Topology Trivialization and Large Deviations for the Minimum in the Simplest Random Optimization
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.; Le Doussal, Pierre
2014-01-01
Finding the global minimum of a cost function given by the sum of a quadratic and a linear form in N real variables over (N-1)-dimensional sphere is one of the simplest, yet paradigmatic problems in Optimization Theory known as the "trust region subproblem" or "constraint least square problem". When both terms in the cost function are random this amounts to studying the ground state energy of the simplest spherical spin glass in a random magnetic field. We first identify and study two distinct large-N scaling regimes in which the linear term (magnetic field) leads to a gradual topology trivialization, i.e. reduction in the total number {N}_{tot} of critical (stationary) points in the cost function landscape. In the first regime {N}_{tot} remains of the order N and the cost function (energy) has generically two almost degenerate minima with the Tracy-Widom (TW) statistics. In the second regime the number of critical points is of the order of unity with a finite probability for a single minimum. In that case the mean total number of extrema (minima and maxima) of the cost function is given by the Laplace transform of the TW density, and the distribution of the global minimum energy is expected to take a universal scaling form generalizing the TW law. Though the full form of that distribution is not yet known to us, one of its far tails can be inferred from the large deviation theory for the global minimum. In the rest of the paper we show how to use the replica method to obtain the probability density of the minimum energy in the large-deviation approximation by finding both the rate function and the leading pre-exponential factor.
Huff, Mark J.; Balota, David A.; Minear, Meredith; Aschenbrenner, Andrew J.; Duchek, Janet M.
2015-01-01
A task-switching paradigm was used to examine differences in attentional control across younger adults, middle-aged adults, healthy older adults, and individuals classified in the earliest detectable stage of Alzheimer's disease (AD). A large sample of participants (570) completed a switching task in which participants were cued to classify the letter (consonant/vowel) or number (odd/even) task-set dimension of a bivalent stimulus (e.g., A 14), respectively. A Pure block consisting of single-task trials and a Switch block consisting of nonswitch and switch trials were completed. Local (switch vs. nonswitch trials) and global (nonswitch vs. pure trials) costs in mean error rates, mean response latencies, underlying reaction time distributions, along with stimulus-response congruency effects were computed. Local costs in errors were group invariant, but global costs in errors systematically increased as a function of age and AD. Response latencies yielded a strong dissociation: Local costs decreased across groups whereas global costs increased across groups. Vincentile distribution analyses revealed that the dissociation of local and global costs primarily occurred in the slowest response latencies. Stimulus-response congruency effects within the Switch block were particularly robust in accuracy in the very mild AD group. We argue that the results are consistent with the notion that the impaired groups show a reduced local cost because the task sets are not as well tuned, and hence produce minimal cost on switch trials. In contrast, global costs increase because of the additional burden on working memory of maintaining two task sets. PMID:26652720
Global cost of correcting vision impairment from uncorrected refractive error.
Fricke, T R; Holden, B A; Wilson, D A; Schlenther, G; Naidoo, K S; Resnikoff, S; Frick, K D
2012-10-01
To estimate the global cost of establishing and operating the educational and refractive care facilities required to provide care to all individuals who currently have vision impairment resulting from uncorrected refractive error (URE). The global cost of correcting URE was estimated using data on the population, the prevalence of URE and the number of existing refractive care practitioners in individual countries, the cost of establishing and operating educational programmes for practitioners and the cost of establishing and operating refractive care facilities. The assumptions made ensured that costs were not underestimated and an upper limit to the costs was derived using the most expensive extreme for each assumption. There were an estimated 158 million cases of distance vision impairment and 544 million cases of near vision impairment caused by URE worldwide in 2007. Approximately 47 000 additional full-time functional clinical refractionists and 18 000 ophthalmic dispensers would be required to provide refractive care services for these individuals. The global cost of educating the additional personnel and of establishing, maintaining and operating the refractive care facilities needed was estimated to be around 20 000 million United States dollars (US$) and the upper-limit cost was US$ 28 000 million. The estimated loss in global gross domestic product due to distance vision impairment caused by URE was US$ 202 000 million annually. The cost of establishing and operating the educational and refractive care facilities required to deal with vision impairment resulting from URE was a small proportion of the global loss in productivity associated with that vision impairment.
Smoothing of cost function leads to faster convergence of neural network learning
NASA Astrophysics Data System (ADS)
Xu, Li-Qun; Hall, Trevor J.
1994-03-01
One of the major problems in supervised learning of neural networks is the inevitable local minima inherent in the cost function f(W,D). This often makes classic gradient-descent-based learning algorithms that calculate the weight updates for each iteration according to (Delta) W(t) equals -(eta) (DOT)$DELwf(W,D) powerless. In this paper we describe a new strategy to solve this problem, which, adaptively, changes the learning rate and manipulates the gradient estimator simultaneously. The idea is to implicitly convert the local- minima-laden cost function f((DOT)) into a sequence of its smoothed versions {f(beta t)}Ttequals1, which, subject to the parameter (beta) t, bears less details at time t equals 1 and gradually more later on, the learning is actually performed on this sequence of functionals. The corresponding smoothed global minima obtained in this way, {Wt}Ttequals1, thus progressively approximate W-the desired global minimum. Experimental results on a nonconvex function minimization problem and a typical neural network learning task are given, analyses and discussions of some important issues are provided.
Cost characteristics of hospitals.
Smet, Mike
2002-09-01
Modern hospitals are complex multi-product organisations. The analysis of a hospital's production and/or cost structure should therefore use the appropriate techniques. Flexible functional forms based on the neo-classical theory of the firm seem to be most suitable. Using neo-classical cost functions implicitly assumes minimisation of (variable) costs given that input prices and outputs are exogenous. Local and global properties of flexible functional forms and short-run versus long-run equilibrium are further issues that require thorough investigation. In order to put the results based on econometric estimations of cost functions in the right perspective, it is important to keep these considerations in mind when using flexible functional forms. The more recent studies seem to agree that hospitals generally do not operate in their long-run equilibrium (they tend to over-invest in capital (capacity and equipment)) and that it is therefore appropriate to estimate a short-run variable cost function. However, few studies explicitly take into account the implicit assumptions and restrictions embedded in the models they use. An alternative method to explain differences in costs uses management accounting techniques to identify the cost drivers of overhead costs. Related issues such as cost-shifting and cost-adjusting behaviour of hospitals and the influence of market structure on competition, prices and costs are also discussed shortly.
Changes and Emerging Trends in the CE Function on University Campuses.
ERIC Educational Resources Information Center
Einsiedel, Albert A., Jr.
1998-01-01
Reviews global changes and the following strategies changing the definition of university extension and continuing education: (1) cost-recovery entrepreneurial model; (2) emphasis on professional continuing education; (3) diminishing focus on traditional service; (4) distance education; and (5) global marketing. (SK)
Microbiology of Wind-eroded Sediments: Current Knowledge and Future Research Directions
USDA-ARS?s Scientific Manuscript database
Wind erosion is a threat to the sustainability and productivity of soils that takes place at local, regional, and global scales. Current estimates of cost of wind erosion have not included the costs associated with the loss of soil biodiversity and reduced ecosystem functions. Microorganisms carrie...
State Sector Strategies: The New Workforce Development in the USA
ERIC Educational Resources Information Center
Lakes, Richard D.
2012-01-01
Neoliberal governments consider global business competitiveness to be thwarted by costly bureaucratic regulation and programme duplication. In an effort to downsize the costs of operating a state, the governors now streamline job training functions via a coordinated workforce and economic development effort known as sector strategies, with…
Langen, Carolyn D; White, Tonya; Ikram, M Arfan; Vernooij, Meike W; Niessen, Wiro J
2015-01-01
Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, "bi-modal comparison plots" show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using "worm plots". Group differences in connections are examined with an existing visualization, the "connectogram". These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the "Statistical Analysis of Minimum cost path based Structural Connectivity" method and the average fractional anisotropy along the fiber. The functional measures were Pearson's correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.
Global mortality consequences of climate change accounting for adaptation costs and benefits
NASA Astrophysics Data System (ADS)
Rising, J. A.; Jina, A.; Carleton, T.; Hsiang, S. M.; Greenstone, M.
2017-12-01
Empirically-based and plausibly causal estimates of the damages of climate change are greatly needed to inform rapidly developing global and local climate policies. To accurately reflect the costs of climate change, it is essential to estimate how much populations will adapt to a changing climate, yet adaptation remains one of the least understood aspects of social responses to climate. In this paper, we develop and implement a novel methodology to estimate climate impacts on mortality rates. We assemble comprehensive sub-national panel data in 41 countries that account for 56% of the world's population, and combine them with high resolution daily climate data to flexibly estimate the causal effect of temperature on mortality. We find the impacts of temperature on mortality have a U-shaped response; both hot days and cold days cause excess mortality. However, this average response obscures substantial heterogeneity, as populations are differentially adapted to extreme temperatures. Our empirical model allows us to extrapolate response functions across the entire globe, as well as across time, using a range of economic, population, and climate change scenarios. We also develop a methodology to capture not only the benefits of adaptation, but also its costs. We combine these innovations to produce the first causal, micro-founded, global, empirically-derived climate damage function for human health. We project that by 2100, business-as-usual climate change is likely to incur mortality-only costs that amount to approximately 5% of global GDP for 5°C degrees of warming above pre-industrial levels. On average across model runs, we estimate that the upper bound on adaptation costs amounts to 55% of the total damages.
NASA Astrophysics Data System (ADS)
Chaudhuri, Anirban
Global optimization based on expensive and time consuming simulations or experiments usually cannot be carried out to convergence, but must be stopped because of time constraints, or because the cost of the additional function evaluations exceeds the benefits of improving the objective(s). This dissertation sets to explore the implications of such budget and time constraints on the balance between exploration and exploitation and the decision of when to stop. Three different aspects are considered in terms of their effects on the balance between exploration and exploitation: 1) history of optimization, 2) fixed evaluation budget, and 3) cost as a part of objective function. To this end, this research develops modifications to the surrogate-based optimization technique, Efficient Global Optimization algorithm, that controls better the balance between exploration and exploitation, and stopping criteria facilitated by these modifications. Then the focus shifts to examining experimental optimization, which shares the issues of cost and time constraints. Through a study on optimization of thrust and power for a small flapping wing for micro air vehicles, important differences and similarities between experimental and simulation-based optimization are identified. The most important difference is that reduction of noise in experiments becomes a major time and cost issue, and a second difference is that parallelism as a way to cut cost is more challenging. The experimental optimization reveals the tendency of the surrogate to display optimistic bias near the surrogate optimum, and this tendency is then verified to also occur in simulation based optimization.
The costs of future polio risk management policies.
Tebbens, Radboud J Duintjer; Sangrujee, Nalinee; Thompson, Kimberly M
2006-12-01
Decisionmakers need information about the anticipated future costs of maintaining polio eradication as a function of the policy options under consideration. Given the large portfolio of options, we reviewed and synthesized the existing cost data relevant to current policies to provide context for future policies. We model the expected future costs of different strategies for continued vaccination, surveillance, and other costs that require significant potential resource commitments. We estimate the costs of different potential policy portfolios for low-, middle-, and high-income countries to demonstrate the variability in these costs. We estimate that a global transition from routine immunization with oral poliovirus vaccine (OPV) to inactivated poliovirus vaccine (IPV) would increase the costs of managing polio globally, although routine IPV use remains less costly than routine OPV use with supplemental immunization activities. The costs of surveillance and a stockpile, while small compared to routine vaccination costs, represent important expenditures to ensure adequate response to potential outbreaks. The uncertainty and sensitivity analyses highlight important uncertainty in the aggregated costs and demonstrates that the discount rate and uncertainty in price and administration cost of IPV drives the expected incremental cost of routine IPV vs. OPV immunization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kriger, A.
1978-01-31
This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. Amore » technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives.« less
Mixed kernel function support vector regression for global sensitivity analysis
NASA Astrophysics Data System (ADS)
Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng
2017-11-01
Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.
Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding.
Pedersen, Mangor; Omidvarnia, Amir H; Walz, Jennifer M; Jackson, Graeme D
2015-01-01
Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications.
Increased segregation of brain networks in focal epilepsy: An fMRI graph theory finding
Pedersen, Mangor; Omidvarnia, Amir H.; Walz, Jennifer M.; Jackson, Graeme D.
2015-01-01
Focal epilepsy is conceived of as activating local areas of the brain as well as engaging regional brain networks. Graph theory represents a powerful quantitative framework for investigation of brain networks. Here we investigate whether functional network changes are present in extratemporal focal epilepsy. Task-free functional magnetic resonance imaging data from 15 subjects with extratemporal epilepsy and 26 age and gender matched healthy controls were used for analysis. Local network properties were calculated using local efficiency, clustering coefficient and modularity metrics. Global network properties were assessed with global efficiency and betweenness centrality metrics. Cost-efficiency of the networks at both local and global levels was evaluated by estimating the physical distance between functionally connected nodes, in addition to the overall numbers of connections in the network. Clustering coefficient, local efficiency and modularity were significantly higher in individuals with focal epilepsy than healthy control subjects, while global efficiency and betweenness centrality were not significantly different between the two groups. Local network properties were also highly efficient, at low cost, in focal epilepsy subjects compared to healthy controls. Our results show that functional networks in focal epilepsy are altered in a way that the nodes of the network are more isolated. We postulate that network regularity, or segregation of the nodes of the networks, may be an adaptation that inhibits the conversion of the interictal state to seizures. It remains possible that this may be part of the epileptogenic process or an effect of medications. PMID:26110111
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2009-01-01
.We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores
2015-09-16
One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot's pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area.
Martín, Fernando; Moreno, Luis; Garrido, Santiago; Blanco, Dolores
2015-01-01
One of the most important skills desired for a mobile robot is the ability to obtain its own location even in challenging environments. The information provided by the sensing system is used here to solve the global localization problem. In our previous work, we designed different algorithms founded on evolutionary strategies in order to solve the aforementioned task. The latest developments are presented in this paper. The engine of the localization module is a combination of the Markov chain Monte Carlo sampling technique and the Differential Evolution method, which results in a particle filter based on the minimization of a fitness function. The robot’s pose is estimated from a set of possible locations weighted by a cost value. The measurements of the perceptive sensors are used together with the predicted ones in a known map to define a cost function to optimize. Although most localization methods rely on quadratic fitness functions, the sensed information is processed asymmetrically in this filter. The Kullback-Leibler divergence is the basis of a cost function that makes it possible to deal with different types of occlusions. The algorithm performance has been checked in a real map. The results are excellent in environments with dynamic and unmodeled obstacles, a fact that causes occlusions in the sensing area. PMID:26389914
Business Study Abroad Tours for Non-Traditional Students: An Outcomes Assessment
ERIC Educational Resources Information Center
Peppas, Spero C.
2005-01-01
Globalization is here to stay and companies across the world are realizing the importance of having employees with a global mindset. As companies cut costs, many provide little or no on-the-job training to hone employees' cross-border skills. It is thus the task of colleges and universities to prepare students to function and excel in the new and…
Global economic potential for reducing carbon dioxide emissions from mangrove loss.
Siikamäki, Juha; Sanchirico, James N; Jardine, Sunny L
2012-09-04
Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5' grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO(2). Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs.
NASA Astrophysics Data System (ADS)
Shiju, S.; Sumitra, S.
2017-12-01
In this paper, the multiple kernel learning (MKL) is formulated as a supervised classification problem. We dealt with binary classification data and hence the data modelling problem involves the computation of two decision boundaries of which one related with that of kernel learning and the other with that of input data. In our approach, they are found with the aid of a single cost function by constructing a global reproducing kernel Hilbert space (RKHS) as the direct sum of the RKHSs corresponding to the decision boundaries of kernel learning and input data and searching that function from the global RKHS, which can be represented as the direct sum of the decision boundaries under consideration. In our experimental analysis, the proposed model had shown superior performance in comparison with that of existing two stage function approximation formulation of MKL, where the decision functions of kernel learning and input data are found separately using two different cost functions. This is due to the fact that single stage representation helps the knowledge transfer between the computation procedures for finding the decision boundaries of kernel learning and input data, which inturn boosts the generalisation capacity of the model.
Balancing building and maintenance costs in growing transport networks
NASA Astrophysics Data System (ADS)
Bottinelli, Arianna; Louf, Rémi; Gherardi, Marco
2017-09-01
The costs associated to the length of links impose unavoidable constraints to the growth of natural and artificial transport networks. When future network developments cannot be predicted, the costs of building and maintaining connections cannot be minimized simultaneously, requiring competing optimization mechanisms. Here, we study a one-parameter nonequilibrium model driven by an optimization functional, defined as the convex combination of building cost and maintenance cost. By varying the coefficient of the combination, the model interpolates between global and local length minimization, i.e., between minimum spanning trees and a local version known as dynamical minimum spanning trees. We show that cost balance within this ensemble of dynamical networks is a sufficient ingredient for the emergence of tradeoffs between the network's total length and transport efficiency, and of optimal strategies of construction. At the transition between two qualitatively different regimes, the dynamics builds up power-law distributed waiting times between global rearrangements, indicating a point of nonoptimality. Finally, we use our model as a framework to analyze empirical ant trail networks, showing its relevance as a null model for cost-constrained network formation.
NASA Astrophysics Data System (ADS)
Rakotomanga, Prisca; Soussen, Charles; Blondel, Walter C. P. M.
2017-03-01
Diffuse reflectance spectroscopy (DRS) has been acknowledged as a valuable optical biopsy tool for in vivo characterizing pathological modifications in epithelial tissues such as cancer. In spatially resolved DRS, accurate and robust estimation of the optical parameters (OP) of biological tissues is a major challenge due to the complexity of the physical models. Solving this inverse problem requires to consider 3 components: the forward model, the cost function, and the optimization algorithm. This paper presents a comparative numerical study of the performances in estimating OP depending on the choice made for each of the latter components. Mono- and bi-layer tissue models are considered. Monowavelength (scalar) absorption and scattering coefficients are estimated. As a forward model, diffusion approximation analytical solutions with and without noise are implemented. Several cost functions are evaluated possibly including normalized data terms. Two local optimization methods, Levenberg-Marquardt and TrustRegion-Reflective, are considered. Because they may be sensitive to the initial setting, a global optimization approach is proposed to improve the estimation accuracy. This algorithm is based on repeated calls to the above-mentioned local methods, with initial parameters randomly sampled. Two global optimization methods, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are also implemented. Estimation performances are evaluated in terms of relative errors between the ground truth and the estimated values for each set of unknown OP. The combination between the number of variables to be estimated, the nature of the forward model, the cost function to be minimized and the optimization method are discussed.
Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems.
Byrne, Diana M; Grabowski, Marta K; Benitez, Amy C B; Schmidt, Arthur R; Guest, Jeremy S
2017-08-15
Roadway drainage design has traditionally focused on cost-effectively managing water quantity; however, runoff carries pollutants, posing risks to the local environment and public health. Additionally, construction and maintenance incur costs and contribute to global environmental impacts. While life cycle assessment (LCA) can potentially capture local and global environmental impacts of roadway drainage and other stormwater systems, LCA methodology must be evaluated because stormwater systems differ from wastewater and drinking water systems to which LCA is more frequently applied. To this end, this research developed a comprehensive model linking roadway drainage design parameters to LCA and life cycle costing (LCC) under uncertainty. This framework was applied to 10 highway drainage projects to evaluate LCA methodological choices by characterizing environmental and economic impacts of drainage projects and individual components (basin, bioswale, culvert, grass swale, storm sewer, and pipe underdrain). The relative impacts of drainage components varied based on functional unit choice. LCA inventory cutoff criteria evaluation showed the potential for cost-based criteria, which performed better than mass-based criteria. Finally, the local aquatic benefits of grass swales and bioswales offset global environmental impacts for four impact categories, highlighting the need to explicitly consider local impacts (i.e., direct emissions) when evaluating drainage technologies.
NASA Astrophysics Data System (ADS)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; Zhang, Guannan; Ye, Ming; Wu, Jianfeng; Wu, Jichun
2017-12-01
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we develop a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.
How global extinctions impact regional biodiversity in mammals.
Huang, Shan; Davies, T Jonathan; Gittleman, John L
2012-04-23
Phylogenetic diversity (PD) represents the evolutionary history of a species assemblage and is a valuable measure of biodiversity because it captures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the functional integrity of the world's ecosystems, and species extinction will have a large impact on ecosystems in areas where the ecosystem cost per species extinction is high. Here, we show that impacts from global extinctions are linked to spatial location. Using a phylogeny of all mammals, we compare regional losses of PD against a model of random extinction. At regional scales, losses differ dramatically: several biodiversity hotspots in southern Asia and Amazonia will lose an unexpectedly large proportion of PD. Global analyses may therefore underestimate the impacts of extinction on ecosystem processes and function because they occur at finer spatial scales within the context of natural biogeography.
MRI reconstruction with joint global regularization and transform learning.
Tanc, A Korhan; Eksioglu, Ender M
2016-10-01
Sparsity based regularization has been a popular approach to remedy the measurement scarcity in image reconstruction. Recently, sparsifying transforms learned from image patches have been utilized as an effective regularizer for the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse additional global regularization terms to the patch-based transform learning. We develop an algorithm to solve the resulting novel cost function, which includes both patchwise and global regularization terms. Extensive simulation results indicate that the introduced mixed approach has improved MRI reconstruction performance, when compared to the algorithms which use either of the patchwise transform learning or global regularization terms alone. Copyright © 2016 Elsevier Ltd. All rights reserved.
A probabilistic approach for the estimation of earthquake source parameters from spectral inversion
NASA Astrophysics Data System (ADS)
Supino, M.; Festa, G.; Zollo, A.
2017-12-01
The amplitude spectrum of a seismic signal related to an earthquake source carries information about the size of the rupture, moment, stress and energy release. Furthermore, it can be used to characterize the Green's function of the medium crossed by the seismic waves. We describe the earthquake amplitude spectrum assuming a generalized Brune's (1970) source model, and direct P- and S-waves propagating in a layered velocity model, characterized by a frequency-independent Q attenuation factor. The observed displacement spectrum depends indeed on three source parameters, the seismic moment (through the low-frequency spectral level), the corner frequency (that is a proxy of the fault length) and the high-frequency decay parameter. These parameters are strongly correlated each other and with the quality factor Q; a rigorous estimation of the associated uncertainties and parameter resolution is thus needed to obtain reliable estimations.In this work, the uncertainties are characterized adopting a probabilistic approach for the parameter estimation. Assuming an L2-norm based misfit function, we perform a global exploration of the parameter space to find the absolute minimum of the cost function and then we explore the cost-function associated joint a-posteriori probability density function around such a minimum, to extract the correlation matrix of the parameters. The global exploration relies on building a Markov chain in the parameter space and on combining a deterministic minimization with a random exploration of the space (basin-hopping technique). The joint pdf is built from the misfit function using the maximum likelihood principle and assuming a Gaussian-like distribution of the parameters. It is then computed on a grid centered at the global minimum of the cost-function. The numerical integration of the pdf finally provides mean, variance and correlation matrix associated with the set of best-fit parameters describing the model. Synthetic tests are performed to investigate the robustness of the method and uncertainty propagation from the data-space to the parameter space. Finally, the method is applied to characterize the source parameters of the earthquakes occurring during the 2016-2017 Central Italy sequence, with the goal of investigating the source parameter scaling with magnitude.
A cost-function approach to rival penalized competitive learning (RPCL).
Ma, Jinwen; Wang, Taijun
2006-08-01
Rival penalized competitive learning (RPCL) has been shown to be a useful tool for clustering on a set of sample data in which the number of clusters is unknown. However, the RPCL algorithm was proposed heuristically and is still in lack of a mathematical theory to describe its convergence behavior. In order to solve the convergence problem, we investigate it via a cost-function approach. By theoretical analysis, we prove that a general form of RPCL, called distance-sensitive RPCL (DSRPCL), is associated with the minimization of a cost function on the weight vectors of a competitive learning network. As a DSRPCL process decreases the cost to a local minimum, a number of weight vectors eventually fall into a hypersphere surrounding the sample data, while the other weight vectors diverge to infinity. Moreover, it is shown by the theoretical analysis and simulation experiments that if the cost reduces into the global minimum, a correct number of weight vectors is automatically selected and located around the centers of the actual clusters, respectively. Finally, we apply the DSRPCL algorithms to unsupervised color image segmentation and classification of the wine data.
Belowground advantages in construction cost facilitate a cryptic plant invasion
Caplan, Joshua S.; Wheaton, Christine N.; Mozdzer, Thomas J.
2014-01-01
The energetic cost of plant organ construction is a functional trait that is useful for understanding carbon investment during growth (e.g. the resource acquisition vs. tissue longevity tradeoff), as well as in response to global change factors like elevated CO2 and N. Despite the enormous importance of roots and rhizomes in acquiring soil resources and responding to global change, construction costs have been studied almost exclusively in leaves. We sought to determine how construction costs of aboveground and belowground organs differed between native and introduced lineages of a geographically widely dispersed wetland plant species (Phragmites australis) under varying levels of CO2 and N. We grew plants under ambient and elevated atmospheric CO2, as well as under two levels of soil nitrogen. We determined construction costs for leaves, stems, rhizomes and roots, as well as for whole plants. Across all treatment conditions, the introduced lineage of Phragmites had a 4.3 % lower mean rhizome construction cost than the native. Whole-plant construction costs were also smaller for the introduced lineage, with the largest difference in sample means (3.3 %) occurring under ambient conditions. In having lower rhizome and plant-scale construction costs, the introduced lineage can recoup its investment in tissue construction more quickly, enabling it to generate additional biomass with the same energetic investment. Our results suggest that introduced Phragmites has had an advantageous tissue investment strategy under historic CO2 and N levels, which has facilitated key rhizome processes, such as clonal spread. We recommend that construction costs for multiple organ types be included in future studies of plant carbon economy, especially those investigating global change. PMID:24938305
Global Network Alignment in the Context of Aging.
Faisal, Fazle Elahi; Zhao, Han; Milenkovic, Tijana
2015-01-01
Analogous to sequence alignment, network alignment (NA) can be used to transfer biological knowledge across species between conserved network regions. NA faces two algorithmic challenges: 1) Which cost function to use to capture "similarities" between nodes in different networks? 2) Which alignment strategy to use to rapidly identify "high-scoring" alignments from all possible alignments? We "break down" existing state-of-the-art methods that use both different cost functions and different alignment strategies to evaluate each combination of their cost functions and alignment strategies. We find that a combination of the cost function of one method and the alignment strategy of another method beats the existing methods. Hence, we propose this combination as a novel superior NA method. Then, since human aging is hard to study experimentally due to long lifespan, we use NA to transfer aging-related knowledge from well annotated model species to poorly annotated human. By doing so, we produce novel human aging-related knowledge, which complements currently available knowledge about aging that has been obtained mainly by sequence alignment. We demonstrate significant similarity between topological and functional properties of our novel predictions and those of known aging-related genes. We are the first to use NA to learn more about aging.
Development of a Global Wetland Sustainability Index for comprehensive land use planning
NASA Astrophysics Data System (ADS)
Schleupner, C.; Schneider, U. A.; Havlik, P.; Stacke, T.
2012-04-01
Allocation of nature reserves for conservation of ecosystem functions and services is a multi-dimensional task. Conservation programs act from local to regional or national scales, and some efforts involve entire continents. Globally, several international environmental agreements have been established which include conservation issues. Examples are the Convention on Biological Diversity, the Convention on Migratory Species of Wild Animals, the UN Framework Convention on Climate Change, and the Ramsar Convention on Wetlands. A common aim of most initiatives is the protection and restoration of valuable natural sites by providing a functional network of sites. The planning of protected habitat networks to safeguard global biodiversity requires substantial knowledge on exposure, services, and functions of ecosystems. Further, the complex spatial relationships between humans and the environment under consideration of costs and land use competition have to be determined. Often such analyses are hindered by lack of data. We developed a global index that ranks sites for wetland protection according to its wetland quantity, wetland quality and pressure upon the wetland sites. Each of the three parts is based on several spatial-ecological datasets that contain important information for the adequate assessment of spatial economic and ecologic interdependencies. Applying cluster analyses and ecological decision trees the data are combined and results are translated to the final index and expressed per simulation unit for integration into the Global Biomass Optimization Model GLOBIOM. This global recursive dynamic partial equilibrium model integrates the agricultural, bio energy and forestry sectors with the aim to provide policy analyses on global issues concerning land use competition between the major land-based production sectors. Results not only show the most vulnerable wetland areas to nature loss and the most valuable wetland areas for biodiversity protection under certain land use scenarios. Moreover, costs of protection are estimated and the results give recommendations for action by illustrating wetland conservation areas in need for conservation. Often wetlands provide numerous ecosystem services to society, such as water retention, flood control, water purification, to name only a few. The sustainable conservation of wetland sites, especially in highly human dominated landscapes, is therefore an important global but still underestimated objective.
Theoretical and experimental researches on the operating costs of a wastewater treatment plant
NASA Astrophysics Data System (ADS)
Panaitescu, M.; Panaitescu, F.-V.; Anton, I.-A.
2015-11-01
Purpose of the work: The total cost of a sewage plants is often determined by the present value method. All of the annual operating costs for each process are converted to the value of today's correspondence and added to the costs of investment for each process, which leads to getting the current net value. The operating costs of the sewage plants are subdivided, in general, in the premises of the investment and operating costs. The latter can be stable (normal operation and maintenance, the establishment of power) or variables (chemical and power sludge treatment and disposal, of effluent charges). For the purpose of evaluating the preliminary costs so that an installation can choose between different alternatives in an incipient phase of a project, can be used cost functions. In this paper will be calculated the operational cost to make several scenarios in order to optimize its. Total operational cost (fixed and variable) is dependent global parameters of wastewater treatment plant. Research and methodology: The wastewater treatment plant costs are subdivided in investment and operating costs. We can use different cost functions to estimate fixed and variable operating costs. In this study we have used the statistical formulas for cost functions. The method which was applied to study the impact of the influent characteristics on the costs is economic analysis. Optimization of plant design consist in firstly, to assess the ability of the smallest design to treat the maximum loading rates to a given effluent quality and, secondly, to compare the cost of the two alternatives for average and maximum loading rates. Results: In this paper we obtained the statistical values for the investment cost functions, operational fixed costs and operational variable costs for wastewater treatment plant and its graphical representations. All costs were compared to the net values. Finally we observe that it is more economical to build a larger plant, especially if maximum loading rates are reached. The actual target of operational management is to directly implement the presented cost functions in a software tool, in which the design of a plant and the simulation of its behaviour are evaluated simultaneously.
The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury.
Roy, Arnab; Bernier, Rachel A; Wang, Jianli; Benson, Monica; French, Jerry J; Good, David C; Hillary, Frank G
2017-01-01
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs.
The evolution of cost-efficiency in neural networks during recovery from traumatic brain injury
Roy, Arnab; Bernier, Rachel A.; Wang, Jianli; Benson, Monica; French, Jerry J.; Good, David C.; Hillary, Frank G.
2017-01-01
A somewhat perplexing finding in the systems neuroscience has been the observation that physical injury to neural systems may result in enhanced functional connectivity (i.e., hyperconnectivity) relative to the typical network response. The consequences of local or global enhancement of functional connectivity remain uncertain and this is particularly true for the overall metabolic cost of the network. We examine the hyperconnectivity hypothesis in a sample of 14 individuals with TBI with data collected at approximately 3, 6, and 12 months following moderate and severe TBI. As anticipated, individuals with TBI showed increased network strength and cost early after injury, but by one-year post injury hyperconnectivity was more circumscribed to frontal DMN and temporal-parietal attentional control regions. Cost in these subregions was a significant predictor of cognitive performance. Cost-efficiency analysis in the Power 264 data parcellation suggested that at 6 months post injury the network requires higher cost connections to achieve high efficiency as compared to the network 12 months post injury. These results demonstrate that networks self-organize to re-establish connectivity while balancing cost-efficiency trade-offs. PMID:28422992
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; ...
2017-12-27
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
Estimating the global costs of vitamin A capsule supplementation: a review of the literature.
Neidecker-Gonzales, Oscar; Nestel, Penelope; Bouis, Howarth
2007-09-01
Vitamin A supplementation reduces child mortality. It is estimated that 500 million vitamin A capsules are distributed annually. Policy recommendations have assumed that the supplementation programs offer a proven technology at a relatively low cost of around US$0.10 per capsule. To review data on costs of vitamin A supplementation to analyze the key factors that determine program costs, and to attempt to model these costs as a function of per capita income figures. Using data from detailed cost studies in seven countries, this study generated comparable cost categories for analysis, and then used the correlation between national incomes and wage rates to postulate a simple model where costs of vitamin A supplementation are regressed on per capita incomes. Costs vary substantially by country and depend principally on the cost of labor, which is highly correlated with per capita income. Two other factors driving costs are whether the program is implemented in conjunction with other health programs, such as National Immunization Days (which lowers costs), and coverage in rural areas (which increases costs). Labor accounts for 70% of total costs, both for paid staff and for volunteers, while the capsules account for less than 5%. Marketing, training, and administration account for the remaining 25%. Total costs are lowest (roughly US$0.50 per capsule) in Africa, where wages and incomes are lowest, US$1 in developing countries in Asia, and US$1.50 in Latin America. Overall, this study derives a much higher global estimate of costs of around US$1 per capsule.
Alternate Waveforms for a Low-Cost Civil Global Positioning System Receiver
DOT National Transportation Integrated Search
1980-06-01
This report examines the technical feasibility of alternate waveforms to perform the GPS functions and to result in less complex receivers than is possible with the GPS C/A waveform. The approach taken to accomplish this objective is (a) to identify,...
Globally Optimal Path Planning with Anisotropic Running Costs
2013-03-01
contours were generated on a 3852 Cartesian grid. . . . . . . . . . . . . . . . 33 A1 The N(i, j ) set shown mapped onto Ωh as large dots for the case...function NF(x) near front set as a function of x ∈ Ωh NF(i, j ) near front set as a function of (i, j ) ∈ ΩZh Υ(x) anisotropy function at x δ Cartesian...discriminant of the polynomial p, see Equation (26) argmin argument of the minimum of a function V yz(x, ζ) see Equation (28) T (i, j ) the triplet {(i, j ), V
Boareto, Marcelo; Yamagishi, Michel E B; Caticha, Nestor; Leite, Vitor B P
2012-10-01
In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fillion, Anthony; Bocquet, Marc; Gratton, Serge
2018-04-01
The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS) minimization may overcome these local extrema. It accomplishes this by gradually injecting the observations in the cost function. This method was introduced by Pires et al. (1996) in a 4D-Var context. We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces one to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.
Orbit Clustering Based on Transfer Cost
NASA Technical Reports Server (NTRS)
Gustafson, Eric D.; Arrieta-Camacho, Juan J.; Petropoulos, Anastassios E.
2013-01-01
We propose using cluster analysis to perform quick screening for combinatorial global optimization problems. The key missing component currently preventing cluster analysis from use in this context is the lack of a useable metric function that defines the cost to transfer between two orbits. We study several proposed metrics and clustering algorithms, including k-means and the expectation maximization algorithm. We also show that proven heuristic methods such as the Q-law can be modified to work with cluster analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.
Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less
2013-01-01
Background Day-hospital-based treatment programmes have been recommended for poorly functioning patients with personality disorders (PD). However, more research is needed to confirm the cost-effectiveness of such extensive programmes over other, presumably simpler, treatment formats. Methods This study compared health service costs and psychosocial functioning for PD patients randomly allocated to either a day-hospital-based treatment programme combining individual and group psychotherapy in a step-down format, or outpatient individual psychotherapy at a specialist practice. It included 107 PD patients, 46% of whom had borderline PD, and 40% of whom had avoidant PD. Costs included the two treatment conditions and additional primary and secondary in- and outpatient services. Psychosocial functioning was assessed using measures of global (observer-rated GAF) and occupational (self-report) functioning. Repeated assessments over three years were analysed using mixed models. Results The costs of step-down treatment were higher than those of outpatient treatment, but these high costs were compensated by considerably lower costs of other health services. However, costs and clinical gains depended on the type of PD. For borderline PD patients, cost-effectiveness did not differ by treatment condition. Health service costs declined during the trial, and functioning improved to mild impairment levels (GAF > 60). For avoidant PD patients, considerable adjuvant health services expanded the outpatient format. Clinical improvements were nevertheless superior to the step-down condition. Conclusion Our results indicate that decisions on treatment format should differentiate between PD types. For borderline PD patients, the costs and gains of step-down and outpatient treatment conditions did not differ. For avoidant PD patients, the outpatient format was a better alternative, leaning, however, on costly additional health services in the early phase of treatment. Trial registration Clinical Trials NCT00378248 PMID:24268099
Calculating distance by wireless ethernet signal strength for global positioning method
NASA Astrophysics Data System (ADS)
Kim, Seung-Yong; Kim, Jeehong; Lee, Chang-goo
2005-12-01
This paper investigated mobile robot localization by using wireless Ethernet for global localization and INS for relative localization. For relative localization, the low-cost INS features self-contained was adopted. Low-cost MEMS-based INS has a short-period response and acceptable performance. Generally, variety sensor was used for mobile robot localization. In spite of precise modeling of the sensor, it leads inevitably to the accumulation of errors. The IEEE802.11b wireless Ethernet standard has been deployed in office building, museums, hospitals, shopping centers and other indoor environments. Many mobile robots already make use of wireless networking for communication. So location sensing with wireless Ethernet might be very useful for a low-cost robot. This research used wireless Ethernet card for compensation the accumulation of errors. So the mobile robot can use that for global localization through the installed many IEEE802.11b wireless Ethernets in indoor environments. The chief difficulty in localization with wireless Ethernet is predicting signal strength. As a sensor, RF signal strength measured indoors is non-linear with distance. So, there made the profiles of signal strength for points and used that. We wrote using function between signal strength profile and distance from the wireless Ethernet point.
Coffey, Patricia S; Hodgins, Steve; Bishop, Amie
2018-01-01
The global health field is replete with examples of cross-organizational collaborative partnerships, such as networks, alliances, coalitions, task forces, and working groups, often established to tackle a shared global health concern, condition, or threat affecting low-income countries or communities. The purpose of this article is to review factors influencing the effectiveness of a multi-agency global health collaborative effort using the Chlorhexidine Working Group (CWG) as our case study. The CWG was established to accelerate the introduction and global scale-up of chlorhexidine for umbilical cord care to reduce infection-related neonatal morbidity and mortality in low-income countries. Questions included: how current and past CWG members characterized the effectiveness, productivity, collaboration, and leadership of the CWG; what factors facilitated or hindered group function; institutional or individual reasons for participating and length of participation in the CWG; and lessons that might be relevant for future global collaborative partnerships. Data were collected through in-depth, semistructured individual interviews with 19 group members and a review of key guiding documents. Six domains of internal coalition functioning (leadership, interpersonal relationships, task focus, participant benefits and costs, sustainability planning, and community support) were used to frame and describe the functioning of the CWG. Collaboration effectiveness was found to depend on: (1) leadership that maintained a careful balance between discipline and flexibility, (2) a strong secretariat structure that supported the evolution of trust and transparent communication in interpersonal relationships, (3) shared goals that allowed for task focus, (4) diverse membership and active involvement from country-level participants, which created a positive benefit-cost ratio for participants, (5) sufficient resources to support the partnership and build sustainable capacity for members to accelerate the transfer of knowledge, and (6) support from the global health community across multiple organizations. Successful introduction and scale-up of new health interventions require effective collaboration across multiple organizations and disciplines, at both global and country levels. The participatory collaborative partnership approach utilized by the Chlorhexidine Working Group offers an instructive learning case. PMID:29602871
Blind separation of positive sources by globally convergent gradient search.
Oja, Erkki; Plumbley, Mark
2004-09-01
The instantaneous noise-free linear mixing model in independent component analysis is largely a solved problem under the usual assumption of independent nongaussian sources and full column rank mixing matrix. However, with some prior information on the sources, like positivity, new analysis and perhaps simplified solution methods may yet become possible. In this letter, we consider the task of independent component analysis when the independent sources are known to be nonnegative and well grounded, which means that they have a nonzero pdf in the region of zero. It can be shown that in this case, the solution method is basically very simple: an orthogonal rotation of the whitened observation vector into nonnegative outputs will give a positive permutation of the original sources. We propose a cost function whose minimum coincides with nonnegativity and derive the gradient algorithm under the whitening constraint, under which the separating matrix is orthogonal. We further prove that in the Stiefel manifold of orthogonal matrices, the cost function is a Lyapunov function for the matrix gradient flow, implying global convergence. Thus, this algorithm is guaranteed to find the nonnegative well-grounded independent sources. The analysis is complemented by a numerical simulation, which illustrates the algorithm.
Walker, Anthony P; Quaife, Tristan; van Bodegom, Peter M; De Kauwe, Martin G; Keenan, Trevor F; Joiner, Joanna; Lomas, Mark R; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan; Woodward, F Ian
2017-09-01
The maximum photosynthetic carboxylation rate (V cmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr -1 , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Walker, Anthony P.; Quaife, Tristan; Van Bodegom, Peter M.; De Kauwe, Martin G.; Keenan, Trevor F.; Joiner, Joanna; Lomas, Mark R.; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan;
2017-01-01
The maximum photosynthetic carboxylation rate (V (sub cmax)) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V(sub cmax) distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 petagrams of Carbon (PgC) per year, 65 percent of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27percent coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r equals 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V(sub cmax) variation in the field, particularly in northern latitudes.
Optimisation by hierarchical search
NASA Astrophysics Data System (ADS)
Zintchenko, Ilia; Hastings, Matthew; Troyer, Matthias
2015-03-01
Finding optimal values for a set of variables relative to a cost function gives rise to some of the hardest problems in physics, computer science and applied mathematics. Although often very simple in their formulation, these problems have a complex cost function landscape which prevents currently known algorithms from efficiently finding the global optimum. Countless techniques have been proposed to partially circumvent this problem, but an efficient method is yet to be found. We present a heuristic, general purpose approach to potentially improve the performance of conventional algorithms or special purpose hardware devices by optimising groups of variables in a hierarchical way. We apply this approach to problems in combinatorial optimisation, machine learning and other fields.
Cost containment for the public health.
Eastaugh, Steven R
2006-01-01
The U.S. health care system has major problems with respect to patient access and cost control. Trimming excess hospital expenses and expanding public health activities are cost effective. By budgeting well, with global budgets set for the high cost sectors, the United States might emerge with lower tax hikes, a healthier population, better facilities, and enhanced access to service. Nations with global budgets have better health statistics, and lower costs, compared to the United States. With global budgets, these countries employ 75 to 85 percent fewer employees in administration and regulation, but patient satisfaction is almost double the rate in the United States. Implement a global budget for health care, or substantially raise taxes, is the basic choice faced in this country. Key words: global budget control cost containment.
Glick, Meir; Rayan, Anwar; Goldblum, Amiram
2002-01-01
The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838
Constraints on global oceanic emissions of N2O from observations and models
NASA Astrophysics Data System (ADS)
Buitenhuis, Erik T.; Suntharalingam, Parvadha; Le Quéré, Corinne
2018-04-01
We estimate the global ocean N2O flux to the atmosphere and its confidence interval using a statistical method based on model perturbation simulations and their fit to a database of ΔpN2O (n = 6136). We evaluate two submodels of N2O production. The first submodel splits N2O production into oxic and hypoxic pathways following previous publications. The second submodel explicitly represents the redox transformations of N that lead to N2O production (nitrification and hypoxic denitrification) and N2O consumption (suboxic denitrification), and is presented here for the first time. We perturb both submodels by modifying the key parameters of the N2O cycling pathways (nitrification rates; NH4+ uptake; N2O yields under oxic, hypoxic and suboxic conditions) and determine a set of optimal model parameters by minimisation of a cost function against four databases of N cycle observations. Our estimate of the global oceanic N2O flux resulting from this cost function minimisation derived from observed and model ΔpN2O concentrations is 2.4 ± 0.8 and 2.5 ± 0.8 Tg N yr-1 for the two N2O submodels. These estimates suggest that the currently available observational data of surface ΔpN2O constrain the global N2O flux to a narrower range relative to the large range of results presented in the latest IPCC report.
Internet-based videoconferencing and data collaboration for the imaging community.
Poon, David P; Langkals, John W; Giesel, Frederik L; Knopp, Michael V; von Tengg-Kobligk, Hendrik
2011-01-01
Internet protocol-based digital data collaboration with videoconferencing is not yet well utilized in the imaging community. Videoconferencing, combined with proven low-cost solutions, can provide reliable functionality and speed, which will improve rapid, time-saving, and cost-effective communications, within large multifacility institutions or globally with the unlimited reach of the Internet. The aim of this project was to demonstrate the implementation of a low-cost hardware and software setup that facilitates global data collaboration using WebEx and GoToMeeting Internet protocol-based videoconferencing software. Both products' features were tested and evaluated for feasibility across 2 different Internet networks, including a video quality and recording assessment. Cross-compatibility with an Apple OS is also noted in the evaluations. Departmental experiences with WebEx pertaining to clinical trials are also described. Real-time remote presentation of dynamic data was generally consistent across platforms. A reliable and inexpensive hardware and software setup for complete Internet-based data collaboration/videoconferencing can be achieved.
Regulation of distribution network business
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roman, J.; Gomez, T.; Munoz, A.
1999-04-01
The traditional distribution function actually comprises two separate activities: distribution network and retailing. Retailing, which is also termed supply, consists of trading electricity at the wholesale level and selling it to the end users. The distribution network business, or merely distribution, is a natural monopoly and it must be regulated. Increasing attention is presently being paid to the regulation of distribution pricing. Distribution pricing, comprises two major tasks: global remuneration of the distribution utility and tariff setting by allocation of the total costs among all the users of the network services. In this paper, the basic concepts for establishing themore » global remuneration of a distribution utility are presented. A remuneration scheme which recognizes adequate investment and operation costs, promotes losses reduction and incentivates the control of the quality of service level is proposed. Efficient investment and operation costs are calculated by using different types of strategic planning and regression analysis models. Application examples that have been used during the distribution regulation process in Spain are also presented.« less
Global optimization algorithm for heat exchanger networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesada, I.; Grossmann, I.E.
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem ismore » used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.« less
Carbon-Based Functional Materials Derived from Waste for Water Remediation and Energy Storage.
Ma, Qinglang; Yu, Yifu; Sindoro, Melinda; Fane, Anthony G; Wang, Rong; Zhang, Hua
2017-04-01
Carbon-based functional materials hold the key for solving global challenges in the areas of water scarcity and the energy crisis. Although carbon nanotubes (CNTs) and graphene have shown promising results in various fields of application, their high preparation cost and low production yield still dramatically hinder their wide practical applications. Therefore, there is an urgent call for preparing carbon-based functional materials from low-cost, abundant, and sustainable sources. Recent innovative strategies have been developed to convert various waste materials into valuable carbon-based functional materials. These waste-derived carbon-based functional materials have shown great potential in many applications, especially as sorbents for water remediation and electrodes for energy storage. Here, the research progress in the preparation of waste-derived carbon-based functional materials is summarized, along with their applications in water remediation and energy storage; challenges and future research directions in this emerging research field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Halyo, N.; Broussard, J. R.
1984-01-01
The stochastic, infinite time, discrete output feedback problem for time invariant linear systems is examined. Two sets of sufficient conditions for the existence of a stable, globally optimal solution are presented. An expression for the total change in the cost function due to a change in the feedback gain is obtained. This expression is used to show that a sequence of gains can be obtained by an algorithm, so that the corresponding cost sequence is monotonically decreasing and the corresponding sequence of the cost gradient converges to zero. The algorithm is guaranteed to obtain a critical point of the cost function. The computational steps necessary to implement the algorithm on a computer are presented. The results are applied to a digital outer loop flight control problem. The numerical results for this 13th order problem indicate a rate of convergence considerably faster than two other algorithms used for comparison.
Merkesdal, S; Huelsemann, J L; Mittendorf, T; Zeh, S; Zeidler, H; Ruof, J
2006-10-01
Identification of predictors for the productivity cost components: (1) sick leave, and (2) work disability in gainfully employed and (3) impaired household productivity in unemployed patients with rheumatoid arthritis (RA) from the societal perspective. Investigation of productivity costs was linked to a multicenter, randomized, controlled trial evaluating the effectiveness of clinical quality management in 338 patients with RA. The productivity losses were assessed according to the German Guidelines on Health Economic Evaluation. By means of multivariate logistic regression analyses, predictors of sick leave, work disability (employed patients, n=96), and for days confined to bed in unemployed patient (n=242) were determined. Mean annual costs of 970 EUR arose per person taking into consideration all patients (453 EUR sick leave, 63 EUR work disability, 454 EUR impaired productivity of unemployed patients). Disease activity, disease severity, and impaired physical function were global predictors for all of the cost components investigated. Sick leave costs were predicted by prior sick leave periods and the vocational status blue collar worker, work disability costs by sociodemographic variables (marital status, schooling), and the productivity costs of unemployed patients by impaired mental health and impaired physical functions. Interventions such as reduction in disease progression and control of disease activity, early vocational rehabilitation measures and vocational retraining in patients at risk of quitting working life, and self-management programs to learn coping strategies might decrease future RA-related productivity costs.
Optimal stomatal behaviour around the world
NASA Astrophysics Data System (ADS)
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa
2015-05-01
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
USDA-ARS?s Scientific Manuscript database
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be s...
Combining Economic and Conjoint Analysis to Determine Optimal Academic Services
ERIC Educational Resources Information Center
Howard, Mona Whitley; Sobol, Marion G.
2004-01-01
In today's era of global competition, organizations must manage their functions and activities in a manner such that they are responsive to customers' needs and can provide excellence in service to the customer while also being efficient and cost conscious. These issues are extremely common in corporate organizations, but such concerns are equally…
Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.; ...
2017-06-23
Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.
Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less
NASA Astrophysics Data System (ADS)
Daniell, James; Wenzel, Friedemann
2014-05-01
Over the past decade, the production of economic indices behind the CATDAT Damaging Earthquakes Database has allowed for the conversion of historical earthquake economic loss and cost events into today's terms using long-term spatio-temporal series of consumer price index (CPI), construction costs, wage indices, and GDP from 1900-2013. As part of the doctoral thesis of Daniell (2014), databases and GIS layers for a country and sub-country level have been produced for population, GDP per capita, net and gross capital stock (depreciated and non-depreciated) using studies, census information and the perpetual inventory method. In addition, a detailed study has been undertaken to collect and reproduce as many historical isoseismal maps, macroseismic intensity results and reproductions of earthquakes as possible out of the 7208 damaging events in the CATDAT database from 1900 onwards. a) The isoseismal database and population bounds from 3000+ collected damaging events were compared with the output parameters of GDP and net and gross capital stock per intensity bound and administrative unit, creating a spatial join for analysis. b) The historical costs were divided into shaking/direct ground motion effects, and secondary effects costs. The shaking costs were further divided into gross capital stock related and GDP related costs for each administrative unit, intensity bound couplet. c) Costs were then estimated based on the optimisation of the function in terms of costs vs. gross capital stock and costs vs. GDP via the regression of the function. Losses were estimated based on net capital stock, looking at the infrastructure age and value at the time of the event. This dataset was then used to develop an economic exposure for each historical earthquake in comparison with the loss recorded in the CATDAT Damaging Earthquakes Database. The production of economic fragility functions for each country was possible using a temporal regression based on the parameters of macroseismic intensity, capital stock estimate, GDP estimate, year and the combined seismic building index (a created combination of the global seismic code index, building practice factor, building age and infrastructure vulnerability). The analysis provided three key results: a) The production of economic fragility functions from the 1900-2008 events showed very good correlation to the economic loss and cost from earthquakes from 2009-2013, in real-time. This methodology has been extended to other natural disaster types (typhoon, flood, drought). b) The reanalysis of historical earthquake events in order to check associated historical loss and costs versus the expected exposure in terms of intensities. The 1939 Chillan, 1948 Turkmenistan, 1950 Iran, 1972 Managua, 1980 Western Nepal and 1992 Erzincan earthquake events were seen as huge outliers compared with the modelled capital stock and GDP and thus additional studies were undertaken to check the original loss results. c) A worldwide GIS layer database of capital stock (gross and net), GDP, infrastructure age and economic indices over the period 1900-2013 have been created in conjunction with the CATDAT database in order to define correct economic loss and costs.
Levodopa modulates small-world architecture of functional brain networks in Parkinson's disease.
Berman, Brian D; Smucny, Jason; Wylie, Korey P; Shelton, Erika; Kronberg, Eugene; Leehey, Maureen; Tregellas, Jason R
2016-11-01
PD is associated with disrupted connectivity to a large number of distributed brain regions. How the disease alters the functional topological organization of the brain, however, remains poorly understood. Furthermore, how levodopa modulates network topology in PD is largely unknown. The objective of this study was to use resting-state functional MRI and graph theory to determine how small-world architecture is altered in PD and affected by levodopa administration. Twenty-one PD patients and 20 controls underwent functional MRI scanning. PD patients were scanned off medication and 1 hour after 200 mg levodopa. Imaging data were analyzed using 226 nodes comprising 10 intrinsic brain networks. Correlation matrices were generated for each subject and converted into cost-thresholded, binarized adjacency matrices. Cost-integrated whole-brain global and local efficiencies were compared across groups and tested for relationships with disease duration and severity. Data from 2 patients and 4 controls were excluded because of excess motion. Patients off medication showed no significant changes in global efficiency and overall local efficiency, but in a subnetwork analysis did show increased local efficiency in executive (P = 0.006) and salience (P = 0.018) networks. Levodopa significantly decreased local efficiency (P = 0.039) in patients except within the subcortical network, in which it significantly increased local efficiency (P = 0.007). Levodopa modulates global and local efficiency measures of small-world topology in PD, suggesting that degeneration of nigrostriatal neurons in PD may be associated with a large-scale network reorganization and that levodopa tends to normalize the disrupted network topology in PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Ishihara, Toru; Sugasawa, Shigemi; Matsuda, Yusuke; Mizuno, Masao
2018-05-01
The purpose of this study was to evaluate the relationship between sports experience (i.e., tennis experience) and executive function in children while controlling for physical activity and physical fitness. Sixty-eight participants (6-12 years old, 34 males and 34 females) were enrolled in regular tennis lessons (mean = 2.4 years, range = 0.1-7.3 years) prior to the study. Executive functions, including inhibitory control (the Stroop Color-Word Test), working memory (the 2-back Task), and cognitive flexibility (the Local-global Task) were evaluated. Participants' levels of daily physical activity, ranging from moderate to vigorous, were evaluated using triaxial accelerometers. The total score for physical fitness was assessed using the Tennis Field Test. Hierarchical multiple regression analyses revealed interaction effects between gender and tennis experience on participants' reaction time (RT) on the switch cost of the Local-global Task after controlling for age, BMI, gender, physical activity, physical fitness, and tennis experience. Longer tennis experience was associated with shorter switch cost in males but not in females. Higher scores on physical fitness were positively associated with lower interference scores on the Stroop Color-Word Test, RT on the 2-back Task, and RT in the switching condition of the Local-global Task, after controlling for age, BMI, gender, and physical activity. In conclusion, all three foundational components of executive function (i.e., inhibitory control, working memory, and cognitive flexibility) were more strongly related to physical fitness than to physical activity in males and females, whereas greater cognitive flexibility was related to tennis experience only in the males. © 2017 John Wiley & Sons Ltd.
Beyond Worst-Case Analysis in Privacy and Clustering: Exploiting Explicit and Implicit Assumptions
2013-08-01
Dwork et al [63]. Given a query function f , the curator first estimates the global sensitivity of f , denoted GS(f) = maxD,D′ f(D)− f(D′), then outputs f...Ostrovsky et al [121]. Ostrovsky et al study instances in which the ratio between the cost of the optimal (k − 1)-means solu- tion and the cost of the...k-median objective. We also build on the work of Balcan et al [25] that investigate the connection between point-wise approximations of the target
Carbon footprint and cost-effectiveness of cataract surgery.
Venkatesh, Rengaraj; van Landingham, Suzanne W; Khodifad, Ashish M; Haripriya, Aravind; Thiel, Cassandra L; Ramulu, Pradeep; Robin, Alan L
2016-01-01
This article raises awareness about the cost-effectiveness and carbon footprint of various cataract surgery techniques, comparing their relative carbon emissions and expenses: manual small-incision cataract surgery (MSICS), phacoemulsification, and femtosecond laser-assisted cataract surgery. As the most commonly performed surgical procedure worldwide, cataract surgery contributes significantly to global climate change. The carbon footprint of a single phacoemulsification cataract surgery is estimated to be comparable to that of a typical person's life for 1 week. Phacoemulsification has been estimated to be between 1.4 and 4.7 times more expensive than MSICS; however, given the lower degree of postoperative astigmatism and other potential complications, phacoemulsification may still be preferable to MSICS in relatively resource-rich settings requiring high levels of visual function. Limited data are currently available regarding the environmental and financial impact of femtosecond laser-assisted cataract surgery; however, in its current form, it appears to be the least cost-effective option. Cataract surgery has a high value to patients. The relative environmental impact and cost of different types of cataract surgery should be considered as this treatment becomes even more broadly available globally and as new technologies are developed and implemented.
Montgomery, William; Liu, Li; Stensland, Michael D; Xue, Hai Bo; Treuer, Tamas; Ascher-Svanum, Haya
2013-01-01
Background This article describes the personal, societal, and economic burden attributable to schizophrenia in the People’s Republic of China and highlights the potential for effective outpatient treatment to reduce this burden given recent changes in the Chinese health care system. The importance of effective antipsychotic therapy in reducing the burden of schizophrenia is also examined. Methods Published research on the burden, disability, management, and economic costs of schizophrenia in the People’s Republic of China was examined in the context of the larger body of global research. Research written in English or Chinese and published before June 2012 was identified using PubMed, CNKI, and Wanfang Med database searches. The contribution of effective antipsychotic therapy in reducing the risk for relapse and hospitalization and improving patients’ functioning is described. Results Schizophrenia imposes a substantial burden on Chinese society, with indirect costs accounting for the majority of the total cost. Functional impairment is high, leading to lost wages and work impairment. In the People’s Republic of China, schizophrenia is the most common diagnosis among hospitalized psychiatric patients. Ongoing changes in the Chinese health care system may reduce some barriers to effective relapse prevention in schizophrenia and potentially reduce hospitalizations. The use of antipsychotics for acute episodes and maintenance treatment has been shown to decrease symptom severity and reduce the risk for relapse and hospitalization. However, discontinuing antipsychotic medication appears common and is a strong predictor of relapse. Cost-effectiveness research in the People’s Republic of China is needed to examine the potential gains from improved outpatient antipsychotic treatment. Conclusion Schizophrenia is a very costly mental illness in terms of personal, economic, and societal burden, both in the People’s Republic of China and globally. When treated effectively, patients tend to persist longer with antipsychotic treatment, have fewer costly relapses, and have improved functioning. Further research examining the long-term effects of reducing barriers to effective treatments on the societal burden of schizophrenia in the People’s Republic of China is needed. PMID:23983478
Cost-effectiveness of a classification-based system for sub-acute and chronic low back pain.
Apeldoorn, Adri T; Bosmans, Judith E; Ostelo, Raymond W; de Vet, Henrica C W; van Tulder, Maurits W
2012-07-01
Identifying relevant subgroups in patients with low back pain (LBP) is considered important to guide physical therapy practice and to improve outcomes. The aim of the present study was to assess the cost-effectiveness of a modified version of Delitto's classification-based treatment approach compared with usual physical therapy care in patients with sub-acute and chronic LBP with 1 year follow-up. All patients were classified using the modified version of Delitto's classification-based system and then randomly assigned to receive either classification-based treatment or usual physical therapy care. The main clinical outcomes measured were; global perceived effect, intensity of pain, functional disability and quality of life. Costs were measured from a societal perspective. Multiple imputations were used for missing data. Uncertainty surrounding cost differences and incremental cost-effectiveness ratios was estimated using bootstrapping. Cost-effectiveness planes and cost-effectiveness acceptability curves were estimated. In total, 156 patients were included. The outcome analyses showed a significantly better outcome on global perceived effect favoring the classification-based approach, and no differences between the groups on pain, disability and quality-adjusted life-years. Mean total societal costs for the classification-based group were
Massive yet grossly underestimated global costs of invasive insects
Bradshaw, Corey J. A.; Leroy, Boris; Bellard, Céline; Roiz, David; Albert, Céline; Fournier, Alice; Barbet-Massin, Morgane; Salles, Jean-Michel; Simard, Frédéric; Courchamp, Franck
2016-01-01
Insects have presented human society with some of its greatest development challenges by spreading diseases, consuming crops and damaging infrastructure. Despite the massive human and financial toll of invasive insects, cost estimates of their impacts remain sporadic, spatially incomplete and of questionable quality. Here we compile a comprehensive database of economic costs of invasive insects. Taking all reported goods and service estimates, invasive insects cost a minimum of US$70.0 billion per year globally, while associated health costs exceed US$6.9 billion per year. Total costs rise as the number of estimate increases, although many of the worst costs have already been estimated (especially those related to human health). A lack of dedicated studies, especially for reproducible goods and service estimates, implies gross underestimation of global costs. Global warming as a consequence of climate change, rising human population densities and intensifying international trade will allow these costly insects to spread into new areas, but substantial savings could be achieved by increasing surveillance, containment and public awareness. PMID:27698460
Orbiter global positioning system design and Ku-band problem investigations, exhibit B, revision 1
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1983-01-01
The hardware, software, and interface between them was investigated for a low dynamics, nonhostile environment, low cost GPS receiver (GPS Z set). The set is basically a three dimensional geodetic and way point navigator with GPS time, ground speed, and ground track as possible outputs in addition to the usual GPS receiver set outputs. Each functional module comprising the GPS set is described, enumerating its functional inputs and outputs, leading to the interface between hardware and software of the set.
A real-space approach to the X-ray phase problem
NASA Astrophysics Data System (ADS)
Liu, Xiangan
Over the past few decades, the phase problem of X-ray crystallography has been explored in reciprocal space in the so called direct methods . Here we investigate the problem using a real-space approach that bypasses the laborious procedure of frequent Fourier synthesis and peak picking. Starting from a completely random structure, we move the atoms around in real space to minimize a cost function. A Monte Carlo method named simulated annealing (SA) is employed to search the global minimum of the cost function which could be constructed in either real space or reciprocal space. In the hybrid minimal principle, we combine the dual space costs together. One part of the cost function monitors the probability distribution of the phase triplets, while the other is a real space cost function which represents the discrepancy between measured and calculated intensities. Compared to the single space cost functions, the dual space cost function has a greatly improved landscape and therefore could prevent the system from being trapped in metastable states. Thus, the structures of large molecules such as virginiamycin (C43H 49N7O10 · 3CH0OH), isoleucinomycin (C60H102N 6O18) and hexadecaisoleucinomycin (HEXIL) (C80H136 N8O24) can now be solved, whereas it would not be possible using the single cost function. When a molecule gets larger, the configurational space becomes larger, and the requirement of CPU time increases exponentially. The method of improved Monte Carlo sampling has demonstrated its capability to solve large molecular structures. The atoms are encouraged to sample the high density regions in space determined by an approximate density map which in turn is updated and modified by averaging and Fourier synthesis. This type of biased sampling has led to considerable reduction of the configurational space. It greatly improves the algorithm compared to the previous uniform sampling. Hence, for instance, 90% of computer run time could be cut in solving the complex structure of isoleucinomycin. Successful trial calculations include larger molecular structures such as HEXIL and a collagen-like peptide (PPG). Moving chemical fragment is proposed to reduce the degrees of freedom. Furthermore, stereochemical parameters are considered for geometric constraints and for a cost function related to chemical energy.
Global Economic Burden of Norovirus Gastroenteritis
Bartsch, Sarah M.; Lopman, Benjamin A.; Ozawa, Sachiko; Hall, Aron J.; Lee, Bruce Y.
2016-01-01
Background Despite accounting for approximately one fifth of all acute gastroenteritis illnesses, norovirus has received comparatively less attention than other infectious pathogens. With several candidate vaccines under development, characterizing the global economic burden of norovirus could help funders, policy makers, public health officials, and product developers determine how much attention and resources to allocate to advancing these technologies to prevent and control norovirus. Methods We developed a computational simulation model to estimate the economic burden of norovirus in every country/area (233 total) stratified by WHO region and globally, from the health system and societal perspectives. We considered direct costs of illness (e.g., clinic visits and hospitalization) and productivity losses. Results Globally, norovirus resulted in a total of $4.2 billion (95% UI: $3.2–5.7 billion) in direct health system costs and $60.3 billion (95% UI: $44.4–83.4 billion) in societal costs per year. Disease amongst children <5 years cost society $39.8 billion, compared to $20.4 billion for all other age groups combined. Costs per norovirus illness varied by both region and age and was highest among adults ≥55 years. Productivity losses represented 84–99% of total costs varying by region. While low and middle income countries and high income countries had similar disease incidence (10,148 vs. 9,935 illness per 100,000 persons), high income countries generated 62% of global health system costs. In sensitivity analysis, the probability of hospitalization had the largest impact on health system cost estimates ($2.8 billion globally, assuming no hospitalization costs), while the probability of missing productive days had the largest impact on societal cost estimates ($35.9 billion globally, with a 25% probability of missing productive days). Conclusions The total economic burden is greatest in young children but the highest cost per illness is among older age groups in some regions. These large costs overwhelmingly are from productivity losses resulting from acute illness. Low, middle, and high income countries all have a considerable economic burden, suggesting that norovirus gastroenteritis is a truly global economic problem. Our findings can help identify which age group(s) and/or geographic regions may benefit the most from interventions. PMID:27115736
Global Economic Burden of Norovirus Gastroenteritis.
Bartsch, Sarah M; Lopman, Benjamin A; Ozawa, Sachiko; Hall, Aron J; Lee, Bruce Y
2016-01-01
Despite accounting for approximately one fifth of all acute gastroenteritis illnesses, norovirus has received comparatively less attention than other infectious pathogens. With several candidate vaccines under development, characterizing the global economic burden of norovirus could help funders, policy makers, public health officials, and product developers determine how much attention and resources to allocate to advancing these technologies to prevent and control norovirus. We developed a computational simulation model to estimate the economic burden of norovirus in every country/area (233 total) stratified by WHO region and globally, from the health system and societal perspectives. We considered direct costs of illness (e.g., clinic visits and hospitalization) and productivity losses. Globally, norovirus resulted in a total of $4.2 billion (95% UI: $3.2-5.7 billion) in direct health system costs and $60.3 billion (95% UI: $44.4-83.4 billion) in societal costs per year. Disease amongst children <5 years cost society $39.8 billion, compared to $20.4 billion for all other age groups combined. Costs per norovirus illness varied by both region and age and was highest among adults ≥55 years. Productivity losses represented 84-99% of total costs varying by region. While low and middle income countries and high income countries had similar disease incidence (10,148 vs. 9,935 illness per 100,000 persons), high income countries generated 62% of global health system costs. In sensitivity analysis, the probability of hospitalization had the largest impact on health system cost estimates ($2.8 billion globally, assuming no hospitalization costs), while the probability of missing productive days had the largest impact on societal cost estimates ($35.9 billion globally, with a 25% probability of missing productive days). The total economic burden is greatest in young children but the highest cost per illness is among older age groups in some regions. These large costs overwhelmingly are from productivity losses resulting from acute illness. Low, middle, and high income countries all have a considerable economic burden, suggesting that norovirus gastroenteritis is a truly global economic problem. Our findings can help identify which age group(s) and/or geographic regions may benefit the most from interventions.
Probabilistic distance-based quantizer design for distributed estimation
NASA Astrophysics Data System (ADS)
Kim, Yoon Hak
2016-12-01
We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.
The Demographic and Biomedical Case for Late-Life Interventions in Aging
Rae, Michael J.; Butler, Robert N.; Campisi, Judith; de Grey, Aubrey D. N. J.; Finch, Caleb E.; Gough, Michael; Martin, George M.; Vijg, Jan; Perrott, Kevin M.; Logan, Barbara J.
2013-01-01
The social and medical costs of the biological aging process are high and will rise rapidly in coming decades, creating an enormous challenge to societies worldwide. In recent decades, researchers have expanded their understanding of the underlying deleterious structural and physiological changes (aging damage) that underlie the progressive functional impairments, declining health, and rising mortality of aging humans and other organisms and have been able to intervene in the process in model organisms, even late in life. To preempt a global aging crisis, we advocate an ambitious global initiative to translate these findings into interventions for aging humans, using three complementary approaches to retard, arrest, and even reverse aging damage, extending and even restoring the period of youthful health and functionality of older people. PMID:20630854
NASA Astrophysics Data System (ADS)
Strzepek, K. M.; Kirshen, P.; Yohe, G.
2001-05-01
The fundamental theme of this research was to investigate tradeoffs in model resolution for modeling water resources in the context of national economic development and capital investment decisions.. Based on a case study of China, the research team has developed water resource models at relatively fine scales, then investigated how they can be aggregated to regional or national scales and for use in national level planning decisions or global scale integrated assessment models of food and/or environmental change issues. The team has developed regional water supply and water demand functions.. Simplifying and aggregating the supply and demand functions will allow reduced form functions of the water sector for inclusion in large scale national economic models. Water Supply Cost functions were developed looking at both surface and groundwater supplies. Surface Water: Long time series of flows at the mouths of the 36 major river sub-basins in China are used in conjunction with different basin reservoir storage quantities to obtain storage-yield curves. These are then combined with reservoir and transmission cost data to obtain yield-cost or surface water demand curves. The methodology to obtain the long time series of flows for each basin is to fit a simple abcd water balance model to each basin. The costs of reservoir storage have been estimated by using a methodology developed in the USA that relates marginal storage costs to existing storage, slope and geological conditions. USA costs functions have then been adjusted to Chinese costs. The costs of some actual dams in China were used to "ground-truth" the methodology. Groundwater: The purpose of the groundwater work is to estimate the recharge in each basin, and the depths and quality of water of aquifers. A byproduct of the application of the abcd water balance model is the recharge. Depths and quality of aquifers are being taken from many separate reports on groundwater in different parts of China; we have been unable to find any global or regional datasets of groundwater.. Combining Surface and Groundwater Supply Functions Water Demand Curves. Water Use data is reported on political regions. Water Supply is reported and modeled on river basin regions. It is necessary to allocate water demands to river basins. To accomplish this China's 9 major river basins were divided into 36 hydroeconomic regions. The counties were then allocated to one of the 36-hydroeconomic zones. The county-level water use data was aggregated to 5 major water use sectors: 1)industry; 2)urban municipal and vegetable gardens: 3) major irrigation; 4) Energy and 5)Other agriculture (forestry, pasture; fishery). Sectoral Demand functions that include price and income elasticity were developed for the 5 sectors for each of the 9 major river basin. The supply and demand curves were aggregated at a variety of geographical scales as well as levels of economic sectoral aggregation. Implications for investment and sustainable development policies were examined for the various aggregation using partial and general equilibrium modeling of the Chinese economy. These results and policy implications for China as well as insights and recommendation for other developing countries will be presented.
NASA Astrophysics Data System (ADS)
Tohidnia, S.; Tohidi, G.
2018-02-01
The current paper develops three different ways to measure the multi-period global cost efficiency for homogeneous networks of processes when the prices of exogenous inputs are known at all time periods. A multi-period network data envelopment analysis model is presented to measure the minimum cost of the network system based on the global production possibility set. We show that there is a relationship between the multi-period global cost efficiency of network system and its subsystems, and also its processes. The proposed model is applied to compute the global cost Malmquist productivity index for measuring the productivity changes of network system and each of its process between two time periods. This index is circular. Furthermore, we show that the productivity changes of network system can be defined as a weighted average of the process productivity changes. Finally, a numerical example will be presented to illustrate the proposed approach.
Global anthropogenic methane emissions 2005-2030: technical mitigation potentials and costs
NASA Astrophysics Data System (ADS)
Höglund-Isaksson, L.
2012-10-01
This paper presents estimates of current and future global anthropogenic methane emissions, their technical mitigation potential and associated costs for the period 2005 to 2030. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic methane for 83 countries/regions, which are aggregated to produce global estimates. Global emissions are estimated at 323 Mt methane in 2005, with an expected increase to 414 Mt methane in 2030. The technical mitigation potential is estimated at 195 Mt methane in 2030, whereof about 80 percent is found attainable at a marginal cost less than 20 Euro t-1 CO2eq when using a social planner cost perspective. With a private investor cost perspective, the corresponding fraction is only 30 percent. Major uncertainty sources in emission estimates are identified and discussed.
Positive biodiversity-productivity relationship predominant in global forests.
Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B
2016-10-14
The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.
Research on optimal investment path of transmission corridor under the global energy Internet
NASA Astrophysics Data System (ADS)
Huang, Yuehui; Li, Pai; Wang, Qi; Liu, Jichun; Gao, Han
2018-02-01
Under the background of the global energy Internet, the investment planning of transmission corridor from XinJiang to Germany is studied in this article, which passes through four countries: Kazakhstan, Russia, Belarus and Poland. Taking the specific situation of different countries into account, including the length of transmission line, unit construction cost, completion time, transmission price, state tariff, inflation rate and so on, this paper constructed a power transmission investment model. Finally, the dynamic programming method is used to simulate the example, and the optimal strategies under different objective functions are obtained.
Systematic review of reusable versus disposable laparoscopic instruments: costs and safety.
Siu, Joey; Hill, Andrew G; MacCormick, Andrew D
2017-01-01
The quality of instruments and surgical expertise in minimally invasive surgery has developed markedly in the last two decades. Attention is now being turned to ways to allow surgeons to adopt more cost-effective and environmental-friendly approaches. This review explores current evidence on the cost and environmental impact of reusable versus single-use instruments. In addition, we aim to compare their quality, functionality and associated clinical outcomes. The Medline and EMBASE databases were searched for relevant literature from January 2000 to May 2015. Subject headings were Equipment Reuse/, Disposable Equipment/, Cholecystectomy/, Laparoscopic/, Laparoscopy/, Surgical Instruments/, Medical Waste Disposal/, Waste Management/, Medical Waste/, Environmental Sustainability/ and Sterilization/. There are few objective comparative analyses between single-use versus reusable instruments. Current evidence suggests that limiting use of disposal instruments to necessity may hold both economical and environmental advantages. Theoretical advantages of single-use instruments in quality, safety, sterility, ease of use and importantly patient outcomes have rarely been examined. Cost-saving methods, environmental-friendly methods, global operative costs, hidden costs, sterilization methods and quality assurance systems vary greatly between studies making it difficult to gain an overview of the comparison between single-use and reusable instruments. Further examination of cost comparisons between disposable and reusable instruments is necessary while externalized environmental costs, instrument function and safety are also important to consider in future studies. © 2016 Royal Australasian College of Surgeons.
Optimal stomatal behaviour around the world
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; ...
2015-03-02
Stomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs accordingmore » to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model 1 and the leaf and wood economics spectrum 2,3. We also demonstrate a global relationship with climate. In conclusion, these findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.« less
Hoffman, Steven J; Røttingen, John-Arne
2013-06-14
The costs of any proposal for new international law must be fully evaluated and compared with benefits and competing alternatives to ensure adoption will not create more problems than solutions. A systematic review of the research literature was conducted to categorize and assess limitations and unintended negative consequences associated with the proposed Framework Convention on Global Health (FCGH). A critical analysis then interpreted these findings using economic, ethical, legal, and political science perspectives. Of the 442 documents retrieved, nine met the inclusion criteria. Collectively, these documents highlighted that an FCGH could duplicate other efforts, lack feasibility, and have questionable impact. The critical analysis reveals that negative consequences can result from the FCGH's proposed form of international law and proposed functions of influencing national budgets, realizing health rights and resetting global governance for health. These include the direct costs of international law, opportunity costs, reducing political dialogue by legalizing political interactions, petrifying principles that may have only contemporary relevance, imposing foreign values on less powerful countries, forcing externally defined goals on countries, prioritizing individual rights over population-wide well-being, further complicating global governance for health, weakening the World Health Organization (WHO), reducing participation opportunities for non-state actors, and offering sub-optimal solutions for global health challenges. Four options for revising the FCGH proposal are developed to address its weaknesses and strengthen its potential for impact. These include: 1) abandoning international law as the primary commitment mechanism and instead pursuing agreement towards a less formal "framework for global health"; 2) seeking fundamental constitutional reform of WHO to address gaps in global governance for health; 3) mobilizing for a separate political platform that completely bypasses WHO; or 4) narrowing the scope of sought changes to one particular governance issue such as financing for global health needs. Copyright © 2013 Hoffman and Rottingen. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Voronoi Diagram Based Optimization of Dynamic Reactive Power Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Weihong; Sun, Kai; Qi, Junjian
2015-01-01
Dynamic var sources can effectively mitigate fault-induced delayed voltage recovery (FIDVR) issues or even voltage collapse. This paper proposes a new approach to optimization of the sizes of dynamic var sources at candidate locations by a Voronoi diagram based algorithm. It first disperses sample points of potential solutions in a searching space, evaluates a cost function at each point by barycentric interpolation for the subspaces around the point, and then constructs a Voronoi diagram about cost function values over the entire space. Accordingly, the final optimal solution can be obtained. Case studies on the WSCC 9-bus system and NPCC 140-busmore » system have validated that the new approach can quickly identify the boundary of feasible solutions in searching space and converge to the global optimal solution.« less
On removing interpolation and resampling artifacts in rigid image registration.
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce
2013-02-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.
On Removing Interpolation and Resampling Artifacts in Rigid Image Registration
Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R.; Fischl, Bruce
2013-01-01
We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration. PMID:23076044
Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis
NASA Astrophysics Data System (ADS)
Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.
2014-04-01
A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.
Plehn, Gunnar; Butz, Thomas; Maagh, Petra; Oernek, Ahmet; Meissner, Axel; Plehn, Natalie
2016-11-03
Cardiac catheterization laboratories (CLL) have continued to function as profit centers for hospitals. Due to a high percentage of material and labor costs, they are natural targets for process improvement. Our study applied a contribution margin (CBM) concept to evaluate costs and cost dynamics over a 5-year period. We retrospectively analyzed all procedures performed at a tertiary heart center between 2007 and 2011. Total variable costs, including labor time, material, and maintenance-expenses, were allocated at a global as well as a procedural level. CBM and CBM ratios were calculated by integration of individual DRG revenues. Annual case volume increased from 1288 to 1545. In parallel, overall profitability improved as indicated by a 2% increase in CBM ratio and a higher CBM generated per hour of CLL working time (4325 vs. 5892 €, p < 0.001). Coronary angiography generated higher average CBMs per hour than coronary or electrophysiological interventions (5831 vs. 3458 vs. 1495 €; p < 0.001). The latter are characterized by relatively high per case material expenditures. On a procedural level, DRG-specific trends as a steady improvement of examination time or an increase in material costs were detectable. The CBM concept allows a comprehensive analysis of CLL costs and cost dynamics. From a health service providers view, its range of application includes global profitability analysis, portfolio evaluation, and a detailed cost analysis of specific service lines. From a healthcare payers perspective, it may help to monitor hospital activities and to provide a solid data basis in cases where inappropriate developments are suspected. The calculation principle is simple which may increase user acceptance and thus the motivation of team members.
New Concept for FES-Induced Movements
NASA Astrophysics Data System (ADS)
Ahmed, Mohammed; Huq, M. S.; Ibrahim, B. S. K. K.; Ahmed, Aisha; Ahmed, Zainab
2016-11-01
Functional Electrical Stimulation (FES) had become a viable option for movement restoration, therapy and rehabilitation in neurologically impaired subjects. Although the number of such subjects increase globally but only few orthosis devices combine with the technique are available and are costly. A factor resulting to this could be stringent requirement for such devices to have passed clinical acceptance. In that regard a new approach which utilize the patient wheelchair as support and also a novel control system to synchronize the stimulation such that the movement is accomplished safely was proposed. It is expected to improve well-being, social integration, independence, cost, and healthcare delivery.
Population ecology, nonlinear dynamics, and social evolution. I. Associations among nonrelatives.
Avilés, Leticia; Abbot, Patrick; Cutter, Asher D
2002-02-01
Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.
Re-Engineering Alzheimer Clinical Trials: Global Alzheimer's Platform Network.
Cummings, J; Aisen, P; Barton, R; Bork, J; Doody, R; Dwyer, J; Egan, J C; Feldman, H; Lappin, D; Truyen, L; Salloway, S; Sperling, R; Vradenburg, G
2016-06-01
Alzheimer's disease (AD) drug development is costly, time-consuming, and inefficient. Trial site functions, trial design, and patient recruitment for trials all require improvement. The Global Alzheimer Platform (GAP) was initiated in response to these challenges. Four GAP work streams evolved in the US to address different trial challenges: 1) registry-to-cohort web-based recruitment; 2) clinical trial site activation and site network construction (GAP-NET); 3) adaptive proof-of-concept clinical trial design; and 4) finance and fund raising. GAP-NET proposes to establish a standardized network of continuously funded trial sites that are highly qualified to perform trials (with established clinical, biomarker, imaging capability; certified raters; sophisticated management system. GAP-NET will conduct trials for academic and biopharma industry partners using standardized instrument versions and administration. Collaboration with the Innovative Medicines Initiative (IMI) European Prevention of Alzheimer's Disease (EPAD) program, the Canadian Consortium on Neurodegeneration in Aging (CCNA) and other similar international initiatives will allow conduct of global trials. GAP-NET aims to increase trial efficiency and quality, decrease trial redundancy, accelerate cohort development and trial recruitment, and decrease trial costs. The value proposition for sites includes stable funding and uniform training and trial execution; the value to trial sponsors is decreased trial costs, reduced time to execute trials, and enhanced data quality. The value for patients and society is the more rapid availability of new treatments for AD.
NASA Astrophysics Data System (ADS)
Dambreville, Frédéric
2013-10-01
While there is a variety of approaches and algorithms for optimizing the mission of an unmanned moving sensor, there are much less works which deal with the implementation of several sensors within a human organization. In this case, the management of the sensors is done through at least one human decision layer, and the sensors management as a whole arises as a bi-level optimization process. In this work, the following hypotheses are considered as realistic: Sensor handlers of first level plans their sensors by means of elaborated algorithmic tools based on accurate modelling of the environment; Higher level plans the handled sensors according to a global observation mission and on the basis of an approximated model of the environment and of the first level sub-processes. This problem is formalized very generally as the maximization of an unknown function, defined a priori by sampling a known random function (law of model error). In such case, each actual evaluation of the function increases the knowledge about the function, and subsequently the efficiency of the maximization. The issue is to optimize the sequence of value to be evaluated, in regards to the evaluation costs. There is here a fundamental link with the domain of experiment design. Jones, Schonlau and Welch proposed a general method, the Efficient Global Optimization (EGO), for solving this problem in the case of additive functional Gaussian law. In our work, a generalization of the EGO is proposed, based on a rare event simulation approach. It is applied to the aforementioned bi-level sensor planning.
Global Economic Impact of Dental Diseases.
Listl, S; Galloway, J; Mossey, P A; Marcenes, W
2015-10-01
Reporting the economic burden of oral diseases is important to evaluate the societal relevance of preventing and addressing oral diseases. In addition to treatment costs, there are indirect costs to consider, mainly in terms of productivity losses due to absenteeism from work. The purpose of the present study was to estimate the direct and indirect costs of dental diseases worldwide to approximate the global economic impact. Estimation of direct treatment costs was based on a systematic approach. For estimation of indirect costs, an approach suggested by the World Health Organization's Commission on Macroeconomics and Health was employed, which factored in 2010 values of gross domestic product per capita as provided by the International Monetary Fund and oral burden of disease estimates from the 2010 Global Burden of Disease Study. Direct treatment costs due to dental diseases worldwide were estimated at US$298 billion yearly, corresponding to an average of 4.6% of global health expenditure. Indirect costs due to dental diseases worldwide amounted to US$144 billion yearly, corresponding to economic losses within the range of the 10 most frequent global causes of death. Within the limitations of currently available data sources and methodologies, these findings suggest that the global economic impact of dental diseases amounted to US$442 billion in 2010. Improvements in population oral health may imply substantial economic benefits not only in terms of reduced treatment costs but also because of fewer productivity losses in the labor market. © International & American Associations for Dental Research 2015.
The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study.
Bommer, Christian; Heesemann, Esther; Sagalova, Vera; Manne-Goehler, Jennifer; Atun, Rifat; Bärnighausen, Till; Vollmer, Sebastian
2017-06-01
Differences in methods and data used in past studies have limited comparisons of the cost of illness of diabetes across countries. We estimate the full global economic burden of diabetes in adults aged 20-79 years in 2015, using a unified framework across all countries. Our objective was to highlight patterns of diabetes-associated costs as well as to identify the need for further research in low-income regions. Epidemiological and economic data for 184 countries were used to estimate the global economic burden of diabetes, regardless of diabetes type. Direct costs were derived using a top-down approach based on WHO general health expenditure figures and prevalence data from the 2015 International Diabetes Federation Diabetes Atlas. Indirect costs were assessed using a human-capital approach, including diabetes-associated morbidity and premature mortality. We estimate the global cost of diabetes for 2015 was US$1·31 trillion (95% CI 1·28-1·36) or 1·8% (95% CI 1·8-1·9) of global gross domestic product (GDP). Notably, indirect costs accounted for 34·7% (95% CI 34·7-35·0) of the total burden, although substantial variations existed both in the share and the composition of indirect costs across countries. North America was the most affected region relative to GDP and also the largest contributor to global absolute costs. However, on average, the economic burden as percentage of GDP was larger in middle-income countries than in high-income countries. Our results suggest a substantial global economic burden of diabetes. Although limited data were available for low-income and middle-income countries, our findings suggest that large diabetes-associated costs are not only a problem in high-income settings but also affect poorer world regions. None. Copyright © 2017 Elsevier Ltd. All rights reserved.
The worldwide costs of dementia 2015 and comparisons with 2010.
Wimo, Anders; Guerchet, Maëlenn; Ali, Gemma-Claire; Wu, Yu-Tzu; Prina, A Matthew; Winblad, Bengt; Jönsson, Linus; Liu, Zhaorui; Prince, Martin
2017-01-01
In 2010, Alzheimer's Disease International presented estimates of the global cost of illness (COI) of dementia. Since then, new studies have been conducted, and the number of people with dementia has increased. Here, we present an update of the global cost estimates. This is a societal, prevalence-based global COI study. The worldwide costs of dementia were estimated at United States (US) $818 billion in 2015, an increase of 35% since 2010; 86% of the costs occur in high-income countries. Costs of informal care and the direct costs of social care still contribute similar proportions of total costs, whereas the costs in the medical sector are much lower. The threshold of US $1 trillion will be crossed by 2018. Worldwide costs of dementia are enormous and still inequitably distributed. The increase in costs arises from increases in numbers of people with dementia and in increases in per person costs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn; ...
2017-01-27
There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn
There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less
Individual diversity of functional brain network economy.
Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Ganger, Sebastian; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2015-04-01
On average, brain network economy represents a trade-off between communication efficiency, robustness, and connection cost, although an analogous understanding on an individual level is largely missing. Evaluating resting-state networks of 42 healthy participants with seven Tesla functional magnetic resonance imaging and graph theory revealed that not even half of all possible connections were common across subjects. The strongest similarities among individuals were observed for interhemispheric and/or short-range connections, which may relate to the essential feature of the human brain to develop specialized systems within each hemisphere. Despite this marked variability in individual network architecture, all subjects exhibited equal small-world properties. Furthermore, interdependency between four major network economy metrics was observed across healthy individuals. The characteristic path length was associated with the clustering coefficient (peak correlation r=0.93), the response to network attacks (r=-0.97), and the physical connection cost in three-dimensional space (r=-0.62). On the other hand, clustering was negatively related to attack response (r=-0.75) and connection cost (r=-0.59). Finally, increased connection cost was associated with better response to attacks (r=0.65). This indicates that functional brain networks with high global information transfer also exhibit strong network resilience. However, it seems that these advantages come at the cost of decreased local communication efficiency and increased physical connection cost. Except for wiring length, the results were replicated on a subsample at three Tesla (n=20). These findings highlight the finely tuned interrelationships between different parameters of brain network economy. Moreover, the understanding of the individual diversity of functional brain network economy may provide further insights in the vulnerability to mental and neurological disorders.
Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.
Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu
2017-01-01
Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.
Global optimization methods for engineering design
NASA Technical Reports Server (NTRS)
Arora, Jasbir S.
1990-01-01
The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.
Reliability based design including future tests and multiagent approaches
NASA Astrophysics Data System (ADS)
Villanueva, Diane
The initial stages of reliability-based design optimization involve the formulation of objective functions and constraints, and building a model to estimate the reliability of the design with quantified uncertainties. However, even experienced hands often overlook important objective functions and constraints that affect the design. In addition, uncertainty reduction measures, such as tests and redesign, are often not considered in reliability calculations during the initial stages. This research considers two areas that concern the design of engineering systems: 1) the trade-off of the effect of a test and post-test redesign on reliability and cost and 2) the search for multiple candidate designs as insurance against unforeseen faults in some designs. In this research, a methodology was developed to estimate the effect of a single future test and post-test redesign on reliability and cost. The methodology uses assumed distributions of computational and experimental errors with re-design rules to simulate alternative future test and redesign outcomes to form a probabilistic estimate of the reliability and cost for a given design. Further, it was explored how modeling a future test and redesign provides a company an opportunity to balance development costs versus performance by simultaneously designing the design and the post-test redesign rules during the initial design stage. The second area of this research considers the use of dynamic local surrogates, or surrogate-based agents, to locate multiple candidate designs. Surrogate-based global optimization algorithms often require search in multiple candidate regions of design space, expending most of the computation needed to define multiple alternate designs. Thus, focusing on solely locating the best design may be wasteful. We extended adaptive sampling surrogate techniques to locate multiple optima by building local surrogates in sub-regions of the design space to identify optima. The efficiency of this method was studied, and the method was compared to other surrogate-based optimization methods that aim to locate the global optimum using two two-dimensional test functions, a six-dimensional test function, and a five-dimensional engineering example.
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca
2010-05-01
The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance distributed model developed at the Department of Civil and Environmental Engineering of the University of Florence. Discussion on the comparisons between the effectiveness of the different algorithms on different cases of study on Central Italy basins is provided.
Haga, Egil; Aas, Eline; Grøholt, Berit; Tørmoen, Anita J; Mehlum, Lars
2018-01-01
Studies have shown that dialectical behaviour therapy (DBT) is effective in reducing self-harm in adults and adolescents. To evaluate the cost-effectiveness of DBT for adolescents (DBT-A) compared to enhanced usual care (EUC). In a randomised study, 77 adolescents with repeated self-harm were allocated to 19 weeks of outpatient treatment, either DBT-A ( n = 39) or EUC ( n = 38). Cost-effective analyses, including estimation of incremental cost-effectiveness ratios, were conducted with self-harm and global functioning (CGAS) as health outcomes. Using self-harm as effect outcome measure, the probability of DBT being cost-effective compared to EUC increased with increasing willingness to pay up to a ceiling of 99.5% (threshold of € 1400), while with CGAS as effect outcome measure, this ceiling was 94.9% (threshold of € 1600). Given the data, DBT-A had a high probability of being a cost-effective treatment.
Beyond offshoring: assess your company's global potential.
Farrell, Diana
2004-12-01
In the past few years, companies have become aware that they can slash costs by offshoring: moving jobs to lower-wage locations. But this practice is just the tip of the iceberg in terms of how globalization can transform industries, according to research by the McKinsey Global Institute (MGI). The institute's yearlong study suggests that by streamlining their production processes and supply chains globally, rather than just nationally or regionally, companies can lower their costs-as we've seen in the consumer-electronics and PC industries. Companies can save as much as 70% of their total costs through globalization--50% from offshoring, 5% from training and business-task redesign, and 15% from process improvements. But they don't have to stop there. The cost reductions make it possible to lower prices and expand into new markets, attracting whole new classes of customers. To date, however, few businesses have recognized the full scope of performance improvements that globalization makes possible, much less developed sound strategies for capturing those opportunities. In this article, Diana Farrell, director of MGI, offers a step-by-step approach to doing both things. Among her suggestions: Assess where your industry falls along the globalization spectrum, because not all sectors of the economy face the same challenges and opportunities at the same time. Also, pay attention to production, regulatory, and organizational barriers to globalization. If any of these can be changed, size up the cost-saving (and revenue-generating) opportunities that will emerge for your company as a result of those changes. Farrell also defines the five stages of globalization-market entry, product specialization, value chain disaggregation, value chain reengineering, and the creation of new markets-and notes the different levers for cutting costs and creating value that companies can use in each phase.
Global assessment of the economics of land degradation and improvement
NASA Astrophysics Data System (ADS)
Nkonya, Ephraim
2017-04-01
Land degradation—defined by the Millennium Ecosystem Assessment report as the long-term loss of ecosystems services—is a global problem, negatively affecting the livelihoods and food security of billions of people. Intensifying efforts, mobilizing more investments and strengthening the policy commitment for addressing land degradation at the global level needs to be supported by a careful evaluation of the costs and benefits of action versus costs of inaction against land degradation. Consistent with the definition of land degradation, we adopt the Total Economic Value (TEV) approach to determine the costs of land degradation and use remote sensing data and global statistical databases in our analysis. The results show that the annual costs of land degradation due to land use and land cover change (LUCC) are about US231 billion per year or about 0.41 % of the global GDP of US56.49 trillion in 2007. Contrary to past global land degradation assessment studies, land degradation is severe in both tropical and temperate countries. However, the losses from LUCC are especially high in Sub-Saharan Africa, which accounts for 26 % of the total global costs of land degradation due to LUCC. However, the local tangible losses (mainly provisioning services) account only for 46 % of the total cost of land degradation and the rest of the cost is due to the losses of ecosystem services (ES) accruable largely to beneficiaries other than the local land users. These external ES losses include carbon sequestration, biodiversity, genetic information and cultural services. This implies that the global community bears the largest cost of land degradation, which suggests that efforts to address land degradation should be done bearing in mind that the global community,as a whole, incurs larger losses than the local communities experiencing land degradation. The cost of soil fertility mining due to using land degrading management practices on maize, rice and wheat is estimated to be about US15 billion per year or 0.07 % of the global GDP. Though these results are based on a crop simulation approach that underestimates the impact of land degradation and covers only three crops, they reveal the high cost of land degradation for the production of the major food crops of the world. Our simulations also show that returns to investment in action against land degradation are twice larger than the cost of inaction in the first six years alone. Moreover, when one takes a 30-year planning horizon, the returns are five dollars per each dollar invested in action against land degradation. The opportunity cost accounts for the largest share of the cost of action against land degradation. This explains why land users, often basing their decisions in very short-time horizons, could degrade their lands even when they are aware of bigger longer-term losses that are incurred in the process.
The Costs and Valuation of Health Impacts of Measles and Rubella Risk Management Policies.
Thompson, Kimberly M; Odahowski, Cassie L
2016-07-01
National and global health policymakers require good information about the costs and benefits of their investments in measles and rubella immunization programs. Building on our review of the existing measles and rubella health economics literature, we develop inputs for use in regional and global models of the expected future benefits and costs of vaccination, treatment, surveillance, and other global coordination activities. Given diversity in the world and limited data, we characterize the costs for countries according to the 2013 World Bank income levels using 2013 U.S. dollars (2013$US). We estimate that routine immunization and supplemental immunization activities will cost governments and donors over 2013$US 2.3 billion per year for the foreseeable future, with high-income countries accounting for 55% of the costs, to vaccinate global birth cohorts of approximately 134 million surviving infants and to protect the global population of over 7 billion people. We find significantly higher costs and health consequences of measles or rubella disease than with vaccine use, with the expected disability-adjusted life year (DALY) loss for case of disease generally at least 100 times the loss per vaccine dose. To support estimates of the economic benefits of investments in measles and/or rubella elimination or control, we characterize the probabilities of various sequelae of measles and rubella infections and vaccine adverse events, the DALY inputs for health outcomes, and the associated treatment costs. Managing measles and rubella to achieve the existing and future regional measles and rubella goals and the objectives of the Global Vaccine Action Plan will require an ongoing commitment of financial resources that will prevent adverse health outcomes and save the associated treatment costs. © 2015 Society for Risk Analysis.
Zhou, Weiqiang; Sherwood, Ben; Ji, Hongkai
2017-01-01
Technological advances have led to an explosive growth of high-throughput functional genomic data. Exploiting the correlation among different data types, it is possible to predict one functional genomic data type from other data types. Prediction tools are valuable in understanding the relationship among different functional genomic signals. They also provide a cost-efficient solution to inferring the unknown functional genomic profiles when experimental data are unavailable due to resource or technological constraints. The predicted data may be used for generating hypotheses, prioritizing targets, interpreting disease variants, facilitating data integration, quality control, and many other purposes. This article reviews various applications of prediction methods in functional genomics, discusses analytical challenges, and highlights some common and effective strategies used to develop prediction methods for functional genomic data. PMID:28076869
The maximum economic depth of groundwater abstraction for irrigation
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Van Beek, L. P.; de Graaf, I. E. M.; Gleeson, T. P.
2017-12-01
Over recent decades, groundwater has become increasingly important for agriculture. Irrigation accounts for 40% of the global food production and its importance is expected to grow further in the near future. Already, about 70% of the globally abstracted water is used for irrigation, and nearly half of that is pumped groundwater. In many irrigated areas where groundwater is the primary source of irrigation water, groundwater abstraction is larger than recharge and we see massive groundwater head decline in these areas. An important question then is: to what maximum depth can groundwater be pumped for it to be still economically recoverable? The objective of this study is therefore to create a global map of the maximum depth of economically recoverable groundwater when used for irrigation. The maximum economic depth is the maximum depth at which revenues are still larger than pumping costs or the maximum depth at which initial investments become too large compared to yearly revenues. To this end we set up a simple economic model where costs of well drilling and the energy costs of pumping, which are a function of well depth and static head depth respectively, are compared with the revenues obtained for the irrigated crops. Parameters for the cost sub-model are obtained from several US-based studies and applied to other countries based on GDP/capita as an index of labour costs. The revenue sub-model is based on gross irrigation water demand calculated with a global hydrological and water resources model, areal coverage of crop types from MIRCA2000 and FAO-based statistics on crop yield and market price. We applied our method to irrigated areas in the world overlying productive aquifers. Estimated maximum economic depths range between 50 and 500 m. Most important factors explaining the maximum economic depth are the dominant crop type in the area and whether or not initial investments in well infrastructure are limiting. In subsequent research, our estimates of maximum economic depth will be combined with estimates of groundwater depth and storage coefficients to estimate economically attainable groundwater volumes worldwide.
Global rural electrification - A different race initiative
NASA Astrophysics Data System (ADS)
Leonard, Raymond S.
1991-10-01
The paper considers global rural electrification based on electric power from power stations, built in geosynchronous orbit out of lunar materials. These materials are distributed to individual villages and rural electric cooperatives via microwaves for a cost of about 6-45 cents per kilowatt-hour. Power would be available in modular increments of 25-100 kilowatts with an average capital cost as low as $5000 per kilowatt. The global rural electrification program is aimed at providing electric power from space at competitive costs, relative to current costs, to rural and agricultural areas and diverting resources from weapons development to infrastructure development.
The cost of mapping trachoma: Data from the Global Trachoma Mapping Project
Schmidt, Elena; McFarland, Deborah A.; Macleod, Colin K.; Amer, Khaled; Bio, Amadou A.; Bakhtiari, Ana; Bovill, Sarah; Doherty, Amy H.; Khan, Asad Aslam; Mbofana, Mariamo; McCullagh, Siobhain; Millar, Tom; Mwale, Consity; Rotondo, Lisa A.; Weaver, Angela; Willis, Rebecca; Solomon, Anthony W.
2017-01-01
Background The Global Trachoma Mapping Project (GTMP) was implemented with the aim of completing the baseline map of trachoma globally. Over 2.6 million people were examined in 1,546 districts across 29 countries between December 2012 and January 2016. The aim of the analysis was to estimate the unit cost and to identify the key cost drivers of trachoma prevalence surveys conducted as part of GTMP. Methodology and principal findings In-country and global support costs were obtained using GTMP financial records. In-country expenditure was analysed for 1,164 districts across 17 countries. The mean survey cost was $13,113 per district [median: $11,675; IQR = $8,365-$14,618], $17,566 per evaluation unit [median: $15,839; IQR = $10,773-$19,915], $692 per cluster [median: $625; IQR = $452-$847] and $6.0 per person screened [median: $4.9; IQR = $3.7-$7.9]. Survey unit costs varied substantially across settings, and were driven by parameters such as geographic location, demographic characteristics, seasonal effects, and local operational constraints. Analysis by activities showed that fieldwork constituted the largest share of in-country survey costs (74%), followed by training of survey teams (11%). The main drivers of in-country survey costs were personnel (49%) and transportation (44%). Global support expenditure for all surveyed districts amounted to $5.1m, which included grant management, epidemiological support, and data stewardship. Conclusion This study provides the most extensive analysis of the cost of conducting trachoma prevalence surveys to date. The findings can aid planning and budgeting for future trachoma surveys required to measure the impact of trachoma elimination activities. Furthermore, the results of this study can also be used as a cost basis for other disease mapping programmes, where disease or context-specific survey cost data are not available. PMID:29045419
The cost of mapping trachoma: Data from the Global Trachoma Mapping Project.
Trotignon, Guillaume; Jones, Ellen; Engels, Thomas; Schmidt, Elena; McFarland, Deborah A; Macleod, Colin K; Amer, Khaled; Bio, Amadou A; Bakhtiari, Ana; Bovill, Sarah; Doherty, Amy H; Khan, Asad Aslam; Mbofana, Mariamo; McCullagh, Siobhain; Millar, Tom; Mwale, Consity; Rotondo, Lisa A; Weaver, Angela; Willis, Rebecca; Solomon, Anthony W
2017-10-01
The Global Trachoma Mapping Project (GTMP) was implemented with the aim of completing the baseline map of trachoma globally. Over 2.6 million people were examined in 1,546 districts across 29 countries between December 2012 and January 2016. The aim of the analysis was to estimate the unit cost and to identify the key cost drivers of trachoma prevalence surveys conducted as part of GTMP. In-country and global support costs were obtained using GTMP financial records. In-country expenditure was analysed for 1,164 districts across 17 countries. The mean survey cost was $13,113 per district [median: $11,675; IQR = $8,365-$14,618], $17,566 per evaluation unit [median: $15,839; IQR = $10,773-$19,915], $692 per cluster [median: $625; IQR = $452-$847] and $6.0 per person screened [median: $4.9; IQR = $3.7-$7.9]. Survey unit costs varied substantially across settings, and were driven by parameters such as geographic location, demographic characteristics, seasonal effects, and local operational constraints. Analysis by activities showed that fieldwork constituted the largest share of in-country survey costs (74%), followed by training of survey teams (11%). The main drivers of in-country survey costs were personnel (49%) and transportation (44%). Global support expenditure for all surveyed districts amounted to $5.1m, which included grant management, epidemiological support, and data stewardship. This study provides the most extensive analysis of the cost of conducting trachoma prevalence surveys to date. The findings can aid planning and budgeting for future trachoma surveys required to measure the impact of trachoma elimination activities. Furthermore, the results of this study can also be used as a cost basis for other disease mapping programmes, where disease or context-specific survey cost data are not available.
McCreless, Erin; Visconti, Piero; Carwardine, Josie; Wilcox, Chris; Smith, Robert J.
2013-01-01
The financial cost of biodiversity conservation varies widely around the world and such costs should be considered when identifying countries to best focus conservation investments. Previous global prioritizations have been based on global models for protected area management costs, but this metric may be related to other factors that negatively influence the effectiveness and social impacts of conservation. Here we investigate such relationships and first show that countries with low predicted costs are less politically stable. Local support and capacity can mitigate the impacts of such instability, but we also found that these countries have less civil society involvement in conservation. Therefore, externally funded projects in these countries must rely on government agencies for implementation. This can be problematic, as our analyses show that governments in countries with low predicted costs score poorly on indices of corruption, bureaucratic quality and human rights. Taken together, our results demonstrate that using national-level estimates for protected area management costs to set global conservation priorities is simplistic, as projects in apparently low-cost countries are less likely to succeed and more likely to have negative impacts on people. We identify the need for an improved approach to develop global conservation cost metrics that better capture the true costs of avoiding or overcoming such problems. Critically, conservation scientists must engage with practitioners to better understand and implement context-specific solutions. This approach assumes that measures of conservation costs, like measures of conservation value, are organization specific, and would bring a much-needed focus on reducing the negative impacts of conservation to develop projects that benefit people and biodiversity. PMID:24260502
NASA Astrophysics Data System (ADS)
Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.
2014-12-01
Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.
Haworth, Matthew; Belcher, Claire M; Killi, Dilek; Dewhirst, Rebecca A; Materassi, Alessandro; Raschi, Antonio; Centritto, Mauro
2018-04-18
Global warming events have coincided with turnover of plant species at intervals in Earth history. As mean global temperatures rise, the number, frequency and duration of heat-waves will increase. Ginkgo biloba was grown under controlled climatic conditions at two different day/night temperature regimes (25/20 °C and 35/30 °C) to investigate the impact of heat stress. Photosynthetic CO 2 -uptake and electron transport were reduced at the higher temperature, while rates of respiration were greater; suggesting that the carbon balance of the leaves was adversely affected. Stomatal conductance and the potential for evaporative cooling of the leaves was reduced at the higher temperature. Furthermore, the capacity of the leaves to dissipate excess energy was also reduced at 35/30 °C, indicating that photo-protective mechanisms were no longer functioning effectively. Leaf economics were adversely affected by heat stress, exhibiting an increase in leaf mass per area and leaf construction costs. This may be consistent with the selective pressures experienced by fossil Ginkgoales during intervals of global warming such as the Triassic - Jurassic boundary or Early Eocene Climatic Optimum. The physiological and morphological responses of the G. biloba leaves were closely interrelated; these relationships may be used to infer the leaf economics and photosynthetic/stress physiology of fossil plants.
The marriage problem and the fate of bachelors
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Th. M.
In the marriage problem, a variant of the bi-parted matching problem, each member has a “wish-list” expressing his/her preference for all possible partners; this list consists of random, positive real numbers drawn from a certain distribution. One searches the lowest cost for the society, at the risk of breaking up pairs in the course of time. Minimization of a global cost function (Hamiltonian) is performed with statistical mechanics techniques at a finite fictitious temperature. The problem is generalized to include bachelors, needed in particular when the groups have different size, and polygamy. Exact solutions are found for the optimal solution ( T=0). The entropy is found to vanish quadratically in T. Also, other evidence is found that the replica symmetric solution is exact, implying at most a polynomial degeneracy of the optimal solution. Whether bachelors occur or not, depends not only on their intrinsic qualities, or lack thereof, but also on global aspects of the chance for pair formation in society.
A Global Analysis of Light and Charge Yields in Liquid Xenon
Lenardo, Brian; Kazkaz, Kareem; Manalaysay, Aaron; ...
2015-11-04
Here, we present an updated model of light and charge yields from nuclear recoils in liquid xenon with a simultaneously constrained parameter set. A global analysis is performed using measurements of electron and photon yields compiled from all available historical data, as well as measurements of the ratio of the two. These data sweep over energies from keV and external applied electric fields from V/cm. The model is constrained by constructing global cost functions and using a simulated annealing algorithm and a Markov Chain Monte Carlo approach to optimize and find confidence intervals on all free parameters in the model.more » This analysis contrasts with previous work in that we do not unnecessarily exclude datasets nor impose artificially conservative assumptions, do not use spline functions, and reduce the number of parameters used in NEST v 0.98. Here, we report our results and the calculated best-fit charge and light yields. These quantities are crucial to understanding the response of liquid xenon detectors in the energy regime important for rare event searches such as the direct detection of dark matter particles.« less
Approaches to defining deltaic sustainability in the 21st century
NASA Astrophysics Data System (ADS)
Day, John W.; Agboola, Julius; Chen, Zhongyuan; D'Elia, Christopher; Forbes, Donald L.; Giosan, Liviu; Kemp, Paul; Kuenzer, Claudia; Lane, Robert R.; Ramachandran, Ramesh; Syvitski, James; Yañez-Arancibia, Alejandro
2016-12-01
Deltas are among the most productive and economically important of global ecosystems but unfortunately they are also among the most threatened by human activities. Here we discuss deltas and human impact, several approaches to defining deltaic sustainability and present a ranking of sustainability. Delta sustainability must be considered within the context of global biophysical and socioeconomic constraints that include thermodynamic limitations, scale and embeddedness, and constraints at the level of the biosphere/geosphere. The development, functioning, and sustainability of deltas are the result of external and internal inputs of energy and materials, such as sediments and nutrients, that include delta lobe development, channel switching, crevasse formation, river floods, storms and associated waves and storm surges, and tides and other ocean currents. Modern deltas developed over the past several thousand years with relatively stable global mean sea level, predictable material inputs from drainage basins and the sea, and as extremely open systems. Human activity has changed these conditions to make deltas less sustainable, in that they are unable to persist through time structurally or functionally. Deltaic sustainability can be considered from geomorphic, ecological, and economic perspectives, with functional processes at these three levels being highly interactive. Changes in this functioning can lead to either enhanced or diminished sustainability, but most changes have been detrimental. There is a growing understanding that the trajectories of global environmental change and cost of energy will make achieving delta sustainability more challenging and limit options for management. Several delta types are identified in terms of sustainability including those in arid regions, those with high and low energy-intensive management systems, deltas below sea level, tropical deltas, and Arctic deltas. Representative deltas are ranked on a sustainability range. Success in sustainable delta management will depend on utilizing natural delta functioning and an ecological engineering approach.
NASA Astrophysics Data System (ADS)
Dronova, I.; Taddeo, S.; Foster, K.
2017-12-01
Projecting ecosystem responses to global change relies on the accurate understanding of properties governing their functions in different environments. An important variable in models of ecosystem function is canopy leaf area index (LAI; leaf area per unit ground area) declared as one of the Essential Climate Variables in the Global Climate Observing System and extensively measured in terrestrial landscapes. However, wetlands have been largely under-represented in these efforts, which globally limits understanding of their contribution to carbon sequestration, climate regulation and resilience to natural and anthropogenic disturbances. This study provides a global synthesis of >350 wetland-specific LAI observations from 182 studies and compares LAI among wetland ecosystem and vegetation types, biomes and measurement approaches. Results indicate that most wetland types and even individual locations show a substantial local dispersion of LAI values (average coefficient of variation 65%) due to heterogeneity of environmental properties and vegetation composition. Such variation indicates that mean LAI values may not sufficiently represent complex wetland environments, and the use of this index in ecosystem function models needs to incorporate within-site variation in canopy properties. Mean LAI did not significantly differ between direct and indirect measurement methods on a pooled global sample; however, within some of the specific biomes and wetland types significant contrasts between these approaches were detected. These contrasts highlight unique aspects of wetland vegetation physiology and canopy structure affecting measurement principles that need to be considered in generalizing canopy properties in ecosystem models. Finally, efforts to assess wetland LAI using remote sensing strongly indicate the promise of this technology for cost-effective regional-scale modeling of canopy properties similar to terrestrial systems. However, such efforts urgently require more rigorous corrections for three-dimensional contributions of non-canopy material and non-vegetated surfaces to wetland canopy reflectance.
The annual global economic burden of heart failure.
Cook, Christopher; Cole, Graham; Asaria, Perviz; Jabbour, Richard; Francis, Darrel P
2014-02-15
Heart failure (HF) imposes both direct costs to healthcare systems and indirect costs to society through morbidity, unpaid care costs, premature mortality and lost productivity. The global economic burden of HF is not known. We estimated the overall cost of heart failure in 2012, in both direct and indirect terms, across the globe. Existing country-specific heart failure costs analyses were expressed as a proportion of gross domestic product and total healthcare spend. Using World Bank data, these proportional values were used to interpolate the economic cost of HF for countries of the world where no published data exists. Countries were categorized according to their level of economic development to investigate global patterns of spending. 197 countries were included in the analysis, covering 98.7% of the world's population. The overall economic cost of HF in 2012 was estimated at $108 billion per annum. Direct costs accounted for ~60% ($65 billion) and indirect costs accounted for ~40% ($43 billion) of the overall spend. Heart failure spending varied widely between high-income and middle and low-income countries. High-income countries spend a greater proportion on direct costs: a pattern reversed for middle and low-income countries. Heart failure imposes a huge economic burden, estimated at $108 billion per annum. With an aging, rapidly expanding and industrializing global population this value will continue to rise. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Coastal flood damage and adaptation costs under 21st century sea-level rise.
Hinkel, Jochen; Lincke, Daniel; Vafeidis, Athanasios T; Perrette, Mahé; Nicholls, Robert James; Tol, Richard S J; Marzeion, Ben; Fettweis, Xavier; Ionescu, Cezar; Levermann, Anders
2014-03-04
Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.
How much spare capacity is necessary for the security of resource networks?
NASA Astrophysics Data System (ADS)
Zhao, Qian-Chuan; Jia, Qing-Shan; Cao, Yang
2007-01-01
The balance between the supply and demand of some kind of resource is critical for the functionality and security of many complex networks. Local contingencies that break this balance can cause a global collapse. These contingencies are usually dealt with by spare capacity, which is costly especially when the network capacity (the total amount of the resource generated/consumed in the network) grows. This paper studies the relationship between the spare capacity and the collapse probability under separation contingencies when the network capacity grows. Our results are obtained based on the analysis of the existence probability of balanced partitions, which is a measure of network security when network splitting is unavoidable. We find that a network with growing capacity will inevitably collapse after a separation contingency if the spare capacity in each island increases slower than a linear function of the network capacity and there is no suitable global coordinator.
The Global Invasive Species Information Network: contributing to GEO Task BI-07-01b
NASA Astrophysics Data System (ADS)
Graham, J.; Morisette, J. T.; Simpson, A.
2009-12-01
Invasive alien species (IAS) threaten biodiversity and exert a tremendous cost on society for IAS prevention and eradication. They endanger natural ecosystem functioning and seriously impact biodiversity and agricultural production. The task definition for the GEO task BI-07-01b: Invasive Species Monitoring System is to characterize, monitor, and predict changes in the distribution of invasive species. This includes characterizing the current requirements and capacity for invasive species monitoring and developing strategies for implementing cross-search functionality among existing online invasive species information systems from around the globe. The Task is being coordinated by members of the Global Invasive Species Information Network (GISIN) and their partners. Information on GISIN and a prototype of the network is available at www.gisin.org. This talk will report on the current status of GISIN and review how researchers can either contribute to or utilize data from this network.
Korenromp, Eline L; Wi, Teodora; Resch, Stephen; Stover, John; Broutet, Nathalie
2017-01-01
In 2016 the World Health Assembly adopted the global strategy on Sexually Transmitted Infections (STI) 2016-2021 aiming to reduce curable STIs by 90% by 2030. We costed scaling-up priority interventions to coverage targets. Strategy-targeted declines in Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum and Trichomonas vaginalis were applied to WHO-estimated regional burdens at 2012. Syndromic case management was costed for these curable STIs, symptomatic Herpes Simplex Virus 2 (HSV-2), and non-STI vaginal syndromes, with incrementally expanding etiologic diagnosis. Service unit costs were multiplied with clinic attendances and people targeted for screening or prevention, by income tier. Human papilloma virus (HPV) vaccination and screening were costed for coverage increasing to 60% of 10-year-old girls for vaccination, and 60% of women 30-49 years for twice-lifetime screening (including clinical follow-up for positive screens), by 2021. Strategy implementation will cost an estimated US$ 18.1 billion over 2016-2021 in 117 low- and middle-income countries. Cost drivers are HPV vaccination ($3.26 billion) and screening ($3.69 billion), adolescent chlamydia screening ($2.54 billion), and antenatal syphilis screening ($1.4 billion). Clinical management-of 18 million genital ulcers, 29-39 million urethral discharges and 42-53 million vaginal discharges annually-will cost $3.0 billion, including $818 million for service delivery and $1.4 billion for gonorrhea and chlamydia testing. Global costs increase from $2.6 billion to $ 4.0 billion over 2016-2021, driven by HPV services scale-up, despite vaccine price reduction. Sub-Saharan Africa, bearing 40% of curable STI burdens, covers 44% of global service needs and 30% of cost, the Western Pacific 15% of burden/need and 26% of cost, South-East Asia 20% of burden/need and 18% of cost. Costs of global STI control depend on price trends for HPV vaccines and chlamydia tests. Middle-income and especially low-income countries need increased investment, innovative financing, and synergizing with other health programs.
Chen, Yuhan; Wang, Shengjun
2017-01-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases. PMID:28961235
Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C; Zhou, Changsong
2017-09-01
The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases.
Cost analysis of Navy acquisition alternatives for the NAVSTAR Global Positioning System
NASA Astrophysics Data System (ADS)
Darcy, T. F.; Smith, G. P.
1982-12-01
This research analyzes the life cycle cost (LCC) of the Navy's current and two hypothetical procurement alternatives for NAVSTAR Global Positioning System (GPS) user equipment. Costs are derived by the ARINC Research Corporation ACBEN cost estimating system. Data presentation is in a comparative format describing individual alternative LCC and differential costs between alternatives. Sensitivity analysis explores the impact receiver-processor unit (RPU) first unit production cost has on individual alternative LCC, as well as cost differentials between each alternative. Several benefits are discussed that might provide sufficient cost savings and/or system effectiveness improvements to warrant a procurement strategy other than the existing proposal.
Global costs and benefits of reaching universal coverage of sanitation and drinking-water supply.
Hutton, Guy
2013-03-01
Economic evidence on the cost and benefits of sanitation and drinking-water supply supports higher allocation of resources and selection of efficient and affordable interventions. The study aim is to estimate global and regional costs and benefits of sanitation and drinking-water supply interventions to meet the Millennium Development Goal (MDG) target in 2015, as well as to attain universal coverage. Input data on costs and benefits from reviewed literature were combined in an economic model to estimate the costs and benefits, and benefit-cost ratios (BCRs). Benefits included health and access time savings. Global BCRs (Dollar return per Dollar invested) were 5.5 for sanitation, 2.0 for water supply and 4.3 for combined sanitation and water supply. Globally, the costs of universal access amount to US$ 35 billion per year for sanitation and US$ 17.5 billion for drinking-water, over the 5-year period 2010-2015 (billion defined as 10(9) here and throughout). The regions accounting for the major share of costs and benefits are South Asia, East Asia and sub-Saharan Africa. Improved sanitation and drinking-water supply deliver significant economic returns to society, especially sanitation. Economic evidence should further feed into advocacy efforts to raise funding from governments, households and the private sector.
Cost-effective priorities for global mammal conservation.
Carwardine, Josie; Wilson, Kerrie A; Ceballos, Gerardo; Ehrlich, Paul R; Naidoo, Robin; Iwamura, Takuya; Hajkowicz, Stefan A; Possingham, Hugh P
2008-08-12
Global biodiversity priority setting underpins the strategic allocation of conservation funds. In identifying the first comprehensive set of global priority areas for mammals, Ceballos et al. [Ceballos G, Ehrlich PR, Soberón J, Salazar I, Fay JP (2005) Science 309:603-607] found much potential for conflict between conservation and agricultural human activity. This is not surprising because, like other global priority-setting approaches, they set priorities without socioeconomic objectives. Here we present a priority-setting framework that seeks to minimize the conflicts and opportunity costs of meeting conservation goals. We use it to derive a new set of priority areas for investment in mammal conservation based on (i) agricultural opportunity cost and biodiversity importance, (ii) current levels of international funding, and (iii) degree of threat. Our approach achieves the same biodiversity outcomes as Ceballos et al.'s while reducing the opportunity costs and conflicts with agricultural human activity by up to 50%. We uncover shortfalls in the allocation of conservation funds in many threatened priority areas, highlighting a global conservation challenge.
Benefits of rebuilding global marine fisheries outweigh costs.
Sumaila, Ussif Rashid; Cheung, William; Dyck, Andrew; Gueye, Kamal; Huang, Ling; Lam, Vicky; Pauly, Daniel; Srinivasan, Thara; Swartz, Wilf; Watson, Reginald; Zeller, Dirk
2012-01-01
Global marine fisheries are currently underperforming, largely due to overfishing. An analysis of global databases finds that resource rent net of subsidies from rebuilt world fisheries could increase from the current negative US$13 billion to positive US$54 billion per year, resulting in a net gain of US$600 to US$1,400 billion in present value over fifty years after rebuilding. To realize this gain, governments need to implement a rebuilding program at a cost of about US$203 (US$130-US$292) billion in present value. We estimate that it would take just 12 years after rebuilding begins for the benefits to surpass the cost. Even without accounting for the potential boost to recreational fisheries, and ignoring ancillary and non-market values that would likely increase, the potential benefits of rebuilding global fisheries far outweigh the costs.
Benefits of Rebuilding Global Marine Fisheries Outweigh Costs
Sumaila, Ussif Rashid; Cheung, William; Dyck, Andrew; Gueye, Kamal; Huang, Ling; Lam, Vicky; Pauly, Daniel; Srinivasan, Thara; Swartz, Wilf; Watson, Reginald; Zeller, Dirk
2012-01-01
Global marine fisheries are currently underperforming, largely due to overfishing. An analysis of global databases finds that resource rent net of subsidies from rebuilt world fisheries could increase from the current negative US$13 billion to positive US$54 billion per year, resulting in a net gain of US$600 to US$1,400 billion in present value over fifty years after rebuilding. To realize this gain, governments need to implement a rebuilding program at a cost of about US$203 (US$130–US$292) billion in present value. We estimate that it would take just 12 years after rebuilding begins for the benefits to surpass the cost. Even without accounting for the potential boost to recreational fisheries, and ignoring ancillary and non-market values that would likely increase, the potential benefits of rebuilding global fisheries far outweigh the costs. PMID:22808187
Wind farm topology-finding algorithm considering performance, costs, and environmental impacts.
Tazi, Nacef; Chatelet, Eric; Bouzidi, Youcef; Meziane, Rachid
2017-06-05
Optimal power in wind farms turns to be a modern problem for investors and decision makers; onshore wind farms are subject to performance and economic and environmental constraints. The aim of this work is to define the best installed capacity (best topology) with maximum performance and profits and consider environmental impacts as well. In this article, we continue the work recently done on wind farm topology-finding algorithm. The proposed resolution technique is based on finding the best topology of the system that maximizes the wind farm performance (availability) under the constraints of costs and capital investments. Global warming potential of wind farm is calculated and taken into account in the results. A case study is done using data and constraints similar to those collected from wind farm constructors, managers, and maintainers. Multi-state systems (MSS), universal generating function (UGF), wind, and load charge functions are applied. An economic study was conducted to assess the wind farm investment. Net present value (NPV) and levelized cost of energy (LCOE) were calculated for best topologies found.
Mitigation of epidemics in contact networks through optimal contact adaptation *
Youssef, Mina; Scoglio, Caterina
2013-01-01
This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights. PMID:23906209
Mitigation of epidemics in contact networks through optimal contact adaptation.
Youssef, Mina; Scoglio, Caterina
2013-08-01
This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact reduction are linearly combined in a single objective function. Hence, the optimal control formulation addresses the tradeoff between minimization of total infection cases and minimization of contact weights reduction. Using Pontryagin theorem, the obtained solution is a unique candidate representing the dynamical weighted contact network. To find the near-optimal solution in a decentralized way, we propose two heuristics based on Bang-Bang control function and on a piecewise nonlinear control function, respectively. We perform extensive simulations to evaluate the two heuristics on different networks. Our results show that the piecewise nonlinear control function outperforms the well-known Bang-Bang control function in minimizing both the total number of infection cases and the reduction of contact weights. Finally, our results show awareness of the infection level at which the mitigation strategies are effectively applied to the contact weights.
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2013-10-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
A new dataset for systematic assessments of climate change impacts as a function of global warming
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2012-11-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
Wafula, Francis; Agweyu, Ambrose; Macintyre, Kate
2014-04-01
Nearly 40% of Global Fund money goes toward procurement. However, no analyses have been published to show how costs vary across regions and time, despite the availability of procurement data collected through the Global Fund's price and quality reporting system. We analyzed data for the 3 most widely procured commodities for the prevention, diagnosis, and treatment of HIV. These were male condoms, HIV rapid tests, and the antiretroviral (ARV) combination of lamivudine/nevirapine/zidovudine. The compared costs, first across time (2005-2012), then across regions, and finally, between individual procurement reported through the price and quality reporting and pooled procurement reported through the Global Fund's voluntary pooled procurement system. All costs were adjusted for inflation and reported in US dollars. There were 2337 entries from 578 grants in 125 countries. The procurement cost for the ARV dropped substantially over the period, whereas those for condoms and HIV tests remained relatively stable. None of the commodity prices increased. Regional variations were pronounced for HIV tests, but minimal for condoms and the ARV. The unit cost for the 3-table ARV combination, for instance, varied between US$0.15 and US$0.23 in South Asia and the Eastern Europe/Central Asia regions, respectively, compared with a range of $0.23 (South Asia)-$1.50 (Eastern Europe/Central Asia) for a single diagnostic test. Pooled procurement lowered costs for condoms but not the other commodities. We showed how global procurement costs vary by region and time. Such analyses should be done more often to identify and correct market insufficiencies.
Cost analysis of post-polio certification immunization policies.
Sangrujee, Nalinee; Cáceres, Victor M.; Cochi, Stephen L.
2004-01-01
OBJECTIVE: An analysis was conducted to estimate the costs of different potential post-polio certification immunization policies currently under consideration, with the objective of providing this information to policy-makers. METHODS: We analyzed three global policy options: continued use of oral poliovirus vaccine (OPV); OPV cessation with optional inactivated poliovirus vaccine (IPV); and OPV cessation with universal IPV. Assumptions were made on future immunization policy decisions taken by low-, middle-, and high-income countries. We estimated the financial costs of each immunization policy, the number of vaccine-associated paralytic poliomyelitis (VAPP) cases, and the global costs of maintaining an outbreak response capacity. The financial costs of each immunization policy were based on estimates of the cost of polio vaccine, its administration, and coverage projections. The costs of maintaining outbreak response capacity include those associated with developing and maintaining a vaccine stockpile in addition to laboratory and epidemiological surveillance. We used the period 2005-20 as the time frame for the analysis. FINDINGS: OPV cessation with optional IPV, at an estimated cost of US$ 20,412 million, was the least costly option. The global cost of outbreak response capacity was estimated to be US$ 1320 million during 2005-20. The policy option continued use of OPV resulted in the highest number of VAPP cases. OPV cessation with universal IPV had the highest financial costs, but it also had the least number of VAPP cases. Sensitivity analyses showed that global costs were sensitive to assumptions on the cost of the vaccine. Analysis also showed that if the price per dose of IPV was reduced to US$ 0.50 for low-income countries, the cost of OPV cessation with universal IPV would be the same as the costs of continued use of OPV. CONCLUSION: Projections on the vaccine price per dose and future coverage rates were major drivers of the global costs of post-certification polio immunization. The break-even price of switching to IPV compared with continuing with OPV immunizations is US$ 0.50 per dose of IPV. However, this doses not account for the cost of vaccine-derived poliovirus cases resulting from the continued use of OPV. In addition to financial costs, risk assessments related to the re-emergence of polio will be major determinants of policy decisions. PMID:15106295
Software and the future of programming languages.
Aho, Alfred V
2004-02-27
Although software is the key enabler of the global information infrastructure, the amount and extent of software in use in the world today are not widely understood, nor are the programming languages and paradigms that have been used to create the software. The vast size of the embedded base of existing software and the increasing costs of software maintenance, poor security, and limited functionality are posing significant challenges for the software R&D community.
Analysis of Seasonal Chlorophyll-a Using An Adjoint Three-Dimensional Ocean Carbon Cycle Model
NASA Astrophysics Data System (ADS)
Tjiputra, J.; Winguth, A.; Polzin, D.
2004-12-01
The misfit between numerical ocean model and observations can be reduced using data assimilation. This can be achieved by optimizing the model parameter values using adjoint model. The adjoint model minimizes the model-data misfit by estimating the sensitivity or gradient of the cost function with respect to initial condition, boundary condition, or parameters. The adjoint technique was used to assimilate seasonal chlorophyll-a data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite to a marine biogeochemical model HAMOCC5.1. An Identical Twin Experiment (ITE) was conducted to test the robustness of the model and the non-linearity level of the forward model. The ITE experiment successfully recovered most of the perturbed parameter to their initial values, and identified the most sensitive ecosystem parameters, which contribute significantly to model-data bias. The regional assimilations of SeaWiFS chlorophyll-a data into the model were able to reduce the model-data misfit (i.e. the cost function) significantly. The cost function reduction mostly occurred in the high latitudes (e.g. the model-data misfit in the northern region during summer season was reduced by 54%). On the other hand, the equatorial regions appear to be relatively stable with no strong reduction in cost function. The optimized parameter set is used to forecast the carbon fluxes between marine ecosystem compartments (e.g. Phytoplankton, Zooplankton, Nutrients, Particulate Organic Carbon, and Dissolved Organic Carbon). The a posteriori model run using the regional best-fit parameterization yields approximately 36 PgC/yr of global net primary productions in the euphotic zone.
Automated parameterization of intermolecular pair potentials using global optimization techniques
NASA Astrophysics Data System (ADS)
Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk
2014-12-01
In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.
Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin
2014-01-01
This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.
Boyle, Colin F.; Levin, Carol; Hatefi, Arian; Madriz, Solange; Santos, Nicole
2015-01-01
Background The Commission on Investing in Health published its report, GlobalHealth2035, in 2013, estimating an investment case for a grand convergence in health outcomes globally. In support of the drafting of the Sustainable Development Goals (SDGs), we estimate what the grand convergence investment case might achieve—and what investment would be required—by 2030. Methods and Findings Our projection focuses on a sub-set of low-income (LIC) or lower-middle-income countries (LMIC). We start with a country-based (bottom-up) analysis of the costs and impact of scaling up reproductive, maternal, and child health tools, and select HIV and malaria interventions. We then incorporate global (top-down) analyses of the costs and impacts of scaling up existing tools for tuberculosis, additional HIV interventions, the costs to strengthen health systems, and the costs and benefits from scaling up new health interventions over the time horizon of this forecast. These data are then allocated to individual countries to provide an aggregate projection of potential cost and impact at the country level. Finally, incremental costs of R&D for low-income economies and the costs of addressing NTDs are added to provide a global total cost estimate of the investment scenario. Results Compared with a constant coverage scenario, there would be more than 60 million deaths averted in LIC and 70 million deaths averted in LMIC between 2016 and 2030. For the years 2015, 2020, 2025, and 2030, the incremental costs of convergence in LIC would be (US billion) $24.3, $21.8, $24.7, and $27, respectively; in LMIC, the incremental costs would be (US billion) $34.75, $38.9, $48.7, and $56.3, respectively. Conclusion Key health outcomes in low- and low-middle income countries can significantly converge with those of wealthier countries by 2030, and the notion of a “grand convergence” may serve as a unifying theme for health indicators in the SDGs. PMID:26452263
Boyle, Colin F; Levin, Carol; Hatefi, Arian; Madriz, Solange; Santos, Nicole
2015-01-01
The Commission on Investing in Health published its report, GlobalHealth2035, in 2013, estimating an investment case for a grand convergence in health outcomes globally. In support of the drafting of the Sustainable Development Goals (SDGs), we estimate what the grand convergence investment case might achieve-and what investment would be required-by 2030. Our projection focuses on a sub-set of low-income (LIC) or lower-middle-income countries (LMIC). We start with a country-based (bottom-up) analysis of the costs and impact of scaling up reproductive, maternal, and child health tools, and select HIV and malaria interventions. We then incorporate global (top-down) analyses of the costs and impacts of scaling up existing tools for tuberculosis, additional HIV interventions, the costs to strengthen health systems, and the costs and benefits from scaling up new health interventions over the time horizon of this forecast. These data are then allocated to individual countries to provide an aggregate projection of potential cost and impact at the country level. Finally, incremental costs of R&D for low-income economies and the costs of addressing NTDs are added to provide a global total cost estimate of the investment scenario. Compared with a constant coverage scenario, there would be more than 60 million deaths averted in LIC and 70 million deaths averted in LMIC between 2016 and 2030. For the years 2015, 2020, 2025, and 2030, the incremental costs of convergence in LIC would be (US billion) $24.3, $21.8, $24.7, and $27, respectively; in LMIC, the incremental costs would be (US billion) $34.75, $38.9, $48.7, and $56.3, respectively. Key health outcomes in low- and low-middle income countries can significantly converge with those of wealthier countries by 2030, and the notion of a "grand convergence" may serve as a unifying theme for health indicators in the SDGs.
Autism: Hard to Switch from Details to the Whole.
Soriano, María Felipa; Ibáñez-Molina, Antonio J; Paredes, Natalia; Macizo, Pedro
2017-12-18
It has long been proposed that individuals with autism exhibit a superior processing of details at the expense of an impaired global processing. This theory has received some empirical support, but results are mixed. In this research we have studied local and global processing in ASD and Typically Developing children, with an adaptation of the Navon task, designed to measure congruency effects between local and global stimuli and switching cost between local and global tasks. ASD children showed preserved global processing; however, compared to Typically Developing children, they exhibited more facilitation from congruent local stimuli when they performed the global task. In addition, children with ASD had more switching cost than Typically Developing children only when they switched from the local to the global task, reflecting a specific difficulty to disengage from local stimuli. Together, results suggest that ASD is characterized by a tendency to process local details, they benefit from the processing of local stimuli at the expense of increasing cost to disengage from local stimuli when global processing is needed. Thus, this work demonstrates experimentally the advantages and disadvantages of the increased local processing in children with ASD.
Global cost analysis on adaptation to sea level rise based on RCP/SSP scenarios
NASA Astrophysics Data System (ADS)
Kumano, N.; Tamura, M.; Yotsukuri, M.; Kuwahara, Y.; Yokoki, H.
2017-12-01
Low-lying areas are the most vulnerable to sea level rise (SLR) due to climate change in the future. In order to adapt to SLR, it is necessary to decide whether to retreat from vulnerable areas or to install dykes to protect them from inundation. Therefore, cost- analysis of adaptation using coastal dykes is one of the most essential issues in the context of climate change and its countermeasures. However, few studies have globally evaluated the future costs of adaptation in coastal areas. This study tries to globally analyze the cost of adaptation in coastal areas. First, global distributions of projected inundation impacts induced by SLR including astronomical high tide were assessed. Economic damage was estimated on the basis of the econometric relationship between past hydrological disasters, affected population, and per capita GDP using CRED's EM-DAT database. Second, the cost of adaptation was also determined using the cost database and future scenarios. The authors have built a cost database for installed coastal dykes worldwide and applied it to estimating the future cost of adaptation. The unit costs of dyke construction will increase with socio-economic scenario (SSP) such as per capita GDP. Length of vulnerable coastline is calculated by identifying inundation areas using ETOPO1. Future cost was obtained by multiplying the length of vulnerable coastline and the unit cost of dyke construction. Third, the effectiveness of dyke construction was estimated by comparing cases with and without adaptation.As a result, it was found that incremental adaptation cost is lower than economic damage in the cases of SSP1 and SSP3 under RCP scenario, while the cost of adaptation depends on the durability of the coastal dykes.
TH-A-9A-04: Incorporating Liver Functionality in Radiation Therapy Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, V; Epelman, M; Feng, M
2014-06-15
Purpose: Liver SBRT patients have both variable pretreatment liver function (e.g., due to degree of cirrhosis and/or prior treatments) and sensitivity to radiation, leading to high variability in potential liver toxicity with similar doses. This work aims to explicitly incorporate liver perfusion into treatment planning to redistribute dose to preserve well-functioning areas without compromising target coverage. Methods: Voxel-based liver perfusion, a measure of functionality, was computed from dynamic contrast-enhanced MRI. Two optimization models with different cost functions subject to the same dose constraints (e.g., minimum target EUD and maximum critical structure EUDs) were compared. The cost functions minimized were EUDmore » (standard model) and functionality-weighted EUD (functional model) to the liver. The resulting treatment plans delivering the same target EUD were compared with respect to their DVHs, their dose wash difference, the average dose delivered to voxels of a particular perfusion level, and change in number of high-/low-functioning voxels receiving a particular dose. Two-dimensional synthetic and three-dimensional clinical examples were studied. Results: The DVHs of all structures of plans from each model were comparable. In contrast, in plans obtained with the functional model, the average dose delivered to high-/low-functioning voxels was lower/higher than in plans obtained with its standard counterpart. The number of high-/low-functioning voxels receiving high/low dose was lower in the plans that considered perfusion in the cost function than in the plans that did not. Redistribution of dose can be observed in the dose wash differences. Conclusion: Liver perfusion can be used during treatment planning potentially to minimize the risk of toxicity during liver SBRT, resulting in better global liver function. The functional model redistributes dose in the standard model from higher to lower functioning voxels, while achieving the same target EUD and satisfying dose limits to critical structures. This project is funded by MCubed and grant R01-CA132834.« less
Wafula, Francis; Agweyu, Ambrose; Macintyre, Kate
2013-12-30
Although procurement consumes nearly 40% of Global Fund's money, no analyses have been published to show how costs vary across regions and time. This paper presents an analysis of malaria-related commodity procurement data from 79 countries, as reported through the Global Fund's price and quality reporting (PQR) system for the 2005-2012 period. Data were analysed for the three most widely procured commodities for prevention, diagnosis and treatment of malaria. These were long-lasting insecticide-treated nets (LLINs), malaria rapid diagnostic tests (RDTs) and the artemether/lumefantrine (AL) combination treatment. Costs were compared across time (2005-2012), regions, and between individual procurement reported through the PQR and pooled procurement reported through the Global Fund's voluntary pooled procurement (VPP) system. All costs were adjusted for inflation and reported in US dollars. The data included 1,514 entries reported from 79 countries over seven years. Of these, 492 entries were for LLINs, 330 for RDTs and 692 for AL. Considerable variations were seen by commodity, although none showed an increase in cost. The costs for LLINs, RDTs and AL all dropped significantly over the period of analysis. Regional variations were also seen, with the cost for all three commodities showing significant variations. The median cost for a single LLIN ranged from USD 4.3 in East Asia to USD 5.0 in West and Central Africa. The cost of a single RDT was lowest in West and Central Africa at US$ 0.57, and highest in the Latin American region at US$ 1.1. AL had the narrowest margin of between US$ 0.06 per tablet in sub-Saharan Africa and South Asia, and US$ 0.08 in the Latin American and Eastern Europe regions. This paper concludes that global procurement costs do vary by region and have reduced overall over time. This suggests a mature market is operating when viewed from the global level, but regional variation needs further attention. Such analyses should be done more often to identify and correct market insufficiencies.
Global eradication of measles: an epidemiologic and economic evaluation.
Levin, Ann; Burgess, Colleen; Garrison, Louis P; Bauch, Chris; Babigumira, Joseph; Simons, Emily; Dabbagh, Alya
2011-07-01
Measles remains an important cause of morbidity and mortality in children in developing countries. Due to the success of the measles mortality reduction and elimination efforts thus far, the WHO has raised the question of whether global eradication of measles is economically feasible. The cost-effectiveness of various measles mortality reduction and eradication scenarios was evaluated vis-à-vis the current mortality reduction goal in six countries and globally. Data collection on costs of measles vaccination were conducted in six countries in four regions: Bangladesh, Brazil, Colombia, Ethiopia, Tajikistan, and Uganda. The number of measles cases and deaths were projected from 2010 to 2050 using a dynamic, age-structured compartmental model. The incremental cost-effectiveness ratios were then calculated for each scenario vis a vis the baseline. Measles eradication by 2020 was the found to be the most cost-effective scenario, both in the six countries and globally. Eradicating measles by 2020 is projected to cost an additional discounted $7.8 billion and avert a discounted 346 million DALYs between 2010 and 2050. In conclusion, the study found that, compared to the baseline, reaching measles eradication by 2020 would be the most cost-effective measles mortality reduction scenario, both for the six countries and on a global basis. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.
Davis, J C; Dian, L; Khan, K M; Bryan, S; Marra, C A; Hsu, C L; Jacova, P; Chiu, B K; Liu-Ambrose, T
2016-03-01
Falls are a costly public health problem worldwide. The literature is devoid of prospective data that identifies factors among fallers that significantly drive health care resource utilization. We found that cognitive function--specifically, executive functions--and cognitive status are significant determinants of health resource utilization among older fallers. Although falls are costly, there are no prospective data examining factors among fallers that drive health care resource utilization. We identified key determinants of health resource utilization (HRU) at 6 and 12 months among older adults with a history of falls. Specifically, with the increasing recognition that cognitive impairment is associated with increased falls risk, we investigated cognition as a potential driver of health resource utilization. This 12-month prospective cohort study at the Vancouver Falls Prevention Clinic (n = 319) included participants with a history of at least one fall in the previous 12 months. Based on their cognitive status, participants were divided into two groups: (1) no mild cognitive impairment (MCI) and (2) MCI. We constructed two linear regression models with HRU at 6 and 12 months as the dependent variables for each model, respectively. Predictors relating to mobility, global cognition, executive functions, and cognitive status (MCI versus no MCI) were examined. Age, sex, comorbidities, depression status, and activities of daily living were included regardless of statistical significance. Global cognition, comorbidities, working memory, and cognitive status (MCI versus no MCI ascertained using the Montreal Cognitive Assessment (MoCA)) were significant determinants of total HRU at 6 months. The number of medical comorbidities and global cognition were significant determinants of total HRU at 12 months. MCI status was a determinant of HRU at 6 months among older adults with a history of falls. As such, efforts to minimize health care resource use related to falls, it is important to tailor future interventions to be effective for people with MCI who fall. ClinicalTrials.gov Identifier: NCT01022866.
Korenromp, Eline L.; Wi, Teodora; Resch, Stephen; Stover, John
2017-01-01
Introduction In 2016 the World Health Assembly adopted the global strategy on Sexually Transmitted Infections (STI) 2016–2021 aiming to reduce curable STIs by 90% by 2030. We costed scaling-up priority interventions to coverage targets. Methods Strategy-targeted declines in Chlamydia trachomatis, Neisseria gonorrhoeae, Treponema pallidum and Trichomonas vaginalis were applied to WHO-estimated regional burdens at 2012. Syndromic case management was costed for these curable STIs, symptomatic Herpes Simplex Virus 2 (HSV-2), and non-STI vaginal syndromes, with incrementally expanding etiologic diagnosis. Service unit costs were multiplied with clinic attendances and people targeted for screening or prevention, by income tier. Human papilloma virus (HPV) vaccination and screening were costed for coverage increasing to 60% of 10-year-old girls for vaccination, and 60% of women 30–49 years for twice-lifetime screening (including clinical follow-up for positive screens), by 2021. Results Strategy implementation will cost an estimated US$ 18.1 billion over 2016–2021 in 117 low- and middle-income countries. Cost drivers are HPV vaccination ($3.26 billion) and screening ($3.69 billion), adolescent chlamydia screening ($2.54 billion), and antenatal syphilis screening ($1.4 billion). Clinical management—of 18 million genital ulcers, 29–39 million urethral discharges and 42–53 million vaginal discharges annually—will cost $3.0 billion, including $818 million for service delivery and $1.4 billion for gonorrhea and chlamydia testing. Global costs increase from $2.6 billion to $ 4.0 billion over 2016–2021, driven by HPV services scale-up, despite vaccine price reduction. Sub-Saharan Africa, bearing 40% of curable STI burdens, covers 44% of global service needs and 30% of cost, the Western Pacific 15% of burden/need and 26% of cost, South-East Asia 20% of burden/need and 18% of cost. Conclusions Costs of global STI control depend on price trends for HPV vaccines and chlamydia tests. Middle-income and especially low-income countries need increased investment, innovative financing, and synergizing with other health programs. PMID:28129372
Comparison of physically- and economically-based CO2-equivalences for methane
NASA Astrophysics Data System (ADS)
Boucher, O.
2012-01-01
There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies and no consensus on what an optimal methane CO2-equivalence should be. We revisit this question by discussing the relative merits of physically-based (i.e. Global Warming Potential or GWP and Global Temperature change Potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified Global Damage Potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO2-equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-year GWP because of various compensating effects. However there is a large spread in possible methane CO2-equivalences (1-99% interval: 10.0-42.5; 5-95% interval: 12.5-38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The methane 100-year GTP falls outside these ranges. It is legitimate to increase the methane CO2-equivalence in the future as global warming unfolds. While changes in biogeochemical cycles and radiative efficiencies cause some small changes to physically-based metrics, a systematic increase in the methane CO2-equivalence can only be achieved by some ad-hoc shortening of the time horizon. In contrast using a convex damage cost function provides a natural increase in the methane CO2-equivalence for the socio-economically-based metrics. We also show that a methane CO2-equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions as long as there is some degree of visibility on CO2 prices and CO2-equivalences.
NASA Astrophysics Data System (ADS)
Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles
2008-12-01
We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.
Brain correlates of the intrinsic subjective cost of effort in sedentary volunteers.
Bernacer, J; Martinez-Valbuena, I; Martinez, M; Pujol, N; Luis, E; Ramirez-Castillo, D; Pastor, M A
2016-01-01
One key aspect of motivation is the ability of agents to overcome excessive weighting of intrinsic subjective costs. This contribution aims to analyze the subjective cost of effort and assess its neural correlates in sedentary volunteers. We recruited a sample of 57 subjects who underwent a decision-making task using a prospective, moderate, and sustained physical effort as devaluating factor. Effort discounting followed a hyperbolic function, and individual discounting constants correlated with an indicator of sedentary lifestyle (global physical activity questionnaire; R=-0.302, P=0.033). A subsample of 24 sedentary volunteers received a functional magnetic resonance imaging scan while performing a similar effort-discounting task. BOLD signal of a cluster located in the dorsomedial prefrontal cortex correlated with the subjective value of the pair of options under consideration (Z>2.3, P<0.05; cluster corrected for multiple comparisons for the whole brain). Furthermore, effort-related discounting of reward correlated with the signal of a cluster in the ventrolateral prefrontal cortex (Z>2.3, P<0.05; small volume cluster corrected for a region of interest including the ventral prefrontal cortex and striatum). This study offers empirical data about the intrinsic subjective cost of effort and its neural correlates in sedentary individuals. © 2016 Elsevier B.V. All rights reserved.
The MATISSE study: a randomised trial of group art therapy for people with schizophrenia
2010-01-01
Background Art Therapy has been promoted as a means of helping people who may find it difficult to express themselves verbally engage in psychological treatment. Group Art Therapy has been widely used as an adjunctive treatment for people with schizophrenia but there have been few attempts to examine its effects and cost effectiveness has not been examined. The MATISSE study aims to evaluate the clinical and cost effectiveness of group Art Therapy for people with schizophrenia. Method/Design The MATISSE study is a three-arm, parallel group, pragmatic, randomised, controlled trial of referral to group Art Therapy plus standard care, referral to an attention control 'activity' group plus standard care, or standard care alone. Study participants were recruited from inpatient and community-based mental health and social care services at four centres in England and Northern Ireland. Participants were aged over 18 years with a clinical diagnosis of schizophrenia, confirmed by an examination of case notes using operationalised criteria. Participants were then randomised via an independent and remote telephone randomisation service using permuted stacked blocks, stratified by site. Art Therapy and activity groups were made available to participants once a week for up to 12 months. Outcome measures were assessed by researchers masked to allocation status at 12 and 24 months after randomisation. Participants and care givers were aware which arm of the trial participants were allocated to. The primary outcomes for the study are global functioning (measured using the Global Assessment of Functioning scale) and mental health symptoms (measured using the Positive and Negative Syndrome Scale) assessed at 24 months. Secondary outcomes were assessed at 12 and 24 months and comprise levels of group attendance, social function, satisfaction with care, mental wellbeing, and costs. Discussion We believe that this is the first large scale pragmatic trial of Art Therapy for people with schizophrenia. Trial registration Current Controlled Trials ISRCTN46150447 PMID:20799930
Natural selection for costly nutrient recycling in simulated microbial metacommunities.
Boyle, Richard A; Williams, Hywel T P; Lenton, Timothy M
2012-11-07
Recycling of essential nutrients occurs at scales from microbial communities to global biogeochemical cycles, often in association with ecological interactions in which two or more species utilise each others' metabolic by-products. However, recycling loops may be unstable; sequences of reactions leading to net recycling may be parasitised by side-reactions causing nutrient loss, while some reactions in any closed recycling loop are likely to be costly to participants. Here we examine the stability of nutrient recycling loops in an individual-based ecosystem model based on microbial functional types that differ in their metabolism. A supplied nutrient is utilised by a "source" functional type, generating a secondary nutrient that is subsequently used by two other types-a "mutualist" that regenerates the initial nutrient at a growth rate cost, and a "parasite" that produces a refractory waste product but does not incur any additional cost. The three functional types are distributed across a metacommunity in which separate patches are linked by a stochastic diffusive migration process. Regions of high mutualist abundance feature high levels of nutrient recycling and increased local population density leading to greater export of individuals, allowing the source-mutualist recycling loop to spread across the system. Individual-level selection favouring parasites is balanced by patch-level selection for high productivity, indirectly favouring mutualists due to the synergistic productivity benefits of the recycling loop they support. This suggests that multi-level selection may promote nutrient cycling and thereby help to explain the apparent ubiquity and stability of nutrient recycling in nature.
Stahl, Joachim S; Wang, Song
2008-03-01
Many natural and man-made structures have a boundary that shows a certain level of bilateral symmetry, a property that plays an important role in both human and computer vision. In this paper, we present a new grouping method for detecting closed boundaries with symmetry. We first construct a new type of grouping token in the form of symmetric trapezoids by pairing line segments detected from the image. A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling quadrilaterals. For such a closed boundary, we define a unified grouping cost function in a ratio form: the numerator reflects the boundary information of proximity and symmetry and the denominator reflects the region information of the enclosed area. The introduction of the region-area information in the denominator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent the grouping tokens. In this new graph model, the grouping cost function can be encoded by carefully designed edge weights and the desired optimal boundary corresponds to a special cycle with a minimum ratio-form cost. We finally show that such a cycle can be found in polynomial time using a previous graph algorithm. We implement this symmetry-grouping method and test it on a set of synthetic data and real images. The performance is compared to two previous grouping methods that do not consider symmetry in their grouping cost functions.
Tracking historical increases in nitrogen-driven crop production possibilities
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.
2015-12-01
The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.
Finite difference schemes for long-time integration
NASA Technical Reports Server (NTRS)
Haras, Zigo; Taasan, Shlomo
1993-01-01
Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.
Njeh, Ines; Sallemi, Lamia; Ayed, Ismail Ben; Chtourou, Khalil; Lehericy, Stephane; Galanaud, Damien; Hamida, Ahmed Ben
2015-03-01
This study investigates a fast distribution-matching, data-driven algorithm for 3D multimodal MRI brain glioma tumor and edema segmentation in different modalities. We learn non-parametric model distributions which characterize the normal regions in the current data. Then, we state our segmentation problems as the optimization of several cost functions of the same form, each containing two terms: (i) a distribution matching prior, which evaluates a global similarity between distributions, and (ii) a smoothness prior to avoid the occurrence of small, isolated regions in the solution. Obtained following recent bound-relaxation results, the optima of the cost functions yield the complement of the tumor region or edema region in nearly real-time. Based on global rather than pixel wise information, the proposed algorithm does not require an external learning from a large, manually-segmented training set, as is the case of the existing methods. Therefore, the ensuing results are independent of the choice of a training set. Quantitative evaluations over the publicly available training and testing data set from the MICCAI multimodal brain tumor segmentation challenge (BraTS 2012) demonstrated that our algorithm yields a highly competitive performance for complete edema and tumor segmentation, among nine existing competing methods, with an interesting computing execution time (less than 0.5s per image). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Daianu, Madelaine; Jahanshad, Neda; Mendez, Mario F.; Bartzokis, George; Jimenez, Elvira E.; Thompson, Paul M.
2015-03-01
Diffusion imaging and brain connectivity analyses can assess white matter deterioration in the brain, revealing the underlying patterns of how brain structure declines. Fiber tractography methods can infer neural pathways and connectivity patterns, yielding sensitive mathematical metrics of network integrity. Here, we analyzed 1.5-Tesla wholebrain diffusion-weighted images from 64 participants - 15 patients with behavioral variant frontotemporal dementia (bvFTD), 19 with early-onset Alzheimer's disease (EOAD), and 30 healthy elderly controls. Using whole-brain tractography, we reconstructed structural brain connectivity networks to map connections between cortical regions. We evaluated the brain's networks focusing on the most highly central and connected regions, also known as hubs, in each diagnostic group - specifically the "high-cost" structural backbone used in global and regional communication. The high-cost backbone of the brain, predicted by fiber density and minimally short pathways between brain regions, accounted for 81-92% of the overall brain communication metric in all diagnostic groups. Furthermore, we found that the set of pathways interconnecting high-cost and high-capacity regions of the brain's communication network are globally and regionally altered in bvFTD, compared to healthy participants; however, the overall organization of the high-cost and high-capacity networks were relatively preserved in EOAD participants, relative to controls. Disruption of the major central hubs that transfer information between brain regions may impair neural communication and functional integrity in characteristic ways typical of each subtype of dementia.
NASA Astrophysics Data System (ADS)
Marri, Hussain B.; McGaughey, Ronald; Gunasekaran, Angappa
2000-10-01
Globalization can have a dramatic impact on manufacturing sector due to the fact that the majority of establishments in this industry are small to medium manufacturing companies. The role of Small and Medium Enterprises (SMEs) in the national economy has been emphasized all over the world, considering their contribution to the total manufacturing output and employment opportunities. The lack of marketing forces to regulate the operation of SMEs has been a fundamental cause of low efficiency for a long time. Computer Integrated Manufacturing (CIM) is emerging as one of the most promising opportunities for shrinking the time delays in information transfer and reducing manufacturing costs. CIM is the architecture for integrating the engineering, marketing and manufacturing functions through information system technologies. SMEs in general have not made full use of new technologies although their investments in CIM technology tended to be wider in scale and scope. Most of the SMEs only focus on the short-term benefit, but overlook a long- term and fundamental development on applications of new technologies. With the help of suitable information systems, modularity and low cost solutions, SMEs can compete in the global market. Considering the importance of marketing, information system, modularity and low cost solutions in the implementation of CIM in SMEs, a model has been developed and studied with the help of an empirical study conducted with British SMEs to facilitate the adoption of CIM. Finally, a summary of findings and recommendations are presented.
Jamieson, Randall K; Holmes, Signy; Mewhort, D J K
2010-11-01
Dissociation of classification and recognition in amnesia is widely taken to imply 2 functional systems: an implicit procedural-learning system that is spared in amnesia and an explicit episodic-learning system that is compromised. We argue that both tasks reflect the global similarity of probes to memory. In classification, subjects sort unstudied grammatical exemplars from lures, whereas in recognition, they sort studied grammatical exemplars from lures. Hence, global similarity is necessarily greater in recognition than in classification. Moreover, a grammatical exemplar's similarity to studied exemplars is a nonlinear function of the integrity of the data in memory. Assuming that data integrity is better for control subjects than for subjects with amnesia, the nonlinear relation combined with the advantage for recognition over classification predicts the dissociation of recognition and classification. To illustrate the dissociation of recognition and classification in healthy undergraduates, we manipulated study time to vary the integrity of the data in memory and brought the dissociation under experimental control. We argue that the dissociation reflects a general cost in memory rather than a selective impairment of separate procedural and episodic systems. (c) 2010 APA, all rights reserved
Commercial Sealift and U.S. National Security
2010-03-01
and maintaining a U.S. flag merchant marine fleet in today’s globalized shipping environment, where lower cost foreign flag registries of convenience ...in today’s globalized shipping environment, where lower cost foreign flag registries of convenience dominate the industry and which policy tools are...shipping environment, where lower cost foreign flag registries of convenience dominate the industry and which policy tools are best suited to meet our
NASA Astrophysics Data System (ADS)
Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding
2018-04-01
The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.
Solar electricity supply isolines of generation capacity and storage.
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W
2015-03-24
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G-S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G-S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity.
Solar electricity supply isolines of generation capacity and storage
Grossmann, Wolf; Grossmann, Iris; Steininger, Karl W.
2015-01-01
The recent sharp drop in the cost of photovoltaic (PV) electricity generation accompanied by globally rapidly increasing investment in PV plants calls for new planning and management tools for large-scale distributed solar networks. Of major importance are methods to overcome intermittency of solar electricity, i.e., to provide dispatchable electricity at minimal costs. We find that pairs of electricity generation capacity G and storage S that give dispatchable electricity and are minimal with respect to S for a given G exhibit a smooth relationship of mutual substitutability between G and S. These isolines between G and S support the solving of several tasks, including the optimal sizing of generation capacity and storage, optimal siting of solar parks, optimal connections of solar parks across time zones for minimizing intermittency, and management of storage in situations of far below average insolation to provide dispatchable electricity. G−S isolines allow determining the cost-optimal pair (G,S) as a function of the cost ratio of G and S. G−S isolines provide a method for evaluating the effect of geographic spread and time zone coverage on costs of solar electricity. PMID:25755261
The global economic burden of dengue: a systematic analysis.
Shepard, Donald S; Undurraga, Eduardo A; Halasa, Yara A; Stanaway, Jeffrey D
2016-08-01
Dengue is a serious global burden. Unreported and unrecognised apparent dengue virus infections make it difficult to estimate the true extent of dengue and current estimates of the incidence and costs of dengue have substantial uncertainty. Objective, systematic, comparable measures of dengue burden are needed to track health progress, assess the application and financing of emerging preventive and control strategies, and inform health policy. We estimated the global economic burden of dengue by country and super-region (groups of epidemiologically similar countries). We used the latest dengue incidence estimates from the Institute for Health Metrics and Evaluation's Global Burden of Disease Study 2013 and several other data sources to assess the economic burden of symptomatic dengue cases in the 141 countries and territories with active dengue transmission. From the scientific literature and regressions, we estimated cases and costs by setting, including the non-medical setting, for all countries and territories. Our global estimates suggest that in 2013 there were a total of 58·40 million symptomatic dengue virus infections (95% uncertainty interval [95% UI] 24 million-122 million), including 13 586 fatal cases (95% UI 4200-34 700), and that the total annual global cost of dengue illness was US$8·9 billion (95% UI 3·7 billion-19·7 billion). The global distribution of dengue cases is 18% admitted to hospital, 48% ambulatory, and 34% non-medical. The global cost of dengue is substantial and, if control strategies could reduce dengue appreciably, billions of dollars could be saved globally. In estimating dengue costs by country and setting, this study contributes to the needs of policy makers, donors, developers, and researchers for economic assessments of dengue interventions, particularly with the licensure of the first dengue vaccine and promising developments in other technologies. Sanofi Pasteur. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Purohit, Pallav; Hoglund-Isaksson, Lena
2016-04-01
The anthropogenic fluorinated (F-gases) greenhouse gas emissions have increased significantly in recent years and are estimated to rise further in response to increased demand for cooling services and the phase out of ozone-depleting substances (ODS) under the Montreal Protocol. F-gases (HFCs, PFCs and SF6) are potent greenhouse gases, with a global warming effect up to 22,800 times greater than carbon dioxide (CO2). This study presents estimates of current and future global emissions of F-gases, their technical mitigation potential and associated costs for the period 2005 to 2050. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic F-gases for 162 countries/regions, which are aggregated to produce global estimates. For each region, 18 emission source sectors with mitigation potentials and costs were identified. Global F-gas emissions are estimated at 0.7 Gt CO2eq in 2005 with an expected increase to about 3.6 Gt CO2eq in 2050. There are extensive opportunities to reduce emissions by over 95 percent primarily through replacement with existing low GWP substances. The initial results indicate that at least half of the mitigation potential is attainable at a cost of less than 20€ per t CO2eq, while almost 90 percent reduction is attainable at less than 100€ per t CO2eq. Currently, several policy proposals have been presented to amend the Montreal Protocol to substantially curb global HFC use. We analyze the technical potentials and costs associated with the HFC mitigation required under the different proposed Montreal Protocol amendments.
The value of reducing HIV stigma.
Brent, Robert J
2016-02-01
HIV-stigma is a major reason why HIV continues to be a global epidemic. Interventions targeting HIV-stigma are therefore necessary. To find an intervention that is worthwhile, a Cost-Benefit Analysis is needed which compares costs and benefits. There are many documented costs of HIV-stigma. What is missing is a valuation of the benefits of reducing HIV-stigma. The purpose of this paper is to present a general method that can be used to value the benefits of stigma reduction programs. The method involves estimating the marginal rate of substitution (MRS) between stigma and income in the utility function of older people with HIV. To illustrate how our framework can be used, we applied it to a sample of just over 900 people coming from the 2005-06 ROAH study (Research on Older Adults with HIV) in New York City. Copyright © 2016 Elsevier Ltd. All rights reserved.
Regulatory and clinical considerations for biosimilar oncology drugs
Bennett, Charles L; Chen, Brian; Hermanson, Terhi; Wyatt, Michael D; Schulz, Richard M; Georgantopoulos, Peter; Kessler, Samuel; Raisch, Dennis W; Qureshi, Zaina P; Lu, Z Kevin; Love, Bryan L; Noxon, Virginia; Bobolts, Laura; Armitage, Melissa; Bian, John; Ray, Paul; Ablin, Richard J; Hrushesky, William J; Macdougall, Iain C; Sartor, Oliver; Armitage, James O
2015-01-01
Biological oncology products are integral to cancer treatment, but their high costs pose challenges to patients, families, providers, and insurers. The introduction of biosimilar agents—molecules that are similar in structure, function, activity, immunogenicity, and safety to the original biological drugs—provide opportunities both to improve healthcare access and outcomes, and to reduce costs. Several international regulatory pathways have been developed to expedite entry of biosimilars into global marketplaces. The first wave of oncology biosimilar use was in Europe and India in 2007. Oncology biosimilars are now widely marketed in several countries in Europe, and in Australia, Japan, China, Russia, India, and South Korea. Their use is emerging worldwide, with the notable exception of the USA, where several regulatory and cost barriers to biosimilar approval exist. In this Review, we discuss oncology biosimilars and summarise their regulatory frameworks, clinical experiences, and safety concerns. PMID:25456378
Costs and global impacts of black carbon abatement strategies
NASA Astrophysics Data System (ADS)
Rypdal, Kristin; Rive, Nathan; Berntsen, Terje K.; Klimont, Zbigniew; Mideksa, Torben K.; Myhre, Gunnar; Skeie, Ragnhild B.
2009-09-01
Abatement of particulate matter has traditionally been driven by health concerns rather than its role in global warming. Here we assess future abatement strategies in terms of how much they reduce the climate impact of black carbon (BC) and organic carbon (OC) from contained combustion. We develop global scenarios which take into account regional differences in climate impact, costs of abatement and ability to pay, as well as both the direct and indirect (snow-albedo) climate impact of BC and OC. To represent the climate impact, we estimate consistent region-specific values of direct and indirect global warming potential (GWP) and global temperature potential (GTP). The indirect GWP has been estimated using a physical approach and includes the effect of change in albedo from BC deposited on snow. The indirect GWP is highest in the Middle East followed by Russia, Europe and North America, while the total GWP is highest in the Middle East, Africa and South Asia. We conclude that prioritizing emission reductions in Asia represents the most cost-efficient global abatement strategy for BC because Asia is (1) responsible for a large share of total emissions, (2) has lower abatement costs compared to Europe and North America and (3) has large health cobenefits from reduced PM10 emissions.
Military Construction, Veterans Affairs, and Related Agencies: FY2009 Appropriations
2008-07-07
Posture Realignment ( GDPR ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 “Growing the Force...Supplemental (P.L. 110-252) . . . . . . . . . . . . . . . . . . . . 5 Table 3. IGPBS/ GDPR One-Time Implementation Costs...this report. Base Realignment and Closure (BRAC)/Integrated Global Presence and Basing Strategy (IGPBS)/Global Defense Posture Realignment ( GDPR ). Cost
NASA Astrophysics Data System (ADS)
Turner, D.
2014-12-01
Understanding the potential economic and physical impacts of climate change on coastal resources involves evaluating a number of distinct adaptive responses. This paper presents a tool for such analysis, a spatially-disaggregated optimization model for adaptation to sea level rise (SLR) and storm surge, the Coastal Impact and Adaptation Model (CIAM). This decision-making framework fills a gap between very detailed studies of specific locations and overly aggregate global analyses. While CIAM is global in scope, the optimal adaptation strategy is determined at the local level, evaluating over 12,000 coastal segments as described in the DIVA database (Vafeidis et al. 2006). The decision to pursue a given adaptation measure depends on local socioeconomic factors like income, population, and land values and how they develop over time, relative to the magnitude of potential coastal impacts, based on geophysical attributes like inundation zones and storm surge. For example, the model's decision to protect or retreat considers the costs of constructing and maintaining coastal defenses versus those of relocating people and capital to minimize damages from land inundation and coastal storms. Uncertain storm surge events are modeled with a generalized extreme value distribution calibrated to data on local surge extremes. Adaptation is optimized for the near-term outlook, in an "act then learn then act" framework that is repeated over the model time horizon. This framework allows the adaptation strategy to be flexibly updated, reflecting the process of iterative risk management. CIAM provides new estimates of the economic costs of SLR; moreover, these detailed results can be compactly represented in a set of adaptation and damage functions for use in integrated assessment models. Alongside the optimal result, CIAM evaluates suboptimal cases and finds that global costs could increase by an order of magnitude, illustrating the importance of adaptive capacity and coastal policy.
Subnetworks of percolation backbones to model karst systems around Tulum, Mexico
NASA Astrophysics Data System (ADS)
Hendrick, Martin; Renard, Philippe
2016-11-01
Karstic caves, which play a key role in groundwater transport, are often organized as complex connected networks resulting from the dissolution of carbonate rocks. In this work, we propose a new model to describe and study the structures of the two largest submersed karst networks in the world. Both of these networks are located in the area of Tulum (Quintana Roo, Mexico). In a previous work te{hendrick2016fractal} we showed that these networks behave as self-similar structures exhibiting well-defined scaling behaviours. In this paper, we suggest that these networks can be modeled using substructures of percolation clusters (θ-subnetworks) having similar structural behaviour (in terms of fractal dimension and conductivity exponent) to those observed in Tulum's karst networks. We show in addition that these θ-subnetworks correspond to structures that minimise a global function, where this global function includes energy dissipation by the viscous forces when water flows through the network, and the cost of network formation itself.
DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro
2016-10-01
This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.
Zou, Feng; Chen, Debao; Wang, Jiangtao
2016-01-01
An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods.
Jerosch-Herold, Christina; Shepstone, Lee; Wilson, Edward C F; Dyer, Tony; Blake, Julian
2014-02-07
Carpal tunnel syndrome (CTS) is the most common neuropathy of the upper limb and a significant contributor to hand functional impairment and disability. Effective treatment options include conservative and surgical interventions, however it is not possible at present to predict the outcome of treatment. The primary aim of this study is to identify which baseline clinical factors predict a good outcome from conservative treatment (by injection) or surgery in patients diagnosed with carpal tunnel syndrome. Secondary aims are to describe the clinical course and progression of CTS, and to describe and predict the UK cost of CTS to the individual, National Health Service (NHS) and society over a two year period. In this prospective observational cohort study patients presenting with clinical signs and symptoms typical of CTS and in whom the diagnosis is confirmed by nerve conduction studies are invited to participate. Data on putative predictive factors are collected at baseline and follow-up through patient questionnaires and include standardised measures of symptom severity, hand function, psychological and physical health, comorbidity and quality of life. Resource use and cost over the 2 year period such as prescribed medications, NHS and private healthcare contacts are also collected through patient self-report at 6, 12, 18 and 24 months. The primary outcome used to classify treatment success or failures will be a 5-point global assessment of change. Secondary outcomes include changes in clinical symptoms, functioning, psychological health, quality of life and resource use. A multivariable model of factors which predict outcome and cost will be developed. This prospective cohort study will provide important data on the clinical course and UK costs of CTS over a two-year period and begin to identify predictive factors for treatment success from conservative and surgical interventions.
Algorithms for optimization of branching gravity-driven water networks
NASA Astrophysics Data System (ADS)
Dardani, Ian; Jones, Gerard F.
2018-05-01
The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.
Global economic burden of Chagas disease: a computational simulation model.
Lee, Bruce Y; Bacon, Kristina M; Bottazzi, Maria Elena; Hotez, Peter J
2013-04-01
As Chagas disease continues to expand beyond tropical and subtropical zones, a growing need exists to better understand its resulting economic burden to help guide stakeholders such as policy makers, funders, and product developers. We developed a Markov simulation model to estimate the global and regional health and economic burden of Chagas disease from the societal perspective. Our Markov model structure had a 1 year cycle length and consisted of five states: acute disease, indeterminate disease, cardiomyopathy with or without congestive heart failure, megaviscera, and death. Major model parameter inputs, including the annual probabilities of transitioning from one state to another, and present case estimates for Chagas disease came from various sources, including WHO and other epidemiological and disease-surveillance-based reports. We calculated annual and lifetime health-care costs and disability-adjusted life-years (DALYs) for individuals, countries, and regions. We used a discount rate of 3% to adjust all costs and DALYs to present-day values. On average, an infected individual incurs US$474 in health-care costs and 0·51 DALYs annually. Over his or her lifetime, an infected individual accrues an average net present value of $3456 and 3·57 DALYs. Globally, the annual burden is $627·46 million in health-care costs and 806,170 DALYs. The global net present value of currently infected individuals is $24·73 billion in health-care costs and 29,385,250 DALYs. Conversion of this burden into costs results in annual per-person costs of $4660 and lifetime per-person costs of $27,684. Global costs are $7·19 billion per year and $188·80 billion per lifetime. More than 10% of these costs emanate from the USA and Canada, where Chagas disease has not been traditionally endemic. A substantial proportion of the burden emerges from lost productivity from cardiovascular disease-induced early mortality. The economic burden of Chagas disease is similar to or exceeds those of other prominent diseases globally (eg, rotavirus $2·0 billion, cervical cancer $4·7 billion) even in the USA (Lyme disease $2·5 billion), where Chagas disease has not been traditionally endemic, suggesting an economic argument for more attention and efforts towards control of Chagas disease. Bill & Melinda Gates Foundation, the National Institute of General Medical Sciences Models of Infectious Disease Agent Study. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bonissone, Stefano R.; Subbu, Raj
2002-12-01
In multi-objective optimization (MOO) problems we need to optimize many possibly conflicting objectives. For instance, in manufacturing planning we might want to minimize the cost and production time while maximizing the product's quality. We propose the use of evolutionary algorithms (EAs) to solve these problems. Solutions are represented as individuals in a population and are assigned scores according to a fitness function that determines their relative quality. Strong solutions are selected for reproduction, and pass their genetic material to the next generation. Weak solutions are removed from the population. The fitness function evaluates each solution and returns a related score. In MOO problems, this fitness function is vector-valued, i.e. it returns a value for each objective. Therefore, instead of a global optimum, we try to find the Pareto-optimal or non-dominated frontier. We use multi-sexual EAs with as many genders as optimization criteria. We have created new crossover and gender assignment functions, and experimented with various parameters to determine the best setting (yielding the highest number of non-dominated solutions.) These experiments are conducted using a variety of fitness functions, and the algorithms are later evaluated on a flexible manufacturing problem with total cost and time minimization objectives.
Nashiro, Kaoru; Qin, Shuo; O'Connell, Margaret A; Basak, Chandramallika
2018-05-15
It is well documented that older adults recruit additional brain regions compared to those recruited by younger adults while performing a wide variety of cognitive tasks. However, it is unclear how such age-related over-recruitment interacts with different types of cognitive control, and whether this over-recruitment is compensatory. To test this, we used a multitasking paradigm, which allowed us to examine age-related over-activation associated with three types of cognitive costs (i.e., global switch, local switch, compatibility-switch costs). We found age-related impairments in global switch cost (GSC), evidenced by slower response times for maintaining and coordinating two tasks vs. performing only one task. However, no age-related declines were observed in either local switch cost (LSC), a cognitive cost associated with switching between the two tasks while maintaining two task loads, or compatibility-switch cost (CSC), a cognitive cost associated with incompatible vs. compatible stimulus-response mappings across the two tasks. The fMRI analyses allowed for identification of distinct cognitive cost-sensitive brain regions associated with GSC and LSC. In fronto-parietal GSC and LSC regions, older adults' increased activations were associated with poorer performance (greater costs), whereas a reverse relationship was observed in younger adults. Older adults also recruited additional fronto-parietal brain regions outside the cognitive cost-sensitive areas, which was associated with poorer performance or no behavioral benefits. Our results suggest that older adults exhibit a combination of inefficient activation within cognitive cost-sensitive regions, specifically the GSC and LSC regions, and non-compensatory over-recruitment in age-sensitive regions. Age-related declines in global switching, compared to local switching, was observed earlier in old age at both neural and behavioral levels. Copyright © 2018 Elsevier Inc. All rights reserved.
Darbà, J; Kaskens, L; Lacey, L
2015-11-01
The objectives of this analysis were to examine how patients' global severity with Alzheimer's disease (AD) relates to costs of care and explore the incremental effects of global severity measured by the clinical dementia rating (CDR) scale on these costs for patients in Spain. The Codep-EA study is an 18-multicenter, cross-sectional, observational study among patients (343) with AD according to the CDR score and their caregivers in Spain. The data obtained included (in addition to clinical measures) also socio-demographic data concerning the patient and its caregiver. Cost analyses were based on resource use for medical care, social care, caregiver productivity losses, and informal caregiver time reported in the resource utilization in dementia (RUD). Lite instrument and a complementary questionnaire. Multivariate regression analysis was used to model the effects of global severity and other socio-demographic and clinical variables on cost of care. The mean (standard deviation) costs per patient over 6 months for direct medical, social care, indirect and informal care costs, were estimated at €1,028.1 (1,655.0), €843.8 (2,684.8), €464.2 (1,639.0) and €33,232.2 (30,898.9), respectively. Dementia severity, as having a CDR score 0.5, 2, or 3 with CDR score 1 being the reference group were all independently and significantly associated with informal care costs. Whereas having a CDR score of 2 was also significantly related with social care costs, a CDR score of 3 was associated with most cost components including direct medical, social care, and total costs, all compared to the reference group. The costs of care for patients with AD in Spain are substantial, with informal care accounting for the greatest part. Dementia severity, measured by CDR score, showed that with increasing severity of the disease, direct medical, social care, informal care and total costs augmented.
Silva, Kyle; Rand, Stephanie; Cancel, David; Chen, Yuxi; Kathirithamby, Rani; Stern, Michelle
2015-12-01
The lack of access to prostheses is a global problem, partially caused by the high cost associated with the current manufacturing process. Three-dimensional printing is gaining use in the medical field, and one such area is prosthetics. In addition to using cost-effective materials, this technology allows for rapid prototyping, making it an efficient solution for the development of affordable prostheses. If the rehabilitation medicine community embraces this novel technology, we can help alleviate the global disparity of access to prostheses. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Sparsely-synchronized brain rhythm in a small-world neural network
NASA Astrophysics Data System (ADS)
Kim, Sang-Yoon; Lim, Woochang
2013-07-01
Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings sparsely at a much lower rate than the population rate. We study the effect of network architecture on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur for cases of both global coupling ( i.e., regular all-to-all coupling) and random coupling. However, a real neural network is known to be non-regular and non-random. Here, we consider sparse Watts-Strogatz small-world networks which interpolate between a regular lattice and a random graph via rewiring. We start from a regular lattice with only short-range connections and then investigate the emergence of sparse synchronization by increasing the rewiring probability p for the short-range connections. For p = 0, the average synaptic path length between pairs of neurons becomes long; hence, only an unsynchronized population state exists because the global efficiency of information transfer is low. However, as p is increased, long-range connections begin to appear, and global effective communication between distant neurons may be available via shorter synaptic paths. Consequently, as p passes a threshold p th (}~ 0.044), sparsely-synchronized population rhythms emerge. However, with increasing p, longer axon wirings become expensive because of their material and energy costs. At an optimal value p* DE (}~ 0.24) of the rewiring probability, the ratio of the synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse synchronization is found to occur at a minimal wiring cost in an economic small-world network through trade-off between synchrony and wiring cost.
Climate impacts on hydropower and consequences for global electricity supply investment needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Sean W. D.; Hejazi, Mohamad; Kim, Son H.
Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore the possible consequences of these impacts for the electricity supply sector. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model with downscaled, bias-corrected climate realizations derived from sixteen general circulation models. Consequent impacts on power sector composition and associated emissions and investment costs are explored using the Global Change Assessment Model (GCAM). Changes in hydropower generation resulting from climate change can shift power demands onto andmore » away from carbon intensive technologies, resulting in significant impacts on power sector CO2 emissions for certain world regions—primarily those located in Latin America, as well as Canada and parts of Europe. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity—meaning impacts on power sector investment costs are similar for high and low emissions scenarios. Individual countries where impacts on investment costs imply significant risks or opportunities are identified.« less
[Cost-effectiveness analysis and diet quality index applied to the WHO Global Strategy].
Machado, Flávia Mori Sarti; Simões, Arlete Naresse
2008-02-01
To test the use of cost-effectiveness analysis as a decision making tool in the production of meals for the inclusion of the recommendations published in the World Health Organization's Global Strategy. Five alternative options for breakfast menu were assessed previously to their adoption in a food service at a university in the state of Sao Paulo, Southeastern Brazil, in 2006. Costs of the different options were based on market prices of food items (direct cost). Health benefits were estimated based on adaptation of the Diet Quality Index (DQI). Cost-effectiveness ratios were estimated by dividing benefits by costs and incremental cost-effectiveness ratios were estimated as cost differential per unit of additional benefit. The meal choice was based on health benefit units associated to direct production cost as well as incremental effectiveness per unit of differential cost. The analysis showed the most simple option with the addition of a fruit (DQI = 64 / cost = R$ 1.58) as the best alternative. Higher effectiveness was seen in the options with a fruit portion (DQI1=64 / DQI3=58 / DQI5=72) compared to the others (DQI2=48 / DQI4=58). The estimate of cost-effectiveness ratio allowed to identifying the best breakfast option based on cost-effectiveness analysis and Diet Quality Index. These instruments allow easy application easiness and objective evaluation which are key to the process of inclusion of public or private institutions under the Global Strategy directives.
2014-09-01
dollars annually to develop and implement enterprise resource planning ( ERP ) systems, which it considers critical to transforming the department’s...modernization.1 DOD officials have stated that the implementation of the ERPs , such as the Global Combat Support System-Army (GCSS-Army), is a key...1An ERP system is an automated system using commercial off-the-shelf software consisting of multiple, integrated functional modules that perform
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semiquantitative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
Emerging technologies for the changing global market
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Schutzenhofer, Scott; Goldberg, Ben; Everhart, Kurt
1993-01-01
This project served to define an appropriate methodology for effective prioritization of technology efforts required to develop replacement technologies mandated by imposed and forecast legislation. The methodology used is a semi-quantative approach derived from quality function deployment techniques (QFD Matrix). This methodology aims to weight the full environmental, cost, safety, reliability, and programmatic implications of replacement technology development to allow appropriate identification of viable candidates and programmatic alternatives. The results will be implemented as a guideline for consideration for current NASA propulsion systems.
Army ants dynamically adjust living bridges in response to a cost-benefit trade-off.
Reid, Chris R; Lutz, Matthew J; Powell, Scott; Kao, Albert B; Couzin, Iain D; Garnier, Simon
2015-12-08
The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.
Efficient global fiber tracking on multi-dimensional diffusion direction maps
NASA Astrophysics Data System (ADS)
Klein, Jan; Köhler, Benjamin; Hahn, Horst K.
2012-02-01
Global fiber tracking algorithms have recently been proposed which were able to compute results of unprecedented quality. They account for avoiding accumulation errors by a global optimization process at the cost of a high computation time of several hours or even days. In this paper, we introduce a novel global fiber tracking algorithm which, for the first time, globally optimizes the underlying diffusion direction map obtained from DTI or HARDI data, instead of single fiber segments. As a consequence, the number of iterations in the optimization process can drastically be reduced by about three orders of magnitude. Furthermore, in contrast to all previous algorithms, the density of the tracked fibers can be adjusted after the optimization within a few seconds. We evaluated our method for diffusion-weighted images obtained from software phantoms, healthy volunteers, and tumor patients. We show that difficult fiber bundles, e.g., the visual pathways or tracts for different motor functions can be determined and separated in an excellent quality. Furthermore, crossing and kissing bundles are correctly resolved. On current standard hardware, a dense fiber tracking result of a whole brain can be determined in less than half an hour which is a strong improvement compared to previous work.
Global implications of China's healthcare reform.
Yan, Fei; Tang, Shenglan; Zhang, Jian
2016-01-01
The ongoing healthcare reform in China has a powerful spillover effect beyond the health sector and the borders of China. A successful completion of the Chinese reform will offer a new model for social justice development, shift the global economy toward sustainability and create a new hub for science and technology in medical and health science. However, reforming the healthcare system in the most populated country is a daunting task. China will not live up to its promise, and all the potentials may end with hype not hope if coherent national strategies are not constructed and state-of-the-art navigation is not achieved with staggering domestic and global challenges. The cost of failure will be immensely high, socioeconomic costs for Chinese and an opportunity cost for the world as a whole. A full appreciation of the global implications of China's healthcare reform is crucial in keeping China receptive toward good practices evidence-approved elsewhere and open minded to fulfill its international obligations. More critically, the appreciation yields constructive engagements from global community toward a joint development and global prosperity. The current report provides a multiple disciplinary assessment on the global implications of the healthcare reform in China. Copyright © 2014 John Wiley & Sons, Ltd.
Materials for Sustainable Energy
NASA Astrophysics Data System (ADS)
Crabtree, George
2009-03-01
The global dependence on fossil fuels for energy is among the greatest challenges facing our economic, social and political future. The uncertainty in the cost and supply of oil threatens the global economy and energy security, the pollution of fossil combustion threatens human health, and the emission of greenhouse gases threatens global climate. Meeting the demand for double the current global energy use in the next 50 years without damaging our economy, security, environment or climate requires finding alternative sources of energy that are clean, abundant, accessible and sustainable. The transition to greater sustainability involves tapping unused energy flows such as sunlight and wind, producing electricity without carbon emissions from clean coal and high efficiency nuclear power plants, and using energy more efficiently in solid-state lighting, fuel cells and transportation based on plug-in hybrid and electric cars. Achieving these goals requires creating materials of increasing complexity and functionality to control the transformation of energy between light, electrons and chemical bonds. Challenges and opportunities for developing the complex materials and controlling the chemical changes that enable greater sustainability will be presented.
A global approach for using kinematic redundancy to minimize base reactions of manipulators
NASA Technical Reports Server (NTRS)
Chung, C. L.; Desa, S.
1989-01-01
An important consideration in the use of manipulators in microgravity environments is the minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the manipulator on its base as it performs its tasks. One approach which was proposed and implemented is to use the redundant degree of freedom in a kinematically redundant manipulator to plan manipulator trajectories to minimize base reactions. A global approach was developed for minimizing the magnitude of the base reactions for kinematically redundant manipulators which integrates the Partitioned Jacobian method of redundancy resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which is the time-integral of the magnitude of the base reactions. The global approach was also compared with a local approach developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one redundant degree-of-freedom. The results show that the global approach is more effective in reducing and smoothing the base force while the local approach is superior in reducing the base moment.
High-resolution assessment of global technical and economic hydropower potential
NASA Astrophysics Data System (ADS)
Gernaat, David E. H. J.; Bogaart, Patrick W.; Vuuren, Detlef P. van; Biemans, Hester; Niessink, Robin
2017-10-01
Hydropower is the most important renewable energy source to date, providing over 72% of all renewable electricity globally. Yet, only limited information is available on the global potential supply of hydropower and the associated costs. Here we provide a high-resolution assessment of the technical and economic potential of hydropower at a near-global scale. Using 15"×15" discharge and 3"×3" digital elevation maps, we built virtual hydropower installations at >3.8 million sites across the globe and calculated their potential using cost optimization methods. This way we identified over 60,000 suitable sites, which together represent a remaining global potential of 9.49 PWh yr-1 below US0.50 kWh-1. The largest remaining potential is found in Asia Pacific (39%), South America (25%) and Africa (24%), of which a large part can be produced at low cost (
Lilliu, Hervé; Stevens, Denise; Brun, Catherine; Morel, Julie; Pen, Claude Le; Bonastre, Julia; Bachelot, Florence; Davesne, Christian; Gentile, Annie; Hirlimann, Eric; Sabourin, Jean-Christophe; Berlie, Jacques; Rouëssé, Jacques
2002-06-01
Breast cancer is one of the major causes of premature death for women. Its cost management is important for both the national health insurance and the individual health care providers. The objective of this study was to assess the global medical cost of breast cancer from diagnosis to follow up in one French medical centre: centre René-Huguenin, Saint-Cloud (92). Duration of medical activities and other medical resources utilisations were collected from a retrospective cohort of 120 patients followed from January 1995 to February 2000. Unit costs were obtained from cost accounts of the Centre. The mean medical cost per patient was FF 66,067 [60,318-7,815] (USD $ 10,744 [9,809-11,679]). The mean cost varied from FF 41,875 (UDS $ 6,810) to FF 81,020 (UDS $ 13,175) depending on choice of type of therapy. The initial treatment phase was the most expensive, costing FF 48,397 [46,176-50,617] (USD $ 7,870 [7,509-8,231]) which represented 73.3% of the global cost. This study has provided an estimate of the real global cost of managing patients with breast cancer in a single French Comprehensive Cancer Centre (CLCC). The study method used is readily transposable to other treatment contexts and to other types of cancer.
Leveraging Global Maritime Partnerships to Increase Global Security in the Maritime Domain
2008-04-04
global interdependency (ways to counter the threat), along with the agility and elusiveness of the maritime threat to utilize the vastness of the...is that all of these costs cut into their profit margins and are therefore passed along by way of increased prices for goods purchased by the...costs of security measures and initiatives without cutting into their profit margins . Because of this they are more apt to take on the added risk
Global payment for health services as a solution in the financial crisis in Europe.
Schrijvers, Guus
2012-10-01
In these financial difficult years many European governments used global ceilings to control costs of health services. Two scenarios are thinkable. The first is that all individual providers get a budget for their own costs: general practitioners, specialists, hospitals, nursing homes and mental health institutes. The second scenario is to work with global budgets for health care providers servicing a total population. Scientists and policy makers in Europe, North America and Asia need time to design new payment systems based on the idea of global budgeting, bundled payment and shared savings.
Courses of Action to Optimize Heavy Bearings Cages
NASA Astrophysics Data System (ADS)
Szekely, V. G.
2016-11-01
The global expansion in the industrial, economically and technological context determines the need to develop products, technologies, processes and methods which ensure increased performance, lower manufacturing costs and synchronization of the main costs reported to the elementary values which correspond to utilization”. The development trend of the heavy bearing industry and the wide use of bearings determines the necessity of choosing the most appropriate material for a given application in order to meet the cumulative requirements of durability, reliability, strength, etc. Evaluation of commonly known or new materials represents a fundamental criterion, in order to choose the materials based on the cost, machinability and the technological process. In order to ensure the most effective basis for the decision, regarding the heavy bearing cage, in the first stage the functions of the product are established and in a further step a comparative analysis of the materials is made in order to establish the best materials which satisfy the product functions. The decision for selecting the most appropriate material is based largely on the overlapping of the material costs and manufacturing process during which the half-finished material becomes a finished product. The study is orientated towards a creative approach, especially towards innovation and reengineering by using specific techniques and methods applied in inventics. The main target is to find new efficient and reliable constructive and/or technological solutions which are consistent with the concept of sustainable development.
The worldwide costs of marine protected areas
Balmford, Andrew; Gravestock, Pippa; Hockley, Neal; McClean, Colin J.; Roberts, Callum M.
2004-01-01
Declines in marine harvests, wildlife, and habitats have prompted calls at both the 2002 World Summit on Sustainable Development and the 2003 World Parks Congress for the establishment of a global system of marine protected areas (MPAs). MPAs that restrict fishing and other human activities conserve habitats and populations and, by exporting biomass, may sustain or increase yields of nearby fisheries. Here we provide an estimate of the costs of a global MPA network, based on a survey of the running costs of 83 MPAs worldwide. Annual running costs per unit area spanned six orders of magnitude, and were higher in MPAs that were smaller, closer to coasts, and in high-cost, developed countries. Models extrapolating these findings suggest that a global MPA network meeting the World Parks Congress target of conserving 20–30% of the world's seas might cost between $5 billion and $19 billion annually to run and would probably create around one million jobs. Although substantial, gross network costs are less than current government expenditures on harmful subsidies to industrial fisheries. They also ignore potential private gains from improved fisheries and tourism and are dwarfed by likely social gains from increasing the sustainability of fisheries and securing vital ecosystem services. PMID:15205483
Gallos, Lazaros K; Makse, Hernán A; Sigman, Mariano
2012-02-21
The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are "large-world" self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the "strength of weak ties" crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain.
Gallos, Lazaros K.; Makse, Hernán A.; Sigman, Mariano
2012-01-01
The human brain is organized in functional modules. Such an organization presents a basic conundrum: Modules ought to be sufficiently independent to guarantee functional specialization and sufficiently connected to bind multiple processors for efficient information transfer. It is commonly accepted that small-world architecture of short paths and large local clustering may solve this problem. However, there is intrinsic tension between shortcuts generating small worlds and the persistence of modularity, a global property unrelated to local clustering. Here, we present a possible solution to this puzzle. We first show that a modified percolation theory can define a set of hierarchically organized modules made of strong links in functional brain networks. These modules are “large-world” self-similar structures and, therefore, are far from being small-world. However, incorporating weaker ties to the network converts it into a small world preserving an underlying backbone of well-defined modules. Remarkably, weak ties are precisely organized as predicted by theory maximizing information transfer with minimal wiring cost. This trade-off architecture is reminiscent of the “strength of weak ties” crucial concept of social networks. Such a design suggests a natural solution to the paradox of efficient information flow in the highly modular structure of the brain. PMID:22308319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H
2017-02-21
It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment ]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today's technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual.
Korenromp, Eline L; Glaziou, Philippe; Fitzpatrick, Christopher; Floyd, Katherine; Hosseini, Mehran; Raviglione, Mario; Atun, Rifat; Williams, Brian
2012-01-01
The Global Plan to Stop TB estimates funding required in low- and middle-income countries to achieve TB control targets set by the Stop TB Partnership within the context of the Millennium Development Goals. We estimate the contribution and impact of Global Fund investments under various scenarios of allocations across interventions and regions. Using Global Plan assumptions on expected cases and mortality, we estimate treatment costs and mortality impact for diagnosis and treatment for drug-sensitive and multidrug-resistant TB (MDR-TB), including antiretroviral treatment (ART) during DOTS for HIV-co-infected patients, for four country groups, overall and for the Global Fund investments. In 2015, China and India account for 24% of funding need, Eastern Europe and Central Asia (EECA) for 33%, sub-Saharan Africa (SSA) for 20%, and other low- and middle-income countries for 24%. Scale-up of MDR-TB treatment, especially in EECA, drives an increasing global TB funding need--an essential investment to contain the mortality burden associated with MDR-TB and future disease costs. Funding needs rise fastest in SSA, reflecting increasing coverage need of improved TB/HIV management, which saves most lives per dollar spent in the short term. The Global Fund is expected to finance 8-12% of Global Plan implementation costs annually. Lives saved through Global Fund TB support within the available funding envelope could increase 37% if allocations shifted from current regional demand patterns to a prioritized scale-up of improved TB/HIV treatment and secondly DOTS, both mainly in Africa--with EECA region, which has disproportionately high per-patient costs, funded from alternative resources. These findings, alongside country funding gaps, domestic funding and implementation capacity and equity considerations, should inform strategies and policies for international donors, national governments and disease control programs to implement a more optimal investment approach focusing on highest-impact populations and interventions.
Korenromp, Eline L.; Glaziou, Philippe; Fitzpatrick, Christopher; Floyd, Katherine; Hosseini, Mehran; Raviglione, Mario; Atun, Rifat; Williams, Brian
2012-01-01
Background The Global Plan to Stop TB estimates funding required in low- and middle-income countries to achieve TB control targets set by the Stop TB Partnership within the context of the Millennium Development Goals. We estimate the contribution and impact of Global Fund investments under various scenarios of allocations across interventions and regions. Methodology/Principal Findings Using Global Plan assumptions on expected cases and mortality, we estimate treatment costs and mortality impact for diagnosis and treatment for drug-sensitive and multidrug-resistant TB (MDR-TB), including antiretroviral treatment (ART) during DOTS for HIV-co-infected patients, for four country groups, overall and for the Global Fund investments. In 2015, China and India account for 24% of funding need, Eastern Europe and Central Asia (EECA) for 33%, sub-Saharan Africa (SSA) for 20%, and other low- and middle-income countries for 24%. Scale-up of MDR-TB treatment, especially in EECA, drives an increasing global TB funding need – an essential investment to contain the mortality burden associated with MDR-TB and future disease costs. Funding needs rise fastest in SSA, reflecting increasing coverage need of improved TB/HIV management, which saves most lives per dollar spent in the short term. The Global Fund is expected to finance 8–12% of Global Plan implementation costs annually. Lives saved through Global Fund TB support within the available funding envelope could increase 37% if allocations shifted from current regional demand patterns to a prioritized scale-up of improved TB/HIV treatment and secondly DOTS, both mainly in Africa − with EECA region, which has disproportionately high per-patient costs, funded from alternative resources. Conclusions/Significance These findings, alongside country funding gaps, domestic funding and implementation capacity and equity considerations, should inform strategies and policies for international donors, national governments and disease control programs to implement a more optimal investment approach focusing on highest-impact populations and interventions. PMID:22719954
Economic implications of climate-driven trends in global hydropower generation
NASA Astrophysics Data System (ADS)
Turner, S. W. D.; Galelli, S.; Hejazi, M. I.; Clarke, L.; Edmonds, J.; Kim, S. H.
2017-12-01
Recent progress in global scale hydrological and dam modeling has allowed for the study of climate change impacts on global hydropower production. Here we explore how these impacts could affect the composition of global electricity supply, and what those changes could mean for power sector emissions and investment needs in the 21st century. Regional hydropower projections are developed for two emissions scenarios by forcing a coupled global hydrological and dam model (1593 major hydropower dams; 54% global installed capacity) with downscaled, bias-corrected climate realizations derived from sixteen General Circulation Models (GCMs). To incorporate possible non-linearity in hydropower response to climate change, dam simulations incorporate plant specifications (e.g., maximum turbine flow), reservoir storage dynamics, reservoir bathymetry, evaporation losses and bespoke, site specific operations. Consequent impacts on regional and global-level electricity generation and associated emissions and investment costs are examined using the Global Change Assessment Model (GCAM). We show that changes in hydropower generation resulting from climate change can shift power demands onto and away from carbon intensive technologies, resulting in significant impacts on CO2 emissions for several regions. Many of these countries are also highly vulnerable to investment impacts (costs of new electricity generating facilities to make up for shortfalls in hydro), which in some cases amount to tens of billions of dollars by 2100. The Balkans region—typified by weak economies in a drying region that relies heavily on hydropower—emerges as the most vulnerable. Reduced impacts of climate change on hydropower production under a low emissions scenario coincide with increased costs of marginal power generating capacity (low emissions requires greater uptake of clean generating technologies, which are more expensive). This means impacts on power sector investment costs are similar for high and low emissions scenarios.
Costs and benefits of adapting to river floods at the global scale
NASA Astrophysics Data System (ADS)
Ward, Philip; Aerts, Jeroen; Botzen, Wouter; Hallegatte, Stephane; Jongman, Brenden; Kind, Jarl; Scussolini, Paolo; Winsemius, Hessel
2015-04-01
It is well known that the economic losses associated with flooding are huge; for example in 2012 alone the economic losses from flooding exceeded 19 billion. As a result, different models have been developed to assess global scale flood risk. Recently, these have been used in several studies to assess current flood risk at the global scale, and to project how risk may increase as a result of climate change and/or socioeconomic development. In most regions, these studies show rapid increases in risk into the future, and therefore call for urgent adaptation. However, to date no studies have attempted to assess the costs of carrying out such adaptation, nor the benefits. In this paper, we therefore present the first global scale estimate of the costs and benefits of adapting to increased river flood risk caused by factors such as climate change and socioeconomic development. For this study, we concentrate on structural adaptation measures, such as dikes, designed to prevent flood hazard up to a certain design standard. We address two questions: 1. What would be the costs and benefits of maintaining current flood protection standards, accounting for future climate and socioeconomic change until 2100? 2. What flood protection standards would be required by 2100 to keep future flood risk constant at today's levels? And what would be the costs and benefits associated with this? In this paper, we will present our first global estimates of the costs and benefits of adaptation to increased flood risk, as well as maps of these findings per country and river basin. We present the results under 4 emission scenarios (RCPs), 5 socioeconomic scenarios (SSPs), and under several assumptions relating to total potential flood damages, discount rates, construction costs, maintenance costs, and so forth. The research was carried out using the GLOFRIS modelling cascade. This global flood risk model calculates flood risk in terms of annual expected damage, and has been developed and validated over the past few years. For this study we have extended GLOFRIS by developing a module that calculates the costs and benefits of adaptation by increasing dike flood protection standards. In brief, this is carried out by calculating, per cell, the length of dikes that would be required to provide flood protection, multiplying this with the change in dike height that would be required to offer a certain flood protection standard, and multiplying this with data on the costs of dike construction and maintenance.
CMMI Interpretive Guidance Project: What We Learned
2004-10-01
Figure 20: Global Issues Q1: Adequacy of CMMI.....................................................39 Figure 21: Global Issues Q4a: Leveraging Earlier...Investments................................40 Figure 22: Global Issues Q4b: Adequacy of Training, Etc.........................................40...Figure 23: Global Issues Q4c: Appraisals ................................................................41 Figure 24: Global Issues Q4d: Cost
Stewardship to tackle global phosphorus inefficiency: The case of Europe.
Withers, Paul J A; van Dijk, Kimo C; Neset, Tina-Simone S; Nesme, Thomas; Oenema, Oene; Rubæk, Gitte H; Schoumans, Oscar F; Smit, Bert; Pellerin, Sylvain
2015-03-01
The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R stewardship (Re-align P inputs, Reduce P losses, Recycle P in bioresources, Recover P in wastes, and Redefine P in food systems) to help identify and deliver a range of integrated, cost-effective, and feasible technological innovations to improve P use efficiency in society and reduce Europe's dependence on P imports. Their combined adoption facilitated by interactive policies, co-operation between upstream and downstream stakeholders (researchers, investors, producers, distributors, and consumers), and more harmonized approaches to P accounting would maximize the resource and environmental benefits and help deliver a more competitive, circular, and sustainable European economy. The case of Europe provides a blueprint for global P stewardship.
Low-CO(2) electricity and hydrogen: a help or hindrance for electric and hydrogen vehicles?
Wallington, T J; Grahn, M; Anderson, J E; Mueller, S A; Williander, M I; Lindgren, K
2010-04-01
The title question was addressed using an energy model that accounts for projected global energy use in all sectors (transportation, heat, and power) of the global economy. Global CO(2) emissions were constrained to achieve stabilization at 400-550 ppm by 2100 at the lowest total system cost (equivalent to perfect CO(2) cap-and-trade regime). For future scenarios where vehicle technology costs were sufficiently competitive to advantage either hydrogen or electric vehicles, increased availability of low-cost, low-CO(2) electricity/hydrogen delayed (but did not prevent) the use of electric/hydrogen-powered vehicles in the model. This occurs when low-CO(2) electricity/hydrogen provides more cost-effective CO(2) mitigation opportunities in the heat and power energy sectors than in transportation. Connections between the sectors leading to this counterintuitive result need consideration in policy and technology planning.
A rotor optimization using regression analysis
NASA Technical Reports Server (NTRS)
Giansante, N.
1984-01-01
The design and development of helicopter rotors is subject to the many design variables and their interactions that effect rotor operation. Until recently, selection of rotor design variables to achieve specified rotor operational qualities has been a costly, time consuming, repetitive task. For the past several years, Kaman Aerospace Corporation has successfully applied multiple linear regression analysis, coupled with optimization and sensitivity procedures, in the analytical design of rotor systems. It is concluded that approximating equations can be developed rapidly for a multiplicity of objective and constraint functions and optimizations can be performed in a rapid and cost effective manner; the number and/or range of design variables can be increased by expanding the data base and developing approximating functions to reflect the expanded design space; the order of the approximating equations can be expanded easily to improve correlation between analyzer results and the approximating equations; gradients of the approximating equations can be calculated easily and these gradients are smooth functions reducing the risk of numerical problems in the optimization; the use of approximating functions allows the problem to be started easily and rapidly from various initial designs to enhance the probability of finding a global optimum; and the approximating equations are independent of the analysis or optimization codes used.
Association Between Employee Sleep With Workplace Health and Economic Outcomes.
Burton, Wayne N; Chen, Chin-Yu; Schultz, Alyssa B; Li, Xingquan
2017-02-01
Poor sleep can impact occupational functioning. The current study examines health risks, medical conditions, and workplace economic outcomes associated with self-reported hours of sleep among employees. Employees of a global financial services corporation were categorized on the basis of their self-reported average hours of sleep. Differences in health care costs, productivity measures, health risks, and medical conditions were analyzed by hours of sleep while controlling for confounding variables. A strong U-shaped relationship between health care costs, short-term disability, absenteeism, and presenteeism (on-the-job work loss) and the hours of sleep was found among employees. The nadir of the "U" occurs for 7 or 8 hours of sleep per night. Worksite wellness programs often address health risks and medical conditions and may benefit from incorporating sleep education.
Saleh, M; Karfoul, A; Kachenoura, A; Senhadji, L; Albera, L
2016-08-01
Improving the execution time and the numerical complexity of the well-known kurtosis-based maximization method, the RobustICA, is investigated in this paper. A Newton-based scheme is proposed and compared to the conventional RobustICA method. A new implementation using the nonlinear Conjugate Gradient one is investigated also. Regarding the Newton approach, an exact computation of the Hessian of the considered cost function is provided. The proposed approaches and the considered implementations inherit the global plane search of the initial RobustICA method for which a better convergence speed for a given direction is still guaranteed. Numerical results on Magnetic Resonance Spectroscopy (MRS) source separation show the efficiency of the proposed approaches notably the quasi-Newton one using the BFGS method.
Modelling and Optimal Control of Typhoid Fever Disease with Cost-Effective Strategies.
Tilahun, Getachew Teshome; Makinde, Oluwole Daniel; Malonza, David
2017-01-01
We propose and analyze a compartmental nonlinear deterministic mathematical model for the typhoid fever outbreak and optimal control strategies in a community with varying population. The model is studied qualitatively using stability theory of differential equations and the basic reproductive number that represents the epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined. The model exhibits a forward transcritical bifurcation and the sensitivity analysis is performed. The optimal control problem is designed by applying Pontryagin maximum principle with three control strategies, namely, the prevention strategy through sanitation, proper hygiene, and vaccination; the treatment strategy through application of appropriate medicine; and the screening of the carriers. The cost functional accounts for the cost involved in prevention, screening, and treatment together with the total number of the infected persons averted. Numerical results for the typhoid outbreak dynamics and its optimal control revealed that a combination of prevention and treatment is the best cost-effective strategy to eradicate the disease.
Lin, C-Y; Ma, T; Lin, C-C; Kao, C-H
2016-02-01
This study evaluated the effect of global budgeting on health service utilization, health care expenditures, and the quality of care among patients with pneumonia in Taiwan. The National Health Insurance Research Database (NHIRD) was used for analysis. Data on patients diagnosed with pneumonia during 2000-2001 (the prebudget group) were used as the baseline data, and data on patients diagnosed with pneumonia during 2004-2005 (the postbudget group) were used as the postintervention data. The length of stay (LOS), diagnostic costs, drug costs, therapy costs, total costs, risk of readmission within 14 days, and risk of revisiting the Emergency Department (ED) within 3 days of discharge before and after implementing the global budget system were analyzed and compared. Data on 32,535 patients with pneumonia were analyzed. The mean LOS increased from 6.36 ± 0.07 to 10.78 ± 0.09 days after implementing the global budget system. The mean total costs in the prebudget and postbudget groups were 22,697.82 ± 542.40 and 62,016.7 ± 793.19 New Taiwan dollars (NT$), respectively. The mean rate of revisiting the ED within 3 days decreased from 5.5 ± 0.2 % to 4.6 ± 0.1 % in the prebudget and postbudget groups, respectively. The mean rates of readmission within 14 days before were 6.1 ± 0.2 % and 8.2 ± 0.2 % in the prebudget and postbudget groups, respectively. Global budgeting is associated with a significantly longer LOS, higher health care costs, and poorer quality of care among patients with pneumonia.
Increased costs to US pavement infrastructure from future temperature rise
NASA Astrophysics Data System (ADS)
Underwood, B. Shane; Guido, Zack; Gudipudi, Padmini; Feinberg, Yarden
2017-10-01
Roadway design aims to maximize functionality, safety, and longevity. The materials used for construction, however, are often selected on the assumption of a stationary climate. Anthropogenic climate change may therefore result in rapid infrastructure failure and, consequently, increased maintenance costs, particularly for paved roads where temperature is a key determinant for material selection. Here, we examine the economic costs of projected temperature changes on asphalt roads across the contiguous United States using an ensemble of 19 global climate models forced with RCP 4.5 and 8.5 scenarios. Over the past 20 years, stationary assumptions have resulted in incorrect material selection for 35% of 799 observed locations. With warming temperatures, maintaining the standard practice for material selection is estimated to add approximately US$13.6, US$19.0 and US$21.8 billion to pavement costs by 2010, 2040 and 2070 under RCP4.5, respectively, increasing to US$14.5, US$26.3 and US$35.8 for RCP8.5. These costs will disproportionately affect local municipalities that have fewer resources to mitigate impacts. Failing to update engineering standards of practice in light of climate change therefore significantly threatens pavement infrastructure in the United States.
Hastrup, Lene Halling; Kronborg, Christian; Bertelsen, Mette; Jeppesen, Pia; Jorgensen, Per; Petersen, Lone; Thorup, Anne; Simonsen, Erik; Nordentoft, Merete
2013-01-01
Information about the cost-effectiveness of early intervention programmes for first-episode psychosis is limited. To evaluate the cost-effectiveness of an intensive early-intervention programme (called OPUS) (trial registration NCT00157313) consisting of enriched assertive community treatment, psychoeducational family treatment and social skills training for individuals with first-episode psychosis compared with standard treatment. An incremental cost-effectiveness analysis of a randomised controlled trial, adopting a public sector perspective was undertaken. The mean total costs of OPUS over 5 years (€123,683, s.e. = 8970) were not significantly different from that of standard treatment (€148,751, s.e. = 13073). At 2-year follow-up the mean Global Assessment of Functioning (GAF) score in the OPUS group (55.16, s.d. = 15.15) was significantly higher than in standard treatment group (51.13, s.d. = 15.92). However, the mean GAF did not differ significantly between the groups at 5-year follow-up (55.35 (s.d. = 18.28) and 54.16 (s.d. = 18.41), respectively). Cost-effectiveness planes based on non-parametric bootstrapping showed that OPUS was less costly and more effective in 70% of the replications. For a willingness-to-pay up to €50,000 the probability that OPUS was cost-effective was more than 80%. The incremental cost-effectiveness analysis showed that there was a high probability of OPUS being cost-effective compared with standard treatment.
Probabilistic cost estimates for climate change mitigation.
Rogelj, Joeri; McCollum, David L; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan
2013-01-03
For more than a decade, the target of keeping global warming below 2 °C has been a key focus of the international climate debate. In response, the scientific community has published a number of scenario studies that estimate the costs of achieving such a target. Producing these estimates remains a challenge, particularly because of relatively well known, but poorly quantified, uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on the one hand, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other hand, has spent years improving its understanding of the geophysical response of the Earth system to emissions of greenhouse gases. This geophysical response remains a key uncertainty in the cost of mitigation scenarios but has been integrated with assessments of other uncertainties in only a rudimentary manner, that is, for equilibrium conditions. Here we bridge this gap between the two research communities by generating distributions of the costs associated with limiting transient global temperature increase to below specific values, taking into account uncertainties in four factors: geophysical, technological, social and political. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical uncertainties, social factors influencing future energy demand and, lastly, technological uncertainties surrounding the availability of greenhouse gas mitigation options. Our information on temperature risk and mitigation costs provides crucial information for policy-making, because it clarifies the relative importance of mitigation costs, energy demand and the timing of global action in reducing the risk of exceeding a global temperature increase of 2 °C, or other limits such as 3 °C or 1.5 °C, across a wide range of scenarios.
Global economic evaluations of rotavirus vaccines: A systematic review.
Kotirum, Surachai; Vutipongsatorn, Naaon; Kongpakwattana, Khachen; Hutubessy, Raymond; Chaiyakunapruk, Nathorn
2017-06-08
World Health Organization (WHO) recommends Rotavirus vaccines to prevent and control rotavirus infections. Economic evaluations (EE) have been considered to support decision making of national policy. Summarizing global experience of the economic value of rotavirus vaccines is crucial in order to encourage global WHO recommendations for vaccine uptake. Therefore, a systematic review of economic evaluations of rotavirus vaccine was conducted. We searched Medline, Embase, NHS EED, EconLit, CEA Registry, SciELO, LILACS, CABI-Global Health Database, Popline, World Bank - e-Library, and WHOLIS. Full economic evaluations studies, published from inception to November 2015, evaluating Rotavirus vaccines preventing Rotavirus infections were included. The methods, assumptions, results and conclusions of the included studies were extracted and appraised using WHO guide for standardization of EE of immunization programs. 104 relevant studies were included. The majority of studies were conducted in high-income countries. Cost-utility analysis was mostly reported in many studies using incremental cost-effectiveness ratio per DALY averted or QALY gained. Incremental cost per QALY gained was used in many studies from high-income countries. Mass routine vaccination against rotavirus provided the ICERs ranging from cost-saving to highly cost-effective in comparison to no vaccination among low-income countries. Among middle-income countries, vaccination offered the ICERs ranging from cost-saving to cost-effective. Due to low- or no subsidized price of rotavirus vaccines from external funders, being not cost-effective was reported in some high-income settings. Mass vaccination against rotavirus was generally found to be cost-effective, particularly in low- and middle-income settings according to the external subsidization of vaccine price. On the other hand, it may not be a cost-effective intervention at market price in some high-income settings. This systematic review provides supporting information to health policy-makers and health professionals when considering rotavirus vaccination as a national program. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global-, Regional-, and Country-Level Economic Impacts of Dental Diseases in 2015.
Righolt, A J; Jevdjevic, M; Marcenes, W; Listl, S
2018-05-01
Up-to-date information about the economic impact of dental diseases is essential for health care decision makers when seeking to make rational use of available resources. The purpose of this study was to provide up-to-date estimates for dental expenditures (direct costs) and productivity losses (indirect costs) due to dental diseases on the global, regional, and country level. Direct costs of dental diseases were estimated using a previously established systematic approach; indirect costs were estimated using an approach developed by the World Health Organization Commission on Macroeconomics and Health and factoring in 2015 values for gross domestic product and disability-adjusted life years from the Global Burden of Disease Study. The estimated direct costs of dental diseases amounted to $356.80 billion and indirect costs were estimated at $187.61 billion, totaling worldwide costs due to dental diseases of $544.41 billion in 2015. After adjustment for purchasing power parity, the highest levels of per capita dental expenditures were found for High-Income North America, Australasia, Western Europe, High-Income Asia Pacific, and East Asia; the highest levels of per capita productivity losses were found for Western Europe, Australasia, High-Income North America, High-Income Asia Pacific, and Central Europe. Severe tooth loss was found to imply 67% of global productivity losses due to dental diseases, followed by severe periodontitis (21%) and untreated caries (12%). From an economic perspective, improvements in population oral health may be highly beneficial and could contribute to further increases in people's well-being given available resources.
Optimal network alignment with graphlet degree vectors.
Milenković, Tijana; Ng, Weng Leong; Hayes, Wayne; Przulj, Natasa
2010-06-30
Important biological information is encoded in the topology of biological networks. Comparative analyses of biological networks are proving to be valuable, as they can lead to transfer of knowledge between species and give deeper insights into biological function, disease, and evolution. We introduce a new method that uses the Hungarian algorithm to produce optimal global alignment between two networks using any cost function. We design a cost function based solely on network topology and use it in our network alignment. Our method can be applied to any two networks, not just biological ones, since it is based only on network topology. We use our new method to align protein-protein interaction networks of two eukaryotic species and demonstrate that our alignment exposes large and topologically complex regions of network similarity. At the same time, our alignment is biologically valid, since many of the aligned protein pairs perform the same biological function. From the alignment, we predict function of yet unannotated proteins, many of which we validate in the literature. Also, we apply our method to find topological similarities between metabolic networks of different species and build phylogenetic trees based on our network alignment score. The phylogenetic trees obtained in this way bear a striking resemblance to the ones obtained by sequence alignments. Our method detects topologically similar regions in large networks that are statistically significant. It does this independent of protein sequence or any other information external to network topology.
Life cycle costing of food waste: A review of methodological approaches.
De Menna, Fabio; Dietershagen, Jana; Loubiere, Marion; Vittuari, Matteo
2018-03-01
Food waste (FW) is a global problem that is receiving increasing attention due to its environmental and economic impacts. Appropriate FW prevention, valorization, and management routes could mitigate or avoid these effects. Life cycle thinking and approaches, such as life cycle costing (LCC), may represent suitable tools to assess the sustainability of these routes. This study analyzes different LCC methodological aspects and approaches to evaluate FW management and valorization routes. A systematic literature review was carried out with a focus on different LCC approaches, their application to food, FW, and waste systems, as well as on specific methodological aspects. The review consisted of three phases: a collection phase, an iterative phase with experts' consultation, and a final literature classification. Journal papers and reports were retrieved from selected databases and search engines. The standardization of LCC methodologies is still in its infancy due to a lack of consensus over definitions and approaches. Research on the life cycle cost of FW is limited and generally focused on FW management, rather than prevention or valorization of specific flows. FW prevention, valorization, and management require a consistent integration of LCC and Life Cycle Assessment (LCA) to avoid tradeoffs between environmental and economic impacts. This entails a proper investigation of methodological differences between attributional and consequential modelling in LCC, especially with regard to functional unit, system boundaries, multi-functionality, included cost, and assessed impacts. Further efforts could also aim at finding the most effective and transparent categorization of costs, in particular when dealing with multiple stakeholders sustaining costs of FW. Interpretation of results from LCC of FW should take into account the effect on larger economic systems. Additional key performance indicators and analytical tools could be included in consequential approaches. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Value of CCS under Current Policy Scenarios: NDCs and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, Casie L.; Dahowski, Robert T.; McJeon, Haewon C.
This paper describes preliminary results of analysis using the Global Change Assessment Model (GCAM) to evaluate the potential role of CCS in addressing emissions reduction targets. Scenarios are modelled using the Paris-Increased Ambition (PIA) case developed by Fawcett et al. (2015), and a more aggressive Paris Two-Degree Ambition (P2A) case. Both cases are based upon nationally determined contributions (NDCs) agreed to at the UNFCCC Conference of Parties (COP-21) in December 2015, coupled with additional mitigation effort beyond the 2030 Paris timeframe, through the end of the century. Analysis of CCS deployment and abatement costs under both policy scenarios suggests that,more » as modelled, having CCS in the technological portfolio could reduce the global cost of addressing emissions reduction targets specified under the policy scenario by trillions of dollars, primarily by enabling a smoother and lower-cost transition to next-generation technologies. Through the end of the century, total global abatement costs associated with the PIA case – with five percent annual reduction in emission intensity and reaching 2.2 degrees by 2100 – are reduced by $15 trillion USD in the scenario where CCS is available to deploy by 2025 and remains available through 2100, reflecting a 47 percent savings in the cost of climate change abatement. Under the more ambitious P2A case, with 8 percent annual reduction in emission intensity and reaching 1.9 degrees by 2100, the availability of CCS reduces global abatement costs by $22 trillion USD through the end of the century, again nearly halving the costs of addressing the policy, relative to achieving the same target using an energy portfolio that does not include CCS. PIA and P2A scenarios with CCS result in 1,250 and 1,580 GtCO2 of global geologic storage by the end of the century, respectively.« less
Verheijen, Lieneke M; Aerts, Rien; Brovkin, Victor; Cavender-Bares, Jeannine; Cornelissen, Johannes H C; Kattge, Jens; van Bodegom, Peter M
2015-08-01
Earth system models demonstrate large uncertainty in projected changes in terrestrial carbon budgets. The lack of inclusion of adaptive responses of vegetation communities to the environment has been suggested to hamper the ability of modeled vegetation to adequately respond to environmental change. In this study, variation in functional responses of vegetation has been added to an earth system model (ESM) based on ecological principles. The restriction of viable mean trait values of vegetation communities by the environment, called 'habitat filtering', is an important ecological assembly rule and allows for determination of global scale trait-environment relationships. These relationships were applied to model trait variation for different plant functional types (PFTs). For three leaf traits (specific leaf area, maximum carboxylation rate at 25 °C, and maximum electron transport rate at 25 °C), relationships with multiple environmental drivers, such as precipitation, temperature, radiation, and CO2 , were determined for the PFTs within the Max Planck Institute ESM. With these relationships, spatiotemporal variation in these formerly fixed traits in PFTs was modeled in global change projections (IPCC RCP8.5 scenario). Inclusion of this environment-driven trait variation resulted in a strong reduction of the global carbon sink by at least 33% (2.1 Pg C yr(-1) ) from the 2nd quarter of the 21st century onward compared to the default model with fixed traits. In addition, the mid- and high latitudes became a stronger carbon sink and the tropics a stronger carbon source, caused by trait-induced differences in productivity and relative respirational costs. These results point toward a reduction of the global carbon sink when including a more realistic representation of functional vegetation responses, implying more carbon will stay airborne, which could fuel further climate change. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Shoemaker, C. A.; Pang, M.; Akhtar, T.; Bindel, D.
2016-12-01
New parallel surrogate global optimization algorithms are developed and applied to objective functions that are expensive simulations (possibly with multiple local minima). The algorithms can be applied to most geophysical simulations, including those with nonlinear partial differential equations. The optimization does not require simulations be parallelized. Asynchronous (and synchronous) parallel execution is available in the optimization toolbox "pySOT". The parallel algorithms are modified from serial to eliminate fine grained parallelism. The optimization is computed with open source software pySOT, a Surrogate Global Optimization Toolbox that allows user to pick the type of surrogate (or ensembles), the search procedure on surrogate, and the type of parallelism (synchronous or asynchronous). pySOT also allows the user to develop new algorithms by modifying parts of the code. In the applications here, the objective function takes up to 30 minutes for one simulation, and serial optimization can take over 200 hours. Results from Yellowstone (NSF) and NCSS (Singapore) supercomputers are given for groundwater contaminant hydrology simulations with applications to model parameter estimation and decontamination management. All results are compared with alternatives. The first results are for optimization of pumping at many wells to reduce cost for decontamination of groundwater at a superfund site. The optimization runs with up to 128 processors. Superlinear speed up is obtained for up to 16 processors, and efficiency with 64 processors is over 80%. Each evaluation of the objective function requires the solution of nonlinear partial differential equations to describe the impact of spatially distributed pumping and model parameters on model predictions for the spatial and temporal distribution of groundwater contaminants. The second application uses an asynchronous parallel global optimization for groundwater quality model calibration. The time for a single objective function evaluation varies unpredictably, so efficiency is improved with asynchronous parallel calculations to improve load balancing. The third application (done at NCSS) incorporates new global surrogate multi-objective parallel search algorithms into pySOT and applies it to a large watershed calibration problem.
Nguyen, Trung T; Barber, Andrew R; Corbin, Kendall; Zhang, Wei
2017-01-01
The worldwide annual production of lobster was 165,367 tons valued over $3.32 billion in 2004, but this figure rose up to 304,000 tons in 2012. Over half the volume of the worldwide lobster production has been processed to meet the rising global demand in diversified lobster products. Lobster processing generates a large amount of by-products (heads, shells, livers, and eggs) which account for 50-70% of the starting material. Continued production of these lobster processing by-products (LPBs) without corresponding process development for efficient utilization has led to disposal issues associated with costs and pollutions. This review presents the promising opportunities to maximize the utilization of LPBs by economic recovery of their valuable components to produce high value-added products. More than 50,000 tons of LPBs are globally generated, which costs lobster processing companies upward of about $7.5 million/year for disposal. This not only presents financial and environmental burdens to the lobster processors but also wastes a valuable bioresource. LPBs are rich in a range of high-value compounds such as proteins, chitin, lipids, minerals, and pigments. Extracts recovered from LPBs have been demonstrated to possess several functionalities and bioactivities, which are useful for numerous applications in water treatment, agriculture, food, nutraceutical, pharmaceutical products, and biomedicine. Although LPBs have been studied for recovery of valuable components, utilization of these materials for the large-scale production is still very limited. Extraction of lobster components using microwave, ultrasonic, and supercritical fluid extraction were found to be promising techniques that could be used for large-scale production. LPBs are rich in high-value compounds that are currently being underutilized. These compounds can be extracted for being used as functional ingredients, nutraceuticals, and pharmaceuticals in a wide range of commercial applications. The efficient utilization of LPBs would not only generate significant economic benefits but also reduce the problems of waste management associated with the lobster industry. This comprehensive review highlights the availability of the global LPBs, the key components in LPBs and their current applications, the limitations to the extraction techniques used, and the suggested emerging techniques which may be promising on an industrial scale for the maximized utilization of LPBs. Graphical abstractLobster processing by-product as bioresource of several functional and bioactive compounds used in various value-added products.
Governance factors in the identification of global conservation priorities for mammals
Eklund, Johanna; Arponen, Anni; Visconti, Piero; Cabeza, Mar
2011-01-01
Global conservation priorities have often been identified based on the combination of species richness and threat information. With the development of the field of systematic conservation planning, more attention has been given to conservation costs. This leads to prioritizing developing countries, where costs are generally low and biodiversity is high. But many of these countries have poor governance, which may result in ineffective conservation or in larger costs than initially expected. We explore how the consideration of governance affects the selection of global conservation priorities for the world's mammals in a complementarity-based conservation prioritization. We use data on Control of Corruption (Worldwide Governance Indicators project) as an indicator of governance effectiveness, and gross domestic product per capita as an indicator of cost. We show that, while core areas with high levels of endemism are always selected as important regardless of governance and cost values, there are clear regional differences in selected sites when biodiversity, cost or governance are taken into account separately. Overall, the analysis supports the concentration of conservation efforts in most of the regions generally considered of high priority, but stresses the need for different conservation approaches in different continents owing to spatial patterns of governance and economic development. PMID:21844045
Governance factors in the identification of global conservation priorities for mammals.
Eklund, Johanna; Arponen, Anni; Visconti, Piero; Cabeza, Mar
2011-09-27
Global conservation priorities have often been identified based on the combination of species richness and threat information. With the development of the field of systematic conservation planning, more attention has been given to conservation costs. This leads to prioritizing developing countries, where costs are generally low and biodiversity is high. But many of these countries have poor governance, which may result in ineffective conservation or in larger costs than initially expected. We explore how the consideration of governance affects the selection of global conservation priorities for the world's mammals in a complementarity-based conservation prioritization. We use data on Control of Corruption (Worldwide Governance Indicators project) as an indicator of governance effectiveness, and gross domestic product per capita as an indicator of cost. We show that, while core areas with high levels of endemism are always selected as important regardless of governance and cost values, there are clear regional differences in selected sites when biodiversity, cost or governance are taken into account separately. Overall, the analysis supports the concentration of conservation efforts in most of the regions generally considered of high priority, but stresses the need for different conservation approaches in different continents owing to spatial patterns of governance and economic development.
Holmes, Charles B; Atun, Rifat; Avila, Carlos; Blandford, John M
2011-08-01
Cost information is needed at multiple levels of health care systems to inform the public health response to HIV. To date, most attention has been paid to identifying the cost drivers of providing antiretroviral treatment, and these data have driven interventions that have been successful in reducing drug and human resource costs. The need for further cost information, especially for less well-studied areas such as HIV prevention, is particularly acute given global budget constraints and ongoing efforts to extract the greatest possible value from money spent on the response. Cost information can be collected from multiple perspectives and levels of the health care system (site, program, and national levels), and it is critical to choose the appropriate methodology in order to generate the appropriate information for decision-making. Organizations such as United States President's Emergency Plan for AIDS Relief, the Global Fund to Fight AIDS, Tuberculosis, and Malaria, and other organizations are working together to bridge the divide between the fields of economics and HIV program implementation by accelerating the collection of cost data and building further local demand and capacity for their use.
Ramos, Mafalda; Haughney, John; Henry, Nathaniel; Lindner, Leandro; Lamotte, Mark
2016-01-01
Purpose Aclidinium–formoterol 400/12 µg is a long-acting muscarinic antagonist (LAMA) and a long-acting β2-agonist in a fixed-dose combination used in the management of patients with COPD. This study aimed to assess the cost-effectiveness of aclidinium–formoterol 400/12 µg against the long-acting muscarinic antagonist aclidinium bromide 400 µg. Materials and methods A five-health-state Markov transition model with monthly cycles was developed using MS Excel to simulate patients with moderate-to-severe COPD and their initial lung-function improvement following treatment with aclidinium–formoterol 400/12 µg or aclidinium 400 µg. Health states were based on severity levels defined by Global Initiative for Chronic Obstructive Lung Disease 2010 criteria. The analysis was a head-to-head comparison without step-up therapy, from the NHS Scotland perspective, over a 5-year time horizon. Clinical data on initial lung-function improvement were provided by a pooled analysis of the ACLIFORM and AUGMENT trials. Management, event costs, and utilities were health state-specific. Costs and effects were discounted at an annual rate of 3.5%. The outcome of the analysis was expressed as cost (UK£) per quality-adjusted life-year (QALY) gained. The analysis included one way and probabilistic sensitivity analyses to investigate the impact of parameter uncertainty on model outputs. Results Aclidinium–formoterol 400/12 µg provided marginally higher costs (£41) and more QALYs (0.014), resulting in an incremental cost-effectiveness ratio of £2,976/QALY. Sensitivity analyses indicated that results were robust to key parameter variations, and the main drivers were: mean baseline forced expiratory volume in 1 second (FEV1), risk of exacerbation, FEV1 improvement from aclidinium–formoterol 400/12 µg, and lung-function decline. The probability of aclidinium–formoterol 400/12 µg being cost-effective (using a willingness-to-pay threshold of £20,000/QALY) versus aclidinium 400 µg was 79%. Conclusion In Scotland, aclidinium–formoterol 400/12 µg can be considered a cost-effective treatment option compared to aclidinium 400 µg alone in patients with moderate-to-severe COPD. PMID:27672337
The cost of Alzheimer's disease in China and re-estimation of costs worldwide.
Jia, Jianping; Wei, Cuibai; Chen, Shuoqi; Li, Fangyu; Tang, Yi; Qin, Wei; Zhao, Lina; Jin, Hongmei; Xu, Hui; Wang, Fen; Zhou, Aihong; Zuo, Xiumei; Wu, Liyong; Han, Ying; Han, Yue; Huang, Liyuan; Wang, Qi; Li, Dan; Chu, Changbiao; Shi, Lu; Gong, Min; Du, Yifeng; Zhang, Jiewen; Zhang, Junjian; Zhou, Chunkui; Lv, Jihui; Lv, Yang; Xie, Haiqun; Ji, Yong; Li, Fang; Yu, Enyan; Luo, Benyan; Wang, Yanjiang; Yang, Shanshan; Qu, Qiumin; Guo, Qihao; Liang, Furu; Zhang, Jintao; Tan, Lan; Shen, Lu; Zhang, Kunnan; Zhang, Jinbiao; Peng, Dantao; Tang, Muni; Lv, Peiyuan; Fang, Boyan; Chu, Lan; Jia, Longfei; Gauthier, Serge
2018-04-01
The socioeconomic costs of Alzheimer's disease (AD) in China and its impact on global economic burden remain uncertain. We collected data from 3098 patients with AD in 81 representative centers across China and estimated AD costs for individual patient and total patients in China in 2015. Based on this data, we re-estimated the worldwide costs of AD. The annual socioeconomic cost per patient was US $19,144.36, and total costs were US $167.74 billion in 2015. The annual total costs are predicted to reach US $507.49 billion in 2030 and US $1.89 trillion in 2050. Based on our results, the global estimates of costs for dementia were US $957.56 billion in 2015, and will be US $2.54 trillion in 2030, and US $9.12 trillion in 2050, much more than the predictions by the World Alzheimer Report 2015. China bears a heavy burden of AD costs, which greatly change the estimates of AD cost worldwide. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Closing the 21st century global water gap: costs and effectiveness of adaptation measures
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Droogers, P.; Hunink, J.; Buitink, J.; Sutanudjaja, E.; Karssenberg, D.; Van Beek, L. P.; Straatsma, M. W.
2017-12-01
Water scarcity affects a major part of the globe, and is expected to increase significantly until 2100 as a result of climate change and socioeconomic developments. Yet, global projections are unavailable on the effectiveness and costs of adaptation measures to close the future water gap under global change. Here, we present a 21st century projection of the closure of the water gap under two contrasting climate and socio-economic scenarios: RCP2.6/SSP1(s1) and RCP8.5/SSP5(s5). We coupled a global hydrological model to water demand and redistribution model, and forced them with five General Circulation Models (GCMs) to assess the future water gap for 1604 water provinces covering most of the global land mass. Subsequently, using so-called water availability cost curves, we determined the water gap reduction that could be achieved by increasingly aggressive and expensive sets of adaptation measures, respectively aimed at improving agriculture, increasing water supply, and reducing water demands. Our results show that for s1, the water gap peaks around 2050 and declines towards 2100. Contrastingly, for s5, the gap increases linearly. Hotspots in water scarcity are found in the USA, India, and China. The proposed adaptation sets reduce the water gap, but for the majority of the hotspots are not sufficient to close the water gap completely. The median annual adaptation costs for the proposed measures amount to less than 2% of the GDP of the affected water provinces. Although these costs are already substantial, they do leave room for additional unorthodox adaptation measures.
NASA Astrophysics Data System (ADS)
Sommer, Philipp S.; Kaplan, Jed O.
2017-10-01
While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.
Integrating economic costs and biological traits into global conservation priorities for carnivores.
Loyola, Rafael Dias; Oliveira-Santos, Luiz Gustavo Rodrigues; Almeida-Neto, Mário; Nogueira, Denise Martins; Kubota, Umberto; Diniz-Filho, José Alexandre Felizola; Lewinsohn, Thomas Michael
2009-08-27
Prioritization schemes usually highlight species-rich areas, where many species are at imminent risk of extinction. To be ecologically relevant these schemes should also include species biological traits into area-setting methods. Furthermore, in a world of limited funds for conservation, conservation action is constrained by land acquisition costs. Hence, including economic costs into conservation priorities can substantially improve their conservation cost-effectiveness. We examined four global conservation scenarios for carnivores based on the joint mapping of economic costs and species biological traits. These scenarios identify the most cost-effective priority sets of ecoregions, indicating best investment opportunities for safeguarding every carnivore species, and also establish priority sets that can maximize species representation in areas harboring highly vulnerable species. We compared these results with a scenario that minimizes the total number of ecoregions required for conserving all species, irrespective of other factors. We found that cost-effective conservation investments should focus on 41 ecoregions highlighted in the scenario that consider simultaneously both ecoregion vulnerability and economic costs of land acquisition. Ecoregions included in priority sets under these criteria should yield best returns of investments since they harbor species with high extinction risk and have lower mean land cost. Our study highlights ecoregions of particular importance for the conservation of the world's carnivores defining global conservation priorities in analyses that encompass socioeconomic and life-history factors. We consider the identification of a comprehensive priority-set of areas as a first step towards an in-situ biodiversity maintenance strategy.
GNSS Signal Authentication Via Power and Distortion Monitoring
NASA Astrophysics Data System (ADS)
Wesson, Kyle D.; Gross, Jason N.; Humphreys, Todd E.; Evans, Brian L.
2018-04-01
We propose a simple low-cost technique that enables civil Global Positioning System (GPS) receivers and other civil global navigation satellite system (GNSS) receivers to reliably detect carry-off spoofing and jamming. The technique, which we call the Power-Distortion detector, classifies received signals as interference-free, multipath-afflicted, spoofed, or jammed according to observations of received power and correlation function distortion. It does not depend on external hardware or a network connection and can be readily implemented on many receivers via a firmware update. Crucially, the detector can with high probability distinguish low-power spoofing from ordinary multipath. In testing against over 25 high-quality empirical data sets yielding over 900,000 separate detection tests, the detector correctly alarms on all malicious spoofing or jamming attacks while maintaining a <0.6% single-channel false alarm rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
Human Capital Response to Globalization: Education and Information Technology in India
ERIC Educational Resources Information Center
Shastry, Gauri Kartini
2012-01-01
Recent studies suggest that globalization increases inequality, by increasing skilled wage premiums in developing countries. This effect may be mitigated, however, if human capital responds to global opportunities. I study how the impact of globalization varies across Indian districts with different costs of learning English. Linguistic diversity…
Peter J. Ince; Joseph Buongiorno
2007-01-01
This chapter discusses economic globalization and world trade in relation to forest sector modeling for the US/North American region. It discusses drivers of economic globalization and related structural changes in US forest product markets, including currency exchange rates and differences in manufacturing costs that have contributed to the displacement of global...
Product development cycle time reduction
NASA Astrophysics Data System (ADS)
Farran, Robin
1992-05-01
We are facing here today the key issues that face us in the competitive environment. North American companies are struggling to compete in the global marketplace. Gone are the days when presence ensured success. Then, sales and earnings were guaranteed. Today the competition is intense. Many manufacturing and service companies are no longer competitive. Traditionally, manufacturing companies have created the most wealth for the community and economy. Losing this ability to create wealth is tragic and unnecessary. A company can only be successful by focusing on customer satisfaction at competitive costs. Revenue growth and earnings growth require a continuous stream of products that anticipate the customers' needs, result from shorter and shorter innovation cycles, continually improve in quality, and are produced at improved costs on each cycle. The best opportunities for increased quality and decreased costs are with new products. Sure, work on quality and costs everyday. The biggest changes, however, will come through the new product development cycle. We must improve our development processes to provide leadership products which result in high levels of customer satisfaction. This is a prerequisite for business success. When presence in the marketplace was a virtual guarantee of success for a North American company, technology tended to drive the products, and the customers bought virtually everything that was produced. Functional excellence was stressed within companies ... and that was enough. Effective planning processes were not a prerequisite for success. Today success demands highly developed business research and planning processes, and functional excellence combined with organizational capabilities that ensure commercialization excellence.
NASA Astrophysics Data System (ADS)
Mouffe, Melodie; Getirana, Augusto; Ricci, Sophie; Lion, Christine; Biancamaria, Sylvian; Boone, Aaron; Mognard, Nelly; Rogel, Philippe
2013-09-01
The Surface Water and Ocean Topography (SWOT) wide swath altimetry mission will provide measurements of water surface elevations (WSE) at a global scale. The aim of this study is to investigate the potential of these satellite data for the calibration of the hydrological model HyMAP, over the Amazon river basin. Since SWOT has not yet been launched, synthetical observations are used to calibrate the river bed depth and width, the Manning coefficient and the baseflow concentration time. The calibration process stands in the minimization of a cost function using an evolutionnary, global and multi-objective algorithm that describes the difference between the simulated and the observed WSE. We found that the calibration procedure is able to retrieve an optimal set of parameters such that it brings the simulated WSE closer to the observation. Still with a global calibration procedure where a uniform correction is applied, the improvement is limited to a mean correction over the catchment and the simulation period. We conclude that in order to benefit from the high resolution and complete coverage of the SWOT mission, the calibration process should be achieved sequentially in time over sub-domains as observations become available.
Petersen, Poul Erik
2004-12-01
Chronic diseases and injuries are overtaking communicable diseases as the leading health problems in all but a few parts of the world. This rapidly changing global disease pattern is closely linked to changing lifestyles, which include diets rich in sugars, widespread use of tobacco and increased consumption of alcohol. These lifestyle factors also significantly impact on oral health, and oral diseases qualify as major public health problems owing to their high prevalence and incidence in all regions of the world. Like all diseases, they affect primarily the disadvantaged and socially marginalised populations, causing severe pain and suffering, impairing function and impacting on quality of life. Traditional treatment of oral diseases is extremely costly even in industrialised countries and is unaffordable in most low and middle-income countries. The WHO global strategy for prevention and control of noncommunicable diseases and the 'common risk factor approach' offer new ways of managing the prevention and control of oral diseases. This document outlines the current oral health situation and development trends at global level as well as WHO strategies and approaches for better oral health in the 21 st century.
NASA Astrophysics Data System (ADS)
Alnifro, M.; Taqvi, S. T.; Ahmad, M. S.; Bensaida, K.; Elkamel, A.
2017-08-01
With increasing global energy demand and declining energy return on energy invested (EROEI) of crude oil, global energy consumption by the O&G industry has increased drastically over the past few years. In addition, this energy increase has led to an increase GHG emissions, resulting in adverse environmental effects. On the other hand, electricity generation through renewable resources have become relatively cost competitive to fossil based energy sources in a much ‘cleaner’ way. In this study, renewable energy is integrated optimally into a refinery considering costs and CO2 emissions. Using Aspen HYSYS, a refinery in the Middle East was simulated to estimate the energy demand by different processing units. An LP problem was formulated based on existing solar energy systems and wind potential in the region. The multi-objective function, minimizing cost as well as CO2 emissions, was solved using GAMS to determine optimal energy distribution from each energy source to units within the refinery. Additionally, an economic feasibility study was carried out to determine the viability of renewable energy technology project implementation to overcome energy requirement of the refinery. Electricity generation through all renewable energy sources considered (i.e. solar PV, solar CSP and wind) were found feasible based on their low levelized cost of electricity (LCOE). The payback period for a Solar CSP project, with an annual capacity of about 411 GWh and a lifetime of 30 years, was found to be 10 years. In contrast, the payback period for Solar PV and Wind were calculated to be 7 and 6 years, respectively. This opens up possibilities for integrating renewables into the refining sector as well as optimizing multiple energy carrier systems within the crude oil industry
Auffhammer, Maximilian; Baylis, Patrick; Hausman, Catherine H.
2017-01-01
It has been suggested that climate change impacts on the electric sector will account for the majority of global economic damages by the end of the current century and beyond [Rose S, et al. (2014) Understanding the Social Cost of Carbon: A Technical Assessment]. The empirical literature has shown significant increases in climate-driven impacts on overall consumption, yet has not focused on the cost implications of the increased intensity and frequency of extreme events driving peak demand, which is the highest load observed in a period. We use comprehensive, high-frequency data at the level of load balancing authorities to parameterize the relationship between average or peak electricity demand and temperature for a major economy. Using statistical models, we analyze multiyear data from 166 load balancing authorities in the United States. We couple the estimated temperature response functions for total daily consumption and daily peak load with 18 downscaled global climate models (GCMs) to simulate climate change-driven impacts on both outcomes. We show moderate and heterogeneous changes in consumption, with an average increase of 2.8% by end of century. The results of our peak load simulations, however, suggest significant increases in the intensity and frequency of peak events throughout the United States, assuming today’s technology and electricity market fundamentals. As the electricity grid is built to endure maximum load, our findings have significant implications for the construction of costly peak generating capacity, suggesting additional peak capacity costs of up to 180 billion dollars by the end of the century under business-as-usual. PMID:28167756
Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham
2016-05-17
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings.
Rasooly, Reuven; Bruck, Hugh Alan; Balsam, Joshua; Prickril, Ben; Ossandon, Miguel; Rasooly, Avraham
2016-01-01
Resource-poor countries and regions require effective, low-cost diagnostic devices for accurate identification and diagnosis of health conditions. Optical detection technologies used for many types of biological and clinical analysis can play a significant role in addressing this need, but must be sufficiently affordable and portable for use in global health settings. Most current clinical optical imaging technologies are accurate and sensitive, but also expensive and difficult to adapt for use in these settings. These challenges can be mitigated by taking advantage of affordable consumer electronics mobile devices such as webcams, mobile phones, charge-coupled device (CCD) cameras, lasers, and LEDs. Low-cost, portable multi-wavelength fluorescence plate readers have been developed for many applications including detection of microbial toxins such as C. Botulinum A neurotoxin, Shiga toxin, and S. aureus enterotoxin B (SEB), and flow cytometry has been used to detect very low cell concentrations. However, the relatively low sensitivities of these devices limit their clinical utility. We have developed several approaches to improve their sensitivity presented here for webcam based fluorescence detectors, including (1) image stacking to improve signal-to-noise ratios; (2) lasers to enable fluorescence excitation for flow cytometry; and (3) streak imaging to capture the trajectory of a single cell, enabling imaging sensors with high noise levels to detect rare cell events. These approaches can also help to overcome some of the limitations of other low-cost optical detection technologies such as CCD or phone-based detectors (like high noise levels or low sensitivities), and provide for their use in low-cost medical diagnostics in resource-poor settings. PMID:27196933
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Jason; Smith, Steven J.; Silva, Raquel
2013-10-01
Reducing greenhouse gas (GHG) emissions also influences air quality. We simulate the co-benefits of global GHG reductions on air quality and human health via two mechanisms: a) reducing co-emitted air pollutants, and b) slowing climate change and its effect on air quality. Relative to a reference scenario, global GHG mitigation in the RCP4.5 scenario avoids 0.5±0.2, 1.3±0.6, and 2.2±1.6 million premature deaths in 2030, 2050, and 2100, from changes in fine particulate matter and ozone. Global average marginal co-benefits of avoided mortality are $40-400 (ton CO2)-1, exceeding marginal abatement costs in 2030 and 2050, and within the low range ofmore » costs in 2100. East Asian co-benefits are 10-80 times the marginal cost in 2030. These results indicate that transitioning to a low-carbon future might be justified by air quality and health co-benefits.« less
Connecting source aggregating areas with distributive regions via Optimal Transportation theory.
NASA Astrophysics Data System (ADS)
Lanzoni, S.; Putti, M.
2016-12-01
We study the application of Optimal Transport (OT) theory to the transfer of water and sediments from a distributed aggregating source to a distributing area connected by a erodible hillslope. Starting from the Monge-Kantorovich equations, We derive a global energy functional that nonlinearly combines the cost of constructing the drainage network over the entire domain and the cost of water and sediment transportation through the network. It can be shown that the minimization of this functional is equivalent to the infinite time solution of a system of diffusion partial differential equations coupled with transient ordinary differential equations, that closely resemble the classical conservation laws of water and sediments mass and momentum. We present several numerical simulations applied to realstic test cases. For example, the solution of the proposed model forms network configurations that share strong similiratities with rill channels formed on an hillslope. At a larger scale, we obtain promising results in simulating the network patterns that ensure a progressive and continuous transition from a drainage drainage area to a distributive receiving region.
Takahashi, K; Sengoku, S; Kimura, H
2011-02-01
A fundamental management imperative of pharmaceutical companies is to contain surging costs of developing and launching drugs globally. Clinical studies are a research and development (R&D) cost driver. The objective of this study was to develop a productivity breakdown model, or a key performance indicator (KPI) tree, for an entire clinical study and to use it to compare a global clinical study with a similar Japanese study. We, thereby, hope to identify means of improving study productivity. We developed the new clinical study productivity breakdown model, covering operational aspects and cost factors. Elements for improving clinical study productivity were assessed from a management viewpoint by comparing empirical tracking data from a global clinical study with a Japanese study with similar protocols. The following unique and material differences, beyond simple international difference in cost of living, that could affect the efficiency of future clinical trials were identified: (i) more frequent site visits in the Japanese study, (ii) head counts at the Japanese study sites more than double those of the global study and (iii) a shorter enrollment time window of about a third that of the global study at the Japanese study sites. We identified major differences in the performance of the two studies. These findings demonstrate the potential of the KPI tree for improving clinical study productivity. Trade-offs, such as those between reduction in head count at study sites and expansion of the enrollment time window, must be considered carefully. © 2010 Blackwell Publishing Ltd.
2014-01-01
Background Carpal tunnel syndrome (CTS) is the most common neuropathy of the upper limb and a significant contributor to hand functional impairment and disability. Effective treatment options include conservative and surgical interventions, however it is not possible at present to predict the outcome of treatment. The primary aim of this study is to identify which baseline clinical factors predict a good outcome from conservative treatment (by injection) or surgery in patients diagnosed with carpal tunnel syndrome. Secondary aims are to describe the clinical course and progression of CTS, and to describe and predict the UK cost of CTS to the individual, National Health Service (NHS) and society over a two year period. Methods/Design In this prospective observational cohort study patients presenting with clinical signs and symptoms typical of CTS and in whom the diagnosis is confirmed by nerve conduction studies are invited to participate. Data on putative predictive factors are collected at baseline and follow-up through patient questionnaires and include standardised measures of symptom severity, hand function, psychological and physical health, comorbidity and quality of life. Resource use and cost over the 2 year period such as prescribed medications, NHS and private healthcare contacts are also collected through patient self-report at 6, 12, 18 and 24 months. The primary outcome used to classify treatment success or failures will be a 5-point global assessment of change. Secondary outcomes include changes in clinical symptoms, functioning, psychological health, quality of life and resource use. A multivariable model of factors which predict outcome and cost will be developed. Discussion This prospective cohort study will provide important data on the clinical course and UK costs of CTS over a two-year period and begin to identify predictive factors for treatment success from conservative and surgical interventions. PMID:24507749
Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030.
Bommer, Christian; Sagalova, Vera; Heesemann, Esther; Manne-Goehler, Jennifer; Atun, Rifat; Bärnighausen, Till; Davies, Justine; Vollmer, Sebastian
2018-05-01
Despite the importance of diabetes for global health, the future economic consequences of the disease remain opaque. We forecast the full global costs of diabetes in adults through the year 2030 and predict the economic consequences of diabetes if global targets under the Sustainable Development Goals (SDG) and World Health Organization Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013-2020 are met. We modeled the absolute and gross domestic product (GDP)-relative economic burden of diabetes in individuals aged 20-79 years using epidemiological and demographic data, as well as recent GDP forecasts for 180 countries. We assumed three scenarios: prevalence and mortality 1 ) increased only with urbanization and population aging (baseline scenario), 2 ) increased in line with previous trends (past trends scenario), and 3 ) achieved global targets (target scenario). The absolute global economic burden will increase from U.S. $1.3 trillion (95% CI 1.3-1.4) in 2015 to $2.2 trillion (2.2-2.3) in the baseline, $2.5 trillion (2.4-2.6) in the past trends, and $2.1 trillion (2.1-2.2) in the target scenarios by 2030. This translates to an increase in costs as a share of global GDP from 1.8% (1.7-1.9) in 2015 to a maximum of 2.2% (2.1-2.2). The global costs of diabetes and its consequences are large and will substantially increase by 2030. Even if countries meet international targets, the global economic burden will not decrease. Policy makers need to take urgent action to prepare health and social security systems to mitigate the effects of diabetes. © 2018 by the American Diabetes Association.
Costs of eliminating malaria and the impact of the global fund in 34 countries.
Zelman, Brittany; Kiszewski, Anthony; Cotter, Chris; Liu, Jenny
2014-01-01
International financing for malaria increased more than 18-fold between 2000 and 2011; the largest source came from The Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund). Countries have made substantial progress, but achieving elimination requires sustained finances to interrupt transmission and prevent reintroduction. Since 2011, global financing for malaria has declined, fueling concerns that further progress will be impeded, especially for current malaria-eliminating countries that may face resurgent malaria if programs are disrupted. This study aims to 1) assess past total and Global Fund funding to the 34 current malaria-eliminating countries, and 2) estimate their future funding needs to achieve malaria elimination and prevent reintroduction through 2030. Historical funding is assessed against trends in country-level malaria annual parasite incidences (APIs) and income per capita. Following Kizewski et al. (2007), program costs to eliminate malaria and prevent reintroduction through 2030 are estimated using a deterministic model. The cost parameters are tailored to a package of interventions aimed at malaria elimination and prevention of reintroduction. The majority of Global Fund-supported countries experiencing increases in total funding from 2005 to 2010 coincided with reductions in malaria APIs and also overall GNI per capita average annual growth. The total amount of projected funding needed for the current malaria-eliminating countries to achieve elimination and prevent reintroduction through 2030 is approximately US$8.5 billion, or about $1.84 per person at risk per year (PPY) (ranging from $2.51 PPY in 2014 to $1.43 PPY in 2030). Although external donor funding, particularly from the Global Fund, has been key for many malaria-eliminating countries, sustained and sufficient financing is critical for furthering global malaria elimination. Projected cost estimates for elimination provide policymakers with an indication of the level of financial resources that should be mobilized to achieve malaria elimination goals.
Investing in breastfeeding - the world breastfeeding costing initiative.
Holla-Bhar, Radha; Iellamo, Alessandro; Gupta, Arun; Smith, Julie P; Dadhich, Jai Prakash
2015-01-01
Despite scientific evidence substantiating the importance of breastfeeding in child survival and development and its economic benefits, assessments show gaps in many countries' implementation of the 2003 WHO and UNICEF Global Strategy for Infant and Young Child Feeding (Global Strategy). Optimal breastfeeding is a particular example: initiation of breastfeeding within the first hour of birth, exclusive breastfeeding for the first six months; and continued breastfeeding for two years or more, together with safe, adequate, appropriate, responsive complementary feeding starting in the sixth month. While the understanding of "optimal" may vary among countries, there is a need for governments to facilitate an enabling environment for women to achieve optimal breastfeeding. Lack of financial resources for key programs is a major impediment, making economic perspectives important for implementation. Globally, while achieving optimal breastfeeding could prevent more than 800,000 under five deaths annually, in 2013, US$58 billion was spent on commercial baby food including milk formula. Support for improved breastfeeding is inadequately prioritized by policy and practice internationally. The World Breastfeeding Costing Initiative (WBCi) launched in 2013, attempts to determine the financial investment that is necessary to implement the Global Strategy, and to introduce a tool to estimate the costs for individual countries. The article presents detailed cost estimates for implementing the Global Strategy, and outlines the WBCi Financial Planning Tool. Estimates use demographic data from UNICEF's State of the World's Children 2013. The WBCi takes a programmatic approach to scaling up interventions, including policy and planning, health and nutrition care systems, community services and mother support, media promotion, maternity protection, WHO International Code of Marketing of Breastmilk Substitutes implementation, monitoring and research, for optimal breastfeeding practices. The financial cost of a program to implement the Global Strategy in 214 countries is estimated at US $17.5 billion ($130 per live birth). The major recurring cost is maternity entitlements. WBCi is a policy advocacy initiative to encourage integrated actions that enable breastfeeding. WBCi will help countries plan and prioritize actions and budget them accurately. International agencies and donors can also use the tool to calculate or track investments in breastfeeding.
High-cost, high-capacity backbone for global brain communication.
van den Heuvel, Martijn P; Kahn, René S; Goñi, Joaquín; Sporns, Olaf
2012-07-10
Network studies of human brain structural connectivity have identified a specific set of brain regions that are both highly connected and highly central. Recent analyses have shown that these putative hub regions are mutually and densely interconnected, forming a "rich club" within the human brain. Here we show that the set of pathways linking rich club regions forms a central high-cost, high-capacity backbone for global brain communication. Diffusion tensor imaging (DTI) data of two sets of 40 healthy subjects were used to map structural brain networks. The contributions to network cost and communication capacity of global cortico-cortical connections were assessed through measures of their topology and spatial embedding. Rich club connections were found to be more costly than predicted by their density alone and accounted for 40% of the total communication cost. Furthermore, 69% of all minimally short paths between node pairs were found to travel through the rich club and a large proportion of these communication paths consisted of ordered sequences of edges ("path motifs") that first fed into, then traversed, and finally exited the rich club, while passing through nodes of increasing and then decreasing degree. The prevalence of short paths that follow such ordered degree sequences suggests that neural communication might take advantage of strategies for dynamic routing of information between brain regions, with an important role for a highly central rich club. Taken together, our results show that rich club connections make an important contribution to interregional signal traffic, forming a central high-cost, high-capacity backbone for global brain communication.
United States Strategic Plan for International Affairs.
1998-01-01
Humanitarian Response 39 Global Issues 41 US Strategic Plan for International Affairs International Affairs Strategic Plan Summary and Introduction...minimize the human costs of conflict and natural disasters. Global Issues : • Secure a sustainable global environment in order to protect the United States...involvement in addressing crises. 40 US Strategic Plan for International Affairs NATIONAL INTEREST: Global Issues The global environment has a
Large-scale Cortical Network Properties Predict Future Sound-to-Word Learning Success
Sheppard, John Patrick; Wang, Ji-Ping; Wong, Patrick C. M.
2013-01-01
The human brain possesses a remarkable capacity to interpret and recall novel sounds as spoken language. These linguistic abilities arise from complex processing spanning a widely distributed cortical network and are characterized by marked individual variation. Recently, graph theoretical analysis has facilitated the exploration of how such aspects of large-scale brain functional organization may underlie cognitive performance. Brain functional networks are known to possess small-world topologies characterized by efficient global and local information transfer, but whether these properties relate to language learning abilities remains unknown. Here we applied graph theory to construct large-scale cortical functional networks from cerebral hemodynamic (fMRI) responses acquired during an auditory pitch discrimination task and found that such network properties were associated with participants’ future success in learning words of an artificial spoken language. Successful learners possessed networks with reduced local efficiency but increased global efficiency relative to less successful learners and had a more cost-efficient network organization. Regionally, successful and less successful learners exhibited differences in these network properties spanning bilateral prefrontal, parietal, and right temporal cortex, overlapping a core network of auditory language areas. These results suggest that efficient cortical network organization is associated with sound-to-word learning abilities among healthy, younger adults. PMID:22360625
A global analysis of erosion of sandy beaches and sea-level rise: An application of DIVA
NASA Astrophysics Data System (ADS)
Hinkel, Jochen; Nicholls, Robert J.; Tol, Richard S. J.; Wang, Zheng B.; Hamilton, Jacqueline M.; Boot, Gerben; Vafeidis, Athanasios T.; McFadden, Loraine; Ganopolski, Andrey; Klein, Richard J. T.
2013-12-01
This paper presents a first assessment of the global effects of climate-induced sea-level rise on the erosion of sandy beaches, and its consequent impacts in the form of land loss and forced migration of people. We consider direct erosion on open sandy coasts and indirect erosion near selected tidal inlets and estuaries, using six global mean sea-level scenarios (in the range of 0.2-0.8 m) and six SRES socio-economic development scenarios for the 21st century. Impacts are assessed both without and with adaptation in the form of shore and beach nourishment, based on cost-benefit analysis that includes the benefits of maintaining sandy beaches for tourism. Without nourishment, global land loss would amount to about 6000-17,000 km2 during the 21st century, leading to 1.6-5.3 million people being forced to migrate and migration costs of US 300-1000 billion (not discounted). Optimal beach and shore nourishment would cost about US 65-220 billion (not discounted) during the 21st century and would reduce land loss by 8-14%, forced migration by 56-68% and the cost of forced migration by 77-84% (not discounted). The global share of erodible coast that is nourished increases from about 4% in 2000 to 18-33% in 2100, with beach nourishment being 3-4 times more frequent than shore nourishment, reflecting the importance of tourism benefits. In absolute terms, with or without nourishment, large countries with long shorelines appear to have the largest costs, but in relative terms, small island states appear most impacted by erosion. Considerable uncertainty remains due to the limited availability of basic coastal geomorphological data and models on a global scale. Future work should also further explore the effects of beach tourism, including considering sub-national distributions of beach tourists.
What Determines HIV Prevention Costs at Scale? Evidence from the Avahan Programme in India.
Lépine, Aurélia; Chandrashekar, Sudhashree; Shetty, Govindraj; Vickerman, Peter; Bradley, Janet; Alary, Michel; Moses, Stephen; Vassall, Anna
2016-02-01
Expanding essential health services through non-government organisations (NGOs) is a central strategy for achieving universal health coverage in many low-income and middle-income countries. Human immunodeficiency virus (HIV) prevention services for key populations are commonly delivered through NGOs and have been demonstrated to be cost-effective and of substantial global public health importance. However, funding for HIV prevention remains scarce, and there are growing calls internationally to improve the efficiency of HIV prevention programmes as a key strategy to reach global HIV targets. To date, there is limited evidence on the determinants of costs of HIV prevention delivered through NGOs; and thus, policymakers have little guidance in how best to design programmes that are both effective and efficient. We collected economic costs from the Indian Avahan initiative, the largest HIV prevention project conducted globally, during the first 4 years of its implementation. We use a fixed-effect panel estimator and a random-intercept model to investigate the determinants of average cost. We find that programme design choices such as NGO scale, the extent of community involvement, the way in which support is offered to NGOs and how clinical services are organised substantially impact average cost in a grant-based payment setting. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd.
Global ring satellite communications system for future broadband network
NASA Astrophysics Data System (ADS)
Iida, Takashi; Suzuki, Yoshiaki; Arimoto, Yoshinori; Akaishi, Akira
2005-04-01
The purpose of this paper is to examine a cost model of a global ring satellite communications system as a 2G-satellite (second generation Internet satellite) for the future Internet satellite, whose capacity is around 120 Gbps. The authors proposed the future needs of research and development of communications satellite for the next 30 years and also proposed the approach of three generations for the future Internet satellites. First, the paper reviews and updates the original proposal for the future needs of communications satellite, considering the recent development of the quantum communication technology. It also examines the communications satellite applicability for bridging the digital divide in the Asia-Oceania as an example. The paper clarifies this possibility of communications satellite by showing various relationships among Internet penetration, land area, population growth, etc. Second, the cost of the global ring satellite is examined. The user terminal is considered as a combination of an earth terminal and wireless local area network for a user community. This paper shows that the global ring satellite has a possibility of a good cost-competitiveness to the terrestrial system because of the global communications system can be configured only by satellite system.
Military Construction, Veterans Affairs, and Related Agencies: FY2009 Appropriations
2008-10-09
Global Presence and Basing Strategy (IGPBS)/Global Defense Posture Realignment ( GDPR ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Repealing...Second FY2008 Supplemental (P.L. 110-252) . . . . . . . . . . . . . . . . . . . . 6 Table 3. IGPBS/ GDPR One-Time Implementation Costs...report. CRS-10 17 The DOD Integrated Global Presence and Basing Strategy (IGPBS) has been renamed the Global Defense Posture Realignment ( GDPR ). 18
Fiedler, John L; Macdonald, Barbara
2009-12-01
Food fortification is a promising strategy for combating micronutrient deficiencies, which plague one-third of the world's population. Which foods to fortify, with which micronutrients, and in which countries remain essential questions that to date have not been addressed at the global level. To provide a tool for international agencies to identify and organize the next phase of the unfinished global fortification agenda by prioritizing roughly 250 potential interventions in 48 priority countries. By explicitly defining the structure and operations of the fortification interventions in a detailed and transparent manner, and incorporating a substantial amount of country-specific data, the study also provides a potentially useful starting point for policy discussions in each of the 48 countries, which--it is hoped--will help to catalyze the development of public-private partnerships and accelerate the introduction of fortification and reduction of micronutrient deficiencies. Forty-eight high-priority countries were identified, and the feasibility of fortifying vegetable oil and sugar with vitamin A and fortifying wheat flour and maize flour with two alternative multiple micronutrient formulations was assessed. One hundred twenty-two country-, food-, and fortification formulation-specific interventions were assessed to be feasible, and the costs of each intervention were estimated. Assuming a 30% reduction in the micronutrient deficiencies of the persons consuming the food, the number of disability-adjusted life years (DALYs) saved by each of the programs was estimated. The cost per DALY saved was calculated for each of the 122 interventions, and the interventions were rank-ordered by cost-effectiveness. It is estimated that the 60 most cost-effective interventions would carry a 10-year price tag of US$1 billion and have costs per DALY saved ranging from US$1 to US$134. The single "best bet" intervention--i.e., the most cost-effective intervention--in each of the 48 countries was identified. This study provides a detailed, transparent, evidence-based approach to defining and estimating the costs and cost-effectiveness of the unfinished global fortification agenda in the 48 priority countries. Other considerations in designing a strategic approach to the unfinished global fortification agenda are also discussed.
What is the cost of a life in a disaster? - Examples, Practice and Global Analysis
NASA Astrophysics Data System (ADS)
Daniell, James; Kunz-Plapp, Tina; Schaefer, Andreas; Wenzel, Friedemann; Khazai, Bijan
2015-04-01
An analysis is presented based on historical evidence and global exposure metrics using the CATDAT Socioeconomic databases, in order to create a global distribution of the cost of life in a disaster using various metrics. Casualty insurance models require a value of life & mitigation and cost-benefit studies require a value of life in order to make decisions and set premiums. Although this is a contentious concept, there are two general approaches to human life costing: the first is based on human capital which looks at the production capacity and potential output as a proxy for future earning; the second looks at willingness to pay which estimates people's value on reducing risk and compensation payouts. A combination approach is used. For each of the 245 nations, a value of life is estimated using the following parameters:- (1) Age of people in a country using the life expectancy and distribution data in CATDAT (2) Output of the economy and wage distribution (3) Household and community interactions (4) Lost quality of life The range of statistical life costs are examined globally from different sources, with the range of a life value being from 10,000 up to in the order of 10 million between different countries. The difference of the cost for a fatality vs. that of a severe injury is also discussed with a severe injury often having higher costs than a fatality for loss purposes. The losses in terms of historical disasters are looked at and examined with the percentage of life cost shown as a proportion of total losses. The losses of a future major earthquake in a low seismicity region show some of the largest potential life cost losses with that of a M6.8 in Adelaide, Australia; having around 160 billion in life costs (25,000 deaths, 15,000 severe injuries). This study has benefits post-disaster for quantification of human capital losses in major disasters, and pre-disaster for the analysis of insurance and mitigation options.
Beauchemin, C; Letarte, N; Mathurin, K; Yelle, L; Lachaine, J
2016-06-01
Objective Considering the increasing number of treatment options for metastatic breast cancer (MBC), it is important to develop high-quality methods to assess the cost-effectiveness of new anti-cancer drugs. This study aims to develop a global economic model that could be used as a benchmark for the economic evaluation of new therapies for MBC. Methods The Global Pharmacoeconomics of Metastatic Breast Cancer (GPMBC) model is a Markov model that was constructed to estimate the incremental cost per quality-adjusted life years (QALY) of new treatments for MBC from a Canadian healthcare system perspective over a lifetime horizon. Specific parameters included in the model are cost of drug treatment, survival outcomes, and incidence of treatment-related adverse events (AEs). Global parameters are patient characteristics, health states utilities, disutilities, and costs associated with treatment-related AEs, as well as costs associated with drug administration, medical follow-up, and end-of-life care. The GPMBC model was tested and validated in a specific context, by assessing the cost-effectiveness of lapatinib plus letrozole compared with other widely used first-line therapies for post-menopausal women with hormone receptor-positive (HR+) and epidermal growth factor receptor 2-positive (HER2+) MBC. Results When tested, the GPMBC model led to incremental cost-utility ratios of CA$131 811 per QALY, CA$56 211 per QALY, and CA$102 477 per QALY for the comparison of lapatinib plus letrozole vs letrozole alone, trastuzumab plus anastrozole, and anastrozole alone, respectively. Results of the model testing were quite similar to those obtained by Delea et al., who also assessed the cost-effectiveness of lapatinib in combination with letrozole in HR+/HER2 + MBC in Canada, thus suggesting that the GPMBC model can replicate results of well-conducted economic evaluations. Conclusions The GPMBC model can be very valuable as it allows a quick and valid assessment of the cost-effectiveness of any new treatments for MBC in a Canadian context.
The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI
Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain
2018-01-01
Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency. PMID:29497372
The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.
Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain
2018-01-01
Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg) . Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.
Integrating Economic Costs and Biological Traits into Global Conservation Priorities for Carnivores
Loyola, Rafael Dias; Oliveira-Santos, Luiz Gustavo Rodrigues; Almeida-Neto, Mário; Nogueira, Denise Martins; Kubota, Umberto; Diniz-Filho, José Alexandre Felizola; Lewinsohn, Thomas Michael
2009-01-01
Background Prioritization schemes usually highlight species-rich areas, where many species are at imminent risk of extinction. To be ecologically relevant these schemes should also include species biological traits into area-setting methods. Furthermore, in a world of limited funds for conservation, conservation action is constrained by land acquisition costs. Hence, including economic costs into conservation priorities can substantially improve their conservation cost-effectiveness. Methodology/Principal Findings We examined four global conservation scenarios for carnivores based on the joint mapping of economic costs and species biological traits. These scenarios identify the most cost-effective priority sets of ecoregions, indicating best investment opportunities for safeguarding every carnivore species, and also establish priority sets that can maximize species representation in areas harboring highly vulnerable species. We compared these results with a scenario that minimizes the total number of ecoregions required for conserving all species, irrespective of other factors. We found that cost-effective conservation investments should focus on 41 ecoregions highlighted in the scenario that consider simultaneously both ecoregion vulnerability and economic costs of land acquisition. Ecoregions included in priority sets under these criteria should yield best returns of investments since they harbor species with high extinction risk and have lower mean land cost. Conclusions/Significance Our study highlights ecoregions of particular importance for the conservation of the world's carnivores defining global conservation priorities in analyses that encompass socioeconomic and life-history factors. We consider the identification of a comprehensive priority-set of areas as a first step towards an in-situ biodiversity maintenance strategy. PMID:19710911
The Global Methane Initiative promotes cost-effective, near-term methane recovery through partnerships between developed and developing countries, with participation from the private sector, development banks, and nongovernmental organizations.
Implementation of a cost-accounting model in a biobank: practical implications.
Gonzalez-Sanchez, Maria Beatriz; Lopez-Valeiras, Ernesto; García-Montero, Andres C
2014-01-01
Given the state of global economy, cost measurement and control have become increasingly relevant over the past years. The scarcity of resources and the need to use these resources more efficiently is making cost information essential in management, even in non-profit public institutions. Biobanks are no exception. However, no empirical experiences on the implementation of cost accounting in biobanks have been published to date. The aim of this paper is to present a step-by-step implementation of a cost-accounting tool for the main production and distribution activities of a real/active biobank, including a comprehensive explanation on how to perform the calculations carried out in this model. Two mathematical models for the analysis of (1) production costs and (2) request costs (order management and sample distribution) have stemmed from the analysis of the results of this implementation, and different theoretical scenarios have been prepared. Global analysis and discussion provides valuable information for internal biobank management and even for strategic decisions at the research and development governmental policies level.
A global analysis of the environmental cost of river water withdrawals
NASA Astrophysics Data System (ADS)
Soligno, Irene; Ridolfi, Luca; Laio, Francesco
2017-04-01
World freshwater ecosystems are considerably declining, at a faster rate than other ecosystems. Water withdrawals are identified as one of the main drivers of increasing water stress in several river basins worldwide. So far, much effort has been devoted to quantify water withdrawals and fluvial water consumptions at a global scale; however, comparisons are not simple because the irregular spatiotemporal distribution of freshwater resources entails that the same volume of consumed water does not have the same environmental "cost" in different times or places. In order to take into account this spatial and temporal heterogeneity, our work proposes a novel index to evaluate the environmental cost of a reference amount of water withdrawn from a generic river section. The index depends on (i) the local environmental relevance of the impacted fluvial ecosystem (e.g., nutrient/sediment transport capacity, width of the riparian region, biodiversity richness) and (ii) the portion of the river network impacted by the reference water withdrawal, that is the downstream drainage network. In the present work, the index is applied at a global scale with a 0.5° x 0.5° spatial resolution and employing annual average data of river discharge. Globally, regions and countries more environmentally vulnerable to water depletion are identified. Since the proposed index systematically assesses the environmental cost by accounting for the downstream propagation effect of a water withdrawal on the fluvial ecosystem, it aims to support decision-making in global transboundary river basins as well.
Implementation of GINA guidelines in Ho Chi Minh City: a model for Viet Nam.
Tho, N V; Loan, H T H; Thao, N T P; Dung, N T T; Lan, L T T
2012-12-21
The Global Initiative for Asthma (GINA) guidelines have not been implemented effectively in primary care settings in Viet Nam. To estimate the proportion of patients with controlled asthma and the direct health care costs of managing asthma according to GINA guidelines at four out-patient clinics in Ho Chi Minh City (HCMC), Viet Nam. One hundred and six patients with asthma were treated and followed up according to GINA guidelines for 12 months. Clinical and pulmonary function responses and direct health care costs were evaluated every 3 months during the study. The proportion of patients with controlled asthma rose from 1.0% at the start of the study to 36.8% by the end of the study (P < 0.0001). The proportion of patients who had at least one hospitalisation per year decreased significantly, from 32.1% to 5.7% (P < 0.0001). The annual per patient median direct health care cost was US$169. Using asthma controllers continuously gave better asthma control than using them intermittently (OR 12.9, 95%CI 4.7-35.7). The implementation of GINA guidelines at out-patient clinics in HCMC, Viet Nam, improved asthma control with modest direct health care costs.
2012-01-01
Background Little is known about the long-term outcomes for patients with schizophrenia who fail to achieve symptomatic remission. This post-hoc analysis of a 3-year study compared the costs of mental health services and functional outcomes between individuals with schizophrenia who met or did not meet cross-sectional symptom remission at study enrollment. Methods This post-hoc analysis used data from a large, 3-year prospective, non-interventional observational study of individuals treated for schizophrenia in the United States conducted between July 1997 and September 2003. At study enrollment, individuals were classified as non-remitted or remitted using the Schizophrenia Working Group Definition of symptom remission (8 core symptoms rated as mild or less). Mental health service use was measured using medical records. Costs were based on the sites’ medical information systems. Functional outcomes were measured with multiple patient-reported measures and the clinician-rated Quality of Life Scale (QLS). Symptoms were measured using the Positive and Negative Syndrome Scale (PANSS). Outcomes for non-remitted and remitted patients were compared over time using mixed effects models for repeated measures or generalized estimating equations after adjusting for multiple baseline characteristics. Results At enrollment, most of the 2,284 study participants (76.1%) did not meet remission criteria. Non-remitted patients had significantly higher PANSS total scores at baseline, a lower likelihood of being Caucasian, a higher likelihood of hospitalization in the previous year, and a greater likelihood of a substance use diagnosis (all p < 0.05). Total mental health costs were significantly higher for non-remitted patients over the 3-year study (p = 0.008). Non-remitted patients were significantly more likely to be victims of crime, exhibit violent behavior, require emergency services, and lack paid employment during the 3-year study (all p < 0.05). Non-remitted patients also had significantly lower scores on the QLS, SF-12 Mental Component Summary Score, and Global Assessment of Functioning during the 3-year study. Conclusions In this post-hoc analysis of a 3-year prospective observational study, the failure to achieve symptomatic remission at enrollment was associated with higher subsequent healthcare costs and worse functional outcomes. Further examination of outcomes for schizophrenia patients who fail to achieve remission at initial assessment by their subsequent clinical status is warranted. PMID:23216976
Reduced cost mission design using surrogate models
NASA Astrophysics Data System (ADS)
Feldhacker, Juliana D.; Jones, Brandon A.; Doostan, Alireza; Hampton, Jerrad
2016-01-01
This paper uses surrogate models to reduce the computational cost associated with spacecraft mission design in three-body dynamical systems. Sampling-based least squares regression is used to project the system response onto a set of orthogonal bases, providing a representation of the ΔV required for rendezvous as a reduced-order surrogate model. Models are presented for mid-field rendezvous of spacecraft in orbits in the Earth-Moon circular restricted three-body problem, including a halo orbit about the Earth-Moon L2 libration point (EML-2) and a distant retrograde orbit (DRO) about the Moon. In each case, the initial position of the spacecraft, the time of flight, and the separation between the chaser and the target vehicles are all considered as design inputs. The results show that sample sizes on the order of 102 are sufficient to produce accurate surrogates, with RMS errors reaching 0.2 m/s for the halo orbit and falling below 0.01 m/s for the DRO. A single function call to the resulting surrogate is up to two orders of magnitude faster than computing the same solution using full fidelity propagators. The expansion coefficients solved for in the surrogates are then used to conduct a global sensitivity analysis of the ΔV on each of the input parameters, which identifies the separation between the spacecraft as the primary contributor to the ΔV cost. Finally, the models are demonstrated to be useful for cheap evaluation of the cost function in constrained optimization problems seeking to minimize the ΔV required for rendezvous. These surrogate models show significant advantages for mission design in three-body systems, in terms of both computational cost and capabilities, over traditional Monte Carlo methods.
Bringing global cancer leaders together at the 4th Annual Symposium on Global Cancer Research
The Annual Symposium on Global Cancer Research held in April 2016 was developed with a special focus on innovative and low-cost technologies in global cancer control, and brought inspiring keynote speakers such as John Seffrin, Former CEO of the American Cancer Society, and Tom Bollyky, Senior Fellow for Global Health at the Council on Foreign Relations.
Financial competitiveness of organic agriculture on a global scale.
Crowder, David W; Reganold, John P
2015-06-16
To promote global food and ecosystem security, several innovative farming systems have been identified that better balance multiple sustainability goals. The most rapidly growing and contentious of these systems is organic agriculture. Whether organic agriculture can continue to expand will likely be determined by whether it is economically competitive with conventional agriculture. Here, we examined the financial performance of organic and conventional agriculture by conducting a meta-analysis of a global dataset spanning 55 crops grown on five continents. When organic premiums were not applied, benefit/cost ratios (-8 to -7%) and net present values (-27 to -23%) of organic agriculture were significantly lower than conventional agriculture. However, when actual premiums were applied, organic agriculture was significantly more profitable (22-35%) and had higher benefit/cost ratios (20-24%) than conventional agriculture. Although premiums were 29-32%, breakeven premiums necessary for organic profits to match conventional profits were only 5-7%, even with organic yields being 10-18% lower. Total costs were not significantly different, but labor costs were significantly higher (7-13%) with organic farming practices. Studies in our meta-analysis accounted for neither environmental costs (negative externalities) nor ecosystem services from good farming practices, which likely favor organic agriculture. With only 1% of the global agricultural land in organic production, our findings suggest that organic agriculture can continue to expand even if premiums decline. Furthermore, with their multiple sustainability benefits, organic farming systems can contribute a larger share in feeding the world.
Environmental tipping points significantly affect the cost-benefit assessment of climate policies.
Cai, Yongyang; Judd, Kenneth L; Lenton, Timothy M; Lontzek, Thomas S; Narita, Daiju
2015-04-14
Most current cost-benefit analyses of climate change policies suggest an optimal global climate policy that is significantly less stringent than the level required to meet the internationally agreed 2 °C target. This is partly because the sum of estimated economic damage of climate change across various sectors, such as energy use and changes in agricultural production, results in only a small economic loss or even a small economic gain in the gross world product under predicted levels of climate change. However, those cost-benefit analyses rarely take account of environmental tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and services, including those provided by the climate and by ecosystems. Here we show that including environmental tipping point impacts in a stochastic dynamic integrated assessment model profoundly alters cost-benefit assessment of global climate policy. The risk of a tipping point, even if it only has nonmarket impacts, could substantially increase the present optimal carbon tax. For example, a risk of only 5% loss in nonmarket goods that occurs with a 5% annual probability at 4 °C increase of the global surface temperature causes an immediate two-thirds increase in optimal carbon tax. If the tipping point also has a 5% impact on market goods, the optimal carbon tax increases by more than a factor of 3. Hence existing cost-benefit assessments of global climate policy may be significantly underestimating the needs for controlling climate change.
A Carrier Estimation Method Based on MLE and KF for Weak GNSS Signals.
Zhang, Hongyang; Xu, Luping; Yan, Bo; Zhang, Hua; Luo, Liyan
2017-06-22
Maximum likelihood estimation (MLE) has been researched for some acquisition and tracking applications of global navigation satellite system (GNSS) receivers and shows high performance. However, all current methods are derived and operated based on the sampling data, which results in a large computation burden. This paper proposes a low-complexity MLE carrier tracking loop for weak GNSS signals which processes the coherent integration results instead of the sampling data. First, the cost function of the MLE of signal parameters such as signal amplitude, carrier phase, and Doppler frequency are used to derive a MLE discriminator function. The optimal value of the cost function is searched by an efficient Levenberg-Marquardt (LM) method iteratively. Its performance including Cramér-Rao bound (CRB), dynamic characteristics and computation burden are analyzed by numerical techniques. Second, an adaptive Kalman filter is designed for the MLE discriminator to obtain smooth estimates of carrier phase and frequency. The performance of the proposed loop, in terms of sensitivity, accuracy and bit error rate, is compared with conventional methods by Monte Carlo (MC) simulations both in pedestrian-level and vehicle-level dynamic circumstances. Finally, an optimal loop which combines the proposed method and conventional method is designed to achieve the optimal performance both in weak and strong signal circumstances.
Harford, Joe B; Otero, Isabel V; Anderson, Benjamin O; Cazap, Eduardo; Gradishar, William J; Gralow, Julie R; Kane, Gabrielle M; Niëns, Laurens M; Porter, Peggy L; Reeler, Anne V; Rieger, Paula T; Shockney, Lillie D; Shulman, Lawrence N; Soldak, Tanya; Thomas, David B; Thompson, Beti; Winchester, David P; Zelle, Sten G; Badwe, Rajendra A
2011-04-01
International collaborations like the Breast Health Global Initiative (BHGI) can help low and middle income countries (LMCs) to establish or improve breast cancer control programs by providing evidence-based, resource-stratified guidelines for the management and control of breast cancer. The Problem Solving Working Group of the BHGI 2010 Global Summit met to develop a consensus statement on problem-solving strategies addressing breast cancer in LMCs. To better assess breast cancer burden in poorly studied populations, countries require accurate statistics regarding breast cancer incidence and mortality. To better identify health care system strengths and weaknesses, countries require reasonable indicators of true health system quality and capacity. Using qualitative and quantitative research methods, countries should formulate cancer control strategies to identify both system inefficiencies and patient barriers. Patient navigation programs linked to public advocacy efforts feed and strengthen functional early detection and treatment programs. Cost-effectiveness research and implementation science are tools that can guide and expand successful pilot programs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Global localization of 3D point clouds in building outline maps of urban outdoor environments.
Landsiedel, Christian; Wollherr, Dirk
2017-01-01
This paper presents a method to localize a robot in a global coordinate frame based on a sparse 2D map containing outlines of building and road network information and no location prior information. Its input is a single 3D laser scan of the surroundings of the robot. The approach extends the generic chamfer matching template matching technique from image processing by including visibility analysis in the cost function. Thus, the observed building planes are matched to the expected view of the corresponding map section instead of to the entire map, which makes a more accurate matching possible. Since this formulation operates on generic edge maps from visual sensors, the matching formulation can be expected to generalize to other input data, e.g., from monocular or stereo cameras. The method is evaluated on two large datasets collected in different real-world urban settings and compared to a baseline method from literature and to the standard chamfer matching approach, where it shows considerable performance benefits, as well as the feasibility of global localization based on sparse building outline data.
Global Information and Mobility Support Coordination Among Humans
NASA Astrophysics Data System (ADS)
Antonioni, Alberto; Sanchez, Angel; Tomassini, Marco
2014-09-01
Coordination among different options is key for a functioning and efficient society. However, often coordination failures arise, resulting in serious problems both at the individual and the societal level. An additional factor intervening in the coordination process is individual mobility, which takes place at all scales in our world, and whose effect on coordination is not well known. In this experimental work we study the behavior of people who play a pure coordination game in a spatial environment in which they can move around and when changing convention is costly. We find that each convention forms homogeneous clusters and is adopted by approximately half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the conventions, global consensus is reached in most, but not all, cases. Our results allow us to extract the heuristics used by the participants and to build a numerical simulation model that agrees very well with the experiments. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population.
Global Search Methods for Stellarator Design
NASA Astrophysics Data System (ADS)
Mynick, H. E.; Pomphrey, N.
2001-10-01
We have implemented a new variant Stellopt-DE of the stellarator optimizer Stellopt used by the NCSX team.(A. Reiman, G. Fu, S. Hirshman, D. Monticello, et al., EPS Meeting on Controlled Fusion and Plasma Physics Research, Maastricht, the Netherlands, June 14-18, 1999, (European Physical Society, Petit-Lancy, 1999).) It is based on the ``differential evolution'' (DE) algorithm,(R. Storn, K. Price, U.C. Berkeley Technical Report TR-95-012, ICSI (March, 1995).) a global search method which is far less prone than local algorithms such as the Levenberg-Marquardt method presently used in Stellopt to become trapped in local suboptimal minima of the cost function \\chi. Explorations of stellarator configuration space z to which the DE method has been applied will be presented. Additionally, an accompanying effort to understand the results of this more global exploration has found that a wide range of Quasi-Axisymmetric Stellarators (QAS) previously studied fall into a small number of classes, and we obtain maps of \\chi(z) from which one can see the relative positions of these QAS, and the reasons for the classes into which they fall.
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
2017-09-04
In this paper, we present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support ourmore » construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Lastly, our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
Teleconnection Paths via Climate Network Direct Link Detection.
Zhou, Dong; Gozolchiani, Avi; Ashkenazy, Yosef; Havlin, Shlomo
2015-12-31
Teleconnections describe remote connections (typically thousands of kilometers) of the climate system. These are of great importance in climate dynamics as they reflect the transportation of energy and climate change on global scales (like the El Niño phenomenon). Yet, the path of influence propagation between such remote regions, and weighting associated with different paths, are only partially known. Here we propose a systematic climate network approach to find and quantify the optimal paths between remotely distant interacting locations. Specifically, we separate the correlations between two grid points into direct and indirect components, where the optimal path is found based on a minimal total cost function of the direct links. We demonstrate our method using near surface air temperature reanalysis data, on identifying cross-latitude teleconnections and their corresponding optimal paths. The proposed method may be used to quantify and improve our understanding regarding the emergence of climate patterns on global scales.
Photonic elements in smart systems for use in aerospace platforms
NASA Astrophysics Data System (ADS)
Adamovsky, Grigory; Baumbick, Robert J.; Tabib-Azar, Massood
1998-07-01
To compete globally in the next millennium, designers of new transportation vehicles will have to be innovative. Keen competition will reward innovative concepts that are developed and proven first. In order to improve reliability of aerospace platforms and reduce operating cots, new technologies must be exploited to produce autonomous systems, based on highly distributed, smart systems, which can be treated as line replaceable units. These technologies include photonics, which provide sensing and information transfer functions, and micro electro mechanical systems that will produce the actuation and, in some cases, may even provide a computing capability that resembles the hydro- mechanical control system used in older aircraft systems. The combination of these technologies will provide unique systems that will enable achieving the reliability and cost goals dictated by global market. In the article we review some of these issues and discuss a role of photonics in smart system for aerospace platforms.
NASA Technical Reports Server (NTRS)
Martin, Gary L.
2011-01-01
A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
NASA Astrophysics Data System (ADS)
Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.
The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.
The economic cost of using restraint and the value added by restraint reduction or elimination.
Lebel, Janice; Goldstein, Robert
2005-09-01
The purpose of this study was to calculate the economic cost of using restraint on one adolescent inpatient service and to examine the effect of an initiative to reduce or eliminate the use of restraint after it was implemented. A detailed process-task analysis of mechanical, physical, and medication-based restraint was conducted in accordance with state and federal restraint requirements. Facility restraint data were collected, verified, and analyzed. A model was developed to determine the cost and duration of an average episode for each type of restraint. Staff time allocated to restraint activities and medication costs were computed. Calculation of the cost of restraint was restricted to staff and medication costs. Aggregate costs of restraint use and staff-related costs for one full year before the restraint reduction initiative (FY 2000) and one full year after the initiative (FY 2003) were calculated. Outcome, discharge, and recidivism data were analyzed. A comparison of the FY 2000 data with the FY 2003 data showed that the adolescent inpatient service's aggregate use of restraint decreased from 3,991 episodes to 373 episodes (91 percent), which was associated with a reduction in the cost of restraint from $1,446,740 to $117,036 (a 92 percent reduction). In addition, sick time, staff turnover and replacement costs, workers' compensation, injuries to adolescents and staff, and recidivism decreased. Adolescent Global Assessment of Functioning scores at discharge significantly improved. Implementation of a restraint reduction initiative was associated with a reduction in the use of restraint, staff time devoted to restraint, and staff-related costs. This shift appears to have contributed to better outcomes for adolescents, fewer injuries to adolescents and staff, and lower staff turnover. The initiative may have enhanced adolescent treatment and work conditions for staff.
Elite control of HIV: is this the right model for a functional cure?
Cockerham, Leslie R; Hatano, Hiroyu
2015-02-01
A cure for HIV is still greatly needed and has become a global research priority. A unique subset of HIV-infected individuals who spontaneously control HIV exists, and these are known as 'elite controllers'. They may represent a natural model for a 'functional cure' in which there is long term control of viral replication and remission from symptoms of HIV infection in the absence of antiretroviral therapy. However, controllers have evidence of ongoing inflammation, CD4(+) T cell depletion, and perhaps even inflammation-associated cardiovascular disease, suggesting that this natural long term virologic control may be coming at an immunologic and clinical cost. These individuals may continue to provide continued insights into mechanisms of host control; however, they may not represent the best model of a functional cure, if we believe that a cure should require a disease-free (and not just a treatment-free) state. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kano, Yukiko; Kono, Toshiaki; Matsuda, Natsumi; Nonaka, Maiko; Kuwabara, Hitoshi; Shimada, Takafumi; Shishikura, Kurie; Konno, Chizue; Ohta, Masataka
2015-03-30
This study investigated the relationships between tics, obsessive-compulsive symptoms (OCS), and impulsivity, and their effects on global functioning in Japanese patients with Tourette syndrome (TS), using the dimensional approach for OCS. Fifty-three TS patients were assessed using the Yale Global Tic Severity Scale, the Dimensional Yale-Brown Obsessive-Compulsive Scale, the Impulsivity Rating Scale, and the Global Assessment of Functioning Scale. Although tic severity scores were significantly and positively correlated with OCS severity scores, impulsivity severity scores were not significantly correlated with either. The global functioning score was significantly and negatively correlated with tic and OCS severity scores. Of the 6 dimensional OCS scores, only aggression scores had a significant negative correlation with global functioning scores. A stepwise multiple regression analysis showed that only OCS severity scores were significantly associated with global functioning scores. Despite a moderate correlation between tic severity and OCS severity, the impact of OCS on global functioning was greater than that of tics. Of the OCS dimensions, only aggression had a significant impact on global functioning. Our findings suggest that it is important to examine OCS using a dimensional approach when analyzing global functioning in TS patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
De Cian, E.; Hof, A. F.; Marangoni, G.; Tavoni, M.; van Vuuren, D. P.
2016-07-01
Equity considerations play an important role in international climate negotiations. While policy analysis has often focused on equity as it relates to mitigation costs, there are large regional differences in adaptation costs and the level of residual damage. This paper illustrates the relevance of including adaptation and residual damage in equity considerations by determining how the allocation of emission allowances would change to counteract regional differences in total climate costs, defined as the costs of mitigation, adaptation, and residual damage. We compare emission levels resulting from a global carbon tax with two allocations of emission allowances under a global cap-and-trade system: one equating mitigation costs and one equating total climate costs as share of GDP. To account for uncertainties in both mitigation and adaptation, we use a model-comparison approach employing two alternative modeling frameworks with different damage, adaptation cost, and mitigation cost estimates, and look at two different climate goals. Despite the identified model uncertainties, we derive unambiguous results on the change in emission allowance allocation that could lessen the unequal distribution of adaptation costs and residual damages through the financial transfers associated with emission trading.
Clemens, A; Siegel, E; Gallwitz, B
2004-10-01
Diabetes mellitus presents a significant public health burden based on its increased morbidity, mortality, and economic cost. The high comorbidity and prevalence of concomitant diseases like hypertension and dyslipidemia in diabetic patients cause the high risk in developing secondary, cost intensive, and for the patient often disastrous late complications (nephropathy, retinopathy, neuropathy, and cardiovascular disease). Therefore, patients with diabetes mellitus need a global risk management that takes the various individual clinical problems into account. The current global standards of therapy in patients with diabetes mellitus are focused on the control of glycemia, blood pressure, and lipid levels, as well as aspirin therapy and avoiding of smoking. There are a number of guidelines and recommendations to manage these global issues. Our review will summarize current recommendations and consolidate therapeutic goals and treatments that are of vital importance in the global risk management in diabetic patients.
Balkrishnan, Rajesh; Chang, Jongwha; Patel, Isha; Yang, Fang; Merajver, Sofia D
2013-03-01
The need to focus healthcare expenditures on innovative and sustainable health systems that efficiently use existing effective therapies are the major drivers stimulating Comparative Effectiveness Research (CER) across the globe. Lack of adequate access and high cost of essential medicines and technologies in many countries increases morbidity and mortality and cost of care that forces people and families into poverty due to disability and out-of-pocket expenses. This review illustrates the potential of value-added global health care comparative effectiveness research in shaping health systems and health care delivery paradigms in the "global south". Enabling the development of effective CER systems globally paves the way for tangible local and regional definitions of equity in health care because CER fosters the sharing of critical assets, resources, skills, and capabilities and the development of collaborative of multi-sectorial frameworks to improve health outcomes and metrics globally.
Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health
NASA Astrophysics Data System (ADS)
West, J. Jason; Smith, Steven J.; Silva, Raquel A.; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.; Anenberg, Susan; Horowitz, Larry W.; Lamarque, Jean-Francois
2013-10-01
Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants, long-term demographic changes, and the influence of climate change on air quality. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter and ozone, global modelling methods and new future scenarios. Relative to a reference scenario, global GHG mitigation avoids 0.5+/-0.2, 1.3+/-0.5 and 2.2+/-0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.
An Evaluation of the Sniffer Global Optimization Algorithm Using Standard Test Functions
NASA Astrophysics Data System (ADS)
Butler, Roger A. R.; Slaminka, Edward E.
1992-03-01
The performance of Sniffer—a new global optimization algorithm—is compared with that of Simulated Annealing. Using the number of function evaluations as a measure of efficiency, the new algorithm is shown to be significantly better at finding the global minimum of seven standard test functions. Several of the test functions used have many local minima and very steep walls surrounding the global minimum. Such functions are intended to thwart global minimization algorithms.
Impacts of climate change on the global forest sector
Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.
2002-01-01
The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.
Makarieva, Anastassia M; Gorshkov, Victor G; Li, Bai-Lian
2010-05-01
The global environmental imperative demands urgent actions on ecological stabilization, yet the global scale of such actions is persistently insufficient. This calls for investigating why the world economy appears to be so fearful of any potential environmental expenditure. Using the formalism of Lyapunov potential function it is shown that the stability principles for biomass in the ecosystem and for employment in economics are mathematically similar. The ecosystem has a stable and unstable stationary state with high (forest) and low (grasslands) biomass, respectively. In economics, there is a stable stationary state with high employment in mass production of conventional goods sold at low cost price, and an unstable stationary state with lower employment in production of novel products of technological progress sold at higher prices. An additional stable state is described for economics with very low employment in production of life essentials, such as energy and raw materials that are sold at greatly inflated prices. In this state the civilization pays 10% of global GDP for energy produced by a negligible minority of the working population (currently approximately 0.2%) and sold at prices exceeding the cost price by 40 times, a state when any extra expenditures of whatever nature appear intolerable. The reason lies in the fundamental shortcoming of economic theory, which allows for economic ownership over energy sources. This is shown to be equivalent to equating measurable variables of different dimensions (stores and fluxes), which leads to effective violation of the laws of energy and matter conservation in modern economics.
NASA Astrophysics Data System (ADS)
Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.
2016-03-01
Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.
Global synchronization algorithms for the Intel iPSC/860
NASA Technical Reports Server (NTRS)
Seidel, Steven R.; Davis, Mark A.
1992-01-01
In a distributed memory multicomputer that has no global clock, global processor synchronization can only be achieved through software. Global synchronization algorithms are used in tridiagonal systems solvers, CFD codes, sequence comparison algorithms, and sorting algorithms. They are also useful for event simulation, debugging, and for solving mutual exclusion problems. For the Intel iPSC/860 in particular, global synchronization can be used to ensure the most effective use of the communication network for operations such as the shift, where each processor in a one-dimensional array or ring concurrently sends a message to its right (or left) neighbor. Three global synchronization algorithms are considered for the iPSC/860: the gysnc() primitive provided by Intel, the PICL primitive sync0(), and a new recursive doubling synchronization (RDS) algorithm. The performance of these algorithms is compared to the performance predicted by communication models of both the long and forced message protocols. Measurements of the cost of shift operations preceded by global synchronization show that the RDS algorithm always synchronizes the nodes more precisely and costs only slightly more than the other two algorithms.
NASA Astrophysics Data System (ADS)
Roshan, E.; Mohammadi Khabbazan, M.; Held, H.
2016-12-01
Solar radiation management (SRM) might be able to reduce the anthropogenic global mean temperature rise but unable to do so for other climate variables such as precipitation, particularly with respect to regional disparities due to changes in planetary energy budget. We apply cost-risk analysis (CRA), which is a decision analytic framework that trades off the expected welfare-loss from climate policies costs against the climate risks from exceeding an environmental target. Here, in both global- and `Giorgi'-regional-scale analyses, we study the optimal mix of SRM and mitigation under probabilistic knowledge about climate sensitivity, in our numerics ranging from 1.01°C to 7.17°C. To do so, we generalize CRA for the sake of including temperature risk, global and regional precipitation risks. Social welfare is maximized in three scenarios, considering a convex combination of climate risks: temperature-risk-only, precipitation-risk-only, and equally weighted both-risks. Our global results represent 100%, 65%, and 90% compliance with 2°C-temperature target and simultaneously 0%, 100%, and 100% compliance with 2°C-compatible-precipitation corridor respectively in temperature-risk-only, precipitation-risk-only, and both-risks scenarios. On the other hand, our regional results emphasize that SRM would alleviate the global mean temperature to be complied with 2°C-temperature target for about 100%, 95%, and 95% of climate sensitivities in temperature-risk-only, precipitation-risk-only, and both-risks scenarios, respectively. However, half of the regions suffer a very high precipitation risks when the society only cares about global temperature reduction in temperature-risk-only scenario. Our results indicate that although SRM might almost substitute for mitigation in the global analysis, it only saves about a half of the welfare-loss in a purely mitigation-based analysis (from economic costs and climate risks, in terms of BGE) when considering regional precipitation risks.
Kumpu, Minna; Atkins, Salla; Zwarenstein, Merrick; Nkonki, Lungiswa
2016-01-01
Background Novel research training approaches are needed in global health, particularly in sub-Saharan African universities, to support strengthening of health systems and services. Blended learning (BL), combining face-to-face teaching with computer-based technologies, is also an accessible and flexible education method for teaching global health and related topics. When organised as inter-institutional collaboration, BL also has potential for sharing teaching resources. However, there is insufficient data on the costs of BL in higher education. Objective Our goal was to evaluate the total provider costs of BL in teaching health research methods in a three-university collaboration. Design A retrospective evaluation was performed on a BL course on randomised controlled trials, which was led by Stellenbosch University (SU) in South Africa and joined by Swedish and Ugandan universities. For all three universities, the costs of the BL course were evaluated using activity-based costing with an ingredients approach. For SU, the costs of the same course delivered with a classroom learning (CL) approach were also estimated. The learning outcomes of both approaches were explored using course grades as an intermediate outcome measure. Results In this contextually bound pilot evaluation, BL had substantially higher costs than the traditional CL approach in South Africa, even when average per-site or per-student costs were considered. Staff costs were the major cost driver in both approaches, but total staff costs were three times higher for the BL course at SU. This implies that inter-institutional BL can be more time consuming, for example, due to use of new technologies. Explorative findings indicated that there was little difference in students’ learning outcomes. Conclusions The total provider costs of the inter-institutional BL course were higher than the CL course at SU. Long-term economic evaluations of BL with societal perspective are warranted before conclusions on full costs and consequences of BL in teaching global health topics can be made. PMID:27725076
Kumpu, Minna; Atkins, Salla; Zwarenstein, Merrick; Nkonki, Lungiswa
2016-01-01
Novel research training approaches are needed in global health, particularly in sub-Saharan African universities, to support strengthening of health systems and services. Blended learning (BL), combining face-to-face teaching with computer-based technologies, is also an accessible and flexible education method for teaching global health and related topics. When organised as inter-institutional collaboration, BL also has potential for sharing teaching resources. However, there is insufficient data on the costs of BL in higher education. Our goal was to evaluate the total provider costs of BL in teaching health research methods in a three-university collaboration. A retrospective evaluation was performed on a BL course on randomised controlled trials, which was led by Stellenbosch University (SU) in South Africa and joined by Swedish and Ugandan universities. For all three universities, the costs of the BL course were evaluated using activity-based costing with an ingredients approach. For SU, the costs of the same course delivered with a classroom learning (CL) approach were also estimated. The learning outcomes of both approaches were explored using course grades as an intermediate outcome measure. In this contextually bound pilot evaluation, BL had substantially higher costs than the traditional CL approach in South Africa, even when average per-site or per-student costs were considered. Staff costs were the major cost driver in both approaches, but total staff costs were three times higher for the BL course at SU. This implies that inter-institutional BL can be more time consuming, for example, due to use of new technologies. Explorative findings indicated that there was little difference in students' learning outcomes. The total provider costs of the inter-institutional BL course were higher than the CL course at SU. Long-term economic evaluations of BL with societal perspective are warranted before conclusions on full costs and consequences of BL in teaching global health topics can be made.
Resolving Conflicts between Agriculture and the Natural Environment.
Tanentzap, Andrew J; Lamb, Anthony; Walker, Susan; Farmer, Andrew
2015-01-01
Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future.
McDonald, Robert I.; Weber, Katherine F.; Padowski, Julie; Boucher, Tim; Shemie, Daniel
2016-01-01
Urban water systems are impacted by land use within their source watersheds, as it affects raw water quality and thus the costs of water treatment. However, global estimates of the effect of land cover change on urban water-treatment costs have been hampered by a lack of global information on urban source watersheds. Here, we use a unique map of the urban source watersheds for 309 large cities (population > 750,000), combined with long-term data on anthropogenic land-use change in their source watersheds and data on water-treatment costs. We show that anthropogenic activity is highly correlated with sediment and nutrient pollution levels, which is in turn highly correlated with treatment costs. Over our study period (1900–2005), median population density has increased by a factor of 5.4 in urban source watersheds, whereas ranching and cropland use have increased by a factor of 3.4 and 2.0, respectively. Nearly all (90%) of urban source watersheds have had some level of watershed degradation, with the average pollutant yield of urban source watersheds increasing by 40% for sediment, 47% for phosphorus, and 119% for nitrogen. We estimate the degradation of watersheds over our study period has impacted treatment costs for 29% of cities globally, with operation and maintenance costs for impacted cities increasing on average by 53 ± 5% and replacement capital costs increasing by 44 ± 14%. We discuss why this widespread degradation might be occurring, and strategies cities have used to slow natural land cover loss. PMID:27457941
McDonald, Robert I; Weber, Katherine F; Padowski, Julie; Boucher, Tim; Shemie, Daniel
2016-08-09
Urban water systems are impacted by land use within their source watersheds, as it affects raw water quality and thus the costs of water treatment. However, global estimates of the effect of land cover change on urban water-treatment costs have been hampered by a lack of global information on urban source watersheds. Here, we use a unique map of the urban source watersheds for 309 large cities (population > 750,000), combined with long-term data on anthropogenic land-use change in their source watersheds and data on water-treatment costs. We show that anthropogenic activity is highly correlated with sediment and nutrient pollution levels, which is in turn highly correlated with treatment costs. Over our study period (1900-2005), median population density has increased by a factor of 5.4 in urban source watersheds, whereas ranching and cropland use have increased by a factor of 3.4 and 2.0, respectively. Nearly all (90%) of urban source watersheds have had some level of watershed degradation, with the average pollutant yield of urban source watersheds increasing by 40% for sediment, 47% for phosphorus, and 119% for nitrogen. We estimate the degradation of watersheds over our study period has impacted treatment costs for 29% of cities globally, with operation and maintenance costs for impacted cities increasing on average by 53 ± 5% and replacement capital costs increasing by 44 ± 14%. We discuss why this widespread degradation might be occurring, and strategies cities have used to slow natural land cover loss.
Robinson, Gilpin R.; Menzie, W. David
2012-01-01
One implication of the economic filter results for undiscovered copper resources is that global copper supply will continue to be dominated by production from a small number of giant deposits. This domination of resource supply by a small number of producers may increase in the future, because an increasing proportion of new deposit discoveries are likely to occur in remote areas and be concealed deep beneath covering rock and sediments. Extensive mineral exploration activity will be required to meet future resource demand, because these deposits will be harder to find and more costly to mine than near-surface deposits located in more accessible areas. Relatively few of the new deposit discoveries in these high-cost settings will have sufficient tonnage and grade characteristics to assure positive economic returns on development and exploration costs.
Efficient scheme for parametric fitting of data in arbitrary dimensions.
Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching
2008-07-01
We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
Text line extraction in free style document
NASA Astrophysics Data System (ADS)
Shen, Xiaolu; Liu, Changsong; Ding, Xiaoqing; Zou, Yanming
2009-01-01
This paper addresses to text line extraction in free style document, such as business card, envelope, poster, etc. In free style document, global property such as character size, line direction can hardly be concluded, which reveals a grave limitation in traditional layout analysis. 'Line' is the most prominent and the highest structure in our bottom-up method. First, we apply a novel intensity function found on gradient information to locate text areas where gradient within a window have large magnitude and various directions, and split such areas into text pieces. We build a probability model of lines consist of text pieces via statistics on training data. For an input image, we group text pieces to lines using a simulated annealing algorithm with cost function based on the probability model.
U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullenkamp, Patrick; Holody, Diane; James, Brian
The objectives of this project are a 1) Global Competitiveness Analysis of hydrogen and fuel cell systems and components manufactured including 700 bar compressed hydrogen storage system in the U.S., Europe, Asia, and other key areas to be identified to determine the global cost leaders, the best current manufacturing processes, the key factors determining competitiveness, and the potential means of cost reductions; and an 2) Analysis to assess the status of global hydrogen and fuel cell markets. The analysis of units, megawatts by country and by application will focus on polymer electrolyte membrane (PEM) fuel cell systems (automotive and stationary).
The adoption and implementation of RFID technologies in healthcare: a literature review.
Yao, Wen; Chu, Chao-Hsien; Li, Zang
2012-12-01
Radio Frequency Identification (RFID) technology not only offers tracking capability to locate equipment, supplies and people in real time, but also provides efficient and accurate access to medical data for health professionals. However, the reality of RFID adoption in healthcare is far behind earlier expectation. This study reviews literature on the use of RFID in healthcare/hospitals following a formal innovation-decision framework. We aim to identify the common applications, potential benefits, barriers, and critical success factors. Our study facilitates quick assessment and provides guidance for researchers and practitioners in adopting RFID in medical arenas. Many earlier adopters in healthcare found RFID to be functional and useful in such areas as asset tracking and patient identification. Major barriers to adoption include technological limitations, interference concerns, prohibitive costs, lack of global standards and privacy concerns. Better designed RFID systems with low cost and privacy issues addressed are needed to increase acceptance of RFID in healthcare.
Faunce, Thomas Alured
2006-01-01
• Expert evaluations of the safety, efficacy and cost-effectiveness of pharmaceutical and medical devices, prior to marketing approval or reimbursement listing, collectively represent a globally important public good. The scientific processes involved play a major role in protecting the public from product risks such as unintended or adverse events, sub-standard production and unnecessary burdens on individual and governmental healthcare budgets. • Most States now have an increasing policy interest in this area, though institutional arrangements, particularly in the area of cost-effectiveness analysis of medical devices, are not uniformly advanced and are fragile in the face of opposing multinational industry pressure to recoup investment and maintain profit margins. • This paper examines the possibility, in this context, of States commencing negotiations toward bilateral trade agreement provisions, and ultimately perhaps a multilateral Treaty, on safety, efficacy and cost-effectiveness analysis of pharmaceuticals and medical devices. Such obligations may robustly facilitate a conceptually interlinked, but endangered, global public good, without compromising the capacity of intellectual property laws to facilitate local product innovations. PMID:16569240
NASA Astrophysics Data System (ADS)
Mattei, G.; Ahluwalia, A.
2018-04-01
We introduce a new function, the apparent elastic modulus strain-rate spectrum, E_{app} ( \\dot{ɛ} ), for the derivation of lumped parameter constants for Generalized Maxwell (GM) linear viscoelastic models from stress-strain data obtained at various compressive strain rates ( \\dot{ɛ}). The E_{app} ( \\dot{ɛ} ) function was derived using the tangent modulus function obtained from the GM model stress-strain response to a constant \\dot{ɛ} input. Material viscoelastic parameters can be rapidly derived by fitting experimental E_{app} data obtained at different strain rates to the E_{app} ( \\dot{ɛ} ) function. This single-curve fitting returns similar viscoelastic constants as the original epsilon dot method based on a multi-curve global fitting procedure with shared parameters. Its low computational cost permits quick and robust identification of viscoelastic constants even when a large number of strain rates or replicates per strain rate are considered. This method is particularly suited for the analysis of bulk compression and nano-indentation data of soft (bio)materials.
NASA Astrophysics Data System (ADS)
Aittokoski, Timo; Miettinen, Kaisa
2008-07-01
Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.
Hyde, Christopher; Peters, Jaime; Bond, Mary; Rogers, Gabriel; Hoyle, Martin; Anderson, Rob; Jeffreys, Mike; Davis, Sarah; Thokala, Praveen; Moxham, Tiffany
2013-01-01
in 2007 the National Institute of Health and Clinical Excellence (NICE) restricted the use of acetylcholinesterase inhibitors and memantine. we conducted a health technology assessment (HTA) of the effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of AD to re-consider and up-date the evidence base used to inform the 2007 NICE decision. The systematic review of effectiveness targeted randomised controlled trials. A comprehensive search, including MEDLINE, Embase and the Cochrane Library, was conducted from January 2004 to March 2010. All key review steps were done by two reviewers. Random effects meta-analysis was conducted. The cost-effectiveness was assessed using a cohort-based model with three health states: pre-institutionalised, institutionalised and dead. The perspective was NHS and Personal Social Services and the cost year 2009. confidence about the size and statistical significance of the estimates of effect of galantamine, rivastigmine and memantine improved on function and global impact in particular. Cost-effectiveness also changed. For donepezil, galantamine and rivastigmine, the incremental cost per quality-adjusted life year (QALY) in 2004 was above £50,000; in 2010 the same drugs 'dominated' best supportive care (improved clinical outcome at reduced cost). This was primarily because of changes in the modelled costs of introducing the drugs. For memantine, the cost-effectiveness also improved from a range of £37-53,000 per QALY gained to a base-case of £32,000. there has been a change in the evidence base between 2004 and 2010 consistent with the change in NICE guidance. Further evolution in cost-effectiveness estimates is possible particularly if there are changes in drug prices.
The new international certification and design principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heijnen, W.H.P.M.; Heineman, H.
1995-12-01
ISO/TC 67 deals with standardization of Equipment for the Petroleum and Natural Gas Industries at a global level. The paper will provide the reader with insight in the Certification system as well as its link with Design. It will explain how the total process fits in the business structure of the Petroleum and Natural Gas Industry, with the focus on the emerging concepts such as partnering, turn key contracts, the developments in the EC and the need to reduce costs at a global basis. The paper will also address the topic of Design Principles based on the results of themore » study performed for ISO/TC 67. The paper will provide a framework that can be used by the industry in how to deal with issues such as, there shall the activity of the Operator be focused on when ordering equipment or services and how the manufacturer or service provider should prepare himself to become an equal partner with regard to the required equipment, service and its associated technology now and in the future. In the changing world with ever increasing focus on Health, Safety and Environment (HSE), the topic efficiency, technology, equipment performance and functionality should not be overlooked or been given less attention. The Certification and Design principles, implemented in standards, aim predominantly at Fitness for Purpose of equipment and/or services to regain the balance. A further aim is to limit consequential costs due to deficiencies in the broadest sense, allowing the Petroleum and Natural Gas Industry to produce oil and gas in a cost effective manner with the highest possible HSE targets.« less
Synthesizing epidemiological and economic optima for control of immunizing infections.
Klepac, Petra; Laxminarayan, Ramanan; Grenfell, Bryan T
2011-08-23
Epidemic theory predicts that the vaccination threshold required to interrupt local transmission of an immunizing infection like measles depends only on the basic reproductive number and hence transmission rates. When the search for optimal strategies is expanded to incorporate economic constraints, the optimum for disease control in a single population is determined by relative costs of infection and control, rather than transmission rates. Adding a spatial dimension, which precludes local elimination unless it can be achieved globally, can reduce or increase optimal vaccination levels depending on the balance of costs and benefits. For weakly coupled populations, local optimal strategies agree with the global cost-effective strategy; however, asymmetries in costs can lead to divergent control optima in more strongly coupled systems--in particular, strong regional differences in costs of vaccination can preclude local elimination even when elimination is locally optimal. Under certain conditions, it is locally optimal to share vaccination resources with other populations.
Reay, David S
2002-12-15
Debate over how, when, and even whether man-made greenhouse-gas emissions should be controlled has grown in intensity even faster than the levels of greenhouse gas in our atmosphere. Many argue that the costs involved in reducing emissions outweigh the potential economic damage of human-induced climate change. Here, existing cost-benefit analyses of greenhouse-gas reduction policies are examined, with a view to establishing whether any such global reductions are currently worthwhile. Potential for, and cost of, cutting our own individual greenhouse-gas emissions is then assessed. I find that many abatement strategies are able to deliver significant emission reductions at little or no net cost. Additionally, I find that there is huge potential for individuals to simultaneously cut their own greenhouse-gas emissions and save money. I conclude that cuts in global greenhouse-gas emissions, such as those of the Kyoto Protocol, cannot be justifiably dismissed as posing too large an economic burden.
Boval, M; Dixon, R M
2012-05-01
The global importance of grasslands is indicated by their extent; they comprise some 26% of total land area and 80% of agriculturally productive land. The majority of grasslands are located in tropical developing countries where they are particularly important to the livelihoods of some one billion poor peoples. Grasslands clearly provide the feed base for grazing livestock and thus numerous high-quality foods, but such livestock also provide products such as fertilizer, transport, traction, fibre and leather. In addition, grasslands provide important services and roles including as water catchments, biodiversity reserves, for cultural and recreational needs, and potentially a carbon sink to alleviate greenhouse gas emissions. Inevitably, such functions may conflict with management for production of livestock products. Much of the increasing global demand for meat and milk, particularly from developing countries, will have to be supplied from grassland ecosystems, and this will provide difficult challenges. Increased production of meat and milk generally requires increased intake of metabolizable energy, and thus increased voluntary intake and/or digestibility of diets selected by grazing animals. These will require more widespread and effective application of improved management. Strategies to improve productivity include fertilizer application, grazing management, greater use of crop by-products, legumes and supplements and manipulation of stocking rate and herbage allowance. However, it is often difficult to predict the efficiency and cost-effectiveness of such strategies, particularly in tropical developing country production systems. Evaluation and on-going adjustment of grazing systems require appropriate and reliable assessment criteria, but these are often lacking. A number of emerging technologies may contribute to timely low-cost acquisition of quantitative information to better understand the soil-pasture-animal interactions and animal management in grassland systems. Development of remote imaging of vegetation, global positioning technology, improved diet markers, near IR spectroscopy and modelling provide improved tools for knowledge-based decisions on the productivity constraints of grazing animals. Individual electronic identification of animals offers opportunities for precision management on an individual animal basis for improved productivity. Improved outcomes in the form of livestock products, services and/or other outcomes from grasslands should be possible, but clearly a diversity of solutions are needed for the vast range of environments and social circumstances of global grasslands.
Nourani, Elham; Safi, Kamran; Yamaguchi, Noriyuki M; Higuchi, Hiroyoshi
2018-03-01
Flapping flight is relatively costly for soaring birds such as raptors. To avoid costly flight, migrating raptors generally avoid flying over water. As a result, all but one of the global raptor migration flyways are largely over land. The East Asian oceanic flyway for raptors is the exception. Raptor species using this flyway migrate by island-hopping, flying over open ocean for distances of up to 300 km between islands. We used satellite telemetry data for grey-faced buzzards Butastur indicus , a species that dominates the southern part of the flyway, to investigate the geographical and atmospheric factors responsible for the suitability of this flyway for raptor migration. Using a combination of least-cost path analysis and a step selection function, we found that the occurrence of numerous islands and also suitable wind support along the oceanic flyway are responsible for route selection in grey-faced buzzards. These results confirm the role of islands, but also wind, in shaping the East Asian oceanic flyway of long-distance raptor migration.
The New Meteor Radar at Penn State: Design and First Observations
NASA Technical Reports Server (NTRS)
Urbina, J.; Seal, R.; Dyrud, L.
2011-01-01
In an effort to provide new and improved meteor radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future meteor radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global meteor flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this meteor radar are presented.
Mass support for global climate agreements depends on institutional design.
Bechtel, Michael M; Scheve, Kenneth F
2013-08-20
Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.
Global health benefits of mitigating ozone pollution with methane emission controls.
West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L
2006-03-14
Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.
NASA Astrophysics Data System (ADS)
Gao, L.; Yoshikawa, S.; Iseri, Y.; Kanae, S.
2016-12-01
As many countries are suffering water scarcity due to the climate change and human activities, seawater desalination using reverse osmosis (SWRO) has shown to be a progressively promising countermeasure to satisfy the growing water demand. Therefore, the economic feasibility assessment of SWRO will be beneficial for the potential investors and policy-makers of government. In present study, it have proposed a systematic method to evaluate the economic feasibility of implementing SWRO in 140 counties and further estimated the potential future diffusion of SWRO over global scale by 2050. To the purpose, two models has been separately developed to simulate the production cost of SWRO and conventional water price, which are identified as the critical economic factors for feasibility evaluation of SWRO. These two models were firstly applied to historical validation in which proven to be able to well simulate both these two economic factors, and then were applied globally for future simulation over the period of 2015-2050 under three socioeconomic scenarios, i.e. SSP (Shared Socioeconomic Pathways) 1-3. Basin on the estimated production cost and water price, the economic feasibility of adopting SWRO coupling with its future potentialities were carefully evaluated. As a result, it indicated that SWRO was expected to be cost-effectively adopted in more countries by 2050, especially in these developing countries. The significant potential diffusion of SWRO in countries was mainly attributed to both the diminishing production cost and the increasing conventional water price as a result of income growth globally in three SSPs scenarios.
Calcott, Rebecca D.; Berkman, Elliot T.
2014-01-01
In the present studies, we aimed to understand how approach and avoidance states affect attentional flexibility by examining attentional shifts on a trial-by-trial basis. We also examined how a novel construct in this area, task context, might interact with motivation to influence attentional flexibility. Participants completed a modified composite letter task in which the ratio of global to local targets was varied by block, making different levels of attentional focus beneficial to performance on different blocks. Study 1 demonstrated that, in the absence of a motivation manipulation, switch costs were lowest on blocks with an even ratio of global and local trials and were higher on blocks with an uneven ratio. Other participants completed the task while viewing pictures (Studies 2 and 3) and assuming arm positions (Studies 2 and 4) to induce approach, avoidance, and neutral motivational states. Avoidance motivation reduced switch costs in evenly proportioned contexts, whereas approach motivation reduced switch costs in mostly global contexts. Additionally, approach motivation imparted a similar switch cost magnitude across different contexts, whereas avoidance and neutral states led to variable switch costs depending on the context. Subsequent analyses revealed that these effects were driven largely by faster switching to local targets on mostly global blocks in the approach condition. These findings suggest that avoidance facilitates attentional shifts when switches are frequent, whereas approach facilitates responding to rare or unexpected local stimuli. The main implication of these results is that motivation has different effects on attentional shifts depending on the context. PMID:24294866
Financial competitiveness of organic agriculture on a global scale
Crowder, David W.; Reganold, John P.
2015-01-01
To promote global food and ecosystem security, several innovative farming systems have been identified that better balance multiple sustainability goals. The most rapidly growing and contentious of these systems is organic agriculture. Whether organic agriculture can continue to expand will likely be determined by whether it is economically competitive with conventional agriculture. Here, we examined the financial performance of organic and conventional agriculture by conducting a meta-analysis of a global dataset spanning 55 crops grown on five continents. When organic premiums were not applied, benefit/cost ratios (−8 to −7%) and net present values (−27 to −23%) of organic agriculture were significantly lower than conventional agriculture. However, when actual premiums were applied, organic agriculture was significantly more profitable (22–35%) and had higher benefit/cost ratios (20–24%) than conventional agriculture. Although premiums were 29–32%, breakeven premiums necessary for organic profits to match conventional profits were only 5–7%, even with organic yields being 10–18% lower. Total costs were not significantly different, but labor costs were significantly higher (7–13%) with organic farming practices. Studies in our meta-analysis accounted for neither environmental costs (negative externalities) nor ecosystem services from good farming practices, which likely favor organic agriculture. With only 1% of the global agricultural land in organic production, our findings suggest that organic agriculture can continue to expand even if premiums decline. Furthermore, with their multiple sustainability benefits, organic farming systems can contribute a larger share in feeding the world. PMID:26034271
Resolving Conflicts between Agriculture and the Natural Environment
Tanentzap, Andrew J.; Lamb, Anthony; Walker, Susan; Farmer, Andrew
2015-01-01
Agriculture dominates the planet. Yet it has many environmental costs that are unsustainable, especially as global food demand rises. Here, we evaluate ways in which different parts of the world are succeeding in their attempts to resolve conflict between agriculture and wild nature. We envision that coordinated global action in conserving land most sensitive to agricultural activities and policies that internalise the environmental costs of agriculture are needed to deliver a more sustainable future. PMID:26351851
Technical opportunities to reduce global anthropogenic emissions of nitrous oxide
NASA Astrophysics Data System (ADS)
Winiwarter, Wilfried; Höglund-Isaksson, Lena; Klimont, Zbigniew; Schöpp, Wolfgang; Amann, Markus
2018-01-01
We describe a consistent framework developed to quantify current and future anthropogenic emissions of nitrous oxide and the available technical abatement options by source sector for 172 regions globally. About 65% of the current emissions derive from agricultural soils, 8% from waste, and 4% from the chemical industry. Low-cost abatement options are available in industry, wastewater, and agriculture, where they are limited to large industrial farms. We estimate that by 2030, emissions can be reduced by about 6% ±2% applying abatement options at a cost lower than 10 €/t CO2-eq. The largest abatement potential at higher marginal costs is available from agricultural soils, employing precision fertilizer application technology as well as chemical treatment of fertilizers to suppress conversion processes in soil (nitrification inhibitors). At marginal costs of up to 100 €/t CO2-eq, about 18% ±6% of baseline emissions can be removed and when considering all available options, the global abatement potential increases to about 26% ±9%. Due to expected future increase in activities driving nitrous oxide emissions, the limited technical abatement potential available means that even at full implementation of reduction measures by 2030, global emissions can be at most stabilized at the pre-2010 level. In order to achieve deeper reductions in emissions, considerable technological development will be required as well as non-technical options like adjusting human diets towards moderate animal protein consumption.
Malmmose, Margit; Mortensen, Karoline; Holm, Claus
2018-04-02
Maryland implemented one of the most aggressive payment innovations the nation has seen in several decades when it introduced global budgets in all its acute care hospitals in 2014. Prior to this, a pilot program, total patient revenue (TPR), was established for 8 rural hospitals in 2010. Using financial hospital report data from the Health Services Cost Review Commission from 2007 to 2013, we examined the hospitals' financial results including revenue, costs, and profit/loss margins to explore the impact of the adoption of the TPR pilot global budget program relative to the remaining hospitals in the state. We analyze financial results for both regulated (included in the global budget and subject to rate-setting) and unregulated services in order to capture a holistic image of the hospitals' actual revenue, cost and margin structures. Common size and difference-in-differences analyses of the data suggest that regulated profit ratios for treatment hospitals increased (from 5% in 2007 to 8% in 2013) and regulated expense-to-gross patient revenue ratios decreased (75% in 2007 and 68% in 2013) relative to the controls. Simultaneously, the profit margins for treatment hospitals' unregulated services decreased (- 12% in 2007 and - 17% in 2013), which reduced the overall margin significantly. This analysis therefore indicates cost shifting and less profit gain from the program than identified by solely focusing on the regulated margins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555
We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less
Climate targets and cost-effective climate stabilization pathways
NASA Astrophysics Data System (ADS)
Held, H.
2015-08-01
Climate economics has developed two main tools to derive an economically adequate response to the climate problem. Cost benefit analysis weighs in any available information on mitigation costs and benefits and thereby derives an "optimal" global mean temperature. Quite the contrary, cost effectiveness analysis allows deriving costs of potential policy targets and the corresponding cost- minimizing investment paths. The article highlights pros and cons of both approaches and then focusses on the implications of a policy that strives at limiting global warming to 2 °C compared to pre-industrial values. The related mitigation costs and changes in the energy sector are summarized according to the IPCC report of 2014. The article then points to conceptual difficulties when internalizing uncertainty in these types of analyses and suggests pragmatic solutions. Key statements on mitigation economics remain valid under uncertainty when being given the adequate interpretation. Furthermore, the expected economic value of perfect climate information is found to be on the order of hundreds of billions of Euro per year if a 2°-policy were requested. Finally, the prospects of climate policy are sketched.
NASA Astrophysics Data System (ADS)
Fisher, J. B.; Stavros, E. N.; Pavlick, R.; Hook, S. J.; Eldering, A.; Dubayah, R.; Schimel, D.
2016-12-01
Terrestrial ecosystems can be described in terms of trait composition, physiological function, and physical structure; all three of these are observable remotely to varying degrees. Yet, no mission is able to singularly capture all three together, thus inhibiting our ability to dynamically measure and describe ecosystems as holistic, integrated, and interconnected entities. The International Space Station (ISS) is a new platform for global ecology. The variable overpass time offers a key advantage to investigations interested in sampling over the diurnal cycle, critical to understanding ecosystem function. The ISS also offers another key advantage—financial; it is already there with funded astronaut cargo re-supply missions, so the cost of launch and platform do not need to be added onto new science missions, thereby enabling NASA to select more missions at lower costs. In 2018, NASA will begin sending a series of independently-selected missions to the ISS focused on terrestrial ecosystems. First, ECOSTRESS will produce thermal-based evapotranspiration (ET) data, among other products. OCO-3 will arrive a few months later to measure chlorophyll fluorescence (related to gross primary production, GPP) and atmospheric CO2. Finally, GEDI will produce LiDAR-based ecosystem structure (height, leaf area index, biomass). While each mission is independently developed and funded, the respective mission scientists are working together to bridge observations and leverage their unique contemporaneous and synergistic value for global ecology. A composition-based mission is still missing from the ISS, but airborne and other space agency missions may be leveraged. This talk will describe these ISS-based terrestrial ecosystem science missions, and discuss synergies that will enable the study of ecosystems as a whole that is larger than the sum of their parts.
Suicide attempt in young people: a signal for long-term health care and social needs.
Goldman-Mellor, Sidra J; Caspi, Avshalom; Harrington, Honalee; Hogan, Sean; Nada-Raja, Shyamala; Poulton, Richie; Moffitt, Terrie E
2014-02-01
Suicidal behavior has increased since the onset of the global recession, a trend that may have long-term health and social implications. To test whether suicide attempts among young people signal increased risk for later poor health and social functioning above and beyond a preexisting psychiatric disorder. We followed up a cohort of young people and assessed multiple aspects of their health and social functioning as they approached midlife. Outcomes among individuals who had self-reported a suicide attempt up through age 24 years (young suicide attempters) were compared with those who reported no attempt through age 24 years (nonattempters). Psychiatric history and social class were controlled for. The population-representative Dunedin Multidisciplinary Health and Development Study, which involved 1037 birth cohort members comprising 91 young suicide attempters and 946 nonattempters, 95% of whom were followed up to age 38 years. Outcomes were selected to represent significant individual and societal costs: mental health, physical health, harm toward others, and need for support. As adults approaching midlife, young suicide attempters were significantly more likely to have persistent mental health problems (eg, depression, substance dependence, and additional suicide attempts) compared with nonattempters. They were also more likely to have physical health problems (eg, metabolic syndrome and elevated inflammation). They engaged in more violence (eg, violent crime and intimate partner abuse) and needed more social support (eg, long-term welfare receipt and unemployment). Furthermore, they reported being lonelier and less satisfied with their lives. These associations remained after adjustment for youth psychiatric diagnoses and social class. Many young suicide attempters remain vulnerable to costly health and social problems into midlife. As rates of suicidal behavior rise with the continuing global recession, additional suicide prevention efforts and long-term monitoring and after-care services are needed.
Velghe, Katherine; Gregory-Eaves, Irene
2013-01-01
Biodiversity losses over the next century are predicted to result in alterations of ecosystem functions that are on par with other major drivers of global change. Given the seriousness of this issue, there is a need to effectively monitor global biodiversity. Because performing biodiversity censuses of all taxonomic groups is prohibitively costly, indicator groups have been studied to estimate the biodiversity of different taxonomic groups. Quantifying cross-taxon congruence is a method of evaluating the assumption that the diversity of one taxonomic group can be used to predict the diversity of another. To improve the predictive ability of cross-taxon congruence in aquatic ecosystems, we evaluated whether body size, measured as the ratio of average body length between organismal groups, is a significant predictor of their cross-taxon biodiversity congruence. To test this hypothesis, we searched the published literature and screened for studies that used species richness correlations as their metric of cross-taxon congruence. We extracted 96 correlation coefficients from 16 studies, which encompassed 784 inland water bodies. With these correlation coefficients, we conducted a categorical meta-analysis, grouping data based on the body size ratio of organisms. Our results showed that cross-taxon congruence is variable among sites and between different groups (r values ranging between −0.53 to 0.88). In addition, our quantitative meta-analysis demonstrated that organisms most similar in body size showed stronger species richness correlations than organisms which differed increasingly in size (radj 2 = 0.94, p = 0.02). We propose that future studies applying biodiversity indicators in aquatic ecosystems consider functional traits such as body size, so as to increase their success at predicting the biodiversity of taxonomic groups where cost-effective conservation tools are needed. PMID:23468903
Koutsoudakis, George; Urbanowicz, Richard A.; Mirza, Deeman; Ginkel, Corinne; Riebesehl, Nina; Calland, Noémie; Albecka, Anna; Price, Louisa; Hudson, Natalia; Descamps, Véronique; Backx, Matthijs; McClure, C. Patrick; Duverlie, Gilles; Pecheur, Eve-Isabelle; Dubuisson, Jean; Perez-del-Pulgar, Sofia; Forns, Xavier; Steinmann, Eike; Tarr, Alexander W.; Pietschmann, Thomas
2014-01-01
Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic “fossil record” of historical purifying selection against E1E2 intermediate phenotypes. PMID:24173227
Comparison of physically- and economically-based CO2-equivalences for methane
NASA Astrophysics Data System (ADS)
Boucher, O.
2012-05-01
There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies, and there is no consensus on what an optimal methane CO2-equivalence should be. We revisit this question by discussing some aspects of physically-based (i.e. global- warming potential or GWP and global temperature change potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified global damage potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO2-equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-yr GWP because of various compensating effects. However, there is a large spread in possible methane CO2-equivalences from this metric (1-99% interval: 10.0-42.5; 5-95% interval: 12.5-38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The main factor differentiating the methane 100-yr GTP from the methane 100-yr GWP and the GDP is the fact that the former metric is an end-point metric, whereas the latter are cumulative metrics. There is some rationale for an increase in the methane CO2-equivalence in the future as global warming unfolds, as implied by a convex damage function in the case of the GDP metric. We also show that a methane CO2-equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions, as long as there is enough visibility on CO2 prices and CO2-equivalences for the stakeholders.
Graph-based surface reconstruction from stereo pairs using image segmentation
NASA Astrophysics Data System (ADS)
Bleyer, Michael; Gelautz, Margrit
2005-01-01
This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.
Detection of Fiber Layer-Up Lamination Order of CFRP Composite Using Thermal-Wave Radar Imaging
NASA Astrophysics Data System (ADS)
Wang, Fei; Liu, Junyan; Liu, Yang; Wang, Yang; Gong, Jinlong
2016-09-01
In this paper, thermal-wave radar imaging (TWRI) is used as a nondestructive inspection method to evaluate carbon-fiber-reinforced-polymer (CFRP) composite. An inverse methodology that combines TWRI with numerical optimization technique is proposed to determine the fiber layer-up lamination sequences of anisotropic CFRP composite. A 7-layer CFRP laminate [0°/45°/90°/0°]_{{s}} is heated by a chirp-modulated Gaussian laser beam, and then finite element method (FEM) is employed to calculate the temperature field of CFRP laminates. The phase based on lock-in correlation between reference chirp signal and the thermal-wave signal is performed to obtain the phase image of TWRI, and the least square method is applied to reconstruct the cost function that minimizes the square of the difference between the phase of TWRI inspection and numerical calculation. A hybrid algorithm that combines the simulation annealing with Nelder-Mead simplex research method is employed to solve the reconstructed cost function and find the global optimal solution of the layer-up sequences of CFRP composite. The result shows the feasibility of estimating the fiber layer-up lamination sequences of CFRP composite with optimal discrete and constraint conditions.
GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation
Li, Hong; Lu, Mingquan
2017-01-01
Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks. PMID:28665318
Integrated thermal and energy management of plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard
2012-10-01
In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.
GNSS Spoofing Detection and Mitigation Based on Maximum Likelihood Estimation.
Wang, Fei; Li, Hong; Lu, Mingquan
2017-06-30
Spoofing attacks are threatening the global navigation satellite system (GNSS). The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning method originally developed for multipath rejection and weak signal processing. We find this method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads the positioning and timing result will cause distortion to the MLE cost function. Based on the method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the navigation solution. A statistic is derived for spoofing detection with the principle of the generalized likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the approach. Results show that the method works even when the code phase differences between the spoofing and authentic signals are much less than one code chip, which can improve the availability of GNSS service greatly under spoofing attacks.
Electronic neural network for dynamic resource allocation
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Eberhardt, S. P.; Daud, T.
1991-01-01
A VLSI implementable neural network architecture for dynamic assignment is presented. The resource allocation problems involve assigning members of one set (e.g. resources) to those of another (e.g. consumers) such that the global 'cost' of the associations is minimized. The network consists of a matrix of sigmoidal processing elements (neurons), where the rows of the matrix represent resources and columns represent consumers. Unlike previous neural implementations, however, association costs are applied directly to the neurons, reducing connectivity of the network to VLSI-compatible 0 (number of neurons). Each row (and column) has an additional neuron associated with it to independently oversee activations of all the neurons in each row (and each column), providing a programmable 'k-winner-take-all' function. This function simultaneously enforces blocking (excitatory/inhibitory) constraints during convergence to control the number of active elements in each row and column within desired boundary conditions. Simulations show that the network, when implemented in fully parallel VLSI hardware, offers optimal (or near-optimal) solutions within only a fraction of a millisecond, for problems up to 128 resources and 128 consumers, orders of magnitude faster than conventional computing or heuristic search methods.
Cancer Detection, Diagnosis, and Treatment Technologies for Global Health: Supporting the developmen
NCI, Center for Global Health supports the development and validation of low-cost, portable technologies that can improve cancer detection, diagnosis, and treatment in low-and middle-income countries.
Global Burden of Sugar-Related Dental Diseases in 168 Countries and Corresponding Health Care Costs.
Meier, T; Deumelandt, P; Christen, O; Stangl, G I; Riedel, K; Langer, M
2017-07-01
Oral diseases such as dental caries, edentulism (tooth loss), periodontal disease (PD), and oral cancer currently constitute an increased major public health burden across the globe, with significant differences between countries. One of the main drivers of caries, edentulism, and PD is the excessive intake of sugars. Here, we aimed to quantify the global sugar-related dental health and cost burden in the year 2010. This study used a health-econometrical model to calculate the disease burden as well as the direct and indirect costs attributable to the intake of free sugars (mono- and disaccharides [MDS]). To this end, several databases from the Institute for Health Metrics and Evaluation (IHME), Organisation for Economic Co-operation and Development (OECD), Food and Agriculture Organization (FAO), and World Bank were used. In total, the corresponding disease burden in 168 countries and economic burden in 31 OECD countries were quantified. In 2010, the consumption of MDS was associated with a global dental disease burden of 4.1 million disability-adjusted life years (DALYs; 95% uncertainty interval [UI]: 2.1 to 7.4 million DALYs), with 2.7 million DALYs from MDS-related caries and 1.4 million DALYs from PD. In terms of economic costs, MDS-related dental diseases were associated with a global financial burden of 172 billion US dollars (USD; 95% UI: 91 to 295 billion USD), the largest share of which (151 billion USD) was incurred in OECD countries. Overall, 26.3% (95% UI: 13.3% to 47.5%) of the total global oral disease burden was attributed to the consumption of MDS. The present study emphasizes the need to further address the role of free sugars in oral health and nutrition policy. Although the largest share of the economic burden was accounted for by OECD countries, emerging economies should address this challenge early on in national public health policies if they are to avoid disease and the prospect of increased cost burdens.
A simple integrated assessment approach to global change simulation and evaluation
NASA Astrophysics Data System (ADS)
Ogutu, Keroboto; D'Andrea, Fabio; Ghil, Michael
2016-04-01
We formulate and study the Coupled Climate-Economy-Biosphere (CoCEB) model, which constitutes the basis of our idealized integrated assessment approach to simulating and evaluating global change. CoCEB is composed of a physical climate module, based on Earth's energy balance, and an economy module that uses endogenous economic growth with physical and human capital accumulation. A biosphere model is likewise under study and will be coupled to the existing two modules. We concentrate on the interactions between the two subsystems: the effect of climate on the economy, via damage functions, and the effect of the economy on climate, via a control of the greenhouse gas emissions. Simple functional forms of the relation between the two subsystems permit simple interpretations of the coupled effects. The CoCEB model is used to make hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement, in particular by investing in low carbon technology, in deforestation reduction or in carbon capture and storage (CCS). The CoCEB model is very flexible and transparent, and it allows one to easily formulate and compare different functional representations of climate change mitigation policies. Using different mitigation measures and their cost estimates, as found in the literature, one is able to compare these measures in a coherent way.
Trends in U.S. Oil and Natural Gas Upstream Costs
2016-01-01
Average 2015 well drilling and completion costs in five onshore areas decline 25% and 30% below their level in 2012 The U.S. Energy Information Administration (EIA) commissioned IHS Global Inc. (IHS) to perform a study of upstream drilling and production costs. The IHS report assesses capital and operating costs associated with drilling, completing, and operating wells and facilities.
Hsiao-Hsuan Wang; William E. Grant; Jianbang Gan; William E. Rogers; Todd M. Swannack; Tomasz E. Koralewski; James H. Miller; John W. Taylor
2012-01-01
Economic costs associated with the invasion of nonnative species are of global concern. We estimated expected costs of Chinese tallow (Triadica sebifera (L.) Small) invasions related to timber production in southern U.S. forestlands under different management strategies. Expected costs were confined to the value of timber production losses plus costs for search and...
The Role of Working Memory Capacity and Interference Resolution Mechanisms in Task Switching
Pettigrew, Corinne; Martin, Randi C.
2015-01-01
Theories of task switching have emphasized a number of control mechanisms that may support the ability to flexibly switch between tasks. The present study examined the extent to which individual differences in working memory (WM) capacity and two measures of interference resolution, response-distractor inhibition and resistance to proactive interference (PI), account for variability in task switching, including global costs, local costs, and N-2 repetition costs. 102 young and 60 older adults were tested on a battery of tasks. Composite scores were created for WM capacity, response-distractor inhibition, and resistance to PI; shifting was indexed by rate residual scores which combine response time and accuracy and account for individual differences in processing speed. Composite scores served as predictors of task switching. WM was significantly related to global switch costs. While resistance to PI and WM explained some variance in local costs, these effects did not reach significance. In contrast, none of the control measures explained variance in N-2 repetition costs. Furthermore, age effects were only evident for N-2 repetition costs, with older adults demonstrating larger costs than young adults. Results are discussed within the context of theoretical models of task switching. PMID:26594895
The role of working memory capacity and interference resolution mechanisms in task switching.
Pettigrew, Corinne; Martin, Randi C
2016-12-01
Theories of task switching have emphasized a number of control mechanisms that may support the ability to flexibly switch between tasks. The present study examined the extent to which individual differences in working memory (WM) capacity and two measures of interference resolution, response-distractor inhibition and resistance to proactive interference (PI), account for variability in task switching, including global costs, local costs, and N-2 repetition costs. A total of 102 young and 60 older adults were tested on a battery of tasks. Composite scores were created for WM capacity, response-distractor inhibition, and resistance to PI; shifting was indexed by rate residual scores, which combine response time and accuracy and account for individual differences in processing speed. Composite scores served as predictors of task switching. WM was significantly related to global switch costs. While resistance to PI and WM explained some variance in local costs, these effects did not reach significance. In contrast, none of the control measures explained variance in N-2 repetition costs. Furthermore, age effects were only evident for N-2 repetition costs, with older adults demonstrating larger costs than young adults. Results are discussed within the context of theoretical models of task switching.
A processing centre for the CNES CE-GPS experimentation
NASA Technical Reports Server (NTRS)
Suard, Norbert; Durand, Jean-Claude
1994-01-01
CNES is involved in a GPS (Global Positioning System) geostationary overlay experimentation. The purpose of this experimentation is to test various new techniques in order to select the optimal station synchronization method, as well as the geostationary spacecraft orbitography method. These new techniques are needed to develop the Ranging GPS Integrity Channel services. The CNES experimentation includes three transmitting/receiving ground stations (manufactured by IN-SNEC), one INMARSAT 2 C/L band transponder and a processing center named STE (Station de Traitements de l'Experimentation). Not all the techniques to be tested are implemented, but the experimental system has to include several functions; part of the future system simulation functions, such as a servo-loop function, and in particular a data collection function providing for rapid monitoring of system operation, analysis of existing ground station processes, and several weeks of data coverage for other scientific studies. This paper discusses system architecture and some criteria used in its design, as well as the monitoring function, the approach used to develop a low-cost and short-life processing center in collaboration with a CNES sub-contractor (ATTDATAID), and some results.
Liu-Ambrose, T Y L; Ashe, M C; Marra, C
2010-11-01
In this study, whether physical activity is independently associated with direct healthcare costs in community-dwelling older adults with multiple chronic conditions was examined. Cross-sectional analysis. Research laboratory. 299 community-dwelling men and women volunteers aged 65 years and older with chronic conditions. None. Primary dependent variable was direct healthcare costs incurred in the previous 3 months. Participants completed the Health Resource Utilisation (HRU) questionnaire. To estimate HRU, direct costs in the previous 3 months were calculated using the three-party payer perspective of the British Columbia Ministry of Health, deemed representative of the Canadian healthcare system costs. For medications, the Retail Pharmacy Dispensed prescription cost tables were used. Primary independent variables were (1) self-report current level of physical activity as assessed by the Physical Activity Scale for Individuals with Physical Disabilities (PASIPD) and (2) general balance and mobility as assessed by the National Institute on Aging Balance Scale. The mean number of chronic conditions per participant was six. Current level of physical activity was independently and inversely associated with HRU. Age, sex, number of chronic conditions, global cognitive function, body mass index, and general balance and mobility together accounted for 24.3% of the total variance. Adding the PASIPD score resulted in an R2 change of 3.3% and significantly improved the model. The total variance accounted by the final model was 27.6%. Physical activity promotion may reduce healthcare costs in older adults with chronic conditions.
ERIC Educational Resources Information Center
Journal of College Science Teaching, 2005
2005-01-01
This brief article describes a new global wind-power map that has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent…
NIEHS extramural global environmental health portfolio: opportunities for collaboration.
Drew, Christina H; Barnes, Martha I; Phelps, Jerry; Van Houten, Bennett
2008-04-01
Global environmental health has emerged as a critical topic for environmental health researchers and practitioners. Estimates of the environmental contribution of total worldwide disease burden range from 25 to 33%. We reviewed grants funded by the National Institute of Environmental Health Sciences (NIEHS) during 2005-2007 to evaluate the costs and scientific composition of the global environmental health portfolio, with the ultimate aim of strengthening global environmental health research partnerships. We examined NIEHS grant research databases to identify the global environmental health portfolio. In the past 3 fiscal years (2005-2007), the NIEHS funded 57 scientific research projects in 37 countries, at an estimated cost of $30 million. Metals such as arsenic, methylmercury, and lead are the most frequently studied toxic agents, but a wide range of stressors, routes of exposure, and agents are addressed in the portfolio. The portfolio analysis indicates that there is a firm foundation of research activities upon which additional global environmental health partnerships could be encouraged. Current data structures could be strengthened to support more automated analysis of grantee information.
THE HUNDRED BILLION DOLLAR BONUS: Global Energy Efficiency Lessons from India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Seema; Sathaye, Jayant
2011-03-01
At a time when India and other nations are grappling with myriad energy-related challenges, including unstable, costly power sources and growing greenhouse gas emissions, energy efficiency offers an alternative at a fraction of the cost of other new sources of energy. A consortium of leading Indian regulators, nongovernmental organizations, and international experts has recognized this opportunity and is working to develop effective policies that will bring significant domestic benefits to India while accelerating the global transition to energy efficiency.
1991-12-31
continue on facet coatings, PL correlation to device performance, and CVD diamond. All global issues mentioned in Section 2.0 will be addresses and...The CVD diamond submounts will be hermetically sealed, electrically isolated and liquid cooled. (Deliverables: 5 5-bar arrays.) The following global ... issues not mentioned above will be investigated continuously throughout all four phases of this program: (1) design and development of a mask set to
Long-term costs and health impact of continued global fund support for antiretroviral therapy.
Stover, John; Korenromp, Eline L; Blakley, Matthew; Komatsu, Ryuichi; Viisainen, Kirsi; Bollinger, Lori; Atun, Rifat
2011-01-01
By the end of 2011 Global Fund investments will be supporting 3.5 million people on antiretroviral therapy (ART) in 104 low- and middle-income countries. We estimated the cost and health impact of continuing treatment for these patients through 2020. Survival on first-line and second-line ART regimens is estimated based on annual retention rates reported by national AIDS programs. Costs per patient-year were calculated from country-reported ARV procurement prices, and expenditures on laboratory tests, health care utilization and end-of-life care from in-depth costing studies. Of the 3.5 million ART patients in 2011, 2.3 million will still need treatment in 2020. The annual cost of maintaining ART falls from $1.9 billion in 2011 to $1.7 billion in 2020, as a result of a declining number of surviving patients partially offset by increasing costs as more patients migrate to second-line therapy. The Global Fund is expected to continue being a major contributor to meeting this financial need, alongside other international funders and domestic resources. Costs would be $150 million less in 2020 with an annual 5% decline in first-line ARV prices and $150-370 million less with a 5%-12% annual decline in second-line prices, but $200 million higher in 2020 with phase out of stavudine (d4T), or $200 million higher with increased migration to second-line regimens expected if all countries routinely adopted viral load monitoring. Deaths postponed by ART correspond to 830,000 life-years saved in 2011, increasing to around 2.3 million life-years every year between 2015 and 2020. Annual patient-level direct costs of supporting a patient cohort remain fairly stable over 2011-2020, if current antiretroviral prices and delivery costs are maintained. Second-line antiretroviral prices are a major cost driver, underscoring the importance of investing in treatment quality to improve retention on first-line regimens.
Long-Term Costs and Health Impact of Continued Global Fund Support for Antiretroviral Therapy
Stover, John; Korenromp, Eline L.; Blakley, Matthew; Komatsu, Ryuichi; Viisainen, Kirsi; Bollinger, Lori; Atun, Rifat
2011-01-01
Background By the end of 2011 Global Fund investments will be supporting 3.5 million people on antiretroviral therapy (ART) in 104 low- and middle-income countries. We estimated the cost and health impact of continuing treatment for these patients through 2020. Methods and Findings Survival on first-line and second-line ART regimens is estimated based on annual retention rates reported by national AIDS programs. Costs per patient-year were calculated from country-reported ARV procurement prices, and expenditures on laboratory tests, health care utilization and end-of-life care from in-depth costing studies. Of the 3.5 million ART patients in 2011, 2.3 million will still need treatment in 2020. The annual cost of maintaining ART falls from $1.9 billion in 2011 to $1.7 billion in 2020, as a result of a declining number of surviving patients partially offset by increasing costs as more patients migrate to second-line therapy. The Global Fund is expected to continue being a major contributor to meeting this financial need, alongside other international funders and domestic resources. Costs would be $150 million less in 2020 with an annual 5% decline in first-line ARV prices and $150–370 million less with a 5%–12% annual decline in second-line prices, but $200 million higher in 2020 with phase out of stavudine (d4T), or $200 million higher with increased migration to second-line regimens expected if all countries routinely adopted viral load monitoring. Deaths postponed by ART correspond to 830,000 life-years saved in 2011, increasing to around 2.3 million life-years every year between 2015 and 2020. Conclusions Annual patient-level direct costs of supporting a patient cohort remain fairly stable over 2011–2020, if current antiretroviral prices and delivery costs are maintained. Second-line antiretroviral prices are a major cost driver, underscoring the importance of investing in treatment quality to improve retention on first-line regimens. PMID:21731646
The IEA/ORAU Long-Term Global Energy- CO2 Model: Personal Computer Version A84PC
Edmonds, Jae A.; Reilly, John M.; Boden, Thomas A. [CDIAC; Reynolds, S. E. [CDIAC; Barns, D. W.
1995-01-01
The IBM A84PC version of the Edmonds-Reilly model has the capability to calculate both CO2 and CH4 emission estimates by source and region. Population, labor productivity, end-use energy efficiency, income effects, price effects, resource base, technological change in energy production, environmental costs of energy production, market-penetration rate of energy-supply technology, solar and biomass energy costs, synfuel costs, and the number of forecast periods may be interactively inspected and altered producing a variety of global and regional CO2 and CH4 emission scenarios for 1975 through 2100. Users are strongly encouraged to see our instructions for downloading, installing, and running the model.
#AskBerkeleyLab: Cost and Availability of Healthy Food
Buluswar, Shashi
2018-02-13
Shashi Buluswar, Executive Director at the LBNL Institute for Globally Transformative Technologies, answers a question from Ashley on why healthy food costs so much and is not available in low-income neighborhoods.
Measures of International Manufacturing and Trade of Clean Energy Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel-Cox, Jill; Sandor, Debbie; Keyser, David
The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metricsmore » for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.« less
Global Morning: A Consumer Awareness Activity.
ERIC Educational Resources Information Center
Smith, Mary Gale
1995-01-01
Presents a script designed to teach students about the extent of global interdependence and the costs in human, environmental, social, and economic terms. Includes questions for discussion, brainstorming suggestions for action, and assessing action questions. (MKR)
Economic Study of Global Tobacco Burden
In an interview on Cancer Currents, Dr. Mark Parascandola discusses findings from an economics study showing that, globally, tobacco use burdens economies with more than US $1 trillion annually in health care costs and lost productivity.
Costs and benefits of greenhouse gas reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelling, T.C.
1998-12-31
This new AEI studies is related to the globalization of environmental policy. These studies will focus on specific issues, such as global climate change, and on the new institutional arrangements required to deal with them.
Cost function approach for estimating derived demand for composite wood products
T. C. Marcin
1991-01-01
A cost function approach was examined for using the concept of duality between production and input factor demands. A translog cost function was used to represent residential construction costs and derived conditional factor demand equations. Alternative models were derived from the translog cost function by imposing parameter restrictions.
NASA Astrophysics Data System (ADS)
Hayes, M.
2014-12-01
The IMBECS Protocol concept employs large cultivation and biorefinery installations, within the five Subtropical Convergence Zones (STCZs), to support the production of commodities such as carbon negative biofuels, seafood, organic fertilizer, polymers and freshwater, as a flexible and cost effective means of Global Warming Mitigation (GWM) with the primary objective being the global scale replacement of fossil fuels (FF). This governance approach is categorically distinct from all other large scale GWM governance concepts. Yet, many of the current marine related GWM technologies are adaptable to this proposals. The IMBECS technology would be managed by an intergovernmentally sanctioned non-profit foundation which would have the following functions/mission: Synthesises relevant treaty language Performs R&D activities and purchases relevant patents Under intergovernmental commission, functions as the primary responsible international actorfor environmental standards, production quotas and operational integrity Licence technology to for-profit actors under strict production/environmental standards Enforce production and environmental standards along with production quotas Provide a high level of transparency to all stakeholders Provide legal defence The IMBECS Protocol is conceptually related to the work found in the following documents/links. This list is not exhaustive: Climate Change Geoengineering The Science and Politics of Global Climate Change: A guide to the debate IPCC Special Report on Renewable Energy and Climate Change Mitigation DoE Roadmap for Algae Biofuels PodEnergy Ocean Agronomy development leaders and progenitor of this proposal. Artificial Upwelling of Deep Seawater Using the Perpetual Salt Fountain for Cultivation of Ocean Desert NASAs' OMEGA study. Cool Planet; Land based version of a carbon negative biofuel concept. Cellana; Leading developer of algae based bioproducts. The State of World Fisheries and Aquaculture Mariculture: A global analysis of production trends since 1950 BECCS /Biochar/ Olivine UNFCCC/IMO/CBD The President's Climate Action Plan The conclusion of this analysis calls for funding of an investigational deployment of the relevant technologies for an open evaluation at the intergovernmental level.
Alzheimers disease: cost cuts call for novel drugs development and national strategy.
Marešová, Petra; Klímová, Blanka; Kuča, Kamil
Mental health affects the quality of life for a large number of individuals and family members. Currently, globally costs for people with dementia amount to more than 1% of gross domestic product (GDP). In the future, the growth of expenditure is expected with regard to the fact that the population of developed countries is aging and the dementia is closely associated with increasing age. It is evident that governments have to allocate adequate financial, material and human resources to address a health problem on this scale. The purpose of this article is to explore the current state of treatment and care of patients suffering from Alzheimers disease (AD), analyze direct and indirect health care costs resulting from this disease. In addition, the authors of this article draw attention to the implementation of astrategic plan which would handle all the aspects of AD, including the research of drugs development since nowadays there are not still many drugs which would improve AD patients state, particularly in the early phases, as well as there does not exist any well-functioning national strategic plan in the Czech Republic which would bring a radical improvement in reducing the effects of AD.Key words: Alzheimers disease costs treatment strategic plan.
Aiello, Francesco A; Gross, Erica R; Krajewski, Aleksandra; Fuller, Robert; Morgan, Anthony; Duffy, Andrew; Longo, Walter; Kozol, Robert; Chandawarkar, Rajiv
2010-09-01
Postoperative visits to the emergency department (ED) instead of the surgeon's office consume enormous cost. Postoperative ED visits can be avoided. Fully accredited, single-institution, 617-bed hospital affiliated with the University of Connecticut School of Medicine. Retrospective analysis of 597 consecutive patients with appendectomies over a 4-year period. Demographic and medical data, at initial presentation, surgery, and ED visit were recorded as categorical variables and statistically analyzed (Pearson chi(2) test, Fisher exact test, and linear-by-linear). Costs were calculated from the hospital's billing department. Forty-six patients returned to the ED within the global period with pain (n = 22, 48%), wound-related issues (n = 6, 13%), weakness (n = 4, 9%), fever (13%), and nausea and vomiting (n = 3, 6%). Thirteen patients (28%) required readmission. Predictive factors for ED visit postoperatively were perforated appendicitis (2-fold increase over uncomplicated appendicitis) and comorbidities (cardiovascular or diabetes). The cost of investigations during ED visits was $55,000 plus physician services. ED visits during the postoperative global period are avoidable by identifying patients who may need additional care; improving patient education, optimizing pain control, and improving patient office access. 2010 Elsevier Inc. All rights reserved.
Dale, Michael; Benson, Sally M
2013-04-02
A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.
On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Donald; Horowitz, Kelsey; Kurup, Parthiv
This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations.more » However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.« less
Zhao, Meng; Ding, Baocang
2015-03-01
This paper considers the distributed model predictive control (MPC) of nonlinear large-scale systems with dynamically decoupled subsystems. According to the coupled state in the overall cost function of centralized MPC, the neighbors are confirmed and fixed for each subsystem, and the overall objective function is disassembled into each local optimization. In order to guarantee the closed-loop stability of distributed MPC algorithm, the overall compatibility constraint for centralized MPC algorithm is decomposed into each local controller. The communication between each subsystem and its neighbors is relatively low, only the current states before optimization and the optimized input variables after optimization are being transferred. For each local controller, the quasi-infinite horizon MPC algorithm is adopted, and the global closed-loop system is proven to be exponentially stable. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Peix, Amalia; Mesquita, Claudio Tinoco; Paez, Diana; Pereira, Carlos Cunha; Felix, Renata; Gutierrez, Claudia; Jaimovich, Rodrigo; Ianni, Barbara Maria; Soares, Jose; Olaya, Pastor; Rodriguez, Ma Victoria; Flotats, Albert; Giubbini, Raffaele; Travin, Mark; Garcia, Ernest V
2014-08-01
Heart failure is increasing worldwide at epidemic proportions, resulting in considerable disability, mortality, and increase in healthcare costs. Gated myocardial perfusion single photon emission computed tomography or PET imaging is the most prominent imaging modality capable of providing information on global and regional ventricular function, the presence of intraventricular synchronism, myocardial perfusion, and viability on the same test. In addition, I-mIBG scintigraphy is the only imaging technique approved by various regulatory agencies able to provide information regarding the adrenergic function of the heart. Therefore, both myocardial perfusion and adrenergic imaging are useful tools in the workup and management of heart failure patients. This guide is intended to reinforce the information on the use of nuclear cardiology techniques for the assessment of heart failure and associated myocardial disease.
Maternal determinants of renal mass and function in the fetus and neonate.
Brophy, Patrick
2017-04-01
The impact of adverse maternal and early gestational issues, ranging from maternal-fetal interactions all the way through to premature birth, are recognized as having influence on the subsequent development of chronic diseases later in life. The development of chronic kidney disease (CKD) as a direct result of early life renal injury or a sequela of diseases such as hypertension or diabetes is a good model example of the potential impact that early life events may have on renal development and lifelong function. The global monetary and human resource cost of CKD is exorbitant. Socio-economic factors, along with other factors (genetic and environmental) may significantly influence the timing and display of phenotypic expression in fetuses and neonates at risk for developing CKD, yet very few of these factors are studied or well understood. In general our focus has been directed at treatment once CKD is established. This strategy has been and remains short-sighted and costly. Earlier understanding of the intrauterine determinants of renal mass development (i.e. environmental "biomes", poor maternal-fetal health, socio-economic factors impacting early life events, diet, access to value based health care and educational opportunities on disease evolution) may allow us an opportunity for earlier intervention. This article aims to provide some foundation for improved understanding of the maternal determinants of renal mass and function in the fetus and neonate. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Comparison of Two Path Planners for Planetary Rovers
NASA Technical Reports Server (NTRS)
Tarokh, M.; Shiller, Z.; Hayati, S.
1999-01-01
The paper presents two path planners suitable for planetary rovers. The first is based on fuzzy description of the terrain, and genetic algorithm to find a traversable path in a rugged terrain. The second planner uses a global optimization method with a cost function that is the path distance divided by the velocity limit obtained from the consideration of the rover static and dynamic stability. A description of both methods is provided, and the results of paths produced are given which show the effectiveness of the path planners in finding near optimal paths. The features of the methods and their suitability and application for rover path planning are compared
A call to action for comprehensive HIV services for men who have sex with men
Beyrer, Chris; Sullivan, Patrick S.; Sanchez, Jorge; Dowdy, David; Altman, Dennis; Trapence, Gift; Collins, Chris; Katabira, Elly; Kazatchkine, Michel; Sidibe, Michel; Mayer, Kenneth H.
2013-01-01
Where surveillance has been done, it has shown that men (MSM) who have sex with men bear a disproportionate burden of HIV. Yet they continue to be excluded, sometimes systematically, from HIV services because of stigma, discrimination, and criminalisation. This situation must change if global control of the HIV epidemic is to be achieved. On both public health and human rights grounds, expansion of HIV prevention, treatment, and care to MSM is an urgent imperative. Effective combination prevention and treatment approaches are feasible, and culturally competent care can be developed, even in rights-challenged environments. Condom and lubricant access for MSM globally is highly cost effective. Antiretroviral-based prevention, and antiretroviral access for MSM globally, would also be cost effective, but would probably require substantial reductions in drug costs in high-income countries to be feasible. To address HIV in MSM will take continued research, political will, structural reform, community engagement, and strategic planning and programming, but it can and must be done. PMID:22819663
Toward cost-effective solar energy use.
Lewis, Nathan S
2007-02-09
At present, solar energy conversion technologies face cost and scalability hurdles in the technologies required for a complete energy system. To provide a truly widespread primary energy source, solar energy must be captured, converted, and stored in a cost-effective fashion. New developments in nanotechnology, biotechnology, and the materials and physical sciences may enable step-change approaches to cost-effective, globally scalable systems for solar energy use.
On a cost functional for H2/H(infinity) minimization
NASA Technical Reports Server (NTRS)
Macmartin, Douglas G.; Hall, Steven R.; Mustafa, Denis
1990-01-01
A cost functional is proposed and investigated which is motivated by minimizing the energy in a structure using only collocated feedback. Defined for an H(infinity)-norm bounded system, this cost functional also overbounds the H2 cost. Some properties of this cost functional are given, and preliminary results on the procedure for minimizing it are presented. The frequency domain cost functional is shown to have a time domain representation in terms of a Stackelberg non-zero sum differential game.
The Social Cost of Stochastic and Irreversible Climate Change
NASA Astrophysics Data System (ADS)
Cai, Y.; Judd, K. L.; Lontzek, T.
2013-12-01
Many scientists are worried about climate change triggering abrupt and irreversible events leading to significant and long-lasting damages. For example, a rapid release of methane from permafrost may lead to amplified global warming, and global warming may increase the frequency and severity of heavy rainfall or typhoon, destroying large cities and killing numerous people. Some elements of the climate system which might exhibit such a triggering effect are called tipping elements. There is great uncertainty about the impact of anthropogenic carbon and tipping elements on future economic wellbeing. Any rational policy choice must consider the great uncertainty about the magnitude and timing of global warming's impact on economic productivity. While the likelihood of tipping points may be a function of contemporaneous temperature, their effects are long lasting and might be independent of future temperatures. It is assumed that some of these tipping points might occur even in this century, but also that their duration and post-tipping impact are uncertain. A faithful representation of the possibility of tipping points for the calculation of social cost of carbon would require a fully stochastic formulation of irreversibility, and accounting for the deep layer of uncertainties regarding the duration of the tipping process and also its economic impact. We use DSICE, a DSGE extension of the DICE2007 model of William Nordhaus, which incorporates beliefs about the uncertain economic impact of possible climate tipping events and uses empirically plausible parameterizations of Epstein-Zin preferences to represent attitudes towards risk. We find that the uncertainty associated with anthropogenic climate change imply carbon taxes much higher than implied by deterministic models. This analysis indicates that the absence of uncertainty in DICE2007 and similar IAM models may result in substantial understatement of the potential benefits of policies to reduce GHG emissions.
A high-resolution, empirical approach to climate impact assessment for regulatory analysis
NASA Astrophysics Data System (ADS)
Delgado, M.; Simcock, J. G.; Greenstone, M.; Hsiang, S. M.; Kopp, R. E.; Carleton, T.; Hultgren, A.; Jina, A.; Rising, J. A.; Nath, I.; Yuan, J.; Rode, A.; Chong, T.; Dobbels, G.; Hussain, A.; Wang, J.; Song, Y.; Mohan, S.; Larsen, K.; Houser, T.
2017-12-01
Recent breakthroughs in computing, data availability, and methodology have precipitated significant advances in the understanding of the relationship between climate and socioeconomic outcomes [1]. And while the use of estimates of the global marginal costs of greenhouse gas emissions (e.g. the SCC) are a mandatory component of regulatory policy in many jurisdictions, existing SCC-IAMs have lagged advances in impact assessment and valuation [2]. Recent work shows that incorporating high spatial and temporal resolution can significantly affect the observed relationships of economic outcomes to climate and socioeconomic factors [3] and that maintaining this granularity is critical to understanding the sensitivity of aggregate measures of valuation to inequality and risk adjustment methodologies [4]. We propose a novel framework that decomposes uncertainty in the SCC along multiple sources, including aggregate climate response parameters, the translation of global climate into local weather, the effect of weather on physical and economic systems, human and macro-economic responses, and impact valuation methodologies. This work extends Hsiang et al. (2017) [4] to directly estimate local response functions for multiple sectors in each of 24,378 global regions and to estimate impacts at this resolution daily, incorporating endogenous, empirically-estimated adaptation and costs. The goal of this work is to provide insight into the heterogeneity of climate impacts and to work with other modeling teams to enhance the empirical grounding of integrated climate impact assessment in more complex energy-environment-economics models. [1] T. Carleton and S. Hsiang (2016), DOI: 10.1126/science.aad9837. [2] National Academies of Sciences, Engineering, and Medicine (2017), DOI: 10.17226/24651. [3] Burke, M., S. Hsiang, and E. Miguel (2015), DOI: 10.1038/nature15725. [4] S. Hsiang et al. (2017), DOI: 10.1126/science.aal4369.
PHENIX Work Breakdown Structure. Cost and schedule review copy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds aremore » shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.« less
Desktop aligner for fabrication of multilayer microfluidic devices.
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-07-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm(-1). To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.
Desktop aligner for fabrication of multilayer microfluidic devices
Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping
2015-01-01
Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
The decomposition of fine and coarse roots: their global patterns and controlling factors
Zhang, Xinyue; Wang, Wei
2015-01-01
Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391
Global timber investments, wood costs, regulation, and risk
F. Cubbage; S. Koesbandana; P Mac Donagh; R. Rubilar; G Balmelli; V. Morales Olmos; R. De La Torre; M. Murara; V.A. Hoeflich; H. Kotze; R Gonzalez; O. Carrero; G. Frey; T. Adams; J. Turner; R. Lord; J. Huang; C. MacIntyre; Kathleen McGinley; R. Abt; R. Phillips
2010-01-01
We estimated financial returns and wood production costs in 2008 for the primary timber plantation species. Excluding land costs, returns for exotic plantations in almost all of South America e Brazil, Argentina, Uruguay, Chile, Colombia, Venezuela, and Paraguay e were substantial. Eucalyptus species returns were generally greater than those for Pinus species in each...
Baladi, J F; Bailey, P A; Black, S; Bouchard, R W; Farcnik, K D; Gauthier, S; Kertesz, A; Mohr, E; Robillard, A
2000-12-01
Clinical studies have shown that patients with Alzheimer's disease (AD) who are treated with rivastigmine have statistically significantly better scores on 5 scales used to assess AD than control patients receiving placebo. However, the clinical meaning and cost implications of these differences are not clear. The purpose of this study was to assess the clinical meaning and cost implications of statistically significant results obtained in clinical trials of rivastigmine for the treatment of AD. Potential cost implications for the health care system, caregivers, and society are considered. Data on clinical effects of rivastigmine were obtained from published North American and European clinical studies of patients with mild to moderately severe AD receiving rivastigmine 6 to 12 mg/d (n = 828) or placebo (n = 647). Differences in scores on the Alzheimer's Disease Assessment Scale-Cognitive Function, Clinician's Interview-Based Impression of Change with both clinical and caregiver information considered, Progressive Deterioration Scale, Mini-Mental State Examination (MMSE), and Global Deterioration Scale were assessed. A convenience panel of 9 Canadian specialists experienced in the treatment of AD provided their opinions on the clinical importance of the trial results. Chart review was performed to identify specific behaviors that improved, and cost implications of improvements were assessed. The panel determined that statistically significant differences in scores on all scales except the MMSE were likely associated with functional or cognitive differences that were clinically relevant for patients, reflecting stabilization that would have beneficial consequences for caregivers and health care resource use. Subsequent chart review showed that improvement on specific scale items confirmed the physician panel's opinion. Analysis of possible cost implications to society indicated that medication expenditures would be offset largely by delays in the need for paid home care and institutionalization, positive effects on caregiver health, and less time lost from work for the caregiver. From the perspective of a Canadian specialist panel, rivastigmine treatment for AD produces clinically relevant effects for patients that are beneficial to caregivers. These effects suggest decreased use of caregiver resources and delays in the need for institutionalization, both of which reduce societal costs.
Min-Cut Based Segmentation of Airborne LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Ural, S.; Shan, J.
2012-07-01
Introducing an organization to the unstructured point cloud before extracting information from airborne lidar data is common in many applications. Aggregating the points with similar features into segments in 3-D which comply with the nature of actual objects is affected by the neighborhood, scale, features and noise among other aspects. In this study, we present a min-cut based method for segmenting the point cloud. We first assess the neighborhood of each point in 3-D by investigating the local geometric and statistical properties of the candidates. Neighborhood selection is essential since point features are calculated within their local neighborhood. Following neighborhood determination, we calculate point features and determine the clusters in the feature space. We adapt a graph representation from image processing which is especially used in pixel labeling problems and establish it for the unstructured 3-D point clouds. The edges of the graph that are connecting the points with each other and nodes representing feature clusters hold the smoothness costs in the spatial domain and data costs in the feature domain. Smoothness costs ensure spatial coherence, while data costs control the consistency with the representative feature clusters. This graph representation formalizes the segmentation task as an energy minimization problem. It allows the implementation of an approximate solution by min-cuts for a global minimum of this NP hard minimization problem in low order polynomial time. We test our method with airborne lidar point cloud acquired with maximum planned post spacing of 1.4 m and a vertical accuracy 10.5 cm as RMSE. We present the effects of neighborhood and feature determination in the segmentation results and assess the accuracy and efficiency of the implemented min-cut algorithm as well as its sensitivity to the parameters of the smoothness and data cost functions. We find that smoothness cost that only considers simple distance parameter does not strongly conform to the natural structure of the points. Including shape information within the energy function by assigning costs based on the local properties may help to achieve a better representation for segmentation.
Setting limits through global budgeting: hospital cost containment in Rhode Island.
Hackey, R B
1996-01-01
In 1974, hospitals in Rhode Island have participated in annual negotiations with state officials and representatives from Blue Cross to determine the allowed increase in statewide hospital costs (the "Maxicap") for the next fiscal year, based on projected increases in hospitals' revenues, changes in patient volume and operating expenses. Individual hospital budgets may be above or below the Maxicap as long as the total increase in hospital costs for all hospitals in the state does not exceed the negotiated amount. At a time when regulatory solutions are increasingly under fire, continued support for Rhode Island's approach to hospital cost containment from third party payers, providers and public officials stands in stark contrast to other states where rate setting was either dismantled or discredited as a cost control strategy. A negotiated global cap on hospital expenditures offers an alternative to formula-based state rate-setting methodologies which could be incorporated as part of an all-payer reimbursement methodology or as an incremental step towards more comprehensive reform.
Global cost and weight evaluation of fuselage keel design concepts
NASA Technical Reports Server (NTRS)
Flynn, B. W.; Morris, M. R.; Metschan, S. L.; Swanson, G. D.; Smith, P. J.; Griess, K. H.; Schramm, M. R.; Humphrey, R. J.
1993-01-01
The Boeing program entitled Advanced Technology Composite Aircraft Structure (ATCAS) is focused on the application of affordable composite technology to pressurized fuselage structure of future aircraft. As part of this effort, a design study was conducted on the keel section of the aft fuselage. A design build team (DBT) approach was used to identify and evaluate several design concepts which incorporated different material systems, fabrication processes, structural configurations, and subassembly details. The design concepts were developed in sufficient detail to accurately assess their potential for cost and weight savings as compared with a metal baseline representing current wide body technology. The cost and weight results, along with an appraisal of performance and producibility risks, are used to identify a globally optimized keel design; one which offers the most promising cost and weight advantages over metal construction. Lastly, an assessment is given of the potential for further cost and weight reductions of the selected keel design during local optimization.
2014-01-01
Background To achieve globally or regionally defined accelerated disease control, elimination and eradication (ADC/E/E) goals against vaccine-preventable diseases requires complementing national routine immunization programs with intensive, time-limited, and targeted Supplementary Immunization Activities (SIAs). Many global and country-level SIA costing efforts have historically relied on what are now outdated benchmark figures. Mobilizing adequate resources for successful implementation of SIAs requires updated estimates of non-vaccine costs per target population. Methods This assessment updates the evidence base on the SIA operational costs through a review of literature between 1992 and 2012, and an analysis of actual expenditures from 142 SIAs conducted between 2004 and 2011 and documented in country immunization plans. These are complemented with an analysis of budgets from 31 SIAs conducted between 2006 and 2011 in order to assess the proportion of total SIA costs per person associated with various cost components. All results are presented in 2010 US dollars. Results Existing evidence indicate that average SIA operational costs were usually less than US$0.50 per person in 2010 dollars. However, the evidence is sparse, non-standardized, and largely out of date. Average operational costs per person generated from our analysis of country immunization plans are consistently higher than published estimates, approaching US$1.00 for injectable vaccines. The results illustrate that the benchmarks often used to project needs underestimate the true costs of SIAs and the analysis suggests that SIA operational costs have been increasing over time in real terms. Our assessment also illustrates that operational costs vary across several dimensions. Variations in the actual costs of SIAs likely to reflect the extents to which economies of scale associated with campaign-based delivery can be attained, the underlying strength of the immunization program, sensitivities to the relative ease of vaccine administration (i.e. orally, or by injection), and differences in disease-specific programmatic approaches. The assessment of SIA budgets by cost component illustrates that four cost drivers make up the largest proportion of costs across all vaccines: human resources, program management, social mobilization, and vehicles and transportation. These findings suggest that SIAs leverage existing health system infrastructure, reinforcing the fact that strong routine immunization programs are an important pre-requisite for achieving ADC/E/E goals. Conclusions The results presented here will be useful for national and global-level actors involved in planning, budgeting, resource mobilization, and financing of SIAs in order to create more realistic assessments of resource requirements for both existing ADC/E/E efforts as well as for new vaccines that may deploy a catch-up campaign-based delivery component. However, limitations of our analysis suggest a need to conduct further research into operational costs of SIAs. Understanding the changing face of delivery costs and cost structures for SIAs will continue to be critical to avoid funding gaps and in order to improve vaccination coverage, reduce health inequities, and achieve the ADC/E/E goals many of which have been endorsed by the World Health Assembly and are included in the Decade of Vaccines Global Vaccine Action Plan. PMID:24450832
Gandhi, Gian; Lydon, Patrick
2014-01-22
To achieve globally or regionally defined accelerated disease control, elimination and eradication (ADC/E/E) goals against vaccine-preventable diseases requires complementing national routine immunization programs with intensive, time-limited, and targeted Supplementary Immunization Activities (SIAs). Many global and country-level SIA costing efforts have historically relied on what are now outdated benchmark figures. Mobilizing adequate resources for successful implementation of SIAs requires updated estimates of non-vaccine costs per target population. This assessment updates the evidence base on the SIA operational costs through a review of literature between 1992 and 2012, and an analysis of actual expenditures from 142 SIAs conducted between 2004 and 2011 and documented in country immunization plans. These are complemented with an analysis of budgets from 31 SIAs conducted between 2006 and 2011 in order to assess the proportion of total SIA costs per person associated with various cost components. All results are presented in 2010 US dollars. Existing evidence indicate that average SIA operational costs were usually less than US$0.50 per person in 2010 dollars. However, the evidence is sparse, non-standardized, and largely out of date. Average operational costs per person generated from our analysis of country immunization plans are consistently higher than published estimates, approaching US$1.00 for injectable vaccines. The results illustrate that the benchmarks often used to project needs underestimate the true costs of SIAs and the analysis suggests that SIA operational costs have been increasing over time in real terms. Our assessment also illustrates that operational costs vary across several dimensions. Variations in the actual costs of SIAs likely to reflect the extents to which economies of scale associated with campaign-based delivery can be attained, the underlying strength of the immunization program, sensitivities to the relative ease of vaccine administration (i.e. orally, or by injection), and differences in disease-specific programmatic approaches. The assessment of SIA budgets by cost component illustrates that four cost drivers make up the largest proportion of costs across all vaccines: human resources, program management, social mobilization, and vehicles and transportation. These findings suggest that SIAs leverage existing health system infrastructure, reinforcing the fact that strong routine immunization programs are an important pre-requisite for achieving ADC/E/E goals. The results presented here will be useful for national and global-level actors involved in planning, budgeting, resource mobilization, and financing of SIAs in order to create more realistic assessments of resource requirements for both existing ADC/E/E efforts as well as for new vaccines that may deploy a catch-up campaign-based delivery component. However, limitations of our analysis suggest a need to conduct further research into operational costs of SIAs. Understanding the changing face of delivery costs and cost structures for SIAs will continue to be critical to avoid funding gaps and in order to improve vaccination coverage, reduce health inequities, and achieve the ADC/E/E goals many of which have been endorsed by the World Health Assembly and are included in the Decade of Vaccines Global Vaccine Action Plan.
Deep uncertainty and broad heterogeneity in country-level social cost of carbon
NASA Astrophysics Data System (ADS)
Ricke, K.; Drouet, L.; Caldeira, K.; Tavoni, M.
2017-12-01
The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages expected from carbon dioxide (CO2) emissions. Recent estimates of SCC range from approximately 10/tonne of CO2 to as much as 1000/tCO2, but these have been computed at the global level. While useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damages and vast differences in country-level contributions to global SCC, as well as climate and socio-economic uncertainties, which are much larger at the regional level. For the first time, we estimate country-level contributions to SCC using recent climate and carbon-cycle model projections, empirical climate-driven economic damage estimations, and information from the Shared Socio-economic Pathways. Central specifications show high global SCC values (median: 417 /tCO2, 66% confidence intervals: 168 - 793 /tCO2) with country-level contributions ranging from -11 (-8 - -14) /tCO2 to 86 (50 - 158) /tCO2. We quantify climate-, scenario- and economic damage- driven uncertainties associated with the calculated values of SCC. We find that while the magnitude of country-level social cost of carbon is highly uncertain, the relative positioning among countries is consistent. Countries incurring large fractions of the global cost include India, China, and the United States. The share of SCC distributed among countries is robust, indicating climate change winners and losers from a geopolitical perspective.
Chisholm, Dan; Doran, Chris; Shibuya, Kenji; Rehm, Jürgen
2006-11-01
Alcohol, tobacco and illicit drug use together pose a formidable challenge to international public health. Building on earlier estimates of the demonstrated burden of alcohol, tobacco and illicit drug use at the global level, this review aims to consider the comparative cost-effectiveness of evidence-based interventions for reducing the global burden of disease from these three risk factors. Although the number of published cost-effectiveness studies in the addictions field is now extensive (reviewed briefly here) there are a series of practical problems in using them for sector-wide decision making, including methodological heterogeneity, differences in analytical reference point and the specificity of findings to a particular context. In response to these limitations, a more generalised form of cost-effectiveness analysis (CEA) is proposed, which enables like-with-like comparisons of the relative efficiency of preventive or individual-based strategies to be made, not only within but also across diseases or their risk factors. The application of generalised CEA to a range of personal and non-personal interventions for reducing the burden of addictive substances is described. While such a development avoids many of the obstacles that have plagued earlier attempts and in so doing opens up new opportunities to address important policy questions, there remain a number of caveats to population-level analysis of this kind, particularly when conducted at the global level. These issues are the subject of the final section of this review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behboodi, Sahand; Chassin, David P.; Djilali, Ned
This study describes a new approach for solving the multi-area electricity resource allocation problem when considering both intermittent renewables and demand response. The method determines the hourly inter-area export/import set that maximizes the interconnection (global) surplus satisfying transmission, generation and load constraints. The optimal inter-area transfer set effectively makes the electricity price uniform over the interconnection apart from constrained areas, which overall increases the consumer surplus more than it decreases the producer surplus. The method is computationally efficient and suitable for use in simulations that depend on optimal scheduling models. The method is demonstrated on a system that represents Northmore » America Western Interconnection for the planning year of 2024. Simulation results indicate that effective use of interties reduces the system operation cost substantially. Excluding demand response, both the unconstrained and the constrained scheduling solutions decrease the global production cost (and equivalently increase the global economic surplus) by 12.30B and 10.67B per year, respectively, when compared to the standalone case in which each control area relies only on its local supply resources. This cost saving is equal to 25% and 22% of the annual production cost. Including 5% demand response, the constrained solution decreases the annual production cost by 10.70B, while increases the annual surplus by 9.32B in comparison to the standalone case.« less
What Determines HIV Prevention Costs at Scale? Evidence from the Avahan Programme in India
Chandrashekar, Sudhashree; Shetty, Govindraj; Vickerman, Peter; Bradley, Janet; Alary, Michel; Moses, Stephen; Vassall, Anna
2016-01-01
Abstract Expanding essential health services through non‐government organisations (NGOs) is a central strategy for achieving universal health coverage in many low‐income and middle‐income countries. Human immunodeficiency virus (HIV) prevention services for key populations are commonly delivered through NGOs and have been demonstrated to be cost‐effective and of substantial global public health importance. However, funding for HIV prevention remains scarce, and there are growing calls internationally to improve the efficiency of HIV prevention programmes as a key strategy to reach global HIV targets. To date, there is limited evidence on the determinants of costs of HIV prevention delivered through NGOs; and thus, policymakers have little guidance in how best to design programmes that are both effective and efficient. We collected economic costs from the Indian Avahan initiative, the largest HIV prevention project conducted globally, during the first 4 years of its implementation. We use a fixed‐effect panel estimator and a random‐intercept model to investigate the determinants of average cost. We find that programme design choices such as NGO scale, the extent of community involvement, the way in which support is offered to NGOs and how clinical services are organised substantially impact average cost in a grant‐based payment setting. © 2016 The Authors. Health Economics published by John Wiley & Sons Ltd. PMID:26763652
Behboodi, Sahand; Chassin, David P.; Djilali, Ned; ...
2016-12-23
This study describes a new approach for solving the multi-area electricity resource allocation problem when considering both intermittent renewables and demand response. The method determines the hourly inter-area export/import set that maximizes the interconnection (global) surplus satisfying transmission, generation and load constraints. The optimal inter-area transfer set effectively makes the electricity price uniform over the interconnection apart from constrained areas, which overall increases the consumer surplus more than it decreases the producer surplus. The method is computationally efficient and suitable for use in simulations that depend on optimal scheduling models. The method is demonstrated on a system that represents Northmore » America Western Interconnection for the planning year of 2024. Simulation results indicate that effective use of interties reduces the system operation cost substantially. Excluding demand response, both the unconstrained and the constrained scheduling solutions decrease the global production cost (and equivalently increase the global economic surplus) by 12.30B and 10.67B per year, respectively, when compared to the standalone case in which each control area relies only on its local supply resources. This cost saving is equal to 25% and 22% of the annual production cost. Including 5% demand response, the constrained solution decreases the annual production cost by 10.70B, while increases the annual surplus by 9.32B in comparison to the standalone case.« less
USDA-ARS?s Scientific Manuscript database
The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth’s land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Neve...
USDA-ARS?s Scientific Manuscript database
Few, if any, animal diseases have a greater impact than footand-mouth disease (FMD). It is highly infectious, has enormous control costs and severe impacts on trade. FMD research is performed in numerous institutions around the world. The Global FMD Research alliance (GFRA) is an international conso...
Wilson, Philip; Wood, Rachael; Lykke, Kirsten; Hauskov Graungaard, Anette; Ertmann, Ruth Kirk; Andersen, Merethe Kirstine; Haavet, Ole Rikard; Lagerløv, Per; Abildsnes, Eirik; Dahli, Mina P; Mäkelä, Marjukka; Varinen, Aleksi; Hietanen, Merja
2018-05-01
Few areas of medicine demonstrate such international divergence as child development screening and surveillance. Many countries have nationally mandated surveillance policies, but the content of programmes and mechanisms for delivery vary enormously. The cost of programmes is substantial but no economic evaluations have been carried out. We have critically examined the history, underlying philosophy, content and delivery of programmes for child development assessment in five countries with comprehensive publicly funded health services (Denmark, Finland, Norway, Scotland and Sweden). The specific focus of this article is on motor, social, emotional, behavioural and global cognitive functioning including language. Variations in developmental surveillance programmes are substantially explained by historical factors and gradual evolution although Scotland has undergone radical changes in approach. No elements of universal developmental assessment programmes meet World Health Organization screening criteria, although some assessments are configured as screening activities. The roles of doctors and nurses vary greatly by country as do the timing, content and likely costs of programmes. Inter-professional communication presents challenges to all the studied health services. No programme has evidence for improved health outcomes or cost effectiveness. Developmental surveillance programmes vary greatly and their structure appears to be driven by historical factors as much as by evidence. Consensus should be reached about which surveillance activities constitute screening, and the predictive validity of these components needs to be established and judged against World Health Organization screening criteria. Costs and consequences of specific programmes should be assessed, and the issue of inter-professional communication about children at remediable developmental risk should be prioritised.
Dynamic remapping of parallel computations with varying resource demands
NASA Technical Reports Server (NTRS)
Nicol, D. M.; Saltz, J. H.
1986-01-01
A large class of computational problems is characterized by frequent synchronization, and computational requirements which change as a function of time. When such a problem must be solved on a message passing multiprocessor machine, the combination of these characteristics lead to system performance which decreases in time. Performance can be improved with periodic redistribution of computational load; however, redistribution can exact a sometimes large delay cost. We study the issue of deciding when to invoke a global load remapping mechanism. Such a decision policy must effectively weigh the costs of remapping against the performance benefits. We treat this problem by constructing two analytic models which exhibit stochastically decreasing performance. One model is quite tractable; we are able to describe the optimal remapping algorithm, and the optimal decision policy governing when to invoke that algorithm. However, computational complexity prohibits the use of the optimal remapping decision policy. We then study the performance of a general remapping policy on both analytic models. This policy attempts to minimize a statistic W(n) which measures the system degradation (including the cost of remapping) per computation step over a period of n steps. We show that as a function of time, the expected value of W(n) has at most one minimum, and that when this minimum exists it defines the optimal fixed-interval remapping policy. Our decision policy appeals to this result by remapping when it estimates that W(n) is minimized. Our performance data suggests that this policy effectively finds the natural frequency of remapping. We also use the analytic models to express the relationship between performance and remapping cost, number of processors, and the computation's stochastic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds aremore » shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.« less
Global eradication of poliomyelitis: benefit-cost analysis.
Bart, K. J.; Foulds, J.; Patriarca, P.
1996-01-01
A benefit-cost analysis of the Poliomyelitis Eradication Initiative was undertaken to facilitate national and international decision-making with regard to financial support. The base case examined the net costs and benefits during the period 1986-2040; the model assumed differential costs for oral poliovirus vaccine (OPV) and vaccine delivery in industrialized and developing countries, and ignored all benefits aside from reductions in direct costs for treatment and rehabilitation. The model showed that the "break-even" point at which benefits exceeded costs was the year 2007, with a saving of US$ 13 600 million by the year 2040. Sensitivity analyses revealed only small differences in the break-even point and in the dollars saved, when compared with the base case, even with large variations in the target age group for vaccination, the proportion of case-patients seeking medical attention, and the cost of vaccine delivery. The technical feasibility of global eradication is supported by the availability of an easily administered, inexpensive vaccine (OPV), the epidemiological characteristics of poliomyelitis, and the successful experience in the Americas with elimination of wild poliovirus infection. This model demonstrates that the Poliomyelitis Eradication Initiative is economically justified. PMID:8653814
NASA Astrophysics Data System (ADS)
Han, Yan; Kun, Zhang; Jin, Wang
2016-07-01
Cognitive behaviors are determined by underlying neural networks. Many brain functions, such as learning and memory, have been successfully described by attractor dynamics. For decision making in the brain, a quantitative description of global attractor landscapes has not yet been completely given. Here, we developed a theoretical framework to quantify the landscape associated with the steady state probability distributions and associated steady state curl flux, measuring the degree of non-equilibrium through the degree of detailed balance breaking for decision making. We quantified the decision-making processes with optimal paths from the undecided attractor states to the decided attractor states, which are identified as basins of attractions, on the landscape. Both landscape and flux determine the kinetic paths and speed. The kinetics and global stability of decision making are explored by quantifying the landscape topography through the barrier heights and the mean first passage time. Our theoretical predictions are in agreement with experimental observations: more errors occur under time pressure. We quantitatively explored two mechanisms of the speed-accuracy tradeoff with speed emphasis and further uncovered the tradeoffs among speed, accuracy, and energy cost. Our results imply that there is an optimal balance among speed, accuracy, and the energy cost in decision making. We uncovered the possible mechanisms of changes of mind and how mind changes improve performance in decision processes. Our landscape approach can help facilitate an understanding of the underlying physical mechanisms of cognitive processes and identify the key factors in the corresponding neural networks. Project supported by the National Natural Science Foundation of China (Grant Nos. 21190040, 91430217, and 11305176).
Meisner, Søren; Lehur, Paul-Antoine; Moran, Brendan; Martins, Lina; Jemec, Gregor Borut Ernst
2012-01-01
Background Peristomal skin complications (PSCs) are the most common post-operative complications following creation of a stoma. Living with a stoma is a challenge, not only for the patient and their carers, but also for society as a whole. Due to methodological problems of PSC assessment, the associated health-economic burden of medium to longterm complications has been poorly described. Aim The aim of the present study was to create a model to estimate treatment costs of PSCs using the standardized assessment Ostomy Skin Tool as a reference. The resultant model was applied to a real-life global data set of stoma patients (n = 3017) to determine the prevalence and financial burden of PSCs. Methods Eleven experienced stoma care nurses were interviewed to get a global understanding of a treatment algorithm that formed the basis of the cost analysis. The estimated costs were based on a seven week treatment period. PSC costs were estimated for five underlying diagnostic categories and three levels of severity. The estimated treatment costs of severe cases of PSCs were increased 2–5 fold for the different diagnostic categories of PSCs compared with mild cases. French unit costs were applied to the global data set. Results The estimated total average cost for a seven week treatment period (including appliances and accessories) was 263€ for those with PSCs (n = 1742) compared to 215€ for those without PSCs (n = 1172). A co-variance analysis showed that leakage level had a significant impact on PSC cost from ‘rarely/never’ to ‘always/often’ p<0.00001 and from ‘rarely/never’ to ‘sometimes’ p = 0.0115. Conclusion PSCs are common and troublesome and the consequences are substantial, both for the patient and from a health economic viewpoint. PSCs should be diagnosed and treated at an early stage to prevent long term, debilitating and expensive complications. PMID:22679479
Sci—Fri PM: Topics — 03: The Global Task Force on Radiotherapy for Cancer Control: Core Investments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dyk, J.; Jaffray, D. A.; MacPherson, M. S.
The Union for International Cancer Control (UICC) is a membership-based, non-governmental organization with a mandate to “…to unite the cancer community to reduce the global cancer burden, to promote greater equity, and to integrate cancer control into the world health and development agenda.” COMP is an associate member of the UICC. It is well recognized by the UICC that there are major gaps between high, and low and middle income countries, in terms of access to cancer services including access to radiation therapy. In this context, the UICC has developed a Global Task Force on Radiotherapy for Cancer Control withmore » a charge to answer a single question: “What does it cost to close the gap between what exists today and reasonable access to radiotherapy globally?” The Task Force consists of leaders internationally recognized for their radiation treatment related expertise (radiation oncologists, medical physicists, radiation therapists) as well as those with global health and economics specialization. The Task Force has developed three working groups: (1) to look at the global burden of cancer; (2) to look at the infrastructure requirements (facilities, equipment, personnel); and (3) to consider outcomes in terms of numbers of lives saved and palliated patients. A report is due at the World Cancer Congress in December 2014. This presentation reviews the infrastructure considerations under analysis by the second work group. The infrastructure parameters being addressed include capital costs of buildings and equipment and operating costs, which include human resources, equipment servicing and quality control, and general overhead.« less
Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations
NASA Astrophysics Data System (ADS)
van Ruijven, B. J.; O'Neill, B. C.
2014-12-01
Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S., Rao, S., van Ruijven, B., van Vuuren, D.P., Wilson, C., 2011. Energy Pathways for Sustainable Development, The Global Energy Assessment: Toward a More Sustainable Future. IIASA, Laxenburg, Austria and Cambridge University Press, Cambridge, UK.
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.; Walters, Robert J.; Messenger, Scott R.; Burke, Edward A.
1996-01-01
An analysis embodied in a PC computer program is presented, which quantitatively demonstrates how the availability of radiation hard solar cells can help minimize the cost of a global satellite communications system. An important distinction between the currently proposed systems, such as Iridium, Odyssey and Ellipsat, is the number of satellites employed and their operating altitudes. Analysis of the major costs associated with implementing these systems shows that operation at orbital altitudes within the earth's radiation belts (10(exp 3) to 10(exp 4)km) can reduce the total cost of a system by several hundred percent, so long as radiation hard components including solar cells can be used. A detailed evaluation of the predicted performance of photovoltaic arrays using several different planar solar cell technologies is given, including commercially available Si and GaAs/Ge, and InP/Si which is currently under development. Several examples of applying the program are given, which show that the end of life (EOL) power density of different technologies can vary by a factor of ten for certain missions. Therefore, although a relatively radiation-soft technology can usually provide the required EOL power by simply increasing the size of the array, the impact upon the total system budget could be unacceptable, due to increased launch and hardware costs. In aggregate, these factors can account for more than a 10% increase in the total system cost. Since the estimated total costs of proposed global-coverage systems range from $1B to $9B, the availability of radiation-hard solar cells could make a decisive difference in the selection of a particular constellation architecture.
Center for Global Health announces grants to support portable technologies
NCI's Center for Global Health announced grants that will support the development and validation of low-cost, portable technologies. These technologies have the potential to improve early detection, diagnosis, and non-invasive or minimally invasive treatm
Activities That Reduce Global Anthropogenic Methane Emissions Grant - Closed Announcement FY 2012
Grant to fund eligible projects for activities that advance near-term, cost-effective methane abatement or recovery and use as a clean energy source, and support the goals of of theGlobal Methane Initiative.
DOT National Transportation Integrated Search
2010-06-01
The U.S. Department of Transportation (DOT) has developed a recpitlaization plan to reduce technical, cost, and programmatic risks of the DOT-funded inland segment of the Nationwide Differential Global Positioning System (NDGPS)
Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions
NASA Technical Reports Server (NTRS)
Albee, Arden; Battel, Steven; Brace, Richard; Burdick, Garry; Casani, John; Lavell, Jeffrey; Leising, Charles; MacPherson, Duncan; Burr, Peter; Dipprey, Duane
2000-01-01
NASA's Mars Surveyor Program (MSP) began in 1994 with plans to send spacecraft to Mars every 26 months. Mars Global Surveyor (MGS), a global mapping mission, was launched in 1996 and is currently orbiting Mars. Mars Surveyor '98 consisted of Mars Climate Orbiter (MCO) and Mars Polar Lander (MPL). Lockheed Martin Astronautics (LMA) was the prime contractor for Mars Surveyor '98. The Jet Propulsion Laboratory (JPL), California Institute of Technology, manages the Mars Surveyor Program for NASA's Office of Space Science. MPL was developed under very tight funding constraints. The combined development cost of MPL and MCO, including the cost of the two launch vehicles, was approximately the same as the development cost of the Mars Pathfinder mission, including the cost of its single launch vehicle. The MPL project accepted the challenge to develop effective implementation methodologies consistent with programmatic requirements.
Tang, Zhang-Chun; Zhenzhou, Lu; Zhiwen, Liu; Ningcong, Xiao
2015-01-01
There are various uncertain parameters in the techno-economic assessments (TEAs) of biodiesel production, including capital cost, interest rate, feedstock price, maintenance rate, biodiesel conversion efficiency, glycerol price and operating cost. However, fewer studies focus on the influence of these parameters on TEAs. This paper investigated the effects of these parameters on the life cycle cost (LCC) and the unit cost (UC) in the TEAs of biodiesel production. The results show that LCC and UC exhibit variations when involving uncertain parameters. Based on the uncertainty analysis, three global sensitivity analysis (GSA) methods are utilized to quantify the contribution of an individual uncertain parameter to LCC and UC. The GSA results reveal that the feedstock price and the interest rate produce considerable effects on the TEAs. These results can provide a useful guide for entrepreneurs when they plan plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Turner, Hugo C; Bettis, Alison A; Chu, Brian K; McFarland, Deborah A; Hooper, Pamela J; Mante, Sunny D; Fitzpatrick, Christopher; Bradley, Mark H
2017-03-15
It has been estimated that $154 million per year will be required during 2015-2020 to continue the Global Programme to Eliminate Lymphatic Filariasis (GPELF). In light of this, it is important to understand the program's current value. Here, we evaluate the cost-effectiveness and cost-benefit of the preventive chemotherapy that was provided under the GPELF between 2000 and 2014. In addition, we also investigate the potential cost-effectiveness of hydrocele surgery. Our economic evaluation of preventive chemotherapy was based on previously published health and economic impact estimates (between 2000 and 2014). The delivery costs of treatment were estimated using a model developed by the World Health Organization. We also developed a model to investigate the number of disability-adjusted life years (DALYs) averted by a hydrocelectomy and identified the cost threshold under which it would be considered cost-effective. The projected cost-effectiveness and cost-benefit of preventive chemotherapy were very promising, and this was robust over a wide range of costs and assumptions. When the economic value of the donated drugs was not included, the GPELF would be classed as highly cost-effective. We projected that a typical hydrocelectomy would be classed as highly cost-effective if the surgery cost less than $66 and cost-effective if less than $398 (based on the World Bank's cost-effectiveness thresholds for low income countries). Both the preventive chemotherapy and hydrocele surgeries provided under the GPELF are incredibly cost-effective and offer a very good investment in public health. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Bettis, Alison A.; Chu, Brian K.; McFarland, Deborah A.; Hooper, Pamela J.; Mante, Sunny D.; Fitzpatrick, Christopher; Bradley, Mark H.
2017-01-01
Abstract Background. It has been estimated that $154 million per year will be required during 2015–2020 to continue the Global Programme to Eliminate Lymphatic Filariasis (GPELF). In light of this, it is important to understand the program’s current value. Here, we evaluate the cost-effectiveness and cost-benefit of the preventive chemotherapy that was provided under the GPELF between 2000 and 2014. In addition, we also investigate the potential cost-effectiveness of hydrocele surgery. Methods. Our economic evaluation of preventive chemotherapy was based on previously published health and economic impact estimates (between 2000 and 2014). The delivery costs of treatment were estimated using a model developed by the World Health Organization. We also developed a model to investigate the number of disability-adjusted life years (DALYs) averted by a hydrocelectomy and identified the cost threshold under which it would be considered cost-effective. Results. The projected cost-effectiveness and cost-benefit of preventive chemotherapy were very promising, and this was robust over a wide range of costs and assumptions. When the economic value of the donated drugs was not included, the GPELF would be classed as highly cost-effective. We projected that a typical hydrocelectomy would be classed as highly cost-effective if the surgery cost less than $66 and cost-effective if less than $398 (based on the World Bank’s cost-effectiveness thresholds for low income countries). Conclusions. Both the preventive chemotherapy and hydrocele surgeries provided under the GPELF are incredibly cost-effective and offer a very good investment in public health. PMID:27956460
A basic analysis toolkit for biological sequences
Giancarlo, Raffaele; Siragusa, Alessandro; Siragusa, Enrico; Utro, Filippo
2007-01-01
This paper presents a software library, nicknamed BATS, for some basic sequence analysis tasks. Namely, local alignments, via approximate string matching, and global alignments, via longest common subsequence and alignments with affine and concave gap cost functions. Moreover, it also supports filtering operations to select strings from a set and establish their statistical significance, via z-score computation. None of the algorithms is new, but although they are generally regarded as fundamental for sequence analysis, they have not been implemented in a single and consistent software package, as we do here. Therefore, our main contribution is to fill this gap between algorithmic theory and practice by providing an extensible and easy to use software library that includes algorithms for the mentioned string matching and alignment problems. The library consists of C/C++ library functions as well as Perl library functions. It can be interfaced with Bioperl and can also be used as a stand-alone system with a GUI. The software is available at under the GNU GPL. PMID:17877802
NASA Astrophysics Data System (ADS)
Neverre, Noémie; Dumas, Patrice
2014-05-01
The aim is to be able to assess future domestic water demands in a region with heterogeneous levels of economic development. This work offers an original combination of a quantitative projection of demands (similar to WaterGAP methodology) and an estimation of the marginal benefit of water. This method is applicable to different levels of economic development and usable for large-scale hydroeconomic modelling. The global method consists in building demand functions taking into account the impact of both the price of water and the level of equipment, proxied by economic development, on domestic water demand. Our basis is a 3-blocks inverse demand function: the first block consists of essential water requirements for food and hygiene; the second block matches intermediate needs; and the last block corresponds to additional water consumption, such as outdoor uses, which are the least valued. The volume of the first block is fixed to match recommended basic water requirements from the literature, but we assume that the volume limits of blocks 2 and 3 depend on the level of household equipment and therefore evolve with the level of GDP per capita (structural change), with a saturation. For blocks 1 and 2 we determine the value of water from elasticity, price and quantity data from the literature, using the point-extension method. For block 3, we use a hypothetical zero-cost demand and maximal demand with actual water costs to linearly interpolate the inverse demand function. These functions are calibrated on the 24 countries part of the Mediterranean basin using data from SIMEDD, and are used for the projection and valuation of domestic water demands at the 2050 horizon. They enable to project total water demand, and also the respective shares of the different categories of demand (basic demand, intermediate demand and additional uses). These projections are performed under different combined scenarios of population, GDP and water costs.
de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M
2016-06-17
We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
Global optimization method based on ray tracing to achieve optimum figure error compensation
NASA Astrophysics Data System (ADS)
Liu, Xiaolin; Guo, Xuejia; Tang, Tianjin
2017-02-01
Figure error would degrade the performance of optical system. When predicting the performance and performing system assembly, compensation by clocking of optical components around the optical axis is a conventional but user-dependent method. Commercial optical software cannot optimize this clocking. Meanwhile existing automatic figure-error balancing methods can introduce approximate calculation error and the build process of optimization model is complex and time-consuming. To overcome these limitations, an accurate and automatic global optimization method of figure error balancing is proposed. This method is based on precise ray tracing to calculate the wavefront error, not approximate calculation, under a given elements' rotation angles combination. The composite wavefront error root-mean-square (RMS) acts as the cost function. Simulated annealing algorithm is used to seek the optimal combination of rotation angles of each optical element. This method can be applied to all rotational symmetric optics. Optimization results show that this method is 49% better than previous approximate analytical method.
Global advances in health and medicine through systems biology: an example from the Netherlands.
van der Heijden, Marianne J E; Schroen, Yan
2012-09-01
Globally, healthcare systems are facing problems with increasing healthcare costs due to chronic diseases. Cardiovascular disease, cancer, diabetes, depression, and chronic lung disease are some of the top chronic diseases that put pressure on our healthcare systems and are very difficult to resolve. The chronic diseases mentioned are often lifestyle-related and require a personalized approach. The solutions that we currently have at hand seem to be insufficient in meeting the needs of the patients and of our healthcare systems: the cracks in our systems are showing. Patients with chronic illness and multimorbidity find themselves caught in a web of referrals between medical specialists and conflicting treatment plans. As a result, they are consuming a lot of healthcare without actually reaching their goal: attaining the most optimal quality of life and the least physical burden possible. In short, mechanisms that previously functioned perfectly must now be replaced by new approaches. The supply of the healthcare system no longer meets the demands of society.
NASA Astrophysics Data System (ADS)
Grosso, Juan M.; Ocampo-Martinez, Carlos; Puig, Vicenç
2017-10-01
This paper proposes a distributed model predictive control approach designed to work in a cooperative manner for controlling flow-based networks showing periodic behaviours. Under this distributed approach, local controllers cooperate in order to enhance the performance of the whole flow network avoiding the use of a coordination layer. Alternatively, controllers use both the monolithic model of the network and the given global cost function to optimise the control inputs of the local controllers but taking into account the effect of their decisions over the remainder subsystems conforming the entire network. In this sense, a global (all-to-all) communication strategy is considered. Although the Pareto optimality cannot be reached due to the existence of non-sparse coupling constraints, the asymptotic convergence to a Nash equilibrium is guaranteed. The resultant strategy is tested and its effectiveness is shown when applied to a large-scale complex flow-based network: the Barcelona drinking water supply system.
The global diabetes model: user friendly version 3.0.
Brown, J B; Russell, A; Chan, W; Pedula, K; Aickin, M
2000-11-01
The attributes of Release 3.0 of the user friendly version (UFV) of the global diabetes model (GDM) are described and documented in detail. The GDM is a continuous, stochastic microsimulation model of type 2 diabetes. Suitable for predicting the medical futures of both individuals with diabetes and representative diabetic populations, the GDM predicts medical events (complications of diabetes), survival, utilities, and medical care costs. Incidence rate functions for microvascular and macrovascular complications are based on a combination of published studies and analyses of data describing diabetic members of Kaiser Permanente Northwest Region, a non-profit group-model health maintenance organization. Active risk factors include average blood glucose (HbAlc), systolic blood pressure (SBP), low density lipoprotein cholesterol (LDL), high density lipoprotein cholesterol (HDL), triglycerides, smoking status, and use of prophylactic aspirin. Events predicted include diabetic eye disease, diabetic nephropathy, peripheral neuropathy amputation, myocardial infarction, stroke, peripheral artery disease, congestive heart failure, coronary artery surgery, coronary angioplasty, and death.
1995-09-01
New Global Competition” ...10 “New Systems for Process Control and Product Costing ” . . . 11 “Performance Measurement Systems for the Future”, should...Selected Highlights: Page 53-World Class - Definition and applicable discussions. “Its clear that yesterdays cost systems don’t work in todays...Why conventional cost systems fail Indirect, No information about activities, Too late. Plant activities only, Inaccurate product costs , No customer
Benchmark Production Scheduling Problems for Job Shops with Interactive Constraints
1993-09-01
Goldratt has stated that cost accounting is the number one enemy of productivity (Goldratt and Cox, 1992). Why does he believe this? Cost accounting ...28). This incorrect emphasis can lead managers to make improper decisions. For example, traditional analysis based on cost accounting may lead to...measures (Goldratt and Fox, 1986:28). Global Operational Measures As opposed to measuring each individual process station against cost accounting
Douw, Linda; Stam, Cornelis J.; Tewarie, Prejaas; Hillebrand, Arjan
2017-01-01
Abstract Introduction Studies using functional connectivity and network analyses based on magnetoencephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. However, these analyses currently depend on the availability of costly and sometimes burdensome individual MR scans for co‐registration. We evaluated the consistency of these measures when using a template MRI, instead of native MRI, for the analysis of functional connectivity and network topology. Methods Seventeen healthy participants underwent resting‐state eyes‐closed MEG and anatomical MRI. These data were projected into source space using an atlas‐based peak voxel and a centroid beamforming approach either using (1) participants’ native MRIs or (2) the Montreal Neurological Institute's template. For both methods, time series were reconstructed from 78 cortical atlas regions. Relative power was determined in six classical frequency bands per region and globally averaged. Functional connectivity (phase lag index) between each pair of regions was calculated. The adjacency matrices were then used to reconstruct functional networks, of which regional and global metrics were determined. Intraclass correlation coefficients were calculated and Bland–Altman plots were made to quantify the consistency and potential bias of the use of template versus native MRI. Results Co‐registration with the template yielded largely consistent relative power, connectivity, and network estimates compared to native MRI. Discussion These findings indicate that there is no (systematic) bias or inconsistency between template and native MRI co‐registration of MEG. They open up possibilities for retrospective and prospective analyses to MEG datasets in the general population that have no native MRIs available. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Hum Brain Mapp 39:104–119, 2018. © 2017 Wiley Periodicals, Inc. PMID:28990264
Insights into multimodal imaging classification of ADHD
Colby, John B.; Rudie, Jeffrey D.; Brown, Jesse A.; Douglas, Pamela K.; Cohen, Mark S.; Shehzad, Zarrar
2012-01-01
Attention deficit hyperactivity disorder (ADHD) currently is diagnosed in children by clinicians via subjective ADHD-specific behavioral instruments and by reports from the parents and teachers. Considering its high prevalence and large economic and societal costs, a quantitative tool that aids in diagnosis by characterizing underlying neurobiology would be extremely valuable. This provided motivation for the ADHD-200 machine learning (ML) competition, a multisite collaborative effort to investigate imaging classifiers for ADHD. Here we present our ML approach, which used structural and functional magnetic resonance imaging data, combined with demographic information, to predict diagnostic status of individuals with ADHD from typically developing (TD) children across eight different research sites. Structural features included quantitative metrics from 113 cortical and non-cortical regions. Functional features included Pearson correlation functional connectivity matrices, nodal and global graph theoretical measures, nodal power spectra, voxelwise global connectivity, and voxelwise regional homogeneity. We performed feature ranking for each site and modality using the multiple support vector machine recursive feature elimination (SVM-RFE) algorithm, and feature subset selection by optimizing the expected generalization performance of a radial basis function kernel SVM (RBF-SVM) trained across a range of the top features. Site-specific RBF-SVMs using these optimal feature sets from each imaging modality were used to predict the class labels of an independent hold-out test set. A voting approach was used to combine these multiple predictions and assign final class labels. With this methodology we were able to predict diagnosis of ADHD with 55% accuracy (versus a 39% chance level in this sample), 33% sensitivity, and 80% specificity. This approach also allowed us to evaluate predictive structural and functional features giving insight into abnormal brain circuitry in ADHD. PMID:22912605
Activity-based costing and its application in a Turkish university hospital.
Yereli, Ayşe Necef
2009-03-01
Resource management in hospitals is of increasing importance in today's global economy. Traditional accounting systems have become inadequate for managing hospital resources and accurately determining service costs. Conversely, the activity-based costing approach to hospital accounting is an effective cost management model that determines costs and evaluates financial performance across departments. Obtaining costs that are more accurate can enable hospitals to analyze and interpret costing decisions and make more accurate budgeting decisions. Traditional and activity-based costing approaches were compared using a cost analysis of gall bladder surgeries in the general surgery department of one university hospital in Manisa, Turkey. Copyright (c) AORN, Inc, 2009.
Advancing Technologies for Climate Observation
NASA Technical Reports Server (NTRS)
Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.
2014-01-01
Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques
The Processing Cost of Reference Set Computation: Acquisition of Stress Shift and Focus
ERIC Educational Resources Information Center
Reinhart, Tanya
2004-01-01
Reference set computation -- the construction of a (global) comparison set to determine whether a given derivation is appropriate in context -- comes with a processing cost. I argue that this cost is directly visible at the acquisition stage: In those linguistic areas in which it has been independently established that such computation is indeed…
Barfar, Eshagh; Sharifi, Vandad; Amini, Homayoun; Mottaghipour, Yasaman; Yunesian, Masud; Tehranidoost, Mehdi; Sobhebidari, Payam; Rashidian, Arash
2017-09-01
There have been claims that community mental health principles leads to the maintenance of better health and functioning in patients and can be more economical for patients with severe and chronic mental disorders. Economic evaluation studies have been used to assess the cost-effectiveness of national health programs, or to propose efficient strategies for health care delivery. The current study is intended to test the cost-effectiveness of an Aftercare Service when compared with Treatment-As-Usual for patients with severe mental disorders in Iran. This study was a parallel group randomized controlled trial. A total of 160 post-discharge eligible patients were randomized into two equal patient groups, Aftercare Service (that includes either Home Visiting Care, or Telephone Follow-up for outpatient treatment) vs Treatment-As-Usual, using stratified balanced block randomization method. All patients were followed for 12 months after discharge. The perspective of the present study was the societal perspective. The outcome measures were the rate of readmission at the hospitals after discharge, psychotic symptoms, manic symptoms, depressive symptoms, illness severity, global functioning, quality of life, and patients' satisfaction with the services. The costs included the intervention costs and the patient and family costs in the evaluation period. There was no significant difference in effectiveness measures between the two groups. The Aftercare Service arm was about 66,000 US$ cheaper than Treatment-As-Usual arm. The average total cost per patient in the Treatment-As-Usual group was about 4651 USD, while it was reduced to 3823 US$ in the Aftercare Service group; equivalent to a cost reduction of about 800 USD per patient per year. Given that there was no significant difference in effectiveness measures between the two groups (slightly in favor of the intervention), the Aftercare Service was cost-effective. The most important limitation of the study was the relatively small sample size due to limited budget for the implementation of the study. A larger sample size and longer follow-ups are warranted. Considering the limited resources and equity concerns for health systems, the importance of making decisions about healthcare interventions based on cost-effectiveness evidence is increasing. Our results suggest that the aftercare service can be recommended as an efficient service delivery mode, especially when psychiatric bed requirements are insufficient for a population. Further research should continue the work done with a larger sample size and longer follow-ups to further establish the cost-effectiveness analysis of an aftercare service program compared with routine conventional care.
Identification of Flights for Cost-Efficient Climate Impact Reduction
NASA Technical Reports Server (NTRS)
Chen, Neil Y.; Kirschen, Philippe G.; Sridhar, Banavar; Ng, Hok K.
2014-01-01
The aircraft-induced climate impact has drawn attention in recent years. Aviation operations affect the environment mainly through the release of carbon-dioxide, nitrogen-oxides, and by the formation of contrails. Recent research has shown that altering trajectories can reduce aviation environmental cost by reducing Absolute Global Temperature Change Potential, a climate assessment metric that adapts a linear system for modeling the global temperature response to aviation emissions and contrails. However, these methods will increase fuel consumption that leads to higher fuel costs imposed on airlines. The goal of this work is to identify ights for which the environmental cost of climate impact reduction outweighs the increase in operational cost on an individual aircraft basis. Environmental cost is quanti ed using the monetary social cost of carbon. The increase in operational cost is considering cost of additional fuel usage only. For this paper, an algorithm has been developed that modi es the trajectories of ights to evaluate the e ect of environ- mental cost and operational cost of ights in the United States National Airspace System. The algorithm identi es ights for which the environmental cost of climate impact can be reduced and modi es their trajectories to achieve maximum environmental net bene t, which is the di erence between reduction in environmental cost and additional operational cost. The result shows on a selected day, 16% of the ights among eight major airlines, or 2,043 ights, can achieve environmental net bene t using weather forecast data, resulting in net bene t of around $500,000. The result also suggests that the long-haul ights would be better candidates for cost-ecient climate impact reduction than the short haul ights. The algorithm will help to identify the characteristics of ights that are capable of applying cost-ecient climate impact reduction strategy.
Moving Beyond GDP: Cost Effectiveness of Cochlear Implantation and Deaf Education in Latin America.
Emmett, Susan D; Tucci, Debara L; Bento, Ricardo F; Garcia, Juan M; Juman, Solaiman; Chiossone-Kerdel, Juan A; Liu, Ta J; de Muñoz, Patricia Castellanos; Ullauri, Alejandra; Letort, Jose J; Mansilla, Teresita; Urquijo, Diana P; Aparicio, Maria L; Gong, Wenfeng; Francis, Howard W; Saunders, James E
2016-09-01
Cochlear implantation (CI) and deaf education are cost effective management strategies of childhood profound sensorineural hearing loss in Latin America. CI has been widely established as cost effective in North America and Europe and is considered standard of care in those regions, yet cost effectiveness in other economic environments has not been explored. With 80% of the global hearing loss burden existing in low- and middle-income countries, developing cost effective management strategies in these settings is essential. This analysis represents the continuation of a global assessment of CI and deaf education cost effectiveness. Brazil, Colombia, Ecuador, Guatemala, Paraguay, Trinidad and Tobago, and Venezuela participated in the study. A Disability Adjusted Life Years model was applied with 3% discounting and 10-year length of analysis. Experts from each country supplied cost estimates from known costs and published data. Sensitivity analysis was performed to evaluate the effect of device cost, professional salaries, annual number of implants, and probability of device failure. Cost effectiveness was determined using the World Health Organization standard of cost effectiveness ratio/gross domestic product per capita (CER/GDP)<3. Deaf education was very cost effective in all countries (CER/GDP 0.07-0.93). CI was cost effective in all countries (CER/GDP 0.69-2.96), with borderline cost effectiveness in the Guatemalan sensitivity analysis (Max CER/GDP 3.21). Both cochlear implantation and deaf education are widely cost effective in Latin America. In the lower-middle income economy of Guatemala, implant cost may have a larger impact. GDP is less influential in the middle- and high-income economies included in this study.
Vossius, Corinna; Lotto, Editha; Lyanga, Sara; Mduma, Estomih; Msemo, Georgina; Perlman, Jeffrey; Ersdal, Hege L
2014-01-01
The Helping Babies Breathe" (HBB) program is an evidence-based curriculum in basic neonatal care and resuscitation, utilizing simulation-based training to educate large numbers of birth attendants in low-resource countries. We analyzed its cost-effectiveness at a faith-based Haydom Lutheran Hospital (HLH) in rural Tanzania. Data about early neonatal mortality and fresh stillbirth rates were drawn from a linked observational study during one year before and one year after full implementation of the HBB program. Cost data were provided by the Tanzanian Ministry of Health and Social Welfare (MOHSW), the research department at HLH, and the manufacturer of the training material Lærdal Global Health. Costs per life saved were USD 233, while they were USD 4.21 per life year gained. Costs for maintaining the program were USD 80 per life saved and USD 1.44 per life year gained. Costs per disease adjusted life year (DALY) averted ranged from International Dollars (ID; a virtual valuta corrected for purchasing power world-wide) 12 to 23, according to how DALYs were calculated. The HBB program is a low-cost intervention. Implementation in a very rural faith-based hospital like HLH has been highly cost-effective. To facilitate further global implementation of HBB a cost-effectiveness analysis including government owned institutions, urban hospitals and district facilities is desirable for a more diverse analysis to explore cost-driving factors and predictors of enhanced cost-effectiveness.
Vossius, Corinna; Lotto, Editha; Lyanga, Sara; Mduma, Estomih; Msemo, Georgina; Perlman, Jeffrey; Ersdal, Hege L.
2014-01-01
Objective The Helping Babies Breathe” (HBB) program is an evidence-based curriculum in basic neonatal care and resuscitation, utilizing simulation-based training to educate large numbers of birth attendants in low-resource countries. We analyzed its cost-effectiveness at a faith-based Haydom Lutheran Hospital (HLH) in rural Tanzania. Methods Data about early neonatal mortality and fresh stillbirth rates were drawn from a linked observational study during one year before and one year after full implementation of the HBB program. Cost data were provided by the Tanzanian Ministry of Health and Social Welfare (MOHSW), the research department at HLH, and the manufacturer of the training material Lærdal Global Health. Findings Costs per life saved were USD 233, while they were USD 4.21 per life year gained. Costs for maintaining the program were USD 80 per life saved and USD 1.44 per life year gained. Costs per disease adjusted life year (DALY) averted ranged from International Dollars (ID; a virtual valuta corrected for purchasing power world-wide) 12 to 23, according to how DALYs were calculated. Conclusion The HBB program is a low-cost intervention. Implementation in a very rural faith-based hospital like HLH has been highly cost-effective. To facilitate further global implementation of HBB a cost-effectiveness analysis including government owned institutions, urban hospitals and district facilities is desirable for a more diverse analysis to explore cost-driving factors and predictors of enhanced cost-effectiveness. PMID:25006802
Tuition Fees and Student Financial Assistance: 2010 Global Year
ERIC Educational Resources Information Center
Marcucci, Pamela; Usher, Alex
2011-01-01
Since the start of the global financial crisis a little over two years ago, many concerns have been raised on how it might affect funding to higher education and whether or not it might hasten moves toward greater cost sharing. While, globally, some steps have been taken in this direction, in most countries, hard decisions have yet to be taken on…
Detecting the elusive cost of parasites on fig seed production
NASA Astrophysics Data System (ADS)
Segar, Simon T.; Mardiastuti, Ani; Wheeler, Philip M.; Cook, James M.
2018-07-01
Mutualisms provide essential ecosystem functions such as pollination and contribute considerably to global biodiversity. However, they are also exploited by parasites that remove resources and thus impose costs on one or both of the mutualistic partners. The fig/pollinator interaction is a classic obligate mutualism; it is pantropical and involves >750 Ficus species and their host-specific pollinating wasps (family Agaonidae). Figs also host parasites of the mutualism that should consume pollinators or seeds, depending on their larval ecology. We collected data from a large crop of figs on Ficus glandifera var. brachysyce in a Sulawesi rainforest with an unusually high number of Eukoebelea sp. parasites. We found that these parasites have a significant negative correlation with fig seed production as well as with pollinator offspring production. Eukoebelea wasps form the basal genus in subfamily Sycophaginae (Chalcidoidea) and their larval biology is considered unknown. Our analysis suggests that they feed as flower gallers and impose direct costs on the fig tree, but a strategy including the consumption of pollinator larvae cannot be ruled out. We also present baseline data on the composition of the fig wasp community associated with F. glandifera var brachysyce and light trap catch data.
Current interventions in the management of knee osteoarthritis
Bhatia, Dinesh; Bejarano, Tatiana; Novo, Mario
2013-01-01
Osteoarthritis (OA) is progressive joint disease characterized by joint inflammation and a reparative bone response and is one of the top five most disabling conditions that affects more than one-third of persons > 65 years of age, with an average estimation of about 30 million Americans currently affected by this disease. Global estimates reveal more than 100 million people are affected by OA. The financial expenditures for the care of persons with OA are estimated at a total annual national cost estimate of $15.5-$28.6 billion per year. As the number of people >65 years increases, so does the prevalence of OA and the need for cost-effective treatment and care. Developing a treatment strategy which encompasses the underlying physiology of degenerative joint disease is crucial, but it should be considerate to the different age ranges and different population needs. This paper focuses on different exercise and treatment protocols (pharmacological and non-pharmacological), the outcomes of a rehabilitation center, clinician-directed program versus an at home directed individual program to view what parameters are best at reducing pain, increasing functional independence, and reducing cost for persons diagnosed with knee OA. PMID:23559821
Provincial Reconstruction Teams: Developing a Cost-Tracking Process will Enhance Decision-Making
2009-04-28
calculated on a per person basis these contractors account for approximately $9 million of the $30 7 While DoD captures costs in other areas, it...DoS Can Track PRT Costs Although U.S. government accounting standards require agencies to track program costs , according to officials, DoS and DoD...DoS’ global accounting and payroll systems have the capability to track total or individual PRT costs , according to DoS officials. In April 2008
Can we bet on negative emissions to achieve the 2°C target even under strong carbon cycle feedbacks?
NASA Astrophysics Data System (ADS)
Tanaka, K.; Yamagata, Y.; Yokohata, T.; Emori, S.; Hanaoka, T.
2015-12-01
Negative emission technologies such as Bioenergy with Carbon dioxide Capture and Storage (BioCCS) play an ever more crucial role in meeting the 2°C stabilization target. However, such technologies are currently at their infancy and their future penetrations may fall short of the scale required to stabilize the warming. Furthermore, the overshoot in the mid-century prior to a full realization of negative emissions would give rise to a risk because such a temporal but excessive warming above 2°C might amplify itself by strengthening climate-carbon cycle feedbacks. It has not been extensively assessed yet how carbon cycle feedbacks might play out during the overshoot in the context of negative emissions. This study explores how 2°C stabilization pathways, in particular those which undergo overshoot, can be influenced by carbon cycle feedbacks and asks their climatic and economic consequences. We compute 2°C stabilization emissions scenarios under a cost-effectiveness principle, in which the total abatement costs are minimized such that the global warming is capped at 2°C. We employ a reduced-complexity model, the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2), which comprises a box model of the global carbon cycle, simple parameterizations of the atmospheric chemistry, and a land-ocean energy balance model. The total abatement costs are estimated from the marginal abatement cost functions for CO2, CH4, N2O, and BC.Our preliminary results show that, if carbon cycle feedbacks turn out to be stronger than what is known today, it would incur substantial abatement costs to keep up with the 2°C stabilization goal. Our results also suggest that it would be less expensive in the long run to plan for a 2°C stabilization pathway by considering strong carbon cycle feedbacks because it would cost more if we correct the emission pathway in the mid-century to adjust for unexpectedly large carbon cycle feedbacks during overshoot. Furthermore, our tentative results point to a key policy message: do not rely on negative emissions to achieve the 2°C target. It would make more sense to gear climate mitigation actions toward the stabilization target without betting on negative emissions because negative emissions might create large overshoot in case of strong feedbacks.
[Methodological aspects of functional neuroimaging at high field strength: a critical review].
Scheef, L; Landsberg, M W; Boecker, H
2007-09-01
The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.
The missing biology in land carbon models (Invited)
NASA Astrophysics Data System (ADS)
Prentice, I. C.; Cornwell, W.; Dong, N.; Maire, V.; Wang, H.; Wright, I.
2013-12-01
Models of terrestrial carbon cycling give divergent results, and recent developments - notably the inclusion of nitrogen-carbon cycle coupling - have apparently made matters worse. More extensive benchmarking of models would be highly desirable, but is not a panacea. Problems with current models include overparameterization (assigning separate sets of parameter values for each plant functional type can easily obscure more fundamental model limitations), and the widespread persistence of incorrect paradigms to describe plant responses to environment. Next-generation models require a more sound basis in observations and theory. A possible way forward will be outlined. It will be shown how the principle of optimization by natural selection can yield testable, general hypotheses about plant function. A specific optimality hypothesis about the control of CO2 drawdown versus water loss by leaves will be shown to yield global and quantitatively verifable predictions of plant behaviour as demonstrated in field gas-exchange measurements across species from different environments, and in the global pattern of stable carbon isotope discrimination by plants. Combined with the co-limitation hypothesis for the control of photosynthetic capacity and an economic approach to the costs of nutrient acquisition, this hypothesis provides a potential foundation for a comprehensive predictive understanding of the controls of primary production on land.
Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.
Rees, Christopher L; Wheeler, Diek W; Hamilton, David J; White, Charise M; Komendantov, Alexander O; Ascoli, Giorgio A
2016-01-01
We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.
NASA Astrophysics Data System (ADS)
Caldera, Upeksha; Breyer, Christian
2017-12-01
Seawater reverse osmosis (SWRO) desalination is expected to play a pivotal role in helping to secure future global water supply. While the global reliance on SWRO plants for water security increases, there is no consensus on how the capital costs of SWRO plants will vary in the future. The aim of this paper is to analyze the past trends of the SWRO capital expenditures (capex) as the historic global cumulative online SWRO capacity increases, based on the learning curve concept. The SWRO capex learning curve is found based on 4,237 plants that came online from 1977 to 2015. A learning rate of 15% is determined, implying that the SWRO capex reduced by 15% when the cumulative capacity was doubled. Based on SWRO capacity annual growth rates of 10% and 20%, by 2030, the global average capex of SWRO plants is found to fall to 1,580 USD/(m3/d) and 1,340 USD/(m3/d), respectively. A learning curve for SWRO capital costs has not been presented previously. This research highlights the potential for decrease in SWRO capex with the increase in installation of SWRO plants and the value of the learning curve approach to estimate future SWRO capex.
Phosphate rock costs, prices and resources interaction.
Mew, M C
2016-01-15
This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation. Copyright © 2015 Elsevier B.V. All rights reserved.
Katchman, Benjamin A.; Smith, Joseph T.; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O’Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S.
2016-01-01
Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875
Model of investment appraisal of high-rise construction with account of cost of land resources
NASA Astrophysics Data System (ADS)
Okolelova, Ella; Shibaeva, Marina; Trukhina, Natalya
2018-03-01
The article considers problems and potential of high-rise construction as a global urbanization. The results of theoretical and practical studies on the appraisal of investments in high-rise construction are provided. High-rise construction has a number of apparent upsides in modern terms of development of megapolises and primarily it is economically efficient. Amid serious lack of construction sites, skyscrapers successfully deal with the need of manufacturing, office and living premises. Nevertheless, there are plenty issues, which are related with high-rise construction, and only thorough scrutiny of them allow to estimate the real economic efficiency of this branch. The article focuses on the question of economic efficiency of high-rise construction. The suggested model allows adjusting the parameters of a facility under construction, setting the tone for market value as well as the coefficient for appreciation of the construction net cost, that depends on the number of storey's, in the form of function or discrete values.
Katchman, Benjamin A; Smith, Joseph T; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O'Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S
2016-07-04
Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm(2). Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers.
'Cost in transliteration': the neurocognitive processing of Romanized writing.
Rao, Chaitra; Mathur, Avantika; Singh, Nandini C
2013-03-01
Romanized transliteration is widely used in internet communication and global commerce, yet we know little about its behavioural and neural processing. Here, we show that Romanized text imposes a significant neurocognitive load. Readers faced greater difficulty in identifying concrete words written in Romanized transliteration (Romanagari) compared to L1 and L2. Functional neuroimaging revealed that the neural cost of processing transliterations arose from significantly greater recruitment of language (left precentral gyrus, left inferior parietal lobule) and attention networks (left mid-cingulum). Additionally, transliterated text uniquely activated attention and control areas compared to both L1 (cerebellar vermis) and L2 (pre-supplementary motor area/pre-SMA). We attribute the neural effort of reading Romanized transliteration to (i) effortful phonological retrieval from unfamiliar orthographic forms and (ii) conflicting attentional demands imposed by mapping orthographic forms of one language to phonological-semantic representations in another. Finally, significant brain-behaviour correlation suggests that the left mid-cingulum modulates cognitive-linguistic conflict. Copyright © 2013 Elsevier Inc. All rights reserved.
Carbon costs and benefits of Indonesian rainforest conversion to plantations.
Guillaume, Thomas; Kotowska, Martyna M; Hertel, Dietrich; Knohl, Alexander; Krashevska, Valentyna; Murtilaksono, Kukuh; Scheu, Stefan; Kuzyakov, Yakov
2018-06-19
Land-use intensification in the tropics plays an important role in meeting global demand for agricultural commodities but generates high environmental costs. Here, we synthesize the impacts of rainforest conversion to tree plantations of increasing management intensity on carbon stocks and dynamics. Rainforests in Sumatra converted to jungle rubber, rubber, and oil palm monocultures lost 116 Mg C ha -1 , 159 Mg C ha -1 , and 174 Mg C ha -1 , respectively. Up to 21% of these carbon losses originated from belowground pools, where soil organic matter still decreases a decade after conversion. Oil palm cultivation leads to the highest carbon losses but it is the most efficient land use, providing the lowest ratio between ecosystem carbon storage loss or net primary production (NPP) decrease and yield. The imbalanced sharing of NPP between short-term human needs and maintenance of long-term ecosystem functions could compromise the ability of plantations to provide ecosystem services regulating climate, soil fertility, water, and nutrient cycles.
Network placement optimization for large-scale distributed system
NASA Astrophysics Data System (ADS)
Ren, Yu; Liu, Fangfang; Fu, Yunxia; Zhou, Zheng
2018-01-01
The network geometry strongly influences the performance of the distributed system, i.e., the coverage capability, measurement accuracy and overall cost. Therefore the network placement optimization represents an urgent issue in the distributed measurement, even in large-scale metrology. This paper presents an effective computer-assisted network placement optimization procedure for the large-scale distributed system and illustrates it with the example of the multi-tracker system. To get an optimal placement, the coverage capability and the coordinate uncertainty of the network are quantified. Then a placement optimization objective function is developed in terms of coverage capabilities, measurement accuracy and overall cost. And a novel grid-based encoding approach for Genetic algorithm is proposed. So the network placement is optimized by a global rough search and a local detailed search. Its obvious advantage is that there is no need for a specific initial placement. At last, a specific application illustrates this placement optimization procedure can simulate the measurement results of a specific network and design the optimal placement efficiently.
Estimated costs of production and potential prices for the WHO Essential Medicines List
Hill, Andrew M; Barber, Melissa J
2018-01-01
Introduction There are persistent gaps in access to affordable medicines. The WHO Model List of Essential Medicines (EML) includes medicines considered necessary for functional health systems. Methods A generic price estimation formula was developed by reviewing published analyses of cost of production for medicines and assuming manufacture in India, which included costs of formulation, packaging, taxation and a 10% profit margin. Data on per-kilogram prices of active pharmaceutical ingredient exported from India were retrieved from an online database. Estimated prices were compared with the lowest globally available prices for HIV/AIDS, tuberculosis (TB) and malaria medicines, and current prices in the UK, South Africa and India. Results The estimation formula had good predictive accuracy for HIV/AIDS, TB and malaria medicines. Estimated generic prices ranged from US$0.01 to US$1.45 per unit, with most in the lower end of this range. Lowest available prices were greater than estimated generic prices for 214/277 (77%) comparable items in the UK, 142/212 (67%) in South Africa and 118/298 (40%) in India. Lowest available prices were more than three times above estimated generic price for 47% of cases compared in the UK and 22% in South Africa. Conclusion A wide range of medicines in the EML can be profitably manufactured at very low cost. Most EML medicines are sold in the UK and South Africa at prices significantly higher than those estimated from production costs. Generic price estimation and international price comparisons could empower government price negotiations and support cost-effectiveness calculations. PMID:29564159
Bertsche, Patricia K; Mensah, Edward; Stevens, Thomas
2006-08-01
The purpose of this study was to determine whether the benefits of early identification of work-related noise-induced hearing loss outweigh the costs of complying with a Global Noise Medical Surveillance Procedure of a large corporation. Hearing is fundamental to language, communication, and socialization. Its loss is a common cause of disability, affecting an estimated 20 to 40 million individuals in the United States (Daniell et al., 1998). NIOSH reported that approximately 30 million U.S. workers are exposed to noise on the job and that noise-induced hearing loss is one of the most common occupational diseases. It is irreversible (NIOSH, 2004). The average cost of a noise-induced hearing loss is reported to range from dollars 4,726 to dollars 25,500. Corporate history indicates a range of dollars 44 to dollars 20,157 per case. During this 4-year study in one plant, the average annual cost of complying with the Global Noise Medical Surveillance Procedure was dollars 19,509 to screen an average of 390 employees, or dollars 50 per worker. The study identified 11 non-work-related standard threshold shifts. All cases were referred for appropriate early intervention. Given the results, this hearing health program is considered beneficial to the corporation for both work- and non-work-related reasons.
Increased Global Interaction Across Functional Brain Modules During Cognitive Emotion Regulation.
Brandl, Felix; Mulej Bratec, Satja; Xie, Xiyao; Wohlschläger, Afra M; Riedl, Valentin; Meng, Chun; Sorg, Christian
2017-07-13
Cognitive emotion regulation (CER) enables humans to flexibly modulate their emotions. While local theories of CER neurobiology suggest interactions between specialized local brain circuits underlying CER, e.g., in subparts of amygdala and medial prefrontal cortices (mPFC), global theories hypothesize global interaction increases among larger functional brain modules comprising local circuits. We tested the global CER hypothesis using graph-based whole-brain network analysis of functional MRI data during aversive emotional processing with and without CER. During CER, global between-module interaction across stable functional network modules increased. Global interaction increase was particularly driven by subregions of amygdala and cuneus-nodes of highest nodal participation-that overlapped with CER-specific local activations, and by mPFC and posterior cingulate as relevant connector hubs. Results provide evidence for the global nature of human CER, complementing functional specialization of embedded local brain circuits during successful CER. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Quantum annealing for combinatorial clustering
NASA Astrophysics Data System (ADS)
Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph
2018-02-01
Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.
Wu, Yiping; Liu, Shuguang; Huang, Zhihong; Yan, Wende
2014-01-01
Ecosystem models are useful tools for understanding ecological processes and for sustainable management of resources. In biogeochemical field, numerical models have been widely used for investigating carbon dynamics under global changes from site to regional and global scales. However, it is still challenging to optimize parameters and estimate parameterization uncertainty for complex process-based models such as the Erosion Deposition Carbon Model (EDCM), a modified version of CENTURY, that consider carbon, water, and nutrient cycles of ecosystems. This study was designed to conduct the parameter identifiability, optimization, sensitivity, and uncertainty analysis of EDCM using our developed EDCM-Auto, which incorporated a comprehensive R package—Flexible Modeling Framework (FME) and the Shuffled Complex Evolution (SCE) algorithm. Using a forest flux tower site as a case study, we implemented a comprehensive modeling analysis involving nine parameters and four target variables (carbon and water fluxes) with their corresponding measurements based on the eddy covariance technique. The local sensitivity analysis shows that the plant production-related parameters (e.g., PPDF1 and PRDX) are most sensitive to the model cost function. Both SCE and FME are comparable and performed well in deriving the optimal parameter set with satisfactory simulations of target variables. Global sensitivity and uncertainty analysis indicate that the parameter uncertainty and the resulting output uncertainty can be quantified, and that the magnitude of parameter-uncertainty effects depends on variables and seasons. This study also demonstrates that using the cutting-edge R functions such as FME can be feasible and attractive for conducting comprehensive parameter analysis for ecosystem modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martel, Laura; Smith, Paul; Rizea, Steven
The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energymore » Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the predicted economies of scale as technology and efficiency improvements are realized and larger more economical plants deployed. Utilizing global high resolution OTEC resource assessment from the Ocean Thermal Extractable Energy Visualization (OTEEV) project (an independent DOE project), Global Energy Supply Curves were generated for Grid Connected and Energy Carrier OTEC plants deployed in 2045 when the predicted technology and efficiencies improvements are fully realized. The Global Energy Supply Curves present the LCOE versus capacity in ascending order with the richest, lowest cost resource locations being harvested first. These curves demonstrate the vast ocean thermal resource and potential OTEC capacity that can be harvested with little change in LCOE.« less
Gorban, A N; Mirkes, E M; Zinovyev, A
2016-12-01
Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yan; Mohanty, Soumya D.; Center for Gravitational Wave Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
2010-03-15
The detection and estimation of gravitational wave signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Because of noise in the data, the function to be maximized is often highly multimodal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the particle swarm optimization method in this context. The method ismore » applied to a test bed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm optimization works well in the presence of high multimodality, making it a viable candidate method for further applications in gravitational wave data analysis.« less
Peix, Amalia; Mesquita, Claudio Tinoco; Paez, Diana; Pereira, Carlos Cunha; Felix, Renata; Gutierrez, Claudia; Jaimovich, Rodrigo; Ianni, Barbara Maria; Soares, Jose; Olaya, Pastor; Rodriguez, Ma. Victoria; Flotats, Albert; Giubbini, Raffaele; Travin, Mark
2014-01-01
Heart failure is increasing worldwide at epidemic proportions, resulting in considerable disability, mortality, and increase in healthcare costs. Gated myocardial perfusion single photon emission computed tomography or PET imaging is the most prominent imaging modality capable of providing information on global and regional ventricular function, the presence of intraventricular synchronism, myocardial perfusion, and viability on the same test. In addition, 123I-mIBG scintigraphy is the only imaging technique approved by various regulatory agencies able to provide information regarding the adrenergic function of the heart. Therefore, both myocardial perfusion and adrenergic imaging are useful tools in the workup and management of heart failure patients. This guide is intended to reinforce the information on the use of nuclear cardiology techniques for the assessment of heart failure and associated myocardial disease. PMID:24781009
A quasi-dense matching approach and its calibration application with Internet photos.
Wan, Yanli; Miao, Zhenjiang; Wu, Q M Jonathan; Wang, Xifu; Tang, Zhen; Wang, Zhifei
2015-03-01
This paper proposes a quasi-dense matching approach to the automatic acquisition of camera parameters, which is required for recovering 3-D information from 2-D images. An affine transformation-based optimization model and a new matching cost function are used to acquire quasi-dense correspondences with high accuracy in each pair of views. These correspondences can be effectively detected and tracked at the sub-pixel level in multiviews with our neighboring view selection strategy. A two-layer iteration algorithm is proposed to optimize 3-D quasi-dense points and camera parameters. In the inner layer, different optimization strategies based on local photometric consistency and a global objective function are employed to optimize the 3-D quasi-dense points and camera parameters, respectively. In the outer layer, quasi-dense correspondences are resampled to guide a new estimation and optimization process of the camera parameters. We demonstrate the effectiveness of our algorithm with several experiments.
Global Mitigation of Non-CO2 GHGs Report: Download the Report
View the report illustrating the abatement potential of non-CO2 greenhouse gases through a comprehensive global analysis and resulting data set of marginal abatement cost (MAC) curves. The report can be viewed as a whole or by individual section.
Evaluation of Low-Cost, Centimeter-Level Accuracy OEM GNSS Receivers
DOT National Transportation Integrated Search
2018-02-02
This report discusses the results of a study to quantify the performance of low-cost, centimeter-level accurate Global Navigation Satellite Systems (GNSS) receivers that have appeared on the market in the last few years. Centimeter-level accuracy is ...
Assessing the Cost of Global Biodiversity and Conservation Knowledge.
Juffe-Bignoli, Diego; Brooks, Thomas M; Butchart, Stuart H M; Jenkins, Richard B; Boe, Kaia; Hoffmann, Michael; Angulo, Ariadne; Bachman, Steve; Böhm, Monika; Brummitt, Neil; Carpenter, Kent E; Comer, Pat J; Cox, Neil; Cuttelod, Annabelle; Darwall, William R T; Di Marco, Moreno; Fishpool, Lincoln D C; Goettsch, Bárbara; Heath, Melanie; Hilton-Taylor, Craig; Hutton, Jon; Johnson, Tim; Joolia, Ackbar; Keith, David A; Langhammer, Penny F; Luedtke, Jennifer; Nic Lughadha, Eimear; Lutz, Maiko; May, Ian; Miller, Rebecca M; Oliveira-Miranda, María A; Parr, Mike; Pollock, Caroline M; Ralph, Gina; Rodríguez, Jon Paul; Rondinini, Carlo; Smart, Jane; Stuart, Simon; Symes, Andy; Tordoff, Andrew W; Woodley, Stephen; Young, Bruce; Kingston, Naomi
2016-01-01
Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116-204 million), plus 293 person-years of volunteer time (range: 278-308 person-years) valued at US$ 14 million (range US$12-16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2-6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical.
Assessing the Cost of Global Biodiversity and Conservation Knowledge
Juffe-Bignoli, Diego; Brooks, Thomas M.; Butchart, Stuart H. M.; Jenkins, Richard B.; Boe, Kaia; Hoffmann, Michael; Angulo, Ariadne; Bachman, Steve; Böhm, Monika; Brummitt, Neil; Carpenter, Kent E.; Comer, Pat J.; Cox, Neil; Cuttelod, Annabelle; Darwall, William R. T.; Fishpool, Lincoln D. C.; Goettsch, Bárbara; Heath, Melanie; Hilton-Taylor, Craig; Hutton, Jon; Johnson, Tim; Joolia, Ackbar; Keith, David A.; Langhammer, Penny F.; Luedtke, Jennifer; Nic Lughadha, Eimear; Lutz, Maiko; May, Ian; Miller, Rebecca M.; Oliveira-Miranda, María A.; Parr, Mike; Pollock, Caroline M.; Ralph, Gina; Rodríguez, Jon Paul; Rondinini, Carlo; Smart, Jane; Stuart, Simon; Symes, Andy; Tordoff, Andrew W.; Young, Bruce; Kingston, Naomi
2016-01-01
Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US$ 14 million (range US$12–16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2–6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical. PMID:27529491
Marseille, Elliot; Jiwani, Aliya; Raut, Abhishek; Verguet, Stéphane; Walson, Judd; Kahn, James G
2014-01-01
Objective This study estimated the health impact, cost and cost-effectiveness of an integrated prevention campaign (IPC) focused on diarrhoea, malaria and HIV in 70 countries ranked by per capita disability-adjusted life-year (DALY) burden for the three diseases. Methods We constructed a deterministic cost-effectiveness model portraying an IPC combining counselling and testing, cotrimoxazole prophylaxis, referral to treatment and condom distribution for HIV prevention; bed nets for malaria prevention; and provision of household water filters for diarrhoea prevention. We developed a mix of empirical and modelled cost and health impact estimates applied to all 70 countries. One-way, multiway and scenario sensitivity analyses were conducted to document the strength of our findings. We used a healthcare payer's perspective, discounted costs and DALYs at 3% per year and denominated cost in 2012 US dollars. Primary and secondary outcomes The primary outcome was cost-effectiveness expressed as net cost per DALY averted. Other outcomes included cost of the IPC; net IPC costs adjusted for averted and additional medical costs and DALYs averted. Results Implementation of the IPC in the 10 most cost-effective countries at 15% population coverage would cost US$583 million over 3 years (adjusted costs of US$398 million), averting 8.0 million DALYs. Extending IPC programmes to all 70 of the identified high-burden countries at 15% coverage would cost an adjusted US$51.3 billion and avert 78.7 million DALYs. Incremental cost-effectiveness ranged from US$49 per DALY averted for the 10 countries with the most favourable cost-effectiveness to US$119, US$181, US$335, US$1692 and US$8340 per DALY averted as each successive group of 10 countries is added ordered by decreasing cost-effectiveness. Conclusions IPC appears cost-effective in many settings, and has the potential to substantially reduce the burden of disease in resource-poor countries. This study increases confidence that IPC can be an important new approach for enhancing global health. PMID:24969782
Aliyu, Husaina Bello; Chuku, Nkata Nwani; Kola-Jebutu, Abimbola; Abubakar, Zubaida; Torpey, Kwasi; Chabikuli, Otto Nzapfurundi
2012-10-01
Limited data on actual cost of providing HIV/AIDS services in Nigeria makes planning difficult. A study was conducted in 9 public health facilities supported by the Global HIV/AIDS Initiative Nigeria. The objective was to determine the cost of outpatient HIV Testing and Counseling (HTC) and antiretroviral therapy (ART) services per patient. Two tertiary and 7 secondary facilities were purposively selected across the six geopolitical regions. Facilities were distributed in urban and rural settings. Utilization and cost data for a 12-month period (January to December 2010) were analyzed. Cost elements included consumables, human resources, infrastructure, trainings, facility management, and Global HIV/AIDS Initiative Nigeria technical support. Total costs were apportioned based on percentage utilization by services, and unit costs were derived by dividing resource inputs by service outputs. Data were analyzed using Microsoft Excel 2003. A sensitivity analysis was also conducted for key assumptions. Mean costs for HTC and ART were US $7.4 and US $209.0, respectively. Costs were higher in Northern facilities (US $6.9, US $250.8), compared with Southern ones (US $6.7, US $194.7); and in tertiary facilities ($18.5, $338.4), compared with secondary ones ($6.3, $204.9). Major cost drivers for HTC and ART were human resources--ranging from 62% to 50%, and ARV drugs--ranging from 54% to 31%, respectively. Governments' ability to negotiate lower priced antiretroviral drugs will be central to reducing the cost of ART. Additionally, use of lower cadre staff to provide HTC will reduce costs and improves efficiency.
What Do Cost Functions Tell Us about the Cost of an Adequate Education?
ERIC Educational Resources Information Center
Costrell, Robert M.; Hanushek, Eric; Loeb, Susanna
2008-01-01
Econometric cost functions have begun to appear in education adequacy cases with greater frequency. Cost functions are superficially attractive because they give the impression of objectivity, holding out the promise of scientifically estimating the cost of achieving specified levels of performance from actual data on spending. By contrast, the…
Qian, Zhi-Ming; Wang, Shuo Hong; Cheng, Xi En; Chen, Yan Qiu
2016-06-23
Fish tracking is an important step for video based analysis of fish behavior. Due to severe body deformation and mutual occlusion of multiple swimming fish, accurate and robust fish tracking from video image sequence is a highly challenging problem. The current tracking methods based on motion information are not accurate and robust enough to track the waving body and handle occlusion. In order to better overcome these problems, we propose a multiple fish tracking method based on fish head detection. The shape and gray scale characteristics of the fish image are employed to locate the fish head position. For each detected fish head, we utilize the gray distribution of the head region to estimate the fish head direction. Both the position and direction information from fish detection are then combined to build a cost function of fish swimming. Based on the cost function, global optimization method can be applied to associate the target between consecutive frames. Results show that our method can accurately detect the position and direction information of fish head, and has a good tracking performance for dozens of fish. The proposed method can successfully obtain the motion trajectories for dozens of fish so as to provide more precise data to accommodate systematic analysis of fish behavior.
Framework for evaluating disease severity measures in older adults with comorbidity.
Boyd, Cynthia M; Weiss, Carlos O; Halter, Jeff; Han, K Carol; Ershler, William B; Fried, Linda P
2007-03-01
Accounting for the influence of concurrent conditions on health and functional status for both research and clinical decision-making purposes is especially important in older adults. Although approaches to classifying severity of individual diseases and conditions have been developed, the utility of these classification systems has not been evaluated in the presence of multiple conditions. We present a framework for evaluating severity classification systems for common chronic diseases. The framework evaluates the: (a) goal or purpose of the classification system; (b) physiological and/or functional criteria for severity graduation; and (c) potential reliability and validity of the system balanced against burden and costs associated with classification. Approaches to severity classification of individual diseases were not originally conceived for the study of comorbidity. Therefore, they vary greatly in terms of objectives, physiological systems covered, level of severity characterization, reliability and validity, and costs and burdens. Using different severity classification systems to account for differing levels of disease severity in a patient with multiple diseases, or, assessing global disease burden may be challenging. Most approaches to severity classification are not adequate to address comorbidity. Nevertheless, thoughtful use of some existing approaches and refinement of others may advance the study of comorbidity and diagnostic and therapeutic approaches to patients with multimorbidity.
Aqueduct Global Flood Analyzer - bringing risk information to practice
NASA Astrophysics Data System (ADS)
Ward, Philip
2017-04-01
The economic losses associated with flooding are huge and rising. As a result, there is increasing attention for strategic flood risk assessments at the global scale. In response, the last few years have seen a large growth in the number of global flood models. At the same time, users and practitioners require flood risk information in a format that is easy to use, understandable, transparent, and actionable. In response, we have developed the Aqueduct Global Flood Analyzer (wri.org/floods). The Analyzer is a free, online, easy to use, tool for assessing global river flood risk at the scale of countries, states, and river basins, using data generated by the state of the art GLOFRIS global flood risk model. The Analyzer allows users to assess flood risk on-the-fly in terms of expected annual urban damage, and expected annual population and GDP affected by floods. Analyses can be carried out for current conditions and under future scenarios of climate change and socioeconomic development. We will demonstrate the tool, and discuss several of its applications in practice. In the past 15 months, the tool has been visited and used by more than 12,000 unique users from almost every country, including many users from the World Bank, Pacific Disaster Center, Red Cross Climate Centre, as well as many journalists from major international news outlets. Use cases will be presented from these user communities. We will also present ongoing research to improve the user functionality of the tool in the coming year. This includes the inclusion of coastal flood risk, assessing the costs and benefits of adaptation, and assessing the impacts of land subsidence and urban extension on risk.
Aqueduct Global Flood Analyzer - bringing risk information to practice
NASA Astrophysics Data System (ADS)
Ward, P.; Bierkens, M. F.; Bouwman, A.; Diaz Loaiza, A.; Eilander, D.; Englhardt, J.; Erkens, G.; Hofste, R.; Iceland, C.; Willem, L.; Luo, T.; Muis, S.; Scussolini, P.; Sutanudjaja, E.; Van Beek, L. P.; Van Bemmel, B.; Van Huijstee, J.; Van Wesenbeeck, B.; Vatvani, D.; Verlaan, M.; Winsemius, H.
2016-12-01
The economic losses associated with flooding are huge and rising. As a result, there is increasing attention for strategic flood risk assessments at the global scale. In response, the last few years have seen a large growth in the number of global flood models. At the same time, users and practitioners require flood risk information in a format that is easy to use, understandable, transparent, and actionable. In response, we have developed the Aqueduct Global Flood Analyzer (wri.org/floods). The Analyzer is a free, online, easy to use, tool for assessing global river flood risk at the scale of countries, states, and river basins, using data generated by the state of the art GLOFRIS global flood risk model. The Analyzer allows users to assess flood risk on-the-fly in terms of expected annual urban damage, and expected annual population and GDP affected by floods. Analyses can be carried out for current conditions and under future scenarios of climate change and socioeconomic development. We will demonstrate the tool, and discuss several of its applications in practice. In the past 15 months, the tool has been visited and used by more than 12,000 unique users from almost every country, including many users from the World Bank, Pacific Disaster Center, Red Cross Climate Centre, as well as many journalists from major international news outlets. Use cases will be presented from these user communities. We will also present ongoing research to improve the user functionality of the tool in the coming year. This includes the inclusion of coastal flood risk, assessing the costs and benefits of adaptation, and assessing the impacts of land subsidence and urban extension on risk.
The global economic long-term potential of modern biomass in a climate-constrained world
NASA Astrophysics Data System (ADS)
Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann
2014-07-01
Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.
The changing war on sea lice: the rise of non-drug based treatments
USDA-ARS?s Scientific Manuscript database
Sea lice are likely the single most economically costly pathogen that has faced the salmon farming industry over the past 40 years. Estimates of the global cost of sea lice to the industry have grown from $480 million USD in 2006 to $742 million USD in 2012. Not only has the cost to industry increas...
Economic costs of protistan and metazoan parasites to global mariculture.
Shinn, A P; Pratoomyot, J; Bron, J E; Paladini, G; Brooker, E E; Brooker, A J
2015-01-01
Parasites have a major impact on global finfish and shellfish aquaculture, having significant effects on farm production, sustainability and economic viability. Parasite infections and impacts can, according to pathogen and context, be considered to be either unpredictable/sporadic or predictable/regular. Although both types of infection may result in the loss of stock and incur costs associated with the control and management of infection, predictable infections can also lead to costs associated with prophylaxis and related activities. The estimation of the economic cost of a parasite event is frequently complicated by the complex interplay of numerous factors associated with a specific incident, which may range from direct production losses to downstream socio-economic impacts on livelihoods and satellite industries associated with the primary producer. In this study, we examine the world's major marine and brackish water aquaculture production industries and provide estimates of the potential economic costs attributable to a range of key parasite pathogens using 498 specific events for the purposes of illustration and estimation of costs. This study provides a baseline resource for risk assessment and the development of more robust biosecurity practices, which can in turn help mitigate against and/or minimise the potential impacts of parasite-mediated disease in aquaculture.
Health economics and cost-effectiveness research with special reference to hemato-oncology.
Kumar, Rajat
2013-07-01
The cost of health care is increasing globally, especially in cancer. Health economics is an increasingly important field and medical professionals should have a working knowledge of the basis for health technology assessment such as cost-effectiveness analysis, cost utility analysis and cost benefit analysis. There are limited studies on health technology assessment regarding expensive therapies, primarily from high-income countries, but these cannot be applied to countries with different gross domestic product (GDP) and cost of health care delivery. There is a need to carry out health economics related research utilizing data from India. Whereas clinical trials establish the efficacy of new drugs in controlled environments, with strict inclusion and exclusion criteria, their transferability to the "real-world" situation is not always true. With the shifting of the global cancer burden to middle-income and lower middle-income countries, this field is going to assume greater importance in the future. Health economics research conducted in India may be of benefit to other countries with similar economies. The Armed Forces Medical Services of India, with a well-established system of assessing health outcomes, and robust system of accounting for expenses, can provide the lead for these studies.
NASA Astrophysics Data System (ADS)
Xia, Y.; Tian, J.; d'Angelo, P.; Reinartz, P.
2018-05-01
3D reconstruction of plants is hard to implement, as the complex leaf distribution highly increases the difficulty level in dense matching. Semi-Global Matching has been successfully applied to recover the depth information of a scene, but may perform variably when different matching cost algorithms are used. In this paper two matching cost computation algorithms, Census transform and an algorithm using a convolutional neural network, are tested for plant reconstruction based on Semi-Global Matching. High resolution close-range photogrammetric images from a handheld camera are used for the experiment. The disparity maps generated based on the two selected matching cost methods are comparable with acceptable quality, which shows the good performance of Census and the potential of neural networks to improve the dense matching.
Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System
NASA Astrophysics Data System (ADS)
He, Xiaoning
Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.
Scheen, A J
2006-09-01
Cost related to insulin therapy is markedly increasing in Belgium, as in other Eucopean countries. In the present paper, we will briefly analyze the main reasons for such aa increase, integrate such observation withIn the global context of diabetes management and suggest some solutions to provide best care to insulin-treated diabetic patients at a reasonable cost. The rise of the cost of insulin therapy has a multifactorial origin. It mainly results from an increase in the number of diabetic patients, a more intensive management, In both type 1 and type 2 diabetes, and a greater use of more expansive insulin analogues. It is important to analyze the increase of the cost of insulin therapy within the global burden of diabetes melitus. Only a better responsibility of all health care partners, patients, physicians, pharmaceutical companies, public health authorities, could provide solutions allowing diabetic people to profit from best treatments they should receive in order to prevent diabetic complications, by far the main cause of expenses.
Nonlinear optimization simplified by hypersurface deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillinger, F.H.; Weber, T.A.
1988-09-01
A general strategy is advanced for simplifying nonlinear optimization problems, the ant-lion method. This approach exploits shape modifications of the cost-function hypersurface which distend basins surrounding low-lying minima (including global minima). By intertwining hypersurface deformations with steepest-descent displacements, the search is concentrated on a small relevant subset of all minima. Specific calculations demonstrating the value of this method are reported for the partitioning of two classes of irregular but nonrandom graphs, the prime-factor graphs and the pi graphs. We also indicate how this approach can be applied to the traveling salesman problem and to design layout optimization, and that itmore » may be useful in combination with simulated annealing strategies.« less
Howard, Steven W; Bernell, Stephanie L; Yoon, Jangho; Luck, Jeff; Ranit, Claire M
2015-02-01
To control Medicaid costs, improve quality, and drive community engagement, the Oregon Health Authority introduced a new system of coordinated care organizations (CCOs). While CCOs resemble traditional Medicaid managed care, they have differences that have been deliberately designed to improve care coordination, increase accountability, and incorporate greater community governance. Reforms include global budgets integrating medical, behavioral, and oral health care and public health functions; risk-adjusted payments rewarding outcomes and evidence-based practice; increased transparency; and greater community engagement. The CCO model faces several implementation challenges. If successful, it will provide improved health care delivery, better health outcomes, and overall savings. Copyright © 2015 by Duke University Press.
An alternative extragradient projection method for quasi-equilibrium problems.
Chen, Haibin; Wang, Yiju; Xu, Yi
2018-01-01
For the quasi-equilibrium problem where the players' costs and their strategies both depend on the rival's decisions, an alternative extragradient projection method for solving it is designed. Different from the classical extragradient projection method whose generated sequence has the contraction property with respect to the solution set, the newly designed method possesses an expansion property with respect to a given initial point. The global convergence of the method is established under the assumptions of pseudomonotonicity of the equilibrium function and of continuity of the underlying multi-valued mapping. Furthermore, we show that the generated sequence converges to the nearest point in the solution set to the initial point. Numerical experiments show the efficiency of the method.
Shopping the World for Knowledge.
ERIC Educational Resources Information Center
Simpson, Liz
2002-01-01
Discusses why employers with a global work force partner with vendors in India, Russia, the Philippines, China, or other countries to recruit workers. Reasons include reduced employee costs, speed, a high level of technically educated and highly motivated individuals, and the uncertainty of the global situation. (JOW)
Global alliances effect in coalition forming
NASA Astrophysics Data System (ADS)
Vinogradova, Galina; Galam, Serge
2014-11-01
Coalition forming is investigated among countries, which are coupled with short range interactions, under the influence of externally-set opposing global alliances. The model extends a recent Natural Model of coalition forming inspired from Statistical Physics, where instabilities are a consequence of decentralized maximization of the individual benefits of actors. In contrast to physics where spins can only evaluate the immediate cost/benefit of a flip of orientation, countries have a long horizon of rationality, which associates with the ability to envision a way up to a better configuration even at the cost of passing through intermediate loosing states. The stabilizing effect is produced through polarization by the global alliances of either a particular unique global interest factor or multiple simultaneous ones. This model provides a versatile theoretical tool for the analysis of real cases and design of novel strategies. Such analysis is provided for several real cases including the Eurozone. The results shed a new light on the understanding of the complex phenomena of planned stabilization in the coalition forming.
Kaushal, Mayank; Oni-Orisan, Akinwunmi; Chen, Gang; Li, Wenjun; Leschke, Jack; Ward, Doug; Kalinosky, Benjamin; Budde, Matthew; Schmit, Brian; Li, Shi-Jiang; Muqeet, Vaishnavi; Kurpad, Shekar
2017-09-01
Network analysis based on graph theory depicts the brain as a complex network that allows inspection of overall brain connectivity pattern and calculation of quantifiable network metrics. To date, large-scale network analysis has not been applied to resting-state functional networks in complete spinal cord injury (SCI) patients. To characterize modular reorganization of whole brain into constituent nodes and compare network metrics between SCI and control subjects, fifteen subjects with chronic complete cervical SCI and 15 neurologically intact controls were scanned. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI). Correlation analysis was performed between every ROI pair to construct connectivity matrices and ROIs were categorized into distinct modules. Subsequently, local efficiency (LE) and global efficiency (GE) network metrics were calculated at incremental cost thresholds. The application of a modularity algorithm organized the whole-brain resting-state functional network of the SCI and the control subjects into nine and seven modules, respectively. The individual modules differed across groups in terms of the number and the composition of constituent nodes. LE demonstrated statistically significant decrease at multiple cost levels in SCI subjects. GE did not differ significantly between the two groups. The demonstration of modular architecture in both groups highlights the applicability of large-scale network analysis in studying complex brain networks. Comparing modules across groups revealed differences in number and membership of constituent nodes, indicating modular reorganization due to neural plasticity.
The cost of sustaining a patient-centered medical home: experience from 2 states.
Magill, Michael K; Ehrenberger, David; Scammon, Debra L; Day, Julie; Allen, Tatiana; Reall, Andreu J; Sides, Rhonda W; Kim, Jaewhan
2015-09-01
As medical practices transform to patient-centered medical homes (PCMHs), it is important to identify the ongoing costs of maintaining these "advanced primary care" functions. A key required input is personnel effort. This study's objective was to assess direct personnel costs to practices associated with the staffing necessary to deliver PCMH functions as outlined in the National Committee for Quality Assurance Standards. We developed a PCMH cost dimensions tool to assess costs associated with activities uniquely required to maintain PCMH functions. We interviewed practice managers, nurse supervisors, and medical directors in 20 varied primary care practices in 2 states, guided by the tool. Outcome measures included categories of staff used to perform various PCMH functions, time and personnel costs, and whether practices were delivering PCMH functions. Costs per full-time equivalent primary care clinician associated with PCMH functions varied across practices with an average of $7,691 per month in Utah practices and $9,658 in Colorado practices. PCMH incremental costs per encounter were $32.71 in Utah and $36.68 in Colorado. The average estimated cost per member per month for an assumed panel of 2,000 patients was $3.85 in Utah and $4.83 in Colorado. Identifying costs of maintaining PCMH functions will contribute to effective payment reform and to sustainability of transformation. Maintenance and ongoing support of PCMH functions require additional time and new skills, which may be provided by existing staff, additional staff, or both. Adequate compensation for ongoing and substantial incremental costs is critical for practices to sustain PCMH functions. © 2015 Annals of Family Medicine, Inc.
The Cost of Sustaining a Patient-Centered Medical Home: Experience From 2 States
Magill, Michael K.; Ehrenberger, David; Scammon, Debra L.; Day, Julie; Allen, Tatiana; Reall, Andreu J.; Sides, Rhonda W.; Kim, Jaewhan
2015-01-01
PURPOSE As medical practices transform to patient-centered medical homes (PCMHs), it is important to identify the ongoing costs of maintaining these “advanced primary care” functions. A key required input is personnel effort. This study’s objective was to assess direct personnel costs to practices associated with the staffing necessary to deliver PCMH functions as outlined in the National Committee for Quality Assurance Standards. METHODS We developed a PCMH cost dimensions tool to assess costs associated with activities uniquely required to maintain PCMH functions. We interviewed practice managers, nurse supervisors, and medical directors in 20 varied primary care practices in 2 states, guided by the tool. Outcome measures included categories of staff used to perform various PCMH functions, time and personnel costs, and whether practices were delivering PCMH functions. RESULTS Costs per full-time equivalent primary care clinician associated with PCMH functions varied across practices with an average of $7,691 per month in Utah practices and $9,658 in Colorado practices. PCMH incremental costs per encounter were $32.71 in Utah and $36.68 in Colorado. The average estimated cost per member per month for an assumed panel of 2,000 patients was $3.85 in Utah and $4.83 in Colorado. CONCLUSIONS Identifying costs of maintaining PCMH functions will contribute to effective payment reform and to sustainability of transformation. Maintenance and ongoing support of PCMH functions require additional time and new skills, which may be provided by existing staff, additional staff, or both. Adequate compensation for ongoing and substantial incremental costs is critical for practices to sustain PCMH functions. PMID:26371263
Mathauer, Inke; Nicolle, Emmanuelle
2011-10-01
Administrative costs are an important spending category in total health insurance expenditure. Yet, they have rarely been a topic outside the US and there is no cross-country comparison available. This paper provides a global overview and analysis of administrative costs for social security schemes (SSS) and private health insurance schemes (PHI). The analysis is based on data of the World Health Organization (WHO) National Health Accounts (NHA) and the Organisation for Economic Cooperation and Development (OECD) System of Health Accounts (SHA). These are the only worldwide databases on health expenditure data. Further data was retrieved from a literature search. Administrative costs are presented as a share of total health insurance costs. Data is available for 58 countries. In high-income OECD countries, the average SSS administrative costs are 4.2%. Average PHI administrative costs are about three times higher. The shares are much higher for low- and middle-income countries. However, considerable variations across and within countries over time are revealed. Seven explanatory factors are explored to explain the variations: health financing system aspects, administrative activities undertaken, insurance design aspects, context factors, reporting format, accounting methods, and management and administrative efficiency measures. More detailed reporting of administrative costs would enhance comparability and provide benchmarks. Improved administrative efficiency could free resources to expand coverage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, Sertac; Augustine, Chad; Kurup, Parthiv
In this study, we have undertaken a robust analysis of the global supply chain and manufacturing costs for components of Organic Rankine Cycle (ORC) Turboexpander and steam turbines used in geothermal power plants. We collected a range of market data influencing manufacturing from various data sources and determined the main international manufacturers in the industry. The data includes the manufacturing cost model to identify requirements for equipment, facilities, raw materials, and labor. We analyzed three different cases; 1) 1 MW geothermal ORC Turboexpander 2) 5 MW ORC Turboexpander 3) 20 MW geothermal Steam Turbine
Globalization of health care delivery in the United States through medical tourism.
Kumar, Sameer; Breuing, Richard; Chahal, Rajneet
2012-01-01
This study highlights some of the inefficiencies in the U.S. health care system and determines what effect medical tourism has had on the U.S. and global health care supply chains. This study also calls attention to insufficient health communication efforts to inform uninsured or underinsured medical tourists about the benefits and risks and determines the managerial and cost implications of various surgical procedures on the global health care system into the future. This study evaluated 3 years (2005, 2007, and 2011) of actual and projected surgical cost data. The authors selected 3 countries for analysis: the United States, India, and Thailand. The surgeries chosen for evaluation were total knee replacement (knee arthroplasty), hip replacement (hip arthroplasty), and heart bypass (coronary artery bypass graft). Comparisons of costs were made using Monte Carlo simulation with variability encapsulated by triangular distributions. The results are staggering. In 2005, the amount of money lost to India and Thailand on just these 3 surgeries because of cost inefficiencies in the U.S. health care system was between 1.3 to 2 billion dollars. In 2011, because many more Americans are expected to travel overseas for health care, this amount is anticipated to rise to between 20 and 30.2 billion dollars. Therefore, more attention should be paid to health communication efforts that truly illustrate the benefits/risks of medical travel. The challenge of finding reliable data for surgeries performed and associated surgical cost estimates was mitigated by the use of a Monte Carlo simulation of triangular distributions. The implications from this study are clear: If the U.S. health care industry is unable to eliminate waste and inefficiency and thus curb rising costs, it will continue to lose surgical revenue to foreign health providers. Copyright © Taylor & Francis Group, LLC
Avoiding Braess' Paradox Through Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert , David H.; Tumer, Kagan
1999-01-01
In an Ideal Shortest Path Algorithm (ISPA), at each moment each router in a network sends all of its traffic down the path that will incur the lowest cost to that traffic. In the limit of an infinitesimally small amount of traffic for a particular router, its routing that traffic via an ISPA is optimal, as far as cost incurred by that traffic is concerned. We demonstrate though that in many cases, due to the side-effects of one router's actions on another routers performance, having routers use ISPA's is suboptimal as far as global aggregate cost is concerned, even when only used to route infinitesimally small amounts of traffic. As a particular example of this we present an instance of Braess' paradox for ISPA'S, in which adding new links to a network decreases overall throughput. We also demonstrate that load-balancing, in which the routing decisions are made to optimize the global cost incurred by all traffic currently being routed, is suboptimal as far as global cost averaged across time is concerned. This is also due to "side-effects", in this case of current routing decision on future traffic. The theory of COllective INtelligence (COIN) is concerned precisely with the issue of avoiding such deleterious side-effects. We present key concepts from that theory and use them to derive an idealized algorithm whose performance is better than that of the ISPA, even in the infinitesimal limit. We present experiments verifying this, and also showing that a machine-learning-based version of this COIN algorithm in which costs are only imprecisely estimated (a version potentially applicable in the real world) also outperforms the ISPA, despite having access to less information than does the ISPA. In particular, this COIN algorithm avoids Braess' paradox.
National Mass Drug Administration Costs for Lymphatic Filariasis Elimination
Goldman, Ann S.; Guisinger, Victoria H.; Aikins, Moses; Amarillo, Maria Lourdes E.; Belizario, Vicente Y.; Garshong, Bertha; Gyapong, John; Kabali, Conrad; Kamal, Hussein A.; Kanjilal, Sanjat; Kyelem, Dominique; Lizardo, Jefrey; Malecela, Mwele; Mubyazi, Godfrey; Nitièma, P. Abdoulaye; Ramzy, Reda M. R.; Streit, Thomas G.; Wallace, Aaron; Brady, Molly A.; Rheingans, Richard; Ottesen, Eric A.; Haddix, Anne C.
2007-01-01
Background Because lymphatic filariasis (LF) elimination efforts are hampered by a dearth of economic information about the cost of mass drug administration (MDA) programs (using either albendazole with diethylcarbamazine [DEC] or albendazole with ivermectin), a multicenter study was undertaken to determine the costs of MDA programs to interrupt transmission of infection with LF. Such results are particularly important because LF programs have the necessary diagnostic and treatment tools to eliminate the disease as a public health problem globally, and already by 2006, the Global Programme to Eliminate LF had initiated treatment programs covering over 400 million of the 1.3 billion people at risk. Methodology/Principal Findings To obtain annual costs to carry out the MDA strategy, researchers from seven countries developed and followed a common cost analysis protocol designed to estimate 1) the total annual cost of the LF program, 2) the average cost per person treated, and 3) the relative contributions of the endemic countries and the external partners. Costs per person treated ranged from $0.06 to $2.23. Principal reasons for the variation were 1) the age (newness) of the MDA program, 2) the use of volunteers, and 3) the size of the population treated. Substantial contributions by governments were documented – generally 60%–90% of program operation costs, excluding costs of donated medications. Conclusions/Significance MDA for LF elimination is comparatively inexpensive in relation to most other public health programs. Governments and communities make the predominant financial contributions to actual MDA implementation, not counting the cost of the drugs themselves. The results highlight the impact of the use of volunteers on program costs and provide specific cost data for 7 different countries that can be used as a basis both for modifying current programs and for developing new ones. PMID:17989784
Marseille, Elliot; Dandona, Lalit; Marshall, Nell; Gaist, Paul; Bautista-Arredondo, Sergio; Rollins, Brandi; Bertozzi, Stefano M; Coovadia, Jerry; Saba, Joseph; Lioznov, Dmitry; Du Plessis, Jo-Ann; Krupitsky, Evgeny; Stanley, Nicci; Over, Mead; Peryshkina, Alena; Kumar, S G Prem; Muyingo, Sowedi; Pitter, Christian; Lundberg, Mattias; Kahn, James G
2007-07-12
Economic theory and limited empirical data suggest that costs per unit of HIV prevention program output (unit costs) will initially decrease as small programs expand. Unit costs may then reach a nadir and start to increase if expansion continues beyond the economically optimal size. Information on the relationship between scale and unit costs is critical to project the cost of global HIV prevention efforts and to allocate prevention resources efficiently. The "Prevent AIDS: Network for Cost-Effectiveness Analysis" (PANCEA) project collected 2003 and 2004 cost and output data from 206 HIV prevention programs of six types in five countries. The association between scale and efficiency for each intervention type was examined for each country. Our team characterized the direction, shape, and strength of this association by fitting bivariate regression lines to scatter plots of output levels and unit costs. We chose the regression forms with the highest explanatory power (R2). Efficiency increased with scale, across all countries and interventions. This association varied within intervention and within country, in terms of the range in scale and efficiency, the best fitting regression form, and the slope of the regression. The fraction of variation in efficiency explained by scale ranged from 26-96%. Doubling in scale resulted in reductions in unit costs averaging 34.2% (ranging from 2.4% to 58.0%). Two regression trends, in India, suggested an inflection point beyond which unit costs increased. Unit costs decrease with scale across a wide range of service types and volumes. These country and intervention-specific findings can inform projections of the global cost of scaling up HIV prevention efforts.
NASA Astrophysics Data System (ADS)
Khabbazan, Mohammad Mohammadi; Roshan, Elnaz; Held, Hermann
2017-04-01
In principle solar radiation management (SRM) offers an option to ameliorate anthropogenic temperature rise. However we cannot expect it to simultaneously compensate for anthropogenic changes in further climate variables in a perfect manner. Here, we ask to what extent a proponent of the 2°C-temperature target would apply SRM in conjunction with mitigation in view of global or regional disparities in precipitation changes. We apply cost-risk analysis (CRA), which is a decision analytic framework that makes a trade-off between the expected welfare-loss from climate policy costs and the climate risks from transgressing a climate target. Here, in both global-scale and 'Giorgi'-regional-scale analyses, we evaluate the optimal mixture of SRM and mitigation under probabilistic information about climate sensitivity. To do so, we generalize CRA for the sake of including not only temperature risk, but also globally aggregated and regionally disaggregated precipitation risks. Social welfare is maximized for the following three valuation scenarios: temperature-risk-only, precipitation-risk-only, and equally weighted both-risks. For now, the Giorgi regions are treated by equal weight. We find that for regionally differentiated precipitation targets, the usage of SRM will be comparably more restricted. In the course of time, a cooling of up to 1.3°C can be attributed to SRM for the latter scenario and for a median climate sensitivity of 3°C (for a global target only, this number reduces by 0.5°C). Our results indicate that although SRM would almost completely substitute for mitigation in the globally aggregated analysis, it only saves 70% to 75% of the welfare-loss compared to a purely mitigation-based analysis (from economic costs and climate risks, approximately 4% in terms of BGE) when considering regional precipitation risks in precipitation-risk-only and both-risks scenarios. It remains to be shown how the inclusion of further risks or different regional weights would change that picture.
Fissler, Patrick; Küster, Olivia C; Loy, Laura S; Laptinskaya, Daria; Rosenfelder, Martin J; von Arnim, Christine A F; Kolassa, Iris-Tatjana
2017-09-06
Neurocognitive disorders are an important societal challenge and the need for early prevention is increasingly recognized. Meta-analyses show beneficial effects of cognitive activities on cognition. However, high financial costs, low intrinsic motivation, logistic challenges of group-based activities, or the need to operate digital devices prevent their widespread application in clinical practice. Solving jigsaw puzzles is a cognitive activity without these hindering characteristics, but cognitive effects have not been investigated yet. With this study, we aim to evaluate the effect of solving jigsaw puzzles on visuospatial cognition, daily functioning, and psychological outcomes. The pre-posttest, assessor-blinded study will include 100 cognitively healthy adults 50 years of age or older, who will be randomly assigned to a jigsaw puzzle group or a cognitive health counseling group. Within the 5-week intervention period, participants in the jigsaw puzzle group will engage in 30 days of solving jigsaw puzzles for at least 1 h per day and additionally receive cognitive health counseling. The cognitive health counseling group will receive the same counseling intervention but no jigsaw puzzles. The primary outcome, global visuospatial cognition, will depict the average of the z-standardized performance scores in visuospatial tests of perception, constructional praxis, mental rotation, processing speed, flexibility, working memory, reasoning, and episodic memory. As secondary outcomes, we will assess the eight cognitive abilities, objective and subjective visuospatial daily functioning, psychological well-being, general self-efficacy, and perceived stress. The primary data analysis will be based on mixed-effects models in an intention-to-treat approach. Solving jigsaw puzzles is a low-cost, intrinsically motivating, cognitive leisure activity, which can be executed alone or with others and without the need to operate a digital device. In the case of positive results, these characteristics allow an easy implementation of solving jigsaw puzzles in clinical practice as a way to improve visuospatial functioning. Whether cognitive impairment and loss of independence in everyday functioning might be prevented or delayed in the long run has to be examined in future studies. ClinicalTrials.gov, NCT02667314 . Registered on 27 January 2016.
Javed, Muhammad; Dingley, John; Dickson, William; Shokrollahi, Kayvan
2014-02-01
Ventilated patients in ITU (intensive treatment unit) tend to be challenging to communicate with, especially patients who are being weaned. These patients usually have tracheostomy in situ and use means such as writing or letter boards to communicate. The situation becomes complex in patient groups that have burn injuries with bulky dressings and restricted upper limb function. We demonstrate a low cost, easy to use, potentially disposable system that can display words on any television screen via patient input device for such patient groups. The system consists of input device incorporated with Arduino microcontroller (an open-source electronics prototyping platform based on easy-to-use hardware and software intended for creating interactive environments) and 4 generously oversized control buttons. These are used to control the cursor movements (up, down, left, right) while a fifth has a "select" function. These are large enough to be pressed by an entire bandaged hand using gross upper limb movements only. A standard television is used to display menu containing the 26 letters of the alphabet and a flashing cursor. The patient selects the required letters/icon by moving the cursor and the words so created are displayed along the lower part of the screen for the carers to read. It is envisaged that anyone with basic craft skills should be able to construct this device. This device is a self-contained, cost-effective, simple, and open-source system that can be used effectively to bridge the communication gap with significant potential for patient care globally.
Army ants dynamically adjust living bridges in response to a cost–benefit trade-off
Reid, Chris R.; Lutz, Matthew J.; Powell, Scott; Kao, Albert B.; Couzin, Iain D.; Garnier, Simon
2015-01-01
The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges” of linked individuals that are constructed to span gaps in the colony’s foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost–benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost–benefit trade-off, without any individual unit’s having information on global benefits or costs. PMID:26598673
2010-01-01
Background Non-pharmacological treatment (NPT) is a useful treatment option in the management of hip or knee osteoarthritis. To our knowledge however, no studies have investigated the effect of NPT in patients with generalized osteoarthritis (GOA). The primary aim of this study is to compare the effectiveness of two currently existing health care programs with different intensity and mode of delivery on daily functioning in patients with GOA. The secondary objective is to compare the cost-effectiveness of both interventions. Methods/Design In this randomized, single blind, clinical trial with active controls, we aim to include 170 patients with GOA. The experimental intervention consist of six self-management group sessions provided by a multi-disciplinary team (occupational therapist, physiotherapist, dietician and specialized nurse). The active control group consists of two group sessions and four sessions by telephone, provided by a specialized nurse and physiotherapist. Both therapies last six weeks. Main study outcome is daily functioning during the first year after the treatment, assessed on the Health Assessment Questionnaire. Secondary outcomes are health related quality of life, specific complaints, fatigue, and costs. Illness cognitions, global perceived effect and self-efficacy, will also be assessed for a responder analysis. Outcome assessments are performed directly after the intervention, after 26 weeks and after 52 weeks. Discussion This article describes the design of a randomized, single blind, clinical trial with a one year follow up to compare the costs and effectiveness of two non-pharmacological interventions with different modes of delivery for patients with GOA. Trial registration Dutch Trial Register NTR2137 PMID:20594308