(HD), also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. Delta Var(HD) is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction.

  12. Predicting the Evolution of Sex on Complex Fitness Landscapes

    PubMed Central

    Misevic, Dusan; Kouyos, Roger D.; Bonhoeffer, Sebastian

    2009-01-01

    Most population genetic theories on the evolution of sex or recombination are based on fairly restrictive assumptions about the nature of the underlying fitness landscapes. Here we use computer simulations to study the evolution of sex on fitness landscapes with different degrees of complexity and epistasis. We evaluate predictors of the evolution of sex, which are derived from the conditions established in the population genetic literature for the evolution of sex on simpler fitness landscapes. These predictors are based on quantities such as the variance of Hamming distance, mean fitness, additive genetic variance, and epistasis. We show that for complex fitness landscapes all the predictors generally perform poorly. Interestingly, while the simplest predictor, ΔVarHD, also suffers from a lack of accuracy, it turns out to be the most robust across different types of fitness landscapes. ΔVarHD is based on the change in Hamming distance variance induced by recombination and thus does not require individual fitness measurements. The presence of loci that are not under selection can, however, severely diminish predictor accuracy. Our study thus highlights the difficulty of establishing reliable criteria for the evolution of sex on complex fitness landscapes and illustrates the challenge for both theoretical and experimental research on the origin and maintenance of sexual reproduction. PMID:19763171

  13. Multiobjective Optimization Using a Pareto Differential Evolution Approach

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.

  14. [The clinico-epidemiological premises for antioxidant prevention and treatment in chronic myocardial infarct].

    PubMed

    Azoicăi, D; Mitu, F; Iacobovici, A; Pavel, M; Jerca, L; Ungureanu, D; Popovici, I; Cojocaru, M; Ivan, A; Gheorghiţă, N

    1996-01-01

    The improvement of therapeutic and recoverable proceeding to chronic myocardial infarction (IMC) imposes a complex epidemiological estimation of the global cardiovascular risk, of their clinical and biological status. The retrospective evaluation of the risk factors (RF) by epidemiological methods, in 38 hospitalized prevalence of both constitutional and behavioral factors, and the quantification of the risk state, according to graph Euro 194, has pointed on the fact that 50% of IMC cases have presented a global risk of 10-20%. That justified the application of a preventive conduct in order to continually neutralize the associates FR. The biochemical determinations have allowed to frame the dyslipidemic patients, according to the ARCOL classification in the classes D (29.2%), E (25.0%) and B (20.8%) with direct implication in the adopted therapy. The colorimetric dozing with thyo-barbituric acid of the malonly dialdehyde (MAD) each is a product of the lipidic peroxidation, as well as the interpreting or correlation of the registered values with an evolutive clinic stage, and with the existence of some existing diseases (diabetes, chronic hepatitis etc.) along with signification of other dismethabolical parameters (cholesterol, triglycerides, LDLc, apoB) have confirmed the necessity of a complex therapy, including an antioxidative treatment, having the role to directly inhibit or exclude the free radicals resulted after the oxidative stress of the infarct.

  15. The vulnerability of the global container shipping network to targeted link disruption

    NASA Astrophysics Data System (ADS)

    Viljoen, Nadia M.; Joubert, Johan W.

    2016-11-01

    Using complex network theory to describe the relational geography of maritime networks has provided great insights regarding their hierarchy and evolution over the past two decades. Unlike applications in other transport fields, notably air transport, complex network theory has had limited application in studying the vulnerability of maritime networks. This study uses targeted link disruption to investigate the strategy specific vulnerability of the network. Although nodal infrastructure such as ports can render a network vulnerable as a result of labour strikes, trade embargoes or natural disasters, it is the shipping lines connecting the ports that are more probably disrupted, either from within the industry, or outside. In this paper, we apply and evaluate two link-based disruption strategies on the global container shipping network, one based on link betweenness, and the other on link salience, to emulate the impact of large-scale service reconfiguration affecting priority links. The results show that the network is by and large robust to such reconfiguration. Meanwhile the flexibility of the network is reduced by both strategies, but to a greater degree by betweenness, resulting in a reduction of transshipment and dynamic rerouting potential amongst the busiest port regions. The results further show that the salience strategy is highly effective in reducing the commonality of shortest path sets, thereby diminishing opportunities for freight consolidation and scale economies.

  16. The Anthropocene: a conspicuous stratigraphical signal of anthropogenic changes in production and consumption across the biosphere

    NASA Astrophysics Data System (ADS)

    Williams, Mark; Zalasiewicz, Jan; Waters, Colin N.; Edgeworth, Matt; Bennett, Carys; Barnosky, Anthony D.; Ellis, Erle C.; Ellis, Michael A.; Cearreta, Alejandro; Haff, Peter K.; Ivar do Sul, Juliana A.; Leinfelder, Reinhold; McNeill, John R.; Odada, Eric; Oreskes, Naomi; Revkin, Andrew; Richter, Daniel deB; Steffen, Will; Summerhayes, Colin; Syvitski, James P.; Vidas, Davor; Wagreich, Michael; Wing, Scott L.; Wolfe, Alexander P.; Zhisheng, An

    2016-03-01

    Biospheric relationships between production and consumption of biomass have been resilient to changes in the Earth system over billions of years. This relationship has increased in its complexity, from localized ecosystems predicated on anaerobic microbial production and consumption to a global biosphere founded on primary production from oxygenic photoautotrophs, through the evolution of Eukarya, metazoans, and the complexly networked ecosystems of microbes, animals, fungi, and plants that characterize the Phanerozoic Eon (the last ˜541 million years of Earth history). At present, one species, Homo sapiens, is refashioning this relationship between consumption and production in the biosphere with unknown consequences. This has left a distinctive stratigraphy of the production and consumption of biomass, of natural resources, and of produced goods. This can be traced through stone tool technologies and geochemical signals, later unfolding into a diachronous signal of technofossils and human bioturbation across the planet, leading to stratigraphically almost isochronous signals developing by the mid-20th century. These latter signals may provide an invaluable resource for informing and constraining a formal Anthropocene chronostratigraphy, but are perhaps yet more important as tracers of a biosphere state that is characterized by a geologically unprecedented pattern of global energy flow that is now pervasively influenced and mediated by humans, and which is necessary for maintaining the complexity of modern human societies.

  17. Theodore Brameld's Thought Infused in Higher Education Global Studies Curriculum

    ERIC Educational Resources Information Center

    White, Stephen R.

    2016-01-01

    The assertion here is that Theodore Brameld's Social Reconstructionist thought can provide us in American higher education the philosophical foundation for a relevant 21st century curriculum global studies agenda. It is a curriculum that merges self-awareness with global societal evolution. Through the interjection of Brameldian social…

  18. Staffing the Global Organization: "Cultural Nomads"

    ERIC Educational Resources Information Center

    McPhail, Ruth; Fisher, Ron; Harvey, Michael; Moeller, Miriam

    2012-01-01

    This article explores the evolution of international staffing in an increasingly globalized and hypercompetitive marketplace. As the issue of staff retention becomes critical in global organizations, it is important to understand the types of managers that may be on or assigned to overseas assignments. The purpose of this article is to present a…

  19. The long story of mitochondrial DNA and respiratory complex I.

    PubMed

    Degli Esposti, Mauro

    2017-01-01

    This article examines the long story of the relationship between mitochondrial DNA (mtDNA) and respiratory complex I, NADH:Ubiquinone Oxidoreductase, from its beginning  in the genome of the bacterial endosymbiont which then evolved into the mitochondria of our cells. The story begins with the evolution of ancient forms of bacterial complex I into the Nuo14 complex I that was present in the alpha proteobacterial ancestor of mitochondria. The story then becomes complicated in the diversity of eukaryotic organisms that are currently recognized. Therefore, it does not have a clear end, because currently available information shows different situations of metabolic adaptation and gene loss, indicating cases of de-evolution of the original protonmotive complex into a system that may fundamentally assist [FeFe]-hydrogenases in re-oxidising metabolically produced NADH under anaerobic conditions. The history of complex I is thus a never ending story of molecular and physiological evolution producing new perspectives for studying the enzyme complex that occupies the largest proportion of mitochondrial DNA.

  20. "Synergistic selection": a Darwinian frame for the evolution of complexity.

    PubMed

    Corning, Peter A; Szathmáry, Eörs

    2015-04-21

    Non-Darwinian theories about the emergence and evolution of complexity date back at least to Lamarck, and include those of Herbert Spencer and the "emergent evolution" theorists of the later nineteenth and early twentieth centuries. In recent decades, this approach has mostly been espoused by various practitioners in biophysics and complexity theory. However, there is a Darwinian alternative - in essence, an economic theory of complexity - proposing that synergistic effects of various kinds have played an important causal role in the evolution of complexity, especially in the "major transitions". This theory is called the "synergism hypothesis". We posit that otherwise unattainable functional advantages arising from various cooperative phenomena have been favored over time in a dynamic that the late John Maynard Smith characterized and modeled as "synergistic selection". The term highlights the fact that synergistic "wholes" may become interdependent "units" of selection. We provide some historical perspective on this issue, as well as a brief explication of the underlying theory and the concept of synergistic selection, and we describe two relevant models. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Highly efficient photocatalytic hydrogen evolution from nickel quinolinethiolate complexes under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Rao, Heng; Yu, Wen-Qian; Zheng, Hui-Qin; Bonin, Julien; Fan, Yao-Ting; Hou, Hong-Wei

    2016-08-01

    Earth-abundant metal complexes have emerged as promising surrogates of platinum for catalyzing the hydrogen evolution reaction (HER). In this study, we report the design and synthesis of two novel nickel quinolinethiolate complexes, namely [Ni(Hqt)2(4, 4‧-Z-2, 2‧-bpy)] (Hqt = 8-quinolinethiol, Z = sbnd H [1] or sbnd CH3 [2], bpy = bipyridine). An efficient three-component photocatalytic homogeneous system for hydrogen generation working under visible light irradiation was constructed by using the target complexes as catalysts, triethylamine (TEA) as sacrificial electron donor and xanthene dyes as photosensitizer. We obtain turnover numbers (TON, vs. catalyst) for H2 evolution of 5923/7634 under the optimal conditions with 5.0 × 10-6 M complex 1/2 respectively, 1.0 × 10-3 M fluorescein and 5% (v/v) TEA at pH 12.3 in EtOH/H2O (1:1, v/v) mixture after 8 h irradiation (λ > 420 nm). We discuss the mechanism of H2 evolution in the homogeneous photocatalytic system based on fluorescence spectrum and cyclic voltammetry data.

  2. Detection of timescales in evolving complex systems

    PubMed Central

    Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo

    2016-01-01

    Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820

  3. Long-term nitrogen addition causes the evolution of less-cooperative mutualists.

    PubMed

    Weese, Dylan J; Heath, Katy D; Dentinger, Bryn T M; Lau, Jennifer A

    2015-03-01

    Human activities have altered the global nitrogen (N) cycle, and as a result, elevated N inputs are causing profound ecological changes in diverse ecosystems. The evolutionary consequences of this global change have been largely ignored even though elevated N inputs are predicted to cause mutualism breakdown and the evolution of decreased cooperation between resource mutualists. Using a long-term (22 years) N-addition experiment, we find that elevated N inputs have altered the legume-rhizobium mutualism (where rhizobial bacteria trade N in exchange for photosynthates from legumes), causing the evolution of less-mutualistic rhizobia. Plants inoculated with rhizobium strains isolated from N-fertilized treatments produced 17-30% less biomass and had reduced chlorophyll content compared to plants inoculated with strains from unfertilized control plots. Because the legume-rhizobium mutualism is the major contributor of naturally fixed N to terrestrial ecosystems, the evolution of less-cooperative rhizobia may have important environmental consequences. © 2015 The Author(s).

  4. The genomic basis of adaptive evolution in threespine sticklebacks

    PubMed Central

    Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Lander, Eric S; Di Palma, Federica

    2012-01-01

    Summary Marine stickleback fish have colonized and adapted to innumerable streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of 20 additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results suggest that reuse of globally-shared standing genetic variation, including chromosomal inversions, plays an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, with regulatory changes likely predominating in this classic example of repeated adaptive evolution in nature. PMID:22481358

  5. The genomic basis of adaptive evolution in threespine sticklebacks.

    PubMed

    Jones, Felicity C; Grabherr, Manfred G; Chan, Yingguang Frank; Russell, Pamela; Mauceli, Evan; Johnson, Jeremy; Swofford, Ross; Pirun, Mono; Zody, Michael C; White, Simon; Birney, Ewan; Searle, Stephen; Schmutz, Jeremy; Grimwood, Jane; Dickson, Mark C; Myers, Richard M; Miller, Craig T; Summers, Brian R; Knecht, Anne K; Brady, Shannon D; Zhang, Haili; Pollen, Alex A; Howes, Timothy; Amemiya, Chris; Baldwin, Jen; Bloom, Toby; Jaffe, David B; Nicol, Robert; Wilkinson, Jane; Lander, Eric S; Di Palma, Federica; Lindblad-Toh, Kerstin; Kingsley, David M

    2012-04-04

    Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine-freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine-freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.

  6. Plasticity first: molecular signatures of a complex morphological trait in filamentous cyanobacteria.

    PubMed

    Koch, Robin; Kupczok, Anne; Stucken, Karina; Ilhan, Judith; Hammerschmidt, Katrin; Dagan, Tal

    2017-08-31

    Filamentous cyanobacteria that differentiate multiple cell types are considered the peak of prokaryotic complexity and their evolution has been studied in the context of multicellularity origins. Species that form true-branching filaments exemplify the most complex cyanobacteria. However, the mechanisms underlying the true-branching morphology remain poorly understood despite of several investigations that focused on the identification of novel genes or pathways. An alternative route for the evolution of novel traits is based on existing phenotypic plasticity. According to that scenario - termed genetic assimilation - the fixation of a novel phenotype precedes the fixation of the genotype. Here we show that the evolution of transcriptional regulatory elements constitutes a major mechanism for the evolution of new traits. We found that supplementation with sucrose reconstitutes the ancestral branchless phenotype of two true-branching Fischerella species and compared the transcription start sites (TSSs) between the two phenotypic states. Our analysis uncovers several orthologous TSSs whose transcription level is correlated with the true-branching phenotype. These TSSs are found in genes that encode components of the septosome and elongasome (e.g., fraC and mreB). The concept of genetic assimilation supplies a tenable explanation for the evolution of novel traits but testing its feasibility is hindered by the inability to recreate and study the evolution of present-day traits. We present a novel approach to examine transcription data for the plasticity first route and provide evidence for its occurrence during the evolution of complex colony morphology in true-branching cyanobacteria. Our results reveal a route for evolution of the true-branching phenotype in cyanobacteria via modification of the transcription level of pre-existing genes. Our study supplies evidence for the 'plasticity-first' hypothesis and highlights the importance of transcriptional regulation in the evolution of novel traits.

  7. Complex Homology and the Evolution of Nervous Systems.

    PubMed

    Liebeskind, Benjamin J; Hillis, David M; Zakon, Harold H; Hofmann, Hans A

    2016-02-01

    We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. Copyright © 2015. Published by Elsevier Ltd.

  8. Modification of feeding circuits in the evolution of social behavior.

    PubMed

    Fischer, Eva K; O'Connell, Lauren A

    2017-01-01

    Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification. © 2017. Published by The Company of Biologists Ltd.

  9. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    PubMed Central

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  10. Sink- or Source-driven Phanerozoic carbon cycle?

    NASA Astrophysics Data System (ADS)

    Godderis, Y.; Donnadieu, Y.; Maffre, P.; Carretier, S.

    2017-12-01

    The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. Those fluxes (including continental weathering, magmatic degassing, organic carbon burial, oxidation of sedimentary organic carbon) are intertwined, and their relative importance in driving the global carbon cycle evolution may have fluctuated through time. Deciphering the causes of the Phanerozoic climate evolution thus requires a holistic and quantitative approach. Here we focus on the role played by the paleogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM (geoclimmodel.worpress.com) to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indexes. We calculate the CO2 evolution for each degassing scenario, and accounting for the paleogeographic setting. We show that the paleogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes the CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the "middle" Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity. In summary, the Phanerozoic climate evolution can be hardly assigned to a single process, but is the result of complex and intertwined processes.

  11. Does structural complexity determine the morphology of assemblages? An experimental test on three continents.

    PubMed

    Gibb, Heloise; Parr, Catherine L

    2013-01-01

    Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure.

  12. Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox

    NASA Astrophysics Data System (ADS)

    Ćirković, Milan M.; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi’s paradox or the “Great Silence” problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are γ-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the “Great Silence”, it is not supportive of the “contact pessimist” position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  13. Astrobiological phase transition: towards resolution of Fermi's paradox.

    PubMed

    Cirković, Milan M; Vukotić, Branislav

    2008-12-01

    Can astrophysics explain Fermi's paradox or the "Great Silence" problem? If available, such explanation would be advantageous over most of those suggested in literature which rely on unverifiable cultural and/or sociological assumptions. We suggest, instead, a general astrobiological paradigm which might offer a physical and empirically testable paradox resolution. Based on the idea of James Annis, we develop a model of an astrobiological phase transition of the Milky Way, based on the concept of the global regulation mechanism(s). The dominant regulation mechanisms, arguably, are gamma-ray bursts, whose properties and cosmological evolution are becoming well-understood. Secular evolution of regulation mechanisms leads to the brief epoch of phase transition: from an essentially dead place, with pockets of low-complexity life restricted to planetary surfaces, it will, on a short (Fermi-Hart) timescale, become filled with high-complexity life. An observation selection effect explains why we are not, in spite of the very small prior probability, to be surprised at being located in that brief phase of disequilibrium. In addition, we show that, although the phase-transition model may explain the "Great Silence", it is not supportive of the "contact pessimist" position. To the contrary, the phase-transition model offers a rational motivation for continuation and extension of our present-day Search for ExtraTerrestrial Intelligence (SETI) endeavours. Some of the unequivocal and testable predictions of our model include the decrease of extinction risk in the history of terrestrial life, the absence of any traces of Galactic societies significantly older than human society, complete lack of any extragalactic intelligent signals or phenomena, and the presence of ubiquitous low-complexity life in the Milky Way.

  14. Evolution of the stellar mass function in multiple-population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale

    2018-05-01

    We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.

  15. The Evolution of Biological Complexity in Digital Organisms

    NASA Astrophysics Data System (ADS)

    Ofria, Charles

    2013-03-01

    When Darwin first proposed his theory of evolution by natural selection, he realized that it had a problem explaining the origins of traits of ``extreme perfection and complication'' such as the vertebrate eye. Critics of Darwin's theory have latched onto this perceived flaw as a proof that Darwinian evolution is impossible. In anticipation of this issue, Darwin described the perfect data needed to understand this process, but lamented that such data are ``scarcely ever possible'' to obtain. In this talk, I will discuss research where we use populations of digital organisms (self-replicating and evolving computer programs) to elucidate the genetic and evolutionary processes by which new, highly-complex traits arise, drawing inspiration directly from Darwin's wistful thinking and hypotheses. During the process of evolution in these fully-transparent computational environments we can measure the incorporation of new information into the genome, a process akin to a natural Maxwell's Demon, and identify the original source of any such information. We show that, as Darwin predicted, much of the information used to encode a complex trait was already in the genome as part of simpler evolved traits, and that many routes must be possible for a new complex trait to have a high probability of successfully evolving. In even more extreme examples of the evolution of complexity, we are now using these same principles to examine the evolutionary dynamics the drive major transitions in evolution; that is transitions to higher-levels of organization, which are some of the most complex evolutionary events to occur in nature. Finally, I will explore some of the implications of this research to other aspects of evolutionary biology and as well as ways that these evolutionary principles can be applied toward solving computational and engineering problems.

  16. "Evolution Canyon," a potential microscale monitor of global warming across life.

    PubMed

    Nevo, Eviatar

    2012-02-21

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the "Evolution Canyon" (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, "African" south-facing slope (AS = SFS) abuts the forested "European" north-facing slope (ES = NFS). The AS receives 200-800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet.

  17. “Evolution Canyon,” a potential microscale monitor of global warming across life

    PubMed Central

    Nevo, Eviatar

    2012-01-01

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the “Evolution Canyon” (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, “African” south-facing slope (AS = SFS) abuts the forested “European” north-facing slope (ES = NFS). The AS receives 200–800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet. PMID:22308456

  18. Understanding dengue virus evolution to support epidemic surveillance and counter-measure development.

    PubMed

    Pollett, S; Melendrez, M C; Maljkovic Berry, I; Duchêne, S; Salje, H; Dat, Cummings; Jarman, R G

    2018-04-25

    Dengue virus (DENV) causes a profound burden of morbidity and mortality, and its global burden is rising due to the co-circulation of four divergent DENV serotypes in the ecological context of globalization, travel, climate change, urbanization, and expansion of the geographic range of the Ae.aegypti and Ae.albopictus vectors. Understanding DENV evolution offers valuable opportunities to enhance surveillance and response to DENV epidemics via advances in RNA virus sequencing, bioinformatics, phylogenetic and other computational biology methods. Here we provide a scoping overview of the evolution and molecular epidemiology of DENV and the range of ways that evolutionary analyses can be applied as a public health tool against this arboviral pathogen. Copyright © 2018. Published by Elsevier B.V.

  19. Multi-Model approach to reconstruct the Mediterranean Freshwater Evolution

    NASA Astrophysics Data System (ADS)

    Simon, Dirk; Marzocchi, Alice; Flecker, Rachel; Lunt, Dan; Hilgen, Frits; Meijer, Paul

    2016-04-01

    Today the Mediterranean Sea is isolated from the global ocean by the Strait of Gibraltar. This restricted nature causes the Mediterranean basin to react more sensitively to climatic and tectonic related phenomena than the global ocean. Not just eustatic sea-level and regional river run-off, but also gateway tectonics and connectivity between sub-basins are leaving an enhanced fingerprint in its geological record. To understand its evolution, it is crucial to understand how these different effects are coupled. The Miocene-Pliocene sedimentary record of the Mediterranean shows alternations in composition and colour and has been astronomically tuned. Around the Miocene-Pliocene Boundary the most extreme changes occur in the Mediterranean Sea. About 6% of the salt in the global ocean deposited in the Mediterranean Region, forming an approximately 2 km thick salt layer, which is still present today. This extreme event is named the Messinian Salinity Crisis (MSC, 5.97-5.33 Ma). The gateway and climate evolution is not well constrained for this time, which makes it difficult to distinguish which of the above mentioned drivers might have triggered the MSC. We, therefore, decided to tackle this problem via a multi-model approach: (1) We calculate the Mediterranean freshwater evolution via 30 atmosphere-ocean-vegetation simulations (using HadCM3L), to which we fitted to a function, using a regression model. This allows us to directly relate the orbital curves to evaporation, precipitation and run off. The resulting freshwater evolution can be directly correlated to other sedimentary and proxy records in the late Miocene. (2) By feeding the new freshwater evolution curve into a box/budget model we can predict the salinity and strontium evolution of the Mediterranean for a certain Atlantic-Mediterranean gateway. (3) By comparing these results to the known salinity thresholds of gypsum and halite saturation of sea water, but also to the late Miocene Mediterranean strontium record, we can infer how the connectivity between global ocean and the Mediterranean must have changed through time in order to cause the MSC. (4) Such a connectivity evolution will give us the basis to understand the interplay between eustatic sea-level and regional tectonic changes in the Gibraltar region. Here we present the detailed method, the results and the applications of this multi-model approach.

  20. Linear motif-mediated interactions have contributed to the evolution of modularity in complex protein interaction networks.

    PubMed

    Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk

    2014-10-01

    The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.

  1. Evolution of global contribution in multi-level threshold public goods games with insurance compensation

    NASA Astrophysics Data System (ADS)

    Du, Jinming; Tang, Lixin

    2018-01-01

    Understanding voluntary contribution in threshold public goods games has important practical implications. To improve contributions and provision frequency, free-rider problem and assurance problem should be solved. Insurance could play a significant, but largely unrecognized, role in facilitating a contribution to provision of public goods through providing insurance compensation against the losses. In this paper, we study how insurance compensation mechanism affects individuals’ decision-making under risk environments. We propose a multi-level threshold public goods game model where two kinds of public goods games (local and global) are considered. Particularly, the global public goods game involves a threshold, which is related to the safety of all the players. We theoretically probe the evolution of contributions of different levels and free-riders, and focus on the influence of the insurance on the global contribution. We explore, in both the cases, the scenarios that only global contributors could buy insurance and all the players could. It is found that with greater insurance compensation, especially under high collective risks, players are more likely to contribute globally when only global contributors are insured. On the other hand, global contribution could be promoted if a premium discount is given to global contributors when everyone buys insurance.

  2. Life history, cognition and the evolution of complex foraging niches.

    PubMed

    Schuppli, Caroline; Graber, Sereina M; Isler, Karin; van Schaik, Carel P

    2016-03-01

    Animal species that live in complex foraging niches have, in general, improved access to energy-rich and seasonally stable food sources. Because human food procurement is uniquely complex, we ask here which conditions may have allowed species to evolve into such complex foraging niches, and also how niche complexity is related to relative brain size. To do so, we divided niche complexity into a knowledge-learning and a motor-learning dimension. Using a sample of 78 primate and 65 carnivoran species, we found that two life-history features are consistently correlated with complex niches: slow, conservative development or provisioning of offspring over extended periods of time. Both act to buffer low energy yields during periods of learning, and may thus act as limiting factors for the evolution of complex niches. Our results further showed that the knowledge and motor dimensions of niche complexity were correlated with pace of development in primates only, and with the length of provisioning in only carnivorans. Accordingly, in primates, but not carnivorans, living in a complex foraging niche requires enhanced cognitive abilities, i.e., a large brain. The patterns in these two groups of mammals show that selection favors evolution into complex niches (in either the knowledge or motor dimension) in species that either develop more slowly or provision their young for an extended period of time. These findings help to explain how humans constructed by far the most complex niche: our ancestors managed to combine slow development (as in other primates) with systematic provisioning of immatures and even adults (as in carnivorans). This study also provides strong support for the importance of ecological factors in brain size evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Deciphering MERS-CoV Evolution in Dromedary Camels.

    PubMed

    Du, Lin; Han, Guan-Zhu

    2016-02-01

    The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) poses a potential threat to global public health. Many aspects of the evolution and transmission of MERS-CoV in its animal reservoir remain unclear. A recent study provides new insights into the evolution and transmission of MERS-CoV in dromedary camels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Self-organizing Complex Networks: individual versus global rules

    PubMed Central

    Mahmoodi, Korosh; West, Bruce J.; Grigolini, Paolo

    2017-01-01

    We introduce a form of Self-Organized Criticality (SOC) inspired by the new generation of evolutionary game theory, which ranges from physiology to sociology. The single individuals are the nodes of a composite network, equivalent to two interacting subnetworks, one leading to strategy choices made by the individuals under the influence of the choices of their nearest neighbors and the other measuring the Prisoner's Dilemma Game payoffs of these choices. The interaction between the two networks is established by making the imitation strength K increase or decrease according to whether the last two payoffs increase or decrease upon increasing or decreasing K. Although each of these imitation strengths is selected selfishly, and independently of the others as well, the social system spontaneously evolves toward the state of cooperation. Criticality is signaled by temporal complexity, namely the occurrence of non-Poisson renewal events, the time intervals between two consecutive crucial events being given by an inverse power law index μ = 1.3 rather than by avalanches with an inverse power law distribution as in the original form of SOC. This new phenomenon is herein labeled self-organized temporal criticality (SOTC). We compare this bottom-up self-organization process to the adoption of a global choice rule based on assigning to all the units the same value K, with the time evolution of common K being determined by consciousness of the social benefit, a top-down process implying the action of a leader. In this case self-organization is impeded by large intensity fluctuations and the global social benefit turns out to be much weaker. We conclude that the SOTC model fits the requests of a manifesto recently proposed by a number of European social scientists. PMID:28736534

  5. Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2)

    PubMed Central

    Bedford, Trevor; Cobey, Sarah; Beerli, Peter; Pascual, Mercedes

    2010-01-01

    The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions. PMID:20523898

  6. The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing

    NASA Astrophysics Data System (ADS)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen P.

    2016-12-01

    The Eurasian ice-sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum (LGM), after the Antarctic and North American ice sheets. Despite its global significance, a comprehensive account of its evolution from independent nucleation centres to its maximum extent is conspicuously lacking. Here, a first-order, thermomechanical model, robustly constrained by empirical evidence, is used to investigate the dynamics of the EISC throughout its build-up to its maximum configuration. The ice flow model is coupled to a reference climate and applied at 10 km spatial resolution across a domain that includes the three main spreading centres of the Celtic, Fennoscandian and Barents Sea ice sheets. The model is forced with the NGRIP palaeo-isotope curve from 37 ka BP onwards and model skill is assessed against collated flowsets, marginal moraines, exposure ages and relative sea-level history. The evolution of the EISC to its LGM configuration was complex and asynchronous; the western, maritime margins of the Fennoscandian and Celtic ice sheets responded rapidly and advanced across their continental shelves by 29 ka BP, yet the maximum aerial extent (5.48 × 106 km2) and volume (7.18 × 106 km3) of the ice complex was attained some 6 ka later at c. 22.7 ka BP. This maximum stand was short-lived as the North Sea and Atlantic margins were already in retreat whilst eastern margins were still advancing up until c. 20 ka BP. High rates of basal erosion are modelled beneath ice streams and outlet glaciers draining the Celtic and Fennoscandian ice sheets with extensive preservation elsewhere due to frozen subglacial conditions, including much of the Barents and Kara seas. Here, and elsewhere across the Norwegian shelf and North Sea, high pressure subglacial conditions would have promoted localised gas hydrate formation.

  7. Evolution of a global regulator: Lrp in four orders of γ-Proteobacteria.

    PubMed

    Unoarumhi, Yvette; Blumenthal, Robert M; Matson, Jyl S

    2016-05-20

    Bacterial global regulators each regulate the expression of several hundred genes. In Escherichia coli, the top seven global regulators together control over half of all genes. Leucine-responsive regulatory protein (Lrp) is one of these top seven global regulators. Lrp orthologs are very widely distributed, among both Bacteria and Archaea. Surprisingly, even within the phylum γ-Proteobacteria (which includes E. coli), Lrp is a global regulator in some orders and a local regulator in others. This raises questions about the evolution of Lrp and, more broadly, of global regulators. We examined Lrp sequences from four bacterial orders of the γ-Proteobacteria using phylogenetic and Logo analyses. The orders studied were Enterobacteriales and Vibrionales, in which Lrp plays a global role in tested species; Pasteurellales, in which Lrp is a local regulator in the tested species; and Alteromonadales, an order closely related to the other three but in which Lrp has not yet been studied. For comparison, we analyzed the Lrp paralog AsnC, which in all tested cases is a local regulator. The Lrp and AsnC phylogenetic clusters each divided, as expected, into subclusters representing the Enterobacteriales, Vibrionales, and Pasteuralles. However the Alteromonadales did not yield coherent clusters for either Lrp or AsnC. Logo analysis revealed signatures associated with globally- vs. locally- acting Lrp orthologs, providing testable hypotheses for which portions of Lrp are responsible for a global vs. local role. These candidate regions include both ends of the Lrp polypeptide but not, interestingly, the highly-conserved helix-turn-helix motif responsible for DNA sequence specificity. Lrp and AsnC have conserved sequence signatures that allow their unambiguous annotation, at least in γ-Proteobacteria. Among Lrp orthologs, specific residues correlated with global vs. local regulatory roles, and can now be tested to determine which are functionally relevant and which simply reflect divergence. In the Alteromonadales, it appears that there are different subgroups of Lrp orthologs, one of which may act globally while the other may act locally. These results suggest experiments to improve our understanding of the evolution of bacterial global regulators.

  8. Career Education for a Global Economy. ERIC Digest.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    Preparation for productive employment in a global economy is one aspect of National Education Goals 3 and 5. Career education can help people realize the opportunities and meet the challenges of the international workplace. The emergence of flexible, information-based technologies is a primary factor in the evolution of the global economy. New…

  9. The emerging infectious disease crisis and pathogen pollution: a question of ecology and evolution

    USDA-ARS?s Scientific Manuscript database

    Risk of emerging infectious diseases (EID) on a global scale has accelerated over the past 10,000 years in conjunction with agriculture, domestication, and globalization as the interfaces for people and environments have been altered over time. EID exist at the junction of 3 ongoing global challenge...

  10. Divergent Geophysical Evolution of Vesta and Ceres

    NASA Astrophysics Data System (ADS)

    Raymond, C. A.; Ermakov, A.; Castillo, J. C.; Fu, R. R.; McSween, H. Y., Jr.; McCord, T. B.; Park, R. S.; Russell, C. T.; De Sanctis, M. C.; Jaumann, R.; Konopliv, A. S.

    2017-12-01

    The Dawn mission explored two massive protoplanets in the main asteroid belt, Vesta and Ceres, that are fossils from the earliest epoch of solar system formation. Dawn's data provide evidence that these bodies formed very early, within the first few million years after CAIs, yet they followed divergent evolutionary paths. Vesta formed <1.5 Myr after CAIs of volatile-depleted chondritic material. Dawn confirmed the HED-based prediction that Vesta melted, forming at least a partial magma ocean, that yielded a large iron core. Gravity and spectral data support a complex magmatic evolution, resulting in a compositionally stratified mantle, with olivine sequestered in the deep mantle, and eruption of evolved melts. Such complexity can explain the apparent distinct magmatic reservoirs implied by trace elements in the HED clan. Discovery of hydrated material on Vesta's surface implies that volatile delivery to the inner solar system was an important process. Thus, while the basic HED paradigm was confirmed, we learned that differentiation on a small planet is more complex than envisioned. Dwarf planet Ceres was known to be water-rich before Dawn arrived. However, contrary to the expected ice-rich, viscously-relaxed smooth surface resulting from physical differentiation and freezing of an ancient subsurface ocean, its surface has many craters, implying a mechanically strong thick crust. The lack of large craters and Ceres' gravitationally-relaxed shape at long wavelengths implies that a strong crust overlies a weaker deep interior. The globally homogeneous distribution of minerals across the surface indicates that Ceres' interior experienced pervasive alteration. Topography and morphology of the surface reveals smoother, apparently resurfaced areas, generally at lower elevation, and rougher areas with greater relief. Local morphology such as crater floor deposits, isolated mountains, and enigmatic bright areas indicate recently active processes on Ceres, likely driven by brine cryovolcanism. Causes of the divergent evolution of these bodies include their accretionary environment, timing of accretion and size. Acknowledgements: Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  11. KSC-02pd2042

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., watch as the interstage of the Delta II rocket is lifted to a level where it can be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  12. KSC-02pd2060

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is lifted at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement atop a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  13. KSC-02pd2041

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The interstage of the Delta II rocket is lifted up the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The interstage will eventually house the second stage and will be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  14. KSC-02pd2057

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - At NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the launch tower has been rolled back to reveal a Delta II rocket with its solid rocket boosters attached. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  15. KSC-02pd2061

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is lifted into place at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., atop a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  16. KSC-02pd2045

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket into position for mating with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  17. KSC-02pd2031

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - The first stage of the Delta II rocket is in the process of being raised to a vertical position on NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  18. KSC-02pd2049

    NASA Image and Video Library

    2002-10-24

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position beside the Delta II rocket to which it will be attached. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  19. KSC-02pd2039

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - On NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., the interstage of the Delta II rocket is ready to be lifted up the tower for mating with the first stage (seen behind it). The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  20. KSC-02pd2059

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is lifted at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement on a Delta II rocket The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  1. KSC-02pd2048

    NASA Image and Video Library

    2002-10-24

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position as preparations continue to mate it to a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  2. Comparison of Global Martian Plasma Models in the Context of MAVEN Observations

    NASA Astrophysics Data System (ADS)

    Egan, Hilary; Ma, Yingjuan; Dong, Chuanfei; Modolo, Ronan; Jarvinen, Riku; Bougher, Stephen; Halekas, Jasper; Brain, David; Mcfadden, James; Connerney, John; Mitchell, David; Jakosky, Bruce

    2018-05-01

    Global models of the interaction of the solar wind with the Martian upper atmosphere have proved to be valuable tools for investigating both the escape to space of the Martian atmosphere and the physical processes controlling this complex interaction. The many models currently in use employ different physical assumptions, but it can be difficult to directly compare the effectiveness of the models since they are rarely run for the same input conditions. Here we present the results of a model comparison activity, where five global models (single-fluid MHD, multifluid MHD, multifluid electron pressure MHD, and two hybrid models) were run for identical conditions corresponding to a single orbit of observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. We find that low-altitude ion densities are very similar across all models and are comparable to MAVEN ion density measurements from periapsis. Plasma boundaries appear generally symmetric in all models and vary only slightly in extent. Despite these similarities there are clear morphological differences in ion behavior in other regions such as the tail and southern hemisphere. These differences are observable in ion escape loss maps and are necessary to understand in order to accurately use models in aiding our understanding of the Martian plasma environment.

  3. KSC-02pd2043

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., help guide the interstage of the Delta II rocket into position for mating with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  4. KSC-02pd2062

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is inserted into an interstage atop a Delta II rocket at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  5. KSC-02pd2035

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - With the transporter moved from below, the first stage of the Delta II rocket is suspended in air waiting to be lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  6. KSC-02pd2058

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - The second stage arrives at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif., for placement on a Delta II rocket The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  7. KSC-02pd2034

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers check the lower end of the first stage of the Delta II rocket before it is lifted up the tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  8. KSC-02pd2047

    NASA Image and Video Library

    2002-10-24

    KENNEDY SPACE CENTER, FLA. - On the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., a solid rocket booster is lifted into an upright position for mating to a Delta II rocket. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  9. KSC-02pd2063

    NASA Image and Video Library

    2002-10-25

    KENNEDY SPACE CENTER, FLA. - A second stage is inserted and secured into an interstage atop a Delta II rocket at NASA's Space Launch Complex 2 (SLC-2) at Vandenberg Air Force Base, Calif. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. The Ice, Cloud, and Land Elevation Satellite, or ICESat, is a 661-pound satellite carrying the Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. The Cosmic Hot Interstellar Plasma Spectrometer, or CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11, 2003, between 4:45 p.m. - 5:30 p.m. PST.

  10. Structural Efficiency of Percolated Landscapes in Flow Networks

    PubMed Central

    Serrano, M. Ángeles; De Los Rios, Paolo

    2008-01-01

    The large-scale structure of complex systems is intimately related to their functionality and evolution. In particular, global transport processes in flow networks rely on the presence of directed pathways from input to output nodes and edges, which organize in macroscopic connected components. However, the precise relation between such structures and functional or evolutionary aspects remains to be understood. Here, we investigate which are the constraints that the global structure of directed networks imposes on transport phenomena. We define quantitatively under minimal assumptions the structural efficiency of networks to determine how robust communication between the core and the peripheral components through interface edges could be. Furthermore, we assess that optimal topologies in terms of access to the core should look like “hairy balls” so to minimize bottleneck effects and the sensitivity to failures. We illustrate our investigation with the analysis of three real networks with very different purposes and shaped by very different dynamics and time-scales–the Internet customer-provider set of relationships, the nervous system of the worm Caenorhabditis elegans, and the metabolism of the bacterium Escherichia coli. Our findings prove that different global connectivity structures result in different levels of structural efficiency. In particular, biological networks seem to be close to the optimal layout. PMID:18985157

  11. Rise and fall of political complexity in island South-East Asia and the Pacific.

    PubMed

    Currie, Thomas E; Greenhill, Simon J; Gray, Russell D; Hasegawa, Toshikazu; Mace, Ruth

    2010-10-14

    There is disagreement about whether human political evolution has proceeded through a sequence of incremental increases in complexity, or whether larger, non-sequential increases have occurred. The extent to which societies have decreased in complexity is also unclear. These debates have continued largely in the absence of rigorous, quantitative tests. We evaluated six competing models of political evolution in Austronesian-speaking societies using phylogenetic methods. Here we show that in the best-fitting model political complexity rises and falls in a sequence of small steps. This is closely followed by another model in which increases are sequential but decreases can be either sequential or in bigger drops. The results indicate that large, non-sequential jumps in political complexity have not occurred during the evolutionary history of these societies. This suggests that, despite the numerous contingent pathways of human history, there are regularities in cultural evolution that can be detected using computational phylogenetic methods.

  12. Lunar feldspathic meteorites: Constraints on the geology of the lunar highlands, and the origin of the lunar crust

    NASA Astrophysics Data System (ADS)

    Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.

    2014-02-01

    The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#<75) and the assumption that they are globally distributed. However, new results from lunar meteorites, which are random samples of the Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.

  13. Divergence times and the evolution of morphological complexity in an early land plant lineage (Marchantiopsida) with a slow molecular rate.

    PubMed

    Villarreal A, Juan Carlos; Crandall-Stotler, Barbara J; Hart, Michelle L; Long, David G; Forrest, Laura L

    2016-03-01

    We present a complete generic-level phylogeny of the complex thalloid liverworts, a lineage that includes the model system Marchantia polymorpha. The complex thalloids are remarkable for their slow rate of molecular evolution and for being the only extant plant lineage to differentiate gas exchange tissues in the gametophyte generation. We estimated the divergence times and analyzed the evolutionary trends of morphological traits, including air chambers, rhizoids and specialized reproductive structures. A multilocus dataset was analyzed using maximum likelihood and Bayesian approaches. Relative rates were estimated using local clocks. Our phylogeny cements the early branching in complex thalloids. Marchantia is supported in one of the earliest divergent lineages. The rate of evolution in organellar loci is slower than for other liverwort lineages, except for two annual lineages. Most genera diverged in the Cretaceous. Marchantia polymorpha diversified in the Late Miocene, giving a minimum age estimate for the evolution of its sex chromosomes. The complex thalloid ancestor, excluding Blasiales, is reconstructed as a plant with a carpocephalum, with filament-less air chambers opening via compound pores, and without pegged rhizoids. Our comprehensive study of the group provides a temporal framework for the analysis of the evolution of critical traits essential for plants during land colonization. © 2015 Royal Botanic Garden Edinburgh. New Phytologist © 2015 New Phytologist Trust.

  14. Prediction in complex systems: The case of the international trade network

    NASA Astrophysics Data System (ADS)

    Vidmer, Alexandre; Zeng, An; Medo, Matúš; Zhang, Yi-Cheng

    2015-10-01

    Predicting the future evolution of complex systems is one of the main challenges in complexity science. Based on a current snapshot of a network, link prediction algorithms aim to predict its future evolution. We apply here link prediction algorithms to data on the international trade between countries. This data can be represented as a complex network where links connect countries with the products that they export. Link prediction techniques based on heat and mass diffusion processes are employed to obtain predictions for products exported in the future. These baseline predictions are improved using a recent metric of country fitness and product similarity. The overall best results are achieved with a newly developed metric of product similarity which takes advantage of causality in the network evolution.

  15. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest that the DTR changes are influenced by both, local and global factors working in tandem, since a warmed up ocean produces contradictory DTR trends in different climatic zones. It can be inferred from this study that the impact of a global change in a region will depend on the regional climate.

  16. The biosphere as a driver of global atmospheric change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The effects of the biosphere on the evolution of atmospheric oxygen and ozone, and the consequences of that development for global atmospheric change, are discussed. Attention is given to the impact of oxygen and ozone on atmospheric photolysis rates, the effect of oxygen on the biogenic production of nitrous oxide and nitric oxide, and the effects of the evolution of atmospheric oxygen on fires and biomass burning. The influence of the latter on atmospheric processes, particularly the production of methane, carbon dioxide, and carbon monoxide, is considered.

  17. Information-theoretic metamodel of organizational evolution

    NASA Astrophysics Data System (ADS)

    Sepulveda, Alfredo

    2011-12-01

    Social organizations are abstractly modeled by holarchies---self-similar connected networks---and intelligent complex adaptive multiagent systems---large networks of autonomous reasoning agents interacting via scaled processes. However, little is known of how information shapes evolution in such organizations, a gap that can lead to misleading analytics. The research problem addressed in this study was the ineffective manner in which classical model-predict-control methods used in business analytics attempt to define organization evolution. The purpose of the study was to construct an effective metamodel for organization evolution based on a proposed complex adaptive structure---the info-holarchy. Theoretical foundations of this study were holarchies, complex adaptive systems, evolutionary theory, and quantum mechanics, among other recently developed physical and information theories. Research questions addressed how information evolution patterns gleamed from the study's inductive metamodel more aptly explained volatility in organization. In this study, a hybrid grounded theory based on abstract inductive extensions of information theories was utilized as the research methodology. An overarching heuristic metamodel was framed from the theoretical analysis of the properties of these extension theories and applied to business, neural, and computational entities. This metamodel resulted in the synthesis of a metaphor for, and generalization of organization evolution, serving as the recommended and appropriate analytical tool to view business dynamics for future applications. This study may manifest positive social change through a fundamental understanding of complexity in business from general information theories, resulting in more effective management.

  18. Chemistry and Evolution of Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wooden, D. H.; Charnley, S. B.; Ehrenfreund, P.

    2003-01-01

    In this chapter we describe how elements have been and are still being formed in the galaxy and how they are transformed into the reservoir of materials present at the time of formation of our protosolar nebula. We discuss the global cycle of matter, beginning at its formation site in stars, where it is ejected through winds and explosions into the diffuse interstellar medium. In the next stage of the global cycle occurs in cold, dense molecular clouds, where the complexity of molecules and ices increases relative to the diffuse ISM.. When a protostar forms in a dense core within a molecular cloud, it heats the surrounding infalling matter warms and releases molecules from the solid phase into the gas phase in a warm, dense core, sponsoring a rich gas-phase chemistry. Some material from the cold and warm regions within molecular clouds probably survives as interstellar matter in the protostellar disk. For the diffuse ISM, for cold, dense clouds, and for dense-warm cores, the physio-chemical processes that occur within the gas and solid phases are discussed in detail.

  19. Meiosis evolves: adaptation to external and internal environments.

    PubMed

    Bomblies, Kirsten; Higgins, James D; Yant, Levi

    2015-10-01

    306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA

    NASA Astrophysics Data System (ADS)

    Le Roy, Léna; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Bieler, Andre; Briois, Christelle; Calmonte, Ursina; Combi, Michael R.; De Keyser, Johan; Dhooghe, Frederik; Fiethe, Björn; Fuselier, Stephen A.; Gasc, Sébastien; Gombosi, Tamas I.; Hässig, Myrtha; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu

    2015-11-01

    Context. The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged encounter enables studying the evolution of the volatile coma composition. Aims: Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods: We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results: We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.

  1. Timing and pacing of Pliocene climate and paleoenvironmental change in southwestern Australia (IODP Exp. 356, Site U1459).

    NASA Astrophysics Data System (ADS)

    De Vleeschouwer, D.; Bogus, K.; Auer, G.; Christensen, B. A.; Baranwal, S.; Fulthorpe, C.; Gallagher, S. J.; Groeneveld, J.; Henderiks, J.; Mamo, B. L.; Petrick, B.

    2016-12-01

    The Pliocene Epoch was a globally-warm, high-CO2 period, which nevertheless experienced four globally-recognized glacial events (De Schepper et al., 2014). Brief (<100 kyr) but intense glacials interrupted the relatively warm Pliocene climate at 4.9, 4.0, 3.6 and 3.3 Ma. Different hypotheses exist to explain why these glaciation events were so intense, and why the global climate system returned to warm conditions relatively quickly. Some of these hypotheses ascribe a key-role to the Indonesian Throughflow, as a regulator of equator-to-pole heat transfer. IODP Site U1459 (28°40'S, 113°34'E; Perth Basin) lies directly seaward of the Houtman-Abrolhos main reef complex. The development of a reef complex at 28°S is possible because of the "modern" Leeuwin Current, which is mainly fed by the Indonesian Throughflow. The Leeuwin Current transports warm, low-salinity, nutrient-deficient water southward along the west coast of Australia. However, the Pliocene oceanography of southwest Australia and the possible influence of a Leeuwin-like current are not well known. Here, we present orbital scale elemental data, obtained by X-ray fluorescence (XRF) core scanning to provide insight into the long-term evolution of the Leeuwin Current. The XRF-derived calcium-iron ratio time-series exhibits two distinct minima, marking two intervals where the unlithified packstones and grainstones have relatively low carbonate content. These intervals are dated at 4.0 and 3.3 Ma and thus correspond with two globally-recognized Pliocene glaciation events. During these glacials, the equator-to-pole heat transfer was likely reduced due to a restriction of the Indonesian Throughflow, which could imply that Site U1459 was under the relatively stronger influence of a colder, northwards-flowing West Australian Current at 4.0 and 3.3 Ma. De Schepper, S., et al. (2014). "A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch." Earth-Science Reviews 135: 83-102.

  2. Abasy Atlas: a comprehensive inventory of systems, global network properties and systems-level elements across bacteria.

    PubMed

    Ibarra-Arellano, Miguel A; Campos-González, Adrián I; Treviño-Quintanilla, Luis G; Tauch, Andreas; Freyre-González, Julio A

    2016-01-01

    The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.Database URL: http://abasy.ccg.unam.mx. © The Author(s) 2016. Published by Oxford University Press.

  3. Climate Change Impact On Mekong Delta of Vietnam in recent years

    NASA Astrophysics Data System (ADS)

    Le, L. T. X., III

    2015-12-01

    In recent years, the climate change signal increase globally. Abnormal changes of weather tends increasingly detrimental to human life, such as natural disasters occur with increasing level of more severe. Climate change is one the biggest challenges, and is a potential threat to humans. The impact of climate change increases the number and extent of the disaster fierce exists as typhoons, floods, droughts ... Global warming and sea level rise increases the area of flooding, saline intrusion and erosion in the delta region may cause farmers to lose the opportunity to produce, source of life their only. Impact of climate change on people in the community, but poor farmers in the developing countries like our country, women are the most severe consequences In this section, we summarize changes in climate on the territory of Vietnam, especially in Mekong Delta evaluate causes and its relationship to changes in global climate and region. Along with the analysis of characteristics of climate changes over time and through space to help the evolution of the standard deviation (average deviation from the standard of the period from 1971 to 2015) may indicate that the characteristic gas scenes took place related to global climate change ... Vietnam's territory stretches over approximately 15 latitude, the terrain is very complex, located in the interior full of tropical Southeast Asia. Vietnam climate strongly influenced by the Asian monsoon, monsoon and Northern Hemisphere especially the ENSO activity in the equatorial region and the Pacific Ocean. Climate Vietnam abundant and diversified, with strong ties to the region and globally.

  4. FIP BIAS EVOLUTION IN A DECAYING ACTIVE REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, D.; Yardley, S. L.; Driel-Gesztelyi, L. van

    Solar coronal plasma composition is typically characterized by first ionization potential (FIP) bias. Using spectra obtained by Hinode’s EUV Imaging Spectrometer instrument, we present a series of large-scale, spatially resolved composition maps of active region (AR)11389. The composition maps show how FIP bias evolves within the decaying AR during the period 2012 January 4–6. Globally, FIP bias decreases throughout the AR. We analyzed areas of significant plasma composition changes within the decaying AR and found that small-scale evolution in the photospheric magnetic field is closely linked to the FIP bias evolution observed in the corona. During the AR’s decay phase,more » small bipoles emerging within supergranular cells reconnect with the pre-existing AR field, creating a pathway along which photospheric and coronal plasmas can mix. The mixing timescales are shorter than those of plasma enrichment processes. Eruptive activity also results in shifting the FIP bias closer to photospheric in the affected areas. Finally, the FIP bias still remains dominantly coronal only in a part of the AR’s high-flux density core. We conclude that in the decay phase of an AR’s lifetime, the FIP bias is becoming increasingly modulated by episodes of small-scale flux emergence, i.e., decreasing the AR’s overall FIP bias. Our results show that magnetic field evolution plays an important role in compositional changes during AR development, revealing a more complex relationship than expected from previous well-known Skylab results showing that FIP bias increases almost linearly with age in young ARs.« less

  5. The spatiotemporal system dynamics of acquired resistance in an engineered microecology.

    PubMed

    Datla, Udaya Sree; Mather, William H; Chen, Sheng; Shoultz, Isaac W; Täuber, Uwe C; Jones, Caroline N; Butzin, Nicholas C

    2017-11-22

    Great strides have been made in the understanding of complex networks; however, our understanding of natural microecologies is limited. Modelling of complex natural ecological systems has allowed for new findings, but these models typically ignore the constant evolution of species. Due to the complexity of natural systems, unanticipated interactions may lead to erroneous conclusions concerning the role of specific molecular components. To address this, we use a synthetic system to understand the spatiotemporal dynamics of growth and to study acquired resistance in vivo. Our system differs from earlier synthetic systems in that it focuses on the evolution of a microecology from a killer-prey relationship to coexistence using two different non-motile Escherichia coli strains. Using empirical data, we developed the first ecological model emphasising the concept of the constant evolution of species, where the survival of the prey species is dependent on location (distance from the killer) or the evolution of resistance. Our simple model, when expanded to complex microecological association studies under varied spatial and nutrient backgrounds may help to understand the complex relationships between multiple species in intricate natural ecological networks. This type of microecological study has become increasingly important, especially with the emergence of antibiotic-resistant pathogens.

  6. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    PubMed

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Understanding global health governance as a complex adaptive system.

    PubMed

    Hill, Peter S

    2011-01-01

    The transition from international to global health reflects the rapid growth in the numbers and nature of stakeholders in health, as well as the constant change embodied in the process of globalisation itself. This paper argues that global health governance shares the characteristics of complex adaptive systems, with its multiple and diverse players, and their polyvalent and constantly evolving relationships, and rich and dynamic interactions. The sheer quantum of initiatives, the multiple networks through which stakeholders (re)configure their influence, the range of contexts in which development for health is played out - all compound the complexity of this system. This paper maps out the characteristics of complex adaptive systems as they apply to global health governance, linking them to developments in the past two decades, and the multiple responses to these changes. Examining global health governance through the frame of complexity theory offers insight into the current dynamics of governance, and while providing a framework for making meaning of the whole, opens up ways of accessing this complexity through local points of engagement.

  8. Global health: governance and policy development.

    PubMed

    Kelley, Patrick W

    2011-06-01

    Global health policy is now being influenced by an ever-increasing number of nonstate and non-intergovernmental actors to include influential foundations, multinational corporations, multi-sectoral partnerships, and civil society organizations. This article reviews how globalization is a key driver for the ongoing evolution of global health governance. It describes the massive increases in bilateral and multilateral investments in global health and it highlights the current global and US architecture for performing global health programs. The article closes describing some of the challenges and prospects that characterize global health governance today. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    PubMed

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  10. The Habitability of a Stagnant-Lid Earth

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Godolt, M.; Stracke, B.; Ruedas, T.; Grenfell, L.; Höning, D.; Nikolaou, A.; Plesa, A. C.; Breuer, D.; Spohn, T.

    2017-12-01

    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2O and CO2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2O and CO2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2O and CO2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2, can vary in a non-monotonic way depending on the extent of the outgassed H2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability.

  11. Experimental investigation of the dynamics of spontaneous pattern formation during dendritic ice crystal growth

    NASA Astrophysics Data System (ADS)

    Tirmizi, Shakeel H.; Gill, William N.

    1989-06-01

    The dynamics of spontaneous pattern formation are studied experimentally by observing and recording the evolution of ice crystal patterns which grow freely in a supercooled melt. The sequence of evolution to dendrites is recorded in real time using cine-micrography. In the range of subcoolings from 0.06 to 0.29°C, all the patterns evolved as follows: Smooth disk → Perturbed disk → Disk dendrite → Partially developed dendrite → Fully developed dendrite. The initial smooth disk, the main branch and the side branches all developed perturbations beyond a critical size which depends on the subcooling. The combined effect of the destabilizing thermal gradients ahead of the growing crystal and the stabilizing Gibbs-Thompson capillarity effect dictates the critical size of the unstable structures in terms of the mean curvature of the interface. Detailed analysis of the evolving patterns was done using digital image analysis on the PRIME computer to determine both the manner in which the dendritic growth process replicates itself and the role which the shape and the movement of the interface play in the pattern formation process. Total arc length ST, total area A and the complexity ratio ξ = ST⧸√ A of evolving patterns were computed as a function of time and undercooling for each crystal image. These results permitted us to make some comparisons with theoretical models on pattern evolution. Three distinct phases of evolution were identified: the initial phase when the crystal structure is smooth and free of any perturbations and the complexity ratio is almost a constant, an intermediate phase when the crystal structure develops perturbations which grow quickly in number and in size and the complexity ratio increases rapidly and a final phase when the pattern approaches that of a fully developed dendrite which, on a global scale grows in a shape-perserving manner and has a slowly increasing complexity ratio which seems to approach an asymptote. Two factors were found to be responsible for the symmetric dendritic patterns. These are: first, hexagonal symmetry due to the hexagonal closed packed structure, leads to strong anisotropy in molecular attachment kinetics and in surface free energy; second, the competition among side branches causes smaller side branches to melt when they are trapped between larger ones which generate latent heat and prevent the small branches from gaining access to the fresh cold fluid ahead of them. These two factors lead to a channelling effect which prevents the growth of perturbations from occurring randomly and thus directs the evolving crystal structure into patterns which are regular and reproducible. Theoretical models which are local in nature fail to take into account side branch competition, and this is one of their major weaknesses.

  12. A multi-group firefly algorithm for numerical optimization

    NASA Astrophysics Data System (ADS)

    Tong, Nan; Fu, Qiang; Zhong, Caiming; Wang, Pengjun

    2017-08-01

    To solve the problem of premature convergence of firefly algorithm (FA), this paper analyzes the evolution mechanism of the algorithm, and proposes an improved Firefly algorithm based on modified evolution model and multi-group learning mechanism (IMGFA). A Firefly colony is divided into several subgroups with different model parameters. Within each subgroup, the optimal firefly is responsible for leading the others fireflies to implement the early global evolution, and establish the information mutual system among the fireflies. And then, each firefly achieves local search by following the brighter firefly in its neighbors. At the same time, learning mechanism among the best fireflies in various subgroups to exchange information can help the population to obtain global optimization goals more effectively. Experimental results verify the effectiveness of the proposed algorithm.

  13. Cross-Cultural Context, Content, and Design: Development of Courses in Global Topics Serving International Students

    ERIC Educational Resources Information Center

    Van Hook, Steven R.

    2011-01-01

    This research was conducted in the development of courses for students from multiple nations at two California universities, applying cross-cultural tactics in course content and design. The paper examines the evolution of courses in Global Issues and Global Economics, including the theoretical foundations of socioeconomic development, how those…

  14. A Critique and Response to Multicultural Visions of Globalization

    ERIC Educational Resources Information Center

    Sriraman, Bharath; Adrian, Harry

    2008-01-01

    The paper by White in this issue of Interchange contains an interesting model for a global educational perspective based on the writings of Aurobindo and Pierre Teilhard de Chardin. White proposes a foundation for this new perspective based on the synthesis of Aurobindo's and de Chardin's theories of global, social, and conscious evolution. In our…

  15. The Trouble with MEAM2: Implications of Pseudogenes on Species Delimitation in the Globally Invasive Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species Complex.

    PubMed

    Tay, Wee Tek; Elfekih, Samia; Court, Leon N; Gordon, Karl H J; Delatte, Hélène; De Barro, Paul J

    2017-10-01

    Molecular species identification using suboptimal PCR primers can over-estimate species diversity due to coamplification of nuclear mitochondrial (NUMT) DNA/pseudogenes. For the agriculturally important whitefly Bemisia tabaci cryptic pest species complex, species identification depends primarily on characterization of the mitochondrial DNA cytochrome oxidase I (mtDNA COI) gene. The lack of robust PCR primers for the mtDNA COI gene can undermine correct species identification which in turn compromises management strategies. This problem is identified in the B. tabaci Africa/Middle East/Asia Minor clade which comprises the globally invasive Mediterranean (MED) and Middle East Asia Minor I (MEAM1) species, Middle East Asia Minor 2 (MEAM2), and the Indian Ocean (IO) species. Initially identified from the Indian Ocean island of Réunion, MEAM2 has since been reported from Japan, Peru, Turkey and Iraq. We identified MEAM2 individuals from a Peruvian population via Sanger sequencing of the mtDNA COI gene. In attempting to characterize the MEAM2 mitogenome, we instead characterized mitogenomes of MEAM1. We also report on the mitogenomes of MED, AUS, and IO thereby increasing genomic resources for members of this complex. Gene synteny (i.e., same gene composition and orientation) was observed with published B. tabaci cryptic species mitogenomes. Pseudogene fragments matching MEAM2 partial mtDNA COI gene exhibited low frequency single nucleotide polymorphisms that matched low copy number DNA fragments (<3%) of MEAM1 genomes, whereas presence of internal stop codons, loss of expected stop codons and poor primer annealing sites, all suggested MEAM2 as a pseudogene artifact and so not a real species. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Application of Differential Evolutionary Optimization Methodology for Parameter Structure Identification in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Chiu, Y.; Nishikawa, T.

    2013-12-01

    With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.

  17. Lunar Exploration Manned and Unmanned

    NASA Astrophysics Data System (ADS)

    Spudis, P. D.; Asmar, S. W.; Bussey, D. B. J.; Duxbury, N.; Friesen, L. J.; Gillis, J. J.; Hawke, B. R.; Heiken, G.; Lawrence, D.; Manifold, J.; Slade, M. A.; Smith, A.; Taylor, G. J.; Yingst, R. A.

    2002-08-01

    The past decade has seen two global reconnaissance missions to the Moon, Clementine and Lunar Prospector, which have mapped the surface in multiple wavelengths, determined the Moon's topography and gravity fields, and discovered the presence of water ice in the permanently dark regions near the poles. Although we have learned much about the Moon, many key aspects of its history and evolution remain obscure. The three highest priority questions in lunar science are: 1) the Moon's global composition, particularly the abundance of aluminum and magnesium; 2) the extent, composition, and physical state of polar deposits, including the extent, purity, and thickness of ice, the elemental, isotopic, and molecular composition of polar volatiles, the environment of the polar regions; and 3) the cratering chronology of the Moon and the implications of a possibly unique history, such as a cataclysm, for our understanding of other Solar System objects. Answering and addressing these questions require a series of new missions, including an orbiter (carrying XRF, imaging radar, and other instruments), the deployment of surface network stations equipped with seismometers and heat flow probes, selected robotic sample return missions from geologically simple areas (e.g., youngest lava flow or crater melt sheet), and complex geological field work, conducted by human explorers. Because the Moon is a touchstone for the history and evolution of other rocky bodies in the solar system, we believe that these questions are of very high scientific priority and that lunar missions should receive much more serious attention and detailed study than they have in the past by the NASA Office of Space Science.

  18. Modified unified kinetic scheme for all flow regimes.

    PubMed

    Liu, Sha; Zhong, Chengwen

    2012-06-01

    A modified unified kinetic scheme for the prediction of fluid flow behaviors in all flow regimes is described. The time evolution of macrovariables at the cell interface is calculated with the idea that both free transport and collision mechanisms should be considered. The time evolution of macrovariables is obtained through the conservation constraints. The time evolution of local Maxwellian distribution is obtained directly through the one-to-one mapping from the evolution of macrovariables. These improvements provide more physical realities in flow behaviors and more accurate numerical results in all flow regimes especially in the complex transition flow regime. In addition, the improvement steps introduce no extra computational complexity.

  19. Spatial-pattern-induced evolution of a self-replicating loop network.

    PubMed

    Suzuki, Keisuke; Ikegami, Takashi

    2006-01-01

    We study a system of self-replicating loops in which interaction rules between individuals allow competition that leads to the formation of a hypercycle-like network. The main feature of the model is the multiple layers of interaction between loops, which lead to both global spatial patterns and local replication. The network of loops manifests itself as a spiral structure from which new kinds of self-replicating loops emerge at the boundaries between different species. In these regions, larger and more complex self-replicating loops live for longer periods of time, managing to self-replicate in spite of their slower replication. Of particular interest is how micro-scale interactions between replicators lead to macro-scale spatial pattern formation, and how these macro-scale patterns in turn perturb the micro-scale replication dynamics.

  20. Snakes, evolution, behavior systems, and autism spectrum disorder. Comment on: ;Implications of the idea of neurodiversity for understanding the origins of developmental disorders; by Nobuo Masataka

    NASA Astrophysics Data System (ADS)

    Burghardt, Gordon M.

    2017-03-01

    Nobuo Masataka [1] has provided a novel and ambitious approach to understanding variations in mental and neural functioning in humans by embedding them in the concept of neurodiversity. He is particularly interested in Autism Spectrum Disorder (ASD) and views it as on a continuum falling within normal human behavioral variation. If this is true and ASD has been maintained in a population by selection, then, he argues, ASD individuals may have had survival advantages during the EEA (environment of evolutionary adaptiveness), before the advent of large and complex societies. After this point, properly interpreting and responding to social and global cues gained importance at the expense of detailed feature based processing of nonsocial features of the environment.

  1. Comment on ''Effects of long-term high CO2 exposure on two species of coccolithophore'' by Müller et al. (2010)

    NASA Astrophysics Data System (ADS)

    Collins, S.

    2010-07-01

    Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.

  2. Analyzing complex networks evolution through Information Theory quantifiers

    NASA Astrophysics Data System (ADS)

    Carpi, Laura C.; Rosso, Osvaldo A.; Saco, Patricia M.; Ravetti, Martín Gómez

    2011-01-01

    A methodology to analyze dynamical changes in complex networks based on Information Theory quantifiers is proposed. The square root of the Jensen-Shannon divergence, a measure of dissimilarity between two probability distributions, and the MPR Statistical Complexity are used to quantify states in the network evolution process. Three cases are analyzed, the Watts-Strogatz model, a gene network during the progression of Alzheimer's disease and a climate network for the Tropical Pacific region to study the El Niño/Southern Oscillation (ENSO) dynamic. We find that the proposed quantifiers are able not only to capture changes in the dynamics of the processes but also to quantify and compare states in their evolution.

  3. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    PubMed

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.

  4. The Evolution of ICT Markets: An Agent-Based Model on Complex Networks

    NASA Astrophysics Data System (ADS)

    Zhao, Liangjie; Wu, Bangtao; Chen, Zhong; Li, Li

    Information and communication technology (ICT) products exhibit positive network effects.The dynamic process of ICT markets evolution has two intrinsic characteristics: (1) customers are influenced by each others’ purchasing decision; (2) customers are intelligent agents with bounded rationality.Guided by complex systems theory, we construct an agent-based model and simulate on complex networks to examine how the evolution can arise from the interaction of customers, which occur when they make expectations about the future installed base of a product by the fraction of neighbors who are using the same product in his personal network.We demonstrate that network effects play an important role in the evolution of markets share, which make even an inferior product can dominate the whole market.We also find that the intensity of customers’ communication can influence whether the best initial strategy for firms is to improve product quality or expand their installed base.

  5. Resource scarcity drives lethal aggression among prehistoric hunter-gatherers in central California.

    PubMed

    Allen, Mark W; Bettinger, Robert Lawrence; Codding, Brian F; Jones, Terry L; Schwitalla, Al W

    2016-10-25

    The origin of human violence and warfare is controversial, and some scholars contend that intergroup conflict was rare until the emergence of sedentary foraging and complex sociopolitical organization, whereas others assert that violence was common and of considerable antiquity among small-scale societies. Here we consider two alternative explanations for the evolution of human violence: (i) individuals resort to violence when benefits outweigh potential costs, which is likely in resource poor environments, or (ii) participation in violence increases when there is coercion from leaders in complex societies leading to group level benefits. To test these hypotheses, we evaluate the relative importance of resource scarcity vs. sociopolitical complexity by evaluating spatial variation in three macro datasets from central California: (i) an extensive bioarchaeological record dating from 1,530 to 230 cal BP recording rates of blunt and sharp force skeletal trauma on thousands of burials, (ii) quantitative scores of sociopolitical complexity recorded ethnographically, and (iii) mean net primary productivity (NPP) from a remotely sensed global dataset. Results reveal that sharp force trauma, the most common form of violence in the record, is better predicted by resource scarcity than relative sociopolitical complexity. Blunt force cranial trauma shows no correlation with NPP or political complexity and may reflect a different form of close contact violence. This study provides no support for the position that violence originated with the development of more complex hunter-gatherer adaptations in the fairly recent past. Instead, findings show that individuals are prone to violence in times and places of resource scarcity.

  6. 2D Potential Theory using Complex Algebra: New Perspectives for Interpretation of Marine Magnetic Anomaly

    NASA Astrophysics Data System (ADS)

    Le Maire, P.; Munschy, M.

    2017-12-01

    Interpretation of marine magnetic anomalies enable to perform accurate global kinematic models. Several methods have been proposed to compute the paleo-latitude of the oceanic crust as its formation. A model of the Earth's magnetic field is used to determine a relationship between the apparent inclination of the magnetization and the paleo-latitude. Usually, the estimation of the apparent inclination is qualitative, with the fit between magnetic data and forward models. We propose to apply a new method using complex algebra to obtain the apparent inclination of the magnetization of the oceanic crust. For two dimensional bodies, we rewrite Talwani's equations using complex algebra; the corresponding complex function of the complex variable, called CMA (complex magnetic anomaly) is easier to use for forward modelling and inversion of the magnetic data. This complex equation allows to visualize the data in the complex plane (Argand diagram) and offers a new way to interpret data (curves to the right of the figure (B), while the curves to the left represent the standard display of magnetic anomalies (A) for the model displayed (C) at the bottom of the figure). In the complex plane, the effect of the apparent inclination is to rotate the curves, while on the standard display the evolution of the shape of the anomaly is more complicated (figure). This innovative method gives the opportunity to study a set of magnetic profiles (provided by the Geological Survey of Norway) acquired in the Norwegian Sea, near the Jan Mayen fracture zone. In this area, the age of the oceanic crust ranges from 40 to 55 Ma and the apparent inclination of the magnetization is computed.

  7. A discussion for integrating INSPIRE with volunteered geographic information (VGI) and the vision for a global spatial-based platform

    NASA Astrophysics Data System (ADS)

    Demetriou, Demetris; Campagna, Michele; Racetin, Ivana; Konecny, Milan

    2017-09-01

    INSPIRE is the EU's authoritative Spatial Data Infrastructure (SDI) in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI initiatives, as well as advantages and disadvantages. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision makers and the wider community regarding solving complex spatial problems, managing emergency situations and getting useful information for peoples' daily activities. Although some efforts towards this direction have been arisen, several key issues need to be considered and resolved. Further to this integration, the vision is the development of a global integrated GIS platform, which extends the capabilities of a typical data-hub by embedding on-line spatial and non-spatial applications, to deliver both static and dynamic outputs to support planning and decision making. In this context, this paper discusses the challenges of integrating INSPIRE with VGI and outlines a generic framework towards creating a global integrated web-based GIS platform. The tremendous high speed evolution of the Web and Geospatial technologies suggest that this "super" global Geo-system is not far away.

  8. A Case Study of the De Novo Evolution of a Complex Odometric Behavior in Digital Organisms

    PubMed Central

    Grabowski, Laura M.; Bryson, David M.; Dyer, Fred C.; Pennock, Robert T.; Ofria, Charles

    2013-01-01

    Investigating the evolution of animal behavior is difficult. The fossil record leaves few clues that would allow us to recapitulate the path that evolution took to build a complex behavior, and the large population sizes and long time scales required prevent us from re-evolving such behaviors in a laboratory setting. We present results of a study in which digital organisms–self-replicating computer programs that are subject to mutations and selection–evolved in different environments that required information about past experience for fitness-enhancing behavioral decisions. One population evolved a mechanism for step-counting, a surprisingly complex odometric behavior that was only indirectly related to enhancing fitness. We examine in detail the operation of the evolved mechanism and the evolutionary transitions that produced this striking example of a complex behavior. PMID:23577113

  9. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    NASA Astrophysics Data System (ADS)

    Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus; Zafeiropoulos, Savvas

    2018-03-01

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.

  10. Evolution of the Global Aurora During Positive IMP Bz and Varying IMP By Conditions

    NASA Technical Reports Server (NTRS)

    Cumnock, J. A.; Sharber, J. R.; Heelis. R. A.; Hairston, M. R.; Carven, J. D.

    1997-01-01

    The DE 1 imaging instrumentation provides a full view of the entire auroral oval every 12 min for several hours during each orbit. We examined five examples of global evolution of the aurora that occurred during the northern hemisphere winter of 1981-1982 when the z component of the interplanetary magnetic field was positive and the y component was changing sign. Evolution of an expanded auroral emission region into a theta aurora appears to require a change in the sign of By during northward interplanetary magnetic field (IMF). Theta aurora are formed both from expanded duskside emission regions (By changes from positive to negative) and dawnside emission regions (By changes from negative to positive), however the dawnside-originating and duskside-originating evolutions are not mirror images. The persistence of a theta aurora after its formation suggests that there may be no clear relationship between the theta aurora pattern and the instantaneous configuration of the IMF.

  11. Receiver discriminability drives the evolution of complex sexual signals by sexual selection.

    PubMed

    Cui, Jianguo; Song, Xiaowei; Zhu, Bicheng; Fang, Guangzhan; Tang, Yezhong; Ryan, Michael J

    2016-04-01

    A hallmark of sexual selection by mate choice is the evolution of exaggerated traits, such as longer tails in birds and more acoustic components in the calls of birds and frogs. Trait elaboration can be opposed by costs such as increased metabolism and greater predation risk, but cognitive processes of the receiver can also put a brake on trait elaboration. For example, according to Weber's Law traits of a fixed absolute difference will be more difficult to discriminate as the absolute magnitude increases. Here, we show that in the Emei music frog (Babina daunchina) increases in the fundamental frequency between successive notes in the male advertisement call, which increases the spectral complexity of the call, facilitates the female's ability to compare the number of notes between calls. These results suggest that female's discriminability provides the impetus to switch from enhancement of signaling magnitude (i.e., adding more notes into calls) to employing a new signal feature (i.e., increasing frequency among notes) to increase complexity. We suggest that increasing the spectral complexity of notes ameliorates some of the effects of Weber's Law, and highlights how perceptual and cognitive biases of choosers can have important influences on the evolution of courtship signals. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Evolution of weighted complex bus transit networks with flow

    NASA Astrophysics Data System (ADS)

    Huang, Ailing; Xiong, Jie; Shen, Jinsheng; Guan, Wei

    2016-02-01

    Study on the intrinsic properties and evolutional mechanism of urban public transit networks (PTNs) has great significance for transit planning and control, particularly considering passengers’ dynamic behaviors. This paper presents an empirical analysis for exploring the complex properties of Beijing’s weighted bus transit network (BTN) based on passenger flow in L-space, and proposes a bi-level evolution model to simulate the development of transit routes from the view of complex network. The model is an iterative process that is driven by passengers’ travel demands and dual-controlled interest mechanism, which is composed of passengers’ spatio-temporal requirements and cost constraint of transit agencies. Also, the flow’s dynamic behaviors, including the evolutions of travel demand, sectional flow attracted by a new link and flow perturbation triggered in nearby routes, are taken into consideration in the evolutional process. We present the numerical experiment to validate the model, where the main parameters are estimated by using distribution functions that are deduced from real-world data. The results obtained have proven that our model can generate a BTN with complex properties, such as the scale-free behavior or small-world phenomenon, which shows an agreement with our empirical results. Our study’s results can be exploited to optimize the real BTN’s structure and improve the network’s robustness.

  13. Carbon in the Universe

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2013-01-01

    Over the past few decades, NASA missions have revealed that we live in a Universe that is not a hydrogen-dominated, physicist's paradise, but in a molecular Universe with complex molecules directly interwoven into its fabric. These missions have shown that molecules are an abundant and important component of astronomical objects at all stages of their evolution and that they play a key role in many processes that dominate the structure and evolution of galaxies. Closer to home in our galaxy, the Milky Way, they have revealed a unique and complex organic inventory of regions of star and planet formation that may well represent some of the prebiotic roots to life. Astrobiology emerges from the great interest in understanding astrochemical evolution from simple to complex molecules, especially those with biogenic potential and the roles they may play as primordial seeds in the origin of life on habitable worlds. The first part of this talk will highlight how infrared spectroscopic studies of interstellar space, combined with dedicated laboratory simulations, have revealed the widespread presence of complex organics across deep space. The remainder of the presentation will focus on the evolution of these materials and astrobiology.

  14. Beverton-Holt discrete pest management models with pulsed chemical control and evolution of pesticide resistance

    NASA Astrophysics Data System (ADS)

    Liang, Juhua; Tang, Sanyi; Cheke, Robert A.

    2016-07-01

    Pest resistance to pesticides is usually managed by switching between different types of pesticides. The optimal switching time, which depends on the dynamics of the pest population and on the evolution of the pesticide resistance, is critical. Here we address how the dynamic complexity of the pest population, the development of resistance and the spraying frequency of pulsed chemical control affect optimal switching strategies given different control aims. To do this, we developed novel discrete pest population growth models with both impulsive chemical control and the evolution of pesticide resistance. Strong and weak threshold conditions which guarantee the extinction of the pest population, based on the threshold values of the analytical formula for the optimal switching time, were derived. Further, we addressed switching strategies in the light of chosen economic injury levels. Moreover, the effects of the complex dynamical behaviour of the pest population on the pesticide switching times were also studied. The pesticide application period, the evolution of pesticide resistance and the dynamic complexity of the pest population may result in complex outbreak patterns, with consequent effects on the pesticide switching strategies.

  15. The systematics and independent evolution of cave ecomorphology in distantly related clades of Bent-toed Geckos (Genus Cyrtodactylus Gray, 1827) from the Mekong Delta and islands in the Gulf of Thailand.

    PubMed

    Grismer, L Lee; Wood, P L Jr; Tri, Ngo Van; Murdoch, Matthew L

    2015-06-26

    An integrative taxonomic analysis of the distantly related Cyrtodactylus condorensis and intermedius species complexes of the Mekong Delta revealed that C. paradoxus is a junior synonym of C. condorensis and that C. thochuensis is a junior synonym of C. leegrismeri. Additionally, the analysis revealed that a cave-dwelling ecomorpholgy has evolved independently early on in the evolution of both complexes (represented by C. hontreensis in the intermedius complex and C. grismeri and C. eisenmani in the condorensis complex) and cave ecomorphs exist in sympatry-but not syntopy-with general scansorial ecomorphs. Multiple, recent, cyclical, glacioeustatic driven changes in sea levels across the Sunda Shelf are hypothesized to account for the evolution and distribution of the widely separated, conspecific insular populations of C. condorensis and C. leegrismeri. The independent evolution of cave ecomorphology is proposed to have been driven by competition avoidance. Habitat islands across the Mekong Delta are an important source of endemism and in need of protection.

  16. Evolution of flux ropes in the magnetotail: A three-dimensional global hybrid simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, S.; State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing; Lin, Y.

    2015-05-15

    Flux ropes in the Earth's magnetotail are widely believed to play a crucial role in energy transport during substorms and the generation of energetic particles. Previous kinetic simulations are limited to the local-scale regime, and thus cannot be used to study the structure associated with the geomagnetic field and the global-scale evolution of the flux ropes. Here, the evolution of flux ropes in the magnetotail under a steady southward interplanetary magnetic field are studied with a newly developed three-dimensional global hybrid simulation model for dynamics ranging from the ion Larmor radius to the global convection time scales. Magnetic reconnection withmore » multiple X-lines is found to take place in the near-tail current sheet at geocentric solar magnetospheric distances x=−30R{sub E}∼−15R{sub E} around the equatorial plane (z=0). The magnetotail reconnection layer is turbulent, with a nonuniform structure and unsteady evolution, and exhibits properties of typical collisionless fast reconnection with the Hall effect. A number of small-scale flux ropes are generated through the multiple X-line reconnection. The diameter of the flux ropes is several R{sub E}, and the spatial scale of the flux ropes in the dawn-dusk direction is on the order of several R{sub E} and does not extend across the entire section of the magnetotail, contrary to previous models and MHD simulation results and showing the importance of the three-dimensional effects. The nonuniform and unsteady multiple X-line reconnection with particle kinetic effects leads to various kinds of flux rope evolution: The small-scale flux ropes propagate earthward or tailward after formation, and eventually merge into the near-Earth region or the mid-/distant-tail plasmoid, respectively. During the propagation, some of the flux ropes can be tilted in the geocentric solar magnetospheric (x,y) plane with respect to the y (dawn-dusk) axis. Coalescence between flux ropes is also observed. At the same time, the evolution of the flux ropes in the multiple X-line reconnection layer can also lead to the acceleration and heating of ions.« less

  17. Hierarchical coordinate systems for understanding complexity and its evolution, with applications to genetic regulatory networks.

    PubMed

    Egri-Nagy, Attila; Nehaniv, Chrystopher L

    2008-01-01

    Beyond complexity measures, sometimes it is worthwhile in addition to investigate how complexity changes structurally, especially in artificial systems where we have complete knowledge about the evolutionary process. Hierarchical decomposition is a useful way of assessing structural complexity changes of organisms modeled as automata, and we show how recently developed computational tools can be used for this purpose, by computing holonomy decompositions and holonomy complexity. To gain insight into the evolution of complexity, we investigate the smoothness of the landscape structure of complexity under minimal transitions. As a proof of concept, we illustrate how the hierarchical complexity analysis reveals symmetries and irreversible structure in biological networks by applying the methods to the lac operon mechanism in the genetic regulatory network of Escherichia coli.

  18. Advances in planetary geology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Topics discussed include: (1) Martian global tectonics; (2) the origin and evolution of a circular and an irregular lunar mare; (3) stratigraphy of Oceanus Procellarum basalts: sources and styles of emplacement; (4) the tectonic evolution of the Oceanus Procellarum Basin; (5) charting the Southern Seas: the evolution of the Lunar Mare Australe; (6) the stratigraphy of Mare Imbrium; and (7) Storms and rains: a comparison of the Lunar Mare Imbrium and Oceanus Procellarum.

  19. The evolution of complex and higher organisms

    NASA Technical Reports Server (NTRS)

    Milne, D. (Editor); Raup, D. (Editor); Billingham, J. (Editor); Niklaus, K. (Editor); Padian, K. (Editor)

    1985-01-01

    The evolution of Phanerozoic life has probably been influenced by extraterrestrial events and properties of the Earth-Moon system that have not, until now, been widely recognized. Tide range, gravitational strength, the Earth's axial tilt, and other planetary properties provide background conditions whose effects on evolution may be difficult to distinguish. Solar flares, asteroid impacts, supernovae, and passage of the solar system through galactic clouds can provide catastrophic changes on the Earth with consequent characteristic extinctions. Study of the fossil record and the evolution of complex Phanerozoic life can reveal evidence of past disturbances in space near the Earth. Conversely, better understanding of environmental influences caused by extraterrestrial factors and properties of the solar system can clarify aspects of evolution, and may aid in visualizing life on other planets with different properties.

  20. Complexities’ day-to-day dynamic evolution analysis and prediction for a Didi taxi trip network based on complex network theory

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Lu, Jian; Zhou, Jialin; Zhu, Jinqing; Li, Yunxuan; Wan, Qian

    2018-03-01

    Didi Dache is the most popular taxi order mobile app in China, which provides online taxi-hailing service. The obtained big database from this app could be used to analyze the complexities’ day-to-day dynamic evolution of Didi taxi trip network (DTTN) from the level of complex network dynamics. First, this paper proposes the data cleaning and modeling methods for expressing Nanjing’s DTTN as a complex network. Second, the three consecutive weeks’ data are cleaned to establish 21 DTTNs based on the proposed big data processing technology. Then, multiple topology measures that characterize the complexities’ day-to-day dynamic evolution of these networks are provided. Third, these measures of 21 DTTNs are calculated and subsequently explained with actual implications. They are used as a training set for modeling the BP neural network which is designed for predicting DTTN complexities evolution. Finally, the reliability of the designed BP neural network is verified by comparing with the actual data and the results obtained from ARIMA method simultaneously. Because network complexities are the basis for modeling cascading failures and conducting link prediction in complex system, this proposed research framework not only provides a novel perspective for analyzing DTTN from the level of system aggregated behavior, but can also be used to improve the DTTN management level.

  1. Geometrically controlled evolution of four-qubit states

    NASA Astrophysics Data System (ADS)

    Duy, Hoang Ngoc; Heydari, Hoshang

    2011-03-01

    In this paper the evolution of some states of four qubits in [1] under global bipartite unitary operation and controlled by local unitary operation using four-tangle [2] and the geometric invariants [3] is investigated. Particularly the entanglement distribution and properties of these four-qubit states are studied.

  2. The use of the Hurst exponent to investigate the global maximum of the Warsaw Stock Exchange WIG20 index

    NASA Astrophysics Data System (ADS)

    Domino, Krzysztof

    2012-01-01

    The WIG20 index-the index of the 20 biggest companies traded on the Warsaw Stock Exchange-reached the global maximum on 29th October 2007. I have used the local DFA (Detrended Functional Analysis) to obtain the Hurst exponent (diffusion exponent) and investigate the signature of anti-correlation of share price evolution around the maximum. The analysis was applied to the share price evolution for variable DFA parameters. For many values of parameters, the evidence of anti-correlation near the WIG20 maximum was pointed out.

  3. Minimum-noise production of translation factor eIF4G maps to a mechanistically determined optimal rate control window for protein synthesis

    PubMed Central

    Meng, Xiang; Firczuk, Helena; Pietroni, Paola; Westbrook, Richard; Dacheux, Estelle; Mendes, Pedro; McCarthy, John E.G.

    2017-01-01

    Gene expression noise influences organism evolution and fitness. The mechanisms determining the relationship between stochasticity and the functional role of translation machinery components are critical to viability. eIF4G is an essential translation factor that exerts strong control over protein synthesis. We observe an asymmetric, approximately bell-shaped, relationship between the average intracellular abundance of eIF4G and rates of cell population growth and global mRNA translation, with peak rates occurring at normal physiological abundance. This relationship fits a computational model in which eIF4G is at the core of a multi-component–complex assembly pathway. This model also correctly predicts a plateau-like response of translation to super-physiological increases in abundance of the other cap-complex factors, eIF4E and eIF4A. Engineered changes in eIF4G abundance amplify noise, demonstrating that minimum stochasticity coincides with physiological abundance of this factor. Noise is not increased when eIF4E is overproduced. Plasmid-mediated synthesis of eIF4G imposes increased global gene expression stochasticity and reduced viability because the intrinsic noise for this factor influences total cellular gene noise. The naturally evolved eIF4G gene expression noise minimum maps within the optimal activity zone dictated by eIF4G's mechanistic role. Rate control and noise are therefore interdependent and have co-evolved to share an optimal physiological abundance point. PMID:27928055

  4. Water Cycle Dynamics in a Changing Environment: Advancing Hydrologic Science through Synthesis

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Kumar, P.; Rhoads, B. L.; Wuebbles, D.

    2007-12-01

    As one ponders a changing environment -- climate, hydrology, land use, biogeochemical cycles, human dynamics -- there is an increasing need to understand the long term evolution of the linked component systems (e.g., climatic, hydrologic and ecological) through conceptual and quantitative models. The most challenging problem toward this goal is to understand and incorporate the rich dynamics of multiple linked systems with weak and strong coupling, and with many internal variables that exhibit multi-scale interactions. The richness of these interactions leads to fluctuations in one variable that in turn drive the dynamics of other related variables. The key question then becomes: Do these complexities lend an inherently stochastic character to the system, rendering deterministic prediction and modeling of limited value, or do they translate into constrained self- organization through which emerges order, and a limited group of "active" processes (that may change from time to time) that determine the general evolution of the system through a series of structured states with a distinct signature? This is a grand challenge for predictability and therefore requires community effort. The interconnectivity and hence synthesis of knowledge across the fields should be natural for hydrologists since the global water cycle and its regional manifestations directly correspond to the information flows for mass and energy transformations across the media, and across the disciplines. Further, the rich history of numerical, conceptual and stochastic modeling in hydrology provides the training and breadth for addressing the multi- scale, complex system dynamics challenges posed by the evolution question. Theory and observational analyses that necessitate stepping back from the existing knowledge paradigms and looking at the integrated system are needed. In this talk we will present the outlines of a new NSF-funded community effort that attempts to forge inter- disciplinary synthesis through research efforts aimed at "improving predictability of water cycle dynamics in a changing environment." The synthesis activities have brought together inter-disciplinary scientific teams to address specific open problems such as: (i) human-nature interactions and adaptations; (ii) role of the biosphere in water cycle dynamics; (iii) human induced changes to water cycle dynamics; and (iv) structure of landscapes and their evolution through time. All synthesis activities will be underpinned by common unifying themes: (a) hydrology as the science of interacting processes; (b) variability as the driver of interactions and ecosystem functioning; (c) search for emergent behavior and organizing principles; and (d) complexity theory and non- equilibrium thermodynamics.

  5. Military Cyberspace: From Evolution to Revolution

    DTIC Science & Technology

    2012-02-08

    support the GCCs and enable USCYBERCOM to accomplish its mission? 15. SUBJECT TERMS Network Operations, Global Information Grid ( GIG ), Network...DATE: 08 February 2012 WORD COUNT: 5,405 PAGES: 30 KEY TERMS: Network Operations, Global Information Grid ( GIG ), Network Architecture...defense of the DOD global information grid ( GIG ). The DOD must pursue an enterprise approach to network management in the cyberspace domain to

  6. Public-Private Partnerships in Defense Acquisition Programs-Defensible?

    DTIC Science & Technology

    2009-12-01

    1 B. DEFINING AND DIFFERENTIATING PPPS.............................................1 C. OVERVIEW OF GLOBAL PPP...is followed by an overview of the global movement of PPPs, with primary focus on defense PPPs. Next, the evolution of research themes on PPPs from...programs. The term, “PFIs” is commonly used interchangeably with PPPs.3 Today, PFIs dominate the global PPPs arena (Broadbent & Laughlin, 2003) and

  7. Coevolution at protein complex interfaces can be detected by the complementarity trace with important impact for predictive docking

    PubMed Central

    Madaoui, Hocine; Guerois, Raphaël

    2008-01-01

    Protein surfaces are under significant selection pressure to maintain interactions with their partners throughout evolution. Capturing how selection pressure acts at the interfaces of protein–protein complexes is a fundamental issue with high interest for the structural prediction of macromolecular assemblies. We tackled this issue under the assumption that, throughout evolution, mutations should minimally disrupt the physicochemical compatibility between specific clusters of interacting residues. This constraint drove the development of the so-called Surface COmplementarity Trace in Complex History score (SCOTCH), which was found to discriminate with high efficiency the structure of biological complexes. SCOTCH performances were assessed not only with respect to other evolution-based approaches, such as conservation and coevolution analyses, but also with respect to statistically based scoring methods. Validated on a set of 129 complexes of known structure exhibiting both permanent and transient intermolecular interactions, SCOTCH appears as a robust strategy to guide the prediction of protein–protein complex structures. Of particular interest, it also provides a basic framework to efficiently track how protein surfaces could evolve while keeping their partners in contact. PMID:18511568

  8. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  9. Cope's Rule and the Universal Scaling Law of Ornament Complexity.

    PubMed

    Raia, Pasquale; Passaro, Federico; Carotenuto, Francesco; Maiorino, Leonardo; Piras, Paolo; Teresi, Luciano; Meiri, Shai; Itescu, Yuval; Novosolov, Maria; Baiano, Mattia Antonio; Martínez, Ricard; Fortelius, Mikael

    2015-08-01

    Luxuriant, bushy antlers, bizarre crests, and huge, twisting horns and tusks are conventionally understood as products of sexual selection. This view stems from both direct observation and from the empirical finding that the size of these structures grows faster than body size (i.e., ornament size shows positive allometry). We contend that the familiar evolutionary increase in the complexity of ornaments over time in many animal clades is decoupled from ornament size evolution. Increased body size comes with extended growth. Since growth scales to the quarter power of body size, we predicted that ornament complexity should scale according to the quarter power law as well, irrespective of the role of sexual selection in the evolution and function of the ornament. To test this hypothesis, we selected three clades (ammonites, deer, and ceratopsian dinosaurs) whose species bore ornaments that differ in terms of the importance of sexual selection to their evolution. We found that the exponent of the regression of ornament complexity to body size is the same for the three groups and is statistically indistinguishable from 0.25. We suggest that the evolution of ornament complexity is a by-product of Cope's rule. We argue that although sexual selection may control size in most ornaments, it does not influence their shape.

  10. Evolution of Brain and Language

    ERIC Educational Resources Information Center

    Schoenemann, P. Thomas

    2009-01-01

    The evolution of language and the evolution of the brain are tightly interlinked. Language evolution represents a special kind of adaptation, in part because language is a complex behavior (as opposed to a physical feature) but also because changes are adaptive only to the extent that they increase either one's understanding of others, or one's…

  11. Does Structural Complexity Determine the Morphology of Assemblages? An Experimental Test on Three Continents

    PubMed Central

    Gibb, Heloise; Parr, Catherine L.

    2013-01-01

    Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure. PMID:23691137

  12. Proterozoic Bushveld-Vredefort catastrophe: Possible causes and consequences

    NASA Technical Reports Server (NTRS)

    Elston, W. E.; Twist, D.

    1988-01-01

    Bushveld Complex and Vredefort Dome are unique features, formed in close proximity during the same time interval, approximately 2 Ga. Both show evidence of catastrophic events in the shallow marine environment of the otherwise stable Kaapvaal Craton. Explanation by multiple impacts of an asteroid, brecciated by an inter-asteroidal collision and disintegrating in Earth's gravity field is supported by pseudotachylite, shatter cones, coesite, and stishovite at Vredefort but these shock phenomena were not found in the Bushveld Complex. The Bushveld Complex was formerly interpreted as a lopolith, a view incompatible with gravity, electrical resistivity, magnetic, and seismic-reflection data. It is outlined by five inward-dipping lobes of layered ultramafic-mafic plutonic rocks that partly coalesce to form a basin-like feature 400 km in diameter and 65,000 sq. km. in area, equivalent to a small lunar mare. The Bushveld Complex is orders of magnitudes larger than other proposed terrestrial impact structures and differs from them in important ways. Its principal members, in order of age, are Rooiberg Felsite, RLS, and Lebowa Granite. The Bushveld-Vredefort events occurred during the interval from neutral or reducing atmosphere to oxidizing atmosphere. This transition is usually related to the evolution of photosynthesizing organisms. If the impact hypothesis for Bushveld-Vredefort can be confirmed, it may represent a global catastrophe sufficient to contribute to environmental changes favoring aerobic photosynthesizing eukaryotes over anaerobic prokaryotes.

  13. A New Artificial Neural Network Enhanced by the Shuffled Complex Evolution Optimization with Principal Component Analysis (SP-UCI) for Water Resources Management

    NASA Astrophysics Data System (ADS)

    Hayatbini, N.; Faridzad, M.; Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.

    2016-12-01

    The Artificial Neural Networks (ANNs) are useful in many fields, including water resources engineering and management. However, due to the non-linear and chaotic characteristics associated with natural processes and human decision making, the use of ANNs in real-world applications is still limited, and its performance needs to be further improved for a broader practical use. The commonly used Back-Propagation (BP) scheme and gradient-based optimization in training the ANNs have already found to be problematic in some cases. The BP scheme and gradient-based optimization methods are associated with the risk of premature convergence, stuck in local optimums, and the searching is highly dependent on initial conditions. Therefore, as an alternative to BP and gradient-based searching scheme, we propose an effective and efficient global searching method, termed the Shuffled Complex Evolutionary Global optimization algorithm with Principal Component Analysis (SP-UCI), to train the ANN connectivity weights. Large number of real-world datasets are tested with the SP-UCI-based ANN, as well as various popular Evolutionary Algorithms (EAs)-enhanced ANNs, i.e., Particle Swarm Optimization (PSO)-, Genetic Algorithm (GA)-, Simulated Annealing (SA)-, and Differential Evolution (DE)-enhanced ANNs. Results show that SP-UCI-enhanced ANN is generally superior over other EA-enhanced ANNs with regard to the convergence and computational performance. In addition, we carried out a case study for hydropower scheduling in the Trinity Lake in the western U.S. In this case study, multiple climate indices are used as predictors for the SP-UCI-enhanced ANN. The reservoir inflows and hydropower releases are predicted up to sub-seasonal to seasonal scale. Results show that SP-UCI-enhanced ANN is able to achieve better statistics than other EAs-based ANN, which implies the usefulness and powerfulness of proposed SP-UCI-enhanced ANN for reservoir operation, water resources engineering and management. The SP-UCI-enhanced ANN is universally applicable to many other regression and prediction problems, and it has a good potential to be an alternative to the classical BP scheme and gradient-based optimization methods.

  14. Lower bound on the time complexity of local adiabatic evolution

    NASA Astrophysics Data System (ADS)

    Chen, Zhenghao; Koh, Pang Wei; Zhao, Yan

    2006-11-01

    The adiabatic theorem of quantum physics has been, in recent times, utilized in the design of local search quantum algorithms, and has been proven to be equivalent to standard quantum computation, that is, the use of unitary operators [D. Aharonov in Proceedings of the 45th Annual Symposium on the Foundations of Computer Science, 2004, Rome, Italy (IEEE Computer Society Press, New York, 2004), pp. 42-51]. Hence, the study of the time complexity of adiabatic evolution algorithms gives insight into the computational power of quantum algorithms. In this paper, we present two different approaches of evaluating the time complexity for local adiabatic evolution using time-independent parameters, thus providing effective tests (not requiring the evaluation of the entire time-dependent gap function) for the time complexity of newly developed algorithms. We further illustrate our tests by displaying results from the numerical simulation of some problems, viz. specially modified instances of the Hamming weight problem.

  15. Progress on Complex Langevin simulations of a finite density matrix model for QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloch, Jacques; Glesaan, Jonas; Verbaarschot, Jacobus

    We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplementedmore » with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.« less

  16. Evolution of an ancient protein function involved in organized multicellularity in animals.

    PubMed

    Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E

    2016-01-07

    To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.

  17. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate.

    PubMed

    Hoberg, E P; Cook, J A; Agosta, S J; Boeger, W; Galbreath, K E; Laaksonen, S; Kutz, S J; Brooks, D R

    2017-07-01

    Climate oscillations and episodic processes interact with evolution, ecology and biogeography to determine the structure and complex mosaic that is the biosphere. Parasites and parasite-host assemblages are key components in a general explanatory paradigm for global biodiversity. We explore faunal assembly in the context of Quaternary time frames of the past 2.6 million years, a period dominated by episodic shifts in climate. Climate drivers cross a continuum from geological to contemporary timescales and serve to determine the structure and distribution of complex biotas. Cycles within cycles are apparent, with drivers that are layered, multifactorial and complex. These cycles influence the dynamics and duration of shifts in environmental structure on varying temporal and spatial scales. An understanding of the dynamics of high-latitude systems, the history of the Beringian nexus (the intermittent land connection linking Eurasia and North America) and downstream patterns of diversity depend on teasing apart the complexity of biotic assembly and persistence. Although climate oscillations have dominated the Quaternary, contemporary dynamics are driven by tipping points and shifting balances emerging from anthropogenic forces that are disrupting ecological structure. Climate change driven by anthropogenic forcing has supplanted a history of episodic variation and is eliminating ecological barriers and constraints on development and distribution for pathogen transmission. A framework to explore interactions of episodic processes on faunal structure and assembly is the Stockholm Paradigm, which appropriately shifts the focus from cospeciation to complexity and contingency in explanations of diversity.

  18. The impact of polyploidy on the evolution of a complex NB-LRR resistance gene cluster in soybean

    USDA-ARS?s Scientific Manuscript database

    A comparative genomics approach was used to investigate the evolution of a complex NB-LRR gene cluster found in soybean (Glycine max), common bean (Phaseolus vulgaris), and other legumes. In soybean, the cluster is associated with several disease resistance (R) genes of known function including Rpg1...

  19. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    NASA Astrophysics Data System (ADS)

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  20. Structuring evolution: biochemical networks and metabolic diversification in birds.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  1. Mars Global Surveyor Mission: Environmental Assessment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This environmental assessment addresses the proposed action to complete the integration and launch the Mars Global Surveyor (MGS) spacecraft from Cape Canaveral Air Station (CCAS), Florida, during the launch window in November 1996. Mars Global Surveyor is part of the Solar System Exploration Program to the inner planets designed to maintain a sufficient level of scientific investigation and accomplishment so that the United States retains a leading position in solar system exploration through the end of the century. The Program consists of a specific sequence of missions, based on technological readiness, launch opportunities, rapidity of data return, and a balance of scientific disciplines. The purpose of the MGS mission would be to deliver a spacecraft platform to a low-altitude polar orbit around Mars where it would collect global observations of basic geological, geophysical, and climatological processes of the planet. To satisfy this purpose, the MGS mission would support a scientific set of objectives. Detailed global maps of surface topography, the distribution of minerals, the planet's mass, size, and shape, the characterization of Mars gravitational and magnetic fields, and the monitoring of global weather, collected over the period of one Martian year (about two Earth years), would help answer some of the questions about the evolution of Mars. Such an investigation would help scientists better understand the current state of water on Mars, the evolution of the planet's atmosphere, and the factors that led to major changes in the Martian climate. It would also provide much needed information on the magnetic field of Mars. Data collected from this mission would provide insight into the evolution of both Earth and the solar system, as well as demonstrate technological approaches that could be applicable to future Mars missions.

  2. Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex?

    PubMed

    Berg, Gabriele; Martinez, Jose L

    2015-01-01

    Stenotrophomonas maltophilia is an emerging multi-drug-resistant global opportunistic pathogen of environmental, mainly plant-associated origin. It is also used as a biocontrol or stress protecting agent for crops in sustainable agricultural as well as in bioremediation strategies. In order to establish effective protocols to distinguish harmless from harmful strains, our discussion must take into consideration the current data available surrounding the ecology, evolution and pathogenicity of the species complex. The mutation rate was identified as one of several possible criteria for strain plasticity, but it is currently impossible to distinguish beneficial from harmful S. maltophilia strains. This may compromise the possibility of the release and application for environmental biotechnology of this bacterial species. The close relative S. rhizophila, which can be clearly differentiated from S. maltophilia, provides a harmless alternative for biotechnological applications without human health risks. This is mainly because it is unable to growth at the human body temperature, 37(∘)C due to the absence of heat shock genes and a potentially temperature-regulated suicide mechanism.

  3. KSC-2011-6853

    NASA Image and Video Library

    2011-09-08

    CAPE CANAVERAL, Fla. – Actress Nichelle Nichols (Lt. Uhura on Star Trek) signs autographs for a guest at the Kennedy Space Center Visitor Complex in Florida during activities for the agency’s Gravity Recovery and Interior Laboratory mission (GRAIL). Nichols was on hand to celebrate the 45th anniversary of the first airing of the Star Trek television series. The Kennedy Space Center Visitor Complex is hosting “Star Trek: The Exhibition” to show visitors where “science fiction meets science fact.” GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon's gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon's crust and mantle and will help answer fundamental questions about the moon's internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon's gravity field so completely that future moon vehicles can safely navigate anywhere on the moon’s surface. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Frankie Martin

  4. KSC-2011-6799

    NASA Image and Video Library

    2011-09-07

    CAPE CANAVERAL, Fla. – Tweetup participants ask questions during prelaunch activities for NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission at the Kennedy Space Center Visitor Complex in Florida. Participants toured NASA’s Kennedy Space Center and got a close-up view of Space Launch Complex 17B at Cape Canaveral Air Force Station. The tweeters will share their experiences with followers through the social networking site Twitter. GRAIL will fly twin spacecraft in tandem around the moon to precisely measure and map variations in the moon’s gravitational field. The mission will provide the most accurate global gravity field to date for any planet, including Earth. This detailed information will reveal differences in the density of the moon’s crust and mantle and will help answer fundamental questions about the moon’s internal structure, thermal evolution, and history of collisions with asteroids. The aim is to map the moon’s gravity field so completely that future lunar vehicles can safely navigate anywhere on the moon’s surface. Launch is scheduled for 8:37:06 a.m. EDT Sept. 8. For more information, visit http://www.nasa.gov/grail. Photo credit: NASA/Gianni Woods

  5. Prehistoric land use and Neolithisation in Europe in the context of regional climate events

    NASA Astrophysics Data System (ADS)

    Lemmen, C.; Wirtz, K. W.; Gronenborn, D.

    2009-04-01

    We present a simple, adaptation-driven, spatially explicit model of pre-Bronze age socio-technological change, called the Global Land Use and Technological Evolution Simulator (GLUES). The socio-technological realm is described by three characteristic traits: available technology, subsistence style ratio, and economic diversity. Human population and culture develop in the context of global paleoclimate and regional paleoclimate events. Global paleoclimate is derived from CLIMBER-2 Earth System Model anomalies superimposed on the IIASA temperature and precipitation database. Regional a forcing is provided by abrupt climate deteriorations from a compilation of 138 long-term high-resolution climate proxy time series from mostly terrestrial and near-shore archives. The GLUES simulator provides for a novel way to explore the interplay between climate, climate change, and cultural evolution both on the Holocene timescale as well as for short-term extreme event periods. We sucessfully simulate the migration of people and the diffusion of Neolithic technology from the Near East into Europe in the period 12000-4000 a BP. We find good agreement with recent archeological compilations of Western Eurasian Neolithic sites. No causal relationship between climate events and cultural evolution could be identified, but the speed of cultural development is found to be modulated by the frequency of climate events. From the demographic evolution and regional ressource consumption, we estimate regional land use change and prehistoric greenhouse gas emissions.

  6. SURFACE AND LIGHTNING SOURCES OF NITROGEN OXIDES OVER THE UNITED STATES: MAGNITUDES, CHEMICAL EVOLUTION, AND OUTFLOW

    EPA Science Inventory

    We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution...

  7. Evolution and the complexity of bacteriophages.

    PubMed

    Serwer, Philip

    2007-03-13

    The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the presence of cellular gene homologs, (3) determine which, if any, bacteriophage genes were selected for maintaining the homologs and (4) determine the dynamics of homolog evolution. This hypothesis is an explanation of evolutionary leaps in general. If accurate, it will assist both understanding and influencing the evolution of microbes and their communities. Analysis of evolutionary complexity increase for at least prokaryotes should include analysis of genomes of long-genome bacteriophages.

  8. Studies Based on Lunar Global Subsurface Radar Sounding Data Obtained by SELENE (Kaguya)

    NASA Astrophysics Data System (ADS)

    Kumamoto, A.; Yamaguchi, Y.; Yamaji, A.; Oshigami, S.; Ishiyama, K.; Nakamura, N.; Haruyama, J.; Miyamoto, H.; Nishibori, T.; Tsuchiya, F.; Ohtake, M.

    2018-04-01

    Several studies based on lunar global subsurface radar sounding data obtained by SELENE/LRS will be reviewed. From the subsurface structures of the buried regolith layers, we can discuss the evolution of tectonic and volcanic processes in the maria.

  9. Lithospheric Structure from Mars Global Surveyor Topography and Gravity and Implications for the Early Thermal Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Smith, David E.; Tyler, G. Leonard; Aharonson, Oded; Balmino, Georges; Banerdt, W. B.; Head, James W.; Johnson, Catherine L.

    2000-01-01

    Regional variations in the thickness of the elastic lithosphere on Mars derived from a combined analysis of topography and gravity anomalies determined by Mars Global Surveyor provide new insight into the planet's thermal history.

  10. Corrigendum to 'The global relevance of the Scotia Arc: An introduction'

    NASA Astrophysics Data System (ADS)

    Maldonado, Andrés; Dalziel, Ian W. D.; Leat, Philip T.

    2015-10-01

    The authors and the journal regret that the printed version of the above article was not included in the special issue ;SCOTIA ARC EVOLUTION: GLOBAL IMPLICATIONS;. The correct and final version follows. The authors would like to apologise for any inconvenience caused.

  11. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes.

    PubMed

    Price, Samantha A; Tavera, Jose J; Near, Thomas J; Wainwright, Peter C

    2013-02-01

    The relationship between habitat complexity and species richness is well established but comparatively little is known about the evolution of morphological diversity in complex habitats. Reefs are structurally complex, highly productive shallow-water marine ecosystems found in tropical (coral reefs) and temperate zones (rocky reefs) that harbor exceptional levels of biodiversity. We investigated whether reef habitats promote the evolution of morphological diversity in the feeding and locomotion systems of grunts (Haemulidae), a group of predominantly nocturnal fishes that live on both temperate and tropical reefs. Using phylogenetic comparative methods and statistical analyses that take into account uncertainty in phylogeny and the evolutionary history of reef living, we demonstrate that rates of morphological evolution are faster in reef-dwelling haemulids. The magnitude of this effect depends on the type of trait; on average, traits involved in the functional systems for prey capture and processing evolve twice as fast on reefs as locomotor traits. This result, along with the observation that haemulids do not exploit unique feeding niches on reefs, suggests that fine-scale trophic niche partitioning and character displacement may be driving higher rates of morphological evolution. Whatever the cause, there is growing evidence that reef habitats stimulate morphological and functional diversification in teleost fishes. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  12. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    NASA Astrophysics Data System (ADS)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional and zonal components of global atmospheric circulation.

  13. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  14. Contemporary evolution of plant reproductive strategies under global change is revealed by stored seeds.

    PubMed

    Thomann, M; Imbert, E; Engstrand, R C; Cheptou, P-O

    2015-04-01

    Global change is expected to impose new selection pressures on natural populations. Phenotypic responses, such as earlier phenology in response to climate warming, have been repeatedly observed in the field. The recent pollinator decline is also expected to change selection on reproductive traits in flowering plants. However, it remains unclear whether short-term adaptation of plant reproductive strategies occurs in response to global change. In this study, we report the evolution of some important reproductive traits of the annual self-incompatible weed Centaurea cyanus. In a common garden experiment, we germinated stored seeds, sampled 18 years apart from the same location, in a region where warmer springs and indices of pollinator decline have been reported. Compared to the ancestral population (1992), our results showed that plants of the descendant population (2010) flowered earlier and also produced larger capitula with longer receptivity and a larger floral display. QST -FST comparisons indicated that natural selection has likely contributed to the evolution of some of the traits investigated. Lower FST within temporal samples than among spatial samples further suggests a limited role of gene flow from neighbouring populations. We therefore propose that trait shifts could partly be due to adaptation to global change. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    PubMed

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  16. FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    NASA Astrophysics Data System (ADS)

    Helbing, D.; Bishop, S.; Conte, R.; Lukowicz, P.; McCarthy, J. B.

    2012-11-01

    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. The financial crisis, international wars, global terror, the spreading of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing serious challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the complex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technology (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly networked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21st century. FuturICT could indeed become one of the most important scientific endeavours ever, by revealing the principles that make socially interactive systems work well, by inspiring the creation of new platforms to explore our possible futures, and by initiating an era of social and socio-inspired innovations.

  17. Positive Selection in Rapidly Evolving Plastid–Nuclear Enzyme Complexes

    PubMed Central

    Rockenbach, Kate; Havird, Justin C.; Monroe, J. Grey; Triant, Deborah A.; Taylor, Douglas R.; Sloan, Daniel B.

    2016-01-01

    Rates of sequence evolution in plastid genomes are generally low, but numerous angiosperm lineages exhibit accelerated evolutionary rates in similar subsets of plastid genes. These genes include clpP1 and accD, which encode components of the caseinolytic protease (CLP) and acetyl-coA carboxylase (ACCase) complexes, respectively. Whether these extreme and repeated accelerations in rates of plastid genome evolution result from adaptive change in proteins (i.e., positive selection) or simply a loss of functional constraint (i.e., relaxed purifying selection) is a source of ongoing controversy. To address this, we have taken advantage of the multiple independent accelerations that have occurred within the genus Silene (Caryophyllaceae) by examining phylogenetic and population genetic variation in the nuclear genes that encode subunits of the CLP and ACCase complexes. We found that, in species with accelerated plastid genome evolution, the nuclear-encoded subunits in the CLP and ACCase complexes are also evolving rapidly, especially those involved in direct physical interactions with plastid-encoded proteins. A massive excess of nonsynonymous substitutions between species relative to levels of intraspecific polymorphism indicated a history of strong positive selection (particularly in CLP genes). Interestingly, however, some species are likely undergoing loss of the native (heteromeric) plastid ACCase and putative functional replacement by a duplicated cytosolic (homomeric) ACCase. Overall, the patterns of molecular evolution in these plastid–nuclear complexes are unusual for anciently conserved enzymes. They instead resemble cases of antagonistic coevolution between pathogens and host immune genes. We discuss a possible role of plastid–nuclear conflict as a novel cause of accelerated evolution. PMID:27707788

  18. Back to the biology in systems biology: what can we learn from biomolecular networks?

    PubMed

    Huang, Sui

    2004-02-01

    Genome-scale molecular networks, including protein interaction and gene regulatory networks, have taken centre stage in the investigation of the burgeoning disciplines of systems biology and biocomplexity. What do networks tell us? Some see in networks simply the comprehensive, detailed description of all cellular pathways, others seek in networks simple, higher-order qualities that emerge from the collective action of the individual pathways. This paper discusses networks from an encompassing category of thinking that will hopefully help readers to bridge the gap between these polarised viewpoints. Systems biology so far has emphasised the characterisation of large pathway maps. Now one has to ask: where is the actual biology in 'systems biology'? As structures midway between genome and phenome, and by serving as an 'extended genotype' or an 'elementary phenotype', molecular networks open a new window to the study of evolution and gene function in complex living systems. For the study of evolution, features in network topology offer a novel starting point for addressing the old debate on the relative contributions of natural selection versus intrinsic constraints to a particular trait. To study the function of genes, it is necessary not only to see them in the context of gene networks, but also to reach beyond describing network topology and to embrace the global dynamics of networks that will reveal higher-order, collective behaviour of the interacting genes. This will pave the way to understanding how the complexity of genome-wide molecular networks collapses to produce a robust whole-cell behaviour that manifests as tightly-regulated switching between distinct cell fates - the basis for multicellular life.

  19. The innate immune repertoire in cnidaria--ancestral complexity and stochastic gene loss.

    PubMed

    Miller, David J; Hemmrich, Georg; Ball, Eldon E; Hayward, David C; Khalturin, Konstantin; Funayama, Noriko; Agata, Kiyokazu; Bosch, Thomas C G

    2007-01-01

    Characterization of the innate immune repertoire of extant cnidarians is of both fundamental and applied interest--it not only provides insights into the basic immunological 'tool kit' of the common ancestor of all animals, but is also likely to be important in understanding the global decline of coral reefs that is presently occurring. Recently, whole genome sequences became available for two cnidarians, Hydra magnipapillata and Nematostella vectensis, and large expressed sequence tag (EST) datasets are available for these and for the coral Acropora millepora. To better understand the basis of innate immunity in cnidarians, we scanned the available EST and genomic resources for some of the key components of the vertebrate innate immune repertoire, focusing on the Toll/Toll-like receptor (TLR) and complement pathways. A canonical Toll/TLR pathway is present in representatives of the basal cnidarian class Anthozoa, but neither a classic Toll/TLR receptor nor a conventional nuclear factor (NF)-kappaB could be identified in the anthozoan Hydra. Moreover, the detection of complement C3 and several membrane attack complex/perforin domain (MAC/PF) proteins suggests that a prototypic complement effector pathway may exist in anthozoans, but not in hydrozoans. Together with data for several other gene families, this implies that Hydra may have undergone substantial secondary gene loss during evolution. Such losses are not confined to Hydra, however, and at least one MAC/PF gene appears to have been lost from Nematostella. Consideration of these patterns of gene distribution underscores the likely significance of gene loss during animal evolution whilst indicating ancient origins for many components of the vertebrate innate immune system.

  20. KSC-02pd2040

    NASA Image and Video Library

    2002-10-23

    KENNEDY SPACE CENTER, FLA. - Workers at the base of the launch tower on NASA's Space Launch Complex 2 (SLC-2), Vandenberg Air Force Base, Calif., watch as the interstage of the Delta II rocket is lifted up the tower. The interstage will eventually house the second stage and will be mated with the first stage. The rocket will carry the ICESat and CHIPSat satellites into Earth orbits. ICESat is a 661-pound satellite known as Geoscience Laser Altimeter System (GLAS) that will revolutionize our understanding of ice and its role in global climate change and how we protect and understand our home planet. It will help scientists determine if the global sea level is rising or falling. It will look at the ice sheets that blanket the Earth's poles to see if they are growing or shrinking. It will assist in developing an understanding of how changes in the Earth's atmosphere and climate effect polar ice masses and global sea level. CHIPSat, a suitcase-size 131-pound satellite, will provide invaluable information into the origin, physical processes and properties of the hot gas contained in the interstellar medium. This can provide important clues about the formation and evolution of galaxies since the interstellar medium literally contains the seeds of future stars. The Delta II launch is scheduled for Jan. 11 between 4:45 p.m. - 5:30 p.m. PST.

  1. Global analysis of river systems: from Earth system controls to Anthropocene syndromes.

    PubMed Central

    Meybeck, Michel

    2003-01-01

    Continental aquatic systems from rivers to the coastal zone are considered within two perspectives: (i) as a major link between the atmosphere, pedosphere, biosphere and oceans within the Earth system with its Holocene dynamics, and (ii) as water and aquatic biota resources progressively used and transformed by humans. Human pressures have now reached a state where the continental aquatic systems can no longer be considered as being controlled by only Earth system processes, thus defining a new era, the Anthropocene. Riverine changes, now observed at the global scale, are described through a first set of syndromes (flood regulation, fragmentation, sediment imbalance, neo-arheism, salinization, chemical contamination, acidification, eutrophication and microbial contamination) with their related causes and symptoms. These syndromes have direct influences on water uses, either positive or negative. They also modify some Earth system key functions such as sediment, water, nutrient and carbon balances, greenhouse gas emissions and aquatic biodiversity. Evolution of river syndromes over the past 2000 years is complex: it depends upon the stages of regional human development and on natural conditions, as illustrated here for the chemical contamination syndrome. River damming, eutrophication and generalized decrease of river flow due to irrigation are some of the other global features of river changes. Future management of river systems should also consider these long-term impacts on the Earth system. PMID:14728790

  2. Evolution of cytochrome bc complexes: from membrane-anchored dehydrogenases of ancient bacteria to triggers of apoptosis in vertebrates

    PubMed Central

    Dibrova, Daria V.; Cherepanov, Dmitry A.; Galperin, Michael Y.; Skulachev, Vladimir P.; Mulkidjanian, Armen Y.

    2013-01-01

    This review traces the evolution of the cytochrome bc complexes from their early spread among prokaryotic lineages and up to the mitochondrial cytochrome bc1 complex (complex III) and its role in apoptosis. The results of phylogenomic analysis suggest that the bacterial cytochrome b6f-type complexes with short cytochromes b were the ancient form that preceded in evolution the cytochrome bc1-type complexes with long cytochromes b. The common ancestor of the b6f-type and the bc1-type complexes probably resembled the b6f-type complexes found in Heliobacteriaceae and in some Planctomycetes. Lateral transfers of cytochrome bc operons could account for the several instances of acquisition of different types of bacterial cytochrome bc complexes by archaea. The gradual oxygenation of the atmosphere could be the key evolutionary factor that has driven further divergence and spread of the cytochrome bc complexes. On one hand, oxygen could be used as a very efficient terminal electron acceptor. On the other hand, auto-oxidation of the components of the bc complex results in the generation of reactive oxygen species (ROS), which necessitated diverse adaptations of the b6f-type and bc1-type complexes, as well as other, functionally coupled proteins. A detailed scenario of the gradual involvement of the cardiolipin-containing mitochondrial cytochrome bc1 complex into the intrinsic apoptotic pathway is proposed, where the functioning of the complex as an apoptotic trigger is viewed as a way to accelerate the elimination of the cells with irreparably damaged, ROS-producing mitochondria. PMID:23871937

  3. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant.

    PubMed

    Franks, S J; Weis, A E

    2008-09-01

    Climate change is likely to spur rapid evolution, potentially altering integrated suites of life-history traits. We examined evolutionary change in multiple life-history traits of the annual plant Brassica rapa collected before and after a recent 5-year drought in southern California. We used a direct approach to examining evolutionary change by comparing ancestors and descendants. Collections were made from two populations varying in average soil moisture levels, and lines propagated from the collected seeds were grown in a greenhouse and experimentally subjected to conditions simulating either drought (short growing season) or high precipitation (long growing season) years. Comparing ancestors and descendants, we found that the drought caused many changes in life-history traits, including a shift to earlier flowering, longer duration of flowering, reduced peak flowering and greater skew of the flowering schedule. Descendants had thinner stems and fewer leaf nodes at the time of flowering than ancestors, indicating that the drought selected for plants that flowered at a smaller size and earlier ontogenetic stage rather than selecting for plants to develop more rapidly. Thus, there was not evidence for absolute developmental constraints to flowering time evolution. Common principal component analyses showed substantial differences in the matrix of trait covariances both between short and long growing season treatments and between populations. Although the covariances matrices were generally similar between ancestors and descendants, there was evidence for complex evolutionary changes in the relationships among the traits, and these changes depended on the population and treatment. These results show that a full appreciation of the impacts of global change on phenotypic evolution will entail an understanding of how changes in climatic conditions affect trait values and the structure of relationships among traits.

  4. Orchid conservation: further links.

    PubMed

    Fay, Michael F

    2016-07-01

    Due in great part to their often complex interactions with mycorrhizal fungi, pollinators and host trees, Orchidaceae present particular challenges for conservation. Furthermore, orchids, as potentially the largest family of angiosperms with >26000 species, species complexes and frequent hybrid formation, are complex to catalogue. Following a highlight in 2015, a further seven papers focusing on orchids, their interactions with beneficial organisms, pollinators and mycorrhiza, and other factors relating to their conservation, including threats from human utilization and changing land use, are presented here. The production of an online flora of all known plants and an assessment of the conservation status of all known plant species as far as possible, to guide conservation action are the first two targets of the Global Strategy for Plant Conservation Without knowing how many species there are and how they should be circumscribed, neither of these targets is achievable. Orchids are a fascinating subject for fundamental research with rapid species evolution, specific organ structure and development, but they also suffer from high levels of threat. Effective orchid conservation must take account of the beneficial interactions with fungi and pollinators and the potentially detrimental effects of over-collection and changes in land use. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The Evolution and Increasing Complexity of the Resident Assistant Role in the United States from Colonial to Modern Times

    ERIC Educational Resources Information Center

    Boone, Katherine B.; Davidson, Denise L.; Bauman, Mark

    2016-01-01

    The evolution of the resident assistant position and its history are important to understanding its increasing complexities. In this article we examine how court cases and federal legislation, along with changes in popular culture, have altered and shaped the role of the resident assistant. Our premise is that this role, originally relatively…

  6. Geometry of Quantum Computation with Qudits

    PubMed Central

    Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710

  7. Normal and abnormal evolution of argon metastable density in high-density plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr; You, S. J., E-mail: sjyou@cnu.ac.kr

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution hasmore » seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.« less

  8. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  9. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of Oxygen. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernovae (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  10. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzuku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and SNIa enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that accretion of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into. and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  11. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5).

    PubMed

    Aspeborg, Henrik; Coutinho, Pedro M; Wang, Yang; Brumer, Harry; Henrissat, Bernard

    2012-09-20

    The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at http://www.cazy.org/GH5.html.

  12. Time Evolution of Integrated Precipitable Water over French Polynesia from 1974 to 2017: Metrological Analysis and Correlation with Climate Evolution

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Barriot, J. P.; Maamaatuaiahutapu, K.; Sichoix, L.; Xu, G., Sr.

    2017-12-01

    In order to better understand and predict the complex meteorological context of French Polynesia, we focus on the time evolution of Integrated Precipitable Water (PW) using Radiosoundings (RS) data from 1974 to 2017. In a first step, we make a comparison over selected months between the PW estimate reconstructed from raw two seconds acquisition and the PW estimate reconstructed from the highly compressed and undersampled Integrated Global Radiosonde Archive (IGRA). In a second step, we make a comparison with other techniques of PW acquisition (radio delays, temperature of sky, infrared bands absorption) in order to assess the intrinsic biases of RS acquisition. In a last step, we analyze the PW time series in our area validated at the light of the first and second step, w.r.t seasonality (dry season and wet season) and spatial location. During the wet season (November to April), the PW values are higher than the corresponding values observed during the dry season (May to October). The PW values are smaller with higher latitudes, but there are higher PW values in Tahiti than in other islands because of the presence of the South Pacific Convergence Zone (SPCZ) around Tahiti. All the PW time series show the same uptrend in French Polynesia in recent years. This study provides further evidence that the PW time series derived from RS can be assimilated in weather forecasting and climate warming models.

  13. A characterization of the coupled evolution of grain fabric and pore space using complex networks: Pore connectivity and optimized flows in the presence of shear bands

    NASA Astrophysics Data System (ADS)

    Russell, Scott; Walker, David M.; Tordesillas, Antoinette

    2016-03-01

    A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.

  14. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts

    PubMed Central

    Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Holmes, Edward C.; Bourhy, Hervé

    2016-01-01

    The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics. PMID:27977811

  15. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts.

    PubMed

    Troupin, Cécile; Dacheux, Laurent; Tanguy, Marion; Sabeta, Claude; Blanc, Hervé; Bouchier, Christiane; Vignuzzi, Marco; Duchene, Sebastián; Holmes, Edward C; Bourhy, Hervé

    2016-12-01

    The natural evolution of rabies virus (RABV) provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics.

  16. A global perspective on Campanulaceae: Biogeographic, genomic, and floral evolution.

    PubMed

    Crowl, Andrew A; Miles, Nicholas W; Visger, Clayton J; Hansen, Kimberly; Ayers, Tina; Haberle, Rosemarie; Cellinese, Nico

    2016-02-01

    The Campanulaceae are a diverse clade of flowering plants encompassing more than 2300 species in myriad habitats from tropical rainforests to arctic tundra. A robust, multigene phylogeny, including all major lineages, is presented to provide a broad, evolutionary perspective of this cosmopolitan clade. We used a phylogenetic framework, in combination with divergence dating, ancestral range estimation, chromosome modeling, and morphological character reconstruction analyses to infer phylogenetic placement and timing of major biogeographic, genomic, and morphological changes in the history of the group and provide insights into the diversification of this clade across six continents. Ancestral range estimation supports an out-of-Africa diversification following the Cretaceous-Tertiary extinction event. Chromosomal modeling, with corroboration from the distribution of synonymous substitutions among gene duplicates, provides evidence for as many as 20 genome-wide duplication events before large radiations. Morphological reconstructions support the hypothesis that switches in floral symmetry and anther dehiscence were important in the evolution of secondary pollen presentation mechanisms. This study provides a broad, phylogenetic perspective on the evolution of the Campanulaceae clade. The remarkable habitat diversity and cosmopolitan distribution of this lineage appears to be the result of a complex history of genome duplications and numerous long-distance dispersal events. We failed to find evidence for an ancestral polyploidy event for this clade, and our analyses indicate an ancestral base number of nine for the group. This study will serve as a framework for future studies in diverse areas of research in Campanulaceae. © 2016 Botanical Society of America.

  17. Human mobility in an emerging epidemic: a key aspect for response planning

    NASA Astrophysics Data System (ADS)

    Poletto, Chiara; Bajardi, Paolo; Colizza, Vittoria; Ramasco, Jose J.; Tizzoni, Michele; Vespignani, Alessandro

    2010-03-01

    Human mobility and interactions represent key ingredients in the spreading dynamics of an infectious disease. The flows of traveling people form a network characterized by complex features, such as strong topological and traffic heterogeneities, that unfolds at different temporal and spatial scales, from short ranges to the global scale. Computational models can be developed that integrate detailed network structures based on demographic and mobility data, in order to simulate the spatial evolution of an epidemic. Focusing on the recent A(H1N1) influenza pandemic as a paradigmatic example, these approaches allow the assessment of the interplay between individual mobility and epidemic dynamics, quantifying the effects of travel restrictions in delaying the epidemic spread and the role of mobility as an additional source of information for the understanding of the early outbreak.

  18. 76 FR 56770 - Food and Drug Administration/Xavier University Global Outsourcing Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    ..., Pharma Case Study on How to Manage a Global Complex Supply Chain, USP : Good Storage and Distribution... through topics such as Strategic Procurement, End-to-End lifecycle product management, Managing Global Complex Supply Chains, and other topics. The experience level of our audience has fostered engaged dialog...

  19. Mildew-Omics: How Global Analyses Aid the Understanding of Life and Evolution of Powdery Mildews.

    PubMed

    Bindschedler, Laurence V; Panstruga, Ralph; Spanu, Pietro D

    2016-01-01

    The common powdery mildew plant diseases are caused by ascomycete fungi of the order Erysiphales. Their characteristic life style as obligate biotrophs renders functional analyses in these species challenging, mainly because of experimental constraints to genetic manipulation. Global large-scale ("-omics") approaches are thus particularly valuable and insightful for the characterisation of the life and evolution of powdery mildews. Here we review the knowledge obtained so far from genomic, transcriptomic and proteomic studies in these fungi. We consider current limitations and challenges regarding these surveys and provide an outlook on desired future investigations on the basis of the various -omics technologies.

  20. Considering the Role of "Need for Cognition" in Students' Acceptance of Climate Change & Evolution

    ERIC Educational Resources Information Center

    Kudrna, Jeremy; Shore, Marta; Wassenberg, Deena

    2015-01-01

    Anthropogenic climate change (ACC) and evolution are examples of issues that are perceived differently by scientists and the general public. Within the scientific community, there are clear consensuses that human activities are increasing global temperatures (ACC) and that evolutionary mechanisms have led to the biodiversity of life on Earth…

  1. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Wenhu; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084; Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale.more » Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.« less

  2. Global Magnetospheric Evolution Effected by Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi

    2016-04-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  3. Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection

    NASA Astrophysics Data System (ADS)

    No, Jincheol; Choe, Gwangson; Park, Geunseok

    2014-05-01

    The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.

  4. Evolution of tsunami warning systems and products.

    PubMed

    Bernard, Eddie; Titov, Vasily

    2015-10-28

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. © 2015 The Authors.

  5. Evolution of tsunami warning systems and products

    PubMed Central

    Bernard, Eddie; Titov, Vasily

    2015-01-01

    Each year, about 60 000 people and $4 billion (US$) in assets are exposed to the global tsunami hazard. Accurate and reliable tsunami warning systems have been shown to provide a significant defence for this flooding hazard. However, the evolution of warning systems has been influenced by two processes: deadly tsunamis and available technology. In this paper, we explore the evolution of science and technology used in tsunami warning systems, the evolution of their products using warning technologies, and offer suggestions for a new generation of warning products, aimed at the flooding nature of the hazard, to reduce future tsunami impacts on society. We conclude that coastal communities would be well served by receiving three standardized, accurate, real-time tsunami warning products, namely (i) tsunami energy estimate, (ii) flooding maps and (iii) tsunami-induced harbour current maps to minimize the impact of tsunamis. Such information would arm communities with vital flooding guidance for evacuations and port operations. The advantage of global standardized flooding products delivered in a common format is efficiency and accuracy, which leads to effectiveness in promoting tsunami resilience at the community level. PMID:26392620

  6. Evolution of mixing width induced by general Rayleigh-Taylor instability.

    PubMed

    Zhang, You-Sheng; He, Zhi-Wei; Gao, Fu-Jie; Li, Xin-Liang; Tian, Bao-Lin

    2016-06-01

    Turbulent mixing induced by Rayleigh-Taylor (RT) instability occurs ubiquitously in many natural phenomena and engineering applications. As the simplest and primary descriptor of the mixing process, the evolution of mixing width of the mixing zone plays a notable role in the flows. The flows generally involve complex varying acceleration histories and widely varying density ratios, two dominant factors affecting the evolution of mixing width. However, no satisfactory theory for predicting the evolution has yet been established. Here a theory determining the evolution of mixing width in general RT flows is established to reproduce, first, all of the documented experiments conducted for diverse (i.e., constant, impulsive, oscillating, decreasing, increasing, and complex) acceleration histories and all density ratios. The theory is established in terms of the conservation principle, with special consideration given to the asymmetry of the volume-averaged density fields occurring in actual flows. The results reveal the sensitivity or insensitivity of the evolution of a mixing front of a neighboring light or heavy fluid to the degree of asymmetry and thus explain the distinct evolutions in two experiments with the same configurations.

  7. ComplexContact: a web server for inter-protein contact prediction using deep learning.

    PubMed

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-05-22

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  8. The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity

    PubMed Central

    DeFelipe, Javier

    2011-01-01

    The tremendous expansion and the differentiation of the neocortex constitute two major events in the evolution of the mammalian brain. The increase in size and complexity of our brains opened the way to a spectacular development of cognitive and mental skills. This expansion during evolution facilitated the addition of microcircuits with a similar basic structure, which increased the complexity of the human brain and contributed to its uniqueness. However, fundamental differences even exist between distinct mammalian species. Here, we shall discuss the issue of our humanity from a neurobiological and historical perspective. PMID:21647212

  9. The evolution of the neocortex in mammals: intrinsic and extrinsic contributions to the cortical phenotype.

    PubMed

    Karlen, Sarah J; Krubitzer, Leah

    2006-01-01

    The neocortex is that portion of the brain that is involved in volitional motor control, perception, cognition and a number of other complex behaviours exhibited by mammals, including humans. Indeed, the increase in the size of the cortical sheet and cortical field number is one of the hallmarks of human brain evolution. Fossil records and comparative studies of the neocortex indicate that early mammalian neocortices were composed of only a few parts or cortical fields, and that in some lineages such as primates, the neocortex expanded dramatically. More significantly, the number of cortical fields increased and the connectivity between cortical fields became more complex. While we do not know the exact transformation between this type of increase in cortical field number and connectivity; and the emergence of complex behaviours like those mentioned above, we know that species that have large neocorticies with multiple parts generally have more complex behaviours, both overt and covert. Although a number of inroads have been made into understanding how neurons in the neocortex respond to a variety of stimuli, the micro and macro circuitry of particular neocortical fields, and the molecular developmental events that construct current organization, very little is known about how more cortical fields are added in evolution. In particular, we do not know the rules of change, nor the constraints imposed on evolving nervous systems that dictate the particular phenotype that will ultimately emerge. One reason why these issues are unresolved is that the brain is a compromise between existing genetic constraints and the need to adapt. Thus, the functions that the brain generates are absolutely imperfect, although functionally optimized. This makes it very difficult to determine the rules of construction, to generate viable computational models of brain evolution, and to predict the direction of changes that may occur over time. Despite these obstacles, it is still possible to study the evolution of the neocortex. One way is to study the products of the evolutionary process--extant mammal brains-and to make inferences about the process. The second way to study brain evolution is to examine the developmental mechanisms that give rise to complex brains. We have begun to test our theories regarding cortical evolution, generated from comparative studies, by 'tweaking' in a developing nervous system what we believe is naturally being modified in evolution. Our goals are to identify the constraints imposed on the evolving neocortex, to disentangle the genetic and activity dependent mechanisms that give rise to complex brains, and ultimately to produce a cortical phenotype that is consistent with what would naturally occur in evolution.

  10. Root evolution at the base of the lycophyte clade: insights from an Early Devonian lycophyte

    PubMed Central

    Matsunaga, Kelly K. S.; Tomescu, Alexandru M. F.

    2016-01-01

    Background and Aims The evolution of complex rooting systems during the Devonian had significant impacts on global terrestrial ecosystems and the evolution of plant body plans. However, detailed understanding of the pathways of root evolution and the architecture of early rooting systems is currently lacking. We describe the architecture and resolve the structural homology of the rooting system of an Early Devonian basal lycophyte. Insights gained from these fossils are used to address lycophyte root evolution and homology. Methods Plant fossils are preserved as carbonaceous compressions at Cottonwood Canyon (Wyoming), in the Lochkovian–Pragian (∼411 Ma; Early Devonian) Beartooth Butte Formation. We analysed 177 rock specimens and documented morphology, cuticular anatomy and structural relationships, as well as stratigraphic position and taphonomic conditions. Key Results The rooting system of the Cottonwood Canyon lycophyte is composed of modified stems that bear fine, dichotomously branching lateral roots. These modified stems, referred to as root-bearing axes, are produced at branching points of the above-ground shoot system. Root-bearing axes preserved in growth position exhibit evidence of positive gravitropism, whereas the lateral roots extend horizontally. Consistent recurrence of these features in successive populations of the plant preserved in situ demonstrates that they represent constitutive structural traits and not opportunistic responses of a flexible developmental programme. Conclusions This is the oldest direct evidence for a rooting system preserved in growth position. These rooting systems, which can be traced to a parent plant, include some of the earliest roots known to date and demonstrate that substantial plant–substrate interactions were under way by Early Devonian time. The morphological relationships between stems, root-bearing axes and roots corroborate evidence that positive gravitropism and root identity were evolutionarily uncoupled in lycophytes, and challenge the hypothesis that roots evolved from branches of the above-ground axial system, suggesting instead that lycophyte roots arose as a novel organ. PMID:26921730

  11. Controlled experiments of hillslope co-evolution at the Biosphere 2 Landscape Evolution Observatory: toward prediction of coupled hydrological, biogeochemical, and ecological change

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Sengupta, A.; Pangle, L.; Abramson, N.; Barron-Gafford, G.; Breshears, D. D.; Bugaj, A.; Chorover, J.; Dontsova, K.; Durcik, M.; Ferre, T. P. A.; Harman, C. J.; Hunt, E.; Huxman, T. E.; Kim, M.; Maier, R. M.; Matos, K.; Alves Meira Neto, A.; Meredith, L. K.; Monson, R. K.; Niu, G. Y.; Pelletier, J. D.; Rasmussen, C.; Ruiz, J.; Saleska, S. R.; Schaap, M. G.; Sibayan, M.; Tuller, M.; Van Haren, J. L. M.; Wang, Y.; Zeng, X.; Troch, P. A.

    2017-12-01

    Understanding the process interactions and feedbacks among water, microbes, plants, and porous geological media is crucial for improving predictions of the response of Earth's critical zone to future climatic conditions. However, the integrated co-evolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are typically limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled lab and uncontrolled field studies, the University of Arizona - Biosphere 2 built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO consists of three replicated, 330-m2 hillslope landscapes inside a 5000-m2 environmentally controlled facility. The engineered landscapes contain 1-m depth of basaltic tephra ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a dense sensor network capable of resolving water, carbon, and energy cycling processes at sub-meter to whole-landscape scale. Embedded sampling devices allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers applied with the artificial rainfall. LEO is now fully operational and intensive forcing experiments have been launched. While operating the massive infrastructure poses significant challenges, LEO has demonstrated the capacity of tracking multi-scale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and restricted soil coring data are already providing insights into the tight linkages between water flow, weathering, and (micro-) biological community development during incipient landscape evolution. Over the years to come, these interacting processes are anticipated to drive the model systems to increasingly complex states, potentially perturbed by changes in climatic forcing. By intensively monitoring the evolutionary trajectory, integrating data with models, and fostering community-wide collaborations, we envision that emergent landscape structures and functions can be linked and significant progress can be made toward predicting the coupled hydro-biogeochemical and ecological responses to global change.

  12. The Tempio della Consolazione in Todi: Integrated Geomatic Techniques for a Monument Description Including Structural Damage Evolution in Time

    NASA Astrophysics Data System (ADS)

    Radicioni, F.; Matracchi, P.; Brigante, R.; Brozzi, A.; Cecconi, M.; Stoppini, A.; Tosi, G.

    2017-05-01

    The Tempio della Consolazione in Todi (16th cent.) has always been one of the most significant symbols of the Umbrian landscape. Since the first times after its completion (1606) the structure has exhibited evidences of instability, due to foundation subsiding and/or seismic activity. Structural and geotechnical countermeasures have been undertaken on the Tempio and its surroundings from the 17th century until recent times. Until now a truly satisfactory analysis of the overall deformation and attitude of the building has not been performed, since the existing surveys record the overhangs of the pillars, the crack pattern or the subsidence over limited time spans. Describing the attitude of the whole church is in fact a complex operation due to the architectural character of the building, consisting of four apses (three polygonal and one semicircular) covered with half domes, which surround the central area with the large dome. The present research aims to fill the gap of knowledge with a global study based on geomatic techniques for an accurate 3D reconstruction of geometry and attitude, integrated with a historical research on damage and interventions and a geotechnical analysis. The geomatic survey results from the integration of different techniques: GPS-GNSS for global georeferencing, laser scanning and digital photogrammetry for an accurate 3D reconstruction, high precision total station and geometric leveling for a direct survey of deformations and cracks, and for the alignment of the laser scans. The above analysis allowed to assess the dynamics of the cracks occurred in the last 25 years by a comparison with a previous survey. From the photographic colour associated to the point cloud was also possible to map the damp patches showing on the domes intrados, mapping their evolution over the last years.

  13. HIV-1 subtype A gag variability and epitope evolution.

    PubMed

    Abidi, Syed Hani; Kalish, Marcia L; Abbas, Farhat; Rowland-Jones, Sarah; Ali, Syed

    2014-01-01

    The aim of this study was to examine the course of time-dependent evolution of HIV-1 subtype A on a global level, especially with respect to the dynamics of immunogenic HIV gag epitopes. We used a total of 1,893 HIV-1 subtype A gag sequences representing a timeline from 1985 through 2010, and 19 different countries in Africa, Europe and Asia. The phylogenetic relationship of subtype A gag and its epidemic dynamics was analysed through a Maximum Likelihood tree and Bayesian Skyline plot, genomic variability was measured in terms of G → A substitutions and Shannon entropy, and the time-dependent evolution of HIV subtype A gag epitopes was examined. Finally, to confirm observations on globally reported HIV subtype A sequences, we analysed the gag epitope data from our Kenyan, Pakistani, and Afghan cohorts, where both cohort-specific gene epitope variability and HLA restriction profiles of gag epitopes were examined. The most recent common ancestor of the HIV subtype A epidemic was estimated to be 1956 ± 1. A period of exponential growth began about 1980 and lasted for approximately 7 years, stabilized for 15 years, declined for 2-3 years, then stabilized again from about 2004. During the course of evolution, a gradual increase in genomic variability was observed that peaked in 2005-2010. We observed that the number of point mutations and novel epitopes in gag also peaked concurrently during 2005-2010. It appears that as the HIV subtype A epidemic spread globally, changing population immunogenetic pressures may have played a role in steering immune-evolution of this subtype in new directions. This trend is apparent in the genomic variability and epitope diversity of HIV-1 subtype A gag sequences.

  14. Using palaeoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Phipps, Steven; King, Matt; Roberts, Jason; White, Duanne

    2017-04-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modelling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how palaeoclimate data can improve our ability to predict the future evolution of the AIS. A 50-member perturbed-physics ensemble is generated, spanning uncertainty in the parameterisations of three key physical processes within the model: (i) the stress balance within the ice sheet, (ii) basal sliding and (iii) calving of ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Palaeoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  15. Using paleoclimate data to improve models of the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    King, M. A.; Phipps, S. J.; Roberts, J. L.; White, D.

    2016-12-01

    Ice sheet models are the most descriptive tools available to simulate the future evolution of the Antarctic Ice Sheet (AIS), including its contribution towards changes in global sea level. However, our knowledge of the dynamics of the coupled ice-ocean-lithosphere system is inevitably limited, in part due to a lack of observations. Furthemore, to build computationally efficient models that can be run for multiple millennia, it is necessary to use simplified descriptions of ice dynamics. Ice sheet modeling is therefore an inherently uncertain exercise. The past evolution of the AIS provides an opportunity to constrain the description of physical processes within ice sheet models and, therefore, to constrain our understanding of the role of the AIS in driving changes in global sea level. We use the Parallel Ice Sheet Model (PISM) to demonstrate how paleoclimate data can improve our ability to predict the future evolution of the AIS. A large, perturbed-physics ensemble is generated, spanning uncertainty in the parameterizations of four key physical processes within ice sheet models: ice rheology, ice shelf calving, and the stress balances within ice sheets and ice shelves. A Latin hypercube approach is used to optimally sample the range of uncertainty in parameter values. This perturbed-physics ensemble is used to simulate the evolution of the AIS from the Last Glacial Maximum ( 21,000 years ago) to present. Paleoclimate records are then used to determine which ensemble members are the most realistic. This allows us to use data on past climates to directly constrain our understanding of the past contribution of the AIS towards changes in global sea level. Critically, it also allows us to determine which ensemble members are likely to generate the most realistic projections of the future evolution of the AIS.

  16. Synergy from reproductive division of labor and genetic complexity drive the evolution of sex.

    PubMed

    Jaffe, Klaus

    2018-04-16

    Computer experiments that mirror the evolutionary dynamics of sexual and asexual organisms as they occur in nature were used to test features proposed to explain the evolution of sexual recombination. Results show that this evolution is better described as a network of interactions between possible sexual forms, including diploidy, thelytoky, facultative sex, assortation, bisexuality, and division of labor between the sexes, rather than a simple transition from parthenogenesis to sexual recombination. Diploidy was shown to be fundamental for the evolution of sex; bisexual reproduction emerged only among anisogamic diploids with a synergistic division of reproductive labor; and facultative sex was more likely to evolve among haploids practicing assortative mating. Looking at the evolution of sex as a complex system through individual-based simulations explains better the diversity of sexual strategies known to exist in nature, compared to classical analytical models.

  17. Evolution of the social network of scientific collaborations

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo; Jeong, Hawoong; Neda, Zoltan; Ravasz, Erzsebet; Schubert, Andras; Vicsek, Tamas

    2002-03-01

    The co-authorship network of scientists represents a prototype of complex evolving networks. By mapping the electronic database containing all relevant journals in mathematics and neuro-science for an eight-year period (1991-98), we infer the dynamic and the structural mechanisms that govern the evolution and topology of this complex system. First, empirical measurements allow us to uncover the topological measures that characterize the network at a given moment, as well as the time evolution of these quantities. The results indicate that the network is scale-free, and that the network evolution is governed by preferential attachment, affecting both internal and external links. However, in contrast with most model predictions the average degree increases in time, and the node separation decreases. Second, we propose a simple model that captures the network's time evolution. Third, numerical simulations are used to uncover the behavior of quantities that could not be predicted analytically.

  18. Global University Rankings: Implications in General and for Australia

    ERIC Educational Resources Information Center

    Marginson, Simon

    2007-01-01

    Global university rankings have arrived, and though still in a process of rapid evolution, they are likely to substantially influence the long-term development of higher education across the world. The inclusions, definitions, methods, implications and effects are of great importance. This paper analyses and critiques the two principal rankings…

  19. The Evolution of Global Positioning System (GPS) Technology.

    ERIC Educational Resources Information Center

    Kumar, Sameer; Moore, Kevin B.

    2002-01-01

    Describes technological advances in the Global Positioning System (GPS), which is also known as the NAVSTAR GPS satellite constellation program developed in 1937, and changes in the nature of our world by GPS in the areas of agriculture, health, military, transportation, environment, wildlife biology, surveying and mapping, space applications, and…

  20. Changing Teachers' Conceptualizations of Teaching for Citizenship in a Globalized World

    ERIC Educational Resources Information Center

    Duty, Lisa Marie

    2010-01-01

    This study contributes to the broader scholarly discussion on global citizenship education by having examined and documented an inquiry into three "particular" secondary social studies teachers' initial conceptualizations of teaching for citizenship, reporting on the evolution of their constructions through the negotiation of tensions, and…

Top