Science.gov

Sample records for global environment monitoring

  1. Global Atmospheric Monitoring

    ERIC Educational Resources Information Center

    Wallen, Carl C.

    1975-01-01

    The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…

  2. The Analysis of Moonborne Cross Track Synthetic Aperture Radar Interferometry for Global Environment Change Monitoring

    NASA Astrophysics Data System (ADS)

    Yixing, Ding; Huadong, Guo; Guang, Liu; Daowei, Zhang

    2014-03-01

    Faced to the earth observation requirement of large scale global environment change, a SAR (Synthetic Aperture Radar) antenna system is proposed to set on Moon's surface for interferometry in this paper. With several advantages superior to low earth obit SAR, such as high space resolution, large range swath and short revisit interval, the moonborne SAR could be a potential data resource of global changes monitoring and environment change research. Due to the high stability and ease of maintenance, the novel system is competent for offering a long and continuous time series of remote sensing imagery. The Moonborne SAR system performance is discussed at the beginning. Then, the peculiarity of interferometry is analyzed in both repeat pass and single pass cases. The chief distinguishing feature which is worth to research the potentiality of repeat pass interferometry is that the revisit interval is reduced to one day in most cases, and in worst case one month. Decorrelation deriving from geometry variety is discussed in detail. It turns out that the feasibility of moonborne SAR repeat pass interferometry depends on the declination of Moon. The severity of shift effects in radar echoes increased as Moon approaches to the equatorial plane. Moreover, referring to the single pass interferometry, two antennas are assumed to set on different latitude of Moon. There is enough space on Moon to form a long baseline, which is highly related to the interferogram precision.

  3. Environment Monitor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Viking landers touched down on Mars equipped with a variety of systems to conduct automated research, each carrying a compact but highly sophisticated instrument for analyzing Martian soil and atmosphere. Instrument called a Gas Chromatography/Mass Spectrometer (GC/MS) had to be small, lightweight, shock resistant, highly automated and extremely sensitive, yet require minimal electrical power. Viking Instruments Corporation commercialized this technology and targeted their primary market as environmental monitoring, especially toxic and hazardous waste site monitoring. Waste sites often contain chemicals in complex mixtures, and the conventional method of site characterization, taking samples on-site and sending them to a laboratory for analysis is time consuming and expensive. Other terrestrial applications are explosive detection in airports, drug detection, industrial air monitoring, medical metabolic monitoring and for military, chemical warfare agents.

  4. Stimulating innovation for global monitoring of agriculture and its impact on the environment in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Gobin, Anne

    2015-04-01

    There is an urgent need to ensure food supply for a growing global population. To enable a sustainable growth of agricultural production, effective and timely information is required to support decision making and to improve management of agricultural resources. This requires innovative ways and monitoring methods that will not only improve short-term crop production forecasts, but also allow to assess changes in cultivation practices, agricultural areas, agriculture in general and, its impact on the environment. The G20 launched in June 2011 the "GEO Global Agricultural Monitoring initiative (GEOGLAM), requesting the GEO (Group on Earth Observations) Agricultural Community of Practice to implement GEOGLAM with the main objective to improve crop yield forecasts as an input to the Agricultural Market Information System (AMIS), in order to foster stabilisation of markets and increase transparency on agricultural production. In response to this need, the European Commission decided in 2013 to fund an international partnership to contribute to GEOGLAM and its research agenda. The resulting SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), a partnership of 23 globally distributed expert organisations, focusses on developing datasets and innovative techniques in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterise cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, will be used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series will be explored to assess crop

  5. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  6. Review of the Applications of Formosat-2 on Rapidly Responding to Global Disasters and Monitoring Earth Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2009-12-01

    Formosat-2 is the first satellite with high-spatial-resolution sensor deployed in a daily-revisit orbit in the world. Together with its agility of pointing ±45 degree both across and along track, we are able to observe each accessible scene from the same angle under the similar illumination conditions. These characteristics make Formosat-2 an ideal satellite for site surveillance. We developed a Formosat-2 automatic image processing system (F-2 AIPS) that can accurately and rapidly process a large amount of Formosat-2 images to produce the higher levels of products, including rigorous band-to-band coregistration, automatic orthorectification, multi-temporal image coregistration and radiance normalization, and pan-sharpening. This system has been successfully employed to rapidly respond to many international disaster events in the past five years, including flood caused by Typhoon Mindulle (2004), landslide caused by Typhoon Aere (2004), South Asia earthquake and tsunami (2004), Hurricane Katrina (2005), California wildfire (2007), Sichuan Earthquake (2008), Typhoon Kalmaegi (2008), Typhoon Sinlaku (2008), Mountain Ali wildfire (2009), Victoria bushfire in Australia (2009), Honduras earthquake (2009), Typhoon Morakot (2009). This paper reviews the applications of Formosat-2 on rapidly responding to global disasters and monitoring earth environment.

  7. (Managing the global environment)

    SciTech Connect

    Rayner, S.F.

    1989-10-03

    The conference was stimulated by concern that policy makers increasingly have to make environmental management decisions in the absence of solidly established scientific consensus about ecological processes and the consequences of human actions. Often, as in the case of climate change, some decisions may have to be made in the absence of information that is desirable but may not be available for years to come, if ever. Six topics were identified as running throughout the Congress. These were: the epistemology and history of the sciences or disciplines concerned with the environment, including the scientific basis of rationality and modes of dealing with uncertainty and complexity; the social, economic, and institutional conditions for the production of knowledge bearing on the environment, including the politics of research and the improvement of scientific data; the structuring and institutionalization of expert assessments on national and international levels, including the global distribution of expertise; the means of establishing scientific information, the role of the media in transmitting and processing knowledge about the environment, and the organization of public environmental debate; and decision making and management under conditions of uncertainty; and, finally the relationship between science and ethics. 13 refs.

  8. GLobal Integrated Design Environment

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.

    2011-01-01

    The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.

  9. The Global Environment

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2003-10-01

    What can we teachers do? For students we can provide a strong background in the process of science and in scientific ethics. We can encourage students to apply such knowledge wisely throughout their lives. For the public at large, we can speak out in favor of real science at every opportunity. It is possible that the current scientific consensus on global warming is based on incomplete evidence, but global warming ought not be dismissed as unscientific or a hoax, and scientists ought not allow that to happen. As we celebrate National Chemistry Week, we should resolve to support chemistry and science as strongly as we can.

  10. Monitoring Global Air Pollution

    ERIC Educational Resources Information Center

    de Koning, H. W.; Kohler, A.

    1978-01-01

    Describes the United Nations Environment Program which is composed of the World Health Organization project (including 42 participating countries) and the World Meteorological Organization Network which includes 60 countries. (BB)

  11. Environment surveys. [monitoring and protection of environment

    NASA Technical Reports Server (NTRS)

    Greenwood, L. R.

    1974-01-01

    Environment applications are concerned with the quality, protection, and improvement of water, land, and air resources and, in particular, with the pollution of these resources caused by man and his works, as well as changes to the resources due to natural phenomena (for example, drought and floods). The broad NASA objectives related to the environment are directed toward the development and demonstration of the capability to monitor remotely and assess environmental conditions related to water quality, land and vegetation quality, wildlife resources, and general environment. The contributions of ERTS-1 to these subdiscipline areas are broadly summarized.

  12. Monitoring the Environment

    ERIC Educational Resources Information Center

    Heins, Conrad F.; And Others

    1975-01-01

    New ways of obtaining environmental data are being developed to meet the demand for comprehensive, accurate, and timely information on the environment. This article examines four developments that are transforming the entire field of environmental measurement: spectroscopy; satellite transmission of environmental data; remote sensing; and…

  13. Level 4 Global and European Chl-a Daily Analyses for End Users and Data Assimilation in the Frame of the Copernicus-Marine Environment Monitoring Service

    NASA Astrophysics Data System (ADS)

    Saulquin, Bertrand; Gohin, Francis; Garnesson, Philippe; Demaria, Julien; Mangin, Antoine; Fanton d'Andon, Odile

    2016-08-01

    The level-4 daily chl-a products are a combination of a water typed merge of chl-a estimates and an optimal interpolation based on the kriging method with regional anisotropic models [1, 2]. The Level 4 products basically pro- vide a global continuous (cloud free) estimation of the surface chl-a concentration at 4 km resolution over the world and 1 km resolution over the Europe. The level-4 products gather MODIS, MERIS, SeaWiFS, VIIRS and OLCI daily observations from 1998 to now.The Level 4 product avoids end users to consider typical lack of data as observed during cloudy conditions and the historical multiplicity of available algorithms such as involved by case 1 (oligotrophic) and case 2 (turbid) water issues in ocean colour. [3, 4].A total product uncertainty, i.e. a combination of the interpolation and the estimation error, is provided for each daily product. The L4 products are freely distributed in the frame of the Copernicus - Marine environment monitoring service.

  14. Monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in community and consumer retail food environments globally.

    PubMed

    Ni Mhurchu, C; Vandevijvere, S; Waterlander, W; Thornton, L E; Kelly, B; Cameron, A J; Snowdon, W; Swinburn, B

    2013-10-01

    Retail food environments are increasingly considered influential in determining dietary behaviours and health outcomes. We reviewed the available evidence on associations between community (type, availability and accessibility of food outlets) and consumer (product availability, prices, promotions and nutritional quality within stores) food environments and dietary outcomes in order to develop an evidence-based framework for monitoring the availability of healthy and unhealthy foods and non-alcoholic beverages in retail food environments. Current evidence is suggestive of an association between community and consumer food environments and dietary outcomes; however, substantial heterogeneity in study designs, methods and measurement tools makes it difficult to draw firm conclusions. The use of standardized tools to monitor local food environments within and across countries may help to validate this relationship. We propose a step-wise framework to monitor and benchmark community and consumer retail food environments that can be used to assess density of healthy and unhealthy food outlets; measure proximity of healthy and unhealthy food outlets to homes/schools; evaluate availability of healthy and unhealthy foods in-store; compare food environments over time and between regions and countries; evaluate compliance with local policies, guidelines or voluntary codes of practice; and determine the impact of changes to retail food environments on health outcomes, such as obesity.

  15. Global monitoring in the neurocritical care unit.

    PubMed

    Olson, DaiWai M; Andrew Kofke, W; O'Phelan, Kristine; Gupta, Puneet K; Figueroa, Stephen A; Smirnakis, Stelios M; Leroux, Peter D; Suarez, Jose I

    2015-06-01

    Effective methods of monitoring the status of patients with neurological injuries began with non-invasive observations and evolved during the past several decades to include more invasive monitoring tools and physiologic measures. The monitoring paradigm continues to evolve, this time back toward the use of less invasive tools. In parallel, the science of monitoring began with the global assessment of the patient's neurological condition, evolved to focus on regional monitoring techniques, and with the advent of enhanced computing capabilities is now moving back to focus on global monitoring. The purpose of this session of the Second Neurocritical Care Research Conference was to collaboratively develop a comprehensive understanding of the state of the science for global brain monitoring and to identify research priorities for intracranial pressure monitoring, neuroimaging, and neuro-electrophysiology monitoring.

  16. Aquatic Global Passive Sampling (AQUA-GAPS) Revisited: First Steps toward a Network of Networks for Monitoring Organic Contaminants in the Aquatic Environment.

    PubMed

    Lohmann, Rainer; Muir, Derek; Zeng, Eddy Y; Bao, Lian-Jun; Allan, Ian J; Arinaitwe, Kenneth; Booij, Kees; Helm, Paul; Kaserzon, Sarit; Mueller, Jochen F; Shibata, Yasuyuki; Smedes, Foppe; Tsapakis, Manolis; Wong, Charles S; You, Jing

    2017-02-07

    Organic contaminants, in particular persistent organic pollutants (POPs), adversely affect water quality and aquatic food webs across the globe. As of now, there is no globally consistent information available on concentrations of dissolved POPs in water bodies. The advance of passive sampling techniques has made it possible to establish a global monitoring program for these compounds in the waters of the world, which we call the Aquatic Global Passive Sampling (AQUA-GAPS) network. A recent expert meeting discussed the background, motivations, and strategic approaches of AQUA-GAPS, and its implementation as a network of networks for monitoring organic contaminants (e.g., POPs and others contaminants of concern). Initially, AQUA-GAPS will demonstrate its operating principle via two proof-of-concept studies focused on the detection of legacy and emerging POPs in freshwater and coastal marine sites using both polyethylene and silicone passive samplers. AQUA-GAPS is set up as a decentralized network, which is open to other participants from around the world to participate in deployments and to initiate new studies. In particular, participants are sought to initiate deployments and studies investigating the presence of legacy and emerging POPs in Africa, Central, and South America.

  17. MEMOS - Mars Environment Monitoring Satellite

    NASA Astrophysics Data System (ADS)

    Ott, T.; Barabash, S.; von Schéele, F.; Clacey, E.; Pokrupa, N.

    2007-08-01

    The Swedish Institute of Space Physics (IRF) in cooperation with the Swedish Space Corporation (SSC) has conducted first studies on a Mars Environment Monitoring Satellite (MEMOS). The MEMOS microsatellite (mass < 20 kg) will accommodate four scientific instruments: solar EUV/UV monitor (SEM), solar wind monitor (SWIM), magnetometer (MAG) and radiation environment monitor (REM). The payload monitors the solar conditions at Mars and characterizes the Mars environment to support other missions and science investigations. Monitoring of the solar wind parameters (velocity, density, and field) is the key for any aeronomy and solar wind interaction mission at Mars. The solar EUV / UV (HeII 30.4 nm and HII 121.6 nm) flux monitoring is required for upper atmosphere / ionosphere studies. The radiation environment monitoring is needed to study space weather effects on the near-Mars environment as well as for the preparations for man-flights. MEMOS follows the design philosophy of a detached and autonomously flying instrument for achieving the mentioned objectives. It is intended to be carried "piggy-back" to Mars on a suitable mission. Potential missions are: ESA Mars orbiters within the NEXT or Cosmic Vision programs, NASA Mars orbiters, national / bilateral Mars missions. At Mars MEMOS is separated from its carrier (parent satellite) via the release mechanism implemented in the dual formation flight mission PRISMA. The separation will take place during the orbit insertion scenario of the parent satellite at Mars thus placing MEMOS in a highly elliptical orbit guarantying sufficient observation time in the solar wind. In orbit MEMOS will autonomously detumble and spin-up to ~1 rpm for reasons of stabilization and to fulfill instrument requirements. Such a low spin-rate is sufficient for a required inertial pointing accuracy of 2.5° because of the small external disturbance torques (< 10-7 Nm) predominant at Mars responsible for nutation and precession of the spin-axis. The

  18. Global temperature monitoring from space

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.

    1994-01-01

    Global and regional temperature variations in the lower troposphere and lower stratosphere are examined for the period 1979-92 from Microwave Sounder Unit (MSU) data obtained by the Television Infrared Observation Satellite (TIROS)-N series of National Oceanic and Atmospheric Administration (NOAA) operational satellites. In the lower troposphere, globally-averaged temperature variations appear to be dominated by tropical El Nino (warm) and La Nina (cool) events and volcanic eruptions. The Pinatubo volcanic eruption in June 1991 appears to have initiated a cooling trend which persisted through the most recent data analyzed (July, 1992), and largely overwhelmed the warming from the 1991-92 El Nino. The cooling has been stronger in the Northern Hemisphere than in the Southern Hemisphere. The temperature trend over the 13.5 year satellite record is small (+0.03 C) compared to the year-to-year variability (0.2-0.4 C), making detection of any global warming signal fruitless to date. However, the future global warming trend, currently predicted to be around 0.3 C/decade, will be much easier to discern should it develop. The lower stratospheric temperature record is dominated by warm episodes from the Pinatubo eruption and the March 1982 eruption of El Chichon volcano.

  19. Autonomous Environment-Monitoring Networks

    NASA Technical Reports Server (NTRS)

    Hand, Charles

    2004-01-01

    Autonomous environment-monitoring networks (AEMNs) are artificial neural networks that are specialized for recognizing familiarity and, conversely, novelty. Like a biological neural network, an AEMN receives a constant stream of inputs. For purposes of computational implementation, the inputs are vector representations of the information of interest. As long as the most recent input vector is similar to the previous input vectors, no action is taken. Action is taken only when a novel vector is encountered. Whether a given input vector is regarded as novel depends on the previous vectors; hence, the same input vector could be regarded as familiar or novel, depending on the context of previous input vectors. AEMNs have been proposed as means to enable exploratory robots on remote planets to recognize novel features that could merit closer scientific attention. AEMNs could also be useful for processing data from medical instrumentation for automated monitoring or diagnosis. The primary substructure of an AEMN is called a spindle. In its simplest form, a spindle consists of a central vector (C), a scalar (r), and algorithms for changing C and r. The vector C is constructed from all the vectors in a given continuous stream of inputs, such that it is minimally distant from those vectors. The scalar r is the distance between C and the most remote vector in the same set. The construction of a spindle involves four vital parameters: setup size, spindle-population size, and the radii of two novelty boundaries. The setup size is the number of vectors that are taken into account before computing C. The spindle-population size is the total number of input vectors used in constructing the spindle counting both those that arrive before and those that arrive after the computation of C. The novelty-boundary radii are distances from C that partition the neighborhood around C into three concentric regions (see Figure 1). During construction of the spindle, the changing spindle radius

  20. Global monitoring concept for bridges

    NASA Astrophysics Data System (ADS)

    Bergmeister, Konrad; Santa, Ulrich

    2000-06-01

    Knowledge of the integrity of in-service structures on a continuous time basis is an ultimate objective for owners and maintenance authorities. The development of a life extension and/or replacement strategy for highway structures is a crucial point in an effective bridge management system. A key component of such a bridge management system is a means of surveillance techniques and determining the condition of an existing structure within the normative and budgetary constraints. Recent advances in sensing technologies and material/structure damage characterization combined with current developments in computations and communications have resulted in a significant interest in developing diagnostic technologies for monitoring the integrity of and for the detection of damages of structures. To identify anomalies and deterioration processes, it is essential to understand the relationships between the signal measurements and the real occurred phenomena. Therefore, the comparison of measured and calculated data in order to tune and validate the mechanical and numerical model assumptions is an integral part of any system analysis. Finally, the interpreted results of all measurements should be the basis for the condition assessment and the safety evaluation of a structure to facilitate replacement and repair decisions.

  1. Towards a global terrestrial species monitoring program

    USGS Publications Warehouse

    Schmeller, Dirk S.; Julliard, Romain; Bellingham, Peter J.; Böhm, Monika; Brummitt, Neil; Chiarucci, Alessandro; Couvet, Denis; Elmendorf, Sarah; Forsyth, David M.; Moreno, Jaime García; Gregory, Richard D.; Magnusson, William E.; Martin, Laura J.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pereira, Henrique M.; Proença, Vânia; van Swaay, Chris A.M.; Yahara, Tetsukazu; Belnap, Jayne

    2015-01-01

    Introduction: The Convention for Biological Diversity’s (CBD) Strategic Plan for Biodiversity 2011-2020 envisions that “By 2050, biodiversity is valued, conserved, restored and wisely used, maintaining ecosystem services, sustaining a healthy planet and delivering benefits essential for all people.” Although 193 parties have adopted these goals, there is little infrastructure in place to monitor global biodiversity trends. Recent international conservation policy requires such data to be up-to-date, reliable, comparable among sites, relevant, and understandable; as is becoming obvious from the work plan adopted by the Intergovernmental Panel for Biodiversity and Ecosystem Services (IPBES: www.ipbes.net/; http://tinyurl.com/ohdnknq). In order to meet the five strategic goals of the Strategic Plan for Biodiversity 2011-2020 and its 20 accompanying Aichi Targets for 2020 (www.cbd.int/sp/targets/), advances need to be made in coordinating large-scale biodiversity monitoring and linking these with environmental data to develop a comprehensive Global Observation Network, as is the main idea behind GEOSS the Global Earth Observation System of Systems (Christian 2005)...Here we identify ten requirements important for the successful implementation of a global biodiversity monitoring network under the flag of GEO BON and especially a global terrestrial species monitoring program.

  2. Satellite global monitoring of environmental quality

    NASA Technical Reports Server (NTRS)

    Schiffer, R. A.

    1975-01-01

    The missions of two NASA satellites for the monitoring of environmental quality are described: Nimbus G, the Air Pollution and Oceanographic Observing Satellite, and the Applications Explorer Mission (AEM) satellite to be used in the Stratospheric Aerosol and Gas Experiment (SAGE). The scientific payload of Nimbus G is described in detail with a discussion of limb infrared monitoring of the stratosphere, the stratospheric and mesospheric sounder, stratospheric aerosol measurement, the solar and backscatter UV spectrometer for ozone mapping, the earth radiation budget experiment, the scanning multichannel microwave radiometer, the coastal zone color scanner and the temperature-humidity infrared radiometer. A brief description is given of the SAGE program and future NASA plans relating to the global monitoring of environmental quality are outlined.

  3. Monitoring Illness in a Closed Work Environment.

    DTIC Science & Technology

    1981-10-20

    AD-AlS 1#17 NAVAL HEALTH RESEARCH CENTER SAN DIEGO CA F/S 5/2 MONITORING ILLNESS MN A CLOSED WORK ENVIRONMENT .(Ul OCT Al L HERNANSEN, V M PUGH...CLOSED WORK ENVIRONMENT Larry Hermansen* and William M. Pugh* Naval Health Research Center P.O. Box 85122 San Diego, California 92138 Accesion Yor NUIS 0R...monitoring outpatient illness rates in a closed work environment . This paper presents additional procedures which were used to further organize and

  4. Global integrated drought monitoring and prediction system

    PubMed Central

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe. PMID:25977759

  5. Global integrated drought monitoring and prediction system.

    PubMed

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe.

  6. Monitoring Seasons Through Global Learning Communities

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Robin, J. H.; Jeffries, M. O.; Gordon, L. S.; Verbyla, D. L.; Levine, E. R.

    2006-12-01

    Monitoring Seasons through Global Learning Communities (MSTGLC) is an inquiry- and project-based project that monitors seasons, specifically their interannual variability, in order to increase K-12 students' understanding of the Earth system by providing teacher professional development in Earth system science and inquiry, and engaging K-12 students in Earth system science research relevant to their local communities that connect globally. MSTGLC connects GLOBE students, teachers, and communities, with educators and scientists from three integrated Earth systems science programs: the International Arctic Research Center, and NASA Landsat Data Continuity and Terra Satellite Missions. The project organizes GLOBE schools by biomes into eight Global Learning Communities (GLCs) and students monitor their seasons through regional based field campaigns. The project expands the current GLOBE phenology network by adapting current protocols and making them biome-specific. In addition, ice and mosquito phenology protocols will be developed for Arctic and Tropical regions, respectively. Initially the project will focus on Tundra and Taiga biomes as phenological changes are so pronounced in these regions. However, our long-term goal is to determine similar changes in other biomes (Deciduous Forest, Desert, Grasslands, Rain Forest, Savannah and Shrubland) based upon what we learn from these two biomes. This project will also contribute to critically needed Earth system science data such as in situ ice, mosquito, and vegetation phenology measurements for ground validations of remotely sensed data, which are essential for regional climate change impact assessments. Additionally it will contribute environmental data critical to prevention and management of diseases such as malaria in Asian, African, and other countries. Furthermore, this project will enable students to participate in the International Polar Year (IPY) (2007-2009) through field campaigns conducted by students in

  7. AVHRR for monitoring global tropical deforestation

    NASA Technical Reports Server (NTRS)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  8. Methods for mapping and monitoring global glaciovolcanism

    NASA Astrophysics Data System (ADS)

    Curtis, Aaron; Kyle, Philip

    2017-03-01

    The most deadly (Nevado del Ruiz, 1985) and the most costly (Eyjafjallajökull, 2010) eruptions of the last 100 years were both glaciovolcanic. Considering its great importance to studies of volcanic hazards, global climate, and even astrobiology, the global distribution of glaciovolcanism is insufficiently understood. We present and assess three algorithms for mapping, monitoring, and predicting likely centers of glaciovolcanic activity worldwide. Each algorithm intersects buffer zones representing known Holocene-active volcanic centers with existing datasets of snow, ice, and permafrost. Two detection algorithms, RGGA and PZGA, are simple spatial join operations computed from the Randolph Glacier Inventory and the Permafrost Zonation Index, respectively. The third, MDGA, is an algorithm run on all 15 available years of the MOD10A2 weekly snow cover product from the Terra MODIS satellite radiometer. Shortcomings and advantages of the three methods are discussed, including previously unreported blunders in the MOD10A2 dataset. Comparison of the results leads to an effective approach for integrating the three methods. We show that 20.4% of known Holocene volcanic centers host glaciers or areas of permanent snow. A further 10.9% potentially interact with permafrost. MDGA and PZGA do not rely on any human input, rendering them useful for investigations of change over time. An intermediate step in MDGA involves estimating the snow-covered area at every Holocene volcanic center. These estimations can be updated weekly with no human intervention. To investigate the feasibility of an automatic ice-loss alert system, we consider three examples of glaciovolcanism in the MDGA weekly dataset. We also discuss the potential use of PZGA to model past and future glaciovolcanism based on global circulation model outputs. Combined, the three algorithms provide an automated system for understanding the geographic and temporal patterns of global glaciovolcanism which should be of use

  9. A global approach to resistance monitoring.

    PubMed

    Sivasupramaniam, Sakuntala; Head, Graham P; English, Leigh; Li, Yue Jin; Vaughn, Ty T

    2007-07-01

    Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been grown in many parts of the world since 1996. In the United States, the Environmental Protection Agency (EPA) has required that industry submit insect resistance management (IRM) plans for each Bt corn and cotton product commercialized. A coalition of stakeholders including the EPA, USDA, academic scientists, industry, and grower organizations have cooperated in developing specific IRM strategies. Resistance monitoring (requiring submission of annual reports to the EPA), and a remedial action plan addressing any contingency if resistance should occur, are important elements of these strategies. At a global level, Monsanto conducts baseline susceptibility studies (prior to commercialization), followed by monitoring studies on target pest populations, for all of its commercialized Bt crop products. To date, Monsanto has conducted baseline/monitoring studies in Argentina, Australia, Brazil, Canada, China, Colombia, India, Mexico, the Philippines, South Africa, Spain, and the United States. Examples of pests on which resistance monitoring has been conducted include cotton bollworm, Helicoverpa zea, European corn borer, Ostrinia nubilalis, pink bollworm, Pectinophora gossypiella, Southwestern corn borer, Diatraea grandiosella, tobacco budworm, Heliothis virescens, and western corn rootworm, Diabrotica virgifera virgifera, in the United States, cotton bollworm, Helicoverpa armigera, in China, India and Australia, and H. virescens and H. zea in Mexico. No field-selected resistance to Bt crops has been documented.

  10. Monitoring Global Geophysical Fluids by Space Geodesy

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  11. Global disease monitoring and forecasting with Wikipedia.

    PubMed

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y; Priedhorsky, Reid

    2014-11-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  12. Global Disease Monitoring and Forecasting with Wikipedia

    PubMed Central

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid

    2014-01-01

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art. PMID:25392913

  13. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  14. Global disease monitoring and forecasting with Wikipedia

    DOE PAGES

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; ...

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  15. Global Seismic Monitoring: Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Zoback, M.; Benz, H.; Oppenheimer, D.

    2007-12-01

    Global seismological observations began in April 1889 when an earthquake in Tokyo, Japan was accurately recorded in Germany on two different horizontal pendulum instruments. However, modern global observational seismology really began 46 years ago when the 120-station World Wide Standard Seismograph Network was installed by the US to monitor underground nuclear tests and earthquakes using well-calibrated short- and long- period stations. At the same time rapid advances in computing technology enabled researchers to begin sophisticated analysis of the increasing amount of seismic data, which led to better understanding of earthquake source properties and their use in establishing plate tectonics. Today, global seismic networks are operated by German (Geophon), France (Geoscope), the United States (Global Seismograph Network) and the International Monitoring System. Presently, the Federation of Digital Seismograph Networks registers more than 1,000 broadband stations world-wide, a small percentage of the total number of digital seismic stations around the world. Following the devastating Kobe, Japan and Northridge, California earthquakes, Japan and the US have led the world in the integration of existing seismic sensor systems (weak and strong motion) into development of near-real-time, post-earthquake response products like ShakeMap, detailing the spatial distribution of strong shaking. Future challenges include expanding real-time integration of both seismic and geodetic sensor systems to produce early warning of strong shaking, rapid source determination, as well as near-realtime post- earthquake damage assessment. Seismic network data, hydro-acoustic arrays, deep water tide gauges, and satellite imagery of wave propagation should be integrated in real-time to provide input for hydrodynamic modeling yielding the distribution, timing and size of tsunamis runup--which would then be available instantly on the web, e.g. in a Google Earth format. Dense arrays of strong

  16. Monitoring Global Freshwater Resources with GRACE

    NASA Technical Reports Server (NTRS)

    Rodell, Matt; Famiglietti, Jay; Velicogna, Isabella; Swenson, Sean; Chambers, Don

    2011-01-01

    Freshwater resources include surface waters, groundwater, and seasonal snowpack. Given adequate ground based measurements, all of these can be monitored effectively, however, outside of the developed world such measurements often are not systematic and the data not centralized, and as a result reports of freshwater availability may be largely anecdotal. Even in the developed world it can be difficult to quantify changes in groundwater storage over large scales. Owing to its global coverage, satellite remote sensing has become a valuable tool for freshwater resources assessment. In particular, the Gravity Recovery and Climate Experiment (GRACE) has demonstrated an unequaled ability to monitor total terrestrial water storage including groundwater at regional to continental scales. In this presentation we will identify apparent trends in terrestrial water storage observed by GRACE over the past nine years and attempt to explain their origins and predict whether they are likely to continue. Trends in certain regions where groundwater extraction has significantly depleted aquifers, including northern India and California, will be discussed in detail.

  17. Monitoring tropical environments with Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Helfert, Michael R.; Lulla, Kamlesh P.

    1989-01-01

    Orbital photography from the Space Shuttle missions (1981-88) and earlier manned spaceflight programs (1962-1975) allows remote sensing time series to be constructed for observations of environmental change in selected portions of the global tropics. Particular topics and regions include deforestation, soil erosion, supersedimentation in streams, lacustrine, and estuarine environments, and desertification in the greater Amazon, tropical Africa and Madagascar, South and Southeast Asia, and the Indo-Pacific archipelagoes.

  18. The space environment monitors onboard GOES

    NASA Astrophysics Data System (ADS)

    Joselyn, J. A.; Grubb, R. N.

    1985-01-01

    The first Geostationary Operational Environmental Satellite (GOES) was launched in April 1974. Since that time, eight similar satellites have been built and deployed to meet the operational requirement of the National Oceanic and Atmospheric Administration (NOAA). Each GOES contains a visible and infrared spin scan radiometer (VISSR) or an atmospheric sounder (VAS), a space environment monitor (SEM), and a communications subsystem which includes data relay from ground-based data collection platforms which can be interrogated by command. It is pointed out that the VAS or VISSR systems provide hemispheric imaging and information for the National Weather Service. The space environment monitors are discussed, taking into account the energetic particle sensor, the high energy proton and alpha particle detector, the magnetometer, and the solar X-ray instrument. Attention is also given to the satellite broadcast system.

  19. Tele-monitoring system for water environments

    NASA Astrophysics Data System (ADS)

    Suciu, George; Tecu, Georgiana R.; Fratu, Octavian; Ochian, Adelina; Suciu, Victor

    2015-02-01

    This paper presents an innovative approach for a monitoring system, with applicability for water environments, based on a previous state of the art regarding both communication challenges in water and underwater monitoring but also the technologies which may be used in such surroundings. The system is based on an underwater sensors network which is connected to a cloud platform by means of a reconfigurable wireless transceiver. The sensor network integrates several low cost sensors that can measure different parameters such as water level, the water flow, temperature, pressure etc. The paper analyzes the measured parameters that will be transmitted through an operational communication node, which is able to ensure a reliable communication with timing and variation delay constraints. The cloud platform collects and stores the environmental data received from the targeted locations. Finally, the paper describes the platform interface available to end users, which will provide a real time visualization of the water environment events.

  20. Development and testing of crop monitoring methods to improve global agricultural monitoring in support of GEOGLAM

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Bydekerke, L.

    2014-12-01

    The SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture) is funded through the EC FPY7 Research programme with the particular aim to contribute to the GEOGLAM Research Agenda. It is a partnership of globally distributed expert organizations, focusses on developing innovative techniques and datasets in support of agricultural monitoring and its impact on the environment in support of GEOGLAM. SIGMA has 3 generic objectives which are: (i) develop and test methods to characterize cropland and assess its changes at various scales; (ii) develop and test methods to assess changes in agricultural production levels; and; (iii) study environmental impacts of agriculture. Firstly, multi-scale remote sensing data sets, in combination with field and other ancillary data, are used to generate an improved (global) agro-ecological zoning map and crop mask. Secondly, a combination of agro-meteorological models, satellite-based information and long-term time series are be explored to better assess crop yield gaps and shifts in cultivation. The third research topic entails the development of best practices for assessing the impact of crop land and cropping system change on the environment. In support of the GEO JECAM (Joint Experiment for Crop Assessment and Monitoring) initiative, case studies in Ukraine, Russia, Europe, Africa, Latin America and China are carried out in order to explore possible methodological synergies and particularities according to different cropping systems. This presentation will report on the progress made with respect to the three topics above.

  1. Monitoring product safety in the postmarketing environment.

    PubMed

    Sharrar, Robert G; Dieck, Gretchen S

    2013-10-01

    The safety profile of a medicinal product may change in the postmarketing environment. Safety issues not identified in clinical development may be seen and need to be evaluated. Methods of evaluating spontaneous adverse experience reports and identifying new safety risks include a review of individual reports, a review of a frequency distribution of a list of the adverse experiences, the development and analysis of a case series, and various ways of examining the database for signals of disproportionality, which may suggest a possible association. Regulatory agencies monitor product safety through a variety of mechanisms including signal detection of the adverse experience safety reports in databases and by requiring and monitoring risk management plans, periodic safety update reports and postauthorization safety studies. The United States Food and Drug Administration is working with public, academic and private entities to develop methods for using large electronic databases to actively monitor product safety. Important identified risks will have to be evaluated through observational studies and registries.

  2. Global Infrasound Monitoring of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Bass, Henry

    2003-03-01

    As a signatory to the Comprehensive Nuclear Test Ban Treaty (CTBT), the United States has responsiblity for establishing and operating eight infrasound arrays from Alaska to the Antarctic through the Pacific Basin, and along the U. S. west coast. (In this context, infrasound is defined as acoustic waves in the frequency range 0.02 Hz to 4Hz.) In addition, the U. S. has non-CTBTO infrasound arrays in New Mexico, Utah, Nevada, Wyoming, Texas, and Maryland. The CTBT Office will install and operate an additional 52 states to provide worldwide coverage. This immense array of sensors provides a rare opportunity to study low frequency sound on a global scale. An international community of interested scieintists is beginning to emerge with different interests in the use of data from this global network. Much of the research interest lies in the ability to remotely monitor events of interest. These include volcanoes, severe storms, and bolides. The signals received at the individual stations are strongly dependent on the state of the intervening atmosphere therefore there is an opportunity to use tomography to gain more detailed knowledge of changes in the upper atmosphere. There are still great opportunities to improve the quality of the infrasound stations. Wind noise continues to limit the signal to noise level. Modern signal processing techniques might be used to lower wind noise levels and allow the detection of even weaker signals. Current generation infrasound stations are large and expensive. Reduction in complexity would allow a finer grid of stations and the study of higher frequency signals. There are numerous opportunities for collaborations in the use of this unique data source at the national and international levels. The US Infrasound Team and international collaborators are open to new ideas and colleagues.

  3. Infrared monitoring of the Space Station environment

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Jennings, Donald E.; Mumma, Michael J.

    1988-01-01

    The measurement and monitoring of infrared emission in the environment of the Space Station has a twofold importance - for the study of the phenomena itself and as an aid in planning and interpreting Station based infrared experiments. Spectral measurements of the infrared component of the spacecraft glow will, along with measurements in other spectral regions, provide data necessary to fully understand and model the physical and chemical processes producing these emissions. The monitoring of the intensity of these emissions will provide background limits for Space Station based infrared experiments and permit the determination of optimum instrument placement and pointing direction. Continuous monitoring of temporal changes in the background radiation (glow) will also permit better interpretation of Station-based infrared earth sensing and astronomical observations. The primary processes producing infrared emissions in the Space Station environment are: (1) Gas phase excitations of Station generated molecules ( e.g., CO2, H2O, organics...) by collisions with the ambient flux of mainly O and N2. Molecular excitations and generation of new species by collisions of ambient molecules with Station surfaces. They provide a list of resulting species, transition energies, excitation cross sections and relevant time constants. The modeled spectrum of the excited species occurs primarily at wavelengths shorter than 8 micrometer. Emissions at longer wavelengths may become important during rocket firing or in the presence of dust.

  4. Space radiation environment monitoring onboard Chinese spacecrafts

    NASA Astrophysics Data System (ADS)

    Wang, Shijin; Xu, Ying; Zhang, Xianguo

    The space particle radiation can cause harsh hazards to spacecraft performance and lifetime. Numerous operational anomalies and several Chinese satellites failures have been attributed to radiation effects. The failure of FY-1 satellite, in 1991, increased awareness of space radiation effects and enhanced monitoring in situ. From then on, Space Environment Monitors (SEM) have been widely used in a great number of Chinese spacecrafts, such as SZ-4 manned spacecraft, FY-1, FY-3 sun-synchronous orbit satellites, FY-2 geo-synchronous orbit satellite, CE-1 lunar probe satellite, and so on. In particular, the SJ-4 and the SJ-5 satellites, which were used for special experiments of space radiation and theirs effects on spacecrafts, had been launched in 1990's. The sustained space radiation monitoring on LEO and GEO has accumulated a mass of data and can promote studies for empirical model of space radiation. In this article, monitoring at the Chinese spacecrafts from 1990's to the predictive future will be described, and cross-calibration of data and their typical results will be given.

  5. Industrial Lead in the Global Environment

    NASA Astrophysics Data System (ADS)

    Flegal, A. R.; Ericson, J. E.

    2004-12-01

    Although the rates of emission, fluxes and recycling of natural and industrial lead in biogeochemical systems are needed to quantify environmental lead pollution, those geochemical processes are rarely incorporated in either Earth Science or Environmental Health Science curriculum. The need for an understanding of the global lead cycle in those diverse fields is due to the omnipresence of industrial lead contamination that was initiated over five millennia ago, which has often exceeded natural emissions of lead by orders of magnitude. That contamination has been repeatedly demonstrated in environmental analyses ranging from the most remote polar regions and oceans of the Earth to urban and industrial regions. The latter include studies of soil lead in Baltimore, New Orleans, St. Paul-Minneapolis, Los Angeles, Tijuana, and Ottawa, which show that lead from past combustion of leaded gasoline remains in those cities and it is bioavailable. With the protracted residence time of that soil lead (102 - 103 years), it is estimated that generations of urban children will continue to be exposed to this toxicant, unless there is abatement. Moreover, many third world countries are still using leaded gasoline and other sources of industrial lead continue to be emitted into the environment, albeit at reduced levels. Consequently, the geochemical cycling of lead is and will continue to be a most appropriate and topical subject of study in the curriculum of earth science and environmental health science.

  6. Remote sensing monitoring of the global ozonosphere

    NASA Astrophysics Data System (ADS)

    Genco, S.; Bortoli, D.; Ravegnani, F.

    2013-10-01

    The use of CFCs, which are the main responsible for the ozone depletion in the upper atmosphere and the formation of the so-called "ozone hole" over Antarctic Region, was phase out by Montreal Protocol (1989). CFCs' concentration is recently reported to decrease in the free atmosphere, but severe episodes of ozone depletion in both Arctic and Antarctic regions are still occurring. Nevertheless the complete recovery of the Ozone layer is expected by about 2050. Recent simulation of perturbations in stratospheric chemistry highlight that circulation, temperature and composition are strictly correlated and they influence the global climate changes. Chemical composition plays an important role in the thermodynamic of the atmosphere, as every gaseous species can absorb and emit in different wavelengths, so their different concentration is responsible for the heating or cooling of the atmosphere. Therefore long-term observations are required to monitor the evolution of the stratospheric ozone layer. Measurements from satellite remote sensing instruments, which provide wide coverage, are supplementary to selective ground-based observations which are usually better calibrated, more stable in time and cover a wider time span. The combination of the data derived from different space-borne instruments calibrated with ground-based sensors is needed to produce homogeneous and consistent long-term data records. These last are required for robust investigations and especially for trend analysis. Here, we perform a review of the major remote-sensing techniques and of the principal datasets available to study the evolution of ozone layer in the past decades and predict future behavio

  7. Microbial monitoring of spacecraft and associated environments

    NASA Technical Reports Server (NTRS)

    La Duc, M. T.; Kern, R.; Venkateswaran, K.

    2004-01-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained. Copyright 2004 Springer-Verlag.

  8. Microbial monitoring of spacecraft and associated environments.

    PubMed

    La Duc, M T; Kern, R; Venkateswaran, K

    2004-02-01

    Rapid microbial monitoring technologies are invaluable in assessing contamination of spacecraft and associated environments. Universal and widespread elements of microbial structure and chemistry are logical targets for assessing microbial burden. Several biomarkers such as ATP, LPS, and DNA (ribosomal or spore-specific), were targeted to quantify either total bioburden or specific types of microbial contamination. The findings of these assays were compared with conventional, culture-dependent methods. This review evaluates the applicability and efficacy of some of these methods in monitoring the microbial burden of spacecraft and associated environments. Samples were collected from the surfaces of spacecraft, from surfaces of assembly facilities, and from drinking water reservoirs aboard the International Space Station (ISS). Culture-dependent techniques found species of Bacillus to be dominant on these surfaces. In contrast, rapid, culture-independent techniques revealed the presence of many Gram-positive and Gram-negative microorganisms, as well as actinomycetes and fungi. These included both cultivable and noncultivable microbes, findings further confirmed by DNA-based microbial detection techniques. Although the ISS drinking water was devoid of cultivable microbes, molecular-based techniques retrieved DNA sequences of numerous opportunistic pathogens. Each of the methods tested in this study has its advantages, and by coupling two or more of these techniques even more reliable information as to microbial burden is rapidly obtained.

  9. Global monitoring of wetlands--the value of ENVISAT ASAR Global mode.

    PubMed

    Bartsch, A; Wagner, W; Scipal, K; Pathe, C; Sabel, D; Wolski, P

    2009-05-01

    This paper elaborates on recent advances in the use of ScanSAR technologies for wetland-related research. Applications of active satellite radar systems include the monitoring of inundation dynamics as well as time series analyses of surface soil wetness. For management purposes many wetlands, especially those in dry regions, need to be monitored for short and long-term changes. Another application of these technologies is monitoring the impact of climate change in permafrost transition zones where peatlands form one of the major land cover types. Therefore, examples from boreal and subtropical environments are presented using the analysed ENVISAT ASAR Global mode (GM, 1 km resolution) data acquired in 2005 and 2006. In the case of the ENVISAT ASAR instrument, data availability of the rather coarse Global Mode depends on request priorities of other competing modes, but acquisition frequency may still be on average fortnightly to monthly depending on latitude. Peatland types covering varying permafrost regimes of the West Siberian Lowlands can be distinguished from each other and other land cover by multi-temporal analyses. Up to 75% of oligotrophic bogs can be identified in the seasonal permafrost zone in both years. The high seasonal and inter-annual dynamics of the subtropic Okavango Delta can also be captured by GM time series. Response to increased precipitation in 2006 differs from flood propagation patterns. In addition, relative soil moisture maps may provide a valuable data source in order to account for external hydrological factors of such complex wetland ecosystems.

  10. Pharmaceuticals in the environment--Global occurrences and perspectives.

    PubMed

    aus der Beek, Tim; Weber, Frank-Andreas; Bergmann, Axel; Hickmann, Silke; Ebert, Ina; Hein, Arne; Küster, Anette

    2016-04-01

    Pharmaceuticals are known to occur widely in the environment of industrialized countries. In developing countries, more monitoring results have recently become available, but a concise picture of measured environmental concentrations (MECs) is still elusive. Through a comprehensive literature review of 1016 original publications and 150 review articles, the authors collected MECs for human and veterinary pharmaceutical substances reported worldwide in surface water, groundwater, tap/drinking water, manure, soil, and other environmental matrices in a comprehensive database. Due to the heterogeneity of the data sources, a simplified data quality assessment was conducted. The database reveals that pharmaceuticals or their transformation products have been detected in the environment of 71 countries covering all continents. These countries were then grouped into the 5 regions recognized by the United Nations (UN). In total, 631 different pharmaceutical substances were found at MECs above the detection limit of the respective analytical methods employed, revealing distinct regional patterns. Sixteen substances were detected in each of the 5 UN regions. For example, the anti-inflammatory drug diclofenac has been detected in environmental matrices in 50 countries, and concentrations found in several locations exceeded predicted no-effect concentrations. Urban wastewater seems to be the dominant emission pathway for pharmaceuticals globally, although emissions from industrial production, hospitals, agriculture, and aquaculture are important locally. The authors conclude that pharmaceuticals are a global challenge calling for multistakeholder approaches to prevent, reduce, and manage their entry into and presence in the environment, such as those being discussed under the Strategic Approach to International Chemicals Management, a UN Environment Program.

  11. Coastal environment: historical and continuous monitoring

    NASA Astrophysics Data System (ADS)

    Ivaldi, Roberta; Surace, Luciano

    2010-05-01

    The monitoring is a tool providing essential data to study the process dynamic. The formation and transformation of coastal environment involve physical, chemical, geological and biological processes. The knowledge of the littoral systems and marine seafloor therefore requires a multidisciplinary approach. Since the phenomena observation occurs in a short period of time it requires the use of high quality data acquired with high accuracy and suitable processing procedures. This knowledge considerable increased during the past 50 years closely following significant progress in the methods of investigation at sea and laboratory. In addition seafloor exploration is deeply rooted in History. A sector actually subject to control results the coastal zone for its position as transition component between continental and marine environments with closely connected natural and human actions. Certainly these activities are important in the time to develop the technologies suited for the knowledge and to increase different protection, prevention, intervention and management tools. In this context the Istituto Idrografico della Marina (Hydrographic Institute of Italian Navy - I.I.M.) is a precursor because since its foundation (in 1872) it contributed to the monitoring activities related to charting and navigation, including hydrologic surveying, seafloor measurements and in consequence the landward limit, the shoreline. The coastal area is certainly the most changeable sector either natural or socio-economic causes. This is the most dynamic environment, subject both to marine (waves and currents) and continental (river and ice) actions, and continuously changing the intended use for the increase of industrial, commercial, recreation and the need for new structures to support. The coast has more recently taken on a growing value determined by some processes, including erosion and retreat are evidence of a transformation of which, however, undermine the system and impoverishing

  12. The Environment to Come: A Global Summary.

    ERIC Educational Resources Information Center

    Murphy, Elaine M.

    Six major reports have recently assessed the state of the world in terms of energy, food, population, natural resources, pollution, and economic development. These reports include: (1) "The Global 2000 Report to the President: Entering the Twenty-First Century"; (2) "Global Future: Time to Act"; (3) "World Conservation…

  13. Remote monitoring: A global partnership for safeguards

    SciTech Connect

    Bardsley, J.

    1996-08-01

    With increased awareness of the significant changes of the past several years and their effect on the expectations to international safeguards, it is necessary to reflect on the direction for development of nuclear safeguards in a new era and the resulting implications. The time proven monitoring techniques, based on quantitative factors and demonstrated universal application, have shown their merit. However, the new expectations suggest a possibility that a future IAEA safeguards system could rely more heavily on the value of a comprehensive, transparent, and open implementation regime. With the establishment of such a regime, it is highly likely that remote monitoring will play a significant role. Several states have seen value in cooperating with each other to address the many problems associated with the remote interrogation of integrated monitoring systems. As a consequence the International Remote Monitoring Project was organized to examine the future of remote monitoring in International Safeguards. This paper provides an update on the technical issues, the future plans, and the safeguards implications of cooperative programs relating to remote monitoring. Without providing answers to the policy questions involved, it suggests that it is timely to begin addressing these issues.

  14. Short-term monitoring of benzene air concentration in an urban area: a preliminary study of application of Kruskal-Wallis non-parametric test to assess pollutant impact on global environment and indoor.

    PubMed

    Mura, Maria Chiara; De Felice, Marco; Morlino, Roberta; Fuselli, Sergio

    2010-01-01

    In step with the need to develop statistical procedures to manage small-size environmental samples, in this work we have used concentration values of benzene (C6H6), concurrently detected by seven outdoor and indoor monitoring stations over 12 000 minutes, in order to assess the representativeness of collected data and the impact of the pollutant on indoor environment. Clearly, the former issue is strictly connected to sampling-site geometry, which proves critical to correctly retrieving information from analysis of pollutants of sanitary interest. Therefore, according to current criteria for network-planning, single stations have been interpreted as nodes of a set of adjoining triangles; then, a) node pairs have been taken into account in order to estimate pollutant stationarity on triangle sides, as well as b) node triplets, to statistically associate data from air-monitoring with the corresponding territory area, and c) node sextuplets, to assess the impact probability of the outdoor pollutant on indoor environment for each area. Distributions from the various node combinations are all non-Gaussian, in the consequently, Kruskal-Wallis (KW) non-parametric statistics has been exploited to test variability on continuous density function from each pair, triplet and sextuplet. Results from the above-mentioned statistical analysis have shown randomness of site selection, which has not allowed a reliable generalization of monitoring data to the entire selected territory, except for a single "forced" case (70%); most important, they suggest a possible procedure to optimize network design.

  15. Dual Use Global Tsunami Monitoring Network and Underwater GNSS

    NASA Astrophysics Data System (ADS)

    Bernard, E. N.

    2015-12-01

    Earthquakes, volcanoes, landslides, slumps, meteorological events and asteroid impacts can generate tsunamis. However, the present tsunami monitoring network is designed to detect tsunamis generated only by subduction zone earthquakes. A global tsunami monitoring system will be presented to detect tsunamis from ANY source within 20 minutes of origin time. Real-time tsunami data from the monitoring system can be used to forecast coastal flooding in advance of tsunami arrival, thus saving lives through early warnings. The global tsunami monitoring system could also be used to expand the coverage of global navigation by satellites to the seafloor of the world's oceans. Since oceans cover over 70% of the surface planet earth, such an expansion of coverage would revolutionize earth sciences as well as tsunami monitoring for all generation mechanisms. A demonstration project is proposed to test and evaluate the dual use concept.

  16. Monitoring global monthly mean surface temperatures

    NASA Technical Reports Server (NTRS)

    Trenberth, Kevin E.; Christy, John R.; Hurrell, James W.

    1992-01-01

    The accuracy of the global surface air temperature (SST) estimates for a particular month over the past decade is assessed using all of the in situ observations available today. The sources of noise in the data, the numbers of observations, and the spatial coverage are appraised for the comparison with the climate signal, and different analyzed results are compared to determine their reproducibility. The data are further evaluated by comparing anomalies of near-global monthly mean surface temperatures with those of global satellite channel 2 microwave sounding unit temperatures for 144 months from 1979 to 1990. The results indicate that the inherent noise level in an SST observation is about 1.0 C, and this is compounded when the observation is made in regions of large temperature gradient.

  17. Remote sensing of the global environment with satellite scatterometry

    NASA Astrophysics Data System (ADS)

    Nghiem, Son V.; Neumann, Gregory

    2008-12-01

    This paper presents an overview of satellite scatterometry for remote sensing of the global environment from the tropics to polar regions. Results were derived from microwave backscatter data acquired by the NASA SeaWinds scatterometer aboard the QuikSCAT (QSCAT) satellite. QSCAT observed two successive super cyclones that hit the Orissa coastal region of India, affecting 15 million people in 1999. The extent of soil moisture change was delineated after Cyclone Nargis made landfall in Myanmar in May 2008. QSCAT detected excessive rainwater followed by a severe drought leading to widespread wildfires in California, U.S., in 2007. QSCAT tracked vegetation change in an extreme drought in Nairobi, Kenya, affecting 3 million people in 2000. QSCAT monitored snowmelt patterns over the Northern Hemisphere, which showed poleward oscillations of melt bands. QSCAT revealed a record reduction in Arctic perennial sea ice in this decade and a further drastic decline of perennial ice in 2008. At 1-km posting, QSCAT identified urban and suburban areas where backscatter was shown to correlate with population density. QSCAT delineated wind shadow areas near small islands in the Asia-Pacific region. These results demonstrate that satellite scatterometer can provide numerous crucial data products to the Global Earth Observation System of Systems.

  18. Teaching Global Perspectives in a Rural Environment.

    ERIC Educational Resources Information Center

    Lind, Mary Ann

    1980-01-01

    Rural students can understand global perspectives by developing pride as food providers who share "kinship of the soil" with the developing world. Important lessons include man's dependence on the land; philosophy of environmental protection; agricultural technology; political influence over soil use; and five factors controlling crop production.…

  19. Global Environment Facility (GEF): An Overview

    DTIC Science & Technology

    2010-05-17

    developing countries with environmental projects related to six areas: biodiversity , climate change, international waters, the ozone layer, land...environmental concerns—specifically climate change and tropical deforestation —and has been unsuccessful in delivering global transformational change. A...environmental projects related to six areas: biodiversity , climate change, international waters, the ozone layer, land degradation, and persistent organic

  20. Global Hawk monitors hurricane eye wall development

    NASA Video Gallery

    The Global Hawk UAV flies over Hurricane Karl to reveal a hot tower. Red shows reflectivity that is 12 km from the surface, orange is 10 km, yellow is 7.5 km, green is 6 km, and blue is under 6 km....

  1. Applications of the EOS SAR to monitoring global change

    NASA Technical Reports Server (NTRS)

    Schier, Marguerite; Way, Jobea; Holt, Benjamin

    1991-01-01

    The SAR employed by NASA's Earth Observing System (EOS) is a multifrequency multipolarization radar which can conduct global monitoring of geophysical and biophysical parameters. The present discussion of the EOS SAR's role in global monitoring emphasizes geophysical product variables applicable to global hydrologic, biogeochemical, and energy cycle models. EOS SAR products encompass biomass, wetland areas, and phenologic and environmental states, in the field of ecosystem dynamics; soil moisture, snow moisture and extent, and glacier and ice sheet extent and velocity, in hydrologic cycle studies; surface-wave fields and sea ice properties, in ocean/atmosphere circulation; and the topography, erosion, and land forms of the solid earth.

  2. Long-Term Monitoring of Global Climate Forcings and Feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)

    1993-01-01

    A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.

  3. NASA's Earth Observations of the Global Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. Fly in from outer space to Africa and Cape Town. See the latest spectacular images from NASA & NOAA remote sensing missions like Meteosat, TRMM, Landsat 7, and Terra, which will be visualized and explained in the context of global change. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights, aerosols from biomass burning in the Middle East and Africa, and retreat of the glaciers on Mt. Kilimanjaro. See the dynamics of vegetation growth and decay over Africa over 17 years. New visualization tools allow us to roam & zoom through massive global mosaic images including Landsat and Terra tours of Africa and South America, showing land use and land cover change from Bolivian highlands. Spectacular new visualizations of the global atmosphere & oceans are shown. See massive dust storms sweeping across Africa and across the Atlantic to the Caribbean and Amazon basin. See ocean vortexes and currents that bring up the nutrients to feed tiny phytoplankton and draw the fish, pant whales and fisher- man. See how the ocean blooms in response to these currents and El Nino/La Nifia. We will illustrate these and other topics with a dynamic theater-style presentation, along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  4. Monitoring and control of atmosphere in a closed environment

    NASA Technical Reports Server (NTRS)

    Humphries, R.; Perry, J.

    1991-01-01

    Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.

  5. Creating healthy food environments through global benchmarking of government nutrition policies and food industry practices.

    PubMed

    Vandevijvere, Stefanie; Swinburn, Boyd

    2014-03-05

    Unhealthy processed food products are increasingly dominating over healthy foods, making food and nutrition environments unhealthier. Development and implementation of strong government healthy food policies is currently being circumvented in many countries by powerful food industry lobbying. In order to increase accountability of both governments and the private sector for their actions, and improve the healthiness of food environments, INFORMAS (the International Network for Food and Obesity/non-communicable diseases (NCDs) Research, Monitoring and Action Support) has recently been founded to systematically and comprehensively monitor food environments and policies in countries of varying size and income. This will enable INFORMAS to rank both governments and private sector companies globally according to their actions on food environments. Identification of those countries which have the healthiest food and nutrition policies and using them as international benchmarks against which national progress towards best practice can be assessed, should support reductions in global obesity and diet-related NCDs.

  6. The global forum on environment and development

    SciTech Connect

    Not Available

    1990-01-01

    The first Global Conference of Spiritual and Parliamentary Leaders on Human Survival was held in Oxford, England not to discuss world issues, but to test the ability of 100 spiritual leaders and 100 parliamentarians to work together in a world which has preferred to separate church and state. This conference, held in Moscow, attracted more than 1,000 people. The main purpose was to find common solutions to environmental quality, economic development, and human survival as citizens of planet Earth. Notable addresses were heard from Javier Perez de Cuellar, Senator Albert Gore, Carl Sagan, Lester Brown, Nafis Sadik, Evguenij Velikhov, and Mikhail Gorbachev who advocated an International Green Cross.

  7. Seagrass meadows in a globally changing environment.

    PubMed

    Unsworth, Richard K F; van Keulen, Mike; Coles, Rob G

    2014-06-30

    Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass.

  8. One earth, one future. Our changing global environment

    SciTech Connect

    Silver, C.S.; Defries, R.S.

    1990-12-31

    This book reports on deforestation, ozone depletion, global warming, and other matters concerning the global environment. From the perspective that humankind is an increasingly powerful agent changing the planet, the volume describes the Earth as a unified system - exploring the interactions between the atmosphere, land, and water and the snowballing impact that human activity is having on the system - and points out the seemingly paradoxical need for economic growth to alleviate such global environmental problems.

  9. Monitoring global monthly mean surface temperatures

    SciTech Connect

    Trenberth, K.E.; Hurrell, J.W. ); Christy, J.R. )

    1992-12-01

    An assessment is made of how well the monthly mean surface temperatures for the decade of the 1980s are known. The sources of noise in the data, the numbers of observations, and the spatial coverage are appraised for comparison with the climate signal, and different analyzed results are compared to see how reproducible they are. The data are further evaluated by comparing anomalies of near-global monthly mean surface temperatures with those of global satellite channel 2 microwave sounding unit (MSU) temperatures for 144 months from 1979 to 1990. Very distincitve patterns are seen in the correlation coefficients, which range from high (> 0.8) over the extratropical continents of the Northern Hemisphere, to moderate ([approximately] 0.5) over tropical and subtropical land areas, to very low over the southern oceans and tropical western Pacific. The physical difference between the two temperature measurements is one factor in these patterns. The correlation coefficient is a measure of the signal-to-noise ratio, and largest values are found where the climate signal is largest, but the spatial variation in the inherent noise in the surface observations over the oceans is the other major factor in accounting for the pattern. 42 refs., 12 figs., 4 tab.

  10. Global Infrasonic Monitoring of Large Bolides.

    SciTech Connect

    ReVelle, D. O.

    2001-01-01

    Using recent infrasonic data (1995-2001) and older infrasonic data recorded by AFTAC (1960-1974), we have refined our estimates of the global influx rate (cumulative influx) of large bolides with sufficient strength to deeply penetrate the atmosphere (below {approx} 50 km). The number of bolides arriving as a function of their initial source energy has been estimated from a least-squares curve-fit of our database of 19 bolides (for a source energy > 0.053 kt) with the resulting values and an estimate of the associated statistical counting errors: 30.3{+-} 6 bolides at {ge}0.1 kt, 5.8{+-} 2 at {ge}1 kt and 0.84{+-} 0.25 at {ge}15 kt. In this work we also used these estimates to infer the recurrence interval for energy levels slightly outside the original source energy range, The Tunguska bolide of 1908 ({approx}10 Mt) is a prime example of a previously observed body of great interest. Almost regardless of how we analyze the recent data, the conclusion is that bolides with Tunguska type energy levels should reoccur on the average every 120{+-}10 years.

  11. Human population and the global environment.

    PubMed

    Holdren, J P; Ehrlich, P R

    1974-01-01

    A stable ecosystem resists large, rapid changes in the sizes of its constituent populations which upset the orderly flow of energy and nutrients. An early example of such alteration was the conversion to desert of the rich Tigris and Euphrates valleys through erosion and salt accumulation resulting from faulty irrigation practices that caused the downfall of the great Mesopotamian civilization. Overgrazing and poor cultivation practices have contributed over the millennia to the expansion of the Sahara Desert. Attempts to cultivate too intensively the fragile soil of tropical rainforest areas are suspected of being in part responsible for the collapse of the Mayan civilization. The 19th century Irish potato famine because of heavy reliance of the Irish population on a single, highly productive crop led to 1.5 million deaths when the potato monoculture, a simple agricultural ecosystem, fell victim to a fungus. Modern agriculture's desire to maximize yields per acre are worrisome ecologically (increases in the use of pesticides and inorganic fertilizers). The liabilities include that as larger land areas are farmed the tracts available for reservoirs of species diversity and for natural ecosystems become smaller. Pressure to expand agriculture to steep hillsides unsuitable for cultivation has led to serious erosion in Indonesia, and increasing slash-and-burn practices are destroying tropical forests in the Philippines. The enormous expansion of wheat or rice monoculture has increased the probability of epidemic crop failure from insects or disease. 37% of the world's population is under 15 years of age which means that population will grow for 50-70 years more before leveling off. Despite a declining growth rate population would still increase 30% or more during the transition to stability. Zero global population growth is required for a prosperous and environmentally sustainable civilization.

  12. Using the Global GPS Network and Other Satellite Data to Monitor Ionospheric Total Electron Content

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Wilson, Brian D.; Yuan, Dah-Ning; Lindqwister, Ulf

    1994-01-01

    A globally distributed network of dual-frequency global positioning system (GPS) receivers is the primary source of data used to measure ionospheric total electron content (TEC) on global scales. Maps of TEC useful for calibrating propagation delays, or monitoring the solar-terrestrial environment, can be produced using this continuously operating network. The maps can also form the basis of a TEC calibration service for users around the world. Potential users may include single-frequency satellite altimetry missions, satellite tracking stations, and astronomical observatories.

  13. Global Earth Observation and Monitoring - GEOMON

    NASA Astrophysics Data System (ADS)

    Keckhut, Philippe

    GEOMON is an Integrated Project of the 6th European frame work programme that has recently started. The overall goal of the GEOMON project is to sustain and analyse European ground-based observations of atmospheric composition, complementary with satellite measurements, in order to quantify and understand the ongoing changes. GEOMON is a first step to build a future integrated pan-European Atmospheric Observing System dealing with systematic observations of long-lived greenhouse gases, reactive gases, aerosols, and stratospheric ozone. This will lay the foundations for a European contribution to GEOSS and optimise the European strategy of environmental monitoring in the field of atmospheric composition observations, e.g. in the framework of GMES. Specifically, we will unify and harmonise the main European networks of surface and aircraft-based measurements of atmospheric composition parameters and integrate these measurements with those of satellites. GEOMON will support data gathering at existing networks if necessary, rescue and compile existing ground-based data, and develop new methodologies to use these data for satellite validation and interpretation. In addition, GE- OMON will enable innovative groundbased measurements complementary to satellites, made by upward looking ground based remote sensing instruments like MAXDOAS, FTIR, and LI- DAR, and by systematic measurement programmes of upper-tropospheric composition using passenger aircrafts CARIBIC and MOZAIC. These data will serve to reduce biases and random errors in satellite observations and facilitate interpretation of the columnar measurements in combination with surface data. This will result in a significant improvementin the use of existing and future satellite data. The access to data and data-products will be coordinated at a common data centre for more efficient use. Common techniques and modelling tools will be used in order to add value to the GEOMON data observations, to facilitate their use

  14. Global nuclear radiation monitoring using plants

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Romero-Talamas, Carlos; Kostov, Dan; Wang, Wanpeng; Liu, Zhongchi; Hussey, Daniel S.; Baltic, Eli; Jacobson, David L.; Gu, Jerry; Choa, Fow-Sen

    2005-05-01

    Plants exhibit complex responses to changes in environmental conditions such as radiant heat flux, water quality, airborne pollutants, soil contents. We seek to utilize the natural chemical and electrophysiological response of plants to develop novel plant-based sensor networks. Our present work focuses on plant responses to high-energy radiation - with the goal of monitoring natural plant responses for use as benchmarks for detection and dosimetry. For our study, we selected a plants cactus, Arabidopsis, Dwarf mango (pine), Euymus and Azela. We demonstrated that the ratio of Chlorophyll a to Chlorophyll b of the leaves has changed due to the exposure gradually come back to the normal stage after the radiation die. We used blue laser-induced blue fluorescence-emission spectra to characterize the pigment status of the trees. Upon blue laser excitation (400 nm) leaves show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm). Sample tree subjects were placed at a distance of 1m from NIST-certified 241AmBe neutron source (30 mCi), capable of producing a neutron field of about 13 mrem/h. This corresponds to an actual absorbed dose of ~ 1 mrad/h. Our results shows that all plants are sensitive to nuclear radiation and some take longer time to recover and take less. We can use their characteristics to do differential detection and extract nuclear activity information out of measurement results avoid false alarms produced environmental changes. Certainly the ultimate verification can be obtained from genetic information, which only need to be done when we have seen noticeable changes on plant optical spectra, mechanical strength and electrical characteristics.

  15. Next generation of global land cover characterization, mapping, and monitoring

    NASA Astrophysics Data System (ADS)

    Giri, C.; Pengra, B.; Long, J.; Loveland, T. R.

    2013-12-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m-1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (˜30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  16. Global Earth Observation and Monitoring - GEOmon

    NASA Astrophysics Data System (ADS)

    Ciais, Philippe; Keckhut, Philippe; Minnock, Mary; Kirschke, Stefanie

    2010-05-01

    GEOmon is an Integrated Project of the 6th European frame work program that has started in early 2007. The overall goal of the GEOmon project is to sustain and analyze European ground-based observations of atmospheric composition, complementary with airborne and satellite measurements, in order to quantify and understand the ongoing changes and trends. GEOmon contributes to building a future integrated pan-European Atmospheric Observing System acquiring, providing and maintaining systematic observations of long-lived greenhouse gases, reactive gases, aerosols, and stratospheric ozone. GEOmon intends to lay the foundations for a European contribution to GEOSS and to optimize the European strategy of environmental monitoring in the field of atmospheric composition observations, e.g. in the framework of GMES. Specifically, the main European networks of surface and aircraft-based measurements of atmospheric composition parameters are unified and harmonized, and integrated with satellite measurements. Up to now, GEOmon has been supporting various data gathering activities at existing networks, rescuing and compiling existing ground-based data, and developing new methodologies to use these data for satellite validation, interpretation and various modeling and trend analysis studies. In addition, GEOmon has been enabling innovative ground based measurements and measurement campaigns complementary to satellites, made by upward looking ground based remote sensing instruments like MAXDOAS, FTIR (installation of two new FTIR's at Bialystok and Orleans), and LIDAR, and by systematic measurement programs of upper-tropospheric composition using the passenger aircrafts CARIBIC and MOZAIC. These data have been shown to reduce biases and random errors in satellite observations and facilitate interpretation of the columnar measurements in combination with surface data. Overall, this will continue to result in a significant improvement in the use of existing and future satellite data

  17. A proactive system for maritime environment monitoring.

    PubMed

    Moroni, Davide; Pieri, Gabriele; Tampucci, Marco; Salvetti, Ovidio

    2016-01-30

    The ability to remotely detect and monitor oil spills is becoming increasingly important due to the high demand of oil-based products. Indeed, shipping routes are becoming very crowded and the likelihood of oil slick occurrence is increasing. In this frame, a fully integrated remote sensing system can be a valuable monitoring tool. We propose an integrated and interoperable system able to monitor ship traffic and marine operators, using sensing capabilities from a variety of electronic sensors, along with geo-positioning tools, and through a communication infrastructure. Our system is capable of transferring heterogeneous data, freely and seamlessly, between different elements of the information system (and their users) in a consistent and usable form. The system also integrates a collection of decision support services providing proactive functionalities. Such services demonstrate the potentiality of the system in facilitating dynamic links among different data, models and actors, as indicated by the performed field tests.

  18. Diagnostics for Dust Monitoring in Tokamak Environment

    SciTech Connect

    Rosanvallon, S.; Grisolia, C.; Hong, S. H.; Worms, J.

    2008-03-12

    During ITER lifetime, dusts and flakes will be produced due to the interaction of plasmas with the in-vessel materials or due to maintenance. They will be made of carbon, beryllium and tungsten and will be activated, tritiated and chemically reactive and toxic. Safety limits have been set in order to reduce dust hazards. Thus dust diagnostics and removal methods need to be developed for ITER within the constraints linked to magnetic field, radiation, vacuum and temperature. This paper reviews potential diagnostics to monitor the dust content using techniques already used for erosion or deposition monitoring or techniques specially developed for measuring dust in suspension.

  19. Global Public Water Education: The World Water Monitoring Day Experience

    ERIC Educational Resources Information Center

    Araya, Yoseph Negusse; Moyer, Edward H.

    2006-01-01

    Public awareness of the impending world water crisis is an important prerequisite to create a responsible citizenship capable of participating to improve world water management. In this context, the case of a unique global water education outreach exercise, World Water Monitoring Day of October 18, is presented. Started in 2002 in the United…

  20. Towards Real-Time Global Localization in Dynamic Unstructured Environments

    NASA Astrophysics Data System (ADS)

    Tanaka, Kanji; Kondo, Eiji

    Global localization is the problem in which a mobile robot has to estimate the self-position with respect to an a priori given map as it navigates without using any a priori knowledge of the initial self-position. Previous studies on global localization mainly focused on static environments, where the a priori map is almost correct. On the other hand, in dynamic environments, there are several sources of computational complexity. For example, not only the self-position but also the map should be estimated due to the map errors. The main contribution of this paper is to address such computational complexity by decomposing our global localization problem into two smaller subproblems, and solving the subproblems in a practical computation time. Also, we demonstrate the robustness and the efficiency of the proposed method in various large and complex environments.

  1. Extending Global Tool Integration Environment towards Lifecycle Management

    NASA Astrophysics Data System (ADS)

    Kääriäinen, Jukka; Eskeli, Juho; Teppola, Susanna; Välimäki, Antti; Tuuttila, Pekka; Piippola, Markus

    Development and verification of complex systems requires close collaboration between different disciplines and specialists operating in a global development environment with various tools and product data storage. Fluent integration of the tools and databases facilitate a productive development environment by enabling the user to easily launch tools and transfer information between the disconnected databases and tools. The concept of Application Lifecycle Management (ALM) was established to indicate the coordination of activities and the management of artefacts during the software product's lifecycle. This paper presents the analysis of an open source global tool integration environment called ToolChain, and proposes improvement ideas for it towards application lifecycle management. The demonstration of ToolChain and the collection of improvement proposals were carried out in the telecommunication industry. The analysis was made using the ALM framework and Global Software Development (GSD) patterns developed in previous studies in the automation industry.

  2. Monitoring equipment temperature environments for license renewal

    SciTech Connect

    McCoy, R.R.; McCumber, J.T.; Rainey, P.A.

    1991-06-01

    Yankee Atomic Electric Company instituted an Environmental Monitoring Program as part of its license renewal project for Yankee Nuclear Power Station (YNPS). Since ambient environmental conditions can effect the operating life and reliability of electrical equipment, knowledge of the actual environmental conditions can provide additional assurance of equipment reliability and longevity. This information can then be used to form a basis for plant license renewal since it can provide a margin for demonstrating that essential components retain their capability to perform their intended safety functions. Temperature and radiation are the environmental conditions of prime concern for the reliability and longevity of most nuclear power plant electrical equipment. For Yankee Nuclear Power Station, several sources of environmental monitoring already existed, including radiation data from Health Physics surveys of all areas of concern. The focus of this paper, therefore, is on the collection of temperature data and on a one time infrared survey to identify localized hot spots. Yankee based its analysis on existing temperature data for inside the containment and temperature data for outside the containment collected by monitoring base line area temperatures using chart recorders for several months. The results showed that the majority of electrical equipment was subjected to temperatures much less than rated and that there were no areas identified with localized hot spots that would affect equipment life.

  3. Monitoring of Sedimentary Fluxes in Cold Environments: The SEDIBUD (Sediment Budgets in Cold Environments) Programme

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2014-05-01

    Projected climate change in cold regions is expected to alter melt season duration and intensity, along with the number of extreme rainfall events, total annual precipitation and the balance between snowfall and rainfall. Similarly, changes to the thermal balance are expected to reduce the extent of permafrost and seasonal ground frost and increase active layer depths. These effects will undoubtedly change surface environments in cold regions and alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment is acute in cold climate environments. The International Association of Geomorphologists` (I.A.G. / A.I.G.) SEDIBUD (Sediment Budgets in Cold Environments) Program (2005 - 2017) is addressing this existing key knowledge gap. The central research question of this global group of scientists is to: Assess and model the contemporary sedimentary fluxes in cold climates, with emphasis on both particulate and dissolved components. Research carried out at each of the ca. 50 defined SEDIBUD key test sites varies by program, logistics and available resources, but typically represent interdisciplinary collaborations of geomorphologists, hydrologists, ecologists, permafrost scientists and glaciologists. SEDIBUD has developed manuals and protocols (SEDIFLUX Manual) with a key set of primary surface process monitoring and research data requirements to incorporate results from these diverse projects and allow coordinated quantitative analysis across the program. Defined SEDIBUD key tasks for the coming years include (i) The continued generation and compilation of comparable longer-term datasets on contemporary sedimentary fluxes and sediment yields from SEDIBUD key test sites worldwide, (ii) The continued extension of the SEDIBUD metadata database with these datasets, (iii) The testing of defined SEDIBUD hypotheses (available

  4. Space environment monitoring results from FY-2 satellite

    NASA Astrophysics Data System (ADS)

    Wang, S.; Sun, Y.; Zhu, G.; Lin, H.

    The results of the space environment monitors onboard two Chinese Meteorological satellites FY -2A and FY -2B are presented in this paper. The satellites were launched on June 1997 and June 2000., respectively, into geosta ionary orbit s at 105° easternt longitude.. The monitors onboard both satellites included gas ionization chamber solar X ray detectors and semiconductor sensor particle detectors . The solar X ray detector monitored fluxes in the energy range from 4 to 80 k V, divided into 10e channels. The particle detectors monitored the fluxes of 1~30 Mev protons, >2 Mev electrons, 4He, and 3He. Thes e monitors onboard the satellites formed a warning and monitoring system for solar particle events, providing security service for the spacecrafts. During the 23rd solar maximum, the system monitored and warned successfully large numbers of solar flares, solar particle events and distribution events for spacecraft s.

  5. Environment monitoring using LabVIEW

    SciTech Connect

    Hawtree, J.

    1995-01-01

    A system has been developed for electronically recording and monitoring temperature, humidity, and other environmental variables at the Silicon Detector Facility located in Lab D. The data is collected by LabVIEW software, which runs in the background on an Apple Macintosh. The software is completely portable between Macintosh, MS Windows, and Sun platforms. The hardware includes a Macintosh with 8 MB of RAM; an external ADC-1 analog-to-digital converter that uses a serial port; LabVIEW software; temperature sensors; humidity sensors; and other voltage/current sensing devices. ADC values are converted to ASCII strings and entered into files which are read over Ethernet. Advantages include automatic logging, automatic recovery after power interruptions, and the availability of stand-alone applications for other locations with inexpensive software and hardware.

  6. Global satellite monitoring of climate-induced vegetation disturbances.

    PubMed

    McDowell, Nate G; Coops, Nicholas C; Beck, Pieter S A; Chambers, Jeffrey Q; Gangodagamage, Chandana; Hicke, Jeffrey A; Huang, Cho-ying; Kennedy, Robert; Krofcheck, Dan J; Litvak, Marcy; Meddens, Arjan J H; Muss, Jordan; Negrón-Juarez, Robinson; Peng, Changhui; Schwantes, Amanda M; Swenson, Jennifer J; Vernon, Louis J; Williams, A Park; Xu, Chonggang; Zhao, Maosheng; Running, Steve W; Allen, Craig D

    2015-02-01

    Terrestrial disturbances are accelerating globally, but their full impact is not quantified because we lack an adequate monitoring system. Remote sensing offers a means to quantify the frequency and extent of disturbances globally. Here, we review the current application of remote sensing to this problem and offer a framework for more systematic analysis in the future. We recommend that any proposed monitoring system should not only detect disturbances, but also be able to: identify the proximate cause(s); integrate a range of spatial scales; and, ideally, incorporate process models to explain the observed patterns and predicted trends in the future. Significant remaining challenges are tied to the ecology of disturbances. To meet these challenges, more effort is required to incorporate ecological principles and understanding into the assessments of disturbance worldwide.

  7. Influence of global climatic processes on environment The Arctic seas

    NASA Astrophysics Data System (ADS)

    Kholmyansky, Mikhael; Anokhin, Vladimir; Kartashov, Alexandr

    2016-04-01

    One of the most actual problems of the present is changes of environment of Arctic regions under the influence of global climatic processes. Authors as a result of the works executed by them in different areas of the Russian Arctic regions, have received the materials characterising intensity of these processes. Complex researches are carried out on water area and in a coastal zone the White, the Barents, the Kara and the East-Siberian seas, on lake water areas of subarctic region since 1972 on the present. Into structure of researches enter: hydrophysical, cryological observations, direct measurements of temperatures, the analysis of the drill data, electrometric definitions of the parametres of a frozen zone, lithodynamic and geochemical definitions, geophysical investigations of boreholes, studying of glaciers on the basis of visual observations and the analysis of photographs. The obtained data allows to estimate change of temperature of a water layer, deposits and benthonic horizon of atmosphere for last 25 years. On the average they make 0,38⁰C for sea waters, 0,23⁰C for friable deposits and 0,72⁰C for atmosphere. Under the influence of temperature changes in hydrosphere and lithosphere of a shelf cryolithic zone changes the characteristics. It is possible to note depth increase of roof position of the cryolithic zone on the most part of the studied water area. Modern fast rise in temperature high-ice rocks composing coast, has led to avalanche process thermo - denudation and to receipt in the sea of quantity of a material of 1978 three times exceeding level Rise in temperature involves appreciable deviation borders of the Arctic glacial covers. On our monitoring measurements change of the maintenance of oxygen in benthonic area towards increase that is connected with reduction of the general salinity of waters at the expense of fresh water arriving at ice thawing is noticed. It, in turn, leads to change of a biogene part of ecosystem. The executed

  8. Infrasound Monitoring of Local, Regional and Global Events

    DTIC Science & Technology

    2007-09-01

    INFRASOUND MONITORING OF LOCAL, REGIONAL AND GLOBAL EVENTS Stephen J. Arrowsmith and Douglas O. ReVelle Los Alamos National Laboratory Sponsored...State seismo-acoustic network and identify 206 local and regional infrasonic events in a dataset comprising 28 days of data. We detect multiple signals...from mining explosions at two sites in Washington State, including 5 events that were recorded in a regional seismic bulletin. We also automatically

  9. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  10. Monitoring the price and affordability of foods and diets globally.

    PubMed

    Lee, A; Mhurchu, C N; Sacks, G; Swinburn, B; Snowdon, W; Vandevijvere, S; Hawkes, C; L'abbé, M; Rayner, M; Sanders, D; Barquera, S; Friel, S; Kelly, B; Kumanyika, S; Lobstein, T; Ma, J; Macmullan, J; Mohan, S; Monteiro, C; Neal, B; Walker, C

    2013-10-01

    Food prices and food affordability are important determinants of food choices, obesity and non-communicable diseases. As governments around the world consider policies to promote the consumption of healthier foods, data on the relative price and affordability of foods, with a particular focus on the difference between 'less healthy' and 'healthy' foods and diets, are urgently needed. This paper briefly reviews past and current approaches to monitoring food prices, and identifies key issues affecting the development of practical tools and methods for food price data collection, analysis and reporting. A step-wise monitoring framework, including measurement indicators, is proposed. 'Minimal' data collection will assess the differential price of 'healthy' and 'less healthy' foods; 'expanded' monitoring will assess the differential price of 'healthy' and 'less healthy' diets; and the 'optimal' approach will also monitor food affordability, by taking into account household income. The monitoring of the price and affordability of 'healthy' and 'less healthy' foods and diets globally will provide robust data and benchmarks to inform economic and fiscal policy responses. Given the range of methodological, cultural and logistical challenges in this area, it is imperative that all aspects of the proposed monitoring framework are tested rigorously before implementation.

  11. A Seamless Framework for Global Water Cycle Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Wood, E. F.; Chaney, N.; Fisher, C. K.; Caylor, K. K.

    2013-12-01

    The Global Earth Observation System of Systems (GEOSS) Water Strategy ('From Observations to Decisions') recognizes that 'water is essential for ensuring food and energy security, for facilitating poverty reduction and health security, and for the maintenance of ecosystems and biodiversity', and that water cycle data and observations are critical for improved water management and water security - especially in less developed regions. The GEOSS Water Strategy has articulated a number of goals for improved water management, including flood and drought preparedness, that include: (i) facilitating the use of Earth Observations for water cycle observations; (ii) facilitating the acquisition, processing, and distribution of data products needed for effective management; (iii) providing expertise, information systems, and datasets to the global, regional, and national water communities. There are several challenges that must be met to advance our capability to provide near real-time water cycle monitoring, early warning of hydrological hazards (floods and droughts) and risk assessment under climate change, regionally and globally. Current approaches to monitoring and predicting hydrological hazards are limited in many parts of the world, and especially in developing countries where national capacity is limited and monitoring networks are inadequate. This presentation describes the development of a seamless monitoring and prediction framework at all time scales that allows for consistent assessment of water variability from historic to current conditions, and from seasonal and decadal predictions to climate change projections. At the center of the framework is an experimental, global water cycle monitoring and seasonal forecast system that has evolved out of regional and continental systems for the US and Africa. The system is based on land surface hydrological modeling that is driven by satellite remote sensing precipitation to predict current hydrological conditions

  12. Global biodiversity monitoring: from data sources to essential biodiversity variables

    USGS Publications Warehouse

    Proenca, Vania; Martin, Laura J.; Pereira, Henrique M.; Fernandez, Miguel; McRae, Louise; Belnap, Jayne; Böhm, Monika; Brummitt, Neil; Garcia-Moreno, Jaime; Gregory, Richard D.; Honrado, Joao P; Jürgens, Norbert; Opige, Michael; Schmeller, Dirk S.; Tiago, Patricia; van Sway, Chris A

    2016-01-01

    Essential Biodiversity Variables (EBVs) consolidate information from varied biodiversity observation sources. Here we demonstrate the links between data sources, EBVs and indicators and discuss how different sources of biodiversity observations can be harnessed to inform EBVs. We classify sources of primary observations into four types: extensive and intensive monitoring schemes, ecological field studies and satellite remote sensing. We characterize their geographic, taxonomic and temporal coverage. Ecological field studies and intensive monitoring schemes inform a wide range of EBVs, but the former tend to deliver short-term data, while the geographic coverage of the latter is limited. In contrast, extensive monitoring schemes mostly inform the population abundance EBV, but deliver long-term data across an extensive network of sites. Satellite remote sensing is particularly suited to providing information on ecosystem function and structure EBVs. Biases behind data sources may affect the representativeness of global biodiversity datasets. To improve them, researchers must assess data sources and then develop strategies to compensate for identified gaps. We draw on the population abundance dataset informing the Living Planet Index (LPI) to illustrate the effects of data sources on EBV representativeness. We find that long-term monitoring schemes informing the LPI are still scarce outside of Europe and North America and that ecological field studies play a key role in covering that gap. Achieving representative EBV datasets will depend both on the ability to integrate available data, through data harmonization and modeling efforts, and on the establishment of new monitoring programs to address critical data gaps.

  13. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  14. [Organization of monitoring of electromagnetic radiation in the urban environment].

    PubMed

    Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R

    2008-01-01

    The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.

  15. Preserving the global environment: The challenge of shared leadership

    SciTech Connect

    Matthews, J.T.

    1993-01-01

    This book brings together essays commissioned as background reading for an April 1990 conference on the global environment co-sponsored by the American Assembly and the World Resources Institute. Among the topic areas covered are the following: technical aspects of energy policy and climatic change; harnessing the power of the marketplace; international cooperation; international regulatory regimes; world economic climate; deforestation and species loss; human population growth.

  16. Wetland monitoring with Global Navigation Satellite System reflectometry.

    PubMed

    Nghiem, Son V; Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T; Mannucci, Anthony J; Cardellach, Estel; Brakenridge, G Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS-R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS-R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales.

  17. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  18. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop.

    PubMed

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-08-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors-together with their interfaces in the transponder-are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated.

  19. Passive Wireless Hermetic Environment Monitoring System for Spray Painting Workshop

    PubMed Central

    Wang, Lifeng; Ma, Jingjing; Huang, Yan; Tang, Dan; Huang, Qing-An

    2016-01-01

    Passive wireless sensors have the advantages of operating without a power supply and remote sensing capability. Hence, they are very suitable for some harsh environments, such as hermetic environments, rotating parts, or very high temperature environments. The spray painting workshop is such a harsh environment, containing a large amount of flammable paint mist and organic gas. Aiming at this special environment of spray painting workshop, a passive wireless hermetic environment monitoring system was designed, fabricated, and demonstrated. The proposed system is composed of a transponder and a reader, and the circuit design of each part is given in detail in this paper. The power and the data transmission between the transponder and the reader are realized by the inductive coupling mechanism. Utilizing the back scatter modulation and channel multiplexing, the frequency signals generated by three different environmental sensors—together with their interfaces in the transponder—are wirelessly read out by the reader. Because of the harsh environment of the spray painting room, the package of the monitoring system is quite important. Three different kinds of filter films for the system package were compared. The experimental results show that the composite filter film aluminum anodic oxide/polytetrafluoroethylene (AAO/PTFE) has the best performance. After fabrication, the measured temperature, humidity, and pressure sensitivities were measured and found to be 180 Hz/°C in the range of 0~60 °C, 100 Hz/%RH in the range of 15~95 %RH, and 42 Hz/hPa in the range of 600~1100 hPa, respectively. Additionally, the remote sensing distance of the monitoring system reaches 4 cm. Finally, the passive wireless hermetic environment monitoring system was installed on the glass wall of the spray painting workshop and was successfully demonstrated. PMID:27490546

  20. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  1. High-resolution global irradiance monitoring from photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    and meteorological parameters (e.g. from the model COSMO-DE) to calculate global irradiance by means of the generated power of individual photovoltaic systems. For the year 2012, our method is tested for PV systems in the Allgäu region (south Germany), the distribution area of the system operator "AllgäuNetz GmbH & Co". The test region includes 215 online-monitored photovoltaic systems and one pyranometer station located at the DWD (Deutscher WetterDienst) weather station Hohenpeißenberg (operated by the German Weather Service). The present talk provides an introduction to the newly developed method along with first results for clear sky scenarios. (1) B. Mayer and A. Kylling (2005): Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. In: Chemistry and Physics Chemistry and Physics. Page: 1855 - 1877

  2. A Global Framework for Monitoring Phenological Responses to Climate Change

    SciTech Connect

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter; Nemani, Ramakrishna R

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, which we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.

  3. Current and Future Geodetic Satellite Missions for Global Change Monitoring

    NASA Astrophysics Data System (ADS)

    Sneeuw, Nico; Li, Jiancheng; Cai, Jiangqing; Jiang, Weiping; Xu, Xinyu; Chu, Yonghai; Jin, Taoyong; Chao, Nengfang; Elmi, Omid; Tourian, Mohammad J.

    2016-08-01

    Global change deals with large- and small-scale processes that modify the Earth's atmosphere, land and ocean. Using innovative geodetic space-borne sensor systems, dedicated gravity field and altimeter satellites monitor these processes over a range of spatial and temporal scales. The integrated analysis of these geometric and gravimetric Earth observation data shall improve the knowledge of system processes of the changing Earth. We here report on valuable contributions from satellite altimetry and satellite gravimetry to Earth system science in general and to hydrology in particular.

  4. The Global Atmospheric Environment for the Next Generation

    SciTech Connect

    Dentener, F; Stevenson, D; Ellingsen, K; van Joije, T; Schultz, M; Amann, M; Atherton, C; Bell, N; Bergmann, D; Bey, I; Bouwman, L; Butler, T; Cofala, J; Collins, B; Drevet, J; Doherty, R; Eickhout, B; Eskes, H; Fiore, A; Gauss, M; Hauglustaine, D; Horowitz, L; Isaksen, I A; Josse, B; Lawrence, M; Krol, M; Lamarque, J F; Montanaro, V; Muller, J F; Peuch, V H; Pitari, G; Pyle, J; Rast, S; Rodriguez, J; Sanderson, M; Savage, N H; Shindell, D; Strahan, S; Szopa, S; Sudo, K; Van Dingenen, R; Wild, O; Zeng, G

    2005-12-07

    Air quality, ecosystem exposure to nitrogen deposition, and climate change are intimately coupled problems: we assess changes in the global atmospheric environment between 2000 and 2030 using twenty-five state-of-the-art global atmospheric chemistry models and three different emissions scenarios. The first (CLE) scenario reflects implementation of current air quality legislation around the world, whilst the second (MFR) represents a more optimistic case in which all currently feasible technologies are applied to achieve maximum emission reductions. We contrast these scenarios with the more pessimistic IPCC SRES A2 scenario. Ensemble simulations for the year 2000 are consistent among models, and show a reasonable agreement with surface ozone, wet deposition and NO{sub 2} satellite observations. Large parts of the world are currently exposed to high ozone concentrations, and high depositions of nitrogen to ecosystems. By 2030, global surface ozone is calculated to increase globally by 1.5 {+-} 1.2 ppbv (CLE), and 4.3 {+-} 2.2 ppbv (A2). Only the progressive MFR scenario will reduce ozone by -2.3 {+-} 1.1 ppbv. The CLE and A2 scenarios project further increases in nitrogen critical loads, with particularly large impacts in Asia where nitrogen emissions and deposition are forecast to increase by a factor of 1.4 (CLE) to 2 (A2). Climate change may modify surface ozone by -0.8 {+-} 0.6 ppbv, with larger decreases over sea than over land. This study shows the importance of enforcing current worldwide air quality legislation, and the major benefits of going further. Non-attainment of these air quality policy objectives, such as expressed by the SRES-A2 scenario, would further degrade the global atmospheric environment.

  5. SPECTRAL MONITORING OF FUGITIVE CONTAMINANTS IN THE ENVIRONMENT

    EPA Science Inventory


    The accidental or intentional release of hazardous chemical substances into the environment is an inevitable consequence of anthropogenic activity. The detection, monitoring and remediation of fugitive contaminants is a major risk factor for human and ecological health and i...

  6. Special article: general anesthetic gases and the global environment.

    PubMed

    Ishizawa, Yumiko

    2011-01-01

    General anesthetics are administered to approximately 50 million patients each year in the United States. Anesthetic vapors and gases are also widely used in dentists' offices, veterinary clinics, and laboratories for animal research. All the volatile anesthetics that are currently used are halogenated compounds destructive to the ozone layer. These halogenated anesthetics could have potential significant impact on global warming. The widely used anesthetic gas nitrous oxide is a known greenhouse gas as well as an important ozone-depleting gas. These anesthetic gases and vapors are primarily eliminated through exhalation without being metabolized in the body, and most anesthesia systems transfer these gases as waste directly and unchanged into the atmosphere. Little consideration has been given to the ecotoxicological properties of gaseous general anesthetics. Our estimation using the most recent consumption data indicates that the anesthetic use of nitrous oxide contributes 3.0% of the total emissions in the United States. Studies suggest that the influence of halogenated anesthetics on global warming will be of increasing relative importance given the decreasing level of chlorofluorocarbons globally. Despite these nonnegligible pollutant effects of the anesthetics, no data on the production or emission of these gases and vapors are publicly available. The primary goal of this article is to critically review the current data on the potential effects of general anesthetics on the global environment and to describe possible alternatives and new technologies that may prevent these gases from being discharged into the atmosphere.

  7. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring.

    PubMed

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-12-12

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions.

  8. Airborne Transducer Integrity under Operational Environment for Structural Health Monitoring

    PubMed Central

    Salmanpour, Mohammad Saleh; Sharif Khodaei, Zahra; Aliabadi, Mohammad Hossein

    2016-01-01

    This paper investigates the robustness of permanently mounted transducers used in airborne structural health monitoring systems, when exposed to the operational environment. Typical airliners operate in a range of conditions, hence, structural health monitoring (SHM) transducer robustness and integrity must be demonstrated for these environments. A set of extreme temperature, altitude and vibration environment test profiles are developed using the existing Radio Technical Commission for Aeronautics (RTCA)/DO-160 test methods. Commercially available transducers and manufactured versions bonded to carbon fibre reinforced polymer (CFRP) composite materials are tested. It was found that the DuraAct transducer is robust to environmental conditions tested, while the other transducer types degrade under the same conditions. PMID:27973450

  9. Formation and evolution of cores in globally collapsing environments

    NASA Astrophysics Data System (ADS)

    Vazquez-Semadeni, Enrique

    2014-07-01

    I will present recent results on the hierarchical gravitational fragmentation (HGF) of molecular clouds (MCs) leading to the formation of dense cores. I will first discuss the scenario of HGF as an alternative to the standard scenario of turbulent support --> turbulent dissipation --> collapse. In it, clouds are multi-Jeans-mass object undergoing global, multi-scale collapse, and the cores are the local centers of collapse. The lapse between the onset of local collapse and the formation of a singularity constitutes the prestellar phase. I will present numerical simulations of core growth during this phase in the idealized case of spherical geometry, immersed in a globally collapsing environment, discussing the evolution of the density and velocity profiles. I will also present synthetic molecular line observations of such idealized cores, aimed at determining to what extent such an idealized setup recovers the basic observational features of the cores, and which features require additional physics such as background turbulence and non-spherical symmetry.

  10. Value of Available Global Soil Moisture Products for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Mladenova, Iliana; Bolten, John; Crow, Wade; de Jeu, Richard

    2016-04-01

    The first operationally derived and publicly distributed global soil moil moisture product was initiated with the launch of the Advanced Scanning Microwave Mission on the NASA's Earth Observing System Aqua satellite (AMSR-E). AMSR-E failed in late 2011, but its legacy is continued by AMSR2, launched in 2012 on the JAXA Global Change Observation Mission-Water (GCOM-W) mission. AMSR is a multi-frequency dual-polarization instrument, where the lowest two frequencies (C- and X-band) were used for soil moisture retrieval. Theoretical research and small-/field-scale airborne campaigns, however, have demonstrated that soil moisture would be best monitored using L-band-based observations. This consequently led to the development and launch of the first L-band-based mission-the ESA's Soil Moisture Ocean Salinity (SMOS) mission (2009). In early 2015 NASA launched the second L-band-based mission, the Soil Moisture Active Passive (SMAP). These satellite-based soil moisture products have been demonstrated to be invaluable sources of information for mapping water stress areas, crop monitoring and yield forecasting. Thus, a number of agricultural agencies routinely utilize and rely on global soil moisture products for improving their decision making activities, determining global crop production and crop prices, identifying food restricted areas, etc. The basic premise of applying soil moisture observations for vegetation monitoring is that the change in soil moisture conditions will precede the change in vegetation status, suggesting that soil moisture can be used as an early indicator of expected crop condition change. Here this relationship was evaluated across multiple microwave frequencies by examining the lag rank cross-correlation coefficient between the soil moisture observations and the Normalized Difference Vegetation Index (NDVI). A main goal of our analysis is to evaluate and inter-compare the value of the different soil moisture products derived using L-band (SMOS

  11. Exploiting coalbed methane and protecting the global environment

    SciTech Connect

    Yuheng, Gao

    1996-12-31

    The global climate change caused by greenhouse gases (GHGs) emission has received wide attention from all countries in the world. Global environmental protection as a common problem has confronted the human being. As a main component of coalbed methane, methane is an important factor influencing the production safety of coal mine and threatens the lives of miners. The recent research on environment science shows that methane is a very harmful GHG. Although methane gas has very little proportion in the GHGs emission and its stayed period is also very short, it has very obvious impact on the climate change. From the estimation, methane emission in the coal-mining process is only 10% of the total emission from human`s activities. As a clean energy, Methane has mature recovery technique before, during and after the process of mining. Thus, coalbed methane is the sole GHG generated in the human`s activities and being possible to be reclaimed and utilized. Compared with the global greenhouse effect of other GHGs emission abatement, coalbed methane emission abatement can be done in very low cost with many other benefits: (1) to protect global environment; (2) to improve obviously the safety of coal mine; and (3) to obtain a new kind of clean energy. Coal is the main energy in China, and coalbed contains very rich methane. According to the exploration result in recent years, about 30000{approximately}35000 billion m{sup 2} methane is contained in the coalbed below 2000 m in depth. China has formed a good development base in the field of reclamation and utilization of coalbed methane. The author hopes that wider international technical exchange and cooperation in the field will be carried out.

  12. Role of commercial aircraft in global monitoring systems.

    PubMed

    Steinberg, R

    1973-04-27

    The role of commercial aircraft in monitoring meteorological parameters and atmospheric constituents has been limited in the former case and virtually nonexistent in the latter. I have tried to point out that this situation can and should be changed now. The new family of wide-bodied jets such as the 747, DC-10, and L-1011 aircraft can be used to supply important global atmospheric and tropical meteorological data for which there is a pressing need. While scientists are not in total agreement on the magnitude of the effect of particulates and gases on the atmosphere, there is almost unanimous concurrence that we are severely limited in information, and that global baseline concentrations must be established for particulates and gases in the troposphere and lower stratosphere as soon as possible. Also, more synoptic meteorological information from the tropical troposphere is highly desirable. In the final analysis, commercial aircraft may offer the most inexpensive way to monitor our atmosphere in the near future. Much of the instrumentation technology is here and the rest is certainly within our grasp. The fact of the matter is that there are now over 220 Boeing 747's and Douglas DC-10's in service, flying an average of 10 hours a day. Long-range flights, such as those from Tokyo to Anchorage to London in the Northern Hemisphere and from Hawaii to Pago Pago to Sydney in the Southern Hemisphere, are commonplace. These aircraft are equipped with inertial navigation systems and central air data computers coupled to advanced data storage systems which can readily be interrogated by satellite. This means that there is now a large amount of snyoptic weather information which can be obtained with a minimum of effort and cost. Likewise, a start at obtaining measurements of atmospheric constituents on a global basis can be made now. All we need to do is make the effort.

  13. Global Assessment of Bisphenol A in the Environment

    PubMed Central

    Corrales, Jone; Kristofco, Lauren A.; Steele, W. Baylor; Yates, Brian S.; Breed, Christopher S.; Williams, E. Spencer

    2015-01-01

    Because bisphenol A (BPA) is a high production volume chemical, we examined over 500 peer-reviewed studies to understand its global distribution in effluent discharges, surface waters, sewage sludge, biosolids, sediments, soils, air, wildlife, and humans. Bisphenol A was largely reported from urban ecosystems in Asia, Europe, and North America; unfortunately, information was lacking from large geographic areas, megacities, and developing countries. When sufficient data were available, probabilistic hazard assessments were performed to understand global environmental quality concerns. Exceedances of Canadian Predicted No Effect Concentrations for aquatic life were >50% for effluents in Asia, Europe, and North America but as high as 80% for surface water reports from Asia. Similarly, maximum concentrations of BPA in sediments from Asia were higher than Europe. Concentrations of BPA in wildlife, mostly for fish, ranged from 0.2 to 13 000 ng/g. We observed 60% and 40% exceedences of median levels by the US Centers for Disease Control and Prevention’s National Health and Nutrition Examination Survey in Europe and Asia, respectively. These findings highlight the utility of coordinating global sensing of environmental contaminants efforts through integration of environmental monitoring and specimen banking to identify regions for implementation of more robust environmental assessment and management programs. PMID:26674671

  14. Global monitoring of atmospheric properties by the EOS MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    1993-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) being developed for the Earth Observing System (EOS) is well suited to the global monitoring of atmospheric properties from space. Among the atmospheric properties to be examined using MODIS observations, clouds are especially important, since they are a strong modulator of the shortwave and longwave components of the earth's radiation budget. A knowledge of cloud properties (such as optical thickness and effective radius) and their variation in space and time, which are our task objectives, is also crucial to studies of global climate change. In addition, with the use of related airborne instrumentation, such as the Cloud Absorption Radiometer (CAR) and MODIS Airborne Simulator (MAS) in intensive field experiments (both national and international campaigns, see below), various types of surface and cloud properties can be derived from the measured bidirectional reflectances. These missions have provided valuable experimental data to determine the capability of narrow bandpass channels in examining the Earth's atmosphere and to aid in defining algorithms and building an understanding of the ability of MODIS to remotely sense atmospheric conditions for assessing global change. Therefore, the primary task objective is to extend and expand our algorithm for retrieving the optical thickness and effective radius of clouds from radiation measurements to be obtained from MODIS. The secondary objective is to obtain an enhanced knowledge of surface angular and spectral properties that can be inferred from airborne directional radiance measurements.

  15. Global Communications Infrastructure: CTBT Treaty monitoring using space communications

    NASA Astrophysics Data System (ADS)

    Kebeasy, R.; Abaya, E.; Ricker, R.; Demeules, G.

    Article 1 on Basic Obligations of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) states that: "Each State Party undertakes not to carry out any nuclear weapon test explosion or any other nuclear explosion, and to prohibit and prevent any such nuclear explosion at any place under its jurisdiction or control. Each State Party undertakes, furthermore, to refrain from causing, encouraging, or in any way participating in the carrying out of any nuclear weapon test explosion or any other nuclear explosion." To monitor States Parties compliance with these Treaty provisions, an International Monitoring System (IMS) consisting of 321 monitoring stations and 16 laboratories in some 91 countries is being implemented to cover the whole globe, including its oceans and polar regions. The IMS employs four technologies--seismic, hydroacoustic, infrasound and radionuclide--to detect,locate and identify any seismic event of Richter magnitude 4 and above (equivalent to one kiloton of TNT) that may be associated with a nuclear test explosion. About one-half of this monitoring system is now operational in 67 countries. Monitoring stations send data in near real-time to an International Data Centre (IDC) in Vienna over a Global Communications Infrastructure (GCI) incorporating 10 geostationary satellites plus three satellites in inclined orbits. The satellites relay the data to commercial earth stations, from where they are transferred by terrestrial circuits to the IDC. The IDC automatically processes and interactively analyzes the monitoring data, and distributes the raw data and reports relevant to Treaty verification to National Data Centers in Member States over the same communications network. The GCI will eventually support about 250 thin route VSAT links to the monitoring stations, many of them at remote or harsh locations on the earth, plus additional links to national data centres in various countries. Off-the-shelf VSAT and networking hardware are deployed. This is the

  16. Monitoring of toxic substances in the Hong Kong marine environment.

    PubMed

    Kueh, C S W; Lam, J Y C

    2008-01-01

    A long-term programme for monitoring toxic substances in the marine environment was established in Hong Kong in 2004, focusing on chemicals of potential ecological and health concern. The programme ran on 3-year cycles, with the first two years monitoring marine water, sediment, biota, and the third year monitoring pollution sources. Twenty-four priority chemicals were measured, including dioxins/furans, dioxin-like PCBs, total PCBs, PAHs, DDTs, HCHs, TBTs, phenol, nonylphenol (NP), NP ethoxylates, PBDEs and metals. Results from the first three years of monitoring indicate that toxic substances in the Hong Kong marine environment were within the range reported for the coastal waters in China and other regions, but generally lower than in the Pearl River Estuary. The levels met the standards for protecting aquatic life and human consumption. Sewage effluent, stormwater and river water were possible sources of phenolic compounds; whereas air deposition or regional pollution, rather than local discharges, may contribute to the dioxins/furans, PAHs and PCBs found in the marine environment.

  17. Global Monitoring of the CTBT: Progress, Capabilities and Plans (Invited)

    NASA Astrophysics Data System (ADS)

    Zerbo, L.

    2013-12-01

    The Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), established in 1996, is tasked with building up the verification regime of the CTBT. The regime includes a global system for monitoring the earth, the oceans and the atmosphere for nuclear tests, and an on-site inspection (OSI) capability. More than 80% of the 337 facilities of the International Monitoring System (IMS) have been installed and are sending data to the International Data Centre (IDC) in Vienna, Austria for processing. These IMS data along with IDC processed and reviewed products are available to all States that have signed the Treaty. Concurrent with the build-up of the global monitoring networks, near-field geophysical methods are being developed and tested for OSIs. The monitoring system is currently operating in a provisional mode, as the Treaty has not yet entered into force. Progress in installing and operating the IMS and the IDC and in building up an OSI capability will be described. The capabilities of the monitoring networks have progressively improved as stations are added to the IMS and IDC processing techniques refined. Detection thresholds for seismic, hydroacoustic, infrasound and radionuclide events have been measured and in general are equal to or lower than the predictions used during the Treaty negotiations. The measurements have led to improved models and tools that allow more accurate predictions of future capabilities and network performance under any configuration. Unplanned tests of the monitoring network occurred when the DPRK announced nuclear tests in 2006, 2009, and 2013. All three tests were well above the detection threshold and easily detected and located by the seismic monitoring network. In addition, noble gas consistent with the nuclear tests in 2006 and 2013 (according to atmospheric transport models) was detected by stations in the network. On-site inspections of these tests were not conducted as the Treaty has not entered

  18. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  19. GEOGLAM Crop Assessment Tool: Adapting from global agricultural monitoring to food security monitoring

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Becker-Reshef, I.; Nordling, J.; Barker, B.; McGaughey, K.

    2014-12-01

    The GEOGLAM Crop Monitor's Crop Assessment Tool was released in August 2013 in support of the GEOGLAM Crop Monitor's objective to develop transparent, timely crop condition assessments in primary agricultural production areas, highlighting potential hotspots of stress/bumper crops. The Crop Assessment Tool allows users to view satellite derived products, best available crop masks, and crop calendars (created in collaboration with GEOGLAM Crop Monitor partners), then in turn submit crop assessment entries detailing the crop's condition, drivers, impacts, trends, and other information. Although the Crop Assessment Tool was originally intended to collect data on major crop production at the global scale, the types of data collected are also relevant to the food security and rangelands monitoring communities. In line with the GEOGLAM Countries at Risk philosophy of "foster[ing] the coordination of product delivery and capacity building efforts for national and regional organizations, and the development of harmonized methods and tools", a modified version of the Crop Assessment Tool is being developed for the USAID Famine Early Warning Systems Network (FEWS NET). As a member of the Countries at Risk component of GEOGLAM, FEWS NET provides agricultural monitoring, timely food security assessments, and early warnings of potential significant food shortages focusing specifically on countries at risk of food security emergencies. While the FEWS NET adaptation of the Crop Assessment Tool focuses on crop production in the context of food security rather than large scale production, the data collected is nearly identical to the data collected by the Crop Monitor. If combined, the countries monitored by FEWS NET and GEOGLAM Crop Monitor would encompass over 90 countries representing the most important regions for crop production and food security.

  20. Mycotoxins in a changing global environment--a review.

    PubMed

    Marroquín-Cardona, A G; Johnson, N M; Phillips, T D; Hayes, A W

    2014-07-01

    Mycotoxins are toxic metabolites produced by fungal species that commonly contaminate staple foods and feeds. They represent an unavoidable problem due to their presence in globally consumed cereals such as rice, maize and wheat. Most mycotoxins are immunosuppressive agents and some are carcinogens, hepatotoxins, nephrotoxins, and neurotoxins. Worldwide trends envision a stricter control of mycotoxins, however, the changing global environment may not be the ideal setting to control and reduce the exposure to these toxins. Although new technologies allow us to inspect the multi-mycotoxin presence in foods, new sources of exposure, gaps in knowledge of mycotoxins interactions, appearance of "emergent" mycotoxins and elucidation of consequent health effects can complicate their control even more. While humans are adapting to cope with environmental changes, such as food scarcity, decreased food quality, mycotoxin regulations, crop production and seasonality, and other climate related modifications, fungal species are also adapting and increased cases of mycotoxin adverse health effects are likely to occur in the future. To guarantee access to quality food for all, we need a way to balance global mycotoxin standards with the realistic feasibility of reaching them, considering limitations of producers and designing strategies to reduce mycotoxin exposure based on sound research.

  1. Web based remote monitoring and controlling system for vulnerable environments

    NASA Astrophysics Data System (ADS)

    Thomas, Aparna; George, Minu

    2016-03-01

    The two major areas of concern in industrial establishments are monitoring and security. The remote monitoring and controlling can be established with the help of Web technology. Managers can monitor and control the equipment in the remote area through a web browser. The targeted area includes all type of susceptible environment like gas filling station, research and development laboratories. The environmental parameters like temperature, light intensity, gas etc. can be monitored. Security is a very important factor in an industrial setup. So motion detection feature is added to the system to ensure the security. The remote monitoring and controlling system makes use of the latest, less power consumptive and fast working microcontroller like S3C2440. This system is based on ARM9 and Linux operating system. The ARM9 will collect the sensor data and establish real time video monitoring along with motion detection feature. These captured video data as well as environmental data is transmitted over internet using embedded web server which is integrated within the ARM9 board.

  2. Integration of wireless sensor networks into cyberinfrastructure for monitoring Hawaiian "mountain-to-sea" environments.

    PubMed

    Kido, Michael H; Mundt, Carsten W; Montgomery, Kevin N; Asquith, Adam; Goodale, David W; Kaneshiro, Kenneth Y

    2008-10-01

    Monitoring the complex environmental relationships and feedbacks of ecosystems on catchment (or mountain)-to-sea scales is essential for social systems to effectively deal with the escalating impacts of expanding human populations globally on watersheds. However, synthesis of emerging technologies into a robust observing platform for the monitoring of coupled human-natural environments on extended spatial scales has been slow to develop. For this purpose, the authors produced a new cyberinfrastructure for environmental monitoring which successfully merged the use of wireless sensor technologies, grid computing with three-dimensional (3D) geospatial data visualization/exploration, and a secured internet portal user interface, into a working prototype for monitoring mountain-to-sea environments in the high Hawaiian Islands. A use-case example is described in which native Hawaiian residents of Waipa Valley (Kauai) utilized the technology to monitor the effects of regional weather variation on surface water quality/quantity response, to better understand their local hydrologic cycle, monitor agricultural water use, and mitigate the effects of lowland flooding.

  3. Global Research Initiative in Alpine Environments: A New GLORIA Site in Southwestern Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Pullman, T. Y.; Mitman, G. G.

    2007-12-01

    Global climate change is expected to have pronounced effects on the alpine environments and thus the alpine plants of western North America. Predicted responses include an upward migration of treelines, altered species compositions, changes in the percentage of land covered by vegetation, and a change in the phenology of alpine plants. To determine the effects of climate change on the alpine flora of southwestern Montana, we are installing a GLORIA (Global Research Initiative in Alpine Environments) site in order to monitor temperature, species composition, and percent cover of vascular plants, lichens, and mosses along an ascending altitudinal gradient. We are including lichens and mosses because of their importance as ecological indicator species. The abundance and spatial distribution of lichens and mosses provides essential baseline data for long-term monitoring of local and global impacts on the environment. Mt. Fleecer (9250 ft.), which is west of the continental divide and semi-isolated from other peaks in the Anaconda-Pintlar Range, is currently the most likely location for the southwestern Montana GLORIA site. Mt. Fleecer is accessible because it does not have the steep and hazardous glaciated talus cirques that characterize many of the neighboring, higher peaks. However, if an accessible and suitable higher summit is found, then it will be included as the highest summit in the GLORIA site. Interesting species at Mt. Fleecer include the whitebark pine, Pinus albicaulis, which is a keystone species in high mountain ecosystems of the western United States and Canada, the green gentian, Frasera speciosa, and the shooting star, Dodecatheon pulchellum. Data from this site will become part of a global network of GLORIA sites with which we will assess changes in alpine flora. Information gained from this GLORIA site can also be used as a link between studies of alpine climate change and related investigations on the timing of snowmelt and its influence on

  4. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A.; Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    Development of satisfactory techniques for detecting change in coastal zone environments is required before operational monitoring procedures can be established. In an effort to meet this need a study was directed toward developing and evaluating different types of change detection techniques, based upon computer aided analysis of LANDSAT multispectral scanner (MSS) data, to monitor these environments. The Matagorda Bay estuarine system along the Texas coast was selected as the study area. Four change detection techniques were designed and implemented for evaluation: (1) post classification comparison change detection, (2) delta data change detection, (3) spectral/temporal change classification, and (4) layered spectral/temporal change classification. Each of the four techniques was used to analyze a LANDSAT MSS temporal data set to detect areas of change of the Matagorda Bay region.

  5. Design of the Resources and Environment Monitoring Website in Kashgar

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Lin, Q. Z.; Wang, Q. J.

    2014-03-01

    Despite the development of the web geographical information system (web GIS), many useful spatial analysis functions are ignored in the system implementation. As Kashgar is rich in natural resources, it is of great significance to monitor the ample natural resource and environment situation in the region. Therefore, with multiple uses of spatial analysis, resources and environment monitoring website of Kashgar was built. Functions of water, vegetation, ice and snow extraction, task management, change assessment as well as thematic mapping and reports based on TM remote sensing images were implemented in the website. The design of the website was presented based on database management tier, the business logic tier and the top-level presentation tier. The vital operations of the website were introduced and the general performance was evaluated.

  6. A quasi-global precipitation time series for drought monitoring

    USGS Publications Warehouse

    Funk, Chris C.; Peterson, Pete J.; Landsfeld, Martin F.; Pedreros, Diego H.; Verdin, James P.; Rowland, James D.; Romero, Bo E.; Husak, Gregory J.; Michaelsen, Joel C.; Verdin, Andrew P.

    2014-01-01

    Estimating precipitation variations in space and time is an important aspect of drought early warning and environmental monitoring. An evolving drier-than-normal season must be placed in historical context so that the severity of rainfall deficits may quickly be evaluated. To this end, scientists at the U.S. Geological Survey Earth Resources Observation and Science Center, working closely with collaborators at the University of California, Santa Barbara Climate Hazards Group, have developed a quasi-global (50°S–50°N, 180°E–180°W), 0.05° resolution, 1981 to near-present gridded precipitation time series: the Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) data archive.

  7. Landsat: The Backbone for Mapping and Monitoring Global Ecological Trends

    NASA Astrophysics Data System (ADS)

    Loveland, T. R.

    2011-12-01

    Long-term ecological monitoring requires consistent observation of key variables, long-term measurement continuity, and open and affordable access to measurements. The Landsat series of Earth observation missions uniquely meet those criteria, and Landsat's 30m-observation scale permits the detection and differentiation of natural versus human-caused land change. Landsat is the longest and most comprehensive record of the state of the global land surface in existence. No other high-resolution satellite program is either capable or committed to the systematic monitoring of global scale human and natural land change. Beginning with Landsat 1 in 1972, six Landsat missions have continuously recorded images of the Earth. As we near the fortieth anniversary of Landsat, we now have an archive of millions of repetitive images of the Earth with multispectral properties suited to assessing both biotic and abiotic conditions and at a scale appropriate for resource management. The U.S. Geological Survey's (USGS) Earth Resources Observations Systems (EROS) Landsat archive contains nearly three million scenes and all are available to users at no cost. Furthermore, the entire Landsat record, Landsats 1-7, is now calibrated to a common radiometric standard and the majority of the data are orthorectified - enabling immediate assessment of long-term ecological conditions and land change. Landsats 5 and 7 continue to collect imagery and together they provide the potential to cover a significant portion of the Earth's land surfaces every eight days. Both of these missions now use a long-term acquisition plan designed to improve the collection of seasonal global coverage. Furthermore, recent agreements with international Landsat receiving stations are bringing previously inaccessible contemporary Landsat 5 data into the EROS archive. The amount of global coverage being acquired annually is the highest level in the history of the Landsat program. The EROS global historical archive is

  8. Accumulation and fragmentation of plastic debris in global environments

    PubMed Central

    Barnes, David K. A.; Galgani, Francois; Thompson, Richard C.; Barlaz, Morton

    2009-01-01

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly

  9. Accumulation and fragmentation of plastic debris in global environments.

    PubMed

    Barnes, David K A; Galgani, Francois; Thompson, Richard C; Barlaz, Morton

    2009-07-27

    One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly

  10. Monitoring the impacts of trade agreements on food environments.

    PubMed

    Friel, S; Hattersley, L; Snowdon, W; Thow, A-M; Lobstein, T; Sanders, D; Barquera, S; Mohan, S; Hawkes, C; Kelly, B; Kumanyika, S; L'Abbe, M; Lee, A; Ma, J; Macmullan, J; Monteiro, C; Neal, B; Rayner, M; Sacks, G; Swinburn, B; Vandevijvere, S; Walker, C

    2013-10-01

    The liberalization of international trade and foreign direct investment through multilateral, regional and bilateral agreements has had profound implications for the structure and nature of food systems, and therefore, for the availability, nutritional quality, accessibility, price and promotion of foods in different locations. Public health attention has only relatively recently turned to the links between trade and investment agreements, diets and health, and there is currently no systematic monitoring of this area. This paper reviews the available evidence on the links between trade agreements, food environments and diets from an obesity and non-communicable disease (NCD) perspective. Based on the key issues identified through the review, the paper outlines an approach for monitoring the potential impact of trade agreements on food environments and obesity/NCD risks. The proposed monitoring approach encompasses a set of guiding principles, recommended procedures for data collection and analysis, and quantifiable 'minimal', 'expanded' and 'optimal' measurement indicators to be tailored to national priorities, capacity and resources. Formal risk assessment processes of existing and evolving trade and investment agreements, which focus on their impacts on food environments will help inform the development of healthy trade policy, strengthen domestic nutrition and health policy space and ultimately protect population nutrition.

  11. Global lightning and severe storm monitoring from GPS orbit

    SciTech Connect

    Suszcynsky, D. M.; Jacobson, A. R.; Linford, J; Pongratz, M. B.; Light, T.; Shao, X.

    2004-01-01

    Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhanced global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the

  12. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  13. Defining functional biomes and monitoring their change globally.

    PubMed

    Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R

    2016-11-01

    Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function.

  14. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  15. Resources, environment and population. The Global Tomorrow Coalition Conference.

    PubMed

    Olson, R K

    1983-01-01

    The challenge for environmental action has been direct and powerful for the Global Tomorrow Coalition. In June 1983 a major international conference was held by the Coalition in Washington, D.C., the Conference examined the issues of acid rain, biological diversity, foresight capability, hazardous exports, water resources, the oceans, sustainable development, population, and nuclear issues. The Conference presented a unique portrait of the US environmental movement, its problems and the possibilities for US leadership at the international level. The Coalition issued an indictment of the Reagan Administration, charging that it had reversed American domestic and international policies and was threatening the foundation on international cooperation which the US had worked hard to establish. Specifically, the Administration did the following: prevented cooperative international action on acid rain; destroyed the effectiveness of the Council on Environmental Quality by cutting its budget by 2/3 and replacing the entire professional staff with new personnel lacking environmental expertise; withdrew US participation from the Law of the Sea Conference; discouraged initiatives and programs on environment and resource trends by OECD; obstructed OECD's efforts to harmonize testing for new chemicals; sought more than a 25% reduction in US fiscal 1984 support for the UN Fund for Population Activities (UNFPA); opposed UN efforts to control hazardous exports and removed US governmental restraints on this trade; withdrew support for the Internatioanl Man and the Biopshere program; proposed cutting the US voluntary contribution to the UN Environment Program by 2/3; proposed weakening the rules under the Convention on International Trade in Endangered Species and withdrew support for the World Heritage Convention and the Convention for the Protection of Nature and Preservation of Wildlife in the Western hemisphere; and withdrew funding for participation in US and international

  16. Sentinel-3 for the Copernicus Global Land Service: Monitoring the Continental Ecosystems at Global Scale

    NASA Astrophysics Data System (ADS)

    Lacaze, R.; Smets, B.; Calvet, J.-C.; Camacho, F.; Tansey, K.; Baret, F.; Ramon, D.; Montersleet, B.; Roujean, J.-L.; Wandrebeck, L.; Swinnen, E.; Freitas, S.; Paulik, C.; Jann, A.

    2015-12-01

    The Copernicus Global Land service provides continuously bio-geophysical variables describing, over the whole globe, the vegetation dynamic, the energy budget at the continental surface and some components of the water cycle. Some of these variables were derived from SPOT/VGT, and are now based upon the PROBA-V data. The evolution of the service towards a production at 333m resolution is prepared, using PROBA-V data, in the FP7/ImagineS project focusing on the LAI, FAPAR, FCover, normalized TOC reflectance and Albedo. The next major evolution of the service will be the exploitation of the Sentinel-3 data: for the continuity of 1km and 333m resolution production, jointly with the PROBA-V data; for the evolution of the service, jointly with Sentinel-2 data, to set-up a high resolution monitoring service. For that, timeliness, for NRT production, spatial coverage for a daily global monitoring, and the consistency, for a joint use of multi-mission data, are mandatory.

  17. Ecotones in a changing environment: Workshop on ecotones and global change

    SciTech Connect

    Risser, P.G.

    1990-02-01

    The Scientific Committee on Problems of the Environment (SCOPE) has organized an international project to synthesize and advance current theory on the influence of ecotones, or transition zones between ecosystems, on biodiversity and flows of energy, nutrients, water, and project is other materials between ecosystems. In particular, the entire project is designed to evaluate the influence of global climate change and land-use practices on biodiversity and ecological flows associated with ecotones, and will assess the feasibility of monitoring ecotones as early indicators of global change. The later stages of the project will recommend landscape management strategies for ecotones that produce desirable patterns of biodiversity and ecological flows. The result of the project--a comprehensive body of information on the theory and management of biodiversity and ecological flows associated with ecotones--will be part of the planning for research to be carried out under the International Geosphere-Biosphere Program.

  18. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  19. Monitoring mobility in older adults using global positioning system (GPS) watches and accelerometers: a feasibility study.

    PubMed

    Webber, Sandra C; Porter, Michelle M

    2009-10-01

    This exploratory study examined the feasibility of using Garmin global positioning system (GPS) watches and ActiGraph accelerometers to monitor walking and other aspects of community mobility in older adults. After accuracy at slow walking speeds was initially determined, 20 older adults (74.4 +/- 4.2 yr) wore the devices for 1 day. Steps, distances, and speeds (on foot and in vehicle) were determined. GPS data acquisition varied from 43 min to over 12 hr, with 55% of participants having more than 8 hr between initial and final data-collection points. When GPS data were acquired without interruptions, detailed mobility information was obtained regarding the timing, distances covered, and speeds reached during trips away from home. Although GPS and accelerometry technology offer promise for monitoring community mobility patterns, new GPS solutions are required that allow for data collection over an extended period of time between indoor and outdoor environments.

  20. Stable Isotopes in Ice: Tracers of the Global Environment

    NASA Astrophysics Data System (ADS)

    Cuffey, K. M.

    2003-12-01

    Significant advances in geophysical sciences most often follow from development of new abilities to measure Earth's properties. One major development of the past half century has been the measurement of stable isotopic composition of precipitation and its variations on vast spatial and temporal scales, the latter especially in Arctic and Antarctic glacial ice. The venerable tradition of research in this subject emanates directly from work of Dansgaard, Craig, and Epstein. Here I discuss how isotopic variations induced by atmospheric distillation offer a compelling example of a geophysical phenomenon arising from microphysical properties, but one that is dependent on the global-scale environment. I discuss how the geography of precipitation isotopes is explicable by treating the problem as an advective diffusive reaction system. Three of the most important results of environmental geophysics have emerged from analyses exploiting (in part) the record of this system in polar ice: the strong but quixotic coupling of climate and biogeochemistry on multi-millennial time scales; the high but plausible (and contentious) values for global climate sensitivity to radiative forcings; and the documentation of past very rapid climate changes. Looking forward, I also discuss the major unresolved issues lurking behind this facade of success, including poor understanding of the controls on deuterium excess at low temperatures, and inability to quantify many non-temperature effects on isotope time series (many of which were clearly discussed by Dansgaard nearly forty years ago).

  1. Monitoring and Evaluating the Transition of Large-Scale Programs in Global Health

    PubMed Central

    Bao, James; Rodriguez, Daniela C; Paina, Ligia; Ozawa, Sachiko; Bennett, Sara

    2015-01-01

    Purpose: Donors are increasingly interested in the transition and sustainability of global health programs as priorities shift and external funding declines. Systematic and high-quality monitoring and evaluation (M&E) of such processes is rare. We propose a framework and related guiding questions to systematize the M&E of global health program transitions. Methods: We conducted stakeholder interviews, searched the peer-reviewed and gray literature, gathered feedback from key informants, and reflected on author experiences to build a framework on M&E of transition and to develop guiding questions. Findings: The conceptual framework models transition as a process spanning pre-transition and transition itself and extending into sustained services and outcomes. Key transition domains include leadership, financing, programming, and service delivery, and relevant activities that drive the transition in these domains forward include sustaining a supportive policy environment, creating financial sustainability, developing local stakeholder capacity, communicating to all stakeholders, and aligning programs. Ideally transition monitoring would begin prior to transition processes being implemented and continue for some time after transition has been completed. As no set of indicators will be applicable across all types of health program transitions, we instead propose guiding questions and illustrative quantitative and qualitative indicators to be considered and adapted based on the transition domains identified as most important to the particular health program transition. The M&E of transition faces new and unique challenges, requiring measuring constructs to which evaluators may not be accustomed. Many domains hinge on measuring “intangibles” such as the management of relationships. Monitoring these constructs may require a compromise between rigorous data collection and the involvement of key stakeholders. Conclusion: Monitoring and evaluating transitions in global

  2. The Worldviews Network: Transformative Global Change Education in Immersive Environments

    NASA Astrophysics Data System (ADS)

    Hamilton, H.; Yu, K. C.; Gardiner, N.; McConville, D.; Connolly, R.; "Irving, Lindsay", L. S.

    2011-12-01

    Our modern age is defined by an astounding capacity to generate scientific information. From DNA to dark matter, human ingenuity and technologies create an endless stream of data about ourselves and the world of which we are a part. Yet we largely founder in transforming information into understanding, and understanding into rational action for our society as a whole. Earth and biodiversity scientists are especially frustrated by this impasse because the data they gather often point to a clash between Earth's capacity to sustain life and the decisions that humans make to garner the planet's resources. Immersive virtual environments offer an underexplored link in the translation of scientific data into public understanding, dialogue, and action. The Worldviews Network is a collaboration of scientists, artists, and educators focused on developing best practices for the use of immersive environments for science-based ecological literacy education. A central tenet of the Worldviews Network is that there are multiple ways to know and experience the world, so we are developing scientifically accurate, geographically relevant, and culturally appropriate programming to promote ecological literacy within informal science education programs across the United States. The goal of Worldviews Network is to offer transformative learning experiences, in which participants are guided on a process integrating immersive visual explorations, critical reflection and dialogue, and design-oriented approaches to action - or more simply, seeing, knowing, and doing. Our methods center on live presentations, interactive scientific visualizations, and sustainability dialogues hosted at informal science institutions. Our approach uses datasets from the life, Earth, and space sciences to illuminate the complex conditions that support life on earth and the ways in which ecological systems interact. We are leveraging scientific data from federal agencies, non-governmental organizations, and our

  3. A Remote Sensing-based Global Agricultural Drought Monitoring and Forecasting System for Supporting GEOSS (Invited)

    NASA Astrophysics Data System (ADS)

    di, L.; Yu, G.; Han, W.; Deng, M.

    2010-12-01

    Group on Earth Observations (GEO) is a voluntary partnership of governments and international organizations. GEO is coordinating the implementation of the Global Earth Observation System of Systems (GEOSS), a worldwide effort to make Earth observation resources more useful to the society. As one of the important technical contributors to GEOSS, the Center for Spatial Information Science and Systems (CSISS), George Mason University, is implementing a remote sensing-based global agricultural drought monitoring and forecasting system (GADMFS) as a GEOSS societal benefit areas (agriculture and water) prototype. The goals of the project are 1) to establish a system as a component of GEOSS for providing global on-demand and systematic agriculture drought information to users worldwide, and 2) to support decision-making with improved monitoring, forecasting, and analyses of agriculture drought. GADMFS has adopted the service-oriented architecture and is based on standard-compliant interoperable geospatial Web services to provide online on-demand drought conditions and forecasting at ~1 km spatial and daily and weekly temporal resolutions for any part of the world to world-wide users through the Internet. Applicable GEOSS recommended open standards are followed in the system implementation. The system’s drought monitoring relies on drought-related parameters, such as surface and root-zone soil moisture and NDVI time series derived from remote sensing data, to provide the current conditions of agricultural drought. The system links to near real-time satellite remote sensing data sources from NASA and NOAA for the monitoring purpose. For drought forecasting, the system utilizes a neural-network based modeling algorithm. The algorithm is trained with inputs of current and historic vegetation-based and climate-based drought index data, biophysical characteristics of the environment, and time-series weather data. The trained algorithm will establish per-pixel model for

  4. Water erosion monitoring and experimentation for global change studies

    SciTech Connect

    Poesen, J.W.; Boardman, J.; Wilcox, B.

    1996-09-01

    This report describes the need for monitoring the effects of climatic change on soil erosion. The importance of monitoring not only runoff, but monitoring and experimental studies at the larger scale of hillslope and catchments is stressed.

  5. Earth Observing System: Global Observations to Study the Earth's Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2003-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During the last couple of years, four EOS science missions were launched, representing observations of (i) total solar irradiance, (ii) Earth radiation budget, (iii) land cover & land use change, (iv) ocean processes (vector wind, sea surface temperature, and ocean color), (v) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (vi) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using NASA's Earth science data to examine land use and natural hazards, environmental air quality, including: dust storms over the worlds deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean, with a special emphasis on satellite observations available for studying the southern African environment.

  6. The Node Monitoring Component of a Scalable Systems Software Environment

    SciTech Connect

    Miller, Samuel James

    2006-01-01

    This research describes Fountain, a suite of programs used to monitor the resources of a cluster. A cluster is a collection of individual computers that are connected via a high speed communication network. They are traditionally used by users who desire more resources, such as processing power and memory, than any single computer can provide. A common drawback to effectively utilizing such a large-scale system is the management infrastructure, which often does not often scale well as the system grows. Large-scale parallel systems provide new research challenges in the area of systems software, the programs or tools that manage the system from boot-up to running a parallel job. The approach presented in this thesis utilizes a collection of separate components that communicate with each other to achieve a common goal. While systems software comprises a broad array of components, this thesis focuses on the design choices for a node monitoring component. We will describe Fountain, an implementation of the Scalable Systems Software (SSS) node monitor specification. It is targeted at aggregate node monitoring for clusters, focusing on both scalability and fault tolerance as its design goals. It leverages widely used technologies such as XML and HTTP to present an interface to other components in the SSS environment.

  7. Monitoring of fatigue crack under complex environment using guided waves

    NASA Astrophysics Data System (ADS)

    Tang, Jianfei; Yan, Gang; Xu, Xiwu

    2011-11-01

    This paper presents an experimental study on monitoring of fatigue crack under complex environment using guided waves. An experimental set-up consisting of an electrical oven, a MTS testing machine and a monitoring system is established to perform the study. First, the combined effects of temperature, load and vibration on the propagation of guided waves in metallic structure is studied. Then, a statistical approach is proposed to detect fatigue crack under these combined effects. Damage feature is extracted after the guided wave signals are processed by Fourier transform. A Monte Carlo procedure is employed to estimate the probability density functions of the feature before and after cracking, respectively. By comparing the probability density functions, the probability of existence of fatigue crack is determined. Experimental study on a fatigue coupon under combined effects of temperature, load and vibration is conducted to demonstrate the effectiveness of the proposed method.

  8. Monitoring of fatigue crack under complex environment using guided waves

    NASA Astrophysics Data System (ADS)

    Tang, Jianfei; Yan, Gang; Xu, Xiwu

    2012-04-01

    This paper presents an experimental study on monitoring of fatigue crack under complex environment using guided waves. An experimental set-up consisting of an electrical oven, a MTS testing machine and a monitoring system is established to perform the study. First, the combined effects of temperature, load and vibration on the propagation of guided waves in metallic structure is studied. Then, a statistical approach is proposed to detect fatigue crack under these combined effects. Damage feature is extracted after the guided wave signals are processed by Fourier transform. A Monte Carlo procedure is employed to estimate the probability density functions of the feature before and after cracking, respectively. By comparing the probability density functions, the probability of existence of fatigue crack is determined. Experimental study on a fatigue coupon under combined effects of temperature, load and vibration is conducted to demonstrate the effectiveness of the proposed method.

  9. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    NASA Technical Reports Server (NTRS)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  10. An Induced Environment Contamination Monitor for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor); Decher, R. (Editor)

    1978-01-01

    The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.

  11. Global Wetland Monitoring with AMSR-E Passive Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Schroeder, R.; McDonald, K.; Podest, E.; Heimann, M.; Zimmermann, R.

    2006-12-01

    Methane is the most potent green house gas in Earth's atmosphere. Recent findings have raised wide concern as to whether living plants have a significant role in producing large amounts of methane. Although such findings may contradict the common understanding of many atmospheric scientists, laboratory studies have demonstrated that it is not clear how accurately natural methane production can be measured. Our study investigates the impact of natural wetlands on variations in methane out-gassing within a global modeling construct. At a first step, we utilize newly available passive microwave measurements from the AMSR-E radiometer to observe Earth's largest wetland regions and to monitor their seasonal behavior. A remote sensing technique is presented that exploits the temporal variability of daily AMSR-E brightness temperature observations to detect changes in water distribution that control inundation patterns for large wetlands in Siberia, North America, and the Amazon Basin susceptible to strong seasonal shifts in surface water retention or precipitation amounts. Initial results demonstrate that our method can be applied directly and without any tuning applied to the input remote sensing signal, though careful evaluation of our product with in-situ information remains to be carried out. This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  12. The Global Communication Infrastructure of the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Lastowka, L.; Gray, A.; Anichenko, A.

    2007-05-01

    The Global Communications Infrastructure (GCI) employs 6 satellites in various frequency bands distributed around the globe. Communications with the PTS (Provisional Technical Secretariat) in Vienna, Austria are achieved through VSAT technologies, international leased data circuits and Virtual Private Network (VPN) connections over the Internet. To date, 210 independent VSAT circuits have been connected to Vienna as well as special circuits connecting to the Antarctic and to independent sub-networks. Data volumes from all technologies currently reach 8 Gigabytes per day. The first level of support and a 24/7 help desk remains with the GCI contractor, but performance is monitored actively by the PTS/GCI operations team. GCI operations are being progressively introduced into the PTS operations centre. An Operations centre fully integrated with the GCI segment of the IMS network will ensure a more focused response to incidents and will maximize the availability of the IMS network. Existing trouble tickets systems are being merged to ensure the commission manages GCI incidents in the context of the IMS as a whole. A focus on a single source of data for GCI network performance has enabled reporting systems to be developed which allow for improved and automated reports. The contracted availability for each individual virtual circuit is 99.5% and this performance is regularly reviewed on a monthly basis

  13. Monitoring the Earth's Atmosphere with the Global IMS Infrasound Network

    NASA Astrophysics Data System (ADS)

    Brachet, Nicolas; Brown, David; Mialle, Pierrick; Le Bras, Ronan; Coyne, John; Given, Jeffrey

    2010-05-01

    The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is tasked with monitoring compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) which bans nuclear weapon explosions underground, in the oceans, and in the atmosphere. The verification regime includes a globally distributed network of seismic, hydroacoustic, infrasound and radionuclide stations which collect and transmit data to the International Data Centre (IDC) in Vienna, Austria shortly after the data are recorded at each station. The infrasound network defined in the Protocol of the CTBT comprises 60 infrasound array stations. Each array is built according to the same technical specifications, it is typically composed of 4 to 9 sensors, with 1 to 3 km aperture geometry. At the end of 2000 only one infrasound station was transmitting data to the IDC. Since then, 41 additional stations have been installed and 70% of the infrasound network is currently certified and contributing data to the IDC. This constitutes the first global infrasound network ever built with such a large and uniform distribution of stations. Infrasound data at the IDC are processed at the station level using the Progressive Multi-Channel Correlation (PMCC) method for the detection and measurement of infrasound signals. The algorithm calculates the signal correlation between sensors at an infrasound array. If the signal is sufficiently correlated and consistent over an extended period of time and frequency range a detection is created. Groups of detections are then categorized according to their propagation and waveform features, and a phase name is assigned for infrasound, seismic or noise detections. The categorization complements the PMCC algorithm to avoid overwhelming the IDC automatic association algorithm with false alarm infrasound events. Currently, 80 to 90% of the detections are identified as noise by the system. Although the noise detections are not used to build events in the context of CTBT monitoring

  14. Global monitoring of Sea Surface Salinity with Aquarius

    NASA Technical Reports Server (NTRS)

    Lagerloef, G. S. E.; LeVine, D. M.; Chao, Yi; Colomb, R.; Nollmann, I.

    2005-01-01

    Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to

  15. The Role of Civil Society Organizations in Monitoring the Global AIDS Response.

    PubMed

    Smith, Julia; Mallouris, Christoforos; Lee, Kelley; Alfvén, Tobias

    2016-10-12

    Civil society organizations (CSOs) are recognized as playing an exceptional role in the global AIDS response. However, there is little detailed research to date on how they contribute to specific governance functions. This article uses Haas' framework on global governance functions to map CSO's participation in the monitoring of global commitments to the AIDS response by institutions and states. Drawing on key informant interviews and primary documents, it focuses specifically on CSO participation in Global AIDS Response Progress Reporting and in Global Fund to Fight AIDS, Tuberculosis and Malaria processes. It argues that the AIDS response is unique within global health governance, in that CSOs fulfill both formal and informal monitoring functions, and considers the strengths and weaknesses of these contributions. It concludes that future global health governance arrangements should include provisions and resources for monitoring by CSOs because their participation creates more inclusive global health governance and contributes to strengthening commitments to human rights.

  16. Use of the Complex Conductivity Method to Monitor Hydrocarbon Degradation in Brackish Environments

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Beaver, C. L.; Kimak, C.; Slater, L. D.; Atekwana, E. A.; Rossbach, S.

    2015-12-01

    Hydrocarbon contamination of the subsurface is a global environmental problem. The size, location and recurrence rate of contamination very often inhibits active remediation strategies. When there is no direct threat to humans, and direct/invasive remediation methods are prohibited, monitored natural attenuation is often the remediation method of choice. Consequently, long-term monitoring of hydrocarbon degradation is needed to validate remediation. Geophysical methods, frequently utilized to characterize subsurface contamination, have the potential to be adopted for long term monitoring of contaminant degradation. Over the last decade, the complex conductivity method has shown promise as a method for monitoring hydrocarbon degradation processes in freshwater environments. We investigated the sensitivity of complex conductivity to natural attenuation of oil in a brackish setting, being more representative of the conditions where most oil spills occur such as in coastal environments. We performed a series of laboratory hydrocarbon biodegradation experiments whilst continuously monitoring complex conductivity. Sediments from a beach impacted by the Deepwater Horizon (DWH) spill were used to provide the hydrocarbon degraders, while fluids with three different salinities, ranging from fresh water to brackish water, were used as the supporting media. All experimental columns, including two abiotic controls, were run in duplicate. Early results show a dependence of the complex conductivity parameters (both electrolytic and interfacial) on biodegradation processes. Despite the small signals relative to freshwater conditions, the imaginary part of the complex conductivity appears to be sensitive to biodegradation processes. The columns with highest salinity fluids - similar to the salinites for the site where the sediments were collected - showed distinctive complex conductivity responses similar to microbial growth curves. Geochemical monitoring confirmed elevated rates

  17. Monitoring the marine environment using marine mammal tissue samples

    SciTech Connect

    Jones, P.D.; Hannah, D.J.; Day, P.J.

    1995-12-31

    Marine environments, both inshore and open ocean, receive numerous inputs of anthropogenic chemicals. Cetaceans provide a valuable resource for monitoring the low level contamination of marine environments with persistent organic contaminants. Comparative studies using inshore and offshore southern ocean cetaceans have revealed significant differences in the types of contamination in these two environments. The polychlorinated biphenyls (PCBs) deposited in the southern oceans are characterized by an abundance of lower chlorinated congeners. Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) are not present at significant concentrations in cetaceans from the open southern ocean. In contrast significant concentrations of PCDD/F congeners are detected in the blubber of the inshore living Hector`s dolphin. This species lives close to the shore and has a very small home range (approximately 30 km) for a cetacean. Analysis of tissue PCDD/F and PCB profiles from different populations and their food sources will be presented. The data are being used to determine if there are local variations in the contamination of the New Zealand inshore marine environment.

  18. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    NASA Astrophysics Data System (ADS)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  19. The development of airborne video system for monitoring of river environments

    SciTech Connect

    Yoshikawa, Shigeya; Mizutani, Nobuyuki; Mizukami, Masumi; Koyano, Toshirou

    1996-11-01

    Recently, airborne videography is widely used by many monitoring for environmental resources, such as rivers, forests, ocean, and so on. Although airborne videography has a low resolution than aerial photographs, it can effectively reduce the cost of continuous monitoring of wide area. Furthermore video images can easily be processed with personal computer. This paper introduces an airborne video system for monitoring of Class A river environment. This system consists of two sub-systems. One is the data collection system that is composed of a video camera, a Global Positioning System(GPS) and a personal computer. This sub-system records information of rivers by video images and their corresponding location data. A GPS system is used for calculating location data and navigating the airplane to the destination of monitoring site. Other is a simplified digital video editing system. This system runs on a personal computer with Microsoft Windows 3.1. This system can also be used for management and planning of road environment, marine resources, forest resources and for prevention of disasters. 7 refs., 4 figs.

  20. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place

  1. Monitoring Wildlife Interactions with Their Environment: An Interdisciplinary Approach

    SciTech Connect

    Charles-Smith, Lauren E.; Domnguez, Ignacio X.; Fornaro, Robert J.; DePerno, Christopher S.; Kennedy-Stoskopf, Suzanne

    2015-12-01

    In a rapidly changing world, wildlife ecologists strive to correctly model and predict complex relationships between animals and their environment, which facilitates management decisions impacting public policy to conserve and protect delicate ecosystems. Recent advances in monitoring systems span scientific domains, including animal and weather monitoring devices and landscape classification mapping techniques. The current challenge is how to combine and use detailed output from various sources to address questions spanning multiple disciplines. WolfScout wildlife and weather tracking system is a software tool capable of filling this niche. WolfScout automates integration of the latest technological advances in wildlife GPS collars, weather stations, drought conditions, and severe weather reports, and animal demographic information. The WolfScout database stores a variety of classified landscape maps including natural and manmade features. Additionally, WolfScout’s spatial database management system allows users to calculate distances between animals’ location and landscape characteristics, which are linked to the best approximation of environmental conditions at the animal’s location during the interaction. Through a secure website, data are exported in formats compatible with multiple software programs including R and ArcGIS. The WolfScout design promotes interoperability in data, between researchers, and software applications while standardizing analyses of animal interactions with their environment.

  2. Energy harvesting schemes for building interior environment monitoring

    NASA Astrophysics Data System (ADS)

    Zylka, Pawel; Pociecha, Dominik

    2016-11-01

    A vision to supply microelectronic devices without batteries making them perpetual or extending time of service in battery-oriented mobile supply schemes is the driving force of the research related to ambient energy harvesting. Energy harnessing aims thus at extracting energy from various ambient energy "pools", which generally are cost- or powerineffective to be scaled up for full-size, power-plant energy generation schemes supplying energy in electric form. These include - but are not limited to - waste heat, electromagnetic hum, vibrations, or human-generated power in addition to traditional renewable energy resources like water flow, tidal and wind energy or sun radiation which can also be exploited at the miniature scale by energy scavengers. However, in case of taking advantage of energy harvesting strategies to power up sensors monitoring environment inside buildings adaptable energy sources are restrained to only some which additionally are limited in spatial and temporal accessibility as well as available power. The paper explores experimentally an energy harvesting scheme exploiting human kinesis applicable in indoor environment for supplying a wireless indoor micro-system, monitoring ambient air properties (pressure, humidity and temperature).

  3. Breeding blueberries for a changing global environment: a review

    PubMed Central

    Lobos, Gustavo A.; Hancock, James F.

    2015-01-01

    Today, blueberries are recognized worldwide as one of the foremost health foods, becoming one of the crops with the highest productive and commercial projections. Over the last 100 years, the geographical area where highbush blueberries are grown has extended dramatically into hotter and drier environments. The expansion of highbush blueberry growing into warmer regions will be challenged in the future by increases in average global temperature and extreme fluctuations in temperature and rainfall patterns. Considerable genetic variability exists within the blueberry gene pool that breeders can use to meet these challenges, but traditional selection techniques can be slow and inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted breeding (MAB) and phenomics could aid greatly in identifying those individuals carrying adventitious traits, increasing selection efficiency and shortening the rate of cultivar release. While phenomics have begun to be used in the breeding of grain crops in the last 10 years, their use in fruit breeding programs it is almost non-existent. PMID:26483803

  4. AVHRR-based drought-observing system for monitoring the environment and socioeconomic activities

    NASA Astrophysics Data System (ADS)

    Kogan, F.

    From all natural disaster, drought is the least understandable and the most damaging environmental phenomenon. Although in pre-satellite era, climate data were used for drought monitoring, drought specifics created problems in early drought detection start/end, monitoring its expansion/contraction, intensity and area coverage and the most important, timely estimation of the impacts on the environment and socioeconomic activities. The latest prevented to take prompt measures in mitigating negative consequences of drought for the society. Advances in remote sensing of the past ten years, contributed to the development of comprehensive drought monitoring system and numerous applications, which helped to make decisions for monitoring the environment and predicting sustainable socioeconomic activities. This paper discusses satellite-based land-surface observing system, which provides wells of information used for monitoring such unusual natural disaster as drought. This system was developed from the observations of the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA operational polar-orbiting satellites. The AVHRR data were packed into the Global Vegetation Index (GVI) product, which have served the global community since 1981. The GVI provided reflectances and indices (4 km spacial resolution) every seven days for each 16 km map cell between 75EN and 55ES covering all land ecosystems. The data includes raw and calibrated radiances in the visible, near infrared and infrared spectral bands, processed (with eliminated high frequency noise) radiances, normalized difference vegetation index (NDVI), 20-year climatology, vegetation condition indices and also products, such as vegetation health, drought, vegetation fraction, fire risk etc. In the past ten years, users around the world used this information addressing different issues of drought impacts on socioeconomic activities and responded positively to real time drought information place regularly on the

  5. Earth Observing System: Global Observations to Study the Earth's Environment

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2001-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During the last couple of years, four EOS science missions were launched, representing observations of (1) total solar irradiance, (2) Earth radiation budget, (3) land cover & land use change, (4) ocean processes (vector wind, sea surface temperature, and ocean color), (5) atmospheric processes (aerosol and cloud properties, water vapor, and temperature and moisture profiles), and (6) tropospheric chemistry. In succeeding years many more satellites will be launched that will contribute immeasurably to our understanding of the Earth's environment. In this presentation I will describe how scientists are using NASA's Earth science data to examine land use and natural hazards, environmental air quality, including dust storms over the world's deserts, cloud and radiation properties, sea surface temperature, and winds over the ocean.

  6. Designing Training for Global Environments: Knowing What Questions To Ask.

    ERIC Educational Resources Information Center

    Gayeski, Diane M.; Sanchirico, Christine; Anderson, Janet

    2002-01-01

    Presents a framework for identifying important issues for instructional design and delivery in global settings. Highlights include cultural factors in global training; an instructional design model; corporate globalization strategy; communication and training norms; language barriers; implicit value differences; and technical and legal…

  7. Leverage points for improving global food security and the environment.

    PubMed

    West, Paul C; Gerber, James S; Engstrom, Peder M; Mueller, Nathaniel D; Brauman, Kate A; Carlson, Kimberly M; Cassidy, Emily S; Johnston, Matt; MacDonald, Graham K; Ray, Deepak K; Siebert, Stefan

    2014-07-18

    Achieving sustainable global food security is one of humanity's contemporary challenges. Here we present an analysis identifying key "global leverage points" that offer the best opportunities to improve both global food security and environmental sustainability. We find that a relatively small set of places and actions could provide enough new calories to meet the basic needs for more than 3 billion people, address many environmental impacts with global consequences, and focus food waste reduction on the commodities with the greatest impact on food security. These leverage points in the global food system can help guide how nongovernmental organizations, foundations, governments, citizens' groups, and businesses prioritize actions.

  8. A framework for the implementation of the comprehensive plan for the global investigation of pollution in the marine environment

    SciTech Connect

    Not Available

    1985-01-01

    Prepared to provide guidance to the IOC and its Member States on implementing the IOC/GIPME program in general and on developing the Marine Pollution Monitoring System (MARPOLMON), this document outlines the components and essential features of the Comprehensive Plan for the Global Investigation of Pollution in the Marine Environment (GIPME), assesses the validity of the approach advocated in it, and offers a strategic framework for GIPME activities.

  9. The global obesity pandemic: shaped by global drivers and local environments.

    PubMed

    Swinburn, Boyd A; Sacks, Gary; Hall, Kevin D; McPherson, Klim; Finegood, Diane T; Moodie, Marjory L; Gortmaker, Steven L

    2011-08-27

    The simultaneous increases in obesity in almost all countries seem to be driven mainly by changes in the global food system, which is producing more processed, affordable, and effectively marketed food than ever before. This passive overconsumption of energy leading to obesity is a predictable outcome of market economies predicated on consumption-based growth. The global food system drivers interact with local environmental factors to create a wide variation in obesity prevalence between populations. Within populations, the interactions between environmental and individual factors, including genetic makeup, explain variability in body size between individuals. However, even with this individual variation, the epidemic has predictable patterns in subpopulations. In low-income countries, obesity mostly affects middle-aged adults (especially women) from wealthy, urban environments; whereas in high-income countries it affects both sexes and all ages, but is disproportionately greater in disadvantaged groups. Unlike other major causes of preventable death and disability, such as tobacco use, injuries, and infectious diseases, there are no exemplar populations in which the obesity epidemic has been reversed by public health measures. This absence increases the urgency for evidence-creating policy action, with a priority on reduction of the supply-side drivers.

  10. Surface Emissivity Retrieved with Satellite Ultraspectral IR Measurements for Monitoring Global Change

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter

    2009-01-01

    Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.

  11. New tools in monitoring East and Southeast Asian environments

    NASA Astrophysics Data System (ADS)

    Wagner, Thomas W.; Shuchman, Robert A.

    1997-01-01

    By all economic measures East and Southeast Asia are major success stories and emerging powerhouses in the global economy. This region continues to outperform, by a wide margin, other regions of the developing world and the industrial countries as well. However, this economic growth has been at a cost to the environment that is increasingly evident and may threaten future growth. Losses of tropical forests, unsustainable agriculture, unsound energy production and use, urban and industrial pollution, and the depletion of coastal and marine resources all impact current and future growth. However, information obtained from Mission-To-Planet-Earth sensors and other remote sensing devices may provide a basis for policies that help reduce environmental damage and promote resource sustainability. Three examples using Landsat, AVHRR, and interferometric RADAR data illustrate remote sensing applications to Asian development and environmental sustainability.

  12. Background monitoring and its role in global estimation and forecast of the state of the biosphere.

    PubMed

    Izrael, Y A

    1982-12-01

    (1) Scientific grounds and the concept of monitoring as the system for observations, assessment and prediction of man-induced changes in the state of natural environment, the program and aims of the background monitoring were developed by the author in 1972-1980. These questions were discussed in detail at the International Symposium on Global Integrated Monitoring (Riga, U.S.S.R., December, 1978). It should be stressed that along with significant anthropogenic loading on large cities and industrial areas, natural ecosystems covering most of the Earth's territory are also exposed to quite extended, though insignificant anthropogenic effects. This paper proposes to consider the ways of the background information use for the biosphere state assessment and prediction. (2) Classification of objects for monitoring from the point of view of the consequences of the man-made impact, pollution in the first hand, is as follows: - population (public health); - ecosystem elements employed by man whose production is used by population (soil, water bodies, forest, etc.); - biotic elements of ecosystems (without the immediate consumed production); - abiotic constituents of natural ecosystems, considerable components of the biosphere, climatic system. (3) Historically, monitoring in all countries involves the first two spheres. The background monitoring also extends on the next two spheres. It should differentially take into account physical, chemical and biological factors of impacts. Indentification of biological effects is most complex and vital. Human impact at the background level proceeds indirectly through a general (global or regional) deterioration of the state of the biosphere. (4) Gradually the background monitoring is being practiced on a larger and larger scale. It is shown that the long-range atmospheric transport of pollutants in various regions leads to a gradual general increase of all the natural media pollution and to perceptible biological effects (soil and

  13. Monitoring and Forecasting Space Weather in Geospace Environment

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.

    2008-01-01

    For improving the reliability of Space Weather prediction, we developed a new, Polar Magnetic (PM) index of geomagnetic activity, which shows high correlation with both upstream solar wind data and related events in the magnetosphere and ionosphere. Similarly to the existing polar cap PC index, the new PM index was computed from data from two near-pole geomagnetic observatories; however, the method for computing the PM index is different. The high correlation of the PM index with both solar wind data and events in Geospace environment makes possible to improve significantly forecasting geomagnetic disturbances and such important parameters as the cross-polar-cap voltage and global Joule heating, which play an important role in the development of geomagnetic, ionospheric and thermospheric disturbances. We tested the PM index for 10-year period (1995-2004). The correlation between PM index and upstream solar wind data for these years is very high (the average correlation coefficient R approximately equal to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the correlation coefficient between the actual and predicted values of these parameters approximately equal to 0.9), which results in significant increasing the prediction reliability of these parameters. Using the PM index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in Geospace environment. The PM index may be also used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes.

  14. Big Data Solution for CTBT Monitoring Using Global Cross Correlation

    NASA Astrophysics Data System (ADS)

    Gaillard, P.; Bobrov, D.; Dupont, A.; Grenouille, A.; Kitov, I. O.; Rozhkov, M.

    2014-12-01

    Due to the mismatch between data volume and the performance of the Information Technology infrastructure used in seismic data centers, it becomes more and more difficult to process all the data with traditional applications in a reasonable elapsed time. To fulfill their missions, the International Data Centre of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO/IDC) and the Département Analyse Surveillance Environnement of Commissariat à l'Energie atomique et aux énergies alternatives (CEA/DASE) collect, process and produce complex data sets whose volume is growing exponentially. In the medium term, computer architectures, data management systems and application algorithms will require fundamental changes to meet the needs. This problem is well known and identified as a "Big Data" challenge. To tackle this major task, the CEA/DASE takes part during two years to the "DataScale" project. Started in September 2013, DataScale gathers a large set of partners (research laboratories, SMEs and big companies). The common objective is to design efficient solutions using the synergy between Big Data solutions and the High Performance Computing (HPC). The project will evaluate the relevance of these technological solutions by implementing a demonstrator for seismic event detections thanks to massive waveform correlations. The IDC has developed an expertise on such techniques leading to an algorithm called "Master Event" and provides a high-quality dataset for an extensive cross correlation study. The objective of the project is to enhance the Master Event algorithm and to reanalyze 10 years of waveform data from the International Monitoring System (IMS) network thanks to a dedicated HPC infrastructure operated by the "Centre de Calcul Recherche et Technologie" at the CEA of Bruyères-le-Châtel. The dataset used for the demonstrator includes more than 300,000 seismic events, tens of millions of raw detections and more than 30 terabytes of continuous seismic data

  15. The SAGE Cross-Culture Matrix Approach to the Study of Global Environments and Human Inhabitants.

    ERIC Educational Resources Information Center

    Peters, Richard

    The Humans and Environment Learning Program (HELP) and the Student Awareness of Global Environments (SAGE) approach are designed to directly and vicariously expose students to natural and social environments and develop their awareness of the character and nature of the different environments in which each individual functions throughout a…

  16. Camera Monitoring of Coastal Dune Erosion in a Macrotidal Environment

    NASA Astrophysics Data System (ADS)

    Kim, Taerim; Kim, Dongsoo

    2015-04-01

    The recent dune erosion in the west coast of Korea is serious in terms of its speed and harmful influence on the adjacent coastal waters as well as dune forest. The west coast of Korea is in the macro-intertidal environment and aeolian sediment transport on the intertidal flat is very active during an ebb tide, especially in winter. There is strong interaction between sand beach and dune by supplying or depositing sand. Coastal dune, as one part of beach system, contributes for beach recovery as well as preventing beach erosion by exchanging sands between beach and dune. Due to high tidal range, the boundary of sand dunes is outside the high water line during spring tide and it makes people think coastal dune is safe from wave forces causing beach erosion. However it seems that high waves during spring high tide cause serious erosion in a relatively short period. This paper investigates the erosion status of the dunes located in the JangHang beach in the southwest coast of Korean Peninsula, by analyzing images from camera monitoring system, and tide and wave data observed adjacent to the study site during the passage of 4 typhoons in 2012. It shows the importance of the timing of wave and tide condition in coastal dune erosion in macrotidal environment.

  17. An artificial reality environment for remote factory control and monitoring

    NASA Technical Reports Server (NTRS)

    Kosta, Charles Paul; Krolak, Patrick D.

    1993-01-01

    Work has begun on the merger of two well known systems, VEOS (HITLab) and CLIPS (NASA). In the recent past, the University of Massachusetts Lowell developed a parallel version of NASA CLIPS, called P-CLIPS. This modification allows users to create smaller expert systems which are able to communicate with each other to jointly solve problems. With the merger of a VEOS message system, PCLIPS-V can now act as a group of entities working within VEOS. To display the 3D virtual world we have been using a graphics package called HOOPS, from Ithaca Software. The artificial reality environment we have set up contains actors and objects as found in our Lincoln Logs Factory of the Future project. The environment allows us to view and control the objects within the virtual world. All communication between the separate CLIPS expert systems is done through VEOS. A graphical renderer generates camera views on X-Windows devices; Head Mounted Devices are not required. This allows more people to make use of this technology. We are experimenting with different types of virtual vehicles to give the user a sense that he or she is actually moving around inside the factory looking ahead through windows and virtual monitors.

  18. Fiber optic acoustic emission sensors for harsh environment health monitoring

    NASA Astrophysics Data System (ADS)

    Borinski, Jason W.; Duke, John C., Jr.; Horne, Michael R.

    2001-07-01

    Optical fiber sensors are rapidly emerging as viable alternatives to piezoelectric devices as effective means of detecting and quantifying acoustic emission (AE). Compared to traditional piezoelectric-based sensors, optical fiber sensors offer much smaller size, reduced weight, ability to operate at temperatures up to 2000 degree(s)C, immunity to electromagnetic interference, resistance to corrosive environments, inherent safety within flammable environments, and the ability to multiplex multiple sensors on a single fiber. The authors have investigated low-profile fiber optic-based AE sensors for non-destructive evaluation (NDE) systems. In particular, broadband and resonant type optical fiber sensors were developed for monitoring acoustic emission for NDE of pressurized composite vessels and commercial airframe structures. The authors developed an in-plane, broadband sensor design based on optical strain gage technology. In addition, an out-of-plane, resonant sensor was developed using micromachining techniques. The sensors have been evaluated for performance using swept frequency and impulse excitation techniques and compared to conventional piezoelectric transducers. Further, application experiments were conducted using these sensors on both aluminum lap-joints and composite fracture coupons, with collocated piezoelectric transducers. The results indicate that optical fiber AE sensors can be used as transducers sensitive to acoustic events and the indication of imminent failure of a structure, making these sensors useful in many applications where conventional piezoelectric transducers are not well suited.

  19. The Global Imperative: Rethinking the Economy, the Environment, and Education.

    ERIC Educational Resources Information Center

    Lukensmeyer, Carolyn J.

    The global imperative is acting on the reality that people's survival, the planet's existence, and the quality of humanity requires change in the relationship between economic development and environmental redevelopment. The destructive patterns of shortsighted global economic development warrant rethinking of the link between the economy and the…

  20. PCDD, PCDF, dl-PCB and organochlorine pesticides monitoring in São Paulo City using passive air sampler as part of the Global Monitoring Plan.

    PubMed

    Tominaga, M Y; Silva, C R; Melo, J P; Niwa, N A; Plascak, D; Souza, C A M; Sato, M I Z

    2016-11-15

    The persistent organic pollutants (POPs), such as organochlorine pesticides and PCBs, are ordinarily monitored in the aquatic environment or in soil in the environmental quality monitoring programs in São Paulo, Brazil. One of the core matrices proposed in the POPs Global Monitoring Plan (GMP) from the Stockholm Convention list is the ambient air, which is not a usual matrix for POPs monitoring in the country. In this study POP levels were evaluated in the air samples from an urban site in São Paulo City over five years, starting in 2010 as a capacity building project for Latin America and the Caribbean region for POP monitoring in ambient air using passive samplers. Furthermore, after the end of the Project in 2012, the monitoring continued in the same sampling site as means to improving the analytical capacity building and contribute to the GMP data. The POPs monitored were 17 congeners of 2,3,7,8 chloro-substituted PCDDs and PCDFs, dioxin-like PCBs, indicator PCBs, organochlorine pesticides and toxaphene. The results show a slight decrease in PCDD/F, dl-PCBs and indicator PCBs levels along the five years. The organochlorine pesticide endosulfan was present at its highest concentration at the beginning of the monitoring period, but it was below detection level in the last year of the monitoring. Some other organochlorine pesticides were detected close to or below quantitation limits. The compounds identified were dieldrin, chlordane, α-HCH, γ-HCH, heptachlor, heptachlor epoxide, hexachlorobenzene and DDTs. Toxaphene congeners were not detected. These results have confirmed the efficacy of passive sampling for POP monitoring and the capacity building for POP analysis and monitoring was established. However more needs to be done, including expansion of sampling sites, new POPs and studies on sampling rates to be considered in calculating the concentration of POPs in ambient air using a passive sampler.

  1. Lidar Remote Sensing for Industry and Environment Monitoring

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N. (Editor); Itabe, Toshikazu (Editor); Sugimoto, Nobuo (Editor)

    2000-01-01

    Contents include the following: 1. Keynote paper: Overview of lidar technology for industrial and environmental monitoring in Japan. 2. lidar technology I: NASA's future active remote sensing mission for earth science. Geometrical detector consideration s in laser sensing application (invited paper). 3. Lidar technology II: High-power femtosecond light strings as novel atmospheric probes (invited paper). Design of a compact high-sensitivity aerosol profiling lidar. 4. Lasers for lidars: High-energy 2 microns laser for multiple lidar applications. New submount requirement of conductively cooled laser diodes for lidar applications. 5. Tropospheric aerosols and clouds I: Lidar monitoring of clouds and aerosols at the facility for atmospheric remote sensing (invited paper). Measurement of asian dust by using multiwavelength lidar. Global monitoring of clouds and aerosols using a network of micropulse lidar systems. 6. Troposphere aerosols and clouds II: Scanning lidar measurements of marine aerosol fields at a coastal site in Hawaii. 7. Tropospheric aerosols and clouds III: Formation of ice cloud from asian dust particles in the upper troposphere. Atmospheric boundary layer observation by ground-based lidar at KMITL, Thailand (13 deg N, 100 deg. E). 8. Boundary layer, urban pollution: Studies of the spatial correlation between urban aerosols and local traffic congestion using a slant angle scanning on the research vessel Mirai. 9. Middle atmosphere: Lidar-observed arctic PSC's over Svalbard (invited paper). Sodium temperature lidar measurements of the mesopause region over Syowa Station. 10. Differential absorption lidar (dIAL) and DOAS: Airborne UV DIAL measurements of ozone and aerosols (invited paper). Measurement of water vapor, surface ozone, and ethylene using differential absorption lidar. 12. Space lidar I: Lightweight lidar telescopes for space applications (invited paper). Coherent lidar development for Doppler wind measurement from the International Space

  2. Global Environmental Micro Sensors Test Operations in the Natural Environment

    NASA Technical Reports Server (NTRS)

    Adams, Mark L.; Buza, Matthew; Manobianco, John; Merceret, Francis J.

    2007-01-01

    ENSCO, Inc. is developing an innovative atmospheric observing system known as Global Environmental Micro Sensors (GEMS). The GEMS concept features an integrated system of miniaturized in situ, airborne probes measuring temperature, relative humidity, pressure, and vector wind velocity. In order for the probes to remain airborne for long periods of time, their design is based on a helium-filled super-pressure balloon. The GEMS probes are neutrally buoyant and carried passively by the wind at predetermined levels. Each probe contains onboard satellite communication, power generation, processing, and geolocation capabilities. ENSCO has partnered with the National Aeronautics and Space Administration's Kennedy Space Center (KSC) for a project called GEMS Test Operations in the Natural Environment (GEMSTONE) that will culminate with limited prototype flights of the system in spring 2007. By leveraging current advances in micro and nanotechnology, the probe mass, size, cost, and complexity can be reduced substantially so that large numbers of probes could be deployed routinely to support ground, launch, and landing operations at KSC and other locations. A full-scale system will improve the data density for the local initialization of high-resolution numerical weather prediction systems by at least an order of magnitude and provide a significantly expanded in situ data base to evaluate launch commit criteria and flight rules. When applied to launch or landing sites, this capability will reduce both weather hazards and weather-related scrubs, thus enhancing both safety and cost-avoidance for vehicles processed by the Shuttle, Launch Services Program, and Constellation Directorates. The GEMSTONE project will conclude with a field experiment in which 10 to 15 probes are released over KSC in east central Florida. The probes will be neutrally buoyant at different altitudes from 500 to 3000 meters and will report their position, speed, heading, temperature, humidity, and

  3. A New GLORIA (Global Research Initiative in Alpine Environments Site in Southwestern Montana

    NASA Astrophysics Data System (ADS)

    Apple, M. E.; Warden, J. E.; Apple, C. J.; Pullman, T. Y.; Gallagher, J. H.

    2008-12-01

    Global climate change is predicted to have a major impact on the alpine environments and plants of western North America. Alpine plant species and treelines may migrate upwards due to warmer temperatures. Species composition, vegetation cover, and the phenology of photosynthesis, flowering, pollination, and seed dispersal may change. The Global Research Initiative in Alpine Environments (GLORIA) is a network of alpine sites established with the goal of understanding the interactions between climate change and alpine plants. The Continental Divide traverses Southwestern Montana, where the flora contains representative species from both sides of the divide. In the summer of 2008, we established a GLORIA site in southwestern Montana east of the Continental Divide with the objective of determining whether the temperature changes at the site, and if so, how temperature changes influence alpine plants. We are monitoring soil temperature along with species composition and percent cover of alpine plants at four sub-summits along an ascending altitudinal gradient. We placed the treeline, lower alpine, and upper alpine sites on Mt. Fleecer (45°49'36.06"N, 112°48'08.18"W, 2886.2 m (9469 ft)) and the highest sub-summit on Keokirk Mountain, (45°35'37.94"N, 112°57'03.89"W, 2987.3 m (9801 ft)) in the Pioneer Range. Interesting species on these mountains include Lewisia pygmaea, the Pygmy Bitterroot, Silene acaulis, the Moss Campion, Eritrichium nanum, the Alpine Forget-Me-Not, Lloydia serotina, the Alpine Lily, and Pinus albicaulis, the Whitebark Pine. This new site will remain in place indefinitely. Baseline and subsequent data from this site will be linked with the global network of GLORIA sites with which we will assess changes in alpine flora.

  4. A Collaborative Decision Environment to Support UAV Wildfire Monitoring Missions

    NASA Astrophysics Data System (ADS)

    Frost, C. R.; Enomoto, F. Y.; D'Ortenzio, M. V.; Nguyen, Q. B.

    2006-12-01

    NASA developed the Collaborative Decision Environment (CDE), the ground-based component of its Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAVs). The CDE was used to support science mission planning and decision-making for a NASA- and U.S. Forest Service-sponsored mission to monitor wildfires in the western United States using a multi- spectral imager flown onboard the General Atomics Altair UAV in summer of 2006. The CDE is a ground-based system that provides the mission/science team with situational awareness, collaboration, and decision tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, large wildfire locations, satellite-derived fire detection data, temporarily restricted airspace, and satellite imagery. While a prototype CDE was developed as a Java-based client/server application in 2004-2005, the team investigated the use of Google Earth to take advantage of its 3-D visualization capabilities, friendly user interface, and enhanced graphics performance. External data is acquired via the Internet by leveraging established and emerging Open Geospatial Consortium (OGC) standards and is re-formatted into the Keyhole Markup Language (KML) specification used by Google Earth. Aircraft flight position and sensor data products are relayed from the instrument ground station to CDE servers where they are made available to users. An instant messaging chat server is used to facilitate real-time communication between remote users. This paper will present an overview of the CDE system architecture, and discuss how science user input was crucial to shaping and developing the system. Examples from the UAV mission will be used to illustrate the presentation. Plans for future development work to improve mission operations, such as integration with

  5. Regulatory challenges for in vitro diagnostics in a global environment.

    PubMed

    Longwell, A

    1994-06-01

    U.S. medical products are marketed globally and are designed to meet needs of medical practitioners and their patients throughout the world. However, differences in how these products are regulated in different countries can pose challenges for the global marketer. This paper explores some of the differences between proposed and extant U.S. and European regulations for in vitro diagnostic products in terms of documentation, records, and labelling. It will describe some of the practical implications of these differences.

  6. An earth-gridded SSM/I data set for cryospheric studies and global change monitoring

    NASA Astrophysics Data System (ADS)

    Armstrong, R. L.; Brodzik, M. J.

    1995-08-01

    The National Snow and Ice Data Center (NSIDC) has distributed DMSP Special Sensor Microwave Imager (SSM/I) brightness temperature grids for the Polar Regions on CD-ROM since 1987. In order to expand this product to include all potential snow covered regions, the area of coverage is now global. The format for the global SSM/I data set is the Equal Area SSM/I Earth Grid (EASE-Grid) developed at NSIDC. The EASE-Grid has been selected as the format for the NASA/NOAA Pathfinder Program Level 3 Products which include both SSM/I and SMMR (Scanning Multichannel Microwave Radiometer) data (1978-1987). Providing both data sets in the EASE-Grid will result in a 15 year time-series of satellite passive microwave data in a common format. The extent and variability of seasonal snow cover is recognized to be an important parameter in climate and hydrologic systems and trends in snow cover serve as an indicator of global climatic changes. Passive microwave data from satellites afford the possibility to monitor temporal and spatial variations in snow cover on the global scale, avoiding the problems of cloud cover and darkness. NSIDC is developing the capability to produce daily snow products from the DMSP-SSM/I satellite with a spatial resolution of 25 km. In order to provide a standard environment in which to validate SSM/I algorithm output, it is necessary to assemble baseline data sets using other, more direct, methods of measurement. NSIDC has compiled a validation data set of surface station measurements for the northern hemisphere with specific focus on the United States, Canada, and the former Soviet Union. Digital image subtraction is applied to compare the surface station and satellite measurements.

  7. MONITORING ECOSYSTEMS FROM SPACE: THE GLOBAL FIDUCIALS PROGRAM

    EPA Science Inventory

    Images from satellites provide valuable insights to changes in land-cover and ecosystems. Long- term monitoring of ecosystem change using historical satellite imagery can provide quantitative measures of ecological processes and allows for estimation of future ecosystem condition...

  8. THE IMPORTANCE OF CONCURRENT MONITORING AND MODELING FOR UNDERSTANDING MERCURY EXPOSURE IN THE ENVIRONMENT

    EPA Science Inventory

    Understanding the cycling processes governing mercury exposure in the environment requires sufficient process-based modeling and monitoring data. Monitoring provides ambient concentration data for specific sample times and locations. Modeling provides a tool for investigating the...

  9. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    EPA Science Inventory

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  10. University Leaders' Strategies in the Global Environment: A Comparative Study of Universitas Indonesia and the Australian National University

    ERIC Educational Resources Information Center

    Marginson, Simon; Sawir, Erlenawati

    2006-01-01

    In a global environment in which global, national and local nodes relate freely within common networks, all research universities must pursue strategies for building global capacity and facilitating cross-border staff and student movement and research collaboration. The study compares readings of the global environment, global and international…

  11. Genotoxicity monitoring of freshwater environments using caged crayfish (Astacus leptodactylus).

    PubMed

    Klobučar, Göran I V; Malev, Olga; Šrut, Maja; Štambuk, Anamaria; Lorenzon, Simonetta; Cvetković, Želimira; Ferrero, Enrico A; Maguire, Ivana

    2012-03-01

    Genotoxicity of freshwater pollution was assessed by measuring DNA damage in haemocytes of caged freshwater crayfish Astacus leptodactylus by the means of Comet assay and micronucleus test, integrated with the measurements of physiological (total protein concentration) and immunological (total haemocyte count) haemolymph parameters as biomarkers of undergone stress. Crayfish were collected at the reference site (River Mrežnica) and exposed in cages for 1 week at three polluted sites along the Sava River (Zagreb, Sisak, Krapje). The long term pollution status of these locations was confirmed by chemical analyses of sediments. Statistically significant increase in DNA damage measured by the Comet assay was observed at all three polluted sites comparing to the crayfish from reference site. In addition, native crayfish from the mildly polluted site (Krapje) cage-exposed on another polluted site (Zagreb) showed lower DNA damage than crayfish from the reference site exposed at the same location indicating adaptation and acclimatisation of crayfish to lower levels of pollution. Micronuclei induction showed similar gradient of DNA damage as Comet assay, but did not reach the statistical significance. Observed increase in total haemocyte count and total protein content in crayfish from polluted environments in the Sava River also confirmed stress caused by exposure to pollution. The results of this study have proved the applicability of caging exposure of freshwater crayfish A. leptodactylus in environmental genotoxicity monitoring using Comet assay and micronucleus test.

  12. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  13. Infrasound monitoring, acoustic-gravity waves and global atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Le Pichon, A.; Ceranna, L.; Farges, T.

    2008-12-01

    For the verification of the Comprehensive nuclear Test Ban Treaty, the International Monitoring System has been developed. As part of this system, the infrasound network provides an unique opportunity to monitor continuously pressure waves in the atmosphere. Such infrasonic waves propagate in the channel formed by the temperature and wind gradients of the atmosphere. Long term observations provide information about the evolution of the propagation conditions and then of atmospheric parameters. The monitoring of continuous sources, as ocean swell, gives the characteristics of the stratospheric wave channel submitted to stratospheric warming effects. Large scale gravity waves, which are also observed by the network, produce a forcing of the stratosphere at low and middle latitudes and long-lived changes in the stratospheric circulation towards high latitudes, leading to fluctuations in the strength of the polar vortex. These fluctuations move down to the lower stratosphere with possible effects on the tropospheric temperature. Gravity wave monitoring in Antarctica reveals a gravity wave system probably related to the wind effect over mountains. At mid latitudes an additional main sources of disturbances is the thunderstorm activity. The infrasound monitoring system allows a better knowledge of the atmospheric wave systems and of the dynamics of the atmosphere. In return this better knowledge of the wave systems allow a better identification of the possible explosion signals in the background of the atmospheric waves and then to improve the discrimination methods

  14. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    SciTech Connect

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-09-01

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring.

  15. A global change data base using Thematic Mapper data - Earth Monitoring Educational System (EMES)

    NASA Technical Reports Server (NTRS)

    D'Antoni, Hector L.; Peterson, David L.

    1992-01-01

    Some of the main directions in creating an education program in earth system science aimed at combining top science and technology with high academic performance are presented. The creation of an Earth Monitoring Educational System (EMES) integrated with the research interests of the NASA Ames Research Center and one or more universities is proposed. Based on the integration of a global network of cooperators to build a global data base for assessments of global change, EMES would promote degrees at all levels in global ecology at associated universities and colleges, and extracurricular courses for multilevel audiences. EMES objectives are to: train specialists; establish a tradition of solving regional problems concerning global change in a systemic manner, using remote sensing technology as the monitoring tool; and transfer knowledge on global change to the national and world communities. South America is proposed as the pilot continent for the project.

  16. Sustaining Breakthrough Research in a Changing Global Environment

    NASA Astrophysics Data System (ADS)

    Feist, Thomas

    2006-03-01

    As companies face ever-increasing economic and competitive pressures, the imperative to deliver real, sustained growth through innovation is clear. Corporations need to develop and maintain a research and development portfolio that recognizes this reality. This talk examines how General Electric's Global Research Center is implementing a technology portfolio that balances long- and shorter-term R&D across four global facilities. Examples from medical imaging and energy business segments will be used to illustrate strategies for delivering growth through sustained investment in technology.

  17. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus

  18. Global characterization and monitoring of forest cover using Landsat data: opportunities and challanges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth’s land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Neve...

  19. Sustainable development goals for global health: facilitating good governance in a complex environment.

    PubMed

    Haffeld, Just

    2013-11-01

    Increasing complexity is following in the wake of rampant globalization. Thus, the discussion about Sustainable Development Goals (SDGs) requires new thinking that departs from a critique of current policy tools in exploration of a complexity-friendly approach. This article argues that potential SDGs should: treat stakeholders, like states, business and civil society actors, as agents on different aggregate levels of networks; incorporate good governance processes that facilitate early involvement of relevant resources, as well as equitable participation, consultative processes, and regular policy and programme implementation reviews; anchor adoption and enforcement of such rules to democratic processes in accountable organizations; and include comprehensive systems evaluations, including procedural indicators. A global framework convention for health could be a suitable instrument for handling some of the challenges related to the governance of a complex environment. It could structure and legitimize government involvement, engage stakeholders, arrange deliberation and decision-making processes with due participation and regular policy review, and define minimum standards for health services. A monitoring scheme could ensure that agents in networks comply according to whole-systems targets, locally defined outcome indicators, and process indicators, thus resolving the paradox of government control vs. local policy space. A convention could thus exploit the energy created in the encounter between civil society, international organizations and national authorities.

  20. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    PubMed

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution.

  1. Systems engineering in the global environment : a wicked future.

    SciTech Connect

    Griego, Regina M.

    2010-12-01

    This presentation discusses the following questions: (1) What are the Global Problems that require Systems Engineering; (2) Where is Systems Engineering going; (3) What are the boundaries of Systems Engineering; (4) What is the distinction between Systems Thinking and Systems Engineering; (5) Can we use Systems Engineering on Complex Systems; and (6) Can we use Systems Engineering on Wicked Problems?

  2. Establishing Sustainable Higher Education Partnerships in a Globally Competitive Environment

    ERIC Educational Resources Information Center

    Chigisheva, Oksana

    2013-01-01

    The paper written in the form of literature review is devoted to the analysis of the latest educational manuscripts by Laura M. Portnoi et al and Robin Sakamoto et al and provides a critical overview of possible partnership interactions in the actively globalizing sphere of world higher education. [For complete volume, see ED567118.

  3. A Global Overview: Trends in Environment and Development.

    ERIC Educational Resources Information Center

    Paden, Mary E.

    1991-01-01

    The conditions and trends for four clusters of global issues--the air and the sky, the fishes and the sea, the creatures and the land, and people and poverty--are presented. The topics of climate change, the ozone hole, air pollution, biological diversity, deforestation, and desertification are discussed. (KR)

  4. The Power of Leadership in a Global Environment.

    ERIC Educational Resources Information Center

    Flanary, Richard A.; Terehoff, Irina I.

    2000-01-01

    Effective principals must deal with challenges (such as local, national, and international school comparisons) arising from global changes in economics, politics, and demography. Comparative NASSP-sponsored international programs in Russia, China, Ireland, and other countries provide advantages for practicing principals and insights for aspiring…

  5. Educating Part-Time MBAs for the Global Business Environment

    ERIC Educational Resources Information Center

    Randolph, W. Alan

    2008-01-01

    To be successful managers in the business world of the 21st century, MBA students must acquire global skills of business acumen, reflection, cultural sensitivity, and multi-cultural teamwork. Developing these skills requires international experience, but educating part-time MBAs creates a special challenge demanding both rigor and efficiency. This…

  6. Food systems change and the environment: local and global connections.

    PubMed

    Freedman, Darcy A; Bess, Kimberly D

    2011-06-01

    Making changes to the way food is produced, distributed, and processed is one strategy for addressing global climate change. In this case study, we examine the "forming" stage of an emergent and locally-based coalition that is both participatory and focused on promoting food security by creating food systems change. Social network analysis is used to compare network density, centrality, and centralization among coalition partners before the formation of the coalition and at its one-year anniversary. Findings reveal that the coalition facilitated information seeking, assistance seeking, and collaborative efforts related to food security among a group of organizational stakeholders that were relatively disconnected pre-coalition. Results also illuminate tensions related to increased centralization of the network, coalition efficiency, and the goals of democratic decision-making. This study highlights the utility of social network analysis as a tool for evaluating the aims and trajectory of locally-based coalitions focused on global concerns.

  7. Thinking Globally, Acting Locally: Using the Local Environment to Explore Global Issues.

    ERIC Educational Resources Information Center

    Simmons, Deborah

    1994-01-01

    Asserts that water pollution is a global problem and presents statistics indicating how much of the world's water is threatened. Presents three elementary school classroom activities on water quality and local water resources. Includes a figure describing the work of the Global Rivers Environmental Education Network. (CFR)

  8. Indicators for monitoring hunger at global and subnational levels.

    PubMed

    Sibrián, Ricardo

    2009-05-01

    This paper presents three different hunger indicators and outlines how they can be used to assess the extent of food insecurity in population groups globally and within countries at community, regional, or other subnational levels. Hunger refers to the supply, access, consumption, and intake of food at levels that are insufficient to fulfill human requirements. If the requirements are not met through the adequate absorption and use of essential nutrients, food deprivation and undernutrition occur.

  9. Current and Future Geodetic Satellite Missions for Global Change Monitoring

    NASA Astrophysics Data System (ADS)

    Saari, Timo; Bilker-Koivula, Mirjam

    2016-08-01

    The gravity satellite mission "Gravity field and steady-state Ocean Circulation Explorer" (GOCE, Fig. 1) made its final observations in the fall of 2013. By then it had exceeded its expected lifespan of 20 months with additional 35 months and observed the Earth's gravitational field from a lower orbit as originally planned during the last 6 months of its mission lifetime. Thus, the mission collected more data from the Earth's gravitational field than expected, and more comprehensive global geoid models have been derived ever since. We've combined the latest GOCE global gravity field models with the terrestrial gravity data of Finland and surrounding areas for calculating a new enhanced quasi-geoid model for Finland. Additionally the high resolution global gravity field model EIGEN-6C4 (which includes the full cycle of GOCE data) was used for modelling the higher degrees and orders. Altogether 249 geoid models with different modifications were calculated using the GOCE DIR5 models up to spherical harmonic degree and order 240 and 300 and the EIGEN-6C4 up to degree and order 1000 and 2190.

  10. Global telecommunications needs for the long duration balloon environment

    NASA Astrophysics Data System (ADS)

    Waymire, Stephen L.

    The Long Duration (LD) balloon environment significantly complicates the means of providing effective telecommunications support when compared to support possible within the conventional zero-pressure (ZP) environment. This paper will discuss general aspects of supporting two-way telecommunications between ground based facilities and multiple LD balloon payloads. A summary of the LD environment (general operational and NSBF support) is presented as a basis for discussing generic network characteristics. General LD telecommunication needs are highlighted and a preliminary systems model of an ``ideal'' LD telecommunication network is introduced. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation.

  11. Taiga forest stands and SAR: Monitoring for subarctic global change

    SciTech Connect

    Way, J.; Kwok, R.; Viereck, L.; Slaughter, C.; Dobson, C.

    1992-03-01

    In preparation for the first European Earth Remote Sensing (ERS-1) mission, a series of multitemporal, multifrequency, multipolarization aircraft synthetic aperture radar (SAR) data sets were acquired over the Bonanza Creek Experimental Forest near Fairbanks, Alaska in March 1988. Significant change in radar backscatter was observed over the two-week experimental period due to changing environmental conditions. These preliminary results are presented to illustrate the opportunity afforded by the ERS-1 SAR to monitor temporal change in forest ecosystems.

  12. Measuring coverage in MNCH: challenges and opportunities in the selection of coverage indicators for global monitoring.

    PubMed

    Requejo, Jennifer Harris; Newby, Holly; Bryce, Jennifer

    2013-01-01

    Global monitoring of intervention coverage is a cornerstone of international efforts to improve reproductive, maternal, newborn, and child health. In this review, we examine the process and implications of selecting a core set of coverage indicators for global monitoring, using as examples the processes used by the Countdown to 2015 for Maternal, Newborn and Child Survival and the Commission on Accountability for Women's and Children's Health. We describe how the generation of data for global monitoring involves five iterative steps: development of standard indicator definitions and measurement approaches to ensure comparability across countries; collection of high-quality data at the country level; compilation of country data at the global level; organization of global databases; and rounds of data quality checking. Regular and rigorous technical review processes that involve high-level decision makers and experts familiar with indicator measurement are needed to maximize uptake and to ensure that indicators used for global monitoring are selected on the basis of available evidence of intervention effectiveness, feasibility of measurement, and data availability as well as programmatic relevance. Experience from recent initiatives illustrates the challenges of striking this balance as well as strategies for reducing the tensions inherent in the indicator selection process. We conclude that more attention and continued investment need to be directed to global monitoring, to support both the process of global database development and the selection of sets of coverage indicators to promote accountability. The stakes are high, because these indicators can drive policy and program development at the country and global level, and ultimately impact the health of women and children and the communities where they live.

  13. Application of the Open Software Foundation (OSF)distributed computing environment to global PACS

    NASA Astrophysics Data System (ADS)

    Martinez, Ralph; Alsafadi, Yasser H.; Kim, Jinman

    1994-05-01

    In this paper, we present our approach to developing Global Picture Archiving and Communication System (GPACS) applications using the Open Software Foundation (OSF) Distributed Computing Environment (DCE) services and toolkits. The OSF DCE services include remote procedure calls, naming service, threads service, time service, file management services, and security service. Several OSF DCE toolkits are currently available from computer and software vendors. Designing distributed Global PACS applications using the OSF DCE approach will feature an open architecture, heterogeneity, and technology independence for GPACS remote consultation and diagnosis applications, including synchronized image annotation, and system privacy and security. The applications can communicate through various transport services and communications networks in a Global PACS environment. The use of OSF DCE services for Global PACS will enable us to develop a robust distributed structure and new user services which feature reliability and scalability for Global PACS environments.

  14. Development of Digital Instruction for Environment for Global Warming Alleviation

    ERIC Educational Resources Information Center

    Praneetham, Chuleewan; Thathong, Kongsak

    2016-01-01

    Technological education and instruction are widely used in the present education trend. Using of digital instruction for environmental subject can encourage students in learning and raise their awareness and attitude on environmental issues. The purposes of this research were: 1) to construct and develop the digital instruction for environment for…

  15. Global Trends in Environment and Development. Presentation Set [Slides].

    ERIC Educational Resources Information Center

    World Resources Inst., Washington, DC.

    This 50 slide set of presentation graphs and maps illustrates some of the major conditions and trends in population, agriculture, biodiversity, forests, water resources, energy, climate, and social and economic development that determine the state of the world's environment. Graphs and maps can be used by those in academic, professional, and…

  16. Global optimal design of ground water monitoring network using embedded kriging.

    PubMed

    Dhar, Anirban; Datta, Bithin

    2009-01-01

    We present a methodology for global optimal design of ground water quality monitoring networks using a linear mixed-integer formulation. The proposed methodology incorporates ordinary kriging (OK) within the decision model formulation for spatial estimation of contaminant concentration values. Different monitoring network design models incorporating concentration estimation error, variance estimation error, mass estimation error, error in locating plume centroid, and spatial coverage of the designed network are developed. A big-M technique is used for reformulating the monitoring network design model to a linear decision model while incorporating different objectives and OK equations. Global optimality of the solutions obtained for the monitoring network design can be ensured due to the linear mixed-integer programming formulations proposed. Performances of the proposed models are evaluated for both field and hypothetical illustrative systems. Evaluation results indicate that the proposed methodology performs satisfactorily. These performance evaluation results demonstrate the potential applicability of the proposed methodology for optimal ground water contaminant monitoring network design.

  17. Countermeasures for mitigating the effects of global environment changes

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1991-01-01

    Environmental countermeasures for preventing the negative effects of global climate change and ozone depletion are discussed with special emphasis on the possibilities of space-based actions. Among the programs addressed are the Mission to Planet Earth, the Solar Power Satellite (and linkage to the Space Exploration Initiative), and proposed projects such as a lunar-based power generator that utilizes He-3 as a fusion fuel when combined with deuterium. The concept of regional working groups is proposed for initiating the programs for effective countermeasures.

  18. Geothermal energy and the environment - The global experience

    NASA Astrophysics Data System (ADS)

    Pasqualetti, M. J.

    1980-02-01

    The paper discusses the impact of environmental problems on the world's geothermal generating stations. The significant impacts include conflicts in land use, air pollution, subsidence, water pollution, induced seismicity, blowouts, and noise. Development of geothermal resources has been slowed down in some countries: in U.S., the emission of hydrogen sulfide produced a problem; in Japan, land use in national parks and waste-water disposal resulted in difficulties; and in El Salvador, waste-water disposal presented a difficulty. Geothermal development faces many regulations and difficulties, particularly in U.S., a country which could stimulate a global acceleration in this field with appropriately relaxed controls.

  19. Radiation environment monitoring for manned missions to Mars.

    PubMed

    Benghin, V V; Petrov, V M

    2003-01-01

    In this paper a radiation monitoring system for manned Mars missions is described, based on the most recent requirements on crew radiation safety. A comparison is shown between the radiation monitoring systems for Earth-orbiting and interplanetary spacecraft, with similarities and differences pointed out and discussed. An operational and technological sketch of the chosen problem solving approach is also given.

  20. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  1. Executive Perceptions on International Education in a Globalized Environment: The Travel Industry's Point of View

    ERIC Educational Resources Information Center

    Munoz, J. Mark; Katsioloudes, Marios I.

    2004-01-01

    Research on globalization has determined travel executives' perceptions of the psychological implications brought about by an interconnected global environment and the implications on international education. With the concepts of Clyne and Rizvi (1998) and Pittaway, Ferguson, and Breen (1998) on the value of cross-cultural interaction as a…

  2. Geostationary Environment Monitoring Spectrometer (gems) Over the Korea Peninsula and Asia-Pacific Region

    NASA Astrophysics Data System (ADS)

    Lasnik, J.; Stephens, M.; Baker, B.; Randall, C.; Ko, D. H.; Kim, S.; Kim, Y.; Lee, E. S.; Chang, S.; Park, J. M.; SEO, S. B.; Youk, Y.; Kong, J. P.; Lee, D.; Lee, S. H.; Kim, J.

    2014-12-01

    Introduction: The Geostationary Environment Monitoring Spectrometer (GEMS) is one of two instruments manifested aboard the South Korean Geostationary Earth Orbit KOrea Multi-Purpose SATellite-2B (GEO-KOMPSAT-2B or GK2B), which is scheduled to launch in 2018. Jointly developed/built by KARI and Ball Aerospace, GEMS is a geostationary UV-Vis hyperspectral imager designed to monitor trans-boundary tropospheric pollution events over the Korean peninsula and Asia-Pacific region. The spectrometer provides high temporal and spatial resolution (3.5 km N/S by 7.2 km E/W) measurements of ozone, its precursors, and aerosols. Over the short-term, hourly measurements by GEMS will improve early warnings for potentially dangerous pollution events and monitor population exposure. Over the 10-year mission-life, GEMS will serve to enhance our understanding of long-term climate change and broader air quality issues on both a regional and global scale. The GEMS sensor design and performance are discussed, which includes an overview of measurement capabilities and the on-orbit concept of operations. GEMS Sensor Overview: The GEMS hyperspectral imaging system consists of a telescope and Offner grating spectrometer that feeds a single CCD detector array. A spectral range of 300-500 nm and sampling of 0.2 nm enables NO2, SO2, HCHO, O3, and aerosol retrieval. The GEMS field of regard (FOR), which extends from 5°S to 45°N in latitude and 75°E to 145°E in longitude, is operationally achieved using an onboard two-axis scan mirror. On-orbit, the radiometric calibration is maintained using solar measurements, which are performed using two onboard diffusers: a working diffuser that is deployed routinely for the purpose of solar calibration, and a reference diffuser that is deployed sparingly for the purpose of monitoring working diffuser performance degradation.

  3. Flood monitoring for ungauged rivers: the power of combining space-based monitoring and global forecasting models

    NASA Astrophysics Data System (ADS)

    Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta

    2013-04-01

    Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a

  4. The Method and Key Technology of Dynamic RS-GIS Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Jianping; Xiang, Jie; Tarolli, Paolo; Lai, Zili

    2016-04-01

    Demographic growth, socio-economic development and urbanization have resulted in excessive exploitation and exerted increasing pressure on limited resources and the fragile ecological environment in China. There is an urgent need for theory and technology to achieve the comprehensive evaluation of environment. Remote sensing is one of the most important technology to monitor and evaluate environment. This study summed up dynamic RS (Remote Sensing)-GIS (Geographic Information System) environment monitoring theory, and established a dynamic monitoring system, adopting comprehensive methods of multi-source, multi-scale and multi-temporal remote sensing data acquisition. A software system is developed based on RS-GIS analysis method to support the whole dynamic monitoring and evaluation theory. The main work and results obtained are as follows: 1)Summarized the evaluation theory of dynamic RS-GIS environment monitoring, using remote sensing technology as the main method to monitor environment; 2) established an advanced space-air-ground digital terrain data acquisition and processing technology (advanced satellite constellations, airborne and terrestrial laser scanner, low-cost Structure from Motion (SfM), photogrammetry, Unmanned Aerial Vehicle (UAV) and ground camera surveys); 3) Deeply study the application of quantitative digital terrain analysis in the assessment of environment, which successfully position geological disaster information and automatically extracted information; 4) Developed the RESEE software to support the whole dynamic monitoring and evaluation theory based on 4D-GIS; 5) A demonstration study of the dynamic monitoring environment is carried out in Beijing Miyun Iron Mine. Results show that the space-air-ground integrated and dynamic RS-GIS environment monitoring method and key technology can realize the positioning and quantitative monitoring the environment problem, and realize the risk assessment of the geological hazard.

  5. Veterinary medicine, food security and the global environment.

    PubMed

    Kelly, A M; Marshak, R R

    2009-08-01

    The authors focus on the role of veterinary medicine in feeding the nine billion people projected to inhabit the planet by 2050, despite the problems of global warming, political constraints and environmental destruction. Population growth, predominantly urban, will occur mainly in developing countries, at a magnitude comparable to creating a city the size of Los Angeles, the second largest city in the United States of America, every three weeks for the next 40 years. Accompanying this growth will be a greatly increased demand for animal protein. How this burgeoning demand can be met by intensive and extensive systems of animal production is discussed, with particular reference to the immensely important role that the veterinary profession and schools must play.

  6. Precise monitoring of global temperature trends from satellites

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Christy, John R.

    1990-01-01

    Passive microwave radiometry from satellites provides more precise atmospheric temperature information than that obtained from the relatively sparse distribution of thermometers over the earth's surface. Accurate global atmospheric temperature estimates are needed for detection of possible greenhouse warming, evaluation of computer models of climate change, and for understanding important factors in the climate system. Analysis of the first 10 years (1979 to 1988) of satellite measurements of lower atmospheric temperature changes reveals a monthly precision of 0.01 C, large temperature variability on time scales from weeks to several years, but no obvious trend for the 10-year period. The warmest years, in descending order, were 1987, 1988, 1983, and 1980. The years 1984, 1985, and 1986 were the coolest.

  7. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    PubMed Central

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  8. Applications of wireless sensor networks in marine environment monitoring: a survey.

    PubMed

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-09-11

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring.

  9. A monitoring sensor management system for grid environments

    SciTech Connect

    Tierney, Brian; Crowley, Brian; Gunter, Dan; Lee, Jason; Thompson, Mary

    2001-06-01

    Large distributed systems, such as computational grids,require a large amount of monitoring data be collected for a variety oftasks, such as fault detection, performance analysis, performance tuning,performance prediction and scheduling. Ensuring that all necessarymonitoring is turned on and that the data is being collected can be avery tedious and error-prone task. We have developed an agent-basedsystem to automate the execution of monitoring sensors and the collectionof event data.

  10. A Review of Global Learning & Observations to Benefit the Environment (GLOBE)

    ERIC Educational Resources Information Center

    Executive Office of the President, 2010

    2010-01-01

    The Global Learning and Observations to Benefit the Environment (GLOBE) program is a worldwide, hands-on, primary and secondary school-based science and education program. GLOBE supports students, teachers, and scientists in collaborations using inquiry-based investigations of the environment and the earth system. GLOBE currently works in close…

  11. Large space-based systems for dealing with global environment change

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.

  12. Monitoring the abundance of plastic debris in the marine environment

    PubMed Central

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052

  13. School Projects for Monitoring the State of the Marine Environment.

    ERIC Educational Resources Information Center

    Benkendorff, Kirsten

    Australia's marine environment hosts a high level of diverse endemic species along with some of the highest biodiversity in the world. Two-thirds of the population of Australia are living in coastal areas and can be considered a threat to marine life which is very vulnerable to human impacts. Although marine environments conserve high economic…

  14. Global Future: Time to Act. Report to the President on Global Resources, Environment and Population.

    ERIC Educational Resources Information Center

    Gillman, Katherine, Ed.; And Others

    This report presents recommendations and ideas for actions the United States could take, in concert with other nations, for a vigorous response to urgent global problems. The goal of the report is to further public discussion of these important issues and to offer ideas to government leaders who will be developing U.S. policy in the years ahead. A…

  15. Autonomous global sky monitoring with real-time robotic follow-up

    SciTech Connect

    Vestrand, W Thomas; Davis, H; Wren, J; Wozniak, P; Norman, B; White, R; Bloch, J; Fenimore, E; Hodge, Barry; Jah, Moriba; Rast, Richard

    2008-01-01

    We discuss the development of prototypes for a global grid of advanced 'thinking' sky sentinels and robotic follow-up telescopes that observe the full night sky to provide real-time monitoring of the night sky by autonomously recognizing anomalous behavior, selecting targets for detailed investigation, and making real-time anomaly detection to enable rapid recognition and a swift response to transients as they emerge. This T3 global EO grid avoids the limitations imposed by geography and weather to provide persistent monitoring of the night sky.

  16. Promoting health equity: WHO health inequality monitoring at global and national levels

    PubMed Central

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Background Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level. PMID:26387506

  17. Promoting health equity: WHO health inequality monitoring at global and national levels.

    PubMed

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Background Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  18. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    NASA Astrophysics Data System (ADS)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  19. Monitoring Natural Events Globally in Near Real-Time Using NASA's Open Web Services and Tools

    NASA Technical Reports Server (NTRS)

    Boller, Ryan A.; Ward, Kevin Alan; Murphy, Kevin J.

    2015-01-01

    Since 1960, NASA has been making global measurements of the Earth from a multitude of space-based missions, many of which can be useful for monitoring natural events. In recent years, these measurements have been made available in near real-time, making it possible to use them to also aid in managing the response to natural events. We present the challenges and ongoing solutions to using NASA satellite data for monitoring and managing these events.

  20. Applications of TRMM-based Multi-Satellite Precipitation Estimation for Global Runoff Simulation: Prototyping a Global Flood Monitoring System

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold

    2008-01-01

    Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.

  1. Study on an agricultural environment monitoring server system using Wireless Sensor Networks.

    PubMed

    Hwang, Jeonghwan; Shin, Changsun; Yoe, Hyun

    2010-01-01

    This paper proposes an agricultural environment monitoring server system for monitoring information concerning an outdoors agricultural production environment utilizing Wireless Sensor Network (WSN) technology. The proposed agricultural environment monitoring server system collects environmental and soil information on the outdoors through WSN-based environmental and soil sensors, collects image information through CCTVs, and collects location information using GPS modules. This collected information is converted into a database through the agricultural environment monitoring server consisting of a sensor manager, which manages information collected from the WSN sensors, an image information manager, which manages image information collected from CCTVs, and a GPS manager, which processes location information of the agricultural environment monitoring server system, and provides it to producers. In addition, a solar cell-based power supply is implemented for the server system so that it could be used in agricultural environments with insufficient power infrastructure. This agricultural environment monitoring server system could even monitor the environmental information on the outdoors remotely, and it could be expected that the use of such a system could contribute to increasing crop yields and improving quality in the agricultural field by supporting the decision making of crop producers through analysis of the collected information.

  2. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    USGS Publications Warehouse

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land

  3. Introduction to Monitoring and Surveillance of the Environment.

    ERIC Educational Resources Information Center

    Champlin, Robert L.; And Others

    This text on monitoring and surveillance is intended for the undergraduate college student and the professional technician. The materials contained within the book are presented from both a practical and philosophical standpoint. The "reason for" and the "how to" are examined within each section, including problems at the end of each chapter which…

  4. Mobile monitoring and embedded control system for factory environment.

    PubMed

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-12-17

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones.

  5. Mobile Monitoring and Embedded Control System for Factory Environment

    PubMed Central

    Lian, Kuang-Yow; Hsiao, Sung-Jung; Sung, Wen-Tsai

    2013-01-01

    This paper proposes a real-time method to carry out the monitoring of factory zone temperatures, humidity and air quality using smart phones. At the same time, the system detects possible flames, and analyzes and monitors electrical load. The monitoring also includes detecting the vibrations of operating machinery in the factory area. The research proposes using ZigBee and Wi-Fi protocol intelligent monitoring system integration within the entire plant framework. The sensors on the factory site deliver messages and real-time sensing data to an integrated embedded systems via the ZigBee protocol. The integrated embedded system is built by the open-source 32-bit ARM (Advanced RISC Machine) core Arduino Due module, where the network control codes are built in for the ARM chipset integrated controller. The intelligent integrated controller is able to instantly provide numerical analysis results according to the received data from the ZigBee sensors. The Android APP and web-based platform are used to show measurement results. The built-up system will transfer these results to a specified cloud device using the TCP/IP protocol. Finally, the Fast Fourier Transform (FFT) approach is used to analyze the power loads in the factory zones. Moreover, Near Field Communication (NFC) technology is used to carry out the actual electricity load experiments using smart phones. PMID:24351642

  6. Application for temperature and humidity monitoring of data center environment

    NASA Astrophysics Data System (ADS)

    Albert, Ş.; Truşcǎ, M. R. C.; Soran, M. L.

    2015-12-01

    The technology and computer science registered a large development in the last years. Most systems that use high technologies require special working conditions. The monitoring and the controlling are very important. The temperature and the humidity are important parameters in the operation of computer systems, industrial and research, maintaining it between certain values to ensure their proper functioning being important. Usually, the temperature is maintained in the established range using an air conditioning system, but the humidity is affected. In the present work we developed an application based on a board with own firmware called "AVR_NET_IO" using a microcontroller ATmega32 type for temperature and humidity monitoring in Data Center of INCDTIM. On this board, temperature sensors were connected to measure the temperature in different points of the Data Center and outside of this. Humidity monitoring is performed using data from integrated sensors of the air conditioning system, thus achieving a correlation between humidity and temperature variation. It was developed a software application (CM-1) together with the hardware, which allows temperature monitoring and register inside Data Center and trigger an alarm when variations are greater with 3°C than established limits of the temperature.

  7. On the reliable use of satellite-derived surface water products for global flood monitoring

    NASA Astrophysics Data System (ADS)

    Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.

    2015-12-01

    Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.

  8. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming.

    PubMed

    Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui

    2015-05-18

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.

  9. The Education for All Global Monitoring Report: A Mid-Term Assessment

    ERIC Educational Resources Information Center

    Packer, Steve

    2008-01-01

    The Education for All (EFA) Global Monitoring Report is six years old and seven reports have been produced (UNESCO, 2000-2008). It is a product of the outcomes of the World Education Forum in Dakar held in 2000. It is designed to track progress towards the realization of the six EFA goals and to hold governments and the international community to…

  10. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global monitoring of agricultural productivity is critical in a world under a continuous increase of food demand. Here we have used new spaceborne retrievals of chlorophyll fluorescence, an emission quantity intrinsically linked to photosynthesis, to derive spatially explicit photosynthetic uptake r...

  11. STS-2, -3, -4 Induced Environment Contamination Monitor (ICEM)

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor)

    1983-01-01

    The second, third, and fourth space transportation system missions are described including the location of the IECM in the payload bay and the shuttle coordinate systems used. Measurement results from the three flights are given for each instrument with comparisons to original goals for preflight environment and induced environment contamination. These results include very low levels of molecular mass accumulation rates, absence of molecular films on optical samples, outgassing species above 50 amu undetectable generally low levels of on-orbit particulates, and decay rates for early mission water dump particulates. Results of exposure of several optical materials and coatings to atomic oxygen are also presented. From these results, it is concluded that the space shuttle met the established induced environment contamination goals.

  12. Oversight role of the Independent Monitoring Board of the Global Polio Eradication Initiative.

    PubMed

    Rutter, Paul D; Donaldson, Liam J

    2014-11-01

    The Global Polio Eradication Initiative (GPEI) established its Independent Monitoring Board (IMB) in 2010 to monitor and guide its progress toward stopping polio transmission globally. The concept of an IMB is innovative, with no clear analogue in the history of the GPEI or in any other global health program. The IMB meets with senior program officials every 3-6 months. Its reports provide analysis and recommendations about individual polio-affected countries. The IMB also examines issues affecting the global program as a whole. Its areas of focus have included escalating the level of priority afforded to polio eradication (particularly by recommending a World Health Assembly resolution to declare polio eradication a programmatic emergency, which was enacted in May 2012), placing greater emphasis on people factors in the delivery of the program, encouraging innovation, strengthening focus on the small number of so-called sanctuaries where polio persists, and continuous quality improvement to reach every missed child with vaccination. The IMB's true independence from the agencies and countries delivering the program has enabled it to raise difficult issues that others cannot. Other global health programs might benefit from establishing similar independent monitoring mechanisms.

  13. Physical activity intensity can be accurately monitored by smartphone global positioning system 'app'.

    PubMed

    Gordon, Brett Ashley; Bruce, Lyndell; Benson, Amanda Clare

    2016-08-01

    Monitoring physical activity is important to better individualise health and fitness benefits. This study assessed the concurrent validity of a smartphone global positioning system (GPS) 'app' and a sport-specific GPS device with a similar sampling rate, to measure physical activity components of speed and distance, compared to a higher sampling sport-specific GPS device. Thirty-eight (21 female, 17 male) participants, mean age of 24.68, s = 6.46 years, completed two 2.400 km trials around an all-weather athletics track wearing GPSports Pro™ (PRO), GPSports WiSpi™ (WISPI) and an iPhone™ with a Motion X GPS™ 'app' (MOTIONX). Statistical agreement, assessed using t-tests and Bland-Altman plots, indicated an (mean; 95% LOA) underestimation of 2% for average speed (0.126 km·h(-1); -0.389 to 0.642; p < .001), 1.7% for maximal speed (0.442 km·h(-1); -2.676 to 3.561; p = .018) and 1.9% for distance (0.045 km; -0.140 to 0.232; p < .001) by MOTIONX compared to that measured by PRO. In contrast, compared to PRO, WISPI overestimated average speed (0.232 km·h(-1); -0.376 to 0.088; p < .001) and distance (0.083 km; -0.129 to -0.038; p < .001) by 3.5% whilst underestimating maximal speed by 2.5% (0.474 km·h(-1); -1.152 to 2.099; p < .001). Despite the statistically significant difference, the MOTIONX measures intensity of physical activity, with a similar error as WISPI, to an acceptable level for population-based monitoring in unimpeded open-air environments. This presents a low-cost, minimal burden opportunity to remotely monitor physical activity participation to improve the prescription of exercise as medicine.

  14. CMEMS (Copernicus Marine Environment Monitoring Service) In Situ Thematic Assembly Centre: A service for operational Oceanography

    NASA Astrophysics Data System (ADS)

    Manzano Muñoz, Fernando; Pouliquen, Sylvie; Petit de la Villeon, Loic; Carval, Thierry; Loubrieu, Thomas; Wedhe, Henning; Sjur Ringheim, Lid; Hammarklint, Thomas; Tamm, Susanne; De Alfonso, Marta; Perivoliotis, Leonidas; Chalkiopoulos, Antonis; Marinova, Veselka; Tintore, Joaquin; Troupin, Charles

    2016-04-01

    Copernicus, previously known as GMES (Global Monitoring for Environment and Security), is the European Programme for the establishment of a European capacity for Earth Observation and Monitoring. Copernicus aims to provide a sustainable service for Ocean Monitoring and Forecasting validated and commissioned by users. From May 2015, the Copernicus Marine Environment Monitoring Service (CMEMS) is working on an operational mode through a contract with services engagement (result is regular data provision). Within CMEMS, the In Situ Thematic Assembly Centre (INSTAC) distributed service integrates in situ data from different sources for operational oceanography needs. CMEMS INSTAC is collecting and carrying out quality control in a homogeneous manner on data from providers outside Copernicus (national and international networks), to fit the needs of internal and external users. CMEMS INSTAC has been organized in 7 regional Dissemination Units (DUs) to rely on the EuroGOOS ROOSes. Each DU aggregates data and metadata provided by a series of Production Units (PUs) acting as an interface for providers. Homogeneity and standardization are key features to ensure coherent and efficient service. All DUs provide data in the OceanSITES NetCDF format 1.2 (based on NetCDF 3.6), which is CF compliant, relies on SeaDataNet vocabularies and is able to handle profile and time-series measurements. All the products, both near real-time (NRT) and multi-year (REP), are available online for every CMEMS registered user through an FTP service. On top of the FTP service, INSTAC products are available through Oceanotron, an open-source data server dedicated to marine observations dissemination. It provides services such as aggregation on spatio-temporal coordinates and observed parameters, and subsetting on observed parameters and metadata. The accuracy of the data is checked on various levels. Quality control procedures are applied for the validity of the data and correctness tests for the

  15. A Mobile Sensor Network System for Monitoring of Unfriendly Environments

    PubMed Central

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-01-01

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments. PMID:27873927

  16. A Mobile Sensor Network System for Monitoring of Unfriendly Environments.

    PubMed

    Song, Guangming; Zhou, Yaoxin; Ding, Fei; Song, Aiguo

    2008-11-14

    Observing microclimate changes is one of the most popular applications of wireless sensor networks. However, some target environments are often too dangerous or inaccessible to humans or large robots and there are many challenges for deploying and maintaining wireless sensor networks in those unfriendly environments. This paper presents a mobile sensor network system for solving this problem. The system architecture, the mobile node design, the basic behaviors and advanced network capabilities have been investigated respectively. A wheel-based robotic node architecture is proposed here that can add controlled mobility to wireless sensor networks. A testbed including some prototype nodes has also been created for validating the basic functions of the proposed mobile sensor network system. Motion performance tests have been done to get the positioning errors and power consumption model of the mobile nodes. Results of the autonomous deployment experiment show that the mobile nodes can be distributed evenly into the previously unknown environments. It provides powerful support for network deployment and maintenance and can ensure that the sensor network will work properly in unfriendly environments.

  17. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space: Status and Potential for Carbon Cycle Research

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Koehler, P.; Walther, S.; Zhang, Y.; Joiner, J.; Frankenberg, C.

    2015-12-01

    Gross primary production (GPP), or the amount of atmospheric CO2 fixed by vegetation through photosynthesis, represents the largest carbon flux between terrestrial ecosystems and the atmosphere. Despite its importance, large-scale estimates of GPP remain highly uncertain for some terrestrial ecosystems. In this context, measurements of sun-induced chlorophyll fluorescence (SIF), which is emitted in the 650-850nm spectral range by the photosynthetic apparatus of green plants, have the potential to provide a new view on vegetation photosynthesis. Global monitoring of SIF from space have been achieved in the last years by means of a number of atmospheric spectrometers, which have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission. This breakthorugh was followed by retrievals from the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B, which enable a continuous spatial sampling, and lately from ENVISAT/SCIAMACHY. This observational scenario is completed by the first SIF data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched by early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to GOSAT, GOME-2 and SCIAMACHY.In this contribution, we will provide an overview of global SIF monitoring and will illustrate the potential of SIF data to improve our knowledge of vegetation photosynthesis and GPP at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity at different ecosystems, highlighting the usefulness of SIF to constrain estimates of CO2 uptake by vegetation through photosynthesis.

  18. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffe, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivpalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  19. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    PubMed

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  20. How Key GEOSS Datasets Contribute to the Global Monitoring and Assessment of Glaciers

    NASA Astrophysics Data System (ADS)

    Khalsa, S. S.; Racoviteanu, A.; Raup, B. H.; Armstrong, R. L.

    2009-12-01

    An early and dramatic indicator of global climate change has been the recession of mountain glaciers. The potential impacts on water resources and global sea level rise has led to an increased interest in accurate monitoring and assessment of glaciers worldwide. Past glacier inventories recorded scalar information such as area and terminus location for glaciers in easily accessible regions of the Earth. A modern glacier inventory must be truly global, attempting to assess all of the Earth's estimated 160,000 glaciers, and contain actual glacier extents with area distribution by elevation. These data are required in order to begin modeling the response of this portion of the cryosphere to future climate change. Fortunately, the two key data sets required to produce this global inventory of glaciers were recently made available as contributions to GEOSS by GEO Member nations. These are the multispectral imagery in the Landsat archive, contributed by the U.S.A., and the Global Digital Elevation Model (GDEM) jointly contributed by the Ministry of Economy, Trade, and Industry (METI) of Japan and the United States National Aeronautics and Space Administration (NASA). This talk will describe how the Global Land Ice Monitoring from Space (GLIMS) project is utilizing these GEOSS resources by enabling GLIMS collaborators to derive detailed glacier outlines, transient snow lines, area-elevation distributions, and other pertinent information that will enhance our understanding of the current state, recent evolution, and future fate of the glaciers worldwide.

  1. Problems of monitoring the environment of the shallow nearshore zone of the Volga mouth

    SciTech Connect

    Krasnozhon, G.F.; Konyushko, V.S.

    1987-11-01

    This article describes problems involved in monitoring the environment of the Volga River delta from the standpoints of drainage and flooding behavior, pollutant concentration and transport, eutrophication, water quality, water current regimes, and bioproductivity. It also discusses monitoring strategies ranging from chemical methods to satellite surveys and calls for a comprehensive water management and planning program for the area.

  2. Keeping Scores: Audited Self-Monitoring of High-Stakes Testing Environments

    ERIC Educational Resources Information Center

    Padilla, Raymond; Richards, Michael

    2006-01-01

    To address a public relations problem faced by a large urban public school district in Texas, we conducted action research that resulted in an audited self-monitoring system for high-stakes testing environments. The system monitors violations of testing protocols while identifying and disseminating best practices to improve the education of…

  3. Design of a water environment monitoring system based on wireless sensor networks.

    PubMed

    Jiang, Peng; Xia, Hongbo; He, Zhiye; Wang, Zheming

    2009-01-01

    A water environmental monitoring system based on a wireless sensor network is proposed. It consists of three parts: data monitoring nodes, data base station and remote monitoring center. This system is suitable for the complex and large-scale water environment monitoring, such as for reservoirs, lakes, rivers, swamps, and shallow or deep groundwaters. This paper is devoted to the explanation and illustration for our new water environment monitoring system design. The system had successfully accomplished the online auto-monitoring of the water temperature and pH value environment of an artificial lake. The system's measurement capacity ranges from 0 to 80 °C for water temperature, with an accuracy of ±0.5 °C; from 0 to 14 on pH value, with an accuracy of ±0.05 pH units. Sensors applicable to different water quality scenarios should be installed at the nodes to meet the monitoring demands for a variety of water environments and to obtain different parameters. The monitoring system thus promises broad applicability prospects.

  4. Configuration Management and Infrastructure Monitoring Using CFEngine and Icinga for Real-time Heterogeneous Data Taking Environment

    NASA Astrophysics Data System (ADS)

    Poat, M. D.; Lauret, J.; Betts, W.

    2015-12-01

    The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.

  5. Do persistent organic pollutants reach a thermodynamic equilibrium in the global environment?

    PubMed

    Schenker, Sebastian; Scheringer, Martin; Hungerbühler, Konrad

    2014-05-06

    Equilibrium partitioning between different environmental media is one of the main driving forces that govern the environmental fate of organic chemicals. In the global environment, equilibrium partitioning is in competition with long-range transport, advective phase transfer processes such as wet deposition, and degradation. Here we investigate under what conditions equilibrium partitioning is strong enough to control the global distribution of organic chemicals. We use a global multimedia mass-balance model to calculate the Globally Balanced State (GBS) of organic chemicals. The GBS is the state where equilibrium partitioning is in balance with long-range transport; it represents the maximum influence of thermodynamic driving forces on the global distribution of a chemical. Next, we compare the GBS with the Temporal Remote State, which represents the long-term distribution of a chemical in the global environment when the chemical's distribution is influenced by all transport and degradation processes in combination. This comparison allows us to identify the chemical properties required for a substance to reach the GBS as a stable global distribution. We find that thermodynamically controlled distributions are rare and do not occur for most Persistent Organic Pollutants. They are only found for highly volatile and persistent substances, such as chlorofluorocarbons. Furthermore, we find that the thermodynamic cold-trap effect (i.e., accumulation of pollutants at the poles because of reduced vapor pressure at low temperatures) is often strongly attenuated by atmospheric and oceanic long-range transport.

  6. Evaluation of change detection techniques for monitoring coastal zone environments

    NASA Technical Reports Server (NTRS)

    Weismiller, R. A.; Kristof, S. J.; Scholz, D. K.; Anuta, P. E.; Momin, S. M.

    1977-01-01

    Procedures for detecting changes in Landsat multispectral scanning imagery of coastal zone environments are discussed. Four detection procedures are examined: a comparison of independently produced spectral classifications; a classification of a multispectral difference data set; a single analysis of a multidate data set; and a maximum likelihood classification using multistage decision logic. The relatively complex maximum likelihood classification technique was found to yield results closest to those obtained with the comparison of independently produced spectral classifications, the chosen standard.

  7. Developing and implementing a data acquisition strategy for global agricultural monitoring: an inter-agency initiative

    NASA Astrophysics Data System (ADS)

    Justice, C. O.; Whitcraft, A. K.; Becker-Reshef, I.; Killough, B.

    2013-12-01

    In 2011, in response to global food crises, the G20 Agricultural Ministers launched a satellite-based global agricultural monitoring initiative to develop the Group on Earth Observations Global Agriculture Monitoring (GEOGLAM) system. The GEO is aimed at enhancing the availability and use of both satellite and in situ data for societal benefit. This initiative builds on the observation requirements developed by the GEO Agricultural Community of Practice, the understanding that no one satellite system can currently provide all the data needed for agricultural monitoring and the resulting recommendation for improved acquisition and availability of data by the World's space agencies. Implicit in this recommendation is the fact that certain regions of the Earth are imagery rich while others are imagery poor, leaving knowledge gaps about agricultural processes and food supply for certain areas of the World. In order to respond to these knowledge gaps and to strengthen national, regional, and global agricultural monitoring networks, GEOGLAM is working with the Committee on Earth Observations (CEOS), the space arm of GEO, to develop a coordinated global acquisition strategy. A key component of GEOGLAM is an effort to articulate the temporal and spatial Earth Observation (EO) requirements for monitoring; second, the identification of current and planned missions which are capable of fulfilling these EO requirements; and third, the development of a multi-agency, multi-mission image acquisition strategy for agricultural monitoring. CEOS engineers and GEOGLAM scientists have been collaborating on the EO requirements since 2012, and are now beginning the first implementation phase of the acquisition strategy. The goal is to put in place an operational system of systems using a virtual constellation of satellite-based sensors acquiring data to meet the needs for monitoring and early warning of shortfalls in agricultural production, a goal that was articulated in the 1970's

  8. Mapping and Modeling Web Portal to Advance Global Monitoring and Climate Research

    NASA Astrophysics Data System (ADS)

    Chang, G.; Malhotra, S.; Bui, B.; Sadaqathulla, S.; Goodale, C. E.; Ramirez, P.; Kim, R. M.; Rodriguez, L.; Law, E.

    2011-12-01

    principal investigators to share their research and analysis seamlessly. In addition, this extension will allow users to easily share their tools and data, and to enrich their mapping and analysis experiences. In this talk, we will describe the advanced data management and portal technologies used to power this collaborative environment. We will further illustrate how this environment can enable, enhance and advance global monitoring and climate research.

  9. Full time and full coverage global observation system for ecological monitoring base on MEO satellite grid constellation

    NASA Astrophysics Data System (ADS)

    You, Rui; Liu, Shuhao

    Human life more and more rely on earth environment and atmosphere, environmental information required by space based monitor is a crucial importance, although GEO and polar weather satellite in orbit by several countries, but it can’t monitor all zone of earth with real time. This paper present a conception proposal which can realize stable, continue and real time observation for any zone(include arctic and ant-arctic zone) of earth and its atmosphere, it base on walker constellation in 20000Km high medium orbit with 24 satellites, payloads configuration with infrared spectrometer, visible camera, ultraviolet ray camera, millimeter wave radiometer, leaser radar, spatial resolution are 1km@ infrared,0.5km@ visible optical. This satellite of grid constellation can monitor any zone of global with 1-3hours retrial observation cycles. Air pollution, ozone of atmosphere, earth surface pollution, desert storm, water pollution, vegetation change, natural disasters, man-made emergency situations, agriculture and climate change can monitor by this MEO satellite grid constellation. This system is a international space infrastructure, use of mature technologies and products, can build by co-operation with multi countries.

  10. Glacial and periglacial environment monitoring in Aosta Valley - Northwestern Italian Alps

    NASA Astrophysics Data System (ADS)

    Motta, Elena; Cremonese, Edoardo; Morra di Cella, Umberto; Pogliotti, Paolo; Vagliasindi, Marco

    2010-05-01

    Aosta Valley is a small alpine region of about 3.300 km2 located in the NW Italy, on the southern side of the Alps and surrounded by the highest Alpine peaks such as Mont Blanc (4810m), Mont Rose (4634m) and Cervino (4478m), More than 50% of the territory has an elevation above 2000 metres asl. High mountain, glacial and periglacial environments cover a significant part of the territory. As the cryosphere is strongly sensitive to climate change, global warming effects are particularly evident in this alpine region, and they often affect environment and social and economic life, thus representing a key issue for politicians and people working and living in the valley. Among these effects, some of the most important are the decrease of water storage due to glaciers retreat and the increasing natural hazards as a consequence of rapid environmental dynamics. Hence the importance of monitoring glacial and periglacial environment, in order to quantify effects of climate change, to detect new dynamics and to manage consequences on the environment and the social life. In Aosta Valley the understanding of these phenomena is carried out by means of several actions, both at a regional scale and on specific representative sites. A multi-temporal analysis of aerial photographs, orthophotos and satellite imagery allows to detect glaciers evolution trend at a regional scale. All this information is collected in a Regional Glacier inventory, according to the World Glaciers Inventory standard and recommendations. Analysis of the information collected in the Inventory show that the total area presently covered by glaciers is about 135 km2; area changes occurred in the past has been about -44.3 km2, and -17 km2. between 1975 and 2005. Glacier inventory also gathers - for each of the about 200 glaciers - morphological data, information about events and photos both historical and present. Glacier mass balance (the difference resulting from the mass gained by the glacier through the

  11. Assessing and Monitoring Student Progress in an E-Learning Personnel Preparation Environment.

    ERIC Educational Resources Information Center

    Meyen, Edward L.; Aust, Ronald J.; Bui, Yvonne N.; Isaacson, Robert

    2002-01-01

    Discussion of e-learning in special education personnel preparation focuses on student assessment in e-learning environments. It includes a review of the literature, lessons learned by the authors from assessing student performance in e-learning environments, a literature perspective on electronic portfolios in monitoring student progress, and the…

  12. Automated video screening for unattended background monitoring in dynamic environments.

    SciTech Connect

    Carlson, Jeffrey J.

    2004-03-01

    This report addresses the development of automated video-screening technology to assist security forces in protecting our homeland against terrorist threats. A threat of specific interest to this project is the covert placement and subsequent remote detonation of bombs (e.g., briefcase bombs) inside crowded public facilities. Different from existing video motion detection systems, the video-screening technology described in this report is capable of detecting changes in the static background of an otherwise, dynamic environment - environments where motion and human activities are persistent. Our goal was to quickly detect changes in the background - even under conditions when the background is visible to the camera less than 5% of the time. Instead of subtracting the background to detect movement or changes in a scene, we subtracted the dynamic scene variations to produce an estimate of the static background. Subsequent comparisons of static background estimates are used to detect changes in the background. Detected changes can be used to alert security forces of the presence and location of potential threats. The results of this research are summarized in two MS Power-point presentations included with this report.

  13. Monitoring the Environment in a Lava Tube with a Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Li, Y.; Jorgensen, A. M.; Wilson, J. L.; Rendon, N. M.

    2010-12-01

    Monitoring cave environments is important for several reasons. For instance, through the studies of cave environments, we can better protect cave ecology. Past experiments have monitored cave environments, although most of those were based on individual sensor nodes such as data loggers. In this paper we introduce and discuss a ZigBee wireless sensor network-based platform used for cave environment monitoring. The platform is based on a Freescale ZigBee evaluation kit. We carried out a proof-of-concept experiment in Junction Cave, a lava tube, at El Malpais National Monument in New Mexico. That experiment monitored temperature, humidity, and air turbulence inside the cave. The instrumentation consisted of a turbulence tower with five thermocouple-based sensors, reaching from the floor to the ceiling of the cave, temperature/humidity sensors distributed throughout the cave, and a low-power embedded Linux computer for data collection and storage. The experiment measured interesting air turbulence variations at different heights, which we related to to weather changes outside the cave and human activities inside the cave. The experiment also observed variations of air temperature at different locations inside the cave. In this presentation we will discuss the instrumentation as well as interpretations of the observations. The experiment demonstrated that a ZigBee wireless sensor network-based monitoring system is a potentially feasible platform for a cave environment monitoring system. We also found that network reliability, node cost, and power consumption need to be improved for future systems.

  14. Global Drought Information System: Influence of Differences in Land Surface Model Dynamics on Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Nijssen, B.; Shukla, S.; Mo, K. C.; Lettenmaier, D. P.

    2014-12-01

    Real-time drought monitoring enables a proactive drought management approach that can lead to timely actions to mitigate the losses due to a drought event. In recent years, the availability of long-term, high quality, satellite and reanalysis based datasets of atmospheric forcings, combined with the development of state-of-the-art hydrologic models have made real-time global drought monitoring feasible. Hydrologic models are invaluable tools for global drought monitoring given the scarcity of long-term moisture observations (e.g. soil moisture, streamflow). However, as valuable as they are for drought monitoring, characteristics of a drought event (i.e. onset, severity and persistence) as estimated by a hydrologic model depend on the model's parameters (e.g. soil and vegetation parameters) and its inherent dynamics that guide the partition of precipitation into evapotranspiration and runoff. One approach to account for the differences in drought estimates due to differences in model dynamics is to use multiple hydrologic models. Each hydrologic model is forced with the same atmospheric forcings to simulate moisture conditions which are converted into objective drought indicators (e.g. soil moisture percentile) with respect to the model's own climatology and then those estimates are combined to provide a multimodel based drought estimates. The University of Washington's Global Drought Information System (GDIS) developed in 2013, is one such prototype drought monitoring system. This system uses the VIC, NOAH and Catchment models. In this presentation we investigate how the differences in the dynamics of the models used in UW's GDIS, influence the drought monitoring estimates. Specifically we answer following questions: 1.What is the level of uncertainties in drought onset, severity and persistence as estimated by different hydrologic models? 2. How do the uncertainties vary spatially and seasonally? 3. What are the sources of the uncertainties?

  15. Universal Service in a Global Networked Environment: Selected Issues and Possible Approaches.

    ERIC Educational Resources Information Center

    Bertot, John Carlo; McClure, Charles R.; Owens, Kimberly A.

    1999-01-01

    Presents selected issues related to the development of universal service to networked information resources and services in a global networked environment. Defines universal service as a set of telecommunications services to which users should have access, including appropriate funding and interconnected public telecommunications infrastructure…

  16. New Challenges Facing Universities in the Internet-Driven Global Environment

    ERIC Educational Resources Information Center

    Rajasingham, Lalita

    2011-01-01

    This paper explores some new challenges facing universities in a global multimediated Internet-based environment, as they seek alternative paradigms and options to remain true to their core business. At a time of rapid technological change, and contested, complex concepts associated with globalisation, knowledge is becoming a primary factor of…

  17. Water in the Global Environment. Pathways in Geography Series, Title No. 3.

    ERIC Educational Resources Information Center

    Waterstone, Marvin

    This report deals with the importance of water to life. The physical characteristics of water, its distribution, and a number of current water-related problems are examined. The issue of water management is discussed, along with the ways water is made available for our many uses in life. The introductory essay, "Water in the Global Environment,"…

  18. Man in the Living Environment. A Report on Global Ecological Problems.

    ERIC Educational Resources Information Center

    Inger, Robert F.; And Others

    The findings of four groups of ecologists are synthesized in chapter I of this report on global ecological problems prepared as a data base for the United Nations Conference on the Human Environment. The other chapters contain the reports of each group. In "Cycles of Elements" the biologically important elements, phosphorus, sulfur, and nitrogen,…

  19. Global Monitoring of Water Supply and Sanitation: History, Methods and Future Challenges

    PubMed Central

    Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B.; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce

    2014-01-01

    International monitoring of drinking water and sanitation shapes awareness of countries’ needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally-representative and internationally-comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation. PMID:25116635

  20. Global monitoring of water supply and sanitation: history, methods and future challenges.

    PubMed

    Bartram, Jamie; Brocklehurst, Clarissa; Fisher, Michael B; Luyendijk, Rolf; Hossain, Rifat; Wardlaw, Tessa; Gordon, Bruce

    2014-08-11

    International monitoring of drinking water and sanitation shapes awareness of countries' needs and informs policy, implementation and research efforts to extend and improve services. The Millennium Development Goals established global targets for drinking water and sanitation access; progress towards these targets, facilitated by international monitoring, has contributed to reducing the global disease burden and increasing quality of life. The experiences of the MDG period generated important lessons about the strengths and limitations of current approaches to defining and monitoring access to drinking water and sanitation. The methods by which the Joint Monitoring Programme (JMP) of WHO and UNICEF tracks access and progress are based on analysis of data from household surveys and linear regression modelling of these results over time. These methods provide nationally representative and internationally comparable insights into the drinking water and sanitation facilities used by populations worldwide, but also have substantial limitations: current methods do not address water quality, equity of access, or extra-household services. Improved statistical methods are needed to better model temporal trends. This article describes and critically reviews JMP methods in detail for the first time. It also explores the impact of, and future directions for, international monitoring of drinking water and sanitation.

  1. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments

    PubMed Central

    Kocman, David; Wilson, Simon J.; Amos, Helen M.; Telmer, Kevin H.; Steenhuisen, Frits; Sunderland, Elsie M.; Mason, Robert P.; Outridge, Peter; Horvat, Milena

    2017-01-01

    Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg·a−1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget. PMID:28157152

  2. Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments.

    PubMed

    Kocman, David; Wilson, Simon J; Amos, Helen M; Telmer, Kevin H; Steenhuisen, Frits; Sunderland, Elsie M; Mason, Robert P; Outridge, Peter; Horvat, Milena

    2017-02-01

    Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg· a-1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget.

  3. Monitoring the intracellular calcium response to a dynamic hypertonic environment

    NASA Astrophysics Data System (ADS)

    Huang, Xiaowen; Yue, Wanqing; Liu, Dandan; Yue, Jianbo; Li, Jiaqian; Sun, Dong; Yang, Mengsu; Wang, Zuankai

    2016-03-01

    The profiling of physiological response of cells to external stimuli at the single cell level is of importance. Traditional approaches to study cell responses are often limited by ensemble measurement, which is challenging to reveal the complex single cell behaviors under a dynamic environment. Here we report the development of a simple microfluidic device to investigate intracellular calcium response to dynamic hypertonic conditions at the single cell level in real-time. Interestingly, a dramatic elevation in the intracellular calcium signaling is found in both suspension cells (human leukemic cell line, HL-60) and adherent cells (lung cancer cell line, A549), which is ascribed to the exposure of cells to the hydrodynamic stress. We also demonstrate that the calcium response exhibits distinct single cell heterogeneity as well as cell-type-dependent responses to the same stimuli. Our study opens up a new tool for tracking cellular activity at the single cell level in real time for high throughput drug screening.

  4. Enhance the Quality of Crowdsensing for Fine-Grained Urban Environment Monitoring via Data Correlation

    PubMed Central

    Kang, Xu; Liu, Liang; Ma, Huadong

    2017-01-01

    Monitoring the status of urban environments, which provides fundamental information for a city, yields crucial insights into various fields of urban research. Recently, with the popularity of smartphones and vehicles equipped with onboard sensors, a people-centric scheme, namely “crowdsensing”, for city-scale environment monitoring is emerging. This paper proposes a data correlation based crowdsensing approach for fine-grained urban environment monitoring. To demonstrate urban status, we generate sensing images via crowdsensing network, and then enhance the quality of sensing images via data correlation. Specifically, to achieve a higher quality of sensing images, we not only utilize temporal correlation of mobile sensing nodes but also fuse the sensory data with correlated environment data by introducing a collective tensor decomposition approach. Finally, we conduct a series of numerical simulations and a real dataset based case study. The results validate that our approach outperforms the traditional spatial interpolation-based method. PMID:28054968

  5. Enhance the Quality of Crowdsensing for Fine-Grained Urban Environment Monitoring via Data Correlation.

    PubMed

    Kang, Xu; Liu, Liang; Ma, Huadong

    2017-01-04

    Monitoring the status of urban environments, which provides fundamental information for a city, yields crucial insights into various fields of urban research. Recently, with the popularity of smartphones and vehicles equipped with onboard sensors, a people-centric scheme, namely "crowdsensing", for city-scale environment monitoring is emerging. This paper proposes a data correlation based crowdsensing approach for fine-grained urban environment monitoring. To demonstrate urban status, we generate sensing images via crowdsensing network, and then enhance the quality of sensing images via data correlation. Specifically, to achieve a higher quality of sensing images, we not only utilize temporal correlation of mobile sensing nodes but also fuse the sensory data with correlated environment data by introducing a collective tensor decomposition approach. Finally, we conduct a series of numerical simulations and a real dataset based case study. The results validate that our approach outperforms the traditional spatial interpolation-based method.

  6. Joint IAMAS/IAHS Symposium J1 on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere

    NASA Technical Reports Server (NTRS)

    Ohring, G.; Aoki, T.; Halpern D.; Henderson-Sellers, A.; Charlock, T.; Joseph, J.; Labitzke, K.; Raschke, E.; Smith, W.

    1994-01-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS). Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  7. A New ERA in Global Temperature Monitoring with the Advanced Microwave Sounding Unit (AMSU)

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.; Christy, John R.

    1999-01-01

    The launch of the first Advanced Microwave Sounding Unit (AMSU) on the NOAA-15 spacecraft on 13 May 1998 marked a significant advance in our ability to monitor global temperatures. Compared to the Microwave Sounding Units (MSU) flying since 1978 on the TIROS-N series of NOAA polar orbiters, the AMSU offers better horizontal, vertical, and radiometric resolutions. It will allow routine monitoring of 1 1 (mostly) separate layers, compared to 2 or 3 with the MSU, including layers in the middle and upper stratosphere (2.5 hPa) where increasing carbon dioxide concentrations should be causing a cooling rate of about 1 deg. C per decade. More precise limb corrections combined with low noise will allow identification of subtle spatial temperature patterns associated with global cyclone activity.

  8. Monitoring Global Food Security with New Remote Sensing Products and Tools

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Rowland, J.; Senay, G. B.; Funk, C. C.; Husak, G. J.; Magadzire, T.; Verdin, J. P.

    2012-12-01

    Global agriculture monitoring is a crucial aspect of monitoring food security in the developing world. The Famine Early Warning Systems Network (FEWS NET) has a long history of using remote sensing and crop modeling to address food security threats in the form of drought, floods, pests, and climate change. In recent years, it has become apparent that FEWS NET requires the ability to apply monitoring and modeling frameworks at a global scale to assess potential impacts of foreign production and markets on food security at regional, national, and local levels. Scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the University of California Santa Barbara (UCSB) Climate Hazards Group have provided new and improved data products as well as visualization and analysis tools in support of the increased mandate for remote monitoring. We present our monitoring products for measuring actual evapotranspiration (ETa), normalized difference vegetation index (NDVI) in a near-real-time mode, and satellite-based rainfall estimates and derivatives. USGS FEWS NET has implemented a Simplified Surface Energy Balance (SSEB) model to produce operational ETa anomalies for Africa and Central Asia. During the growing season, ETa anomalies express surplus or deficit crop water use, which is directly related to crop condition and biomass. We present current operational products and provide supporting validation of the SSEB model. The expedited Moderate Resolution Imaging Spectroradiometer (eMODIS) production system provides FEWS NET with an improved NDVI dataset for crop and rangeland monitoring. eMODIS NDVI provides a reliable data stream with a relatively high spatial resolution (250-m) and short latency period (less than 12 hours) which allows for better operational vegetation monitoring. We provide an overview of these data and cite specific applications for crop monitoring. FEWS NET uses satellite rainfall estimates as inputs for

  9. Volcanic Environments Monitoring by Drones Mud Volcano Case Study

    NASA Astrophysics Data System (ADS)

    Amici, S.; Turci, M.; Giulietti, F.; Giammanco, S.; Buongiorno, M. F.; La Spina, A.; Spampinato, L.

    2013-08-01

    Volcanic activity has often affected human life both at large and at small scale. For example, the 2010 Eyjafjallajokull eruption caused severe economic damage at continental scale due to its strong effect on air traffic. At a local scale, ash fall and lava flow emission can cause harm and disruption. Understanding precursory signals to volcanic eruptions is still an open and tricky challenge: seismic tremor and gas emissions, for example, are related to upcoming eruptive activity but the mechanisms are not yet completely understood. Furthermore, information related to gases emission mostly comes from the summit crater area of a volcano, which is usually hard to investigate with required accuracy. Although many regulation problems are still on the discussion table, an increasing interest in the application of cutting-edge technology like unmanned flying systems is growing up. In this sense, INGV (Istituto Nazionale di Geofisica e Vulcanologia) started to investigate the possibility to use unmanned air vehicles for volcanic environment application already in 2004. A flight both in visual- and radio-controlled mode was carried out on Stromboli volcano as feasibility test. In this work we present the preliminary results of a test performed by INGV in collaboration with the University of Bologna (aerospace division) by using a multi-rotor aircraft in a hexacopter configuration. Thermal camera observations and flying tests have been realised over a mud volcano located on its SW flank of Mt. Etna and whose activity proved to be related to early stages of magma accumulation within the volcano.

  10. Coastal Louisiana Wetlands Restoration Monitoring with Global Fiducials Program (GFP) Imagery

    NASA Astrophysics Data System (ADS)

    Fisher, G.

    2012-12-01

    Coastal Louisiana has experienced dramatic landscape change over the past century due to human induced changes to the environment as well as an onslaught of major coastal storms. Coastal Louisiana loses on average 25-35 square miles of land per year. The USGS has partnered with the National Oceanographic and Atmospheric Administration (NOAA) - National Marine Fisheries Service to provide cyclical remote sensing data for selected restoration sites along the coast of Louisiana. Three of these sites are actively maintained in the GFP archive - Atchafalaya River Delta, East Timbalier Island, and Pecan Island. These three sites coincide with NOAA restoration sites that have been monitored since early 2000. The GFP has provided a consistent set of remote sensing data that has greatly benefited the long-term monitoring of these restoration sites. Long-term monitoring of these sites includes both pre- and post-hurricane season data collection used to identify landscape change along the coast. The long-term monitoring also has helped to identify areas of success in the restoration projects, as well as areas that have continued to decline in spite of restoration efforts. These three sites are significant to the program because they provide a variety of coastal landscape types: an open water barrier island environment at East Timbalier Island; coastal wetlands at Pecan Island, which have experienced subsidence of the marsh and convergence to an open water environment; and a deltaic marsh environment at Atchafalaya River Delta. Long-term monitoring of these sites has provided a wealth of knowledge about the changes occurring, as well as a valuable tool for reliable shoreline measurements. Continued monitoring is necessary to accurately assess the condition of these areas as environmental conditions continue to shape the landscape.

  11. Monitoring and mapping global vegetation cover using data from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.; Holben, B.; Tucker, C. J.

    1984-01-01

    The role of coarse resolution meteorological satellite data for monitoring and mapping of vegetation for global, continental and regional scales is outlined. In the NOAA products used the effects of cloud cover are reduced by the generation of temporal composites of images of the normalized difference vegetation index. Different land cover types are shown to have characteristic spectral phenological curves. Such data have the disadvantage of effectively increasing the apparent areal extent of small areas of green vegetation.

  12. GLOBAL MONITORING OF URANIUM HEXIFLORIDE CYLINDERS NEXT STEPS IN DEVELOPMENT OF AN ACTION PLAN

    SciTech Connect

    Hanks, D.

    2010-06-09

    Over 40 industrial facilities world-wide use standardized uranium hexafluoride (UF{sub 6}) cylinders for transport, storage and in-process receiving in support of uranium conversion, enrichment and fuel fabrication processes. UF{sub 6} is processed and stored in the cylinders, with over 50,000 tU of UF{sub 6} transported each year in these International Organization for Standardization (ISO) qualified containers. Although each cylinder is manufactured to an ISO standard that calls for a nameplate with the manufacturer's identification number (ID) and the owner's serial number engraved on it, these can be quite small and difficult to read. Recognizing that each facility seems to use a different ID, a cylinder can have several different numbers recorded on it by means of metal plates, sticky labels, paint or even marker pen as it travels among facilities around the world. The idea of monitoring movements of UF{sub 6} cylinders throughout the global uranium fuel cycle has become a significant issue among industrial and safeguarding stakeholders. Global monitoring would provide the locations, movements, and uses of cylinders in commercial nuclear transport around the world, improving the efficiency of industrial operations while increasing the assurance that growing nuclear commerce does not result in the loss or misuse of cylinders. It should be noted that a unique ID (UID) attached to a cylinder in a verifiable manner is necessary for safeguarding needs and ensuring positive ID, but not sufficient for an effective global monitoring system. Modern technologies for tracking and inventory control can pair the UID with sensors and secure data storage for content information and complete continuity of knowledge over the cylinder. This paper will describe how the next steps in development of an action plan for employing a global UF{sub 6} cylinder monitoring network could be cultivated using four primary UID functions - identification, tracking, controlling, and accounting.

  13. Hybrid BD / GPS Positioning for Deformation Monitoring Under Denied Environments

    NASA Astrophysics Data System (ADS)

    Peng, Zhenzhong; Li, Qianxia; Xia, Linyuan

    2016-09-01

    In the era of multiple satellite navigation and positioning, there are still many remained issues to be tackled in order to satisfy varied applications for various sectors. These include availability, accuracy, integrity, vulnerability and others. To explore feasibility of deformation monitoring under dam and steep slope environments, we investigated features of hybrid BD / GPS positioning and monitoring performance. Results indicate that hybrid satellites can further facilitate precise positioning for deformation monitoring on restricted regions. A static network in near real time mode is designed to exhibit essential sensitivity for deformation monitoring under different network connectivity. Analysis shows that under given network design matrix, contributions from hybrid BD / GPS have enhanced network sensitivity and ensured monitoring performance under challenged scenarios. Related tests combining with application to stringent dam monitoring have been conducted to exemplify sensitivity changes along vital engineering directions and optimal schemes for network configuration.

  14. Aromatic hydrocarbons in the atmospheric environment. Part III: personal monitoring

    NASA Astrophysics Data System (ADS)

    Ilgen, E.; Levsen, K.; Angerer, J.; Schneider, P.; Heinrich, J.; Wichmann, H.-E.

    As part of a larger study, personal sampling of the aromatic hydrocarbons benzene, toluene, ethylbenzene and the isomeric xylenes (BTEX) was carried out by 55 nonsmoking volunteers for a period of 14 days. Thirty-nine persons lived in a rural area near Hannover (Germany) with hardly any traffic at all, while 16 persons lived in a high-traffic city street in Hannover. The personal exposure level of the persons in the rural area (some commuting to Hannover) was: 2.9, 24.8, 2.4 and 7.7 μg m -3 for benzene, toluene, ethylbenzene and the sum of xylenes, respectively, while the corresponding data for the high traffic city streets were 4.0, 22.2, 2.8 and 9.7 μg m -3 (geometric means). Four microenvironments have been monitored which contribute to the total exposure to BTEX, i.e. the home, the outdoor air, the workplace and the car cabin. The most important microenvironment for non-working persons is the private home. The concentration of most BTEX in the private home is almost equal to the personal exposure level, demonstrating that the indoor pollution in the home makes by far the highest contribution to the total exposure. For working people (mostly office workers), the workplace is the second most important microenvironment contributing to the total BTEX exposure. Taking all working persons into consideration (independent of the location of their private home) the personal exposure level is higher by a factor of 1.2-1.4 than that of the workplace (for toluene this factor is 2.2). As already found by others, very high BTEX concentrations may be found in car cabins, in particular, if the engine is gasoline-driven. In the cabin of 44 cars in the rural/urban area average benzene concentrations (geometric mean) of 12/14 μg m -3 and a maximum value of ˜550 μg m -3 were found. On average, the participating volunteers drove their car for 45 min day -1 (i.e. 3% of the day). Nevertheless, the car cabin constitutes about 10% of the total benzene exposure. Refueling of the

  15. Toward an optimisation technique for dynamically monitored environment

    NASA Astrophysics Data System (ADS)

    Shurrab, Orabi M.

    2016-10-01

    The data fusion community has introduced multiple procedures of situational assessments; this is to facilitate timely responses to emerging situations. More directly, the process refinement of the Joint Directors of Laboratories (JDL) is a meta-process to assess and improve the data fusion task during real-time operation. In other wording, it is an optimisation technique to verify the overall data fusion performance, and enhance it toward the top goals of the decision-making resources. This paper discusses the theoretical concept of prioritisation. Where the analysts team is required to keep an up to date with the dynamically changing environment, concerning different domains such as air, sea, land, space and cyberspace. Furthermore, it demonstrates an illustration example of how various tracking activities are ranked, simultaneously into a predetermined order. Specifically, it presents a modelling scheme for a case study based scenario, where the real-time system is reporting different classes of prioritised events. Followed by a performance metrics for evaluating the prioritisation process of situational awareness (SWA) domain. The proposed performance metrics has been designed and evaluated using an analytical approach. The modelling scheme represents the situational awareness system outputs mathematically, in the form of a list of activities. Such methods allowed the evaluation process to conduct a rigorous analysis of the prioritisation process, despite any constrained related to a domain-specific configuration. After conducted three levels of assessments over three separates scenario, The Prioritisation Capability Score (PCS) has provided an appropriate scoring scheme for different ranking instances, Indeed, from the data fusion perspectives, the proposed metric has assessed real-time system performance adequately, and it is capable of conducting a verification process, to direct the operator's attention to any issue, concerning the prioritisation capability

  16. Cellular biomarkers for monitoring estuarine environments: transplanted versus native mussels.

    PubMed

    Nigro, M; Falleni, A; Barga, I Del; Scarcelli, V; Lucchesi, P; Regoli, F; Frenzilli, G

    2006-05-25

    In developed countries, estuarine environments are often subjected to chemical pollution, whose biological impact is profitably evaluated by the use of multi-biomarker approaches on sentinel species. In this paper, we investigate genotoxicity and lysosomal alterations in the Mediterranean mussel (Mytilus galloprovincialis), from the estuary of the River Cecina (Tuscany, Italy), selected as "pilot basin" within the Water Frame Directive (2000/60 European Community). Both native and 1 month transplanted mussels were used in order to compare these two approaches in terms of sensitiveness of specific biomarker responses. Genotoxic effects were evaluated as strand breaks, by single cell gel electrophoresis (or Comet assay), and as chromosomal alterations, by the micronucleus test in gill cells. Lysosomal alterations were assessed by the neutral red retention time (in haemocytes), lipofuscin accumulation and ultrastructure (in digestive cells). Heavy metal bioaccumulation was also analysed. Mussels from the River Cecina showed a general alteration of all the biomarkers investigated, accompanied by an elevation of tissue metal levels. However, some differences in specific responses occurred between transplanted and native mussels. Early biomarkers, such as those based on DNA and lysosomal membrane integrity, were induced at similar degree in native and transplanted mussels; while alterations resulting from cumulative events, as the increase of micronuclei frequency were much more elevated in native specimens (23.1+/-7.6) than in transplanted (9.3+/-4.7) and reference ones (5.8+/-5.2). Similarly, the comparison between lipofuscin accumulation and mean lysosomal diameter in impacted and control sites, gave significant differences exclusively with transplanted mussels. These results suggest that the parallel use of caged and native mussels in environmental biomonitoring can improve the characterization of the study area.

  17. New indicators for global crop monitoring in CropWatch -case study in North China Plain

    NASA Astrophysics Data System (ADS)

    Bingfang, Wu; Miao, Zhang; Hongwei, Zeng; Guoshui, Liu; Sheng, Chang; Gommes, René

    2014-03-01

    CropWatch is a monitoring system developed and operated by the Institute of Remote Sensing and Digital Earth (Chinese Academy of Sciences) to provide global-scale crop information. Now in its 15th year of operation, CropWatch was modified several times to be a timely, comprehensive and independent global agricultural monitoring system using advanced remote sensing technology. Currently CropWatch is being upgraded with new indicators based on new sensors, especially those on board of China Environmental Satellite (HJ-1 CCD), the Medium Resolution Spectral Imager (MERSI) on Chinese meteorological satellite (FY-3A) and cloud classification products of FY-2. With new satellite data, CropWatch will generate new indicators such as fallow land ratio (FLR), crop condition for irrigated (CCI) and non-irrigated (CCNI) areas separately, photosynthetically active radiation (PAR), radiation use efficiency for the photosynthetically active radiation (RUEPAR) and cropping index (CI) with crop rotation information (CRI). In this paper, the methods for monitoring the new indicators are applied to the North China Plain which is one of the major grain producing areas in China. This paper shows the preliminary results of the new indicators and methods; they still need to be thoroughly validated before being incorporated into the operational CropWatch system. In the future, the new and improved indicators will help us to better understand the global situation of food security.

  18. Monitoring progress towards universal health coverage at country and global levels.

    PubMed

    Boerma, Ties; Eozenou, Patrick; Evans, David; Evans, Tim; Kieny, Marie-Paule; Wagstaff, Adam

    2014-09-01

    Universal health coverage (UHC) has been defined as the desired outcome of health system performance whereby all people who need health services (promotion, prevention, treatment, rehabilitation, and palliation) receive them, without undue financial hardship. UHC has two interrelated components: the full spectrum of good-quality, essential health services according to need, and protection from financial hardship, including possible impoverishment, due to out-of-pocket payments for health services. Both components should benefit the entire population. This paper summarizes the findings from 13 country case studies and five technical reviews, which were conducted as part of the development of a global framework for monitoring progress towards UHC. The case studies show the relevance and feasibility of focusing UHC monitoring on two discrete components of health system performance: levels of coverage with health services and financial protection, with a focus on equity. These components link directly to the definition of UHC and measure the direct results of strategies and policies for UHC. The studies also show how UHC monitoring can be fully embedded in often existing, regular overall monitoring of health sector progress and performance. Several methodological and practical issues related to the monitoring of coverage of essential health services, financial protection, and equity, are highlighted. Addressing the gaps in the availability and quality of data required for monitoring progress towards UHC is critical in most countries.

  19. Monitoring global change with phenology: The case of the spring green wave

    NASA Astrophysics Data System (ADS)

    Schwartz, Mark D.

    1994-03-01

    The centuries-old practice of recording plant and animal events that take place at specific times each year (phenology) should play an important role in monitoring mid-latitude global changes. At least three problems related to the detection of biosphere changes could be investigated using this information. Firstly, the technique can be generalized from the local to global scale. Secondly, an integrated approach could be developed to represent biome diversity effectively. Lastly, physical mechanisms responsible for the events can be deduced in order to incorporate the phenological information into global-scale models, and detect changes in related environmental factors. With these goals in mind, regional phenological data collection networks were initiated in eastern North America during the early 1960s, using cloned lilacs and several species of honeysuckle. This paper reviews research projects which address the problems outlined above, using first leaf data (associated with spring green-up or “green wave” in mid-latitudes) gathered from these networks. The results of such studies in North America have demonstrated the potential of phenology as an efficient monitor of global change throughout mid-latitude regions. Future research efforts will concentrate on the development of a coordinated strategy to link phenological information from satellites, indicator plants (such as the lilac), and representative species from each biome.

  20. Global cytosine methylation in Daphnia magna depends on genotype, environment, and their interaction.

    PubMed

    Asselman, Jana; De Coninck, Dieter I M; Vandegehuchte, Michiel B; Jansen, Mieke; Decaestecker, Ellen; De Meester, Luc; Vanden Bussche, Julie; Vanhaecke, Lynn; Janssen, Colin R; De Schamphelaere, Karel A C

    2015-05-01

    The authors characterized global cytosine methylation levels in 2 different genotypes of the ecotoxicological model organism Daphnia magna after exposure to a wide array of biotic and abiotic environmental stressors. The present study aimed to improve the authors' understanding of the role of cytosine methylation in the organism's response to environmental conditions. The authors observed a significant genotype effect, an environment effect, and a genotype × environment effect. In particular, global cytosine methylation levels were significantly altered after exposure to Triops predation cues, Microcystis, and sodium chloride compared with control conditions. Significant differences between the 2 genotypes were observed when animals were exposed to Triops predation cues, Microcystis, Cryptomonas, and sodium chloride. Despite the low global methylation rate under control conditions (0.49-0.52%), global cytosine methylation levels upon exposure to Triops demonstrated a 5-fold difference between the genotypes (0.21% vs 1.02%). No effects were found in response to arsenic, cadmium, fish, lead, pH of 5.5, pH of 8, temperature, hypoxia, and white fat cell disease. The authors' results point to the potential role of epigenetic effects under changing environmental conditions such as predation (i.e., Triops), diet (i.e., Cryptomonas and Microcystis), and salinity. The results of the present study indicate that, despite global cytosine methylation levels being low, epigenetic effects may be important in environmental studies on Daphnia.

  1. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI)

    NASA Astrophysics Data System (ADS)

    Flower, Verity J. B.; Oommen, Thomas; Carn, Simon A.

    2016-11-01

    Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005-2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ˜ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  2. An Experimental Global Monitoring System for Rainfall-triggered Landslides using Satellite Remote Sensing Information

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2006-01-01

    Landslides triggered by rainfall can possibly be foreseen in real time by jointly using rainfall intensity-duration thresholds and information related to land surface susceptibility. However, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides due to the lack of extensive ground-based observing network in many parts of the world. Recent advances in satellite remote sensing technology and increasing availability of high-resolution geospatial products around the globe have provided an unprecedented opportunity for such a study. In this paper, a framework for developing an experimental real-time monitoring system to detect rainfall-triggered landslides is proposed by combining two necessary components: surface landslide susceptibility and a real-time space-based rainfall analysis system (http://trmm.gsfc.nasa.aov). First, a global landslide susceptibility map is derived from a combination of semi-static global surface characteristics (digital elevation topography, slope, soil types, soil texture, and land cover classification etc.) using a GIs weighted linear combination approach. Second, an adjusted empirical relationship between rainfall intensity-duration and landslide occurrence is used to assess landslide risks at areas with high susceptibility. A major outcome of this work is the availability of a first-time global assessment of landslide risk, which is only possible because of the utilization of global satellite remote sensing products. This experimental system can be updated continuously due to the availability of new satellite remote sensing products. This proposed system, if pursued through wide interdisciplinary efforts as recommended herein, bears the promise to grow many local landslide hazard analyses into a global decision-making support system for landslide disaster preparedness and risk mitigation activities across the world.

  3. Aerosols and past environments: A global investigation into cave aerosol identification, distribution, and contribution to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R. M.; Woodhead, J. D.; Hellstrom, J.; Mattey, D.

    2013-12-01

    A new sector of interest is developing within cave science regarding the influence of aerosols on the cave environment and the potential speleothem palaeoenvironmental aerosol record which may be preserved. This paper presents the results from a global collaboration project which explored all aspects of aerosols in the cave environment. Cave aerosol identification, introduction and distribution Cave aerosol multivariable environmental monitoring projects were carried out in the UK, Spain, Austria and Australia. Results demonstrate that cave ventilation is the predominant control on the introduction and distribution of aerosols throughout the cave environment (Dredge et al., 2013). Consequently, aerosol transportation processes vary as a result of seasonal ventilation changes and cave morphological features. Cave aerosol contribution to speleothem geochemistry Aerosol contributions to speleothem geochemistry were determined by comparing monitored aerosol deposition to speleothem trace element data. Significant aerosol contribution scenarios were identified as: hiatus events, high aerosol flux situations and secondary microbial concentration processes. Modelling indicates that a >99.9% reduction in drip water flow rates is required to reduce trace element supply quantities to equal that of aerosol supply (Dredge et al., 2013). Aerosol palaeoclimate and palaeoenvironmental records Aerosol contributions and the ability to utilise aerosol records in speleothem are investigated in samples from Gibraltar and Australia. Long range dust sources and past atmospheric circulation over several glacial cycles is studied through Sr isotope analysis of a Flowstone core from Gibraltar. Results of organic fire proxy analysis from Australian speleothem samples indicate an aerosol deposition forest fire record. In addition to primary fire deposition, secondary biological feedbacks and subsequent bioaccumulation processes in the cave environment are explored by microbial analysis

  4. An Intelligent System for Monitoring the Microgravity Environment Quality On-Board the International Space Station

    NASA Technical Reports Server (NTRS)

    Lin, Paul P.; Jules, Kenol

    2002-01-01

    An intelligent system for monitoring the microgravity environment quality on-board the International Space Station is presented. The monitoring system uses a new approach combining Kohonen's self-organizing feature map, learning vector quantization, and back propagation neural network to recognize and classify the known and unknown patterns. Finally, fuzzy logic is used to assess the level of confidence associated with each vibrating source activation detected by the system.

  5. Remoteness from sources of persistent organic pollutants in the multi-media global environment.

    PubMed

    Göktaş, Recep Kaya; MacLeod, Matthew

    2016-10-01

    Quantifying the remoteness from sources of persistent organic pollutants (POPs) can inform the design of monitoring studies and the interpretation of measurement data. Previous work on quantifying remoteness has not explicitly considered partitioning between the gas phase and aerosols, and between the atmosphere and the Earth's surface. The objective of this study is to present a metric of remoteness for POPs transported through the atmosphere calculated with a global multimedia fate model, BETR-Research. We calculated the remoteness of regions covering the entire globe from emission sources distributed according to light emissions, and taking into account the multimedia partitioning properties of chemicals and using averaged global climate data. Remoteness for hypothetical chemicals with distinct partitioning properties (volatile, semi-volatile, hydrophilic, low-volatility) and having two different half-lives in air (60-day and 2-day) are presented. Differences in remoteness distribution among the hypothetical chemicals are most pronounced in scenarios assuming 60-day half-life in air. In scenarios with a 2-day half-life in air, degradation dominates over wet and dry deposition processes as a pathway for atmospheric removal of all chemicals except the low-volatility chemical. The remoteness distribution of the low-volatility chemical is strongly dependent on assumptions about degradability on atmospheric aerosols. Calculations that considered seasonal variability in temperature, hydroxyl radical concentrations in the atmosphere and global atmospheric and oceanic circulation patterns indicate that variability in hydroxyl radical concentrations largely determines the seasonal variability of remoteness. Concentrations of polybrominated diphenyl ethers (PBDEs) measured in tree bark from around the world are more highly correlated with remoteness calculated using our methods than with proximity to human population, and we see considerable potential to apply remoteness

  6. Contributions of national and global health estimates to monitoring health-related sustainable development goals

    PubMed Central

    Bundhamcharoen, Kanitta; Limwattananon, Supon; Kusreesakul, Khanitta; Tangcharoensathien, Viroj

    2016-01-01

    The millennium development goals triggered an increased demand for data on child and maternal mortalities for monitoring progress. With the advent of the sustainable development goals and growing evidence of an epidemiological transition toward non-communicable diseases, policymakers need data on mortality and disease trends and distribution to inform effective policies and support monitoring progress. Where there are limited capacities to produce national health estimates (NHEs), global health estimates (GHEs) can fill gaps for global monitoring and comparisons. This paper discusses lessons learned from Thailand’s burden of disease (BOD) study on capacity development on NHEs and discusses the contributions and limitations of GHEs in informing policies at the country level. Through training and technical support by external partners, capacities are gradually strengthened and institutionalized to enable regular updates of BOD at national and subnational levels. Initially, the quality of cause-of-death reporting in death certificates was inadequate, especially for deaths occurring in the community. Verbal autopsies were conducted, using domestic resources, to determine probable causes of deaths occurring in the community. This method helped to improve the estimation of years of life lost. Since the achievement of universal health coverage in 2002, the quality of clinical data on morbidities has also considerably improved. There are significant discrepancies between the Global Burden of Disease 2010 study estimates for Thailand and the 1999 nationally generated BOD, especially for years of life lost due to HIV/AIDS, and the ranking of priority diseases. National ownership of NHEs and an effective interface between researchers and decision-makers contribute to enhanced country policy responses, whereas subnational data are intended to be used by various subnational partners. Although GHEs contribute to benchmarking country achievement compared with global health

  7. Contributions of national and global health estimates to monitoring health-related sustainable development goals.

    PubMed

    Bundhamcharoen, Kanitta; Limwattananon, Supon; Kusreesakul, Khanitta; Tangcharoensathien, Viroj

    2016-01-01

    The millennium development goals triggered an increased demand for data on child and maternal mortalities for monitoring progress. With the advent of the sustainable development goals and growing evidence of an epidemiological transition toward non-communicable diseases, policymakers need data on mortality and disease trends and distribution to inform effective policies and support monitoring progress. Where there are limited capacities to produce national health estimates (NHEs), global health estimates (GHEs) can fill gaps for global monitoring and comparisons. This paper discusses lessons learned from Thailand's burden of disease (BOD) study on capacity development on NHEs and discusses the contributions and limitations of GHEs in informing policies at the country level. Through training and technical support by external partners, capacities are gradually strengthened and institutionalized to enable regular updates of BOD at national and subnational levels. Initially, the quality of cause-of-death reporting in death certificates was inadequate, especially for deaths occurring in the community. Verbal autopsies were conducted, using domestic resources, to determine probable causes of deaths occurring in the community. This method helped to improve the estimation of years of life lost. Since the achievement of universal health coverage in 2002, the quality of clinical data on morbidities has also considerably improved. There are significant discrepancies between the Global Burden of Disease 2010 study estimates for Thailand and the 1999 nationally generated BOD, especially for years of life lost due to HIV/AIDS, and the ranking of priority diseases. National ownership of NHEs and an effective interface between researchers and decision-makers contribute to enhanced country policy responses, whereas subnational data are intended to be used by various subnational partners. Although GHEs contribute to benchmarking country achievement compared with global health

  8. Operational 333m Biophysical Products of the Copernicus Global Land Service for Agriculture Monitoring

    NASA Astrophysics Data System (ADS)

    Lacaze, R.; Smets, B.; Baret, F.; Weiss, M.; Ramon, D.; Montersleet, B.; Wandrebeck, L.; Calvet, J.-C.; Roujean, J.-L.; Camacho, F.

    2015-04-01

    The Copernicus Global Land service provides continuously a set of bio-geophysical variables describing, over the whole globe, the vegetation dynamic, the energy budget at the continental surface and some components of the water cycle. These generic products serve numerous applications including agriculture and food security monitoring. The portfolio of the Copernicus Global Land service contains Essential Climate Variables like the Leaf Area Index (LAI), the Fraction of PAR absorbed by the vegetation (FAPAR), the surface albedo, the Land Surface Temperature, the soil moisture, the burnt areas, the areas of water bodies, and additional vegetation indices. They are generated every hour, every day or every 10 days on a reliable automatic basis from Earth Observation satellite data. Beside this timely production, the available historical archives have been processed, using the same innovative algorithms, to get consistent time series as long as possible. All products are accessible, free of charge after registration through FTP/HTTP (global/>http://land.copernicus.eu/global/) and through the GEONETCast satellite distribution system. The evolution of the service towards the operations at 333m resolution is partly supported by the FP7/ImagineS project which focuses on the retrieval of LAI, FAPAR, fraction of vegetation cover and surface albedo from PROBA-V sensor data. The paper presents the innovations of the 333m biophysical products, make an overview of their current status, and introduce the next steps of the evolution of the Copernicus Global Land service.

  9. Financing tuberculosis control: the role of a global financial monitoring system.

    PubMed

    Floyd, Katherine; Pantoja, Andrea; Dye, Christopher

    2007-05-01

    Control of tuberculosis (TB), like health care in general, costs money. To sustain TB control at current levels, and to make further progress so that global targets can be achieved, information about funding needs, sources of funding, funding gaps and expenditures is important at global, regional, national and sub-national levels. Such data can be used for resource mobilization efforts; to document how funding requirements and gaps are changing over time; to assess whether increases in funding can be translated into increased expenditures and whether increases in expenditure are producing improvements in programme performance; and to identify which countries or regions have the greatest needs and funding gaps. In this paper, we discuss a global system for financial monitoring of TB control that was established in WHO in 2002. By early 2007, this system had accounted for actual or planned expenditures of more than US$ 7 billion and was systematically reporting financial data for countries that carry more than 90% of the global burden of TB. We illustrate the value of this system by presenting major findings that have been produced for the period 2002-2007, including results that are relevant to the achievement of global targets for TB control set for 2005 and 2015. We also analyse the strengths and limitations of the system and its relevance to other health-care programmes.

  10. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  11. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change.

    PubMed

    Anderson-Teixeira, Kristina J; Davies, Stuart J; Bennett, Amy C; Gonzalez-Akre, Erika B; Muller-Landau, Helene C; Wright, S Joseph; Abu Salim, Kamariah; Almeyda Zambrano, Angélica M; Alonso, Alfonso; Baltzer, Jennifer L; Basset, Yves; Bourg, Norman A; Broadbent, Eben N; Brockelman, Warren Y; Bunyavejchewin, Sarayudh; Burslem, David F R P; Butt, Nathalie; Cao, Min; Cardenas, Dairon; Chuyong, George B; Clay, Keith; Cordell, Susan; Dattaraja, Handanakere S; Deng, Xiaobao; Detto, Matteo; Du, Xiaojun; Duque, Alvaro; Erikson, David L; Ewango, Corneille E N; Fischer, Gunter A; Fletcher, Christine; Foster, Robin B; Giardina, Christian P; Gilbert, Gregory S; Gunatilleke, Nimal; Gunatilleke, Savitri; Hao, Zhanqing; Hargrove, William W; Hart, Terese B; Hau, Billy C H; He, Fangliang; Hoffman, Forrest M; Howe, Robert W; Hubbell, Stephen P; Inman-Narahari, Faith M; Jansen, Patrick A; Jiang, Mingxi; Johnson, Daniel J; Kanzaki, Mamoru; Kassim, Abdul Rahman; Kenfack, David; Kibet, Staline; Kinnaird, Margaret F; Korte, Lisa; Kral, Kamil; Kumar, Jitendra; Larson, Andrew J; Li, Yide; Li, Xiankun; Liu, Shirong; Lum, Shawn K Y; Lutz, James A; Ma, Keping; Maddalena, Damian M; Makana, Jean-Remy; Malhi, Yadvinder; Marthews, Toby; Mat Serudin, Rafizah; McMahon, Sean M; McShea, William J; Memiaghe, Hervé R; Mi, Xiangcheng; Mizuno, Takashi; Morecroft, Michael; Myers, Jonathan A; Novotny, Vojtech; de Oliveira, Alexandre A; Ong, Perry S; Orwig, David A; Ostertag, Rebecca; den Ouden, Jan; Parker, Geoffrey G; Phillips, Richard P; Sack, Lawren; Sainge, Moses N; Sang, Weiguo; Sri-Ngernyuang, Kriangsak; Sukumar, Raman; Sun, I-Fang; Sungpalee, Witchaphart; Suresh, Hebbalalu Sathyanarayana; Tan, Sylvester; Thomas, Sean C; Thomas, Duncan W; Thompson, Jill; Turner, Benjamin L; Uriarte, Maria; Valencia, Renato; Vallejo, Marta I; Vicentini, Alberto; Vrška, Tomáš; Wang, Xihua; Wang, Xugao; Weiblen, George; Wolf, Amy; Xu, Han; Yap, Sandra; Zimmerman, Jess

    2015-02-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25 ha), all stems ≥ 1 cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 °S-61 °N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 °C), changes in precipitation (up to ± 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8 g N m(-2) yr(-1) and 3.1 g S m(-2) yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5 km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

  12. The Role of the Global SOF Network in a Resource Constrained Environment

    DTIC Science & Technology

    2013-11-01

    Wong-Diaz 21st Century SOF: Toward an American Theory of Special Operations, April 2013, Harry R. Yarger Irregular Warfare: The Maoist Threat to...Role of the Global SOF Network in a Resource Constrained Environment. This symposium represented the second year in which JSOU and the Canadian...symposium in the series and the second co-sponsored by the Joint Special Operations University (JSOU) and the Canadian Special Operations Forces Command

  13. Workshop on Pervasive Computing and Cooperative Environments in a Global Context

    NASA Astrophysics Data System (ADS)

    Selvarajah, Kirusnapillai; Speirs, Neil

    The increasing number of devices that are invisibly embedded into our surrounding environment as well as the proliferation of wireless communication and sensing technologies are the basis for visions like ambient intelligence, ubiquitous and pervasive computing. In this context, the objective of PECES EU project is the creation of a comprehensive software layer to enable the seamless cooperation of embedded devices across various smart spaces on a global scale in a context-dependent, secure and trustworthy manner.

  14. The Global Integrated Drought Monitoring and Prediction System (GIDMaPS): Overview and Capabilities

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Hao, Z.; Farahmand, A.; Nakhjiri, N.

    2013-12-01

    Development of reliable monitoring and prediction indices and tools are fundamental to drought preparedness and management. Motivated by the Global Drought Information Systems (GDIS) activities, this paper presents the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which provides near real-time drought information using both remote sensing observations and model simulations. The monthly data from the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA-Land), North American Land Data Assimilation System (NLDAS), and remotely sensed precipitation data are used as input to GIDMaPS. Numerous indices have been developed for drought monitoring based on various indicator variables (e.g., precipitation, soil moisture, water storage). Defining droughts based on a single variable (e.g., precipitation, soil moisture or runoff) may not be sufficient for reliable risk assessment and decision making. GIDMaPS provides drought information based on multiple indices including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. In other words, MSDI incorporates the meteorological and agricultural drought conditions for overall characterization of droughts. The seasonal prediction component of GIDMaPS is based on a persistence model which requires historical data and near-past observations. The seasonal drought prediction component is based on two input data sets (MERRA and NLDAS) and three drought indicators (SPI, SSI and MSDI). The drought prediction model provides the empirical probability of drought for different severity levels. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from several major droughts including the 2013 Namibia, 2012-2013 United States, 2011-2012 Horn of Africa, and 2010 Amazon Droughts will be presented. The results indicate

  15. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm.

    PubMed

    Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.

  16. Secure Scientific Applications Scheduling Technique for Cloud Computing Environment Using Global League Championship Algorithm

    PubMed Central

    Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid

    2016-01-01

    Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239

  17. Monitoring of global acoustic transmissions: Signal processing and preliminary data analysis

    NASA Astrophysics Data System (ADS)

    Frogner, Gary R.

    1991-09-01

    A great deal of controversy exists concerning the possible global warming trend which may occur as a result of a documented increase in atmospheric greenhouse gasses. The 1991 Heard Island Feasibility Experiment tested the feasibility of using transmissions of acoustic energy through major ocean basins of the world to monitor spatially averaged global temperature trends. This thesis documents the Naval Postgraduate School's reception of the phase encoded signal transmitted from the Southern Indian Ocean, development of real-time signal processing software, and preliminary data analysis. Data, received from a 32-channel vertical array suspended in the deep sound channel off the coast of Monterey, CA, was processed using real-time capable software. Data processing to reduce noise, determine SNR, and remove the m-sequence coding was found to be quite sensitive to Doppler frequency shifts. Although the SNR of the raw data was only about -27.5 dB for individual hydrophones, the transmitted signal was detected in both the frequency and time domains. However, the maximum processed signal peak in the time domain had an SNR of only +9 dB which is insufficient for use in a long term global temperature monitoring project. The hydrophone provides inadequate arrival time resolution.

  18. FBG and FOPS for local and global structural health monitoring on a single fiber

    NASA Astrophysics Data System (ADS)

    Maheshwari, Muneesh; Tjin, Swee Chuan; Ching, Wei Wen; Asundi, A.

    2015-04-01

    Fiber Bragg grating (FBG) sensors and fiber optic polarimetric sensors (FOPS) have been widely researched and implemented for structural health monitoring (SHM). FBG essentially provides localized strain information, while FOPS gives a global indication of the structural health of materials. An FBG written on the polarization maintaining (PM) fiber can thus be used for both global structural monitoring and local strain sensing. However each sensor has to be used with its own hardware and processing. For gratings written on PM fibers two Bragg reflections, corresponding to two modes of polarization, are observed. While both Bragg wavelengths shift under longitudinal strain in unison, their relative peak amplitude does not change. In this paper, a novel concept is proposed which makes the peak amplitudes responsive to the longitudinal strain. This relative amplitude of both the peaks is used for the first time to determine the state of polarization (SOP) with no additional optical systems. With this additional information on SOP, PM-FBGs can be used for both, local and global SHM simultaneously. Further, a new design has been proposed which gives improved information on the damaged location in beam structures. This can be further extended to other complex geometries.

  19. Food and beverage environment analysis and monitoring system: a reliability study in the school food and beverage environment.

    PubMed

    Bullock, Sally Lawrence; Craypo, Lisa; Clark, Sarah E; Barry, Jason; Samuels, Sarah E

    2010-07-01

    States and school districts around the country are developing policies that set nutrition standards for competitive foods and beverages sold outside of the US Department of Agriculture's reimbursable school lunch program. However, few tools exist for monitoring the implementation of these new policies. The objective of this research was to develop a computerized assessment tool, the Food and Beverage Environment Analysis and Monitoring System (FoodBEAMS), to collect data on the competitive school food environment and to test the inter-rater reliability of the tool among research and nonresearch professionals. FoodBEAMS was used to collect data in spring 2007 on the competitive foods and beverages sold in 21 California high schools. Adherence of the foods and beverages to California's competitive food and beverage nutrition policies for schools (Senate Bills 12 and 965) was determined using the data collected by both research and nonresearch professionals. The inter-rater reliability between the data collectors was assessed using the intraclass correlation coefficient. Researcher vs researcher and researcher vs nonresearcher inter-rater reliability was high for both foods and beverages, with intraclass correlation coefficients ranging from .972 to .987. Results of this study provide evidence that FoodBEAMS is a promising tool for assessing and monitoring adherence to nutrition standards for competitive foods sold on school campuses and can be used reliably by both research and nonresearch professionals.

  20. Towards global benchmarking of food environments and policies to reduce obesity and diet-related non-communicable diseases: design and methods for nation-wide surveys

    PubMed Central

    Vandevijvere, Stefanie; Swinburn, Boyd

    2014-01-01

    Introduction Unhealthy diets are heavily driven by unhealthy food environments. The International Network for Food and Obesity/non-communicable diseases (NCDs) Research, Monitoring and Action Support (INFORMAS) has been established to reduce obesity, NCDs and their related inequalities globally. This paper describes the design and methods of the first-ever, comprehensive national survey on the healthiness of food environments and the public and private sector policies influencing them, as a first step towards global monitoring of food environments and policies. Methods and analysis A package of 11 substudies has been identified: (1) food composition, labelling and promotion on food packages; (2) food prices, shelf space and placement of foods in different outlets (mainly supermarkets); (3) food provision in schools/early childhood education (ECE) services and outdoor food promotion around schools/ECE services; (4) density of and proximity to food outlets in communities; food promotion to children via (5) television, (6) magazines, (7) sport club sponsorships, and (8) internet and social media; (9) analysis of the impact of trade and investment agreements on food environments; (10) government policies and actions; and (11) private sector actions and practices. For the substudies on food prices, provision, promotion and retail, ‘environmental equity’ indicators have been developed to check progress towards reducing diet-related health inequalities. Indicators for these modules will be assessed by tertiles of area deprivation index or school deciles. International ‘best practice benchmarks’ will be identified, against which to compare progress of countries on improving the healthiness of their food environments and policies. Dissemination This research is highly original due to the very ‘upstream’ approach being taken and its direct policy relevance. The detailed protocols will be offered to and adapted for countries of varying size and income in order to

  1. A 3-year hygiene and safety monitoring of a meat processing plant which uses raw materials of global origin.

    PubMed

    Manios, Stavros G; Grivokostopoulos, Nikolaos C; Bikouli, Vasiliki C; Doultsos, Dimitrios A; Zilelidou, Evangelia A; Gialitaki, Maria A; Skandamis, Panagiotis N

    2015-09-16

    A systematic approach in monitoring the hygiene of a meat processing plant using classical microbiological analyses combined with molecular characterization tools may assist in the safety of the final products. This study aimed: (i) to evaluate the total hygiene level and, (ii) to monitor and characterize the occurrence and spread of Salmonella spp. and Listeria monocytogenes in the environment and the final products of a meat industry that processes meat of global origin. In total, 2541 samples from the processing environment, the raw materials, and the final products were collected from a Greek meat industry in the period 2011-2013. All samples were subjected to enumeration of total viable counts (TVC), Escherichia coli (EC) and total coliforms (TCC) and the detection of Salmonella spp., while 709 of these samples were also analyzed for the presence L. monocytogenes. Pathogen isolates were serotyped and further characterized for their antibiotic resistance and subtyped by PFGE. Raw materials were identified as the primary source of contamination, while improper handling might have also favored the proliferation of the initial microbial load. The occurrence of Salmonella spp. and L. monocytogenes reached 5.5% and 26.9%, respectively. Various (apparent) cross-contamination or persistence trends were deduced based on PFGE analysis results. Salmonella isolates showed wide variation in their innate antibiotic resistance, contrary to L. monocytogenes ones, which were found susceptible to all antibiotics except for cefotaxime. The results emphasize the biodiversity of foodborne pathogens in a meat industry and may be used by meat processors to understand the spread of pathogens in the processing environment, as well as to assist the Food Business Operator (FBO) in establishing effective criteria for selection of raw materials and in improving meat safety and quality. This approach can limit the increase of microbial contamination during the processing steps observed in

  2. Environmental exposure modeling and monitoring of human pharmaceutical concentrations in the environment

    USGS Publications Warehouse

    Versteeg, D.J.; Alder, A. C.; Cunningham, V. L.; Kolpin, D.W.; Murray-Smith, R.; Ternes, T.

    2005-01-01

    Human pharmaceuticals are receiving increased attention as environmental contaminants. This is due to their biological activity and the number of monitoring programs focusing on analysis of these compounds in various environmental media and compartments. Risk assessments are needed to understand the implications of reported concentrations; a fundamental part of the risk assessment is an assessment of environmental exposures. The purpose of this chapter is to provide guidance on the use of predictive tools (e.g., models) and monitoring data in exposure assessments for pharmaceuticals in the environment. Methods to predict environmental concentrations from equations based on first principles are presented. These equations form the basis of existing GIS (geographic information systems)-based systems for understanding the spatial distribution of pharmaceuticals in the environment. The pharmaceutical assessment and transport (PhATE), georeferenced regional exposure assessment tool for European rivers (GREAT-ER), and geographical information system (GIS)-ROUT models are reviewed and recommendations are provided concerning the design and execution of monitoring studies. Model predictions and monitoring data are compared to evaluate the relative utility of each approach in environmental exposure assessments. In summary, both models and monitoring data can be used to define representative exposure concentrations of pharmaceuticals in the environment in support of environmental risk assessments.

  3. Meeting Report: Long Term Monitoring of Global Vegetation using Moderate Resolution Satellites

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey; Heinsch, Fath Ann; Running, Steven W.

    2006-01-01

    The international community has long recognized the need to coordinate observations of Earth from space. In 1984, this situation provided the impetus for creating the Committee on Earth Observation Satellites (CEOS), an international coordinating mechanism charged with coordinating international civil spaceborne missions designed to observe and study planet Earth. Within CEOS, its Working Group on Calibration and Validation (WGCV) is tasked with coordinating satellite-based global observations of vegetation. Currently, several international organizations are focusing on the requirements for Earth observation from space to address key science questions and societal benefits related to our terrestrial environment. The Global Vegetation Workshop, sponsored by the WGCV and held in Missoula, Montana, 7-10 August, 2006, was organized to establish a framework to understand the inter-relationships among multiple, global vegetation products and identify opportunities for: 1) Increasing knowledge through combined products, 2) Realizing efficiency by avoiding redundancy, and 3) Developing near- and long-term plans to avoid gaps in our understanding of critical global vegetation information. The Global Vegetation Workshop brought together 135 researchers from 25 states and 14 countries to advance these themes and formulate recommendations for CEOS members and the Global Earth Observation System of Systems (GEOSS). The eighteen oral presentations and most of the 74 posters presented at the meeting can be downloaded from the meeting website (www.ntsg.umt.edu/VEGMTG/). Meeting attendees were given a copy of the July 2006 IEEE Transactions on Geoscience and Remote Sensing Special Issue on Global Land Product Validation, coordinated by the CEOS Working Group on Calibration and Validation (WGCV). This issue contains 29 articles focusing on validation products from several of the sensors discussed during the workshop.

  4. An Inundated Wetlands Earth System Data Record: Global Monitoring of Wetland Extent and Dynamics

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K.; Chapman, B.; Hess, L.; Moghaddam, M.; Kimball, J. S.; Matthews, E.; Prigent, C.

    2008-12-01

    Wetlands exert major impacts on global biogeochemistry, hydrology, and biological diversity. The extent and seasonal, interannual, and decadal variation of inundated wetlands play key roles in ecosystem dynamics. Despite the importance of these environments in the global cycling of carbon and water and to current and future climate, the extent and dynamics of global wetlands remain poorly characterized and modeled. This is primarily because of the scarcity of suitable regional-to-global remote-sensing data for characterizing wetland distribution and dynamics. As part of a NASA MEaSUREs project, we are constructing a global-scale Earth System Data Record (ESDR) of inundated wetlands to facilitate investigations on their role in climate, biogeochemistry, hydrology, and biodiversity. The ESDR is being generated using legacy algorithms developed from spaceborne remote sensing data sets and is comprised of two complementary components. The first are fine resolution (100 m) maps of wetland extent, vegetation type, and seasonal inundation dynamics, derived from Synthetic Aperture Radar (SAR), for continental-scale areas covering crucial wetland regions. The second are global monthly maps of inundation extent at ~25 km resolution for the period 1992- 2009, derived from multiple satellite observations. We present details of the ESDR construction including remote sensing algorithm applications, cross-product harmonization, and planned data set distribution. The status of current efforts to assemble this ESDR, including data processing, wetland classifications, and open water change mappings derived from L-band data for the state of Alaska and select basins in Eurasia are presented. This ESDR will provide the first accurate, consistent and comprehensive global-scale data set of wetland inundation and vegetation, including continental-scale multitemporal and multi-year monthly inundation dynamics at multiple scales. Portions of this work were carried out at the Jet Propulsion

  5. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment

    EPA Science Inventory

    We reviewed compliance monitoring requirements in the European Union (EU), the United States(USA), and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic (OSPAR), and evaluated if these are met by passive sampling methods for nonpola...

  6. STS-2 Induced Environment Contamination Monitor (IECM): Quick-Look Report

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor)

    1982-01-01

    The STS-2/induced environment contamination monitor (IECM) mission is described. The IECM system performance is discussed, and IECM mission time events are briefly described. Quick look analyses are presented for each of the 10 instruments comprising the IECM on the flight of STS-2. A short summary is presented.

  7. Problems of correlation of global and local monitoring of air pollution.

    PubMed

    Berlyand, M E; Volberg, N S; Lavrinenko, R F; Rusina, E N

    1982-12-01

    (1) The Air Polluttion Monitoring System has got a significant development of late, which is in direct relation with a considerable extention and improvement of the observation network in cities and industrial areas, with creation of a new network for assessing regional and global background of the atmosphere pollution, as well as with the wide involvement of meteorologists to monitoring organization. (2) While developing a new global monitoring system, it is necessary to take into account its relationship with the local monitoring within the region of air pollution sources, i.e. at the \\lsimpact\\rs level. The need in such an account is dictated first of all by the physics of pollutant spreading that states: changes in air pollution over large territories must be in a certain agreement with greater changes in the vicinity of emission sources. Methods applied in the global and local monitoring have also a number of common peculiarities. White organizing regional network for observations of the background pollution of the atmosphere twin stations (one of the pair of stations located outside the city boundaries in a small community, and the other, in the nearest city with the population of 200-400 thousand inhabitants) were established in the U.S.S.R. and in a number of socialist countries in Europe. (3) Implementation of the twin-station principles in the U.S.S.R. has contributed to data interpretation and representativity assessment as well as to correction of the station location. Observation results from the Soviet background stations and those abroad have been compared by now according to a number of indices. (4) The correlation of monitoring systems of various scales tells positively both on mutual improvement and completion of observational methods. The methods of obtaining integral characteristics of air pollution were used for the global monitoring, in particular spectral actinometric observations and chemical analysis of the precipitation composition. Now

  8. High Resolution Displacement Monitoring for Urban Environments in Seattle, Washington using Terrestrial Radar Interferometry

    NASA Astrophysics Data System (ADS)

    Lowry, B. W.; Schrock, G.; Werner, C. L.; Zhou, W.; Pugh, N.

    2015-12-01

    Displacement monitoring using Terrestrial Radar Interferometry (TRI) over an urban environment was conducted to monitor for potential movement of buildings, roadways, and urban infrastructure in Seattle, Washington for a 6 week deployment in March and April of 2015. A Gamma Portable Radar Interferometer was deployed on a the lower roof of the Smith Tower at an elevation of about 100 m, overlooking the historical district of Pioneer Square. Radar monitoring in this context provides wide area coverage, sub millimeter precision, near real time alarming, and reflectorless measurement. Image georectification was established using a previously collected airborne lidar scan which was used to map the radar image onto a 3D 1st return elevation model of downtown Seattle. Platform stability concerns were monitored using high rate GPS and a 3-axis accelerometer to monitor for building movement or platform instability. Displacements were imaged at 2 minute intervals and stacked into 2 hour averages to aid in noise characterization. Changes in coherence are characterized based on diurnal fluctuations of temperature, cultural noise, and target continuity. These informed atmospheric and image selection filters for optimizing interferogram generation and displacement measurement quality control. An urban monitoring workflow was established using point target interferometric analysis to create a monitoring set of approximately 100,000 stable monitoring points measured at 2 minute to 3 hour intervals over the 6 week deployment. Radar displacement measurements were verified using ongoing survey and GPS monitoring program and with corner reflector tests to verify look angle corrections to settlement motion. Insights from this monitoring program can be used to design TRI monitoring programs for underground tunneling, urban subsidence, and earthquake damage assessment applications.

  9. Beyond indicators: advances in global HIV monitoring and evaluation during the PEPFAR era.

    PubMed

    Porter, Laura E; Bouey, Paul D; Curtis, Sian; Hochgesang, Mindy; Idele, Priscilla; Jefferson, Bobby; Lemma, Wuleta; Myrick, Roger; Nuwagaba-Biribonwoha, Harriet; Prybylski, Dimitri; Souteyrand, Yves; Tulli, Tuhuma

    2012-08-15

    Monitoring and evaluation (M&E) is fundamental to global HIV program implementation and has been a cornerstone of the President's Emergency Plan for AIDS Relief (PEPFAR). Rapid results were crucial to demonstrating feasibility and scalability of HIV care and treatment services early in PEPFAR. When national HIV M&E systems were nascent, the rapid influx of funds and the emergency expansion of HIV services contributed to the development of uncoordinated "parallel" information systems to serve donor demands for information. Close collaboration of PEPFAR with multilateral and national partners improved harmonization of indicators, standards, methods, tools, and reports. Concurrent PEPFAR investments in surveillance, surveys, program monitoring, health information systems, and human capacity development began to show signs of progress toward sustainable country-owned systems. Awareness of the need for and usefulness of data increased, far beyond discussions of indicators and reporting. Emphasis has turned toward ensuring the quality of data and using available data to improve the quality of care. Assessing progress toward an AIDS-free generation requires that the global community can measure the reduction of new HIV infections in children and adults and monitor the coverage, quality, and outcomes of highly efficacious interventions in combination. Building national M&E systems requires sustained efforts over long periods of time with effective leadership and coordination. PEPFAR, in close collaboration with its global and national partners, is well positioned to transform the successes and challenges associated with early rapid scale-up into future opportunities for sustainable, cost-effective, country-owned programs and systems.

  10. Nonthreshold-based event detection for 3d environment monitoring in sensor networks

    SciTech Connect

    Li, M.; Liu, Y.H.; Chen, L.

    2008-12-15

    Event detection is a crucial task for wireless sensor network applications, especially environment monitoring. Existing approaches for event detection are mainly based on some predefined threshold values and, thus, are often inaccurate and incapable of capturing complex events. For example, in coal mine monitoring scenarios, gas leakage or water osmosis can hardly be described by the overrun of specified attribute thresholds but some complex pattern in the full-scale view of the environmental data. To address this issue, we propose a nonthreshold-based approach for the real 3D sensor monitoring environment. We employ energy-efficient methods to collect a time series of data maps from the sensor network and detect complex events through matching the gathered data to spatiotemporal data patterns. Finally, we conduct trace-driven simulations to prove the efficacy and efficiency of this approach on detecting events of complex phenomena from real-life records.

  11. The Use of Sentinel-1 for Monitoring of Soil Moisture within the Copernicus Global Land Service

    NASA Astrophysics Data System (ADS)

    Doubkova, M.; Wagner, W.; Naeimi, V.; Cao, S.; Bauer-Marschallinger, B.; Kidd, R.; Hasenauer, Stefan; Dostalova, A.; Paulik, Christopher

    2016-08-01

    Within the Copernicus Global Land Service (CGLS), a global Soil Water Index (SWI) product is available on an operational basis, derived from the Metop Advanced Scatterometer (ASCAT) with a spatial sampling of 0.1°. The SWI quantifies the moisture condition at various depths in the soil. To match the spatial resolution of the SWI data with the rest of the CGLS data products, the 1 km Sentinel-1 (S-1) surface soil moisture (SSM) product can be used. The S-1 SSM is retrieved by inverting a backscatter model trained using historic SAR observations. Here, the progress made in delivering the 1 km fused SWI as well as the 1 km S-1 SSM products at the Earth Observation Data Centre for Water Resources Monitoring (https://www.eodc.eu/) is reported. The first validation results of the 1 km fused SWI are satisfying demonstrating well the added fine- scale spatial soil moisture signal.

  12. Global atmospheric temperature monitoring with satellite microwave measurements - Method and results 1979-84

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Christy, John R.; Grody, Norman C.

    1990-01-01

    This paper describes a method for determining global atmospheric-temperature anomalies by means of satellite microwave radiometry. It is shown that microwave measurements of molecular oxygen thermal emission by the Microwave Sounding Units (MSUs) flying aboard the NOAA-6 and NOAA-7 can be used to monitor tropospheric temperature anomalies on global basis to a high level of precision. Comparisons between monthly MSU-derived hemispheric temperature anomalies with those computed from surface thermometer data show a very good agreement over the United States, although not for the hemispheres, especially the Southern Hemisphere. In this latter case, the poor agreement is ascribed to weaker thermal coupling between the ocean and the deep troposphere than that over the U.S. Annual anomalies for the hemispheres exhibit better correlations than do monthly anomalies.

  13. An evaluation of monthly mean MSU and ECMWF global atmospheric temperatures for monitoring climate

    NASA Technical Reports Server (NTRS)

    Hurrell, James W.; Trenberth, Kevin E.

    1992-01-01

    The usefulness of global satellite sounding data for monitoring climate was assessed by comparing monthly mean brightness temperature anomalies derived from channel 2 of the microwave sounding units (MSUs) on board NOAA satellites over the past decade with both weighted and pressure-level ECMWF monthly mean temperatures for 96 months from 1982 to 1989. Results show that very good agreement exists between the MSU and the weighted ECMWF temperatures over the period considered, with grid-point correlations exceeding 0.85. Comparisons with individual pressure-level temperatures from ECMWF showed high correlations at 300 mb over most of the globe.

  14. Physical and performance characteristics of instruments selected for global change monitoring

    NASA Astrophysics Data System (ADS)

    Allen, Cheryl L.

    1991-09-01

    The following appendix (appendix B) lists the instruments chosen for the Global Change Monitoring program. The instruments are described according to the following categories: (1) Title; (2) Measurement; (3) Contact; (4) Instrument Type; (5) Dimensions; (6) Mass; (7) Average Operational Power; (8) Data Rate; (9) Spectral/Frequency Range; (10) Number of Channels/Frequencies; (11) Viewing Field; (12) Scanning Characteristics; (13) Resolution (Horizontal/Vertical); (14) Swath Width; (15) Satellite Application; and (16) Technology Status. A technical drawing of each instrument is also provided.

  15. Use of Sentinels to aid the global monitoring of snow cover

    NASA Astrophysics Data System (ADS)

    Pulliainen, Jouni; Salminen, Miia; Luojus, Kari; Metsämäki, Sari; Lemmetyinen, Juha; Takala, Matias; Cohen, Juval; Böttcher, Kristine

    2014-05-01

    Earth observation instruments onboard Sentinel satellites provide a unique opportunity for the monitoring and investigation of global snow processes. The issue of the possible decay of seasonal snow cover is highly relevant for climate research. In addition to water cycle, the extent and amount of snow affects to surface albedo, and indirectly to carbon cycling. The latter issue includes snow-induced changes in permafrost regions (active layer characteristics), as well as the effect of snow (melt) to vegetation growth and soil respiration. Recent advances in ESA DUE GlobSnow project have shown that by combining data from optical satellite sensors and passive microwave instruments advanced Climate Data Records (CDR) on seasonal snow cover can be produced, extending to time periods of over 30 years. The combined snow cover products provide information both on Snow Extent (SE) and Snow Water Equivalent (SWE) on a daily basis. The applicable instruments providing historical data for CDR generation include such microwave radiometers as SMMR, AMSR and SSMI/I, and such optical sensors as AVHRR, AATSR and VIIRS. Sentinel 3, especially its SLSTR instrument, is a prominent tool for expanding the snow CDR for forthcoming years. The developed global snow cover monitoring methodology, demonstrated and discussed here, derives the SWE information from passive microwave data (accompanied with in situ observations of snow depth at synoptic weather stations). The snow extent and fractional snow cover (FSC) on ground is derived from optical satellite data, in order to accurately map the continental line of seasonal snow cover, and to map regions of ephemeral snow cover. An advanced feature in the developed methodology is the provision of uncertainty information on snow cover characteristics associated with each individual satellite data footprint on ground and moment of time. In addition to assisting the generation and extension of the global snow cover CDR, Sentinel missions provide

  16. Early drought detection, monitoring, and assessment of crop losses from space: global approach

    NASA Astrophysics Data System (ADS)

    Kogan, Felix

    2006-12-01

    With nearly 30 years of the accumulated AVHRR data which were collected from NOAA operational polar-orbiting environmental satellites, the area of their applications expanded in the direction of agricultural production modeling, understanding of climate and global change, resource management, and early and more efficient monitoring of the environmental impacts (especially droughts) on economy and society. This becomes possible due to development of Vegetation Health indices (VHI). This paper discusses utility of AVHRR-based VHI for modeling crop and pasture yield with specific emphasis on early drought warning and estimation of losses in agricultural production.

  17. Using Spaceborne Ku-Band Scatterometer for Global Snow Cover Monitoring

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Tsai, W.-Y.

    1999-01-01

    We demonstrate for the first time the utility of spaceborne Ku-band scatterometer for global snow cover monitoring. Satellite radar data were collected over the globe by the NASA Scatterometer (NSCAT) operated at 14 GHz on board the Japanese ADEOS spacecraft from September 1996 to June 1997, spanning the 1997 seasonal snow season. First, we present backscatter signature of dry and wet snow to facilitate the interpretation of NSCAT backscatter evolution over snow cover regions. Surface field experiments indicated that dry snow backscatter at Ku band is approximately 40 times stronger than that at C band. Thus, Ku-band scatterometer measurements are sensitive to snow cover, which is typically transparent to C-band scatterometer returns. Furthermore, Ku-band backscatter does not saturate for most of natural snow depths as compared to radar responses at 19 GHz and 37 GHz or higher frequencies which have more limited penetration depths into snow. Ku-band backscatter is also sensitive to wetness in snow, which is appropriate to detect early snow melt conditions. Using the snow backscatter characteristics, we investigate NSCAT backscatter evolution over global snow cover regions throughout the 1997 snow season. The results reveal detail delineations between different regional snow areas. We show the correlation of these delineations with the boundaries of different global snow classes defined by the U.S. Army Cold Regions Research and Engineering Laboratory snow classification system. Using in-situ snow depth data from the U.S. National Climatic Data Center, we show that Ku-band backscatter corresponds very well to the trend of snow melt while snow mapping products (U.S. Climate Prediction Center gridded snow charts) from visible sensors does not reflect the fast snow melt trend. To illustrate the practical application of global snow monitoring with spaceborne Ku-band scatterometer, we present NSCAT backscatter response corresponding to the snow event leading to the 1997

  18. Mutations in Global Regulators Lead to Metabolic Selection during Adaptation to Complex Environments

    PubMed Central

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie-Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif

    2014-01-01

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management

  19. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    DOE PAGES

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; ...

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased geneticmore » and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel

  20. Building a data set over 12 globally distributed sites to support the development of agriculture monitoring applications with Sentinel-2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Developing better agricultural monitoring capabilities based on Earth Observation data is critical for strengthening food production information and market transparency. The coming Sentinel-2 mission has the optimal capacity for regional to global agriculture monitoring in terms of resolution (10-20...

  1. Youth, Skills Development, and Work in the Education for All Global Monitoring Report 2012: Learning from Asia or for Asia?

    ERIC Educational Resources Information Center

    King, Kenneth

    2014-01-01

    The article underlines the historic importance of the treatment of skills development, finally, by the Education for All Global Monitoring Report (GMR) team. Among the many challenges in its analysis are the multiple and overlapping meanings of the word skill, and the consequent difficulties of quantifying and monitoring efforts at skills…

  2. Effective sensing approach for assessment and monitoring of in-situ biodegradation in a subsurface environment

    NASA Astrophysics Data System (ADS)

    Li, Dong X.

    1999-02-01

    Rapid assessment and monitoring of biological conditions in a subsurface environment is becoming more and more important as bioremediation approaches become widely used in environmental cleanup. Remediation monitoring is also more challenging for in-situ remedial approaches, such as bioventing, biosparging, or passive bioremediation, where conventional 'inlet' and 'outlet' monitoring can no longer be applied. A sensing approach using subsurface chemical sensors offers a cost- effective alternative for remediation monitoring. Additional benefits of deploying subsurface sensors include continuous and unattended measurement with minimum disturbance to the subsurface condition. In a series of field studies, an electrochemical oxygen sensor, a non-dispersive infrared (NDIR) carbon dioxide sensor, and two hydrocarbons sensors were employed for monitoring in-situ bioremediation of petroleum hydrocarbon contaminated soils. Biodegradation rates were effectively measured through an in-situ respiration measurement using subsurface oxygen and carbon dioxide sensors. The high sensitivity of the carbon dioxide sensor to small change in the concentration enables rapid respiration measurements. Subsurface hydrocarbon sensors offer a means to monitor the progress of remediation and the migration of contaminant vapors during the remediation. The chemical sensors tested are clearly cost effective for remediation monitoring. The strengths of oxygen and carbon dioxide sensors are complimentary to each other. Strengths and limitations of different hydrocarbon sensors were also noted. Balancing cost and performance of sensors is crucial for environmental remediation application.

  3. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2006-01-01

    This presentation focuses on the latest spectacular images from NASA's remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua which will be visualized and explained in the context of global change and man's impact on our world's environment. Visualizations of global data currently available from Earth orbiting satellites include the Earth at night with its city lights, high resolutions of tropical cyclone Eline and the resulting flooding of Mozambique as well as flybys of Cape Town, South Africa with its dramatic mountains and landscape, imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001. Visualizations of the global atmosphere and oceans are shown and demonstrations of the 3-dimensional structure of hurricane and cloud structures derived from recently launched Earth-orbiting satellites are are presented with other topics with a dynamic theater-style , along with animations of satellite launch deployments and orbital mapping to highlight aspects of Earth observations from space.

  4. Integrated system approach at GIST/ADEMRC for monitoring atmospheric environment

    NASA Astrophysics Data System (ADS)

    Kim, Young Joon; Noh, Y. M.; Choi, Sung C.; Lee, Chul Kyu; Jung, Jin Sang; Lee, Han L.; Kim, Jeong Eun; Kim, Kyung Won; Jung, Hyun Rock; Kim, Min Jung; He, Zhuanshi; Ogunjobi, Kehinde; Lee, Kwon Ho

    2004-09-01

    An integrated system approach has been adopted at the Advanced Environment Monitoring Research Center (ADEMRC), Kwangju Institute Science and Technology (KJIST), Korea for the effective monitoring of atmospheric environment utilizing various optical remote sensing methods. A multi-channel LIDAR system has been used since December 2002 to monitor the vertical profile of atmospheric aerosol. Vertical profiles of extinction coefficient, depolarization ratio, and color ratio of atmospheric aerosols are determined from the simultaneous detection of three elastic-backscatter signals and one Raman signal backscattered by atmospheric nitrogen molecules. Ground based sunphotometer measurement provides LIDAR validation and information on the column integrated aerosol optical depth at seven different wavelengths. Optical atmospheric environment monitoring over horizontal path is also made with a Long-path DOAS system and a transmissometer. The GIST long-path DOAS system has been used to measure concentration of trace gases as well as atmospheric extinction at 550 nm. Results of aerosol optical depth determination based on satellite data retrieval are compared with the results of LIDAR and sunphotometer measurements. This paper presents the results of integrated measurements of atmospheric aerosol at Gwangju (35°10`N, 126°53`E), Korea.

  5. A low-cost sensor buoy system for monitoring shallow marine environments.

    PubMed

    Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A

    2012-01-01

    Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications.

  6. A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments

    PubMed Central

    Albaladejo, Cristina; Soto, Fulgencio; Torres, Roque; Sánchez, Pedro; López, Juan A.

    2012-01-01

    Monitoring of marine ecosystems is essential to identify the parameters that determine their condition. The data derived from the sensors used to monitor them are a fundamental source for the development of mathematical models with which to predict the behaviour of conditions of the water, the sea bed and the living creatures inhabiting it. This paper is intended to explain and illustrate a design and implementation for a new multisensor monitoring buoy system. The system design is based on a number of fundamental requirements that set it apart from other recent proposals: low cost of implementation, the possibility of application in coastal shallow-water marine environments, suitable dimensions for deployment and stability of the sensor system in a shifting environment like the sea bed, and total autonomy of power supply and data recording. The buoy system has successfully performed remote monitoring of temperature and marine pressure (SBE 39 sensor), temperature (MCP9700 sensor) and atmospheric pressure (YOUNG 61302L sensor). The above requirements have been satisfactorily validated by operational trials in a marine environment. The proposed buoy sensor system thus seems to offer a broad range of applications. PMID:23012562

  7. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater.

    PubMed

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen's' reports and fish community monitorings.

  8. IMPLICATIONS OF GLOBAL CLIMATE CHANGE FOR THE ASSESSMENT AND MANAGEMENT OF HUMAN HEALTH RISKS OF CHEMICALS IN THE NATURAL ENVIRONMENT

    PubMed Central

    Balbus, John M; Boxall, Alistair BA; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren

    2013-01-01

    Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes. Environ. Toxicol. Chem. 2013;32:62–78. © 2012 SETAC PMID:23147420

  9. The potential for synthesizing multi-sensor remote sensing data for global volcano monitoring

    NASA Astrophysics Data System (ADS)

    Furtney, M.; Pritchard, M. E.; Carn, S. A.; McCormick, B.; Ebmeier, S. K.; Jay, J.

    2015-12-01

    Volcanoes exhibit variable eruption frequencies and styles, from near-continuous eruptions of effusive lavas to more intermittent, explosive eruptions. The monitoring frequency necessary to capture precursory signals at any volcano remains uncertain, as some warnings allot hours for evacuation. Likewise, no precursory signal appears deterministic for each volcano. Volcanic activity manifests in a variety of ways (i.e. tremor, deformation), thus requiring multiple monitoring mechanisms (i.e. geodetic, geochemical, geothermal). We are developing databases to compare relationships among remotely sensed volcanic unrest signals and eruptions. Satellite remote sensing utilizes frequent temporal measurements (daily to bi-weekly), an essential component of worldwide volcano monitoring. Remote sensing methods are also capable of detecting diverse precursory signals such as ground deformation from satellite interferometric synthetic aperture radar—InSAR— (multiple space agencies), degassing from satellite spectroscopy (i.e. OMI SO2 from NASA), and hot spots from thermal infrared (i.e. MODIS from NASA). We present preliminary results from seven SAR satellites and two thermal infrared satellites for 24 volcanoes with prominent SO2 emissions. We find near-continuous emissions at Ibu (Indonesia) since 2008 corresponded with hotspots and 10 cm of subsidence, with degassing and comparable subsidence observed at Pagan (Marianas). A newcomer to volcano monitoring, remote sensing data are only beginning to be utilized on a global scale, let alone as a synthesized dataset for monitoring developing eruptions. We foresee a searchable tool for rapidly accessing basic volcanic unrest characteristics for different types of volcanoes and whether or not they resulted in eruption. By including data from multiple satellite sensors in our database we hope to develop quantitative assessments for calculating the likelihood of eruption from individual events.

  10. The use of PROBA-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Kempeneers, Pieter; Piccard, Isabelle; Deronde, Bart; Eerens, Herman; Gobin, Anne

    2015-04-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at an unprecedented rate and scale such that they have a strong economic and environmental impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many cases the temporal frequency of the information is a requirement to detect phenomena that can occur within a few days and at a certain geographic scale. For example frequent updates on crop condition and projected production are needed to stabilise agricultural markets. Large initiatives such as the GEOGLAM AMIS (Group on Earth Observations Global Agricultural Monitoring - Agricultural Market Information System) respond to this increased need. Observations over large areas are available through satellites, however, the following challenges remain: • obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales appropriate to detect land cover/use changes in a consistent manner. • the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with a historical reference is of the utmost importance. The PROBA-V mission is an important attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the consistency between the PROBA-V data and the 15 years historical archive of SPOT-VEGETATION. In this respect PROBA-V observations are comparable with the SPOT-VEGETATION historical baseline and will therefore ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, PROBA -V also provides an increase in spatial resolution from 1km to 300m and even 100m. The latter ensures a global

  11. Cycling of DDT in the global environment 1950-2002: World ocean returns the pollutant

    NASA Astrophysics Data System (ADS)

    Stemmler, Irene; Lammel, Gerhard

    2009-12-01

    The global distribution and fate of the insecticide DDT was modeled for the first time using a spatially resolved global multicompartment chemistry-transport model comprising a 3D coupled atmosphere and ocean GCM, coupled to 2D vegetation surfaces and top soils. DDT enters the model environment as a pesticide in agriculture only. Final sinks of DDT in the total environment are degradation in air (hydroxyl radical reaction), on vegetation surfaces, in ocean sediments and soils. The process resolution of the ocean compartment, i.e., either a fixed or variable size and sinking velocity of suspended particles, has almost no effect on the large-scale cycling and fate of DDT. The residence times in various ocean basins were declining but varied regionally. The global ocean absorbed until 1977 and since then has been losing DDT, while large sea areas are still accumulating the pollutant. The main sink is volatilization to the atmosphere. In 1990, the year when emissions ceased, 292 kt of DDT were deposited to the global ocean, 301 kt were volatilized, and 41 kt were exported from the surface layer to the deeper levels. The sea region that has been representing the most significant (secondary) DDT source is the western N Atlantic (Gulf stream and N Atlantic Drift regions). It has been a source since approximately 1970. Also large parts of the tropical ocean and the southern mid-latitude ocean have turned net volatilizational (i.e., volatilization flux > deposition flux) during the 1980s. Despite the emissions migrating southward as a consequence of substance ban in mid latitudes, the geographic distribution of the contaminant (and, hence, environmental exposure) has been migrating steadily northward since the 1960s.

  12. Real-Time Environment Monitoring Using Data From Meteosat And Noaa Imaging Satellites

    NASA Astrophysics Data System (ADS)

    van Ingen, H. A.; Venema, J. C.

    1988-01-01

    An operational remote sensing system is described which supports the environment monitoring using the multi sensor - multi temporal data acquired by the geostationary and polar orbiting weather satellites. The information derived from the satellite images are maps on a continental scale with data on the estimated rainfall, the vegetation index (NDVI), and for experimental use, with data on the soil water available for crops. The operational system, called ARTEMIS, will meet the information requirements of the FAO monitoring programmes in the areas of food and feed security and plant protection.

  13. Monitoring the fate of radionuclides released to the environment: May 1991 report

    SciTech Connect

    Bauer, L.R.

    1992-08-13

    A review of the radiological effluent and environmental monitoring practices in use at Mound has been conducted. The radionuclides under consideration were HT, Pu-239, U-233,234, U-238, Th-230, Th-232, Co-60, Cs-137, and Ac-227. It is concluded from this analysis that additional continuous monitoring programs are not warranted. Dose contributions from these radionuclides are negligible. Further, in many cases environmental surveillance would not be practical due to the extremely low concentrations encountered in the offsite environment. For these reasons, it is believed that no additional action is required in response to DOE Tiger Team Finding R/CF-1.

  14. Four years of gravity waves monitoring in Antarctica : Impact for global atmospheric studies

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Le Pichon, A.; Ceranna, L.

    2007-12-01

    The development of the Infrasound International Monitoring System, used for the verification of the Comprehensive Test Ban Treaty, offers a powerful way to measure, permanently and at a global scale, the atmospheric waves at different latitudes. Infrasound stations using several microbarometers are very sensitive acoustic antennas, measuring the main characteristics of infrasound waves including velocity and direction of the wave front. Associated with new data processing methods, a global analysis of the atmospheric disturbances is now possible in a large frequency range. The networks if mostly sensitive to infrasound in the range 0.01 to 10 Hz, but most of gravity waves, which are characterized by very large amplitudes, are also detected by the network. The Antarctic stations are especially interesting for the study of gravity waves, because they are controlled by the polar vortex, and because they are rarely disturbed by the low latitude mountain gravity waves activity which is less important than in the Northern hemisphere. The monitoring of the gravity wave activity in the Antarctica station I27DE from 2003 up to 2007 reveals two active gravity wave systems. The first one, characterized by an azimuth from East, is produced in the troposphere by the wind blowing over mountains. The second system, characterized by an azimuth from West, is correlated with the wind and the temperature gradients in the lower stratosphere and is related with the polar stratospheric vortex. During magnetic storms infrasound waves are generally observed with a North azimuth at frequencies from 0.5 Hz to few Hz, however, gravity waves are generally not observed. A strong wave system has been observed coming from North only once in January 2005 several days after a major magnetic storm. The origin of this wave system in terms of magnetic storm or other processes related with the global dynamics of the stratosphere is discussed.

  15. Classification of Global Urban Centers Using ASTER Data: Preliminary Results From the Urban Environmental Monitoring Program

    NASA Astrophysics Data System (ADS)

    Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.

    2001-05-01

    Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.

  16. Evaluation of local media surveillance for improved disease recognition and monitoring in global hotspot regions.

    PubMed

    Schwind, Jessica S; Wolking, David J; Brownstein, John S; Mazet, Jonna A K; Smith, Woutrina A

    2014-01-01

    Digital disease detection tools are technologically sophisticated, but dependent on digital information, which for many areas suffering from high disease burdens is simply not an option. In areas where news is often reported in local media with no digital counterpart, integration of local news information with digital surveillance systems, such as HealthMap (Boston Children's Hospital), is critical. Little research has been published in regards to the specific contribution of local health-related articles to digital surveillance systems. In response, the USAID PREDICT project implemented a local media surveillance (LMS) pilot study in partner countries to monitor disease events reported in print media. This research assessed the potential of LMS to enhance digital surveillance reach in five low- and middle-income countries. Over 16 weeks, select surveillance system attributes of LMS, such as simplicity, flexibility, acceptability, timeliness, and stability were evaluated to identify strengths and weaknesses in the surveillance method. Findings revealed that LMS filled gaps in digital surveillance network coverage by contributing valuable localized information on disease events to the global HealthMap database. A total of 87 health events were reported through the LMS pilot in the 16-week monitoring period, including 71 unique reports not found by the HealthMap digital detection tool. Furthermore, HealthMap identified an additional 236 health events outside of LMS. It was also observed that belief in the importance of the project and proper source selection from the participants was crucial to the success of this method. The timely identification of disease outbreaks near points of emergence and the recognition of risk factors associated with disease occurrence continue to be important components of any comprehensive surveillance system for monitoring disease activity across populations. The LMS method, with its minimal resource commitment, could be one tool used to

  17. The Heritage of the Operational Usda/nasa Global Reservoir and Lake Monitor

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Beckley, B. D.; Reynolds, C. A.

    2012-12-01

    Satellite radar altimetry has the ability to monitor variations in surface water height for large lakes and reservoirs. A clear advantage is the provision of data where in situ data are lacking or where there is restricted access to ground-based measurements. A USDA/NASA funded program is performing altimetric monitoring of the largest lakes and reservoirs around the world. The near-real time height measurements are currently derived from NASA/CNES Jason-2/OSTM mission data. Archived data are also utilized from the NASA/CNES Topex/Poseidon and Jason-1 missions, the NRL GFO mission, and the ESA ENVISAT mission. Lake level products are output within 1-2 weeks after satellite overpass, a time delay which will improve to a few days as the project moves into its next phase. The USDA/FAS utilize the products for assessing irrigation potential (and thus crop production estimates), and for general observation of high-water status and short-term drought. Other end-users explore the products to study climate trends, observe anthropogenic effects, and to consider water management and regional security issues. This presentation explores the heritage of the Global Reservoir and Lake Monitor (GRLM) which has its origins in the field of ocean surface topography and the exploration of radar altimetry techniques over non-ocean surfaces. The current system closely follows the software design of the historical NASA Ocean Pathfinder Project and utilizes a global lakes catalogue that was created for climate change/aridity studies. The output of lake level products, imagery and information also echoes an earlier trial (UNDP-funded) lakes database which first offered altimetric products via the world wide web and which enabled world-wide interest to be both assessed and highlighted.;

  18. Evaluation of Local Media Surveillance for Improved Disease Recognition and Monitoring in Global Hotspot Regions

    PubMed Central

    Schwind, Jessica S.; Wolking, David J.; Brownstein, John S.; Mazet, Jonna A. K.; Smith, Woutrina A.

    2014-01-01

    Digital disease detection tools are technologically sophisticated, but dependent on digital information, which for many areas suffering from high disease burdens is simply not an option. In areas where news is often reported in local media with no digital counterpart, integration of local news information with digital surveillance systems, such as HealthMap (Boston Children’s Hospital), is critical. Little research has been published in regards to the specific contribution of local health-related articles to digital surveillance systems. In response, the USAID PREDICT project implemented a local media surveillance (LMS) pilot study in partner countries to monitor disease events reported in print media. This research assessed the potential of LMS to enhance digital surveillance reach in five low- and middle-income countries. Over 16 weeks, select surveillance system attributes of LMS, such as simplicity, flexibility, acceptability, timeliness, and stability were evaluated to identify strengths and weaknesses in the surveillance method. Findings revealed that LMS filled gaps in digital surveillance network coverage by contributing valuable localized information on disease events to the global HealthMap database. A total of 87 health events were reported through the LMS pilot in the 16-week monitoring period, including 71 unique reports not found by the HealthMap digital detection tool. Furthermore, HealthMap identified an additional 236 health events outside of LMS. It was also observed that belief in the importance of the project and proper source selection from the participants was crucial to the success of this method. The timely identification of disease outbreaks near points of emergence and the recognition of risk factors associated with disease occurrence continue to be important components of any comprehensive surveillance system for monitoring disease activity across populations. The LMS method, with its minimal resource commitment, could be one tool used

  19. Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment

    NASA Astrophysics Data System (ADS)

    Navratil, O.; Esteves, M.; Legout, C.; Gratiot, N.; Nemery, J.; Willmore, S.; Grangeon, T.

    2011-02-01

    SummaryA major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of suspended sediment dynamics in rivers, as these sediment govern nutriment export, river morphology, siltation of downstream reservoirs and degradation of water quality. High-frequency suspended sediment monitoring programs are required to meet this goal, particularly research in highly erodible mountainous catchments which supply the sediment load of the entire downstream fluvial network. However, in this context, analysis of the data and their interpretation are generally limited by many sources of uncertainty in river monitoring. This paper proposes to estimate the global uncertainty of suspended sediment monitoring using turbidimeter in a small mountainous river catchment (22 km 2; Southern French Alps). We first conducted a detailed analysis of the main uncertainty components associated with the turbidity approach, i.e. a widely used method to continuously survey the suspended sediment concentration (SSC). These uncertainty components were then propagated with Monte Carlo simulations. For individual records, SSC uncertainties are found to be on average less than 10%, but they can reach 70%. At the flood scale, the mean and the maximum SSC uncertainties are on average 20% (range, 1-30%), whereas sediment yield uncertainty is a mean 30% (range, 20-50% depending on the flood considered; discharge error, 20%). Annual specific sediment yield (SSY *) was then 360 ± 100 t km -2 year -1. Uncertainty components associated with the automatic pumping procedure, discharge measurement and turbidity fluctuation at the short time scale were found to be the greatest uncertainties. SSC and SSY uncertainties were found highly site- and time-dependent as they vary significantly with the hydro-sedimentary conditions. This study demonstrates that global uncertainty accounts for only a small part of inter-flood SSC and SSY variability

  20. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  1. “Evolution Canyon,” a potential microscale monitor of global warming across life

    PubMed Central

    Nevo, Eviatar

    2012-01-01

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the “Evolution Canyon” (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, “African” south-facing slope (AS = SFS) abuts the forested “European” north-facing slope (ES = NFS). The AS receives 200–800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet. PMID:22308456

  2. Global Characterization and Monitoring of Forest Cover Using Landsat Data: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Townshend, John R.; Masek, Jeffrey G.; Huang, ChengQuan; Vermote, Eric F.; Gao, Feng; Channan, Saurabh; Sexton, Joseph O.; Feng, Min; Narasimhan, Ramghuram; Kim, Dohyung; Song, Kuan; Song, Danxia; Song, Xiao-Peng; Noojipady, Praveen; Tan, Bin; Hansen, Matthew C.; Li, Mengxue; Wolfe, Robert E.

    2012-01-01

    The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earth's land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.

  3. A Unified Cropland Layer at 250-m for global agriculture monitoring

    USGS Publications Warehouse

    Waldner, François; Fritz, Steffen; Di Gregorio, Antonio; Plotnikov, Dmitry; Bartalev, Sergey; Kussul, Nataliia; Gong, Peng; Thenkabail, Prasad S.; Hazeu, Gerard; Klein, Igor; Löw, Fabian; Miettinen, Jukka; Dadhwal, Vinay Kumar; Lamarche, Céline; Bontemps, Sophie; Defourny, Pierre

    2016-01-01

    Accurate and timely information on the global cropland extent is critical for food security monitoring, water management and earth system modeling. Principally, it allows for analyzing satellite image time-series to assess the crop conditions and permits isolation of the agricultural component to focus on food security and impacts of various climatic scenarios. However, despite its critical importance, accurate information on the spatial extent, cropland mapping with remote sensing imagery remains a major challenge. Following an exhaustive identification and collection of existing land cover maps, a multi-criteria analysis was designed at the country level to evaluate the fitness of a cropland map with regards to four dimensions: its timeliness, its legend, its resolution adequacy and its confidence level. As a result, a Unified Cropland Layer that combines the fittest products into a 250 m global cropland map was assembled. With an evaluated accuracy ranging from 82% to 95%, the Unified Cropland Layer successfully improved the accuracy compared to single global products.

  4. A suggestion for an improved vegetation scheme for local and global mapping and monitoring

    SciTech Connect

    Adams, J.M.

    1999-01-01

    Understanding of global ecological problems is at least partly dependent on clear assessments of vegetation change, and such assessment is always dependent on the use of a vegetation classification scheme. Use of satellite remotely sensed data is the only practical means of carrying out any global-scale vegetation mapping exercise, but if the resulting maps are to be useful to most ecologists and conservationists, they must be closely tied to clearly defined features of vegetation on the ground. Furthermore, much of the mapping that does take place involves more local-scale description of field sites: for purposes of cost and practicality, such studies usually do not involve remote sensing using satellites. There is a need for a single scheme that integrates the smallest to the largest scale in a way that is meaningful to most environmental scientists. A simple structural-physiognomically based scheme with 23 fundamental categories is proposed here for mapping and monitoring on any scale, from local to global. The fundamental categories each subdivide into more specific structural categories each subdivide into more specific structural categories for more detailed mapping, but all the categories can be used throughout the world and at any scale, allowing intercomparison between regions.

  5. "Evolution Canyon," a potential microscale monitor of global warming across life.

    PubMed

    Nevo, Eviatar

    2012-02-21

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the "Evolution Canyon" (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, "African" south-facing slope (AS = SFS) abuts the forested "European" north-facing slope (ES = NFS). The AS receives 200-800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet.

  6. Global and Regional Real-time Systems for Flood and Drought Monitoring and Prediction

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Gourley, J. J.; Xue, X.; Flamig, Z.

    2015-12-01

    A Hydrometeorological Extreme Mapping and Prediction System (HyXtreme-MaP), initially built upon the Coupled Routing and Excess STorage (CREST) distributed hydrological model, is driven by real-time quasi-global TRMM/GPM satellites and by the US Multi-Radar Multi-Sensor (MRMS) radar network with dual-polarimetric upgrade to simulate streamflow, actual ET, soil moisture and other hydrologic variables at 1/8th degree resolution quasi-globally (http://eos.ou.edu) and at 250-meter 2.5-mintue resolution over the Continental United States (CONUS: http://flash.ou.edu).­ Multifaceted and collaborative by-design, this end-to-end research framework aims to not only integrate data, models, and applications but also brings people together (i.e., NOAA, NASA, University researchers, and end-users). This presentation will review the progresses, challenges and opportunities of such HyXTREME-MaP System used to monitor global floods and droughts, and also to predict flash floods over the CONUS.

  7. Methodological challenges of evaluating the impact of the Global Environment Facility's biodiversity program.

    PubMed

    Vaessen, Jos; Todd, David

    2008-08-01

    In this paper, we explore some of the methodological challenges that evaluators face in assessing the impacts of complex intervention strategies. We illustrate these challenges, using the specific example of an impact evaluation of one of the six focal areas of the Global Environment Facility; its biodiversity program. The discussion is structured around the concepts of attribution and aggregation, offering the reader a framework for reflection. Subsequently, the paper discusses how theory-based evaluation can provide a basis for addressing the attribution and aggregation challenges presented.

  8. Joint IAMAS/IAHS symposium J1 on global monitoring and advanced observing techniques in the atmosphere and hydrosphere

    SciTech Connect

    Ohring, G. ); Aoki, T. ); Halpern, D. ); Henderson-Sellers, A. ); Charlock, T. ); Joseph, J. ); Labitzke, K. ); Raschke, E. ); Smith, W. )

    1994-04-01

    Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS) and took place in Yokohama, Japan, 13-15 July 1993, as part of the IAMAS/IAHS Join Assembly. Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

  9. Observations of urban and suburban environments with global satellite scatterometer data

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Balk, D.; Rodriguez, E.; Neumann, G.; Sorichetta, A.; Small, C.; Elvidge, C. D.

    A global and consistent characterization of land use and land change in urban and suburban environments is crucial for many fundamental social and natural science studies and applications. Presented here is a dense sampling method (DSM) that uses satellite scatterometer data to delineate urban and intraurban areas at a posting scale of about 1 km. DSM results are analyzed together with information on population and housing censuses, with Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, and with Defense Meteorological Satellite Program (DMSP) night-light data. The analyses include Dallas-Fort Worth and Phoenix in the United States, Bogotá in Colombia, Dhaka in Bangladesh, Guangzhou in China, and Quito in Ecuador. Results show that scatterometer signatures correspond to buildings and infrastructures in urban and suburban environments. City extents detected by scatterometer data are significantly smaller than city light extents, but not all urban areas are detectable by the current SeaWinds scatterometer on the QuikSCAT satellite. Core commercial and industrial areas with high buildings and large factories are identified as high-backscatter centers. Data from DSM backscatter and DMSP nighttime lights have a good correlation with population density. However, the correlation relations from the two satellite datasets are different for different cities indicating that they contain complementary information. Together with night-light and census data, DSM and satellite scatterometer data provide new observations to study global urban and suburban environments and their changes. Furthermore, the capability of DSM to identify hydrological channels on the Greenland ice sheet and ecological biomes in central Africa demonstrates that DSM can be used to observe persistent structures in natural environments at a km scale, providing contemporaneous data to study human impacts beyond urban and suburban areas.

  10. Monitoring temporal and spatial trends of legacy and emerging contaminants in marine environment: results from the environmental specimen bank (es-BANK) of Ehime University, Japan.

    PubMed

    Tanabe, Shinsuke; Ramu, Karri

    2012-07-01

    The Environmental Specimen Bank (es-BANK) for Global Monitoring at the Center for Marine Environmental Studies, Ehime University, Japan has more than four decades of practical experience in specimen banking. Over the years, es-BANK has archived specimens representing a wide range of environmental matrices, i.e. fishes, reptiles, birds, aquatic mammals, terrestrial mammals, human, soils, and sediments. The samples have been collected as part of the various monitoring programs conducted worldwide. The current review is a summary of selected studies conducted at the Center for Marine Environmental Studies, on temporal and spatial trends of legacy and emerging contaminants in the marine environment. One of the major conclusions drawn from the studies is that environmental problems are no more regional issues and, thus, environmental specimen banking should not be limited to national boundaries, but should have a global outlook.

  11. Real-Time Molecular Monitoring of Chemical Environment in ObligateAnaerobes during Oxygen Adaptive Response

    SciTech Connect

    Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David. A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.

    2009-02-25

    Determining the transient chemical properties of the intracellular environment canelucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms which enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier Transform Infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bonding in their cellular water. We observed a sequence of wellorchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.

  12. Design of GLP lab environment parameters monitor system based on Schneider PLC

    NASA Astrophysics Data System (ADS)

    Lian, Xiaoqin; Xu, Huihui; Duan, Zhengang; Zhang, Yong

    2008-10-01

    According to the technological process and the requirement for system control of the GLP Laboratory, an automatic system is designed to monitor and control over the environment parameters of the GLP laboratory. The system is composed of a programmable controller and touching screen as the processing unit. The Schneider PLC TSX P57303 controller with its counterpart input/output modules is adopted as the hardware platform and the Schneider PL7-MICRO/WIN as the software platform. This paper presents the main flow process design of the control system. The test results show that the control system can run automatically and switch mutually under different modes, and the functions such as monitor and control over the environment parameters of the GLP laboratory are realized.

  13. On the Relevance of Using Open Wireless Sensor Networks in Environment Monitoring

    PubMed Central

    Bagula, Antoine B.; Inggs, Gordon; Scott, Simon; Zennaro, Marco

    2009-01-01

    This paper revisits the problem of the readiness for field deployments of wireless sensor networks by assessing the relevance of using Open Hardware and Software motes for environment monitoring. We propose a new prototype wireless sensor network that fine-tunes SquidBee motes to improve the life-time and sensing performance of an environment monitoring system that measures temperature, humidity and luminosity. Building upon two outdoor sensing scenarios, we evaluate the performance of the newly proposed energy-aware prototype solution in terms of link quality when expressed by the Received Signal Strength, Packet Loss and the battery lifetime. The experimental results reveal the relevance of using the Open Hardware and Software motes when setting up outdoor wireless sensor networks. PMID:22408557

  14. Public road infrastructure inventory in degraded global navigation satellite system signal environments

    NASA Astrophysics Data System (ADS)

    Sokolova, N.; Morrison, A.; Haakonsen, T. A.

    2015-04-01

    Recent advancement of land-based mobile mapping enables rapid and cost-effective collection of highquality road related spatial information. Mobile Mapping Systems (MMS) can provide spatial information with subdecimeter accuracy in nominal operation environments. However, performance in challenging environments such as tunnels is not well characterized. The Norwegian Public Roads Administration (NPRA) manages the country's public road network and its infrastructure, a large segment of which is represented by road tunnels (there are about 1 000 road tunnels in Norway with a combined length of 800 km). In order to adopt mobile mapping technology for streamlining road network and infrastructure management and maintenance tasks, it is important to ensure that the technology is mature enough to meet existing requirements for object positioning accuracy in all types of environments, and provide homogeneous accuracy over the mapping perimeter. This paper presents results of a testing campaign performed within a project funded by the NPRA as a part of SMarter road traffic with Intelligent Transport Systems (ITS) (SMITS) program. The testing campaign objective was performance evaluation of high end commercial MMSs for inventory of public areas, focusing on Global Navigation Satellite System (GNSS) signal degraded environments.

  15. Continuous electromagnetic radiation monitoring in the environment: analysis of the results in Greece.

    PubMed

    Manassas, Athanasios; Boursianis, Achilles; Samaras, Theodoros; Sahalos, John N

    2012-09-01

    Non-ionising radiation-monitoring networks were initiated as a result of the public concerns about the potential health effects from telecommunication emissions. In the present study, the data acquired from such networks in Greece are used to assess the changes in the outdoor electromagnetic environment with respect to location and time. The study shows that there is a statistically significant difference between the urban (median electric field: 1.1 V m(-1)) and the rural (median electric field: 0.3 V m(-1)) installations of monitoring units and also shows that there is a median diurnal variation (daily maximum to minimum) of 20.2 and 33.8 % for the broadcasting and mobile telecommunication emissions, respectively. Moreover, there is a difference in the electric field between daytime and night, but not between morning and afternoon. The results are in line with previously published data from spot measurements, monitoring networks and personal exposimeter studies performed in several European countries.

  16. Integrity mechanism for eHealth tele-monitoring system in smart home environment.

    PubMed

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2009-01-01

    During the past few years, a lot of effort has been invested in research and development of eHealth tele-monitoring systems that will provide many benefits for healthcare delivery from the healthcare provider to the patient's home. However, there is a plethora of security requirements in eHealth tele-monitoring systems. Data integrity of the transferred medical data is one of the most important security requirements that should be satisfied in these systems, since medical information is extremely sensitive information, and even sometimes life threatening information. In this paper, we present a data integrity mechanism for eHealth tele-monitoring system that operates in a smart home environment. Agent technology is applied to achieve data integrity with the use of cryptographic smart cards. Furthermore, the overall security infrastructure and its various components are described.

  17. Iodine-129: Environmental monitoring and population dose in the Hanford environs

    SciTech Connect

    Jaquish, R.E.; Price, K.R.

    1988-09-01

    Iodine-129 is an important radionuclide to be considered in environmental monitoring programs in the vicinity of fuel reprocessing plants. Because of its long half-life, 1.6 /times/ 10 /sup 7/ year, and active behavior in biological and environmental systems, it has the potential for accumulating in the environment from long-term, chronic releases. When the PUREX Plant at Hanford restarted reprocessing fuel in 1983, monitoring for /sup 129/I was included in the environmental monitoring program conducted by Pacific Northwest Laboratory (PNL). Low levels of /sup 129/I have access to environmental pathways from past airborne releases, current releases to the atmosphere, and ground-water seepage into the Columbia River. 4 refs., 2 figs., 1 tab.

  18. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    PubMed

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  19. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  20. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    NASA Astrophysics Data System (ADS)

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-12-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old from public schools participate in science clubs outside of their regular school schedule. A comparison study was performed between different groups, in order to assess GLOBE's applicability as a learning science atmosphere and the motivation and interest it generates in students toward science. Internationally applied scales were used as tools for measuring such indicators, adapted to the Costa Rican context. The results provide evidence statistically significant that the students perceive the GLOBE atmosphere as an enriched environment for science learning in comparison with the traditional science class. Moreover, students feel more confident, motivated and interested in science than their peers who do not participate in the project. However, the results were not statistically significant in this last respect.

  1. Research on countermeasures to global environment change in the field of urban planning

    SciTech Connect

    Kawanaka, Takashi

    1993-12-31

    There are a lot of research themes in the field of urban planning and related fields as mitigation of global environment change. Main theme is reduction method of CO{sub 2} gas emission as a countermeasure against global warming. Some groups research on estimation of CO{sub 2} emission caused by construction activities both in building engineering and civil engineering and also on evaluation of countermeasures. They investigate reduction of CO{sub 2} emission by fossil fuel combustion and by building materials (cement, steel and so on) production process. But we cannot use data fitted to a spatial scale of urban planning. Many researches are focused on nation wide analysis. We, BRI, make a study of {open_quotes}Research on CO{sub 2} Emission in Urban Development and the Control Technologies{close_quotes} as will be seen later at 2. (2). There are two ways of research to reduce CO{sub 2} emission caused by daily activities to urban planning field. One is research on positive utilizing of natural environment in urban areas without depending to energy consuming artificial facilities. There is a research on mitigation of heat island phenomenon for instance. The other ways are research on improvement of energy consumption effect and on reusing of wasted energy In energy consuming type urban space for instance. There s a research on promoting District Heating and Cooling (DHC) and cogeneration.

  2. A review of the global emissions, transport and effects of heavy metals in the environment

    SciTech Connect

    Friedman, J.R.; Ashton, W.B.; Rapoport, R.D.

    1993-06-01

    The purpose of this report is to describe the current state of knowledge regarding the sources and quantities of heavy metal emissions, their transport and fate, their potential health and environmental effects, and strategies to control them. The approach is to review the literature on this topic and to consult with experts in the field. Ongoing research activities and research needs are discussed. Estimates of global anthropogenic and natural emissions indicate that anthropogenic emissions are responsible for most of the heavy metals released into the atmosphere and that industrial activities have had a significant impact on the global cycling of trace metals. The largest anthropogenic sources of trace metals are coal combustion and the nonferrous metal industry. Atmospheric deposition is an important pathway by which trace metals enter the environment. Atmospheric deposition varies according to the solubility of the element and the length of time it resides in the atmosphere. Evidence suggests that deposition is influenced by other chemicals in the atmosphere, such as ozone and sulfur dioxide. Trace metals also enter the environment through leaching. Existing emissions-control technologies such as electrostatic precipitators, baghouses, and scrubbers are designed to remove other particulates from the flue gas of coal-fired power plants and are only partially effective at removing heavy metals. Emerging technologies such as flue gas desulfurization, lignite coke, and fluidized bed combustion could further reduce emissions. 108 refs.

  3. Global pollution monitoring of polybrominated diphenyl ethers using skipjack tuna as a bioindicator.

    PubMed

    Ueno, Daisuke; Kajiwara, Natsuko; Tanaka, Hiroyuki; Subramanian, Annamalai; Fillmann, Gilberto; Lam, Paul K S; Zheng, Gene J; Muchitar, Muswerry; Razak, Hamidah; Prudente, Maricar; Chung, Kyu-Hyuck; Tanabe, Shinsuke

    2004-04-15

    To elucidate the global distribution of polybrominated diphenyl ethers (PBDEs), these chemicals were determined in the muscle of skipjack tuna (Katsuwonus pelamis) collected from offshore waters of various regions in the world (Japan, Taiwan, Philippines, Indonesia, Seychelles, and Brazil, and the Japan Sea, East China Sea, South China Sea, Indian Ocean, and North Pacific Ocean). PBDEs were detected in almost all the skipjack tuna collected from the locations surveyed (from < 0.1 to 53 ng/g of lipid), indicating widespread contamination by these compounds in the marine environment. Residue levels of PBDEs in these samples from the northern hemisphere seem to be higher than those from the southern hemisphere, which is plausibly due to larger usage of these compounds in the northern hemisphere. Higher concentrations of PBDEs were detected in the samples from waters around the East China Sea (up to 53 ng/g of lipid). Developing countries around the East China Sea are supposedly the "hot spots" releasing these chemicals into the marine environment. With regard to the composition of PBDE congeners, the percentage contribution by lower brominated congeners (BDE15, -28, and -47) showed an increasing trend with increasing latitude. On the other hand, higher brominated congeners (BDE153, -154, and -183) showed a reverse trend. These patterns suggest that lower brominated congeners of PBDEs (di-, tri-, and tetra-BDEs) were preferentially transported from pollution sources to northern colder regions through the atmosphere. PBDEs may have a high potency to cause global pollution like PCBs.

  4. Using the international monitoring system of seismic, infrasound, and hydroacoustic sensors for global airburst detection

    NASA Astrophysics Data System (ADS)

    Brown, P.

    2014-07-01

    The impact of meter-sized objects with the Earth occurs every few weeks [1,2]. Most of these collisions result in airbursts, here defined as impacts where the meteoroid's initial kinetic energy is of order a small nuclear weapon (> 0.1 kilotons of TNT equivalent = 4.185×10^{11} J) and where this energy is fully deposited at high altitude in the atmosphere. Historically, the majority of these airbursts go undetected over oceans or remote land areas as dedicated fireball camera networks (eg.[ 3]) cover less than 1 % of the globe. Airbursts often produce meteorite falls and hence airburst data may yield pre-atmospheric orbits and physical properties for the impacting NEO providing context for recovered meteorite samples [4]. With the advent of more capable telescopic survey systems, pre-atmospheric detection of NEO-producing airbursts has become possible as evidenced by the impacts of 2014 AA and 2008 TC_3 [5]. Detection of ''terminal plungers'' is expected to become more common as projects such as ATLAS [6] become operational. This increases the need for instrumental data of the corresponding airburst, particularly its location and energy. Beginning in the late 1990s, a global network of seismic, infrasound, and hydroacoustic sensors has been deployed globally to provide treaty verification for a nuclear test ban. This network is the International Monitoring System (IMS) overseen by Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) [7]. The IMS is a unique global resource for detection of explosions worldwide and in recent years shock waves from many airbursts [8] have been detected by the system. Data from the IMS permits airburst location, origin time and energy to be measured. In rare cases, source heights, trajectories, and details of fragmentation may be obtained. Here the current capabilities of the IMS will be presented in the context of airburst detection and characterization. Empirical characteristics of the long-range sound produced by airbursts

  5. Mutations in global regulators lead to metabolic selection during adaptation to complex environments

    SciTech Connect

    Saxer, Gerda; Krepps, Michael D.; Merkley, Eric D.; Ansong, Charles; Deatherage Kaiser, Brooke L.; Valovska, Marie -Thérèse; Ristic, Nikola; Yeh, Ping T.; Prakash, Vittal P.; Leiser, Owen P.; Nakhleh, Luay; Gibbons, Henry S.; Kreuzer, Helen W.; Shamoo, Yousif; Matic, Ivan

    2014-12-11

    Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Unlike adaptation to a single limiting resource, adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes since many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that a subtle modulation of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order “metabolic selection” that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a

  6. Monitoring global vegetation using Nimbus-7 37 GHz data - Some empirical relations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Tucker, C. J.

    1987-01-01

    The difference of the vertically and horizontally polarized brightness temperatures observed by the 37 GHz channel of the SMMR on board the Nimbus-7 satellite are correlated temporally with three indicators of vegetation density, namely the temporal variation of the atmospheric CO2 concentration at Mauna Loa (Hawaii), rainfall over the Sahel and the normalized difference vegetation index derived from the AVHRR on board the NOAA-7 satellite. SMMR 37 GHz and AVHRR provide complementary data sets for monitoring global vegetation, the 37 GHz data being more suitable for arid and semiarid regions as these data are more sensitive to changes in sparse vegetation. The 37-GHz data might be useful for understanding desertification and indexing Co2 exchange between the biosphere and the atmosphere.

  7. Use of global navigation satellite systems for monitoring deformations of water-development works

    SciTech Connect

    Kaftan, V. I.; Ustinov, A. V.

    2013-05-15

    The feasibility of using global radio-navigation satellite systems (GNSS) to improve functional safety of high-liability water-development works - dams at hydroelectric power plants, and, consequently, the safety of the population in the surrounding areas is examined on the basis of analysis of modern publications. Characteristics for determination of displacements and deformations with use of GNSS, and also in a complex with other types of measurements, are compared. It is demonstrated that combined monitoring of deformations of the ground surface of the region, and engineering and technical structures is required to ensure the functional safety of HPP, and reliable metrologic assurance of measurements is also required to obtain actual characteristics of the accuracy and effectiveness of GNSS observations.

  8. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

    USGS Publications Warehouse

    Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob

    2013-01-01

    Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

  9. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments.

    PubMed

    Darling, John A; Mahon, Andrew R

    2011-10-01

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to improve on traditional monitoring approaches by enhancing detection sensitivity, reducing analytical turnaround times and monitoring costs, and increasing specificity of target identifications. However, despite the promise of DNA-based monitoring methods, the adoption of these tools in decision-making frameworks remains challenging. Here, rather than explore technical aspects of method development, we examine impediments to effective translation of those methods into management contexts. In addition to surveying current use of DNA-based tools for aquatic invasive species monitoring, we explore potential sources of uncertainty associated with molecular technologies and possibilities for limiting that uncertainty and effectively communicating its implications for decision-making. We pay particular attention to the recent adoption of DNA-based methods for detection of invasive Asian carp species in the United States Great Lakes region, as this example illustrates many of the challenges associated with applying molecular tools to achieve desired management outcomes. Our goal is to provide a useful assessment of the obstacles associated with integrating DNA-based methods into aquatic invasive species management, and to offer recommendations for future efforts aimed at overcoming those obstacles.

  10. An eDNA Assay to Monitor a Globally Invasive Fish Species from Flowing Freshwater

    PubMed Central

    Adrian-Kalchhauser, Irene; Burkhardt-Holm, Patricia

    2016-01-01

    Ponto-Caspian gobies are a flock of five invasive fish species that have colonized freshwaters and brackish waters in Europe and North America. One of them, the round goby Neogobius melanostomus, figures among the 100 worst invaders in Europe. Current methods to detect the presence of Ponto-Caspian gobies involve catching or sighting the fish. These approaches are labor intense and not very sensitive. Consequently, populations are usually detected only when they have reached high densities and when management or containment efforts are futile. To improve monitoring, we developed an assay based on the detection of DNA traces (environmental DNA, or eDNA) of Ponto-Caspian gobies in river water. The assay specifically detects invasive goby DNA and does not react to any native fish species. We apply the assay to environmental samples and demonstrate that parameters such as sampling depth, sampling location, extraction protocol, PCR protocol and PCR inhibition greatly impact detection. We further successfully outline the invasion front of Ponto-Caspian gobies in a large river, the High Rhine in Switzerland, and thus demonstrate the applicability of the assay to lotic environments. The eDNA assay requires less time, equipment, manpower, skills, and financial resources than the conventional monitoring methods such as electrofishing, angling or diving. Samples can be taken by untrained individuals, and the assay can be performed by any molecular biologist on a conventional PCR machine. Therefore, this assay enables environment managers to map invaded areas independently of fishermen’s’ reports and fish community monitorings. PMID:26814998

  11. Global warming in the palliative care research environment: adapting to change.

    PubMed

    Fainsinger, R L

    2008-06-01

    Advocates of palliative care research have often described the cold and difficult environment that has constrained the development of research internationally. The development of palliative care research has been slow over the last few decades and has met with resistance and sometimes hostility to the idea of conducting research in 'vulnerable populations'. The seeds of advocacy for research can be found in palliative care literature from the 1980s and early 1990s. Although we have much to do, we need to recognize that palliative care research development has come a long way. Of particular note is the development of well-funded collaboratives that now exist in Europe, Canada, Australia and the USA. The European Association for Palliative Care and the International Association for Hospice and Palliative Care has recognized the need to develop and promote global research initiatives, with a special focus on developing countries. Time is needed to develop good research evidence and in a more complex healthcare environment takes increasingly more resources to be productive. The increased support (global warming) evident in the increased funding opportunities available to palliative care researchers in a number of countries brings both benefits and challenges. There is evidence that the advocacy of individuals such as Kathleen Foley, Neil MacDonald, Balfour Mount, Vittorio Ventafridda, Robert Twycross and Geoff Hanks is now providing fertile ground and a much friendlier environment for a new generation of interdisciplinary palliative care research. We have achieved many of the goals necessary to avoid failure of the 'palliative care experiment', and need to accept the challenge of our present climate and adapt and take advantage of the change.

  12. What is a habitable environment? -answers from observations of a global transect

    NASA Astrophysics Data System (ADS)

    de Vera, Jean-Pierre; de La Torre Noetzel, Rosa; Onofri, Silvano; Ott, Sieglinde

    Extremophiles are specialists which colonise special niches in these extreme environments due to there adaptation capacities attained during the evolution of life. Some examples of ex-tremophiles and their potential to deal with harsh conditions as well as the characterisation of their niches will be presented. Based on observations and results obtained in the 10th German Antarctic North Victoria Land Expedition (GANOVEX X) in the area of the Transantarctic Mountains led by the German Geosciences and Resource Research Society (BGR) and during an environment characterisation campaign of the European Alps and the Spanish Mountains "Sierra de Gredos" supported by the German Ministry of Economy and Technology (BMWi) a global transect from temperate Alpine regions to Mediterranean mountains and Polar Mountain regions can be analysed. Due to a summary of these results we are able to compare different strategies of colonisation in different habitats of the global mountain transect by cosmopolitan and endemic species as there are, the colonisation of rocks, fissures, cracks, polygon forming substrates, permafrost and glaciers. Data of UV B-, PAR-and IR-radiation measurements, humidity and temperature as well as the activity of microorganisms are accomplishing with more details the habitat characterisation and may give relevant information on probably niches for life on other planets as e.g. the planet Mars and may give answers on the question what is a habitable environment. These results will also form the basis of a series of new space experiments on satellites or on the International Space Station (ISS) and furthermore may lead to progress in probes-and rover-development for particular "hardly" accessible terrains.

  13. NASA's Earth Observations of the Global Environment: Our Changing Planet and the View from Space

    NASA Technical Reports Server (NTRS)

    King, michael D.

    2005-01-01

    A birds eye view of the Earth from afar and up close reveals the power and magnificence of the Earth and juxtaposes the simultaneous impacts and powerlessness of humankind. The NASA Electronic Theater presents Earth science observations and visualizations in an historical perspective. See the latest spectacular images from NASA remote sensing missions like TRMM, SeaWiFS, Landsat 7, Terra, and Aqua, which will be visualized and explained in the context of global change and man s impact on our world s environment. See visualizations of global data sets currently available from Earth orbiting satellites, including the Earth at night with its city lights. Shown in high resolution are visualizations of tropical cyclone Eline and the resulting flooding of Mozambique. See flybys of Cape Town, South Africa with its dramatic mountains and landscape, as well as satellite imagery of fires that occurred globally, with a special emphasis on fires in the western US during summer 2001, and how new satellite tools can be used to help fight these disasters from spreading further. See where and when lightning occurs globally, and how dramatic urbanization has been in the desert southwest since 1910. Spectacular visualizations of the global atmosphere and oceans are shown. Learn when and where carbon is absorbed by vegetation on the land and ocean as the product of photosynthesis. See demonstrations of the 3-dimensional structure of hurricanes and cloud structures derived from recently launched Earth-orbiting satellites, and how hurricanes can modify the sea surface temperature in their wake. See massive dust storms in the Middle East as well as dust transport sweeping from north Africa across the Atlantic to the Caribbean and Amazon basin. Learn where and how much the temperature of the Earth s surface has changed during the 20th century, as well as how sea ice has decreased over the Arctic region, how sea level has and is likely to continue to change, and how glaciers have

  14. Monitoring human health behaviour in one's living environment: a technological review.

    PubMed

    Lowe, Shane A; Ólaighin, Gearóid

    2014-02-01

    The electronic monitoring of human health behaviour using computer techniques has been an active research area for the past few decades. A wide array of different approaches have been investigated using various technologies including inertial sensors, Global Positioning System, smart homes, Radio Frequency IDentification and others. It is only in recent years that research has turned towards a sensor fusion approach using several different technologies in single systems or devices. These systems allow for an increased volume of data to be collected and for activity data to be better used as measures of behaviour. This change may be due to decreasing hardware costs, smaller sensors, increased power efficiency or increases in portability. This paper is intended to act as a reference for the design of multi-sensor behaviour monitoring systems. The range of technologies that have been used in isolation for behaviour monitoring both in research and commercial devices are reviewed and discussed. Filtering, range, sensitivity, usability and other considerations of different technologies are discussed. A brief overview of commercially available activity monitors and their technology is also included.

  15. Photonic-crystal fiber-based pressure sensor for dual environment monitoring.

    PubMed

    Osório, Jonas H; Hayashi, Juliano G; Espinel, Yovanny A V; Franco, Marcos A R; Andrés, Miguel V; Cordeiro, Cristiano M B

    2014-06-10

    In this paper the development of a side-hole photonic-crystal fiber (SH-PCF) pressure sensor for dual environment monitoring is reported. SH-PCF properties (phase and group birefringence, sensitivity to pressure variations) are measured and compared to simulated data. In order to probe two environments, two sections of the SH-PCF with different lengths are spliced and set in a Solc filter-like configuration. This setup allows obtaining the individual responses of the first and second fiber independently, which is useful for a space-multiplexed measurement. As the employed fiber is sensitive to pressure variations, we report the use of this configuration for dual environment pressure sensing.

  16. Monitoring Global Precipitation through UCI CHRS's RainMapper App on Mobile Devices

    NASA Astrophysics Data System (ADS)

    Nguyen, P.; Huynh, P.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2014-12-01

    The Water and Development Information for Arid Lands-a Global Network (G-WADI) Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—Cloud Classification System (PERSIANN-CCS) GeoServer has been developed through a collaboration between the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine (UCI) and the UNESCO's International Hydrological Program (IHP). G-WADI PERSIANN-CCS GeoServer provides near real-time high resolution (0.04o, approx 4km) global (60oN - 60oS) satellite precipitation estimated by the PERSIANN-CCS algorithm developed by the scientists at CHRS. The G-WADI PERSIANN-CCS GeoServer utilizes the open-source MapServer software from the University of Minnesota to provide a user-friendly web-based mapping and visualization of satellite precipitation data. Recent efforts have been made by the scientists at CHRS to provide free on-the-go access to the PERSIANN-CCS precipitation data through an application named RainMapper for mobile devices. RainMapper provides visualization of global satellite precipitation of the most recent 3, 6, 12, 24, 48 and 72-hour periods overlaid with various basemaps. RainMapper uses the Google maps application programing interface (API) and embedded global positioning system (GPS) access to better monitor the global precipitation data on mobile devices. Functionalities include using geographical searching with voice recognition technologies make it easy for the user to explore near real-time precipitation in a certain location. RainMapper also allows for conveniently sharing the precipitation information and visualizations with the public through social networks such as Facebook and Twitter. RainMapper is available for iOS and Android devices and can be downloaded (free) from the App Store and Google Play. The usefulness of RainMapper was demonstrated through an application in tracking the evolution of the recent Rammasun Typhoon over the

  17. An Operational Tool for Global Monitoring of Inundation Using NPP ATMS Data

    NASA Astrophysics Data System (ADS)

    Tesfagiorgis, K. B.

    2015-12-01

    The goal of this study is to introduce an operational microwave-based tool for the detection and monitoring of inundation across the globe using passive microwave observations from the Advanced Technology Microwave Sounder (ATMS) sensor onboard SUOMI NPP. ATMS surface sensitive channels, namely, the 23 GHz and the 89 GHz are used in this study. The inundation detection approach is based on the analysis of the standardized anomalies of a soil wetness index that is determined from the gradient between 89 and 23 GHz brightness temperatures. The dimensionless index is sensitive to extreme wetness conditions. Appropriate threshold-based techniques were implemented in the developed tool to detect and eliminate rainy pixels as well as snow and ice covered pixels. An automated tool was developed to process, analyze the data, develop the inundation product, and disseminate the detected inundated area through a web-based interface. The outputs of the developed algorithm were verified against records from the Darthmouth Flood Observatory data archive. The agreement was acceptable with POD reaching 80 % globally for flood with durations longer than 5 days. The analysis of the flood records showed that the most frequent flood events have a duration of 3 days. The flood detection and mapping system was able to reports more short duration events that lasted 1 day or less than what is in the flood observatory records. The inundation global mapping tool was deployed operationally using real time readouts from NOAA-CREST satellite receiving station in New York, USA.

  18. Forest productivity and drought in tropical Africa: observations from the Global Ozone Monitoring Experiment-2

    NASA Astrophysics Data System (ADS)

    Robinson, E. S.; Lee, J. E.; Yang, X.

    2014-12-01

    The impact of seasonal water stress on Africa's tropical regions has yet to be characterized despite drought's potential to cause famine and a reduction of biodiversity across the continent. Through the analysis of a new data set of sun-induced chlorophyll fluorescence (SIF) from the Global Ozone Monitoring Experiment-2, we demonstrate that fluorescence varies with water availability, particularly over regions with distinctive wet and dry seasons. Water availability was determined via both precipitation (from the Global Precipitation Climatology Project) and daytime canopy water content measurements (from the SeaWinds Scatterometer onboard the QuickSCAT satellite). Variance in SIF values was largely explained by both canopy water content and precipitation, which paralleled one-another. When viewed in the context of the previously defined relationship between fluorescence and gross primary production (GPP) - SIF scales linearly with GPP - our results suggest that photosynthetic activity in tropical Africa is limited by water availability. The characterization of this trend is critical in defining the response of tropical ecosystems to water stress and corroborating similar relationships in other tropical regions (e.g. Amazonia). Ultimately, the viability of Africa's tropical regions amidst a changing climate is rooted in its ecosystem-wide response to water stress; the future of the African tropics is limited by how well plants cope with water stress.

  19. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence

    PubMed Central

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50–75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle. PMID:24706867

  20. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence.

    PubMed

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A; Frankenberg, Christian; Huete, Alfredo R; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M; Griffis, Timothy J

    2014-04-08

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  1. Laboratory test simulation for non-flat response calibration of global Earth albedo monitor

    NASA Astrophysics Data System (ADS)

    Seong, Sehyun; Kim, Sug-Whan; Ryu, Dongok; Hong, Jinsuk; Lockwood, Mike

    2012-09-01

    In this report, we present laboratory test simulation for directional responsivity of a global Earth albedo monitoring instrument. The sensor is to observe the Sun and the Earth, alternately, and measure their shortwave (<4μm) radiations around the L1 halo orbit to obtain global Earth albedo. The instrument consists of a broadband scanning radiometer (energy channel instrument) and an imager (visible channel instrument) with ±2° field-of-view. In the case of the energy channel instrument, radiations arriving at the viewing ports from the Sun and the Earth are directed toward the pyroelectric detector via two spherical folding mirrors and a 3D compound parabolic concentrator (CPC). The instrument responsivity is defined by the ratio of the incident radiation input to the instrument output signal. The radiometer's relative directional responsivity needs to be characterized across the field-of-view to assist output signal calibration. For the laboratory test, the distant small source configuration consists of an off-axis collimator and the instrument with adjustable mounts. Using reconstructed 3D CPC surface, the laboratory test simulation for predicting the instrument directional responsivity was conducted by a radiative transfer computation with ray tracing technique. The technical details of the laboratory test simulation are presented together with future plan.

  2. Global Real-Time Volcano Hazard Monitoring with Satellites: The Anatahan Eruption

    NASA Astrophysics Data System (ADS)

    Flynn, L.; Wright, R.; Pilger, E.; Garbeil, H.

    2003-12-01

    On May 10, 2003, the island of Anatahan in the northern Mariana Islands experienced its first historical eruption. Anatahan is a 9 km long and 4 km wide island dominated by two volcanoes having E-W trending elongated and overlapping summit calderas. Following seismic activity in the 1990's, the island was largely evacuated. Thermal satellite data not only confirmed the eruption of the eastern crater of Anatahan but also pinpointed the location of continuing activity over a two-week period following the start of the eruption. These data were forwarded to hazard mitigation officials within hours of acquisition. NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) observes the Earth in the visible to infrared portion of the spectrum at 1 km x 1 km spatial resolution. Two MODIS instruments on Terra and Aqua provide global coverage 2-4 times per day, more towards higher latitudes. The Hawaii Institute of Geophysics and Planetology researchers developed an algorithm (MODVOLC) that mines the global Aqua and Terra data sets in order to pinpoint locations of volcanic activity. Currently, the time lag between data acquisition by MODIS and display on the web site is ~2-4 hours. Weekly hotspot reports identify active volcanoes around the globe. Many volcanoes (Erebus, Heard, Anatahan, Michael) are in remote locations and otherwise would have gone unobserved or underobserved. The MODIS hotspot monitoring system provides reliable, and readily-accessible coverage of the world's volcanoes to support volcanic hazard mitigation efforts.

  3. Quantifying the reliability of four global datasets for drought monitoring over a semiarid region

    NASA Astrophysics Data System (ADS)

    Katiraie-Boroujerdy, Pari-Sima; Nasrollahi, Nasrin; Hsu, Kuo-lin; Sorooshian, Soroosh

    2016-01-01

    Drought is one of the most relevant natural disasters, especially in arid regions such as Iran. One of the requirements to access reliable drought monitoring is long-term and continuous high-resolution precipitation data. Different climatic and global databases are being developed and made available in real time or near real time by different agencies and centers; however, for this purpose, these databases must be evaluated regionally and in different local climates. In this paper, a near real-time global climate model, a data assimilation system, and two gridded gauge-based datasets over Iran are evaluated. The ground truth data include 50 gauges from the period of 1980 to 2010. Drought analysis was carried out by means of the Standard Precipitation Index (SPI) at 2-, 3-, 6-, and 12-month timescales. Although the results show spatial variations, overall the two gauge-based datasets perform better than the models. In addition, the results are more reliable for the western portion of the Zagros Range and the eastern region of the country. The analysis of the onsets of the 6-month moderate drought with at least 3 months' persistence indicates that all datasets have a better performance over the western portion of the Zagros Range, but display poor performance over the coast of the Caspian Sea. Base on the results of this study, the Modern-Era Retrospective Analysis for Research and Applications (MERRA) dataset is a preferred alternative for drought analysis in the region when gauge-based datasets are not available.

  4. Global and Time-Resolved Monitoring of Crop Photosynthesis with Chlorophyll Fluorescence

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Jung, Martin; Joiner, Joanna; Voigt, Maximilian; Berry, Joseph A.; Frankenberg, Christian; Huete, Alfredo R.; Zarco-Tejada, Pablo; Lee, Jung-Eun; Moran, M. Susan; Ponce-Campos, Guillermo; Beer, Christian; Camps-Valls, Gustavo; Buchmann, Nina; Gianelle, Damiano; Klumpp, Katja; Cescatti, Alessandro; Baker, John M.; Griffis, Timothy J.

    2014-01-01

    Photosynthesis is the process by which plants harvest sunlight to produce sugars from carbon dioxide and water. It is the primary source of energy for all life on Earth; hence it is important to understand how this process responds to climate change and human impact. However, model-based estimates of gross primary production (GPP, output from photosynthesis) are highly uncertain, in particular over heavily managed agricultural areas. Recent advances in spectroscopy enable the space-based monitoring of sun-induced chlorophyll fluorescence (SIF) from terrestrial plants. Here we demonstrate that spaceborne SIF retrievals provide a direct measure of the GPP of cropland and grassland ecosystems. Such a strong link with crop photosynthesis is not evident for traditional remotely sensed vegetation indices, nor for more complex carbon cycle models. We use SIF observations to provide a global perspective on agricultural productivity. Our SIF-based crop GPP estimates are 50-75% higher than results from state-of-the-art carbon cycle models over, for example, the US Corn Belt and the Indo-Gangetic Plain, implying that current models severely underestimate the role of management. Our results indicate that SIF data can help us improve our global models for more accurate projections of agricultural productivity and climate impact on crop yields. Extension of our approach to other ecosystems, along with increased observational capabilities for SIF in the near future, holds the prospect of reducing uncertainties in the modeling of the current and future carbon cycle.

  5. The urban environment and health in a world of increasing globalization: issues for developing countries.

    PubMed Central

    McMichael, A. J.

    2000-01-01

    Urban living is the keystone of modern human ecology. Cities have multiplied and expanded rapidly worldwide over the past two centuries. Cities are sources of creativity and technology, and they are the engines for economic growth. However, they are also sources of poverty, inequality, and health hazards from the environment. Urban populations have long been incubators and gateways for infectious diseases. The early industrializing period of unplanned growth and laissez-faire economic activity in cities in industrialized countries has been superseded by the rise of collective management of the urban environment. This occurred in response to environmental blight, increasing literacy, the development of democratic government, and the collective accrual of wealth. In many low-income countries, this process is being slowed by the pressures and priorities of economic globalization. Beyond the traditional risks of diarrhoeal disease and respiratory infections in the urban poor and the adaptation of various vector-borne infections to urbanization, the urban environment poses various physicochemical hazards. These include exposure to lead, air pollution, traffic hazards, and the "urban heat island" amplification of heatwaves. As the number of urban consumers and their material expectations rise and as the use of fossil fuels increases, cities contribute to the large-scale pressures on the biosphere including climate change. We must develop policies that ameliorate the existing, and usually unequally distributed, urban environmental health hazards and larger-scale environmental problems. PMID:11019460

  6. A global assessment of civil registration and vital statistics systems: monitoring data quality and progress.

    PubMed

    Mikkelsen, Lene; Phillips, David E; AbouZahr, Carla; Setel, Philip W; de Savigny, Don; Lozano, Rafael; Lopez, Alan D

    2015-10-03

    Increasing demand for better quality data and more investment to strengthen civil registration and vital statistics (CRVS) systems will require increased emphasis on objective, comparable, cost-effective monitoring and assessment methods to measure progress. We apply a composite index (the vital statistics performance index [VSPI]) to assess the performance of CRVS systems in 148 countries or territories during 1980-2012 and classify them into five distinct performance categories, ranging from rudimentary (with scores close to zero) to satisfactory (with scores close to one), with a mean VSPI score since 2005 of 0·61 (SD 0·31). As expected, the best performing systems were mostly in the European region, the Americas, and Australasia, with only two countries from east Asia and Latin America. Most low-scoring countries were in the African or Asian regions. Globally, only modest progress has been made since 2000, with the percentage of deaths registered increasing from 36% to 38%, and the percentage of children aged under 5 years whose birth has been registered increasing from 58% to 65%. However, several individual countries have made substantial improvements to their CRVS systems in the past 30 years by capturing more deaths and improving accuracy of cause-of-death information. Future monitoring of the effects of CRVS strengthening will greatly benefit from application of a metric like the VSPI, which is objective, costless to compute, and able to identify components of the system that make the largest contributions to good or poor performance.

  7. Development of biomarkers for screening hepatocellular carcinoma using global data mining and multiple reaction monitoring.

    PubMed

    Kim, Hyunsoo; Kim, Kyunggon; Yu, Su Jong; Jang, Eun Sun; Yu, Jiyoung; Cho, Geunhee; Yoon, Jung-Hwan; Kim, Youngsoo

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further, multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation, somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3 groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A (C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment group from the healthy control group compared with AFP. We conclude that the combination of global data mining and MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy is applicable to the development of markers for cancer and other diseases.

  8. Neurocognitive monitors: toward the prevention of cognitive performance decrements and catastrophic failures in the operational environment.

    PubMed

    Thomas, Maria L; Russo, Michael B

    2007-05-01

    Network-centric doctrine and the proposed C41SR (command, control, communications, computers, intelligence, surveillance and reconnaissance) distributions to the individual warfighter require that the cognitive performance, judgment, and decision making of warfighters must be sustained and effectively managed in the forward operating environment, where various physiological and psychological stressors abound, in order to reduce human errors and catastrophic failures. The U.S. Army Medical Research and Materiel Command (USAMRMC) established the Cognitive Performance, Judgment, and Decision-Making Research Program (CPJDRP) in 2004 to direct research to this issue. A Neurophysiological Measures and Cognition Focus Team (NMFCT) was formed to work with augmented cognition investigators and to specifically address the development of neurophysiological measures as potential monitors of alertness-cognitive state in warfighters. The USAM-RMC approach complemented the Defense Advanced Research Projects Agency (DARPA) Augmented Cognition approach, which focused on the detection of workload-related impaired cognitive state, and subsequent modification of information flow through automation. In this preface, the premise for neurophysiological measures as neurocognitive monitors is explained using an example of a neurophysiological index: the oculomotor measure, saccadic velocity. The progress of the NMFCT on the development of a neurocognitive monitor is described, as well as the recommendations of a 2005 USAMRMC/Telemedicine and Advanced Technology Research Center (TATRC)-sponsored workshop. Awareness of neurocognitive monitoring is discussed, as are future endeavors related to operational testing and fieldability. Four papers are summarized in this Neurophysiological Monitoring and Augmented Cognition section involving technologies to enhance cognitive performance in the operational environment: one on dynamic cortical electroencephalography, two on oculometrics, and one on a

  9. [Morphophysiological monitoring of winter wheat at spring in connection with problem of global climate change].

    PubMed

    Klimov, S V; Burakhanova, E A; Dubinina, I M; Alieva, G P; Sal'nikova, E B; Trunova, T I

    2006-01-01

    Data on morphophysiological monitoring of winter wheat (Triticum aestivum L.) cultivar Mironovskaya 808 grown in Hoagland and Arnon solution in a greenhouse and transferred to natural conditions in March-April 2004 with the mean daily temperature of 0.6 +/- 0.7 degrees C within the exposure period of 42 days are presented. Water content, dry weight of plants and their organs, frost hardiness of plants, degree of tissue damage by frost, CO2 metabolism (photosynthesis and respiration), concentrations of sugars in tissues and proportions between different sugar forms, and activities of soluble and insoluble acid and alkaline phosphatases were monitored. Monitoring was carried out for three experimental variants simulating different microclimatic conditions in spring: after snow melting (experiment I), under ice crust (experiment II), and under snow cover (experiment III). Plants in experiments III and II demonstrated a higher water content in tissues, lower frost hardiness, higher rates of biomass loss, lower concentration of sugars and lower di- to monosaccharide ratio in tissues, and higher total invertase activity, particularly, cell wall-associated acid invertase activity. The dark respiration rates at 0 degrees C did not significantly differ between experimental variants. The photosynthetic capacity at this measurement temperature was maintained in all experimental variants being most pronounced in experiment II with the most intense photoinhibition under natural conditions. Comparison of experiments III and II with experiment I is used to discuss the negative effect of changes in certain microclimatic variables associated with global warming and leading to plant extortion and death from frost in spring.

  10. The LHCb Online Framework for Experiment Protection, and Global Operational Control and Monitoring

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Jacobsson, R.; Schleich, S.

    2011-12-01

    The complexity and extreme parameters of the LHC, such as the stored energy, the collision frequency, the high risk of adverse background conditions and potentially damaging beam losses have demanded an unprecedented connectivity between the operation of the accelerator and the experiments at both hardware and software level. LHCb has been at the forefront of developing a software framework and hardware which connects to all of the LHC communication interfaces for timing, control and monitoring of the machine and beam parameters, in addition to its own local systems for beam and background monitoring. The framework also includes failsafe connectivity with the beam interlock system. The framework drives the global operation of the detector and is integrated into the readout control. It provides the shifters with the tools needed to take fast and well-guided decisions to run the LHCb experiment safely and efficiently. In particular, it has allowed the detector to be operated with only two shifters already at the LHC pilot run. The requirements include reliability and clarity for the shifters, and the possibility to retrieve the past conditions for offline analysis. All essential parameters are archived and an interactive analysis tool has been developed which provides overviews of the experimental performance and which allows post-analysis of any anomaly in the operation. This paper describes the architecture and the many functions, including the basis of the automation of the LHCb operational procedure and detector controls, and the information exchange between LHCb and the LHC, and finally the shifter and expert tools for monitoring the experimental conditions.

  11. A new constituting lidar network for global aerosol observation and monitoring: Leone

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Sauvage Laurent, Laurent

    2010-05-01

    In order to observe and monitoring the direct and indirect impact of natural and anthropogenic aerosols on the radiative transfer and climate changing, it is necessary a continuous worldwide observation of the microphysical aerosol properties. A global observation it is of great support to the actual research in climate and it is a complement in the effort of monitoring trans-boundary pollution, and satellite validation, valorizing the use of lidar and passive sensors networks. In this framework, we have created the LEONET program, a new constituting worldwide network of EZ Lidar™ instruments. These lidars, developed by the French company LEOSPHERE, are compact and rugged eye safe UV Lidars with cross-polarisation detection capabilities, designed to monitor and study the atmospheric vertical structure of aerosols and clouds in a continuous way, night and day, over long time period in order to investigate and contribute to the climate change studies. LEONET output data, in hdf format, have the same architecture of those of NASA Micro Pulse Lidar Network (MPLNET) and will be soon available to the scientific community through the AERONET data synergy tool which provides ground-based, satellite, and model data products to characterize aerosol optical and microphysical properties, spatial and temporal distribution, transport, and chemical and radiative properties. In this work, it is presented an overview of the LEONET products and methodologies as the backscattering and extinction coefficients; the depolarization ratio, cloud layer heights and subsequent optical depths, provided to the limit of detection capability from a range of 100 m up to 20 km as well as the recent automatic height retrieval method of the different Planetary Boundary Layers (PBL). The retrieval algorithm in the future will be improved integrating, when possible, a measured Lidar ratio by a co-located sun photometer Further are presented some data examples from several diverse sites in the

  12. Big Data solution for CTBT monitoring: CEA-IDC joint global cross correlation project

    NASA Astrophysics Data System (ADS)

    Bobrov, Dmitry; Bell, Randy; Brachet, Nicolas; Gaillard, Pierre; Kitov, Ivan; Rozhkov, Mikhail

    2014-05-01

    Waveform cross-correlation when applied to historical datasets of seismic records provides dramatic improvements in detection, location, and magnitude estimation of natural and manmade seismic events. With correlation techniques, the amplitude threshold of signal detection can be reduced globally by a factor of 2 to 3 relative to currently standard beamforming and STA/LTA detector. The gain in sensitivity corresponds to a body wave magnitude reduction by 0.3 to 0.4 units and doubles the number of events meeting high quality requirements (e.g. detected by three and more seismic stations of the International Monitoring System (IMS). This gain is crucial for seismic monitoring under the Comprehensive Nuclear-Test-Ban Treaty. The International Data Centre (IDC) dataset includes more than 450,000 seismic events, tens of millions of raw detections and continuous seismic data from the primary IMS stations since 2000. This high-quality dataset is a natural candidate for an extensive cross correlation study and the basis of further enhancements in monitoring capabilities. Without this historical dataset recorded by the permanent IMS Seismic Network any improvements would not be feasible. However, due to the mismatch between the volume of data and the performance of the standard Information Technology infrastructure, it becomes impossible to process all the data within tolerable elapsed time. To tackle this problem known as "BigData", the CEA/DASE is part of the French project "DataScale". One objective is to reanalyze 10 years of waveform data from the IMS network with the cross-correlation technique thanks to a dedicated High Performance Computer (HPC) infrastructure operated by the Centre de Calcul Recherche et Technologie (CCRT) at the CEA of Bruyères-le-Châtel. Within 2 years we are planning to enhance detection and phase association algorithms (also using machine learning and automatic classification) and process about 30 terabytes of data provided by the IDC to

  13. Detection and Monitoring of Global Changes and the Evolution in the Region of Bouzina (aures) Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Mekaoussi, M.; Benmessaoud, H.

    2015-10-01

    The functioning of Mediterranean ecosystems to daily or interannual scale presents an ecological and socio-economic interest. The intensive exploitation of natural resources of this ecosystem by the population has now reached a critical threshold. To this is added the effect of climate change leading to a drought that occurs mainly in the southern part. This leads to accelerated degradation of the ecosystem and requires the establishment of sustainable management rules. The objective of this study is to determine the contribution of multi-date satellite images in detecting global changes and monitoring of developments in the watershed of the Aurès Bouzina center. The approach is to use satellite images Landsat at different times (1986, 2001 and 2013) and sampling work for the confrontation with the ground truth, to conduct a thematic analysis of this environment, and view the global changes that have occurred in this area. The overall reading of the results of the tracking map changes, we notice a degradation of forest cover in ascending gradient from north to south and led to the reduction of vegetation cover drills. The area of irrigated crops registered an increase of grain. In favor of bare soils and wetlands, related to the influence of rivers, as well as the emergence of forage and vegetable crops. Bare soils dominated by a sandy texture are located primarily near areas of crops due to agricultural practices based on the intensification of agriculture as well as silting soil justified by an increase in bare soil. This work is a first step to track the degradation or restoration through ecological indicators field, related to remote sensing data.

  14. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment.

    PubMed

    Balbus, John M; Boxall, Alistair B A; Fenske, Richard A; McKone, Thomas E; Zeise, Lauren

    2013-01-01

    Global climate change (GCC) is likely to alter the degree of human exposure to pollutants and the response of human populations to these exposures, meaning that risks of pollutants could change in the future. The present study, therefore, explores how GCC might affect the different steps in the pathway from a chemical source in the environment through to impacts on human health and evaluates the implications for existing risk-assessment and management practices. In certain parts of the world, GCC is predicted to increase the level of exposure of many environmental pollutants due to direct and indirect effects on the use patterns and transport and fate of chemicals. Changes in human behavior will also affect how humans come into contact with contaminated air, water, and food. Dietary changes, psychosocial stress, and coexposure to stressors such as high temperatures are likely to increase the vulnerability of humans to chemicals. These changes are likely to have significant implications for current practices for chemical assessment. Assumptions used in current exposure-assessment models may no longer apply, and existing monitoring methods may not be robust enough to detect adverse episodic changes in exposures. Organizations responsible for the assessment and management of health risks of chemicals therefore need to be more proactive and consider the implications of GCC for their procedures and processes.

  15. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring

    PubMed Central

    Trasviña-Moreno, Carlos A.; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-01-01

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario. PMID:28245587

  16. Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Lin, Paul P.

    2001-01-01

    This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed to. From the Principal Investigator Microgravity Services' web site, the principal investigator teams can monitor via a graphical display, in near real time, which event(s) is/are on, such as crew activities, pumps, fans, centrifuges, compressor, crew exercise, platform structural modes, etc., and decide whether or not to run their experiments based on the acceleration environment associated with a specific event. This monitoring system is focused primarily on detecting the vibratory disturbance sources, but could be used as well to detect some of the transient disturbance sources, depending on the events duration. The system has built-in capability to detect both known and unknown vibratory disturbance sources. Several soft computing techniques such as Kohonen's Self-Organizing Feature Map, Learning Vector Quantization, Back-Propagation Neural Networks, and Fuzzy Logic were used to design the system.

  17. Monitoring Healing Progression and Characterizing the Mechanical Environment in Preclinical Models for Bone Tissue Engineering.

    PubMed

    Fountain, Stephanie; Windolf, Markus; Henkel, Jan; Tavakoli, Aramesh; Schuetz, Michael A; Hutmacher, Dietmar W; Epari, Devakara R

    2015-12-15

    The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.

  18. Unmanned Aerial Vehicle Based Wireless Sensor Network for Marine-Coastal Environment Monitoring.

    PubMed

    Trasviña-Moreno, Carlos A; Blasco, Rubén; Marco, Álvaro; Casas, Roberto; Trasviña-Castro, Armando

    2017-02-24

    Marine environments are delicate ecosystems which directly influence local climates, flora, fauna, and human activities. Their monitorization plays a key role in their preservation, which is most commonly done through the use of environmental sensing buoy networks. These devices transmit data by means of satellite communications or close-range base stations, which present several limitations and elevated infrastructure costs. Unmanned Aerial Vehicles (UAV) are another alternative for remote environmental monitoring which provide new types of data and ease of use. These aircraft are mainly used in video capture related applications, in its various light spectrums, and do not provide the same data as sensing buoys, nor can they be used for such extended periods of time. The aim of this research is to provide a flexible, easy to deploy and cost-effective Wireless Sensor Network (WSN) for monitoring marine environments. This proposal uses a UAV as a mobile data collector, low-power long-range communications and sensing buoys as part of a single WSN. A complete description of the design, development, and implementation of the various parts of this system is presented, as well as its validation in a real-world scenario.

  19. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    SciTech Connect

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  20. The global tobacco control 'endgame': change the policy environment to implement the FCTC.

    PubMed

    Cairney, Paul; Mamudu, Hadii

    2014-11-01

    The World Health Organization (WHO) Framework Convention for Tobacco Control (FCTC) has prompted major change in tobacco control globally. However, policy implementation has been uneven, making 'smoke free' outcomes possible in some countries, but not others. We identify the factors that would improve implementation. We describe an ideal type of 'comprehensive tobacco control regimes', where policy environments are conducive to the implementation of tobacco control measures designed to eradicate tobacco use. The ideal type requires that a country have certain policy processes: the department of health takes the policy lead; tobacco is 'framed' as a public health problem; public health groups are consulted at the expense of tobacco interests; socioeconomic conditions are conducive to policy change; and, the scientific evidence is 'set in stone' within governments. No country will meet all these criteria in the short term, and the gap between the ideal type and the current state is wide in many countries. However, the WHO experience provides a model for progress.

  1. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring.

    PubMed

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-09-14

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.

  2. A Movement-Assisted Deployment of Collaborating Autonomous Sensors for Indoor and Outdoor Environment Monitoring

    PubMed Central

    Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał

    2016-01-01

    Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186

  3. Urban ecological environment monitoring and evaluation based on remote sensing ecological index

    NASA Astrophysics Data System (ADS)

    Cheng, Peng-gen; Tong, Cheng-zhuo; Chen, Xiao-yong; Nie, Yun-ju

    2015-12-01

    At present, the dynamic change monitoring of urban ecological environment has became an important guarantee measure for urban management, planning and construction. In this paper, taking Nanchang city as a case study, the remote sensing ecological index (RSEI) which is based on the natural factors is used to study the changes of the urban ecological environment. The Landsat images in the three different time periods of 1996, 2005, and 2013 in Nanchang were selected. To extract the four factors of green level, moisture, dryness and heat respectively as sub-indexs of the ecological assessment, in which the single window algorithm was used to calculate the heat. Based on the four factors, the RSEI in each year was finally calculated. The results show that the ecological environment in Nanchang deteriorated in the past 17 years, the value of the RSEI has decreased from 0.385 in 1996 to 0.267 in 2005, falling by 30.65%, but the ecological environment has improved in the later period, with the value of RSEI value rising to 0.413, increased by 54.68% compared with the results in 2005. It is indicates that the urban ecological environment of Nanchang has been significantly improved after some effective measures such as urban greening, pollution control, environmental protection were taken.

  4. Multi-terminal remote monitoring and warning system using Micro Air Vehicle for dangerous environment

    NASA Astrophysics Data System (ADS)

    Yu, Yanan; Wang, Xiaoxun; He, Chengcheng; Lai, Chenlong; Liu, Yuanchao

    2015-11-01

    For overcoming the problems such as remote operation and dangerous tasks, multi-terminal remote monitoring and warning system based on STC89C52 Micro Control Unit and wireless communication technique was proposed. The system with MCU as its core adopted multiple sets of sensor device to monitor environment parameters of different locations, such as temperature, humidity, smoke other harmful gas concentration. Data information collected was transmitted remotely by wireless transceiver module, and then multi-channel data parameter was processed and displayed through serial communication protocol between the module and PC. The results of system could be checked in the form of web pages within a local network which plays a wireless monitoring and warning role. In a remote operation, four-rotor micro air vehicle which fixed airborne data acquisition device was utilized as a middleware between collecting terminal and PC to increase monitoring scope. Whole test system has characteristics of simple construction, convenience, real time ability and high reliability, which could meet the requirements of actual use.

  5. Enhancing Global Competitiveness: Benchmarking Airline Operational Performance in Highly Regulated Environments

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D.; Headley, Dean E.; Kane, Karisa D.

    1998-01-01

    Enhancing competitiveness in the global airline industry is at the forefront of attention with airlines, government, and the flying public. The seemingly unchecked growth of major airline alliances is heralded as an enhancement to global competition. However, like many mega-conglomerates, mega-airlines will face complications driven by size regardless of the many recitations of enhanced efficiency. Outlined herein is a conceptual model to serve as a decision tool for policy-makers, managers, and consumers of airline services. This model is developed using public data for the United States (U.S.) major airline industry available from the U/S. Department of Transportation, Federal Aviation Administration, the National Aeronautics and Space Administration, the National Transportation Safety Board, and other public and private sector sources. Data points include number of accidents, pilot deviations, operational performance indicators, flight problems, and other factors. Data from these sources provide opportunity to develop a model based on a complex dot product equation of two vectors. A row vector is weighted for importance by a key informant panel of government, industry, and consumer experts, while a column vector is established with the factor value. The resulting equation, known as the national Airline Quality Rating (AQR), where Q is quality, C is weight, and V is the value of the variables, is stated Q=C[i1-19] x V[i1-19]. Looking at historical patterns of AQR results provides the basis for establishment of an industry benchmark for the purpose of enhancing airline operational performance. A 7 year average of overall operational performance provides the resulting benchmark indicator. Applications from this example can be applied to the many competitive environments of the global industry and assist policy-makers faced with rapidly changing regulatory challenges.

  6. Global near real-time disturbance monitoring using MODIS satellite image time series

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Kalomenopoulos, M.; de Jong, R.; Zeileis, A.; Herold, M.

    2012-12-01

    Global disturbance monitoring in forested ecosystems is critical to retrieve information on carbon storage dynamics, biodiversity, and other socio-ecological processes. Satellite remote sensing provides a means for cost-effective monitoring at frequent time steps over large areas. However, for information about current change processes, it is required to analyse image time series in a fast and accurate manner and to detect abnormal change in near real time. An increasing number of change detection techniques have become available that are able to process historical satellite image time series data to detect changes in the past. However, methods that detect changes near real-time, i.e. analysing newly acquired data with respect to the historical series, are lacking. We propose a statistical technique for monitoring change in near-real time by comparing current data with a seasonal-trend model fitted onto the historical time series. As such, identification of consistent and abnormal change in near-real time becomes possible as soon as new image data is captured. The method is based on the "Break For Additive Seasonal Trend" (BFAST) concept (http://bfast.r-forge.r-project.org/). Disturbances are detected by analysing 16-daily MODIS combined vegetation and temperature indices. Validation is carried out by comparing the detected disturbances with available disturbance data sets (e.g. deforestation in Brazil and MODIS fire products). Preliminary results demonstrated that abrupt changes at the end of time series can be successfully detected while the method remains robust for strong seasonality and atmospheric noise. Cloud masking, however, was identified as a critical issue since periods of persistent cloudiness can be detected as abnormal change. The proposed method is an automatic and robust change detection approach that can be applied on different types of data (e.g. future sensors like the Sentinel constellation that provide higher spatial resolution at regular time

  7. Qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator

    NASA Astrophysics Data System (ADS)

    McIntyre, Gregory; Corliss, Daniel; Groenendijk, Remco; Carpaij, Rene; van Niftrik, Ton; Landie, Guillaume; Tamura, Takao; Pepin, Thomas; Waddell, James; Woods, Jerry; Robinson, Chris; Tian, Kehan; Johnson, Richard; Halle, Scott; Kim, Ryoung-Han; Mclellan, Erin; Kato, Hirokazu; Scaduto, Anthony; Maier, Carl; Colburn, Matt

    2011-04-01

    This paper will describe the development, qualification, monitoring, and integration into a production environment of the world's first fully programmable illuminator for optical lithography. FlexRay TM, a programmable illuminator based on a MEMs multi-mirror array that was developed for TWINSCAN XT:19x0i and TWINSCAN NXT series ASML immersion scanners, was first installed in January 2010 at Albany Nanotech, with subsequent tools installed in IBM's East Fishkill Manufacturing facility. After a brief overview of the concept and benefits of FlexRay, this paper will provide a comprehensive assessment of its reliability and imaging performance. A CD-based pupil qualification (CDPQ) procedure will be introduced and shown to be an efficient and effective way to monitor pupil performance. Various CDPQ and in-resist measurement results will be described, offering convincing evidence that FlexRay reliably generates high-quality pupils and is well suited for high volume manufacturing at lithography's leading edge.

  8. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  9. Air-quality monitoring and detection of air contamination in an enclosed environment.

    PubMed

    Skliar, M; Ramirez, W F

    1997-01-01

    We report on the development of an air-quality monitoring and early detection system for an enclosed environment with specific emphasis on manned spacecraft. The proposed monitoring approach is based on a distributed parameter model of contaminant dispersion and real-time contaminant concentration measurements. Kalman filtering is identified as a suitable method for generating on-line estimation of the spatial contamination profile, and an implicit Kalman filtering algorithm is shown to be preferable for rear-time implementation. The identification of the contaminant concentration profile allows for a straightforward solution of the early detection of an air contamination event and provides information that enables potential automatic diagnosis of an unknown contamination source.

  10. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    PubMed Central

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-01-01

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers. PMID:28216556

  11. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    PubMed

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  12. Monitoring Ionospheric Total Electron Content Using the GPS Global Network and TOPEX/POSEIDON Altimeter Data

    NASA Technical Reports Server (NTRS)

    Mannucci, Anthony J.; Wilson, Brian D.; Yuan, Dah-Ning

    1994-01-01

    The results of a preliminary study to access the accuracy of global ionospheric maps are presented. Global ionospheric maps, produced using dual-frequency data from the global network of GPS receivers, are.

  13. Monitoring HIV-Related Laws and Policies: Lessons for AIDS and Global Health in Agenda 2030.

    PubMed

    Torres, Mary Ann; Gruskin, Sofia; Buse, Kent; Erkkola, Taavi; Bendaud, Victoria; Alfvén, Tobias

    2017-01-13

    The National Commitments and Policy Instrument (NCPI) has been used to monitor AIDS-related laws and policies for over 10 years. What can be learnt from this process? Analyses draw on NCPI questionnaires, NCPI responses, the UNAIDS Law Database, survey data and responses to a 2014 survey on the NCPI. The NCPI provides the first and only systematic data on country self-reported national HIV laws and policies. High NCPI reporting rates and survey responses suggest the majority of countries consider the process relevant. Combined civil society and government engagement and reporting is integral to the NCPI. NCPI experience demonstrates its importance in describing the political and legal environment for the HIV response, for programmatic reviews and to stimulate dialogue among stakeholders, but there is a need for updating and in some instances to complement results with more objective quantitative data. We identify five areas that need to be updated in the next iteration of the NCPI and argue that the NCPI approach is relevant to participatory monitoring of targets in the health and other goals of the UN 2030 Agenda for Sustainable Development.

  14. Global Security Rule Sets An Analysis of the Current Global Security Environment and Rule Sets Governing Nuclear Weapons Release

    SciTech Connect

    Mollahan, K; Nattrass, L

    2004-09-30

    America is in a unique position in its history. In maintaining its position as the world's only superpower, the US consistently finds itself taking on the role of a global cop, chief exporter of hard and soft power, and primary impetus for globalization. A view of the current global situation shows an America that can benefit greatly from the effects of globalization and soft power. Similarly, America's power can be reduced significantly if globalization and its soft power are not handled properly. At the same time, America has slowly come to realize that its next major adversary is not a near peer competitor but terrorism and disconnected nations that seek nuclear capabilities. In dealing with this new threat, America needs to come to terms with its own nuclear arsenal and build a security rule set that will establish for the world explicitly what actions will cause the US to consider nuclear weapons release. This rule set; however, needs to be established with sensitivity to the US's international interests in globalization and soft power. The US must find a way to establish its doctrine governing nuclear weapons release without threatening other peaceful nations in the process.

  15. New study on the correlation between carbon dioxide concentration in the environment and radon monitor devices.

    PubMed

    Shahrokhi, A; Burghele, B D; Fábián, F; Kovács, T

    2015-12-01

    The influence of high geogenic carbon dioxide concentrations on monitoring devices might present a significant challenge to the measurement of radon concentrations in environments with a high level of carbon dioxide concentration such as volcano sites, mofettes, caves, etc. In this study, the influence of carbon dioxide concentration on several different types of radon monitor devices - including Alpha Spectrometry (Sarad RTM 2200, EQF 3220, RAD7), Ionizing Chamber (AlphaGUARD PQ2000 PRO) and Active Cell (Active scintillation cell, Pylon 300A) - was examined to represent new aspects of radon measuring in environments with carbon dioxide. In light of the results, all measuring devices were exposed to variable conditions affected by carbon dioxide concentration, except for the AlphaGUARD, which was kept in a steady state throughout the experiment. It was observed that alpha spectroscopy devices were affected by carbon dioxide, since measured radon concentrations decreased in the presence of 70% and 90% carbon dioxide concentrations by 26.5 ± 2% and 14.5 ± 2.5% for EQF 3220, and 32 ± 2% and 35.5 ± 2% for RTM 2200. However, the ionizing chamber instrument was unaffected by changes in carbon dioxide concentration. It was determined that the RAD7 performed relatively inefficiently in the presence of carbon dioxide concentrations higher than 67% by an overall efficiency factor of approximately 0.52, confirming that it is not an admissible radon monitor instrument in environments with high carbon dioxide concentrations.

  16. FBG system for temperature monitoring under electromagnetic immersed and harsh oil and gas reservoir environment

    NASA Astrophysics Data System (ADS)

    Villnow, Michael; Bosselmann, Thomas; Willsch, Michael; Kaiser, Joachim

    2014-05-01

    A common way to explore oil out of tar sand is to use a technique called Steam Assisted Gravity Drainage SAGD. This method can be enhanced by using an inductive heater (EM-SAGD). To monitor the heat dissipation of the inductor a measurement system for this harsh electromagnetic environment is needed. In this paper different optical temperature measurement systems are compared to find the most suitable system for this kind of application. A field test with great results was performed, where the performance of the inductor and the FBG measurement system were demonstrated.

  17. Dynamic sensor deployment for the monitoring of chemical releases in urban environments (DYCE)

    NASA Astrophysics Data System (ADS)

    Lepley, Jason J.; Lloyd, David R.; Robins, Alan; Rudd, Alison; Wilks, Ashley

    2011-05-01

    We present findings of the DYCE project, which addresses the needs of military and blue light responders to provide a rapid, reliable on-scene analysis of the dispersion of toxic airborne chemical threat agents following their release into the environment. We describe the development and experimental results for a small network of ad-hoc deployable chemical and meteorological sensors capable of identifying and locating the source of the contaminant release, as well as monitoring and estimating the dispersion characteristics of the plume. We further present deployment planning methodologies to optimize the data gathering mission given a constrained asset base.

  18. Effects of Kinetic Processes in Shaping Io's Global Plasma Environment: A 3D Hybrid Model

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Combi, Michael R.

    2006-01-01

    The global dynamics of the ionized and neutral gases in the environment of Io plays an important role in the interaction of Jupiter s corotating magnetospheric plasma with Io. Stationary simulations of this problem have already been done using the magnetohydrodynamics (MHD) and the electrodynamics approaches. One of the major results of recent simplified two-fluid model simulations [Saur, J., Neubauer, F.M., Strobel, D.F., Summers, M.E., 2002. J. Geophys. Res. 107 (SMP5), 1-18] was the production of the structure of the double-peak in the magnetic field signature of the Io flyby. These could not be explained before by standard MHD models. In this paper, we present a hybrid simulation for Io with kinetic ions and fluid electrons. This method employs a fluid description for electrons and neutrals, whereas for ions a particle approach is used. We also take into account charge-exchange and photoionization processes and solve self-consistently for electric and magnetic fields. Our model may provide a much more accurate description for the ion dynamics than previous approaches and allows us to account for the realistic anisotropic ion velocity distribution that cannot be done in fluid simulations with isotropic temperatures. The first results of such a simulation of the dynamics of ions in Io s environment are discussed in this paper. Comparison with the Galileo IO flyby results shows that this approach provides an accurate physical basis for the interaction and can therefore naturally reproduce all the observed salient features.

  19. Effects of Kinetic Processes in Shaping Io's Global Plasma Environment: A 3D Hybrid Model

    NASA Technical Reports Server (NTRS)

    Lipatov, Alexander S.; Combi, Michael R.

    2004-01-01

    The global dynamics of the ionized and neutral components in the environment of Io plays an important role in the interaction of Jupiter's corotating magnetospheric plasma with Io. The stationary simulation of this problem was done in the MHD and the electrodynamics approaches. One of the main significant results from the simplified two-fluid model simulations was a production of the structure of the double-peak in the magnetic field signature of the I0 flyby that could not be explained by standard MHD models. In this paper, we develop a method of kinetic ion simulation. This method employs the fluid description for electrons and neutrals whereas for ions multilevel, drift-kinetic and particle, approaches are used. We also take into account charge-exchange and photoionization processes. Our model provides much more accurate description for ion dynamics and allows us to take into account the realistic anisotropic ion distribution that cannot be done in fluid simulations. The first results of such simulation of the dynamics of ions in the Io's environment are discussed in this paper.

  20. FORMOSAT-7/COSMIC-2 GNSS radio occultation constellation mission for global weather monitoring

    NASA Astrophysics Data System (ADS)

    Cook, K.; Fong, Chen-Joe; Wenkel, M. J.; Wilczynski, P.; Yen, N.; Chang, G. S.

    The United States and Taiwan, through an Agreement signed in May 2010, have begun to jointly develop a satellite program to deliver next-generation global navigation satellite system (GNSS) radio occultation (RO) data to users around the world. This Program, known as FORMOSAT-7/COSMIC-2, is the follow-on to the FORMOSAT-3/COSMIC mission, which was a joint US-Taiwan 6-satellite constellation demonstration mission launched in April 2006. The COSMIC mission was the world's first operational GPS radio occultation (GPS-RO) mission for global weather forecast; climate monitoring; atmospheric, ionospheric, and geodetic research. The GPS-RO data from COSMIC has been extremely valuable to the climate, meteorology, and space weather communities, including real-time forecasting users as well as U.S. and international research communities. FORMOSAT-3/COSMIC reached the end of its design life in 2011. The constellation satellites have exhibited some unrecoverable anomalies and consequently the critical real-time satellite observing capability is degrading and may go offline with uncertainty in the coming few years. The National Oceanic and Atmospheric Administration (NOAA) and Taiwan's National Space Organization (NSPO) have recognized the potential GPS-RO data gap due to the degrading COSMIC/FORMOSAT-3 constellation and agreed to implement the follow-on COSMIC-2/FORMOSAT-7 mission in 2010. Both experienced programmatic difficulties in the past two years in the course of implementing the COSMIC-2/FORMOSAT-7 Program; however, significant progress over the past six months has occurred. This paper will provide an overview of the COSMIC2/FORMOSAT-7 Program including the Program goals and objectives. It will also discuss the status of the Program including current satellite and constellation configuration, activities to determine the optimal and minimal ground system architecture to meet data latency requirements, and other discussions on the mission and scientific payload technol

  1. Reflecting on the EFA Global Monitoring Report's Framework for Understanding Quality Education: A Teacher's Perspective in Eritrea

    ERIC Educational Resources Information Center

    Gordon, Charlie

    2010-01-01

    This paper considers issues concerning the quality of education in Eritrea using the Education for All (EFA) Global Monitoring Report's (GMR) framework for quality education. Drawing on 2 years school-based professional experience in the country, the multiple factors affecting quality in schooling are discussed. The applicability of the GMR…

  2. The sperm whale sonar: Monitoring and use in mitigation of anthropogenic noise effects in the marine environment

    NASA Astrophysics Data System (ADS)

    André, Michel

    2009-04-01

    Noise pollution in the marine environment is an emerging but serious concern. Its implications are less well understood than other global threats and largely undetectable to everyone but the specialist. In addition, the assessment of the acoustic impact of artificial sounds in the sea is not a trivial task, certainly because there is a lack of information on how the marine organisms process and analyse sounds and how relevant these sounds are for the balance and development of the populations. Further, this possible acoustic impact not only concerns the hearing systems but may also affect other sensory or systemic levels and result equally lethal for the animal concerned. If we add that the negative consequences of a short or long term exposure to artificial sounds may not be immediately observed one can understood how challenging it is to obtain objective data allowing an efficient control of the introduction of anthropogenic sound in the sea. To answer some of these questions, the choice to investigate cetaceans and their adaptation to an aquatic environment is not fortuitous. Cetaceans, because of their optimum use of sound as an ad-hoc source of energy and their almost exclusive dependence on acoustic information, represent not only the best bio-indicator of the effects of noise pollution in the marine environment, but also a source of data to improve and develop human underwater acoustic technology. Here, we present how the characteristics and performance of the sperm whale mid-range biosonar can be used to develop a mitigation solution based on passive acoustics and ambient noise imaging to prevent negative interactions with human activities by monitoring cetacean movements in areas of interest, e.g. deep-sea observatories.

  3. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors

    NASA Technical Reports Server (NTRS)

    Van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Hsu, N. Christina; Kahn, Ralph A.; Levy, Robert C.; Lyapustin, Alexei; Sayer, Andrew M.; Winker, David M.

    2016-01-01

    We estimated global fine particulate matter (PM(sub 2.5)) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically-based satellite-derived PM(sub 2.5) estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM(sub 2.5) estimates were highly consistent (R(sup 2) equals 0.81) with out-of-sample cross-validated PM(sub 2.5) concentrations from monitors. The global population-weighted annual average PM(sub 2.5) concentrations were 3-fold higher than the 10 micrograms per cubic meter WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM(sub 2.5) data sources can yield valuable improvements to PM(sub 2.5) characterization on a global scale.

  4. Global Estimates of Fine Particulate Matter using a Combined Geophysical-Statistical Method with Information from Satellites, Models, and Monitors.

    PubMed

    van Donkelaar, Aaron; Martin, Randall V; Brauer, Michael; Hsu, N Christina; Kahn, Ralph A; Levy, Robert C; Lyapustin, Alexei; Sayer, Andrew M; Winker, David M

    2016-04-05

    We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM2.5 estimates were highly consistent (R(2) = 0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5 concentrations were 3-fold higher than the 10 μg/m(3) WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global scale.

  5. Mercator-Ocean monitoring and forecasting : a 4D vision of the global ocean

    NASA Astrophysics Data System (ADS)

    Bahurel, P.; Toumazou, V.

    naval forces, promote sustainable stewardship of the world's oceans, oceanographic research, safety at sea, environmental monitoring and conservation, and further knowledge of the ocean's role in climatic change. 3. Contribute to the international GODAE initiative (Global Ocean Data Assimilation Experiment) through routine real-time analysis and forecasting of global ocean conditions.

  6. Feasibility of integrating other federal information systems into the Global Network of Environment and Technology, GNET{reg_sign}

    SciTech Connect

    1998-05-01

    The Global Environment and Technology Enterprise (GETE) of the Global Environment and Technology Foundation (GETF) has been tasked by the US Department of Energy`s (DOE), Federal Energy Technology Center (FETC) to assist in reducing DOE`s cost for the Global Network of Environment and Technology (GNET{reg_sign}). As part of this task, GETE is seeking federal partners to invest in GNET{reg_sign}. The authors are also seeking FETC`s commitment to serve as GNET`s federal agency champion promoting the system to potential agency partners. This report assesses the benefits of partnering with GNET{reg_sign} and provides recommendations for identifying and integrating other federally funded (non-DOE) environmental information management systems into GNET{reg_sign}.

  7. Sample project: establishing a global forest monitoring capability using multi-resolution and multi-temporal remotely sensed data sets

    USGS Publications Warehouse

    Hansen, Matt; Stehman, Steve; Loveland, Tom; Vogelmann, Jim; Cochrane, Mark

    2009-01-01

    Quantifying rates of forest-cover change is important for improved carbon accounting and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. A practical solution to examining trends in forest cover change at global scale is to employ remotely sensed data. Satellite-based monitoring of forest cover can be implemented consistently across large regions at annual and inter-annual intervals. This research extends previous research on global forest-cover dynamics and land-cover change estimation to establish a robust, operational forest monitoring and assessment system. The approach integrates both MODIS and Landsat data to provide timely biome-scale forest change estimation. This is achieved by using annual MODIS change indicator maps to stratify biomes into low, medium and high change categories. Landsat image pairs can then be sampled within these strata and analyzed for estimating area of forest cleared.

  8. The Use of Proba-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Gilliams, S. J. B.; Bydekerke, L.; Smets, B.; De Ronde, B.

    2014-12-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at scales which are unprecedented in history and at such a pace that they are not only subject of scientific studies but also have a strong economic impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many of these cases the temporal frequency of the information is a clear requirement to detect phenomena that can occur within a few days (related to crops, forests and other ecosystems) and at a certain geographic scale. For example frequent updates on crop condition and production is needed to stabilize agricultural markets. This is already being picked up by large initiatives like the GEOGLAM AMIS system. Observations over large areas are available through satellites, however challenges remain; on the one hand side obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales in which changes in land cover/use can be identified in a consistent manner. On the other hand side the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with the historical reference is of the utmost importance. The Proba-V mission is a first attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the integration of the Proba-V data with the 15 years historical archive of SPOT-VEGETATION. In this respect Proba-V observation will be intercomparable with the SPOT-VGT historical baseline which will ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, Proba-V also ensures an increase in spatial resolution of the data sets, from 1km to

  9. Ambient monitoring of airborne asbestos in non-occupational environments in Tehran, Iran

    NASA Astrophysics Data System (ADS)

    Kakooei, Hossein; Meshkani, Mohsen; Azam, Kamal

    2013-12-01

    Airborne asbestos fiber concentrations were monitored in the urban areas of Tehran, Iran during the period of 23 August to 21 September 2012. The airborne fiber concentrations of 110 air samples collected from 15 different sites in five regions of Tehran. The monitoring sites were located 2.5 m above ground nearby the main street and heavy traffic jam. The ambient air samples were analyzed using scanning electron microscopy (SEM), with energy-dispersive X-ray analysis and phase-contrast optical microscopy (PCM). The geometric means of the airborne asbestos fiber concentrations in the outdoor living areas was 1.6 × 10-2 SEM f ml-1 (1.18 × 10-3 PCM f ml-1). This criteria is considerably higher than those reported for the levels of asbestos in outdoor living areas in the Europe and the non-occupational environment of the Korea. No clear correlation was found between asbestos fiber concentration and the relative humidity and temperature. The SEM and PLM analysis revealed that all samples examined contained only chrysotile asbestos. It can be concluded that several factor such as heavy traffic, cement sheet and pipe consumption of asbestos, and geographical conditions play an important role for the high airborne asbestos levels in the non-occupational environments.

  10. Underground roots monitor aboveground environment by sensing stem-piped light

    PubMed Central

    Lee, Hyo-Jun; Ha, Jun-Ho; Park, Chung-Mo

    2016-01-01

    ABSTRACT Light is a critical environmental cue for plant growth and development. Plants actively monitor surrounding environments by sensing changes in light wavelength and intensity. Therefore, plants have evolved a series of photoreceptors to perceive a broad wavelength range of light. Phytochrome photoreceptors sense red and far-red light, which serves as a major photomorphogenic signal in shoot growth and morphogenesis. Notably, plants also express phytochromes in the roots, obscuring whether and how they perceive light in the soil. We have recently demonstrated that plants directly channel light to the roots through plant body to activate root phytochrome B (phyB). Stem light facilitates the nuclear import of phyB in the roots, and the photoactivated phyB triggers the accumulation of the photomorphogenic regulator ELONGATED HYPOCOTYL 5 in modulating root growth and gravitropism. Optical experiments revealed that red to far-red light is efficiently transduced through plant body. Our findings provide physical and molecular evidence, supporting that photoreceptors expressed in the underground roots directly sense light. We propose that the roots are not a passive organ but a central organ that actively monitors changes in the aboveground environment by perceiving light information from the shoots. PMID:28042383

  11. Use of business planning methods to monitor global health budgets in Turkmenistan.

    PubMed

    Ensor, T; Amannyazova, B

    2000-01-01

    After undergoing many changes, the financing of health care in countries of the former Soviet Union is now showing signs of maturing. Soon after the political transition in these countries, the development of insurance systems and fee-for-service payment systems dominated the discussions on health reform. At present there is increasing emphasis on case mix adjusted payments in larger hospitals and on global budgets in smaller district hospitals. The problem is that such systems are often mistrusted for not providing sufficient financial control. At the same time, unless further planned restructuring is introduced, payment systems cannot on their own induce the fundamental change required in the health care system. As described in this article, in Tejen etrap (district), Turkmenistan, prospective business plans, which link planned objectives and activities with financial allocations, provide a framework for setting and monitoring budget expenditure. Plans can be linked to the overall objectives of the restructuring system and can be used to ensure sound financial management. The process of business planning, which calls for a major change in the way health facilities examine their activities, can be used as a vehicle to increase awareness of management issues. It also provides a way of satisfying the requirement for a rigorous, bottom-up planning of financial resources.

  12. Online service for monitoring the ionosphere based on data from the global navigation satellite system

    NASA Astrophysics Data System (ADS)

    Aleshin, I. M.; Alpatov, V. V.; Vasil'ev, A. E.; Burguchev, S. S.; Kholodkov, K. I.; Budnikov, P. A.; Molodtsov, D. A.; Koryagin, V. N.; Perederin, F. V.

    2014-07-01

    A service is described that makes possible the effective construction of a three-dimensional ionospheric model based on the data of ground receivers of signals from global navigation satellite positioning systems (GNSS). The obtained image has a high resolution, mainly because data from the IPG GNSS network of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet) are used. A specially developed format and its implementation in the form of SQL structures are used to collect, transmit, and store data. The method of high-altitude radio tomography is used to construct the three-dimensional model. The operation of all system components (from registration point organization to the procedure for constructing the electron density three-dimensional distribution and publication of the total electron content map on the Internet) has been described in detail. The three-dimensional image of the ionosphere, obtained automatically, is compared with the ionosonde measurements, calculated using the two-dimensional low-altitude tomography method and averaged by the ionospheric model.

  13. On the demands on imaging spectrometry for the monitoring of global vegetation fluorescence from space

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Del Bello, U.; Drusch, M.; Gabriele, A.; Harnisch, B.; Moreno, J.

    2013-09-01

    Vegetation fluorescence when measured from space contributes only a tiny fraction of the signal coming on top of the reflected radiance by the Earth surface and the atmosphere. As a consequence, imaging spectrometers have to provide sufficient throughput and radiometric accuracy to enable accurate global monitoring of the daily to seasonal variations of the Earth's vegetation breath, which is particularly challenging if ground resolutions of a few hundred meters are targeted. Since fluorescence retrieval algorithms have to make corrections for atmospheric effects, it is necessary to provide sufficient spectral resolution, so that signal alterations due to the main parameters such as surface pressure, atmospheric temperature profile, vertical distribution of aerosols concentration, and water vapour content can be accurately modelled. ESA's Earth Explorer 8 candidate mission FLEX carries a Fluorescence Imaging Spectrometer (FLORIS), which has been designed and optimised to enable such measurement. The spectrometer will measure in a spectral range between 500 and 780 nm and provide high spectral resolution of 0.3 nm in particular at the Oxygen-A and -B bands. It will also cover the photochemical reflection features between 500 and 600 nm, the Chlorophyll absorption region between 600 and 677 nm, and the red-edge in the region of 697 to 755 nm. FLEX will fly in formation with Sentinel-3 in order to further enhance the spectral coverage from measurements made by the Sentinel-3 instruments OLCI and SLSTR, particularly for cloud screening and proper characterization of the atmospheric status.

  14. Preliminary Concept of Operations for a Global Cylinder Identification and Monitoring System

    SciTech Connect

    Whitaker, J. M.; White-Horton, J. L.; Morgan, J. B.

    2013-08-01

    This report describes a preliminary concept of operations for a Global Cylinder Identification and Monitoring System that could improve the efficiency of the International Atomic Energy Agency (IAEA) in conducting its current inspection activities and could provide a capability to substantially increase its ability to detect credible diversion scenarios and undeclared production pathways involving UF6 cylinders. There exist concerns that a proliferant State with access to enrichment technology could obtain a cylinder containing natural or low-enriched uranium hexafluoride (UF6) and produce a significant quantity (SQ)1 of highly enriched uranium in as little as 30 days. The National Nuclear Security Administration (NNSA) through the Next Generation Safeguards Initiative sponsored a multi-laboratory team to develop an integrated system that provides for detecting scenarios involving 1) diverting an entire declared cylinder for enrichment at a clandestine facility, 2) misusing a declared cylinder at a safeguarded facility, and 3) using an undeclared cylinder at a safeguarded facility. An important objective in developing this integrated system was to improve the timeliness for detecting the cylinder diversion and undeclared production scenarios. Developing this preliminary concept required in-depth analyses of current operational and safeguards practices at conversion, enrichment, and fuel fabrication facilities. The analyses evaluated the processing, movement, and storage of cylinders at the facilities; the movement of cylinders between facilities (including cylinder fabrication); and the misuse of safeguarded facilities.

  15. Use of business planning methods to monitor global health budgets in Turkmenistan.

    PubMed Central

    Ensor, T.; Amannyazova, B.

    2000-01-01

    After undergoing many changes, the financing of health care in countries of the former Soviet Union is now showing signs of maturing. Soon after the political transition in these countries, the development of insurance systems and fee-for-service payment systems dominated the discussions on health reform. At present there is increasing emphasis on case mix adjusted payments in larger hospitals and on global budgets in smaller district hospitals. The problem is that such systems are often mistrusted for not providing sufficient financial control. At the same time, unless further planned restructuring is introduced, payment systems cannot on their own induce the fundamental change required in the health care system. As described in this article, in Tejen etrap (district), Turkmenistan, prospective business plans, which link planned objectives and activities with financial allocations, provide a framework for setting and monitoring budget expenditure. Plans can be linked to the overall objectives of the restructuring system and can be used to ensure sound financial management. The process of business planning, which calls for a major change in the way health facilities examine their activities, can be used as a vehicle to increase awareness of management issues. It also provides a way of satisfying the requirement for a rigorous, bottom-up planning of financial resources. PMID:10994288

  16. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment

    PubMed Central

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell’Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-01-01

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps. PMID:27775652

  17. A Low-Cost Optical Remote Sensing Application for Glacier Deformation Monitoring in an Alpine Environment.

    PubMed

    Giordan, Daniele; Allasia, Paolo; Dematteis, Niccolò; Dell'Anese, Federico; Vagliasindi, Marco; Motta, Elena

    2016-10-21

    In this work, we present the results of a low-cost optical monitoring station designed for monitoring the kinematics of glaciers in an Alpine environment. We developed a complete hardware/software data acquisition and processing chain that automatically acquires, stores and co-registers images. The system was installed in September 2013 to monitor the evolution of the Planpincieux glacier, within the open-air laboratory of the Grandes Jorasses, Mont Blanc massif (NW Italy), and collected data with an hourly frequency. The acquisition equipment consists of a high-resolution DSLR camera operating in the visible band. The data are processed with a Pixel Offset algorithm based on normalized cross-correlation, to estimate the deformation of the observed glacier. We propose a method for the pixel-to-metric conversion and present the results of the projection on the mean slope of the glacier. The method performances are compared with measurements obtained by GB-SAR, and exhibit good agreement. The system provides good support for the analysis of the glacier evolution and allows the creation of daily displacement maps.

  18. Monitoring of ion implantation in microelectronics production environment using multi-channel reflectometry

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitry; Hartig, Carsten

    2016-03-01

    Optical metrology techniques such as ellipsometry and reflectometry are very powerful for routine process monitoring and control in the modern semiconductor manufacturing industry. However, both methods rely on optical modeling therefore, the optical properties of all materials in the stack need to be characterized a priori or determined during characterization. Some processes such as ion implantation and subsequent annealing produce slight variations in material properties within wafer, wafer-to-wafer, and lot-to-lot; such variation can degrade the dimensional measurement accuracy for both unpatterned optical measurements as well as patterned (2D and 3D) scatterometry measurements. These variations can be accounted for if the optical model of the structure under investigation allows one to extract not just dimensional but also material information already residing within the optical spectra. This paper focuses on modeling of ion implanted and annealed poly Si stacks typically used in high-k technology. Monitoring of ion implantation is often a blind spot in mass production due to capability issues and other limitations of common methods. Typically, the ion implantation dose can be controlled by research-grade ellipsometers with extended infrared range. We demonstrate that multi-channel spectroscopic reflectometry can also be used for ion implant monitoring in the mass-production environment. Our findings are applicable across all technology nodes.

  19. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment.

    PubMed

    Booij, Kees; Robinson, Craig D; Burgess, Robert M; Mayer, Philipp; Roberts, Cindy A; Ahrens, Lutz; Allan, Ian J; Brant, Jan; Jones, Lisa; Kraus, Uta R; Larsen, Martin M; Lepom, Peter; Petersen, Jördis; Pröfrock, Daniel; Roose, Patrick; Schäfer, Sabine; Smedes, Foppe; Tixier, Céline; Vorkamp, Katrin; Whitehouse, Paul

    2016-01-05

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined.

  20. Monitoring performance of the cameras under the high dose-rate gamma ray environments.

    PubMed

    Cho, Jai Wan; Choi, Young Soo; Jeong, Kyung Min

    2014-05-01

    CCD/CMOS cameras, loaded on a robot system, are generally used as the eye of the robot and monitoring unit. A major problem that arises when dealing with images provided by CCD/CMOS cameras under severe accident situations of a nuclear power plant is the presence of speckles owing to the high dose-rate gamma irradiation fields. To use a CCD/CMOS camera as a monitoring unit in a high radiation area, the legibility of the camera image in such intense gamma-radiation fields should therefore be defined. In this paper, the authors describe the monitoring index as a figure of merit of the camera's legibleness under a high dose-rate gamma ray irradiation environment. From a low dose-rate (10 Gy h) to a high dose-rate (200 Gy h) level, the legible performances of the cameras owing to the speckles are evaluated. The numbers of speckles generated by gamma ray irradiation in the camera image are calculated by an image processing technique. The legibility of the sensor indicator (thermo/hygrometer) owing to the number of speckles is also presented.

  1. Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Stavrakou, T.; Wallens, S.; de Smedt, I.; van Roozendael, M.; Potosnak, M. J.; Rinne, J.; Munger, B.; Goldstein, A.; Guenther, A. B.

    2007-11-01

    The global emissions of isoprene are calculated at 0.5° resolution for each year between 1995 and 2006, based on the MEGAN (Model of Emissions of Gases and Aerosols from Nature) version 2 model (Guenther et al., 2006) and a detailed multi-layer canopy environment model for the calculation of leaf temperature and visible radiation fluxes. The calculation is driven by meteorological fields - air temperature, cloud cover, downward solar irradiance, windspeed, volumetric soil moisture in 4 soil layers - provided by analyses of the European Centre for Medium-Range Weather Forecasts (ECMWF). The estimated annual global isoprene emission ranges between 374 Tg (in 1996) and 449 Tg (in 1998 and 2005), for an average of ca. 410 Tg/year over the whole period, i.e. about 30% less than the standard MEGAN estimate (Guenther et al., 2006). This difference is due, to a large extent, to the impact of the soil moisture stress factor, which is found here to decrease the global emissions by more than 20%. In qualitative agreement with past studies, high annual emissions are found to be generally associated with El Niño events. The emission inventory is evaluated against flux measurement campaigns at Harvard forest (Massachussets) and Tapajós in Amazonia, showing that the model can capture quite well the short-term variability of emissions, but that it fails to reproduce the observed seasonal variation at the tropical rainforest site, with largely overestimated wet season fluxes. The comparison of the HCHO vertical columns calculated by a chemistry and transport model (CTM) with HCHO distributions retrieved from space provides useful insights on tropical isoprene emissions. For example, the relatively low emissions calculated over Western Amazonia (compared to the corresponding estimates in the inventory of Guenther et al., 1995) are validated by the excellent agreement found between the CTM and HCHO data over this region. The parameterized impact of the soil moisture stress

  2. Searching for global descriptors of engineered nanomaterial fate and transport in the environment.

    PubMed

    Westerhoff, Paul; Nowack, Bernd

    2013-03-19

    Engineered nanomaterials (ENMs) are a new class of environmental pollutants. Researchers are beginning to debate whether new modeling paradigms and experimental tests to obtain model parameters are required for ENMs or if approaches for existing pollutants are robust enough to predict ENM distribution between environmental compartments. This Account outlines how experimental research can yield quantitative data for use in ENM fate and exposure models. We first review experimental testing approaches that are employed with ENMs. Then we compare and contrast ENMs against other pollutants. Finally, we summarize the findings and identify research needs that may yield global descriptors for ENMs that are suitable for use in fate and transport modeling. Over the past decade, researchers have made significant progress in understanding factors that influence the fate and transport of ENMs. In some cases, researchers have developed approaches toward global descriptor models (experimental, conceptual, and quantitative). We suggest the following global descriptors for ENMs: octanol-water partition coefficients, solid-water partition coefficients, attachment coefficients, and rate constants describing reactions such as dissolution, sedimentation, and degradation. ENMs appear to accumulate at the octanol-water interface and readily interact with other interfaces, such as lipid-water interfaces. Batch experiments to investigate factors that influence retention of ENMs on solid phases are very promising. However, ENMs probably do not behave in the same way as dissolved chemicals, and therefore, researchers need to use measurement techniques and concepts more commonly associated with colloids. Despite several years of research with ENMs in column studies, available summaries tend to discuss the effects of ionic strength, pH, organic matter, ENM type, packing media, or other parameters qualitatively rather than reporting quantitative values, such as attachment efficiencies, that

  3. Global Monitoring of Precipitation on Monthly and Shorter Time Scales Utilizing Low-Orbit and Geosynchronous Satellite Observations

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Curtis, Scott; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    A satellite-based system to monitor global precipitation on monthly and shorter time scales is described. The monitoring system is based primarily on the Global Precipitation Climatology Project (GPCP) global, monthly, 2.5 degree by 2.5 degree latitude-longitude product which utilizes precipitation estimates from low-orbit microwave sensors (SSM/I) and geosynchronous IR sensors and raingauge information over land. The low-orbit microwave estimates are used to adjust or correct the geosynchronous IR estimates, thereby maximizing the utility of the more physically-based microwave estimates and the finer time sampling of the geosynchronous observations. Information from raingauges is blended into the analyses over land. This globally complete, monthly product is available from January 1986 to the present, with an extension back to January 1979 underway using non-SSM/I data. The monthly GPCP merged data product described in the previous paragraph is available a few (2-4) months after the end of the month. An analysis based solely on low-orbit microwave (SSM/1) data and the Goddard Profiling (GPROF) algorithm is used to bring the global monitoring up to real time. Anomalies from climatological means are produced from both the GPCP and GPROF fields to monitor the evolution of global precipitation, including the calculation of ENSO precipitation indices for real-time (five- day running means) climate monitoring and comparison with previous ENSO anomalies. The long-term climatology of the global precipitation field and the time and space variations thereof will be discussed, including the variations associated with the 1997- 1998 ENSO. The GPCP fields will also be compared to analyses based on the recently launched Tropical Rain Measuring Mission (TRMM). On an even shorter time scale, a new daily, 1 degree x 1 degree latitude-longitude global analysis has been developed starting in January 1997 utilizing low-orbit microwave and geosynchronous IR information using a similar

  4. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  5. EDITORIAL: Siberia Integrated Regional Study: multidisciplinary investigations of the dynamic relationship between the Siberian environment and global climate change

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Vaganov, E. A.

    2010-03-01

    partners. Conclusions Devoted to regional-global linkages, understanding, monitoring and assessment of global change impacts on a regional level, SIRS targets provide substantiated recommendations for regional decision makers to understand and work towards mitigating the negative effects of climate change for Siberia and its population. This approach will allow the Siberian Branch of the Russian National Committee for IGBP to perform its mission, ensuring the growth of scientific knowledge of the dynamic Siberian environment and its subsystems, and to develop a solid basis for mitigation and adaptation strategies for the negative consequences of global change. 1 For example, 'Complex monitoring of the Great Vasyugan Bog: modern state and development processes investigations' and 'Ecological problems of Siberian cities'. 2 For example, 'Models of biosphere change based on the boreal ecosystems' carbon balance using field and satellite data observations' and 'Information technologies, mathematical models and methods for monitoring and control of ecosystems intended for stationary, mobile and remote observations'. 3 'Environmental observations, modeling and information systems' (http://enviromis.scert.ru/) and 'Man-induced environmental risks: monitoring, management and mitigation of man-made changes in Siberia (Enviro-RISKS)'. References [1] Brasseur G 2003 IGBP Newsletter No 50 (June 2002) IGBP II - Special Edition Issue 3rd IGBP Congress Overview Global Change Newsletter No 55 pp 2-4 [2] 2005 Bulletin of the Russian National Committee for the International Geosphere Biosphere Programme 4 [3] Ippolitov I I, Kabanov M V, Komarov A I and Kuskov A I 2004 Patterns of modern natural-climatic changes in Siberia: observed changes of annual temperature and pressure Geogr. Nat. Resources 3 90-6 [4] Volodin E M and Dianskii N A 2003 Response of a coupled atmosphere-ocean general circulation model to increased carbon dioxide Izvestiya, Atmospheric and Oceanic Physics 239 170-86 [5

  6. Beyond Arms-Control Monitoring

    SciTech Connect

    Jeanloz, Raymond; Fung, Inez; Bowyer, Ted W.; Wofsy, Steven

    2013-02-15

    Expanded monitoring of the environment, everywhere and at all times, can advance arms control around the world, enhancing transparency among nations. In particular, improved characterization of the atmosphere now offers powerful opportunities for global monitoring, with multiple societal benefits. It may be useful to think of environmental monitoring as a long-term objective of arms-control verification.

  7. HotSense: a high temperature piezoelectric platform for sensing and monitoring in extreme environments (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Stevenson, Tim; Wines, Thomas; Martin, David; Vickers, William; Laws, Michael

    2016-04-01

    Effective monitoring of asset integrity subject to corrosion and erosion while minimizing the exposure of personnel to difficult and hazardous working environments has always been a major problem in many industries. One solution of this problem is permanently installed ultrasonic monitoring equipment which can continuously provide information on the rate of corrosion or cracking, even in the most severe environments and at extreme temperatures to prevent the need for shutdown. Here, a permanently installed 5 MHz ultrasonic monitoring system based on our HotSense® technology is designed and investigated. The system applicability for wall thickness, crack monitoring and weld inspection in high temperature environments is demonstrated through experimental studies on a range of Schedule 40 pipes at temperatures up to 350 °C continuously. The applicability for this technology to be distributed to Aerospace and Nuclear sectors are also explored and preliminary results discussed.

  8. Monitoring and telemedicine support in remote environments and in human space flight.

    PubMed

    Cermack, M

    2006-07-01

    The common features of remote environments are geographical separation, logistic problems with health care delivery and with patient retrieval, extreme natural conditions, artificial environment, or combination of all. The exposure can have adverse effects on patients' physiology, on care providers' performance and on hardware functionality. The time to definite treatment may vary between hours as in orbital space flight, days for remote exploratory camp, weeks for polar bases and months to years for interplanetary exploration. The generic system architecture, used in any telematic support, consists of data acquisition, data-processing and storage, telecommunications links, decision-making facilities and the means of command execution. At the present level of technology, a simple data transfer and two-way voice communication could be established from any place on the earth, but the current use of mobile communication technologies for telemedicine applications is still low, either for logistic, economic and political reasons, or because of limited knowledge about the available technology and procedures. Criteria for selection of portable telemedicine terminals in remote terrestrial places, characteristics of currently available mobile telecommunication systems, and the concept of integrated monitoring of physiological and environmental parameters are mentioned in the first section of this paper. The second part describes some aspects of emergency medical support in human orbital spaceflight, the limits of telemedicine support in near-Earth space environment and mentions some open issues related to long-term exploratory missions beyond the low Earth orbit.

  9. Design and package of a {sup 14}CO{sub 2} field analyzer The Global