Science.gov

Sample records for global heating due

  1. Triton's global heat budget

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Johnson, T. V.; Goguen, J. D.; Schubert, Gerald; Ross, Martin N.

    1991-01-01

    Internal heat flow from radioactive decay in Triton's interior along with absorbed thermal energy from Neptune total 5 to 20 percent of the insolation absorbed by Triton, thus comprising a significant fraction of Triton's surface energy balance. These additional energy inputs can raise Triton's surface temperature between approx. 0.5 to 1.5 K above that possible with absorbed sunlight alone, resulting in a factor of approx. 1.5 to 2.5 increase in Triton's basal atmospheric pressure. If Triton's internal heatflow is concentrated in some areas, as is likely, local effects such as enhanced sublimation with subsequent modification of albedo could be quite large. Furthermore, indications of recent albedo change on Triton suggest that Triton's surface temperature and pressure may not now be in steady state, further suggesting that atmospheric pressure on Triton was as much as 10 times higher in the recent past.

  2. Global Atmospheric Heat Distributions Observed from Space

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Fan, Tai-Fang

    2009-01-01

    This study focuses on the observations of global atmospheric heat distributions using satellite measurements. Major heat components such as radiation energy, latent heat and sensible heat are considered. The uncertainties and error sources are assessed. Results show that the atmospheric heat is basically balanced, and the observed patterns of radiation and latent heat from precipitation are clearly related to general circulation.

  3. Water upwelling due to differential coastal heating

    NASA Astrophysics Data System (ADS)

    Chubarenko, I.; Demchenko, N.

    2009-04-01

    Day heating / night cooling in coastal zone of large water bodies causes a specific water-exchange between coastal and off-shore regions. Experiments in 5m-long laboratory tank with inclined 2m-portion of the bottom (A=0.1, water depth in deep part D=15-20 cm) are reported, demonstrating a structure of fields of temperature and water currents under conditions of heating from the surface. In shallow regions at the top of incline, water temperature rises faster, so that horizontal temperature gradient between top and deep parts of the tank is established in some tens of minutes. The shape of the horizontal temperature profile at the surface is self-similar, with nearly constant temperature difference between top and deep parts (for fixed heat flux and bottom slope). Off-shore transport of warmer coastal waters is established in near-surface layer, with maximum of the current not at the surface, but obviously (1-3 cm) below it. The return (on-shore) flow is formed immediately below the off-shore flow, with its thickness twice larger and the speed twice smaller than that of the on-shore flow. Maximum speed of the return flow is observed at the depth of about 0.4 D. Further down, no significant currents were registered. This two-layered basin-wide exchange causes water upwelling along the inclined portion of the bottom. Simple analytical model is developed in order to explain the observed results. Using several analytic expressions for the dependency of water temperature from depth, time and horizontal co-ordinate, we analyze the field of the horizontal pressure gradient. For logarithmic and linear vertical temperature profiles, the horizontal pressure gradient in the basin has its maximum at the depth of about 0.4 D, what is in full agreement with the laboratory experiments. Thus, an upwelling along the inclined part of the bottom is caused by the basin-wide exchange of convective nature, where the driving element is the on-shore flow, arising due to thermally

  4. Electron heating due to resonant absorption

    SciTech Connect

    Mizuno, K.; Spielman, R.B.; DeGroot, J.S.; Bollen, W.M.

    1980-01-01

    Intense, p-polarized microwaves (v/sub os//v/sub eo-/<1) are incident on an imhomogeneous plasma (10/sup 2/heated by resonantly driven electrostatic field to produce a hot Maxwellian distribution. Most of the heated electrons flow towards the overdense region and are absorbed by the anode at the far end of the overdense region. At high power (v/sub os//v/sub eo-/>0.2), strong heating of thermal electrons, large amplitude ion acoustic turbulence, and a self-consistent dc electric field are observed near the critical surface. This dc electric field is enhanced by applying a weak magnetic field (..omega../sub ce//..omega../sub o/ approx. = 10/sup -2/).

  5. Mesospheric heating due to intense tropospheric convection

    NASA Technical Reports Server (NTRS)

    Taylor, L. L.

    1979-01-01

    A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.

  6. Occupational asthma due to heated polypropylene.

    PubMed

    Malo, J L; Cartier, A; Pineault, L; Dugas, M; Desjardins, A

    1994-02-01

    A 35 year-old nonatopic woman was referred to the hospital for possible work-related asthma. She had worked as an operator, at a plant producing polypropylene bags, for the previous four yrs. Her main complaint was a productive cough with dyspnoea and wheezing, as well as rhinitis over the past 3 yrs. She had been absent from work for 6 months on maternity leave, and had improved greatly. She was on a beta 2-adrenergic agent and had to take it at least four times daily. Baseline spirometry whilst at work showed marked airflow obstruction (forced expiratory volume in one second (FEV1) of 43% predicted (pred). After two months away from work FEV1 improved to 89% pred; provocative concentration of histamine causing a 25% fall in FEV1 (PC20) was 3.6 mg.ml-1 (mild airway hyperresponsiveness). Return to work resulted in a marked deterioration in FEV1, and serial peak expiratory flow (PEFR) values. PC20 was 0.11 mg.ml-1 (severe airway hyperresponsiveness) one week after she had returned to work. Specific inhalation challenges with polypropylene heated to 250 degrees C resulted in a late asthmatic reaction. As formaldehyde is one of the degradation products of heating polypropylene, we exposed her to it for up to 2 h, but we elicited no bronchospastic reaction. We conclude that heated polypropylene should be listed as one of the agents that causes occupational asthma.

  7. Heat Loss Due To Thermal Bridges In Buildings

    NASA Astrophysics Data System (ADS)

    Fang, J. B.; tarot, R. A.; Childs, K. W.; Courville, G. E.

    1984-03-01

    Building envelopes often contain numerous highly conductive heat flow paths, called thermal bridges, which are major sources of heat loss and deterioration of building materials due to moisture condensation. Some examples of thermal bridges occurring in office buildings are presented. Infrared thermography was used to identify the locations and magnitudes of thermally defective areas resulting from inadequate construction, design, or substandard workmanship in existing buildings. Due to the large thermal inertia of building components and transient conditions caused by fluctuating outdoor and indoor temperatures, long measurement periods are required. This makes thermography impractical for quantifying the heat loss. In order to estimate the heat loss rate from thermal bridges and to obtain a better understanding of the physical processes involved, a two-dimensional heat flow model has been developed for transient heat conduction within the exterior wall/intermediate floor systems. The calculated results from the mathematical model are compared with available experimental data. An in-situ measurement technique, which is currently under development at NBS for quantifying the energy loss due to thermal bridges, is described.

  8. Climate change in cities due to global warming and urban effects

    NASA Astrophysics Data System (ADS)

    McCarthy, Mark P.; Best, Martin J.; Betts, Richard A.

    2010-05-01

    Urbanisation is estimated to result in 6 billion urban dwellers by 2050. Cities will be exposed to climate change from greenhouse gas induced radiative forcing, and localised effects from urbanisation such as the urban heat island. An urban land-surface model has been included in the HadAM3 Global Climate Model. It shows that regions of high population growth coincide with regions of high urban heat island potential, most notably in the Middle East, the Indian sub-continent, and East Africa. Climate change has the capacity to modify the climatic potential for urban heat islands, with increases of 30% in some locations, but a global average reduction of 6%. Warming and extreme heat events due to urbanisation and increased energy consumption are simulated to be as large as the impact of doubled CO2 in some regions, and climate change increases the disparity in extreme hot nights between rural and urban areas.

  9. Global Warming 'Pause' - Oceans Reshuffle Heat

    NASA Astrophysics Data System (ADS)

    Nieves, V.; Willis, J. K.; Patzert, W. C.

    2015-12-01

    Despite the fact that greenhouse gases are still increasing and all other indicators show warming-related change (+0.0064 °C/year since 1880 or +0.0077 °C/year during 1993-2002), surface temperatures stopped climbing steadily during the past decade at a rate of +0.0010 °C/year from 2003 to 2012. We show that in recent years, the heat was being trapped in the subsurface waters of the western Pacific and eastern Indian oceans between 100 and 300 m. The movement of warm Pacific water below the surface, also related to the Pacific Decadal Oscillation climatic pattern, temporarily affected surface temperatures and accounted for the global cooling trend in surface temperature. With the Pacific Decadal Oscillation possibly changing to a warm phase, it is likely that the oceans will drive a major surge in global surface warming sometime in the next decade or two. Reference: Nieves, V., Willis, J. K., and Patzert, W. C. (2015). Recent hiatus caused by decadal shift in Indo-Pacific heating. Science, aaa4521.

  10. Heating Augmentation Due to Compression Pad Cavities on the Project Orion CEV Heat Shield

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2009-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  11. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow

    NASA Technical Reports Server (NTRS)

    Stein, Carol A.; Stein, Seth

    1994-01-01

    that hydrothermal heat transfer has largely ceased. Although earlier studies suggested major differences in sealing ages for different ocean basins, we find that the sealing ages for the Atlantic, Pacific, and Indian oceans are similar and consistent with the sealing age for the entire data set, 65 +/- 10 Ma. The previous inference of a young (approximately 20 Ma) sealing age for the Pacific appears to have biased downward several previous estimates of the global hydrothermal flux. The heat flow data also provide indirect evidence for the mechanism by which the hydrothermal heat flux becomes small, which has often been ascribed to isolation of the igneous crust from seawater due to the hydraulic conductivity of the intervening sediment. We find, however, that even the least sedimented sites show the systematic increase of the ratio of observed to predicted heat flow with age, although the more sedimented sites have a younger sealing age. Moreover, the heat flow discrepancy persists at heavily sedimented sites until approximately 50 Ma. It thus appears that approximately 100-200 m of sediment is neither necessary nor sufficient to stop hydrothermal heat transfer. We therefore conclude that the age of the crust is the primary control on the fraction of heat transported by hydrothermal flow and that sediment thickness has a lesser effect. This inference is consistent with models in which hydrothermal flow decreases with age due to reduced crustal porosity and hence permeability.

  12. Heating Augmentation in Laminar Flow Due to Heat-Shield Cavities on the Project Orion CEV

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2008-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion CEV heat-shield at laminar conditions. Testing was conducted in Mach 6 and Mach 10 perfect-gas wind tunnels to obtain heating measurements on and around the compression pads using global phosphor thermography. Consistent trends in heating augmentation levels were observed in the data and correlations of average and maximum heating at the cavities were formulated in terms of the local boundary-layer parameters and cavity dimensions. Additional heating data from prior testing of Genesis and Mars Science Laboratory models were also examined to extend the parametric range of cavity heating correlations.

  13. An adaptability limit to climate change due to heat stress

    PubMed Central

    Sherwood, Steven C.; Huber, Matthew

    2010-01-01

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature TW, is surprisingly similar across diverse climates today. TW never exceeds 31 °C. Any exceedence of 35 °C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 °C, calling the habitability of some regions into question. With 11–12 °C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 °C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record. PMID:20439769

  14. Detailed Specifications for Global Heat Treatment Sourcing and Materials

    NASA Astrophysics Data System (ADS)

    Sponzilli, Jared; Sponzilli, John

    2013-07-01

    The very nature of global sourcing means that components must carry clear and detailed specifications for material, heat treatment, and test methods. Qualified global heat treat facilities can achieve good control of not only the common features such as surface and gradient hardness, but also of microstructure, core hardness, residual stress, and other critical metallurgical parameters. This paper will discuss a new concept for material specifications and more detailed heat treatment specifications for the global marketplace.

  15. Globalization of agricultural pollution due to international trade

    NASA Astrophysics Data System (ADS)

    O'Bannon, C.; Carr, J.; Seekell, D. A.; D'Odorico, P.

    2014-02-01

    Almost 90% of freshwater resources consumed globally are used to produce plant and animal commodities. Water-scarce countries can balance their water needs by importing food from other countries. This process, known as virtual water transfer, represents the externalization of water use. The volume and geographic reach of virtual water transfers is increasing, but little is known about how these transfers redistribute the environmental costs of agricultural production. The grey water footprint quantifies the environmental costs of virtual water transfers. The grey water footprint is calculated as the amount of water necessary to reduce nitrogen concentrations from fertilizers and pesticides released into streams and aquifers to allowed standards. We reconstructed the global network of virtual grey water transfers for the period 1986-2010 based on international trade data and grey water footprints for 309 commodities. We tracked changes in the structure of the grey water transfer network with network and inequality statistics. Pollution is increasing and is becoming more strongly concentrated in only a handful of countries. The global external grey water footprint, the pollution created by countries outside of their borders, increased 136% during the period. The extent of externalization of pollution is highly unequal between countries, and most of this inequality is due to differences in social development status. Our results demonstrate a growing globalization of pollution due to virtual water transfers.

  16. An autopsy case of infant death due to heat stroke.

    PubMed

    Ohshima, T; Maeda, H; Takayasu, T; Fujioka, Y; Nakaya, T

    1992-09-01

    We report an autopsy case of infant death due to heat stroke. On a winter day, a 52-day-old female baby was placed under a Japanese electric foot warmer with a coverlet (kotatsu) on an electric carpet warmer in a heated room at home. After about 5 h, the mother noticed that the baby was unconscious and took her to a hospital. Spontaneous respiration, however, was already absent, and the pupils were dilated. The trunk was hot; body temperature was 41.3 degrees C. The skin of the whole body was dry. Autopsy revealed second-degree burn injuries on the left side of the face and the dorsum of the left hand. Numerous marked petechiae and ecchymoses were found in the thymus (capsule and parenchyma), pleurae (visceral and parietal), pericardial cavity (internal and external surfaces), epicardium, and beneath the serosa at the origin of the aorta. In addition, there was congestion in various organs, edema in the brain and lungs, and hemorrhage in the lungs. Histopathologically, macrophages without hemosiderin granules were present in the alveoli. When the heating conditions at the accident were reproduced experimentally, the temperature in the electric kotatsu warmer rose to 50-60 degrees C. Thus, we concluded that misuse of the electric kotatsu caused heat stroke in this infant.

  17. One dimensional global and local solution for ICRF heating

    SciTech Connect

    Wang, C.Y.; Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.

    1995-02-01

    A numerical code GLOSI [Global and Local One-dimensional Solution for Ion cyclotron range of frequencies (ICRF) heating] is developed to solve one-dimensional wave equations resulting from the use of radio frequency (RF) waves to heat plasmas. The code uses a finite difference method. Due to its numerical stability, the code can be used to find both global and local solutions when imposed with appropriate boundary conditions. Three types of boundary conditions are introduced to describe wave scattering, antenna wave excitation, and fixed tangential wave magnetic field. The scattering boundary conditions are especially useful for local solutions. The antenna wave excitation boundary conditions can be used to excite fast and slow waves in a plasma. The tangential magnetic field boundary conditions are used to calculate impedance matrices, which describe plasma and antenna coupling and can be used by an antenna code to calculate antenna loading. These three types of boundary conditions can also be combined to describe various physical situations in RF plasma heating. The code also includes plasma thermal effects and calculates collisionless power absorption and kinetic energy flux. The plasma current density is approximated by a second-order Larmor radius expansion, which results in a sixth-order ordinary differential equation.

  18. Heat Transfer due to Film Condensation on Vertical Fluted Tubes.

    DTIC Science & Technology

    1984-07-01

    report is authorized. This report was prepared by: L Vijay K . Garg P. J. Mr" Adjlmct Professor of Chairrmn, Department of Mechanical Engineering...7AD-AiW47 258 HEAT TRNSFER’DUE TO FILM CONDENSATION ON VERTICAL i/iFLUTED TUBES(U) NAVAL POSTGRA UATE SCHOOL MONTEREY CA U R V K GARG ET AL. JUL 84...J. Marto, Code 69Mx 5 Department of Mechanical Engineering Naval. Postgraduate School Monterey, CA 939143 5. Professor V. K . Garg 3 Department of

  19. More hurricanes to hit Western Europe due to global warming

    NASA Astrophysics Data System (ADS)

    Haarsma, Reindert; Hazeleger, Wilco; Severijns, Camiel; de Vries, Hylke; Ster, Andreas; Bintanja, Richard; van Oldenborgh, Geert Jan; van den Brink, Henk; Baatsen, Michiel

    2014-05-01

    Using a very high resolution global climate model (~25 km grid size) with prescribed sea surface temperatures we have investigated the change in the occurrence of hurricane-force (> 32.6 m/s) storms over Western Europe due to climate change. The results show a large increase during early autumn (Aug-Oct). The majority of these storms originate as a tropical cyclone. Using SST sensitivity experiments we have tested the hypothesis that the increase is due to the rise in Atlantic tropical SST thereby extending eastwards the breeding ground of tropical cyclones, yielding more frequent and intense hurricanes following pathways directed towards Europe. En route they transform into extra-tropical depressions and re-intensify after merging with the mid-latitude baroclinic unstable flow. Detailed analysis indicates that the development of a warm seclusion is the main mechanism for the re-intensification and that the hurricane winds are caused by a sting jet.

  20. Earth tides, global heat flow, and tectonics

    USGS Publications Warehouse

    Shaw, H.R.

    1970-01-01

    The power of a heat engine ignited by tidal energy can account for geologically reasonable rates of average magma production and sea floor spreading. These rates control similarity of heat flux over continents and oceans because of an inverse relationship between respective depth intervals for mass transfer and consequent distributions of radiogenic heat production.

  1. Earth tides, global heat flow, and tectonics.

    PubMed

    Shaw, H R

    1970-05-29

    The power of a heat engine ignited by tidal energy can account for geologically reasonable rates of average magma production and sea floor spreading. These rates control similarity of heat flux over continents and oceans because of an inverse relationship between respective depth intervals for mass transfer and consequent distributions of radiogenic heat production.

  2. Impact of Ridge Induced Latent Heat Advection on Sea Ice Global Heat Budget.

    NASA Astrophysics Data System (ADS)

    Hudier, E.; Gosselin, J.

    2008-12-01

    The effects of permeability on ice keel induced latent heat fluxes are examined using pressure ridge density statistics computed from SAR images and a prognostic simulation of forced brine advection through the bottom ice layer. Under pressure gradients generated in the wake of an ice keel sea water is pushed into and brine pumped out of the bottom ice layer. This in turn causes a new thermodynamic equilibrium to be reached. At spring when the ice permeability increases, brine export combined with sea water import translates into an advective heat flow that is balanced by the latent heat absorbed by volume melting of brine channel walls. Sea ice within the sheltered areas behind keels is modelled as an anisotropic heteregeneous mushy layer. The non-linear equation system within each cell is implemented on a finite volume grid and include volume melt of the brine channels from which porosity, water density, temperature and salinity are computed. Outputs from these simulations are then combined with ridge distribution statistics to evaluate the global impact of latent heat absorbed due to volume melting in the wake of ridges. As anticipated, results are highly dependent on permeability, nevertheless, they show that pressure ridge induced melting within the ice is a significant component of the heat budget when compared with melting at the ice water interface. This work underlines needs for further researches to improve our understanding of ice permeability changes during the melt season, it also calls for better tools to extract pressure ridge characteristics from satellite images.

  3. Small global-mean cooling due to volcanic radiative forcing

    NASA Astrophysics Data System (ADS)

    Gregory, J. M.; Andrews, T.; Good, P.; Mauritsen, T.; Forster, P. M.

    2016-12-01

    In both the observational record and atmosphere-ocean general circulation model (AOGCM) simulations of the last ˜150 years, short-lived negative radiative forcing due to volcanic aerosol, following explosive eruptions, causes sudden global-mean cooling of up to ˜0.3 K. This is about five times smaller than expected from the transient climate response parameter (TCRP, K of global-mean surface air temperature change per W m-2 of radiative forcing increase) evaluated under atmospheric CO2 concentration increasing at 1 % yr-1. Using the step model (Good et al. in Geophys Res Lett 38:L01703, 2011. doi: 10.1029/2010GL045208), we confirm the previous finding (Held et al. in J Clim 23:2418-2427, 2010. doi: 10.1175/2009JCLI3466.1) that the main reason for the discrepancy is the damping of the response to short-lived forcing by the thermal inertia of the upper ocean. Although the step model includes this effect, it still overestimates the volcanic cooling simulated by AOGCMs by about 60 %. We show that this remaining discrepancy can be explained by the magnitude of the volcanic forcing, which may be smaller in AOGCMs (by 30 % for the HadCM3 AOGCM) than in off-line calculations that do not account for rapid cloud adjustment, and the climate sensitivity parameter, which may be smaller than for increasing CO2 (40 % smaller than for 4 × CO2 in HadCM3).

  4. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    SciTech Connect

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  5. The global joule heat production rate and the AE index

    NASA Technical Reports Server (NTRS)

    Wei, S.; Ahn, B.-H.; Akasofu, S.-I.

    1985-01-01

    The degree of accuracy with which the AE index may be used as a measure of the joule heat production rate is evaluated for a typical substorm event on March 18, 1978, by estimating the global joule heat production rate as a function of time on the basis of data obtained from the IMS's six meridian chains. It is found that, although the AE index is statistically linearly related to the global joule heat production rate, caution is required when one assumes that details of AE index time variations during individual events are representative of those of the joule heat production rate.

  6. Why ocean heat transport warms the global mean climate

    NASA Astrophysics Data System (ADS)

    Herweijer, Celine; Seager, Richard; Winton, Michael; Clement, Amy

    2005-08-01

    Observational and modelling evidence suggest that poleward ocean heat transport (OHT) can vary in response to both natural climate variability and greenhouse warming. Recent modelling studies have shown that increased OHT warms both the tropical and global mean climates. Using two different coupled climate models with mixed-layer oceans, with and without OHT, along with a coupled model with a fixed-current ocean component in which the currents are uniformly reduced and increased by 50%, an attempt is made to explain why this may happen.OHT warms the global mean climate by 1 to 1.6K in the atmospheric general circulation (AGCM) ML model and 3.5K in the AGCM fixed current model. In each model the warming is attributed to an increase in atmospheric greenhouse trapping, primarily clear-sky greenhouse trapping, and a reduction in albedo. This occurs as OHT moistens the atmosphere, particularly at subtropical latitudes. This is not purely a thermodynamic response to the reduction in planetary albedo at these latitudes. It is a change in atmospheric circulation that both redistributes the water vapour and allows for a global atmospheric moistening—a positive 'dynamical' water vapour feedback. With increasing OHT the atmospheric water vapour content increases as atmospheric convection spreads out of the deep tropics. The global mean planetary albedo is decreased with increased OHT. This change is explained by a decrease in subtropical and mid-latitude low cloudiness, along with a reduction in high-latitude surface albedo due to decreased sea ice. The climate models with the mixed layer oceans underestimate both the subtropical low cloud cover and the high-latitude sea ice/surface albedo, and consequently have a smaller warming response to OHT.

  7. Can Global Warming Heat Up Environmental Education?

    ERIC Educational Resources Information Center

    Mazzatenta, Claudio

    2008-01-01

    Bronx Community College (CUNY) launched "Global Warming Campus Awareness and Action Days" in celebration of Earth Day, 2007. The purpose of this program was to raise awareness of environmental issues in the college population, especially students. To let more students have a grasp of what Environmental Education (EE) is all about, the author…

  8. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Hameed, S.; Hogan, J. S.

    1980-01-01

    Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.

  9. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  10. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  11. Comment on ``Long-Term Global Heating From Energy Use''

    NASA Astrophysics Data System (ADS)

    Fleming, James R.

    2008-12-01

    In a prominent article published in Tellus in 1969, Mikhail I. Budyko, with the Main Geophysical Observatory, Leningrad, Soviet Union, wrote that ``all the energy used by man is transformed into heat, the main portion of this energy being an additional source of heat as compared to the present radiation gain'' [Budyko, 1969, p. 618]. He pointed out that this heating was over and above any climate forcing from anthropogenic greenhouse gases and-since energy use was growing geometrically-it was likely to result in the retreat of the cryosphere, accompanied by excessive and potentially damaging global warming, perhaps in 200 years or less. Eric J. Chaisson, in Eos (``Long-Term Global Heating From Energy Use,'' 89(28), 253-254, 2008), does not acknowledge Budyko's research. Chaisson cites cosmic history and the history of the human species, but he provides no references to the conceptual history of the idea that human energy use could result in global heating. Budyko first published on the Earth's heat budget in 1948 and in 1998 received the Blue Planet Prize, sponsored by the Asahi Glass Foundation, for his lifetime accomplishments in quantitative climatology. His work on the energy budget of the Earth and anthropogenic influences really should have been cited (see a selection of key articles in the online National Science Digital Library, at http://wiki.nsdl.org/index.php/PALE:ClassicArticles/GlobalWarming).

  12. Global anthropogenic heat flux database with high spatial resolution

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  13. Thermally induced vibrations due to internal heat generation

    NASA Astrophysics Data System (ADS)

    Blandino, Joseph Robert

    Virtually all previous research on thermally induced vibrations has investigated vibrations caused by surface heating. This is the first detailed study of a thermally induced vibration caused by surface cooling. The phenomenon is shown to be driven by thermal moments. The thermal moments are caused by convection because the vibrations occur in air but not in a vacuum. A mathematical model was developed to predict the thermal-structural behavior of an internally heated beam. The convection heat transfer for a vibrating beam is complex. In most cases it is neither completely natural nor completely forced convection. The convection heat transfer is a mix of both components. The convection is further complicated by the transition of the airflow along the beam from laminar to turbulent flow. An experimental heat transfer investigation was conducted to determine expressions for the natural and forced convection as functions of both position along the beam and velocity. The results from the model were verified using experimental data for an internally heated beam undergoing thermally induced vibrations. The model was shown to predict the steady-state temperatures accurately. The model adequately predicted the steady-state displacements, although it predicted the displacement histories with some error. The analysis showed that the thermal and structural problems are coupled by the forced convection. Once initiated, the amplitude of the vibration increases until the amplitude is such that the heat removed by convection balances the internal heating. The steady-state amplitude is not affected by the initial displacement of the beam. Thermally induced vibrations of internally heated beams belong to the class of vibrations called self-sustaining oscillations.

  14. Global diabatic heating during FGGE SOP-1 and SOP-2

    NASA Technical Reports Server (NTRS)

    Chen, Tsing-Chang; Baker, Wayman E.

    1986-01-01

    With the increase in the observational data provided by FGGE and the use of global circulation models with full physics for the data assimilation, it is now becoming feasible to attempt to estimate globally the atmospheric diabatic heating. The thermodynamic equation in isobaric coordinates and the data generated by the FGGE III-b analysis of the Goddard Laboratory for Atmospheres (GLA) are employed to serve this purpose. The results of the present study generally agree with other previous investigations. However, some important differences are also revealed. (1) The diabatic heating obtained in the tropics in the present study is larger than that obtained elsewhere; (2) the relatively large heating over the mountainous areas shown in other studies does not appear; (3) no significant negative values of diabatic heating are found in the polar regions; and (4) unlike other studies, cooling is noted over parts of Eurasia in the summer.

  15. Ultrasonic verification of microstructural changes due to heat treatment

    NASA Technical Reports Server (NTRS)

    Generazio, E. R.

    1986-01-01

    Ultrasonic attenuation was measured for polycrystalline samples of nickel and copper with various grain-size distributions produced by heat treatment. Attenuation as a function of frequency was determined for a sample having a known mean grain diameter. Once this function was determined, it could be scaled to determine the mean grain size of other samples of the same material with different mean grain diameters. These results were obtained by using broadband pulse-echo ultrasound in the 25 to 100 MHz frequency range. The results suggest an ultrasonic, nondestructive approach for verifying heat treatment of metals.

  16. Profile of heating rate due to aerosols using lidar and skyradiometer in SKYNET Hefei site

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, D.; Xie, C.

    2015-12-01

    Atmospheric aerosols have a significant impact on climate due to their important role in modifying atmosphere energy budget. On global scale, the direct radiative forcing is estimated to be in the range of -0.9 to -0.1 Wm-2 for aerosols [1]. Yet, these estimates are subject to very large uncertainties because of uncertainties in spatial and temporal variations of aerosols. At local scales, as aerosol properties can vary spatially and temporally, radiative forcing due to aerosols can be also very different and it can exceed the global value by an order of magnitude. Hence, it is very important to investigate aerosol loading, properties, and radiative forcing due to them in detail on local regions of climate significance. Haze and dust events in Hefei, China are explored by Lidar and Skyradiometer. Aerosol optical properties including the AOD, SSA, AAE and size distribution are analysed by using the SKYRAD.PACK [2] and presented in this paper. Furthermore, the radiative forcing due to aerosols and the heating rate in the ATM are also calculated using SBDART model [3]. The results are shown that the vertical heating rate is tightly related to aerosol profile. References: 1. IPCC. 2007. Climate Change 2007: The Physical Science Basic. Contribution of Working Group I Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Solomon S, Qing D H, Manning M, et al. eds., Cambridge University Press, Cambridge, United Kingdom and New York, N Y, USA. 2. Nakajima, T., G. Tonna, R. Rao, Y. Kaufman, and B. Holben, 1996: Use of sky brightness measurements from ground for remote sensing of particulate poly dispersions, Appl. Opt., 35, 2672-2686. 3. Ricchiazzi et al 1998. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth's atmosphere,Bulletin of the American Meteorological Society,79,2101-2114.

  17. Changing roles of academic societies due to globalization.

    PubMed

    Ehara, Shigeru; Aoki, Shigeki; Honda, Hiroshi

    2016-10-01

    Because of the globalization of environment around the academic society, the expected roles have changed significantly. In this short communication, we present the current situation in our international activities of the Japan Radiological Society, particularly in the academic activities and clinical practice. Establishing and reinforcing international network is one process of their promotion.

  18. Long-Term Global Heating From Energy Usage

    NASA Astrophysics Data System (ADS)

    Chaisson, Eric J.

    2008-07-01

    Even if civilization on Earth stops polluting the biosphere with greenhouse gases, humanity could eventually be awash in too much heat, namely, the dissipated heat by-product generated by any nonrenewable energy source. Apart from the Sun's natural aging-which causes an approximately 1% luminosity rise for each 108 years and thus about 1°C increase in Earth's surface temperature-well within 1000 years our technological society could find itself up against a fundamental limit to growth: an unavoidable global heating of roughly 3°C dictated solely by the second law of thermodynamics, a biogeophysical effect often ignored when estimating future planetary warming scenarios.

  19. Primary instabilities in convective cells due to nonuniform heating

    NASA Astrophysics Data System (ADS)

    Mancho, A. M.; Herrero, H.; Burguete, J.

    1997-09-01

    We study a convection problem in a container with a surface open to the air and heated by a long wire placed at the bottom. Coupled buoyancy and thermocapillarity effects are taken into account. A basic convective state appears as soon as a temperature gradient with horizontal component different from zero is applied. It consists of two big rolls that fill the convective cell and are parallel to the heater. A numerical solution allows us to determine this basic state. A linear stability analysis on this solution is carried out. For different values of the applied temperature gradient the basic rolls undergo a stationary bifurcation. The thresholds depend on the fluid properties, on the geometry of the heater, and on the heat exchange on the free surface. This confirms the results obtained in recent experiments.

  20. Thermal design of spiral heat exchangers and heat pipes through global best algorithm

    NASA Astrophysics Data System (ADS)

    Turgut, Oğuz Emrah; Çoban, Mustafa Turhan

    2017-03-01

    This study deals with global best algorithm based thermal design of spiral heat exchangers and heat pipes. Spiral heat exchangers are devices which are highly efficient in extremely dirty and fouling process duties. Spirals inherent in design maintain high heat transfer coefficients while avoiding hazardous effects of fouling and uneven fluid distribution in the channels. Heat pipes have wide usage in industry. Thanks to the two phase cycle which takes part in operation, they can transfer high amount of heat with a negligible temperature gradient. In this work, a new stochastic based optimization method global best algorithm is applied for multi objective optimization of spiral heat exchangers as well as single objective optimization for heat pipes. Global best algorithm is easy-to-implement, free of derivatives and it can be reliably applied to any optimization problem. Case studies taken from the literature approaches are solved by the proposed algorithm and results obtained from the literature approaches are compared with thosed acquired by GBA. Comparisons reveal that GBA attains better results than literature studies in terms of solution accuracy and efficiency.

  1. Oceanic Fluxes of Mass, Heat and Freshwater: A Global Estimate and Perspective

    NASA Technical Reports Server (NTRS)

    MacDonald, Alison Marguerite

    1995-01-01

    Data from fifteen globally distributed, modern, high resolution, hydrographic oceanic transects are combined in an inverse calculation using large scale box models. The models provide estimates of the global meridional heat and freshwater budgets and are used to examine the sensitivity of the global circulation, both inter and intra-basin exchange rates, to a variety of external constraints provided by estimates of Ekman, boundary current and throughflow transports. A solution is found which is consistent with both the model physics and the global data set, despite a twenty five year time span and a lack of seasonal consistency among the data. The overall pattern of the global circulation suggested by the models is similar to that proposed in previously published local studies and regional reviews. However, significant qualitative and quantitative differences exist. These differences are due both to the model definition and to the global nature of the data set.

  2. Bubble nucleation in superhydrophobic microchannels due to subcritical heating

    NASA Astrophysics Data System (ADS)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian

    2016-11-01

    We report on experiments that investigate the effects of heating on laminar flow in superhydrophobic (SH) microchannels. The parallel plate microchannels (180 μm spacing) consist of two surfaces: a rib/cavity structured SH surface and a smooth glass surface. The back of the SH surface is in contact with an aluminum strip that is heated and a camera is used to image through the glass surface to visualize the flow. Thermocouples embedded in the aluminum obtain the temperature profile along the length of the channel. The friction factor-Reynolds product (fRe) is obtained via pressure drop and volumetric flow rate measurements. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, SH with ribs perpendicular to the flow, SH with ribs parallel to the flow, and SH with both ribs parallel to the flow and sparse ribs perpendicular to the flow. Both degassed and air-saturated water are used. When air-saturated water is used, the cavities of the SH surfaces act as nucleation sites and air is desorbed out of the water. Depending on the surface type/configuration, large bubbles can form and result in a large increase in fRe and channel surface temperatures. When degassed water is used no bubble nucleation is observed, however, the air trapped in the cavities of the SH surfaces is quickly absorbed and the surfaces transition to a wetted state. This research was supported by the National Science Foundation (NSF) (Grant No. CBET-1235881).

  3. Global and local Joule heating effects seen by DE 2

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Coley, W. R.

    1988-01-01

    In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.

  4. Thermistor bolometer radiometer signal contamination due to parasitic heat diffusion

    NASA Astrophysics Data System (ADS)

    Priestley, Kory J.; Mahan, J. R.; Haeffelin, Martial P.; Savransky, Maxim; Nguyen, Tai K.

    1995-12-01

    Current efforts are directed at creating a high-level end-to-end numerical model of scanning thermistor bolometer radiometers of the type used in the Earth Radiation Budget Experiment (ERBE) and planned for the clouds and the earth's radiative energy system (CERES) platforms. The first-principle model accurately represents the physical processes relating the electrical signal output to the radiative flux incident to the instrument aperture as well as to the instrument thermal environment. Such models are useful for the optimal design of calibration procedures, data reduction strategies, and the instruments themselves. The modeled thermistor bolometer detectors are approximately 40 micrometers thick and consist of an absorber layer, the thermistor layer, and a thermal impedance layer bonded to a thick aluminum substrate which acts as a heat sink. Thermal and electrical diffusion in the thermistor bolometer detectors is represented by a several-hundred-node- finite-difference formulation, and the temperature field within the aluminum substrate is computed using the finite-element method. The detectors are electrically connected in adjacent arms of a two-active-arm bridge circuit so that the effects of common mode thermal noise are minimized. However, because of a combination of thermistor self heating, loading of the bridge by the bridge amplifier, and the nonlinear thermistor resistance-temperature relationship, bridge deflections can still be provoked by substrate temperature changes, even when the change is uniform across the substrate. Of course, transient temperature gradients which may occur in the substrate between the two detectors will be falsely interpreted as a radiation input. The paper represents the results of an investigation to define the degree of vulnerability of thermistor bolometer radiometers to false signals provoked by uncontrolled temperature fluctuations in the substrate.

  5. Specific features of waveguide heating due to transmission of high-power microwave signals

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, I. V.; Gotselyuk, O. B.; Novikov, E. S.; Demin, V. G.

    2017-01-01

    Waveguide heating due to transmission of microwave signals is studied. Mathematical models are developed to evaluate heat liberation, and differential equations of thermal balance are derived with allowance for different working conditions of waveguides. The results prove the necessity of the further study of the effect of heat liberation in waveguides on strength and functional characteristics.

  6. Abyssal plains heat exchange could explain global deficit

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-07-01

    When researchers measure the amount of heat flowing conductively from the seafloor to the ocean waters and then compare that value against a theoretical prediction of that heat loss, they observe that the global average measured heat flow is lower than expected. Researchers think that advection, a heat transfer mechanism that is difficult to measure, makes up this difference between predicted and observed heat exchange. They suggest that as seawater circulates through the permeable upper layers of the seafloor crust, driven by a thermal gradient, the water accumulates heat, drawing it into the ocean. Scientists have recently proposed that seafloor sediment plays an important role in controlling the geometry of such intraocean crust circulation. In the abyssal plains, the accumulation of millions of years' worth of low permeability sediment limits direct contact between the ocean and the crust. Where the sediment is thin or absent—for example, at outcrops—water is thought to be able to move between the ocean and the crust. Scientists propose that seawater can travel through the crust for tens of kilometers beneath the sediment, moving laterally from outcrop to outcrop.

  7. Wintertime urban heat island modified by global climate change over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  8. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel

    2014-03-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  9. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  10. Transports and budgets of volume, heat, and salt from a global eddy-resolving ocean model

    SciTech Connect

    McCann, M.P.; Semtner, A.J. Jr.; Chervin, R.M.

    1994-07-01

    The results from an integration of a global ocean circulation model have been condensed into an analysis of the volume, heat, and salt transports among the major ocean basins. Transports are also broken down between the model`s Ekman, thermocline, and deep layers. Overall, the model does well. Horizontal exchanges of mass, heat, and salt between ocean basins have reasonable values: and the volume of North Atlantic Deep Water (NADW) transport is in general agreement with what limited observations exist. On a global basis the zonally integrated meridional heat transport is poleward at all latitudes except for the latitude band 30{degrees}S to 45{degrees}S. This anomalous transport is most likely a signature of the model`s inability to form Antarctic Intermediate (AAIW) and Antarctic bottom water (AABW) properly. Eddy heat transport is strong at the equator where its convergence heats the equatorial Pacific about twice as much as it heats the equatorial Atlantic. The greater heating in the Pacific suggests that mesoscale eddies may be a vital mechanism for warming and maintaining an upwelling portion of the global conveyor-belt circulation. The model`s fresh water transport compares well with observations. However, in the Atlantic there is an excessive southward transport of fresh water due to the absence of the Mediterranean outflow and weak northward flow of AAIW. Perhaps the model`s greatest weakness is the lack of strong AAIW and AABW circulation cells. Accurate thermohaline forcing in the North Atlantic (based on numerous hydrographic observations) helps the model adequately produce NADW. In contrast, the southern ocean is an area of sparse observation. Better thermohaline observations in this area may be needed if models such as this are to produce the deep convection that will achieve more accurate simulations of the global 3-dimensional circulation. 41 refs., 18 figs., 1 tab.

  11. Absorption of intense microwaves and ion acoustic turbulence due to heat transport

    SciTech Connect

    De Groot, J.S.; Liu, J.M.; Matte, J.P.

    1994-02-04

    Measurements and calculations of the inverse bremsstrahlung absorption of intense microwaves are presented. The isotropic component of the electron distribution becomes flat-topped in agreement with detailed Fokker-Planck calculations. The plasma heating is reduced due to the flat-topped distributions in agreement with calculations. The calculations show that the heat flux at high microwave powers is very large, q{sub max} {approx} 0.3 n{sub e}v{sub e}T{sub e}. A new particle model to, calculate the heat transport inhibition due to ion acoustic turbulence in ICF plasmas is also presented. One-dimensional PIC calculations of ion acoustic turbulence excited due to heat transport are presented. The 2-D PIC code is presently being used to perform calculations of heat flux inhibition due to ion acoustic turbulence.

  12. Plasma heating at collisionless shocks due to the kinetic cross-field streaming instability

    NASA Technical Reports Server (NTRS)

    Winske, D.; Quest, K. B.; Tanaka, M.; Wu, C. S.

    1985-01-01

    Heating at collisionless shocks due to the kinetic cross-field streaming instability, which is the finite beta (ratio of plasma to magnetic pressure) extension of the modified two stream instability, is studied. Heating rates are derived from quasi-linear theory and compared with results from particle simulations to show that electron heating relative to ion heating and heating parallel to the magnetic field relative to perpendicular heating for both the electrons and ions increase with beta. The simulations suggest that electron dynamics determine the saturation level of the instability, which is manifested by the formation of a flattop electron distribution parallel to the magnetic field. As a result, both the saturation levels of the fluctuations and the heating rates decrease sharply with beta. Applications of these results to plasma heating in simulations of shocks and the earth's bow shock are described.

  13. Io: Volcanic thermal sources and global heat flow

    NASA Astrophysics Data System (ADS)

    Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.; Williams, David A.; Radebaugh, Jani

    2012-06-01

    We have examined thermal emission from 240 active or recently-active volcanic features on Io and quantified the magnitude and distribution of their volcanic heat flow during the Galileo epoch. We use spacecraft data and a geological map of Io to derive an estimate of the maximum possible contribution from small dark areas not detected as thermally active but which nevertheless appear to be sites of recent volcanic activity. We utilize a trend analysis to extrapolate from the smallest detectable volcanic heat sources to these smallest mapped dark areas. Including the additional heat from estimates for "outburst" eruptions and for a multitude of very small ("myriad") hot spots, we account for ˜62 × 1012 W (˜59 ± 7% of Io's total thermal emission). Loki Patera contributes, on average, 9.6 × 1012 W (˜9.1 ± 1%). All dark paterae contribute 45.3 × 1012 W (˜43 ± 5%). Although dark flow fields cover a much larger area than dark paterae, they contribute only 5.6 × 1012 W (˜5.3 ± 0.6%). Bright paterae contribute ˜2.6 × 1012 W (˜2.5 ± 0.3%). Outburst eruption phases and very small hot spots contribute no more than ˜4% of Io's total thermal emission: this is probably a maximum value. About 50% of Io's volcanic heat flow emanates from only 1.2% of Io's surface. Of Io's heat flow, 41 ± 7.0% remains unaccounted for in terms of identified sources. Globally, volcanic heat flow is not uniformly distributed. Power output per unit surface area is slightly biased towards mid-latitudes, although there is a stronger bias toward the northern hemisphere when Loki Patera is included. There is a slight favoring of the northern hemisphere for outbursts where locations were well constrained. Globally, we find peaks in thermal emission at ˜315°W and ˜105°W (using 30° bins). There is a minimum in thermal emission at around 200°W (almost at the anti-jovian longitude) which is a significant regional difference. These peaks and troughs suggest a shift to the east from

  14. Global surface temperature/heat transfer measurements using infrared imaging

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran

    1992-01-01

    A series of studies were conducted to evaluate the use of scanning radiometric infrared imaging systems for providing global surface temperature/heat transfer measurements in support of hypersonic wind tunnel testing. The in situ precision of the technique with narrow temperature span setting over the temperature range of 20 to 200 C was investigated. The precision of the technique over wider temperature span settings was also determined. The accuracy of technique for providing aerodynamic heating rates was investigated by performing measurements on a 10.2-centimeter hemisphere model in the Langley 31-inch Mach 10 tunnel, and comparing the results with theoretical predictions. Data from tests conducted on a generic orbiter model in this tunnel are also presented.

  15. Global Intercomparison of 12 Land Surface Heat Flux Estimates

    NASA Technical Reports Server (NTRS)

    Jimenez, C.; Prigent, C.; Mueller, B.; Seneviratne, S. I.; McCabe, M. F.; Wood, E. F.; Rossow, W. B.; Balsamo, G.; Betts, A. K.; Dirmeyer, P. A.; Fisher, J. B.; Jung, M.; Kanamitsu, M.; Reichle, R. H.; Reichstein, M.; Rodell, M.; Sheffield, J.; Tu, K.; Wang, K.

    2011-01-01

    A global intercomparison of 12 monthly mean land surface heat flux products for the period 1993-1995 is presented. The intercomparison includes some of the first emerging global satellite-based products (developed at Paris Observatory, Max Planck Institute for Biogeochemistry, University of California Berkeley, University of Maryland, and Princeton University) and examples of fluxes produced by reanalyses (ERA-Interim, MERRA, NCEP-DOE) and off-line land surface models (GSWP-2, GLDAS CLM/ Mosaic/Noah). An intercomparison of the global latent heat flux (Q(sub le)) annual means shows a spread of approx 20 W/sq m (all-product global average of approx 45 W/sq m). A similar spread is observed for the sensible (Q(sub h)) and net radiative (R(sub n)) fluxes. In general, the products correlate well with each other, helped by the large seasonal variability and common forcing data for some of the products. Expected spatial distributions related to the major climatic regimes and geographical features are reproduced by all products. Nevertheless, large Q(sub le)and Q(sub h) absolute differences are also observed. The fluxes were spatially averaged for 10 vegetation classes. The larger Q(sub le) differences were observed for the rain forest but, when normalized by mean fluxes, the differences were comparable to other classes. In general, the correlations between Q(sub le) and R(sub n) were higher for the satellite-based products compared with the reanalyses and off-line models. The fluxes were also averaged for 10 selected basins. The seasonality was generally well captured by all products, but large differences in the flux partitioning were observed for some products and basins.

  16. Continental Heat Gain in the Global Climate System

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Beltrami, H.; Pollack, H. N.; Huang, S.

    2001-12-01

    Observed increases in 20th century surface-air temperatures are one consequence of a net energy flux into all major components of the Earth climate system including the atmosphere, ocean, cryosphere, and lithosphere. Levitus et al. [2001] have estimated the heat gained by the atmosphere, ocean and cryosphere as 18.2x1022 J, 6.6x1021 J, and 8.1x1021 J, respectively, over the past half-century. However the heat gain of the lithosphere via a heat flux across the solid surface of the continents (30% of the Earth's surface) was not addressed in the Levitus analysis. Here we calculate that final component of Earth's changing energy budget, using ground-surface temperature reconstructions for the continents [Huang et al., 2000]. These reconstructions have shown a warming of at least 0.5 K in the 20th century and were used to determine the flux estimates presented here. In the last half-century, the interval of time considered by Levitus et al., there was an average flux of 40 mW/m2 across the land surface into the subsurface, leading to 9.2x1021 J absorbed by the ground. This amount of heat is significantly less than the energy transferred into the oceans, but of the same magnitude as the energy absorbed by the atmosphere or cryosphere. The heat inputs into all the major components of the climate system - atmosphere, ocean, cryosphere, lithosphere - conservatively sum to more than 20x1022 J during the last half-century, and reinforce the conclusion that the warming in this interval has been truly global. Huang, S., Pollack, H.N., and Shen, P.-Y. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature. 403. 756-758 Levitus, S., Antonov, J., Wang, J., Delworth, T. L., Dixon, K. and Broccoli, A. 2001. Anthropogenic warming of the Earth's climate system. Science, 292, 267-270

  17. Global anomalous transport of ICRH- and NBI-heated fast ions

    NASA Astrophysics Data System (ADS)

    Wilkie, G. J.; Pusztai, I.; Abel, I.; Dorland, W.; Fülöp, T.

    2017-04-01

    By taking advantage of the trace approximation, one can gain an enormous computational advantage when solving for the global turbulent transport of impurities. In particular, this makes feasible the study of non-Maxwellian transport coupled in radius and energy, allowing collisions and transport to be accounted for on similar time scales, as occurs for fast ions. In this work, we study the fully-nonlinear ITG-driven trace turbulent transport of locally heated and injected fast ions. Previous results indicated the existence of MeV-range minorities heated by cyclotron resonance, and an associated density pinch effect. Here, we build upon this result using the t3core code to solve for the distribution of these minorities, consistently including the effects of collisions, gyrokinetic turbulence, and heating. Using the same tool to study the transport of injected fast ions, we contrast the qualitative features of their transport with that of the heated minorities. Our results indicate that heated minorities are more strongly affected by microturbulence than injected fast ions. The physical interpretation of this difference provides a possible explanation for the observed synergy when neutral beam injection (NBI) heating is combined with ion cyclotron resonance heating (ICRH). Furthermore, we move beyond the trace approximation to develop a model which allows one to easily account for the reduction of anomalous transport due to the presence of fast ions in electrostatic turbulence.

  18. Human health risk assessment due to global warming--a case study of the Gulf countries.

    PubMed

    Husain, Tahir; Chaudhary, Junaid Rafi

    2008-12-01

    Accelerated global warming is predicted by the Intergovernmental Panel on Climatic Change (IPCC) due to increasing anthropogenic greenhouse gas emissions. The climate changes are anticipated to have a long-term impact on human health, marine and terrestrial ecosystems, water resources and vegetation. Due to rising sea levels, low lying coastal regions will be flooded, farmlands will be threatened and scarcity of fresh water resources will be aggravated. This will in turn cause increased human suffering in different parts of the world. Spread of disease vectors will contribute towards high mortality, along with the heat related deaths. Arid and hot climatic regions will face devastating effects risking survival of the fragile plant species, wild animals, and other desert ecosystems. The paper presents future changes in temperature, precipitation and humidity and their direct and indirect potential impacts on human health in the coastal regions of the Gulf countries including Yemen, Oman, United Arab Emirates, Qatar, and Bahrain. The analysis is based on the long-term changes in the values of temperature, precipitation and humidity as predicted by the global climatic simulation models under different scenarios of GHG emission levels. Monthly data on temperature, precipitation, and humidity were retrieved from IPCC databases for longitude 41.25 degrees E to 61.875 degrees E and latitude 9.278 degrees N to 27.833 degrees N. Using an average of 1970 to 2000 values as baseline, the changes in the humidity, temperature and precipitation were predicted for the period 2020 to 2050 and 2070 to 2099. Based on epidemiological studies on various diseases associated with the change in temperature, humidity and precipitation in arid and hot regions, empirical models were developed to assess human health risk in the Gulf region to predict elevated levels of diseases and mortality rates under different emission scenarios as developed by the IPCC.The preliminary assessment indicates

  19. A detailed evaluation of the stratospheric heat budget: 2. Global radiation balance and diabatic circulations

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Mertens, Christopher J.; Garcia, Rolando R.; Portmann, Robert W.

    1999-03-01

    We present a detailed evaluation of radiative heating, radiative cooling, net heating, global radiation balance, radiative relaxation times, and diabatic circulations in the stratosphere using temperature and minor constituent data provided by instruments on the Upper Atmosphere Research Satellite (UARS) between 1991 and 1993 and by the limb infrared monitor of the stratosphere (LIMS) instrument which operated on the Nimbus-7 spacecraft in 1978-1979. Included in the calculations are heating due to absorption of solar radiation from ultraviolet through near-infrared wavelengths and radiative cooling due to emission by carbon dioxide, water vapor, and ozone from 0 to 3000 cm-1 (∞ - 3.3 μm). Infrared radiative effects of Pinatubo aerosols are also considered in some detail. In general, we find the stratosphere to be in a state of global mean radiative equilibrium on monthly timescales to within the uncertainty of the satellite-provided measurements. Radiative relaxation times are found to be larger in the lower stratosphere during UARS than LIMS because of the presence of Pinatubo aerosols. The meridional circulations in the upper stratosphere as diagnosed from the calculated fields of net heating are generally stronger in the UARS period than during the LIMS period, while the lower stratosphere meridional circulations are stronger during the LIMS period. A climatology of these calculations is available to the community via a World Wide Web interface described herein.

  20. Continued Development of a Global Heat Transfer Measurement System at AEDC Hypervelocity Wind Tunnel 9

    NASA Technical Reports Server (NTRS)

    Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.

    2007-01-01

    Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.

  1. Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations.

    PubMed

    Talebi, Maryam; Setareh, Milad; Saffar-Avval, Majid; Hosseini Abardeh, Reza

    2017-04-01

    Application of ultrasonic waves for heat transfer augmentation has been proposed in the last few decades. Due to limited researches on acoustic streaming induced by ultrasonic oscillation, the effect of ultrasonic waves on natural convection heat transfer is the main purpose of this paper. At first, natural convection on up-ward-facing heating surface in a cylindrical enclosure filled with air is investigated numerically by the finite difference method, then the effect of upper surface oscillation on convection heat transfer is considered. The conservation equations in Lagrangian approach and compressible fluid are assumed for the numerical simulation. Results show that acoustic pressure will become steady after some milliseconds also pressure oscillation amplitude and acoustic velocity components will be constant therefore steady state velocity is used for solving energy equation. Results show that Enhancement of heat transfer coefficient can be up to 175% by induced ultrasonic waves. In addition, the effect of different parameters on acoustic streaming and heat transfer has been studied.

  2. Small scale changes of geochemistry and flow field due to transient heat storage in aquifers

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.

    2013-12-01

    Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the

  3. Surface urban heat island across 419 global big cities.

    PubMed

    Peng, Shushi; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Ottle, Catherine; Bréon, François-Marie; Nan, Huijuan; Zhou, Liming; Myneni, Ranga B

    2012-01-17

    Urban heat island is among the most evident aspects of human impacts on the earth system. Here we assess the diurnal and seasonal variation of surface urban heat island intensity (SUHII) defined as the surface temperature difference between urban area and suburban area measured from the MODIS. Differences in SUHII are analyzed across 419 global big cities, and we assess several potential biophysical and socio-economic driving factors. Across the big cities, we show that the average annual daytime SUHII (1.5 ± 1.2 °C) is higher than the annual nighttime SUHII (1.1 ± 0.5 °C) (P < 0.001). But no correlation is found between daytime and nighttime SUHII across big cities (P = 0.84), suggesting different driving mechanisms between day and night. The distribution of nighttime SUHII correlates positively with the difference in albedo and nighttime light between urban area and suburban area, while the distribution of daytime SUHII correlates negatively across cities with the difference of vegetation cover and activity between urban and suburban areas. Our results emphasize the key role of vegetation feedbacks in attenuating SUHII of big cities during the day, in particular during the growing season, further highlighting that increasing urban vegetation cover could be one effective way to mitigate the urban heat island effect.

  4. Revisit of the Global Surface Energy Balance Using the MEP Model of Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Wang, J.; Park, T. W.; Ming, Y.

    2015-12-01

    The recently proposed model of surface heat fluxes, based on the theory of maximum entropy production (MEP), was used to estimate the global evapotranspiration (ET) and heat fluxes. Compared to bulk transfer models, the MEP model has several remote-sensing-friendly features including fewer input variables, automatic closure of surface energy budget, being independent of bulk gradients of temperature and water vapor, not using wind speed and surface roughness as model parameters, and being less sensitive to uncertainties of input variables and model parameters. The MEP model is formulated for the entire range of soil moisture from dryness to saturation over the land surfaces and has even more advantages over water-snow-ice surfaces compared to traditional methods due to its independence of surface humidity data. The MEP model provides the first global maps of water heat fluxes at ocean surfaces as well as conductive heat fluxes at snow/ice covered polar regions. Ten years of Clouds and the Earth's Radiant Energy System (CERES) earth surface radiation fluxes, surface temperature data products supplemented (when needed) by the Modern-Era Retrospective analysis for Research and Applications (MERRA) surface specific humidity data are used to test the MEP model by comparing the MEP based global annual ET and heat fluxes with existing products. The MEP based fluxes over land surfaces agree closely with previous studies. Over the oceans, the MEP modeled ET tends to be lower than previous estimates while those of sensible heat fluxes are in close agreement with previous studies. A counterpart, "off-line" analysis is also carried out using the NOAA GFDL climate model output from a control experiment and a "warming" experiment. Substantial differences in the warming-related changes of ET and Bowen ratio are found over regions such as North Africa and the southwestern U.S. The implications of these differences for understanding trends and variability in regional energy and

  5. Comparison of retrospective analyses of the global ocean heat content

    NASA Astrophysics Data System (ADS)

    Chepurin, Gennady A.; Carton, James A.

    1999-07-01

    In this study, we compare seven retrospective analyses of basin- to global-scale upper ocean temperature. The analyses span a minimum of 10 years during the 50-year period since World War II. Three of the analyses (WOA-94, WHITE, BMRC) are based on objective analysis and thus, do not rely on a numerical forecast model. The remaining four (NCEP, WAJSOWICZ, ROSATI, SODA) are based on data assimilation in which the numerical forecast is provided by some form of the Geophysical Fluid Dynamics Laboratory Modular Ocean Model driven by historical winds. The comparison presented here is limited to heat content in the upper 250 m, information that is available for all analyses. The results are presented in three frequency bands: seasonal, interannual (periods of 1-5 years), and decadal (periods of 5-25 years). At seasonal frequencies, all of the analyses are quite similar. Otherwise, the differences among analyses are limited to the regions of the western boundary currents, and some regions in the Southern Hemisphere. At interannual frequencies, significant differences appear between the objective analyses and the data assimilation analyses. Along the equator in the Pacific, where variability is dominated by El Niño, the objective analyses have somewhat noisier fields, as well as reduced variance prior to 1980 due to lack of observations. Still, the correlation among analyses generally exceeds 80% in this region. Along the equator in the Atlantic, the correlation is lower (30-60%) although inspection of the time series shows that the same biennial progression of warm and cool events appears in all analyses since 1980. In the midlatitude Pacific agreement among objective analyses and data assimilation analyses is good. The analysis of Rosati et al. [Rosati, A., Gudgel, R., Miyakoda, K., 1995. Decadal analysis produced from an ocean assimilation system. Mon. Weather Rev., 123, 2, 206.] differs somewhat from the others apparently because in this analysis, the forecast model

  6. 75 FR 34171 - Trueheat, Inc., a Subsidiary of Global Heating Solutions, Inc., Currently Known as Truheat, a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... Employment and Training Administration Trueheat, Inc., a Subsidiary of Global Heating Solutions, Inc... Global Heating Solutions, Inc., Currently Known as Truheat, a Division of Three Heat LLC, Allegan, MI..., applicable to workers of TrueHeat, Inc., a subsidiary of Global Heating Solutions, Inc., Allegan,...

  7. Interstitial lung disease due to fumes from heat-cutting polymer rope.

    PubMed

    Sharman, P; Wood-Baker, R

    2013-09-01

    Interstitial lung disease (ILD) due to inhalation of fume/smoke from heating or burning of synthetic polymers has not been reported previously. A fish farm worker developed ILD after cutting rope (polypropylene and nylon) for about 2 hours per day over an extended period using an electrically heated 'knife'. This process produced fume/smoke that entered the workers breathing zone. No other likely cause was identified. This case suggests that exposure to airborne contaminants generated by the heating or burning of synthetic polymers has the potential to cause serious lung disease.

  8. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    SciTech Connect

    Chhabra, S.R.; He, Q.; Huang, K.H.; Gaucher, S.P.; Alm, E.J.; He,Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, A.K.

    2005-09-16

    Desulfovibrio vulgaris Hildenborough belongs to a class ofsulfate-reducing bacteria (SRB) and is found ubiquitously in nature.Given the importance of SRB-mediated reduction for bioremediation ofmetal ion contaminants, ongoing research on D. vulgaris has been in thedirection of elucidating regulatory mechanisms for this organism under avariety of stress conditions. This work presents a global view of thisorganism's response to elevated growth temperature using whole-celltranscriptomics and proteomics tools. Transcriptional response (1.7-foldchange or greater; Z>1.5) ranged from 1,135 genes at 15 min to 1,463genes at 120 min for a temperature up-shift of 13oC from a growthtemperature of 37oC for this organism and suggested both direct andindirect modes of heat sensing. Clusters of orthologous group categoriesthat were significantly affected included posttranslationalmodifications; protein turnover and chaperones (up-regulated); energyproduction and conversion (down-regulated), nucleotide transport,metabolism (down-regulated), and translation; ribosomal structure; andbiogenesis (down-regulated). Analysis of the genome sequence revealed thepresence of features of both negative and positive regulation whichincluded the CIRCE element and promoter sequences corresponding to thealternate sigma factors ?32 and ?54. While mechanisms of heat shockcontrol for some genes appeared to coincide with those established forEscherichia coli and Bacillus subtilis, the presence of unique controlschemes for several other genes was also evident. Analysis of proteinexpression levels using differential in-gel electrophoresis suggestedgood agreement with transcriptional profiles of several heat shockproteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), andAhpC (DVU2247). The proteomics study also suggested the possibility ofposttranslational modifications in the chaperones DnaK, AhpC, GroES(DVU1977), and GroEL (DVU1976) and also several periplasmic ABCtransporters.

  9. Global analysis of heat shock response in Desulfovibrio vulgaris Hildenborough.

    SciTech Connect

    Arkin, A. P.; Wall, J. D.; Hazen, T. C.; He, Z.; Zhou, J.; Huang, K. H.; Gaucher, Sara P.; He, Q.; Hadi, Masood Z.; Chhabra, Swapnil R.; Alm, Eric J.; Singh, A. K.

    2005-08-01

    Desulfovibrio vulgaris Hildenborough belongs to a class of sulfate-reducing bacteria (SRB) and is found ubiquitously in nature. Given the importance of SRB-mediated reduction for bioremediation of metal ion contaminants, ongoing research on D. vulgaris has been in the direction of elucidating regulatory mechanisms for this organism under a variety of stress conditions. This work presents a global view of this organism's response to elevated growth temperature using whole-cell transcriptomics and proteomics tools. Transcriptional response (1.7-fold change or greater; Z {ge} 1.5) ranged from 1,135 genes at 15 min to 1,463 genes at 120 min for a temperature up-shift of 13 C from a growth temperature of 37 C for this organism and suggested both direct and indirect modes of heat sensing. Clusters of orthologous group categories that were significantly affected included posttranslational modifications; protein turnover and chaperones (up-regulated); energy production and conversion (down-regulated), nucleotide transport, metabolism (down-regulated), and translation; ribosomal structure; and biogenesis (down-regulated). Analysis of the genome sequence revealed the presence of features of both negative and positive regulation which included the CIRCE element and promoter sequences corresponding to the alternate sigma factors {sigma}{sup 32} and {sigma}{sup 54}. While mechanisms of heat shock control for some genes appeared to coincide with those established for Escherichia coli and Bacillus subtilis, the presence of unique control schemes for several other genes was also evident. Analysis of protein expression levels using differential in-gel electrophoresis suggested good agreement with transcriptional profiles of several heat shock proteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), and AhpC (DVU2247). The proteomics study also suggested the possibility of posttranslational modifications in the chaperones DnaK, AhpC, GroES (DVU1977), and GroEL (DVU1976

  10. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    PubMed

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  11. Heat dissipation due to ferromagnetic resonance in a ferromagnetic metal monitored by electrical resistance measurement

    SciTech Connect

    Yamanoi, Kazuto; Yokotani, Yuki; Kimura, Takashi

    2015-11-02

    The heat dissipation due to the resonant precessional motion of the magnetization in a ferromagnetic metal has been investigated. We demonstrated that the temperature during the ferromagnetic resonance can be simply detected by the electrical resistance measurement of the Cu strip line in contact with the ferromagnetic metal. The temperature change of the Cu strip due to the ferromagnetic resonance was found to exceed 10 K, which significantly affects the spin-current transport. The influence of the thermal conductivity of the substrate on the heating was also investigated.

  12. Lethality of Bacillus Anthracis Spores Due to Short Duration Heating Measured Using Infrared Spectroscopy

    DTIC Science & Technology

    2005-03-01

    wavelengths were these differences distinguished. Individual bacterial endospores from four species of Bacillus (cereus, megaterium , subtilis, and... Bacillus (cereus, megaterium , and subtilis) at various wavelengths. Spectral comparisons were made between spores and vegetative cells. Results...LETHALITY OF BACILLUS ANTHRACIS SPORES DUE TO SHORT DURATION HEATING MEASURED USING INFRARED SPECTROSCOPY THESIS Kristina M

  13. Potential increases in natural radon emissions due to heating of the Yucca Mountain rock mass

    SciTech Connect

    Pescatore, C.; Sullivan, T.M.

    1992-02-01

    Heating of the rock mass by the spent fuel in the proposed repository at Yucca Mountain will cause extra amounts of natural radon to diffuse into the fracture system and to migrate faster to the accessible environment. Indeed, free-convection currents due to heating will act to shorten the radon travel times and will cause larger releases than would be possible under undistributed conditions. To estimate the amount of additional radon released due to heating of the Yucca Mountain rock mass, we obtain an expression for the release enhancement factor, E. This factor is defined as the ratio between the total flux of radon at the surface of the mountain before and after closure of the repository assuming the only cause of disturbance to be the heating of the rock mass. With appropriate approximations and using a heat load representative of that expected at Yucca Mountain, the present calculations indicate that the average enhancement factor over the first 10,000 years will be 4.5 as a minimum. These calculations are based on the assumption that barometric pumping does not significantly influence radon release. The latter assumption will need to be substantiated.

  14. Modeling of Urban Heat Island at Global Scale

    NASA Astrophysics Data System (ADS)

    KC, B.; Ruth, M.

    2015-12-01

    Urban Heat Island (UHI) is the temperature difference between urban and its rural background temperature. At the local level, the choice of building materials and urban geometry are vital in determining the UHI magnitude of a city. At the city scale, economic growth, population, climate, and land use dynamics are the main drivers behind changes in UHIs. The main objective of this paper is to provide a comprehensive assessment of UHI based on these "macro variables" at regional and global scale. We based our analysis on published research for Europe, North America, and Asia, reporting data for 83 cities across the globe with unique climatic, economic, and environmental conditions. Exploratory data analysis including Pearson correlation was performed to explore the relationship between UHI and PM2.5 (particulate matter with aerodynamic diameter ≤5 microns), PM10 (particulate matter with aerodynamic diameter ≤10 microns), vegetation per capita, built area, Gross Domestic Product (GDP), population density and population. Additionally, dummy variables were used to capture potential influences of climate types (based on Koppen classifications) and the ways by which UHI was measured. We developed three linear regression models, one for each of the three continents (Asia, Europe, and North America) and one model for all the cities across these continents. This study provides a unique perspective for predicting UHI magnitudes at large scales based on economic activity and pollution levels of a city, which has important implications in urban planning.

  15. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    NASA Astrophysics Data System (ADS)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  16. Latent heating and mixing due to entrainment in tropical deep convection

    NASA Astrophysics Data System (ADS)

    McGee, Clayton J.

    Recent studies have noted the role of latent heating above the freezing level in reconciling Riehl and Malkus' Hot Tower Hypothesis (HTH) with evidence of diluted tropical deep convective cores. This study evaluates recent modifications to the HTH through Lagrangian trajectory analysis of deep convective cores in an idealized, high-resolution cloud-resolving model (CRM) simulation. A line of tropical convective cells develops within a high-resolution nested grid whose boundary conditions are obtained from a large-domain CRM simulation approaching radiative-convective equilibrium (RCE). Microphysical impacts on latent heating and equivalent potential temperature are analyzed along trajectories ascending within convective regions of the high-resolution nested grid. Changes in equivalent potential temperature along backward trajectories are partitioned into contributions from latent heating due to ice processes and a residual term. This residual term is composed of radiation and mixing. Due to the small magnitude of radiative heating rates in the convective inflow regions and updrafts examined here, the residual term is treated as an approximate representation of mixing within these regions. The simulations demonstrate that mixing with dry air decreases equivalent potential temperature along ascending trajectories below the freezing level, while latent heating due to freezing and vapor deposition increase equivalent potential temperature above the freezing level. The latent heating contributions along trajectories from cloud nucleation, condensation, evaporation, freezing, deposition, and sublimation are also quantified. Finally, the source regions of trajectories reaching the upper troposphere are identified; it is found that two-thirds of backward trajectories with starting points within strong updrafts or downdrafts above 10 km have their origin at levels higher than 2 km AGL. The importance of both boundary layer and mid-level inflow in moist environments is

  17. Global Earthquake Casualties due to Secondary Effects: A Quantitative Analysis for Improving PAGER Losses

    USGS Publications Warehouse

    Wald, David J.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey’s (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER’s overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra–Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability.

  18. Global earthquake casualties due to secondary effects: A quantitative analysis for improving rapid loss analyses

    USGS Publications Warehouse

    Marano, K.D.; Wald, D.J.; Allen, T.I.

    2010-01-01

    This study presents a quantitative and geospatial description of global losses due to earthquake-induced secondary effects, including landslide, liquefaction, tsunami, and fire for events during the past 40 years. These processes are of great importance to the US Geological Survey's (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system, which is currently being developed to deliver rapid earthquake impact and loss assessments following large/significant global earthquakes. An important question is how dominant are losses due to secondary effects (and under what conditions, and in which regions)? Thus, which of these effects should receive higher priority research efforts in order to enhance PAGER's overall assessment of earthquakes losses and alerting for the likelihood of secondary impacts? We find that while 21.5% of fatal earthquakes have deaths due to secondary (non-shaking) causes, only rarely are secondary effects the main cause of fatalities. The recent 2004 Great Sumatra-Andaman Islands earthquake is a notable exception, with extraordinary losses due to tsunami. The potential for secondary hazards varies greatly, and systematically, due to regional geologic and geomorphic conditions. Based on our findings, we have built country-specific disclaimers for PAGER that address potential for each hazard (Earle et al., Proceedings of the 14th World Conference of the Earthquake Engineering, Beijing, China, 2008). We will now focus on ways to model casualties from secondary effects based on their relative importance as well as their general predictability. ?? Springer Science+Business Media B.V. 2009.

  19. Heat transfer deterioration in tubes caused by bulk flow acceleration due to thermal and frictional influences

    SciTech Connect

    Jackson, J. D.

    2012-07-01

    Severe deterioration of forced convection heat transfer can be encountered with compressible fluids flowing through strongly heated tubes of relatively small bore as the flow accelerates and turbulence is reduced because of the fluid density falling (as the temperature rises and the pressure falls due to thermal and frictional influence). The model presented here throws new light on how the dependence of density on both temperature and pressure can affect turbulence and heat transfer and it explains why the empirical equations currently available for calculating effectiveness of forced convection heat transfer under conditions of strong non-uniformity of fluid properties sometimes fail to reproduce observed behaviour. It provides a criterion for establishing the conditions under which such deterioration of heat transfer might be encountered and enables heat transfer coefficients to be determined when such deterioration occurs. The analysis presented here is for a gaseous fluid at normal pressure subjected strong non-uniformity of fluid properties by the application of large temperature differences. Thus the model leads to equations which describe deterioration of heat transfer in terms of familiar parameters such as Mach number, Reynolds number and Prandtl number. It is applicable to thermal power plant systems such as rocket engines, gas turbines and high temperature gas-cooled nuclear reactors. However, the ideas involved apply equally well to fluids at supercritical pressure. Impairment of heat transfer under such conditions has become a matter of growing interest with the active consideration now being given to advanced water-cooled nuclear reactors designed to operate at pressures above the critical value. (authors)

  20. Distortion of Crabbed Bunch Due to Electron Cloud and Global Crabbing

    SciTech Connect

    Wang, L.; Raubenheimer, T.O.; Cai, Y.; /SLAC

    2008-08-01

    Crab cavities may be used improve the luminosity in colliding beam colliders with crab crossing. In a global crab crossing correction, only one crab cavity is installed in each ring and the crab cavities generate a horizontally titled bunch oscillating around the ring. The electron cloud in positively charged rings may distort the crabbed bunch and cause the luminosity drop. This paper briefly estimates the distortion of positron bunch due to the electron cloud with global crab and estimates the effect in the KEKB and possible LHC upgrades.

  1. Global heating distributions for January 1979 calculated from GLA assimilated and simulated model-based datasets

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Lenzen, Allen J.; Johnson, Donald R.

    1991-01-01

    This study surveys the large-scale distribution of heating for January 1979 obtained from five sources of information. Through intercomparison of these distributions, with emphasis on satellite-derived information, an investigation is conducted into the global distribution of atmospheric heating and the impact of observations on the diagnostic estimates of heating derived from assimilated datasets. The results indicate a substantial impact of satellite information on diagnostic estimates of heating in regions where there is a scarcity of conventional observations. The addition of satellite data provides information on the atmosphere's temperature and wind structure that is important for estimation of the global distribution of heating and energy exchange.

  2. Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Patten, A. B.; Hamilton, H. H., II

    1983-01-01

    An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented.

  3. Heat and moisture diffusion in slab products due to convective boundary condition

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Hussain, M. M.; Dincer, I.

    2002-08-01

    In the present study, a closed form solution for the temperature distributions inside the solid substrate due to convective boundary condition at the surface is presented, particularly for drying applications. The analytical solution for the diffusion equation is introduced with constant concentration at the surface case. Temperature and moisture distributions inside apple slab are computed in this regard. It is found that temperature rises rapidly in the surface region of the substrate material during the early heating period and as the heating period progresses, temperature gradient attains almost steady value with advancing time. Moisture content variation in the surface region is considerably high in the early period and as time progresses, the rate of change of concentration in the substrate reduces. The present model is verified with actual data for heat conduction and moisture diffusion and a considerably high agreement is found.

  4. Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law.

    PubMed

    Rand, D A

    2008-08-06

    The dynamical systems arising from gene regulatory, signalling and metabolic networks are strongly nonlinear, have high-dimensional state spaces and depend on large numbers of parameters. Understanding the relation between the structure and the function for such systems is a considerable challenge. We need tools to identify key points of regulation, illuminate such issues as robustness and control and aid in the design of experiments. Here, I tackle this by developing new techniques for sensitivity analysis. In particular, I show how to globally analyse the sensitivity of a complex system by means of two new graphical objects: the sensitivity heat map and the parameter sensitivity spectrum. The approach to sensitivity analysis is global in the sense that it studies the variation in the whole of the model's solution rather than focusing on output variables one at a time, as in classical sensitivity analysis. This viewpoint relies on the discovery of local geometric rigidity for such systems, the mathematical insight that makes a practicable approach to such problems feasible for highly complex systems. In addition, we demonstrate a new summation theorem that substantially generalizes previous results for oscillatory and other dynamical phenomena. This theorem can be interpreted as a mathematical law stating the need for a balance between fragility and robustness in such systems.

  5. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  6. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming

    PubMed Central

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-01-01

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  7. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming.

    PubMed

    Paital, Biswaranjan; Panda, Sumana Kumari; Hati, Akshaya Kumar; Mohanty, Bobllina; Mohapatra, Manoj Kumar; Kanungo, Shyama; Chainy, Gagan Bihari Nityananda

    2016-02-26

    The world is projected to experience an approximate doubling of atmospheric CO2 concentration in the next decades. Rise in atmospheric CO2 level as one of the most important reasons is expected to contribute to raise the mean global temperature 1.4 °C-5.8 °C by that time. A survey from 128 countries speculates that global warming is primarily due to increase in atmospheric CO2 level that is produced mainly by anthropogenic activities. Exposure of animals to high environmental temperatures is mostly accompanied by unwanted acceleration of certain biochemical pathways in their cells. One of such examples is augmentation in generation of reactive oxygen species (ROS) and subsequent increase in oxidation of lipids, proteins and nucleic acids by ROS. Increase in oxidation of biomolecules leads to a state called as oxidative stress (OS). Finally, the increase in OS condition induces abnormality in physiology of animals under elevated temperature. Exposure of animals to rise in habitat temperature is found to boost the metabolism of animals and a very strong and positive correlation exists between metabolism and levels of ROS and OS. Continuous induction of OS is negatively correlated with survivability and longevity and positively correlated with ageing in animals. Thus, it can be predicted that continuous exposure of animals to acute or gradual rise in habitat temperature due to global warming may induce OS, reduced survivability and longevity in animals in general and poikilotherms in particular. A positive correlation between metabolism and temperature in general and altered O2 consumption at elevated temperature in particular could also increase the risk of experiencing OS in homeotherms. Effects of global warming on longevity of animals through increased risk of protein misfolding and disease susceptibility due to OS as the cause or effects or both also cannot be ignored. Therefore, understanding the physiological impacts of global warming in relation to

  8. Research Spotlight: Limiting global warming may not limit heat wave risk

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    Recent policy discussions on climate change have focused on limiting global average temperature increases. For instance, the European Union has set a goal of limiting global warming to 2°C. However, this goal represents a global average; regional and local temperature changes may vary, and substantial increases in regional extreme heat events could occur, possibly with serious consequences for some communities.

  9. Ion heat pinch due to the magnetic drift resonance with the ion temperature gradient instability in a rotating plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Debing; Xu, Yingfeng; Wang, Shaojie

    2017-03-01

    The ion heat pinch due to the magnetic drift resonance with the ion temperature gradient instability is investigated by using the Lie-transform method. In a tokamak plasma with an equilibrium parallel flow, the total heat flux is found to direct inward with a strong flow shear. The proposed heat pinch can provide possible explanations for some experimental observations.

  10. Temperatures of individual ion species and heating due to charge exchange in the ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kim, Jhoon; Nagy, Andrew F.; Cravens, Thomas E.; Shinagawa, Hiroyuki

    1990-01-01

    The coupled electron and multispecies ion energy equations were solved for daytime conditions in the Venus ionosphere. The heating rates due to charge exchange between hot oxygen atoms and thermal oxygen ions were calculated and incorporated into the energy equations. The combination of the traditional EUV heating and this hot oxygen energy source leads to calculated electron and individual ion temperatures significantly lower than the measured values during solar cycle maximum conditions. Calculations were also carried out for solar cycle minimum conditions, which led to considerably lower temperatures; no data are available which would allow direct comparisons of these results with measurements. In order to obtain calculated temperature values consistent with the observed ones, for solar cycle maximum conditions, topside heat inflows into the ion and electron gases have to be introduced or the thermal conductivity must be reduced by considering the effect of steady and fluctuating magnetic fields, as was done in previous studies. The addition of hot oxygen heating leads to minor increases in the calculated ion temperatures except for the case of reduced thermal conductivities. Separate temperatures were calculated for each ion species for a number of different conditions and in general the differences were found to be relatively small.

  11. Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae.

    PubMed

    Tran, Thao Dang-Hien; Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Ki-Woo; Briles, David E; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-06-01

    Antibiotic resistance and tolerance are increasing threats to global health as antibiotic-resistant bacteria can cause severe morbidity and mortality and can increase treatment cost 10-fold. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, we report here that ClpL, a major heat shock protein, could modulate cell wall biosynthetic enzymes and lead to decreased penicillin susceptibility. On capsular type 1, 2, and 19 genetic backgrounds, mutants lacking ClpL were more susceptible to penicillin and had thinner cell walls than the parental strains, whereas a ClpL-overexpressing strain showed a higher resistance to penicillin and a thicker cell wall. Although exposure of Streptococcus pneumoniae D39 to penicillin inhibited expression of the major cell wall synthesis gene pbp2x, heat shock induced a ClpL-dependent increase in the mRNA levels and protein synthesized by pbp2x. Inducible ClpL expression correlated with PBP2x expression and penicillin susceptibility. Fractionation and electron micrograph data revealed that ClpL induced by heat shock is localized at the cell wall, and the ΔclpL showed significantly reduced net translocation of PBP2x into the cell wall. Moreover, coimmunoprecipitation with either ClpL or PBP2x antibody followed by reprobing with ClpL or PBP2x antibody showed an interaction between ClpL and PBP2x after heat stress. This interaction was confirmed by His tag pulldown assay with either ClpLHis₆ or PBP2xHis₆. Thus, ClpL stabilized pbp2x expression, interacted with PBP2x, and facilitated translocation of PBP2x, a key protein of cell wall synthesis process, contributing to the decrease of antibiotic susceptibility in S. pneumoniae.

  12. Quantification of increased flood risk due to global climate change for urban river management planning.

    PubMed

    Morita, M

    2011-01-01

    Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.

  13. Quantitative Global Heat Transfer in a Mach-6 Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Sullivan, John P.; Schneider, Steven P.; Liu, Tianshu; Rubal, Justin; Ward, Chris; Dussling, Joseph; Rice, Cody; Foley, Ryan; Cai, Zeimin; Wang, Bo; Woodiga, Sudesh

    2012-01-01

    This project developed quantitative methods for obtaining heat transfer from temperature sensitive paint (TSP) measurements in the Mach-6 quiet tunnel at Purdue, which is a Ludwieg tube with a downstream valve, moderately-short flow duration and low levels of heat transfer. Previous difficulties with inferring heat transfer from TSP in the Mach-6 quiet tunnel were traced to (1) the large transient heat transfer that occurs during the unusually long tunnel startup and shutdown, (2) the non-uniform thickness of the insulating coating, (3) inconsistencies and imperfections in the painting process and (4) the low levels of heat transfer observed on slender models at typical stagnation temperatures near 430K. Repeated measurements were conducted on 7 degree-half-angle sharp circular cones at zero angle of attack in order to evaluate the techniques, isolate the problems and identify solutions. An attempt at developing a two-color TSP method is also summarized.

  14. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    NASA Technical Reports Server (NTRS)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  15. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Kalnay, E.; Baker, W. E.

    1981-01-01

    The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.

  16. Subsurface Ocean Climate Data Records: Global Ocean Heat and Freshwater Content

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Locarnini, R. A.; Mishonov, A. V.; Reagan, J. R.

    2015-12-01

    The ocean is the main sink of excess heat in the Earth's climate system. It absorbs more than 90% of the Top of the Atmosphere imbalance between incoming solar radiation and outgoing long-wave radiation. The ocean, covering more than 70% of the Earth's surface, is also the major component of the planet's freshwater cycle. More than 60 years of in situ subsurface temperature and salinity data have been compiled and quality controlled in World Ocean Database of the National Centers for Environmental Information. These data have been used to calculate time series of global heat and salt changes in the ocean. Salt changes can be used to calculate freshwater changes, including from melting continental glaciers. Both time series provide a measure of the changes in the Earth's climate system: from heat sequestered in the ocean, to the rise of sea level due to thermosteric and halosteric components. The time series are updated every three months and are widely used in climate related studies. Method of quality control of the data, calculation of the time series, and dissemination and use of the time series are discussed.

  17. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps.

    PubMed

    Zampieri, Matteo; Russo, Simone; di Sabatino, Silvana; Michetti, Melania; Scoccimarro, Enrico; Gualdi, Silvio

    2016-11-15

    Heat waves represent one of the most significant climatic stressors for ecosystems, economies and societies. A main topic of debate is whether they have increased or not in intensity and/or their duration due to the observed climate change. Firstly, this is because of the lack of reliable long-term daily temperature data at the global scale; secondly, because of the intermittent nature of such phenomena. Long datasets are required to produce a reliable and meaningful assessment. In this study, we provide a global estimate of heat wave magnitudes based on the three most appropriate datasets currently available, derived from models and observations (i.e. the 20th Century Reanalyses from NOAA and ECMWF), spanning the last century and before. The magnitude of the heat waves is calculated by means of the Heat Wave Magnitude Index daily (HWMId), taking into account both duration and amplitude. We compare the magnitude of the most severe heat waves occurred across different regions of the world and we discuss the decadal variability of the larger events since the 1850s. We concentrate our analysis from 1901 onwards, where all datasets overlap. Our results agree with other studies focusing on heat waves that have occurred in the recent decades, but using different data. In addition, we found that the percentage of global area covered by heat wave exceeding a given magnitude has increased almost three times, in the last decades, with respect to that measured in the early 20th century. Finally, we discuss the specific implications of the heat waves on the river runoff generated in the Alps, for which comparatively long datasets exist, affecting the water quality and availability in a significant portion of the European region in summer.

  18. Countermeasures to Urban Heat Islands: A Global View

    SciTech Connect

    Meier, Alan

    2006-07-17

    An important milestone was passed this year when the fraction of the world's population living in cities exceeded 50%. This shift from the countryside to urban areas is certain to continue and, for many, the destination will be large cities. Already there are over 400 cities with populations greater than one million inhabitants and twenty cities with populations greater than ten million inhabitants. With a growing fraction of the population living in an urban environment, the unique aspects of an urban climate also rise in importance. These include features like air pollution and increased humidity. Another unique feature of the urban climate is the phenomenon of the urban heat island. The urban heat island phenomenon was first observed over one hundred years ago in northern latitude cities, where the city centers were slightly warmer than the suburbs. (Instantaneous communications probably played a role in its identification, much as it did for other weather-related events.) For these cities, a heat island was generally a positive effect because it resulted in reduced heating requirements during the winters. It was only in the 1960s, as air conditioning and heavy reliance on automobiles grew, that the negative impacts of heat islands became apparent. The heat islands made summer conditions much less comfortable and increased air conditioning energy use. Since then the summer heat island has become the dominant environmental concern. Measurements in thousands of sites, plus the development of sophisticated dynamic simulations of urban air basins, has enabled us to better understand the relationships between urban temperatures, sunlight, and rates of formation of air pollutants. These models have also given us insights into the roles of vegetation and other characteristics of the land surface. More recently-roughly the last fifteen years-it has become possible to quantify the roles of the major features influencing the formation and persistence of urban heat islands

  19. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years.

  20. Vertical heat and salt fluxes due to resolved and parameterized meso-scale Eddies

    NASA Astrophysics Data System (ADS)

    von Storch, Jin-Song; Haak, Helmuth; Hertwig, Eileen; Fast, Irina

    2016-12-01

    Using a suite of simulations with the Max Planck Institute Ocean Model (MPIOM) at resolutions of about 0.1°, 0.4° and 1.5°, we study the impact of resolved and parameterized vertical eddy fluxes on the long-standing biases obtained when running MPIOM at low resolutions. In the 0.1° simulation, the eddy heat and salt fluxes have three features in common. First, their horizontal area averages are both upward, counteracting the downward fluxes due to time-mean circulations. Second, their divergences at intermediate depths are both negative, acting to cool and to freshen water masses, thereby reducing the major long-standing warm and saline biases of the low-resolution MPIOM at these depths. Third, both the heat and salt budgets are dominated by a balance between the divergence of eddy flux and that of mean flux. The vertical profiles of the tendency forcing due to parameterized eddies resemble those due to resolved eddies. This resemblance does not guarantee a bias reduction, as the tendency forcing terms are much less well compensated in the 0.4°- and 1.5°-simulation than in the 0.1°-simulation. When concentrating on the eddy-induced transports, we identify two situations in which the eddy effect is not appropriately represented by the GM-parameterization. One emphasizes the importance of the mean tracer distribution and the other the importance of the simulated isoneutral slope in determining the eddy-induced transports. Given the mean salinity distribution in the Southern ocean, characterized by a tongue of fresh Antarctic Intermediate Water, the salinity advection via eddy-induced transport tends to strengthen, rather than to weaken, the saline biases. Due to the density biases in a widened region of the Agulhas current in the low-resolution runs, the isoneutral slope vectors are erroneous and the large parameterized eddy-induced transports do not occur where they should.

  1. Constraints on Pacific midplate swells from global depth-age and heat flow-age models

    NASA Astrophysics Data System (ADS)

    Stein, Carol A.; Stein, Seth

    Oceanic midplate swells are identified by shallow seafloor depths. In turn, models of the processes giving rise to these regions rely on assessments of how their depths, surface heat flow, and flexural properties differ from those for lithosphere which is presumed not to have been affected by these processes. Such comparisons have been inhibited because reference thermal models, which are assumed to describe unperturbed lithosphere, predict deeper depths and lower heat flow than typically observed for lithosphere older than 70 Ma. As a result, both depth and heat flow anomalies can be overestimated. To address this difficulty, we have derived model GDH1 (Global Depth and Heat flow) by joint fitting of heat flow and bathymetry. GDH1, which has a hotter and thinner lithosphere than previous models, fits the depth and heat flow data significantly better, including the data from older lithosphere previously treated as anomalous. It also provides an improved fit to depth-to-basement data for ocean drilling sites, and to geoid offsets across fracture zones. The improved fit occurs for depth-age data from both the DBDB-5 digital bathymetry, and from regional medians from ship tracks, which yield comparable depth-age curves. We use GDH1 to study three classes of midplate swells: the Hawaiian and other hot spot swells, the Darwin Rise area of widespread Cretaceous volcanism, and the Superswell, considered a present analogue to the Darwin Rise. Heat flow on the Hawaiian swell, though anomalously high with respect to previous reference models, is at most slightly high relative to GDH1. The situation is similar for the Bermuda, Cape Verde, and Crozet hot spots. The absence of a significant heat flow anomaly favors a primarily dynamic, rather than thermal, origin for these swells. Similarly, the present depths and heat flow for the Darwin Rise are consistent with GDH1, although they were anomalous with respect to previous reference models. The depth and heat flow data thus

  2. A Simple Calorimetric Experiment that Highlights Aspects of Global Heat Retention and Global Warming

    ERIC Educational Resources Information Center

    Burley, Joel D.; Johnston, Harold S.

    2007-01-01

    In this laboratory experiment, general chemistry students measure the heating curves for three different systems: (i) 500 g of room-temperature water heated by a small desk lamp, (ii) 500 g of an ice-water mixture warmed by conduction with room-temperature surroundings, and (iii) 500 g of an ice-water mixture heated by a small desk lamp and by…

  3. Short Time-Scale Enhancements to the Global Thermosphere Temperature and Nitric Oxide Content Resulting From Ionospheric Joule Heating

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Mlynczak, M. G.; Hunt, L. A.; Sutton, E. K.

    2014-12-01

    The total Joule heating in the polar ionosphere can be derived from an empirical model of the electric fields and currents, using input measurements of the solar wind velocity and interplanetary magnetic field (IMF). In the thermosphere, measurements of the neutral density from accelerometers on the CHAMP and GRACE satellites are used to derive exospheric temperatures, showing that enhanced ionospheric energy dissipation produces elevated temperatures with little delay.Using the total ionospheric heating, changes in the global mean exosphere temperature as a function of time can be calculated with a simple differential equation. The results compare very well with the CHAMP and GRACE measurement. A critical part of the calculation is the rate at which the thermosphere cools after the ionospheric heating is reduced. It had been noted previously that events with significant levels of heating subsequently cool at a faster rate, and this cooling was attributed to enhanced nitric oxide emissions. This correlation with nitric oxide has been confirmed with very high correlations with measurements of nitric oxide emissions in the thermosphere, from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. These measurements were used in a recent improvement in the equations that calculate the thermosphere temperature. The global nitric oxide cooling rates are included in this calculation, and the predicted levels of nitric oxide, derived from the ionosphere heating model, match the SABER measurements very well, having correlation coefficients on the order of 0.9.These calculations are used to govern the sorting of measurements CHAMP and GRACE measurements, on the basis of the global temperature enhancements due to Joule heating, as well as various solar indices, and season. Global maps of the exospheric temperature are produced from these sorted data.

  4. Variation in mouthguard thickness due to different heating conditions during fabrication: part 2.

    PubMed

    Takahashi, Mutsumi; Koide, Kaoru; Mizuhashi, Fumi

    2015-02-01

    The purpose of this study was to determine changes in the thickness of mouthguard sheets under different heating conditions during fabrication. Mouthguards were fabricated with polyolefin-polystyrene co-polymer (OS) and olefin co-polymer (OL) sheets (4.0-mm thick) utilizing a vacuum-forming machine under the following three conditions: (A) the sheet was moulded when it sagged 15 mm below the sheet frame (i.e. the normally used position); (B) the sheet frame was lowered to and heated at 30 mm below the top of the post and moulded when it sagged by 15 mm; and (C) the sheet frame was lowered to and heated at 50 mm below the top of the post and moulded when it sagged by 15 mm. The working model was trimmed to a height of 20 mm at the incisor and 15 mm at the first molar. Post-moulding thickness was determined for the incisal portion (incisal edge and labial surface) and molar portion (cusp, central groove and buccal surface). Dimensions were measured, and differences in the change in thickness due to heating condition were analysed using the Kruskal-Wallis test. Under condition C, OS and OL decreased in thickness from 0.36-0.54 mm to 0.26-0.30 mm, respectively, at the incisal portion and from 0.34-0.66 mm to 0.17-0.47 mm, respectively, at the molar portion. It may be clinically useful when moulding a mouthguard to maintain the thickness of the incisal and molar portions by adjusting the height of the sheet frame.

  5. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    NASA Astrophysics Data System (ADS)

    Silva, Raquel A.; West, J. Jason; Zhang, Yuqiang; Anenberg, Susan C.; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven; Skeie, Ragnhild; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, I. A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2013-09-01

    Increased concentrations of ozone and fine particulate matter (PM2.5) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry-climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration-response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM2.5-related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (-20 000 to 27 000) deaths yr-1 due to ozone and 2200 (-350 000 to 140 000) due to PM2.5. The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality.

  6. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    SciTech Connect

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  7. Biophysical Climate Forcings due to Recent Changes in Global Forest Cover

    NASA Astrophysics Data System (ADS)

    Cescatti, A.; Alkama, R.

    2015-12-01

    Deforestation impacts climate in two major ways: affecting the atmospheric CO2 concentration and modulating the land-atmosphere fluxes of energy and water vapor. Given the important role of forests in the global carbon cycle, climate treaties account for land-based mitigation options like afforestation, reforestation and avoided deforestation or forest degradation. On the contrary, predicted climate impacts of biophysical processes, such as the exchange of energy and water vapor, are still uncertain in sign and magnitude, and therefore have not been considered in climate negotiations to date. Direct observations of the biophysical climate effects of forest losses and gains are therefore required to constrain model predictions, reduce the uncertainty of model ensembles, and provide robust recommendations to climate policy. In this work we report an observation-driven global analysis of the biophysical impacts of forest losses and gains on the local climate, based on a combination of Earth observations of recent changes in forest cover, surface radiometric temperatures and in-situ air temperatures. Our study documents that deforestation causes local changes in skin and air temperature that varies in sign and magnitude according to the climate zone. Results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical and boreal zones. In the decade 2003-2012, variations of forest cover generated a global biophysical warming corresponding to 31% of the biogeochemical signal due to CO2 emission from land use change. These experimental evidences provide a global and robust quantification of the local climate sensitivities to deforestation and a novel assessment of the mitigation potentials of forests on mean/maximum air temperatures and on the diurnal temperature variations. Overall, the observation-driven, global quantification of the

  8. More Than Taking the Heat: Crops and Global Change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain production per unit of land will need to more than double over this century to address rising population and demand. This at a time when the procedures that have delivered increased yields over the past 50 years may have reached their ceiling. Rising global temperature and more frequent drough...

  9. Global Warming: If You Can't Stand the Heat

    ERIC Educational Resources Information Center

    Baird, Stephen L.

    2005-01-01

    Global warming is the progressive, gradual rise of the earth's average surface temperature, thought to be caused in part by increased concentrations of "greenhouse" gases (GHGs) in the atmosphere. According to the National Academy of Sciences, the Earth's temperature has risen by about one degree Fahrenheit in the past century, with accelerated…

  10. Transient Convection Due to Imposed Heat Flux: Application to Liquid-Acquisition Devices

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Chato, David J.; Doherty, Michael P.

    2014-01-01

    A model problem is considered that addresses the effect of heat load from an ambient laboratory environment on the temperature rise of liquid nitrogen inside an enclosure. This model has applications to liquid acquisition devices inside the cryogenic storage tanks used to transport vapor-free propellant to the main engine. We show that heat loads from Q = 0.001 to 10 W, with corresponding Rayleigh numbers from Ra = 109 to 1013, yield a range of unsteady convective states and temperature rise in the liquid. The results show that Q = 1 to 10 W (Ra = 1012 to 1013) yield temperature distributions along the enclosure height that are similar in trend to experimental measurements. Unsteady convection, which shows selfsimilarity in its planforms, is predicted for the range of heat-load conditions. The onset of convection occurs from a free-convection-dominated base flow that becomes unstable against convective instability generated at the bottom of the enclosure while the top of the enclosure is convectively stable. A number of modes are generated with small-scale thermals at the bottom of the enclosure in which the flow selforganizes into two symmetric modes prior to the onset of the propagation of the instability. These symmetric vertical modes transition to asymmetric modes that propagate as a traveling-wave-type motion of convective modes and are representative of the asymptotic convective state of the flow field. Intense vorticity production is created in the core of the flow field due to the fact that there is shear instability between the vertical and horizontal modes. For the higher Rayleigh numbers, 1012 to 1013, there is a transition from a stationary to a nonstationary response time signal of the flow and temperature fields with a mean value that increases with time over various time bands and regions of the enclosure.

  11. Global existence and asymptotic stability for a nonlinear integrodifferential equation modeling heat flow

    NASA Astrophysics Data System (ADS)

    Brandon, Deborah

    1989-06-01

    Initial value problems were studied that arise from models for 1-D heat flow (with finite wave speeds) in materials with memory. Under assumptions that ensure compatibility of the constitutive relations with the second law of thermodynamics, the resulting integrodifferential equation is hyperbolic near equilibrium. The existence is established of unique, global (in time) defined, classical solutions to the problems under consideration, provided the data are smooth and sufficiently close to equilibrium. Both Dirichlet and Neumann boundary conditions are treated as well as the problem on the entire real line. Local existence is proved using a contraction mapping argument which involves estimates for linear hyperbolic PDE's with variable coefficients. Global existence is obtained by deriving a priori energy estimates. These estimates are based on inequalities for strongly positive Volterra kernels (including a new inequality that is needed due to the form of the constitutive relations). Furthermore, compatibility with the second law plays an essential role in the proof in order to obtain an existence result under less restrictive assumptions on the data.

  12. Correlations for Boundary-Layer Transition on Mars Science Laboratory Entry Vehicle Due to Heat-Shield Cavities

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Liechty, Derek S.

    2008-01-01

    The influence of cavities (for attachment bolts) on the heat-shield of the proposed Mars Science Laboratory entry vehicle has been investigated experimentally and computationally in order to develop a criterion for assessing whether the boundary layer becomes turbulent downstream of the cavity. Wind tunnel tests were conducted on the 70-deg sphere-cone vehicle geometry with various cavity sizes and locations in order to assess their influence on convective heating and boundary layer transition. Heat-transfer coefficients and boundary-layer states (laminar, transitional, or turbulent) were determined using global phosphor thermography.

  13. Inferring the State of Tidally-heated Satellite Ice Shells from Global Shape Measurements

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; Thomas, P. C.; Pappalardo, R. T.; Moore, W. B.

    2006-12-01

    Several icy satellites of the outer solar system, notably Europa and Enceladus, are sufficiently tidally heated that they likely possess ice shells overlying oceans. Because tidal heating varies spatially [1], variations in ice shell thickness are likely to occur [2]. Lateral variations in shell thickness will in turn give rise to global topographic variations. The amplitude of this long-wavelength topography is potentially comparable to shape variations due to tidal and rotational stresses [3]. Thus, careful measurement of satellite shapes from limb profiles may be used to infer the nature of shell thickness variations, and thus the state of the ice shell. We demonstrate that limb profiles of Europa give no evidence for lateral shell thickness variations, in contrast to theoretical predictions [2] for a conductive ice shell above liquid water. There are two possible explanations: 1) the ice shell is sufficiently thick (> ~10 km) that lateral shell flow has smoothed out any variations; 2) the shell is heated mainly from below, resulting in a uniform, thin (~3 km) shell. Based on local topography from limb profiles and stereo topography [4] we favour the former explanation: a constant shell thickness rules out isostatic support, and the thin shell model is unable to flexurally support topography with amplitudes of ~1 km. Given sufficiently good limb profiles, a similar analysis may be carried out for Enceladus. Lateral variations in ice shell thickness also affect the tendency of a satellite to reorient itself [5]; thus, reorientation of Enceladus [6] may provide another constraint on the nature of the ice shell there. [1] G. Tobie et al., Icarus 177, 534-549, 2005. [2] Ojakangas and Stevenson, Icarus 81, 220-241, 1989 [3] Murray and Dermott, Solar System Dynamics, 2000 [4] Prockter and Schenk, Icarus 177, 305-326, 2005. [5] Ojakangas and Stevenson, Icarus 81, 242-270, 1989 [6] Nimmo and Pappalardo, Nature 441, 614-616, 2006.

  14. An examination of heat rate improvements due to waste heat integration in an oxycombustion pulverized coal power plant

    NASA Astrophysics Data System (ADS)

    Charles, Joshua M.

    Oxyfuel, or oxycombustion, technology has been proposed as one carbon capture technology for coal-fired power plants. An oxycombustion plant would fire coal in an oxidizer consisting primarily of CO2, oxygen, and water vapor. Flue gas with high CO2 concentrations is produced and can be compressed for sequestration. Since this compression generates large amounts of heat, it was theorized that this heat could be utilized elsewhere in the plant. Process models of the oxycombustion boiler, steam cycle, and compressors were created in ASPEN Plus and Excel to test this hypothesis. Using these models, heat from compression stages was integrated to the flue gas recirculation heater, feedwater heaters, and to a fluidized bed coal dryer. All possible combinations of these heat sinks were examined, with improvements in coal flow rate, Qcoal, net power, and unit heat rate being noted. These improvements would help offset the large efficiency impacts inherent to oxycombustion technology.

  15. First neonatal case of fungaemia due to Pseudozyma aphidis and a global literature review.

    PubMed

    Prakash, Anupam; Wankhede, Sandeep; Singh, Pradeep K; Agarwal, Kshitij; Kathuria, Shallu; Sengupta, Sharmila; Barman, Purabi; Meis, Jacques F; Chowdhary, Anuradha

    2014-01-01

    The Ustilaginomycetous basidiomycete yeast, Pseudozyma aphidis has recently been implicated in potentially fatal disorders ranging from subcutaneous mycoses to disseminated infections. Till date a solitary case of P. aphidis fungaemia in a paediatric patient has been reported. We present a case of fungaemia due to P. aphidis in a rhesus factor-isoimmunised, low-birth-weight neonate. The isolate was identified by sequencing the D1/D2 domain of the LSU region. Antifungal susceptibility of the isolate revealed susceptibility to amphotericin B, voriconazole, itraconazole, isavuconazole and posaconazole. It had high minimum inhibitory concentrations of fluconazole and was resistant to flucytosine and echinocandins. Consequently, the patient was successfully treated with intravenous amphotericin B. Although the source of infection could not be traced, as the neonate developed fungaemia on the first day of life, it could possibly be from the maternal urogenital tract or intrahospital transmission. A review of previously published cases revealed that risk factors for invasive Pseudozyma spp. infections were similar to those previously reported for non-albicans Candida spp. Pseudozyma species are underreported due to the difficulty of identifying this rare yeast pathogen by commercial identification systems. Considering that Pseudozyma spp. cause invasive fungal infections globally and are resistant to flucytosine, fluconazole and echinocandins, this pathogen assumes a greater clinical significance.

  16. Occurrence of spontaneous and audiogenic seizures following global brain ischaemia due to cardiac arrest.

    PubMed

    Ułamek-Kozioł, Marzena; Kocki, Janusz; Bogucka-Kocka, Anna; Januszewski, Sławomir; Czuczwar, Stanisław J; Pluta, Ryszard

    2015-01-01

    Transient cardiac arrest due to cardiac vessel bundle occlusion was used to produce a rat model of spontaneous and audiogenic seizures. Among the rats, spontaneous seizures were present in 64%, and audiogenic seizures could be evoked in 86%, during two weeks of survival after cardiac arrest, by exposure to a loud sound produced by rattling keys, beginning one day after the post-ischaemic injury. Data from literature suggested a key role for GABA-ergic system widespread dysfunction especially in the hippocampus in post-cardiac arrest onset of audiogenic seizures. Reduced GABA inhibition in the hippocampus seems responsible for audiogenic seizures following cardiac arrest. In summary it may be considered that the occurrence of audiogenic seizures following cardiac arrest is determined not only by a neuronal loss, especially in the hippocampus, but also by a condition of synapse modification by a regenerative phenomenon. Data from our study clearly indicate that global brain ischaemia due to cardiac arrest may induce the susceptibility to spontaneous and audiogenic seizures, but this effect is transient.

  17. Constitutive relationships and physical basis of fault strength due to flash heating

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.; Goldsby, D.L.

    2008-01-01

    We develop a model of fault strength loss resulting from phase change at asperity contacts due to flash heating that considers a distribution of contact sizes and nonsteady state evolution of fault strength with displacement. Laboratory faulting experiments conducted at high sliding velocities, which show dramatic strength reduction below the threshold for bulk melting, are well fit by the model. The predicted slip speed for the onset of weakening is in the range of 0.05 to 2 m/s, qualitatively consistent with the limited published observations. For this model, earthquake stress drops and effective shear fracture energy should be linearly pressure-dependent, whereas the onset speed may be pressure-independent or weakly pressure-dependent. On the basis of the theory, flash weakening is expected to produce large dynamic stress drops, small effective shear fracture energy, and undershoot. Estimates of the threshold slip speed, stress drop, and fracture energy are uncertain due to poor knowledge of the average ontact dimension, shear zone thickness and gouge particle size at seismogenic depths. Copyright 2008 by the American Geophysical Union.

  18. Intensity of heat stress in winter wheat—phenology compensates for the adverse effect of global warming

    NASA Astrophysics Data System (ADS)

    Eyshi Rezaei, Ehsan; Siebert, Stefan; Ewert, Frank

    2015-02-01

    Higher temperatures during the growing season are likely to reduce crop yields with implications for crop production and food security. The negative impact of heat stress has also been predicted to increase even further for cereals such as wheat under climate change. Previous empirical modeling studies have focused on the magnitude and frequency of extreme events during the growth period but did not consider the effect of higher temperature on crop phenology. Based on an extensive set of climate and phenology observations for Germany and period 1951-2009, interpolated to 1 × 1 km resolution and provided as supplementary data to this article (available at stacks.iop.org/ERL/10/024012/mmedia), we demonstrate a strong relationship between the mean temperature in spring and the day of heading (DOH) of winter wheat. We show that the cooling effect due to the 14 days earlier DOH almost fully compensates for the adverse effect of global warming on frequency and magnitude of crop heat stress. Earlier heading caused by the warmer spring period can prevent exposure to extreme heat events around anthesis, which is the most sensitive growth stage to heat stress. Consequently, the intensity of heat stress around anthesis in winter crops cultivated in Germany may not increase under climate change even if the number and duration of extreme heat waves increase. However, this does not mean that global warning would not harm crop production because of other impacts, e.g. shortening of the grain filling period. Based on the trends for the last 34 years in Germany, heat stress (stress thermal time) around anthesis would be 59% higher in year 2009 if the effect of high temperatures on accelerating wheat phenology were ignored. We conclude that climate impact assessments need to consider both the effect of high temperature on grain set at anthesis but also on crop phenology.

  19. Factors Contributing to Urban Heat Island Development: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Hertel, W.; Snyder, P. K.; Twine, T. E.

    2012-12-01

    Urban heat islands (UHIs) are the result of the urban core of a city encountering temperatures that are warmer than the surrounding rural areas. Temperature in the urban core can be 2-5°C warmer during the day and as much as 10°C warmer at night compared to outlying areas. This modification of the local climate can contribute to significant health-related impacts during heat waves, increased energy consumption, a decrease in air quality, deteriorating urban ecosystems, and enhancing the thermal pollution into urban water bodies. To understand the mechanisms contributing to the formation of UHIs and to identify sound mitigation strategies requires examining the UHIs of cities around the world to look for factors that enhance or minimize the heat island effect. Numerous factors influence the strength of the UHI, and vary from city to city. Population size and density influence the magnitude and spatial extent of the UHI. The ecosystem in which the city resides affects the rural climatology. Regional weather patterns can also influence the development of UHIs, with the frequency of certain types of weather conducive to the development of strong UHIs. Local geography such as proximity to water bodies and topography can influence UHI development. Cultural and regional influences such as the use of certain types of building materials, architecture, and the density of vegetation can all contribute towards the strength of a city's UHI. To better understand how UHIs develop and to understand the factors that influence them, we have undertaken the Islands in the Sun project, which includes an analysis of the UHIs of the largest cities in the world. In this study we examine how different factors have influenced the structure of the UHI and to identify factors that can mitigate and minimize their impact. Here we present a preliminary analysis of four metropolitan areas: Minneapolis-St. Paul, Buenos Aires, Riyadh, and Jakarta. In this study we investigate how various factors

  20. Boiling phenomenon due to quasi-steadily and rapidly increasing heat inputs in LN 2 and LHe I

    NASA Astrophysics Data System (ADS)

    Sakurai, A.; Shiotsu, M.; Hata, K.

    Dynamic boiling processes, including the transition from a single-phase non-boiling regime to film boiling caused by exponentially increasing heat inputs, Q 0e t/τ for a wide range of periods and pressures on horizontal wires in LN 2 and LHe I were investigated. The main problem is that there are no active cavities on the wire surfaces for initial boiling in the liquids. The heat transfer processes due to increasing heat inputs with increasing rates ranging from quasi-steady to rapidly increasing ones in LN 2 were classified into three types for the pressures. The dynamic boiling processes in LHe I due to rapidly increasing heat inputs at the pressures tested here correspond to Type 3 processes including semi-direct transitions in LN 2 at pressures higher than about 1 MPa. The lower limit temperatures of boiling initiation on the wire surfaces for initial boiling in liquids at pressures due to quasi-steadily increasing heat inputs are clearly lower than the homogeneous spontaneous nucleation temperatures corresponding to these pressures. Liquid superheat close to the solid surface in LHe I was evaluated from the value of the wire surface temperature, taking off the temperature drop due to Kapitza resistance. The initial boiling temperatures due to quasi-steady heat inputs at pressures in saturated LN 2 and LHe I agreed with the values derived from the theoretical model based on the heterogeneous spontaneous nucleation in flooded cavities on the solid surface.

  1. Global Vision Impairment and Blindness Due to Uncorrected Refractive Error, 1990-2010.

    PubMed

    Naidoo, Kovin S; Leasher, Janet; Bourne, Rupert R; Flaxman, Seth R; Jonas, Jost B; Keeffe, Jill; Limburg, Hans; Pesudovs, Konrad; Price, Holly; White, Richard A; Wong, Tien Y; Taylor, Hugh R; Resnikoff, Serge

    2016-03-01

    The purpose of this systematic review was to estimate worldwide the number of people with moderate and severe visual impairment (MSVI; presenting visual acuity <6/18, ≥3/60) or blindness (presenting visual acuity <3/60) due to uncorrected refractive error (URE), to estimate trends in prevalence from 1990 to 2010, and to analyze regional differences. The review focuses on uncorrected refractive error which is now the most common cause of avoidable visual impairment globally. : The systematic review of 14,908 relevant manuscripts from 1990 to 2010 using Medline, Embase, and WHOLIS yielded 243 high-quality, population-based cross-sectional studies which informed a meta-analysis of trends by region. The results showed that in 2010, 6.8 million (95% confidence interval [CI]: 4.7-8.8 million) people were blind (7.9% increase from 1990) and 101.2 million (95% CI: 87.88-125.5 million) vision impaired due to URE (15% increase since 1990), while the global population increased by 30% (1990-2010). The all-age age-standardized prevalence of URE blindness decreased 33% from 0.2% (95% CI: 0.1-0.2%) in 1990 to 0.1% (95% CI: 0.1-0.1%) in 2010, whereas the prevalence of URE MSVI decreased 25% from 2.1% (95% CI: 1.6-2.4%) in 1990 to 1.5% (95% CI: 1.3-1.9%) in 2010. In 2010, URE contributed 20.9% (95% CI: 15.2-25.9%) of all blindness and 52.9% (95% CI: 47.2-57.3%) of all MSVI worldwide. The contribution of URE to all MSVI ranged from 44.2 to 48.1% in all regions except in South Asia which was at 65.4% (95% CI: 62-72%). : We conclude that in 2010, uncorrected refractive error continues as the leading cause of vision impairment and the second leading cause of blindness worldwide, affecting a total of 108 million people or 1 in 90 persons.

  2. Measurement of Heat Flux and Heat Transfer Coefficient Due to Spray Application for the Die Casting Process

    SciTech Connect

    Sabau, Adrian S

    2007-01-01

    Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.

  3. Communicating the deadly consequences of global warming for human heat stress.

    PubMed

    Matthews, Tom K R; Wilby, Robert L; Murphy, Conor

    2017-04-11

    In December of 2015, the international community pledged to limit global warming to below 2 °C above preindustrial (PI) to prevent dangerous climate change. However, to what extent, and for whom, is danger avoided if this ambitious target is realized? We address these questions by scrutinizing heat stress, because the frequency of extremely hot weather is expected to continue to rise in the approach to the 2 °C limit. We use analogs and the extreme South Asian heat of 2015 as a focusing event to help interpret the increasing frequency of deadly heat under specified amounts of global warming. Using a large ensemble of climate models, our results confirm that global mean air temperature is nonlinearly related to heat stress, meaning that the same future warming as realized to date could trigger larger increases in societal impacts than historically experienced. This nonlinearity is higher for heat stress metrics that integrate the effect of rising humidity. We show that, even in a climate held to 2 °C above PI, Karachi (Pakistan) and Kolkata (India) could expect conditions equivalent to their deadly 2015 heatwaves every year. With only 1.5 °C of global warming, twice as many megacities (such as Lagos, Nigeria, and Shanghai, China) could become heat stressed, exposing more than 350 million more people to deadly heat by 2050 under a midrange population growth scenario. The results underscore that, even if the Paris targets are realized, there could still be a significant adaptation imperative for vulnerable urban populations.

  4. A revised estimate of the processes contributing to global warming due to climate-carbon feedback

    NASA Astrophysics Data System (ADS)

    Cadule, P.; Bopp, L.; Friedlingstein, P.

    2009-07-01

    Coupled climate-carbon cycle models have shown that anthropogenic climate change has a negative effect on natural carbon sinks i.e., climate change induces a reduction in both land and ocean carbon uptake leading to an additional amount of CO2 in the atmosphere. Friedlingstein et al. (2006) concluded that such supplementary CO2 in the atmosphere would lead to an additional climate warming in 2100. However, as given by Friedlingstein et al. (2006), the role of non-CO2 greenhouse gases (GHGs) and aerosols was neglected both for their direct impact on climate and their indirect impact on the carbon cycle. Besides, the climate models used for IPCC AR4 accounted for the radiative forcing of all GHGs and anthropogenic aerosols but neglected the climate-carbon cycle feedback. In IPCC AR4, Meehl et al. (2007) attempted to reconcile these two methods in order to derive the global warming that would arise from both all anthropogenic forcings and climate-carbon cycle feedback. Here we show that the approach they used is wrong for several reasons. First, as previously done by Friedlingstein et al. (2006), they considered that the warming is proportional to the change in atmospheric CO2 concentration. This assumption leads to consider that the gain in temperature is equal to the gain in CO2. However, because of the non-linearity of the climate response to increased CO2 concentrations, the gain in temperature is lower than the gain in CO2. Second, they assumed that the temperature gains of the climate-carbon cycle feedback generated by CO2, non-CO2 GHGs and aerosols are all equal. We show here that, because of the specific spatial and temporal distribution of the radiative forcing exerted by those external perturbations, the temperature gains are all different. Based on our revised method, we found that, for the SRES A2 scenario, the projected global warming in 2100, due to increases in atmospheric CO2, non-CO2 GHGs and anthropogenic sulphate aerosols, is 2.3-5.6°C. This is

  5. CFD-Predicted Tile Heating Bump Factors Due to Tile Overlay Repairs

    NASA Technical Reports Server (NTRS)

    Lessard, Victor R.

    2006-01-01

    A Computational Fluid Dynamics investigation of the Orbiter's Tile Overlay Repair (TOR) is performed to assess the aeroheating Damage Assessment Team's (DAT) existing heating correlation method for protuberance interference heating on the surrounding thermal protection system. Aerothermodynamic heating analyses are performed for TORs at the design reference damage locations body points 1800 and 1075 for a Mach 17.9 and a=39deg STS-107 flight trajectory point with laminar flow. Six different cases are considered. The computed peak heating bump factor on the surrounding tiles are below the DAT's heating bump factor values for smooth tile cases. However, for the uneven tiles cases the peak interference heating is shown to be considerably higher than the existing correlation prediction.

  6. Erythema Ab Igne due to Heating Pad Use: A Case Report and Review of Clinical Presentation, Prevention, and Complications

    PubMed Central

    Milchak, Marissa; Smucker, Joanne; Chung, Catherine G.; Seiverling, Elizabeth V.

    2016-01-01

    Erythema ab igne is an asymptomatic cutaneous condition caused by exposure to heat. Cases of erythema ab igne may prove to be diagnostically challenging due to lack of familiarity with the condition. While this dermatosis carries a favorable prognosis, nonmelanoma skin cancers have been reported to arise within lesions of erythema ab igne. Erythema ab igne is preventable, and, thus, clinicians should provide education regarding safe use of heating devices to patients using these products in both outpatient and inpatient settings. PMID:26880929

  7. Erythema Ab Igne due to Heating Pad Use: A Case Report and Review of Clinical Presentation, Prevention, and Complications.

    PubMed

    Milchak, Marissa; Smucker, Joanne; Chung, Catherine G; Seiverling, Elizabeth V

    2016-01-01

    Erythema ab igne is an asymptomatic cutaneous condition caused by exposure to heat. Cases of erythema ab igne may prove to be diagnostically challenging due to lack of familiarity with the condition. While this dermatosis carries a favorable prognosis, nonmelanoma skin cancers have been reported to arise within lesions of erythema ab igne. Erythema ab igne is preventable, and, thus, clinicians should provide education regarding safe use of heating devices to patients using these products in both outpatient and inpatient settings.

  8. Revisiting the global surface energy budgets with maximum-entropy-production model of surface heat fluxes

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng

    2016-10-01

    The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.

  9. Global effect of auroral particle and Joule heating in the undisturbed thermosphere

    NASA Technical Reports Server (NTRS)

    Hinton, B. B.

    1978-01-01

    From the compositional variations observed with the neutral atmosphere composition experiment on OGO 6 and a simplified model of thermospheric dynamics, global average values of non-EUV heating are deduced. These are 0.19-0.25 mW/sq m for quiet days and 0.44-0.58 mW/sq m for ordinary days.

  10. Genome wide association of changes in feeding behavior due to heat stress in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress negatively impacts pork production. Grow-finish production losses include decreased growth, reduced feed intake, and mortality. Pigs change their feeding behavior to decrease heat production when temperatures are elevated. Identification of pigs that are more tolerant of warmer temperatu...

  11. Electron heating and superthermal electron enhancement due to electron cyclotron heating in ISX-B at 28 GHz

    SciTech Connect

    Elder, G.B.; Hsuan, H.; England, A.C.

    1983-05-01

    A series of electron cyclotron heating (ECH) experiments was performed with a 28-GHz gyrotron on the Impurity Study Experiment (ISX-B) tokamak at Oak Ridge National Laboratory. Up to 70 kW of microwave power was injected into ISX-B from the high field side. Bulk heating was observed with a central temperature rise of approx. 370 eV from an original temperature of approx. 600 eV, as measured by Thomson scattering. With ECH and under low density conditions, large nonthermal signals were observed on electron cyclotron emission diagnostics at the first, second, and third harmonics. These signals sometimes became quite large after the end of the ECH pulse. The effects observed can be attributed to relatively small changes in the electron distribution function. The temporal behavior of the enhanced emission is tentatively attributed to the pitch angle scattering of superthermal electrons.

  12. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests

    USGS Publications Warehouse

    Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.(T.); Gonzalez, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J.-H.; Allard, G.; Running, S.W.; Semerci, A.; Cobb, N.

    2010-01-01

    Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.

  13. Changes on Mid-Latitude Cyclones due to Global Warming Simulated by a Global 20-km-mesh Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.

    2005-12-01

    I investigate how the intensity and the activity of mid-latitude cyclones change as a result of global warming, based on a time-slice experiment with a super-high resolution Atmospheric General Circulation Model (20-km mesh TL959L60 MRI/JMA AGCM). The model was developed by the RR2002 project "Development of Super High Resolution Global and Regional Climate Models" funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology. In this context, I use a 10-year control simulation with the climatological SST and a 10-year time-slice global warming simulation using the SST anomalies derived from the SRES A1B scenario run with the MRI-CGCM2.3 (T42L30 atmosphere, 0.5-2.0 x 2.5 L23 ocean) corresponding to the end of the 21st century. I have analyzed the sea-level pressure field and the kinetic energy field of the wind at the 500 hPa pressure level associated with mid-latitude transients from October through April. According to a comparison of 10-day average fields between present and future in the North Pacific, some statistically significant changes are found in a warmer climate for the both of sea-level pressure and the kinetic energy fields. In particular, from late winter through early spring, the sea-level pressure decreases on many parts of the whole Pacific. The kinetic energy of the wind becomes higher on center of the basin. Therefore, I suppose the Aleutian Low is likely to settle in longer by about one month than the present. Hereafter, I plan to investigate what kind of phenomena may accompany the changes on mid-latitude transients.

  14. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  15. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

    PubMed Central

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  16. Analysis of gap heating due to stepped tiles in the shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Petley, D. H.; Smith, D. M.; Edwards, C. L. W.; Carlson, A. B.

    1983-01-01

    Analytical methods used to investigate entry gap heating in the Shuttle orbiter thermal protection system are described. Analytical results are given for a fuselage lower-surface location and a wing lower-surface location. These are locations where excessive gap heating occurred on the first flight of the Shuttle. The results of a study to determine the effectiveness of a half-height ceramic fiber gap filler in preventing hot-gas flow in the tile gaps are also given.

  17. Interhemispheric Changes in Atlantic Ocean Heat Content and Their Link to Global Monsoons

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Lee, S. K.; Dong, S.; Goni, G. J.

    2015-12-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. The effect of eddies on the NH (SH) poleward of 30° is opposite with heat flux divergence (convergence), which must be balanced by sinking (rising) motion, consistent with a poleward (equatorward) displacement of the jet stream and mean storm track. The mechanism described here could easily be interpreted for the case of strong SAMHT, with the reverse influence on the interhemispheric atmospheric circulation and monsoons. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  18. Projection of Heat Waves over China under Different Global Warming Targets

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Luo, Yong; Huang, Jianbin; Zhao, Zongci

    2015-04-01

    Global warming targets, which are determined in terms of global mean temperature increases relative to pre-industrial temperature levels, have been one of the heated issues recently. And the climate change (especially climate extremes) and its impacts under different targets have been paid extensive concerns. In this study, evaluation and projection of heat waves in China were carried out by five CMIP5 global climate models (GCMs) with a 0.5°×0.5° horizontal resolution which were derived from EU WATCH project. A new daily observed gridded dataset CN05.1 (0.5°×0.5°) was also used to evaluate the GCMs. And four indices (heat waves frequency, longest heat waves duration, heat waves days and high temperature days) were adopted to analyze the heat waves. Compared with the observations, the five GCMs and its Multi-Model Ensemble (MME) have a remarkable capacity of reproducing the spatial and temporal characteristic of heat waves. The time correlation coefficients between MME and the observation results can all reach 0.05 significant levels. Based on the projection data of five GCMs, both the median year of crossing 1.5°C, 2°C, 2.5°, 3°C, 3.5°C, 4°C, 4.5°C and 5°C global warming targets and the corresponding climate change over China were analyzed under RCP 4.5 and RCP 8.5 scenarios, respectively. The results show that when the global mean surface air temperature rise to different targets with respect to the pre-industrial times (1861-1880), the frequency and intensity of heat waves will increase dramatically. To take the high emission scenario RCP8.5 as an example, under the RCP8.5 scenario, the warming rate over China is stronger than that over the globe, the temperature rise(median year) over China projected by MME are 1.77°C(2025), 2.63°C(2039), 3.39°C(2050), 3.97°C(2060), 4.82°C(2070), 5.47°C(2079) and 6.2°C(2089) under 1.5°C, 2°C, 2.5°C, 3°C, 3.5°C, 4°C and 4.5°C global warming targets, respectively. With the increase of the global

  19. Recent decline in the global land evapotranspiration trend due to limited moisture supply.

    PubMed

    Jung, Martin; Reichstein, Markus; Ciais, Philippe; Seneviratne, Sonia I; Sheffield, Justin; Goulden, Michael L; Bonan, Gordon; Cescatti, Alessandro; Chen, Jiquan; de Jeu, Richard; Dolman, A Johannes; Eugster, Werner; Gerten, Dieter; Gianelle, Damiano; Gobron, Nadine; Heinke, Jens; Kimball, John; Law, Beverly E; Montagnani, Leonardo; Mu, Qiaozhen; Mueller, Brigitte; Oleson, Keith; Papale, Dario; Richardson, Andrew D; Roupsard, Olivier; Running, Steve; Tomelleri, Enrico; Viovy, Nicolas; Weber, Ulrich; Williams, Christopher; Wood, Eric; Zaehle, Sönke; Zhang, Ke

    2010-10-21

    More than half of the solar energy absorbed by land surfaces is currently used to evaporate water. Climate change is expected to intensify the hydrological cycle and to alter evapotranspiration, with implications for ecosystem services and feedback to regional and global climate. Evapotranspiration changes may already be under way, but direct observational constraints are lacking at the global scale. Until such evidence is available, changes in the water cycle on land−a key diagnostic criterion of the effects of climate change and variability−remain uncertain. Here we provide a data-driven estimate of global land evapotranspiration from 1982 to 2008, compiled using a global monitoring network, meteorological and remote-sensing observations, and a machine-learning algorithm. In addition, we have assessed evapotranspiration variations over the same time period using an ensemble of process-based land-surface models. Our results suggest that global annual evapotranspiration increased on average by 7.1 ± 1.0 millimetres per year per decade from 1982 to 1997. After that, coincident with the last major El Niño event in 1998, the global evapotranspiration increase seems to have ceased until 2008. This change was driven primarily by moisture limitation in the Southern Hemisphere, particularly Africa and Australia. In these regions, microwave satellite observations indicate that soil moisture decreased from 1998 to 2008. Hence, increasing soil-moisture limitations on evapotranspiration largely explain the recent decline of the global land-evapotranspiration trend. Whether the changing behaviour of evapotranspiration is representative of natural climate variability or reflects a more permanent reorganization of the land water cycle is a key question for earth system science.

  20. Millennial-scale projection of oceanic oxygen change due to global warming

    NASA Astrophysics Data System (ADS)

    Yamamoto, Akitomo; Abe-Ouchi, Ayako; Shigemitsu, Masahito; Oka, Akira; Takahashi, Kunio; Ohgaito, Rumi; Yamanaka, Yasuhiro

    2016-04-01

    Global warming is expected to globally decrease ocean oxygen concentrations by sea surface warming and ocean circulation change. Oxygen reduction is expected to persist for a thousand years or more, even after atmospheric carbon dioxide stops rising. However, long-term changes in ocean oxygen and circulation are still unclear. Here we simulate multimillennium changes in ocean circulation and oxygen under doubling and quadrupling of atmospheric carbon dioxide, using GCM (MIROC) and an offline biogeochemical model. In the first 500 years, global oxygen concentration decreases, consistent with previous studies. Thereafter, however, the oxygen concentration in the deep ocean globally recovers and overshoots at the end of the simulations, despite surface oxygen decrease and weaker AMOC. This is because, after the initial cessation, the recovery and overshooting of deep ocean convection in the Weddell Sea enhance ventilation and supply oxygen-rich surface waters to deep ocean. Another contributor to deep ocean oxygenation is seawater warming, which reduces the export production and shifts the organic matter remineralization to the upper water column. Our results indicate that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in deep ocean, which is opposite to the centennial-scale global oxygen reduction and general expectation.

  1. Heat balance statistics derived from four-dimensional assimilations with a global circulation model

    NASA Technical Reports Server (NTRS)

    Schubert, S. D.; Herman, G. F.

    1981-01-01

    The reported investigation was conducted to develop a reliable procedure for obtaining the diabatic and vertical terms required for atmospheric heat balance studies. The method developed employs a four-dimensional assimilation mode in connection with the general circulation model of NASA's Goddard Laboratory for Atmospheric Sciences. The initial analysis was conducted with data obtained in connection with the 1976 Data Systems Test. On the basis of the results of the investigation, it appears possible to use the model's observationally constrained diagnostics to provide estimates of the global distribution of virtually all of the quantities which are needed to compute the atmosphere's heat and energy balance.

  2. Modelling of labour productivity loss due to climate change: HEAT-SHIELD

    NASA Astrophysics Data System (ADS)

    Kjellstrom, Tord; Daanen, Hein

    2016-04-01

    Climate change will bring higher heat levels (temperature and humidity combined) to large parts of the world. When these levels reach above thresholds well defined by human physiology, the ability to maintain physical activity levels decrease and labour productivity is reduced. This impact is of particular importance in work situations in areas with long high intensity hot seasons, but also affects cooler areas during heat waves. Our modelling of labour productivity loss includes climate model data of the Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP), calculations of heat stress indexes during different months, estimations of work capacity loss and its annual impacts in different parts of the world. Different climate models will be compared for the Representative Concentration Pathways (RCPs) and the outcomes of the 2015 Paris Climate Conference (COP21) agreements. The validation includes comparisons of modelling outputs with actual field studies using historical heat data. These modelling approaches are a first stage contribution to the European Commission funded HEAT-SHIELD project.

  3. Estimating Temperature Rise Due to Flashlamp Heating Using Irreversible Temperature Indicators

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    1999-01-01

    One of the nondestructive thermography inspection techniques uses photographic flashlamps. The flashlamps provide a short duration (about 0.005 sec) heat pulse. The short burst of energy results in a momentary rise in the surface temperature of the part. The temperature rise may be detrimental to the top layer of the part being exposed. Therefore, it is necessary to ensure the nondestructive nature of the technique. Amount of the temperature rise determines whether the flashlamp heating would be detrimental to the part. A direct method for the temperature measurement is to use of an infrared pyrometer that has much shorter response time than the flash duration. In this paper, an alternative technique is given using the irreversible temperature 'indicators. This is an indirect technique and it measures the temperature rise on the irreversible temperature indicators and computes the incident heat flux. Once the heat flux is known, the temperature rise on the part can be computed. A wedge shaped irreversible temperature indicator for measuring the heat flux is proposed. A procedure is given to use the wedge indicator.

  4. Study of Dynamic Buckling of FG Plate Due to Heat Flux Pulse

    NASA Astrophysics Data System (ADS)

    Czechowski, L.

    2015-02-01

    The paper deals with a FEM analysis of dynamic buckling of functionally graded clamped plates under heat flux loading with huge power. The materials of structures as well as their properties are varying in each layer across the plate thickness formulated by the power law distribution. The heat flux was applied evenly to the whole ceramic surface. The analysis was developed in the ANSYS 14.5 software. The duration of the heat flux loading equal to a period of natural fundamental flexural vibrations of given structures was taken into consideration. To implement large deflections of structures, the Green-Lagrange nonlinear-displacement equations and the incremental Newton-Raphson algorithm were applied. An evaluation of the dynamic response of structures was carried out on basis of the Budiansky-Hutchinson criterion. The studies were conducted for different volume fraction distributions and different shapes of the heat flux loading. The computation results of the heat flux versus maximal plate deflection are shown and discussed.

  5. A new analytical approach for heat generation in tissue due to laser excitation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Erkol, Hakan; Nouizi, Farouk; Luk, Alex T.; Unlu, Mehmet B.; Gulsen, Gultekin

    2016-03-01

    In this study, we present a fast analytical approach for laser induced temperature increase in biological tissue. The whole problem consists of two main steps. These steps are the light propagation and heat transfer in tissue. We first obtain a detailed analytical solution for the diffusion equation based on an integral approach for specific boundary conditions. Secondly, we also solve the Pennes' bio-heat transfer equation analytically using the separation of variables technique and obtain the temperature induced by optical absorption of tissue. Here, heat source term consists of the local absorption and photon density, which will be determined from the diffusion equation. We find a very comprehensive solution for the diffusion equation by using an integral method for the Robin boundary condition. In other words, we obtain a particular Green's function in a different way. Next, we use this solution as a source term in the Pennes' bio-heat equation by utilizing the heat convection boundary condition. It is important to note that these boundary conditions are good approximations for imaging of biological tissue. As a result, we obtain spatio-temporal temperature distribution inside the medium. First, our approach is validated by a numerical approach using a Finite Element Method (FEM). Next, we also validate our method by performing phantom and tissue experiments. Experimental data corresponding to spatio-temporal temperature distribution are recorded using magnetic resonance thermometry. The analytical results obtained by our method are in a very good agreement with ones obtained by the FEM and experiment.

  6. Unsteady Turbine Blade and Tip Heat Transfer Due to Wake Passing

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur; Heidmann, James; Fabian, John C.

    2007-01-01

    The geometry and the flow conditions of the first stage turbine blade of GE s E3 engine have been used to obtain the unsteady three-dimensional blade and tip heat transfer. The isothermal wall boundary condition was used. The effect of the upstream wake of the first stage vane was of interest and was simulated by provision of a gust type boundary condition upstream of the blades. A one blade periodic domain was used. The consequence of this choice was explored in a preliminary study which showed little difference in the time mean heat transfer between 1:1 and 2:3 vane/blade domains. The full three-dimensional computations are of the blade having a clearance gap of 2 percent the span. Comparison between the time averaged unsteady and steady heat transfer is provided. It is shown that there is a significant difference between the steady and time mean of unsteady blade heat transfer in localized regions. The differences on the suction side of the blade in the near hub and near tip regions were found to be rather significant. Steady analysis underestimated the blade heat transfer by as much as 20 percent as compared to the time average obtained from the unsteady analysis. As for the blade tip, the steady analysis and the unsteady analysis gave results to within 2 percent.

  7. Changes In The Heating Degree-days In Norway Due Toglobal Warming

    NASA Astrophysics Data System (ADS)

    Skaugen, T. E.; Tveito, O. E.; Hanssen-Bauer, I.

    A continuous spatial representation of temperature improves the possibility topro- duce maps of temperature-dependent variables. A temperature scenario for the period 2021-2050 is obtained for Norway from the Max-Planck-Institute? AOGCM, GSDIO ECHAM4/OPEC 3. This is done by an ?empirical downscaling method? which in- volves the use of empirical links between large-scale fields and local variables to de- duce estimates of the local variables. The analysis is obtained at forty-six sites in Norway. Spatial representation of the anomalies of temperature in the scenario period compared to the normal period (1961-1990) is obtained with the use of spatial interpo- lation in a GIS. The temperature scenario indicates that we will have a warmer climate in Norway in the future, especially during the winter season. The heating degree-days (HDD) is defined as the accumulated Celsius degrees be- tween the daily mean temperature and a threshold temperature. For Scandinavian countries, this threshold temperature is 17 Celsius degrees. The HDD is found to be a good estimate of accumulated cold. It is therefore a useful index for heating energy consumption within the heating season, and thus to power production planning. As a consequence of the increasing temperatures, the length of the heating season and the HDD within this season will decrease in Norway in the future. The calculations of the heating season and the HDD is estimated at grid level with the use of a GIS. The spatial representation of the heating season and the HDD can then easily be plotted. Local information of the variables being analysed can be withdrawn from the spatial grid in a GIS. The variable is prepared for further spatial analysis. It may also be used as an input to decision making systems.

  8. Enhanced sheath heating in capacitively coupled discharges due to non-sinusoidal voltage waveforms

    SciTech Connect

    Lafleur, T.; Boswell, R. W.; Booth, J. P.

    2012-05-07

    Through the use of particle-in-cell simulations, we demonstrate that the power deposition in capacitively coupled discharges (in argon) can be increased by replacing sinusoidal waveforms with Gaussian-shaped voltage pulses (with a repetition frequency of 13.56 MHz). By changing the Gaussian pulse width, electron heating can be directly controlled, allowing for an increased plasma density and ion flux for the same gas pressure and geometrical operating conditions. Analysis of the power deposition profiles and electron distribution functions shows that enhanced electron-sheath heating is responsible for the increased power absorption.

  9. Model calculated global, regional and megacity premature mortality due to air pollution

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A.

    2013-03-01

    Air pollution by fine particulate matter (PM2.5) and ozone (O3) has increased strongly with industrialization and urbanization. We estimated the premature mortality rates and the years of human life lost (YLL) caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization. We carried out high-resolution global model calculations to resolve urban and industrial regions in greater detail compared to previous work. We applied a health impact function to estimate premature mortality for people of 30 yr and older, using parameters derived from epidemiological cohort studies. Our results suggest that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have previously been underestimated. We calculate a global respiratory mortality of about 773 thousand yr-1 (YLL ≈ 5.2 million yr-1), 186 thousand yr-1 by lung cancer (YLL ≈ 1.7 million yr-1) and 2.0 million yr-1 by cardiovascular disease (YLL ≈ 14.3 million yr-1). The global mean per capita mortality caused by air pollution is about 0.1 % yr-1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located.

  10. Plasma heating and acceleration due to Landau damping of hydromagnetic waves.

    NASA Technical Reports Server (NTRS)

    Barnes, A.; Hung, R. J.

    1972-01-01

    We analyze energy and momentum exchange associated with Landau damping of hydromagnetic waves, from a macroscopic viewpoint, and compare the conclusions with those of the resonant quasi-linear theory. It is found that the heating of protons and electrons is correctly given by the resonant theory, but that the momentum exchange is not correctly described by the resonant theory.

  11. Enhanced O2+ loss at Mars due to an ambipolar electric field from electron heating

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; McEnulty, T.; Morooka, M. W.; Stewart, A. I. F.; Mahaffy, P. R.; Jakosky, B. M.

    2016-05-01

    Recent results from the MAVEN Langmuir Probe and Waves instrument suggest higher than predicted electron temperatures (Te) in Mars' dayside ionosphere above ~180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer indicate significant abundances of O2+ up to ~500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher Te (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher Te may greatly increase O2+ loss at Mars. In particular, enhanced Te in Mars' ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (eΦ) of several kBTe, which draws ions out of the region allowing for enhanced escape. With active solar wind, electron, and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.

  12. Effects of Unsteadiness Due to Wake Passing on Rotor Blade Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.; Rigby, David L.; Heidmann, James; Steinthorsson, Erlendur; Fabian, John C.

    2007-01-01

    14. ABSTRACT In a gas turbine engine, the turbine rotor blades are buffeted by the wakes of the vanes located upstream. There is a transient effect from the passing of wakes on the blade heat transfer. This transient effect has been computed for a representative rotor by introducing a wake upstream via an unsteady inlet flow boundary condition, or "gust" condition. Two cases of turbulent flow and laminar flow with Reynolds numbers of 385,000 and 385 respectively were considered. For the turbulent flow case a quasi-steady calculation was also performed. The variation in the unsteady heat transfer coefficient was found to be as high as 120 percent of the mean. For the turbulent flow case a quasisteady calculation was also performed. The time mean of the unsteady heat transfer, the mean of the quasi-steady variations and the steady results agree reasonably well on all blade locations except for the turbulent results which differ near the leading edge. The quasi-steady heat transfer results do not agree with the instantaneous unsteady results, although the time-mean values are similar.

  13. Augmentation of Stagnation Region Heat Transfer Due to Turbulence from a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2001-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise-averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half-scale model of a can-type combustor from a low NO(x), ground-based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane-type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counterclockwise direction (facing downstream). A five-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36 deg at the outer edges of the rectangular test section. Hot-wire measurements showed test section flow had very high levels of turbulence, around 28.5%, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77% and was about 14% higher than predicted by a previously developed correlation for isotropic grid-generated turbulence.

  14. Augmentation of Stagnation Region Heat Transfer Due to Turbulence From a DLN Can Combustor

    NASA Technical Reports Server (NTRS)

    VanFossen, G. James; Bunker, Ronald S.

    2000-01-01

    Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.

  15. Model calculated global, regional and megacity premature mortality due to air pollution

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Barlas, C.; Giannadaki, D.; Pozzer, A.

    2013-07-01

    Air pollution by fine particulate matter (PM2.5) and ozone (O3) has increased strongly with industrialization and urbanization. We estimate the premature mortality rates and the years of human life lost (YLL) caused by anthropogenic PM2.5 and O3 in 2005 for epidemiological regions defined by the World Health Organization (WHO). This is based upon high-resolution global model calculations that resolve urban and industrial regions in greater detail compared to previous work. Results indicate that 69% of the global population is exposed to an annual mean anthropogenic PM2.5 concentration of >10 μg m-3 (WHO guideline) and 33% to > 25 μg m-3 (EU directive). We applied an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global respiratory mortality of about 773 thousand/year (YLL ≈ 5.2 million/year), 186 thousand/year by lung cancer (YLL ≈ 1.7 million/year) and 2.0 million/year by cardiovascular disease (YLL ≈ 14.3 million/year). The global mean per capita mortality caused by air pollution is about 0.1% yr-1. The highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located.

  16. Impacts of Soil-aquifer Heat and Water Fluxes on Simulated Global Climate

    NASA Technical Reports Server (NTRS)

    Krakauer, N.Y.; Puma, Michael J.; Cook, B. I.

    2013-01-01

    Climate models have traditionally only represented heat and water fluxes within relatively shallow soil layers, but there is increasing interest in the possible role of heat and water exchanges with the deeper subsurface. Here, we integrate an idealized 50m deep aquifer into the land surface module of the GISS ModelE general circulation model to test the influence of aquifer-soil moisture and heat exchanges on climate variables. We evaluate the impact on the modeled climate of aquifer-soil heat and water fluxes separately, as well as in combination. The addition of the aquifer to ModelE has limited impact on annual-mean climate, with little change in global mean land temperature, precipitation, or evaporation. The seasonal amplitude of deep soil temperature is strongly damped by the soil-aquifer heat flux. This not only improves the model representation of permafrost area but propagates to the surface, resulting in an increase in the seasonal amplitude of surface air temperature of >1K in the Arctic. The soil-aquifer water and heat fluxes both slightly decrease interannual variability in soil moisture and in landsurface temperature, and decrease the soil moisture memory of the land surface on seasonal to annual timescales. The results of this experiment suggest that deepening the modeled land surface, compared to modeling only a shallower soil column with a no-flux bottom boundary condition, has limited impact on mean climate but does affect seasonality and interannual persistence.

  17. Measurements and modeling of cosmic noise absorption changes due to radio heating of the D region ionosphere

    NASA Astrophysics Data System (ADS)

    Senior, A.; Rietveld, M. T.; Honary, F.; Singer, W.; Kosch, M. J.

    2011-04-01

    Powerful high-frequency radio waves can heat the electrons in the D region of the ionosphere. This heating increases the electron-neutral collision frequency which modifies the absorption of other radio waves propagating through the heated plasma. A high spatial resolution imaging riometer was used to observe changes in cosmic radio noise absorption (CNA) induced by heating from the European Incoherent Scatter (EISCAT) HF facility, and the results were compared to a theoretical model using observed electron densities as an input. The model is found to overestimate the observed effect by a factor close to 2, despite different background electron density profiles and heater powers. However, the model reproduced the spatial morphology of the change in CNA rather well, and the same absorption calculation used in the heating model also reproduced the changes in CNA due to electron precipitation in the absence of heating well. When the assumption of a perfectly conducting ground is replaced with a more realistic model in the calculation of the HF radiated power, the power is reduced to about 75% of its original value, and the model overestimate of the CNA change is reduced to a factor of about 1.3.

  18. Recent severe heat waves: how to view them in a 'global warming' perspective?

    NASA Astrophysics Data System (ADS)

    Kysely, J.

    2010-03-01

    The area of western and central Europe has recently been affected by several long-lasting and severe heat waves, particularly in July-August 2003, June-July 2006, and July 2007. The heat waves influenced various sectors of human activities, with enormous socio-economic impacts. With an estimated death toll exceeding 50000 over Europe, the August 2003 heat wave was the worst natural disaster in Europe during the last 50 years, yielding an example of how seriously may also high-income countries be affected by climate change. The aims of the study are to assess whether recent occurrences of severe heat waves in central Europe were exceptional in the context of past fluctuations, and to estimate their recurrence probabilities under future climate change scenarios. We focus on analogs of the 2006 heat wave which lasted 33 consecutive days in Prague and was the longest and most severe heat wave since the beginning of air temperature measurements in 1775. Probabilities of long and severe heat waves are estimated from daily temperature series generated by a first-order autoregressive model with a deterministic component, incorporating the seasonal cycle and the long-term trend. The model is validated with respect to the simulation of heat waves in present climate (1961-2006) and subsequently run under several assumptions reflecting various rates of summer warming over the 21st century, based on climate model projections. The return period of a heat wave reaching or exceeding the length of the 2006 heat wave is estimated to be around 120 years in 2006. Due to an increase in mean summer temperatures, probabilities of very long heat waves have already risen by an order of magnitude over the recent 25 years, and they are likely to increase by another order of magnitude by around 2040 under the summer warming rate assumed by the mid-scenario. Even the lower-bound scenario yields a considerable decline of return periods associated with intense heat waves. Although positive socio

  19. The role of Pacific Trade Wind trends in driving ocean heat uptake and global hiatuses

    NASA Astrophysics Data System (ADS)

    Maher, Nicola; England, Matthew; Gupta, Alexander Sen; Spence, Paul

    2015-04-01

    Previous work has noted the importance of the tropical Pacific in modulating global temperatures and in offsetting anthropogenic surface warming over decadal periods. This project investigates the role of Pacific Trade Wind changes in modulating the exchange of heat into and out of the sub-surface tropical Pacific Ocean. In particular, the trade wind acceleration observed since the early 1990's is examined, with a focus on ocean heat uptake dynamics associated with phase changes of the Interdecadal Pacific Oscillation (IPO). A number of simulations are performed in an eddy-permitting global ocean model (MOM5) coupled to a sea ice model (SIS). To examine the recent period, the ocean model is forced with atmospheric CORE normal year forcing, with the observed Pacific wind trend from 1992-2013 superimposed linearly over the tropical Pacific region. The role of seasonally varying wind trends is further investigated by running a second experiment with seasonally varying wind anomalies added in the Pacific. To investigate how and when the subducted heat might re-surfaces from the ocean interior in the future, additional experiments are performed that include a ramp down of the trade winds under a variety of scenarios to mimic a future phase change in the IPO. This work has implications for decadal predictions of future global climate change.

  20. Investigation of Neutral Wind Effects on the Global Joule Heating Rate Using MHD and TI Models

    NASA Astrophysics Data System (ADS)

    Kalafatoglu, E.; Kaymaz, Z.

    2013-12-01

    Precise calculation of global Joule heating rate is a long standing question in thermosphere-ionosphere coupling processes. The absence of the complete and direct, in-situ measurements of the parameters involved in the calculation of Joule heating such as the conductivity of the medium, small-scale variations of electric fields, and neutral winds at the ionospheric heights poses a great uncertainty in its determination. In this work, we study the effects of the neutral wind on the global Joule heating rate. Most of the time, owing to above mentioned difficulties the effects of the neutral wind have been neglected in the calculations. We investigate their effects using BATSRUS MHD model, TIEGCM and GITM. Using horizontal current density, Cowling conductivity, and Pedersen conductivities from the MHD model, we calculate the joule heating rate with and without the neutral wind contribution. We apply the procedure for March 2008 magnetospheric substorm events and quantify the differences to show the neutral wind contribution. We compare the results with those obtained using neutral wind velocities from TIEGCM and GITM models. This way while we compare and demonstrate the discrepancies between the models, we also provide an assessment for the integration of thermospheric and magnetospheric models.

  1. Tropical Ocean and Global Atmosphere (TOGA) heat exchange project: A summary report

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Niiler, P. P.

    1985-01-01

    A pilot data center to compute ocean atmosphere heat exchange over the tropical ocean is prposed at the Jet Propulsion Laboratory (JPL) in response to the scientific needs of the Tropical Ocean and Global Atmosphere (TOGA) Program. Optimal methods will be used to estimate sea surface temperature (SET), surface wind speed, and humidity from spaceborne observations. A monthly summary of these parameters will be used to compute ocean atmosphere latent heat exchanges. Monthly fields of surface heat flux over tropical oceans will be constructed using estimations of latent heat exchanges and short wave radiation from satellite data. Verification of all satellite data sets with in situ measurements at a few locations will be provided. The data center will be an experimental active archive where the quality and quantity of data required for TOGA flux computation are managed. The center is essential to facilitate the construction of composite data sets from global measurements taken from different sensors on various satellites. It will provide efficient utilization and easy access to the large volume of satellite data available for studies of ocean atmosphere energy exchanges.

  2. Climate change. Projected increase in lightning strikes in the United States due to global warming.

    PubMed

    Romps, David M; Seeley, Jacob T; Vollaro, David; Molinari, John

    2014-11-14

    Lightning plays an important role in atmospheric chemistry and in the initiation of wildfires, but the impact of global warming on lightning rates is poorly constrained. Here we propose that the lightning flash rate is proportional to the convective available potential energy (CAPE) times the precipitation rate. Using observations, the product of CAPE and precipitation explains 77% of the variance in the time series of total cloud-to-ground lightning flashes over the contiguous United States (CONUS). Storms convert CAPE times precipitated water mass to discharged lightning energy with an efficiency of 1%. When this proxy is applied to 11 climate models, CONUS lightning strikes are predicted to increase 12 ± 5% per degree Celsius of global warming and about 50% over this century.

  3. Global Health Benefits from Reductions in Background Tropospheric Ozone due to Methane Emission Controls

    NASA Astrophysics Data System (ADS)

    West, J. J.; Mauzerall, D. L.; Fiore, A. M.; Horowitz, L. W.

    2005-05-01

    Increases in background ozone throughout the troposphere are partially attributed to rising anthropogenic methane concentrations, which are projected to continue to increase in the future. Because methane is long-lived and affects background ozone, controls on methane emissions would reduce surface ozone concentrations fairly uniformly around the globe. Epidemiological research indicates that exposure to ozone increases incidence of respiratory ailments and premature mortality. In addition, exposure to ozone reduces agricultural yields and damages natural ecosystems. We use the MOZART-2 global atmospheric chemistry and transport model to estimate the effects on global surface ozone of perturbations in methane emissions. We consider a baseline scenario for 2000 and the 2030 A2 scenario (emissions from the IPCC AR-4 2030 atmospheric chemistry experiments), and examine the impact on ozone of decreasing anthropogenic methane emissions relative to this baseline by 20%. Using the simulated spatially-distributed decreases in surface ozone concentrations resulting from these reductions in methane emissions, we estimate the global benefits to human health in the methane emission reduction scenario. We focus on human mortality, and consider the sensitivity of our estimates to different assumptions of health effect thresholds at low ozone concentrations.

  4. Formation of laves phase in a refractory austenitic steel due to long-term heating

    NASA Astrophysics Data System (ADS)

    Tarasenko, L. V.; Shal'kevich, A. B.

    2011-07-01

    Steels of the Fe - Cr - Ni -Mo - Nb - Al - C system are studied by methods of phase physicochemical analysis and electron microscopy with the aim to determine the causes of changes in mechanical properties after long-term heating at a temperature of 600 - 700°C. Grain-boundary formation of particles of a Laves phase is shown to cause decrease in the impact toughness and transformation of particles of γ'-phase under conditions of creep. The effect of alloying elements on the chemical composition of the multicomponent Laves phase is studied depending on the temperatures of hardening, aging, and subsequent heating. Concentration correspondence between the chemical composition of the austenite and the intermetallic tcp phase formed in aging is discovered. A computational scheme for predicting the possibility of formation of Laves phases in multicomponent alloys is suggested.

  5. Postponement of incipient collapse due to work-induced heat stress by limited cooling

    NASA Technical Reports Server (NTRS)

    Blockley, W. V.

    1973-01-01

    Four subjects completed five treadmill training sessions under comfortable to cool conditions and were calibrated to find an optimum combination of speed and grade on the treadmill which would produce a metabolic rate of 2000 Btu-hr. Dressed in an Apollo liquid cooling garment, each man underwent a total of four experiments in which the rate of heat extraction from the liquid cooling garment was adjusted to an amount which would cause a storage within the body of 1000 Btu/hr. Physiological measurements included skin temperature at 9 locations, rectal and ear canal probes, and heart rate. The increases in tolerance time for the various subjects and the various methods of emergency cooling, ranged from a low of six minutes to a high of 48 minutes, or from 8 to 102% of the baseline tolerance times. The largest gains were achieved in a subject whose tolerance endpoint was atypical, and whose baseline heat tolerance was unsually low.

  6. Industrial-era global ocean heat uptake doubles in recent decades

    NASA Astrophysics Data System (ADS)

    Gleckler, Peter J.; Durack, Paul J.; Stouffer, Ronald J.; Johnson, Gregory C.; Forest, Chris E.

    2016-04-01

    Formal detection and attribution studies have used observations and climate models to identify an anthropogenic warming signature in the upper (0-700 m) ocean. Recently, as a result of the so-called surface warming hiatus, there has been considerable interest in global ocean heat content (OHC) changes in the deeper ocean, including natural and anthropogenically forced changes identified in observational, modelling and data re-analysis studies. Here, we examine OHC changes in the context of the Earth’s global energy budget since early in the industrial era (circa 1865-2015) for a range of depths. We rely on OHC change estimates from a diverse collection of measurement systems including data from the nineteenth-century Challenger expedition, a multi-decadal record of ship-based in situ mostly upper-ocean measurements, the more recent near-global Argo floats profiling to intermediate (2,000 m) depths, and full-depth repeated transoceanic sections. We show that the multi-model mean constructed from the current generation of historically forced climate models is consistent with the OHC changes from this diverse collection of observational systems. Our model-based analysis suggests that nearly half of the industrial-era increases in global OHC have occurred in recent decades, with over a third of the accumulated heat occurring below 700 m and steadily rising.

  7. Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature

    DTIC Science & Technology

    1991-03-01

    Surface Boiling ," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar, I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling ...BACKGROUND Research on pool boiling in electronic cooling systems has focused on three primary areas: (1) reducing the temperature excursion at incipient...problems: (i) Boiling restricts the- physical design of the system . (ii) A high degree of superheat may be required if the surface is very smooth in order

  8. Resistive wall heating due to image current on the beam chamber for a superconducting undulator.

    SciTech Connect

    Kim, S. H. )

    2012-03-27

    The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

  9. Transient heat transfer in helium II due to a sudden vacuum break

    NASA Astrophysics Data System (ADS)

    Bosque, Ernesto S.; Dhuley, Ram C.; Van Sciver, Steven W.

    2014-01-01

    To ensure future cryogenic devices meet safety and operational specifications, significant value is gained from a developed understanding of the transient heat fluxes that result from failure of an insulating vacuum jacket around a helium II (He II)-cooled device. A novel, one-dimensional experiment is successfully performed examining the phenomena immediately following a vacuum rupture onto a cryosurface. In the experiment, a fast-opening (˜10 ms) valve isolates a rigid container of ultra high purity nitrogen (N2) gas kept at room temperature and adjustable pressure from a vertically oriented, highly evacuated (˜10-3 Pa) tube roughly 1 m in length. The bottom of the evacuated tube is sealed via a 2.54 mm thick copper disk, whose bottom surface is in intimate contact with an open column of He II (˜1.8 K). The evacuated tube, disk, and He II column share a diameter of 24 mm. Opening the valve results in a vacuum rupture. N2 gas is immediately drawn into the evacuated space and cryopumped onto the disk as a growing layer of solid cryodeposit. Various coupled transient heat transfer processes proceed as the internal energy of the warm gas is transferred through the growing layer of solid N2, through the copper disk, and into the He II column. This work examines the qualitative nature of these transient phenomena and the magnitude of the heat fluxes present through each of the series of thermal resistances.

  10. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  11. Predictive study on the risk of malaria spreading due to global warming

    SciTech Connect

    Ono, Masaji

    1996-12-31

    Global warming will bring about a temperature elevation, and the habitat of vectors of infectious diseases, such as malaria and dengue fever, will spread into subtropical or temperate zone. The purpose of this study is to simulate the spreading of these diseases through reexamination of existing data and collection of some additional information by field survey. From these data, the author will establish the relationship between meteorological conditions, vector density and malaria occurrence. And then he will simulate and predict the malaria epidemics in case of temperature elevation in southeast Asia and Japan.

  12. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes

    DOE PAGES

    Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun; ...

    2015-03-16

    Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH4) and nitrous oxide (N2O) are the two most important GHGs after carbon dioxide (CO2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH4 and N2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, and nitrogen fertilizer use.

  13. Expression of heat shock proteins (hsp) 27 and 70 in various organ systems in cases of death due to fire.

    PubMed

    Doberentz, E; Genneper, L; Böker, D; Lignitz, E; Madea, B

    2014-11-01

    The expression of heat shock proteins (hsp) increases in case of variable types of endogenous and exogenous cellular stress, as for example thermal stress. Immunohistochemical staining with hsp antibodies can visualize these stress proteins. Fifty-three cases of death due to heat and a control group of 100 deaths without any antemortem thermic stress were examined regarding hsp27 and hsp70 expression in myocardial, pulmonary, and renal tissues. The results revealed a correlation between hsp expression, survival time, and cause of death. In cases of death due to fire, the expression of hsp is more extensive than in the control group, especially in pulmonary and renal tissues. The immunohistochemical investigation of an hsp expression can support the proof of vitality in cases of death related to fire.

  14. Estimating heat stress from climate-based indicators: present-day biases and future spreads in the CMIP5 global climate model ensemble

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Ducharne, A.; Sultan, B.; Braconnot, P.; Vautard, R.

    2015-08-01

    The increased exposure of human populations to heat stress is one of the likely consequences of global warming, and it has detrimental effects on health and labor capacity. Here, we consider the evolution of heat stress under climate change using 21 general circulation models (GCMs). Three heat stress indicators, based on both temperature and humidity conditions, are used to investigate present-day model biases and spreads in future climate projections. Present day estimates of heat stress indicators from observational data shows that humid tropical areas tend to experience more frequent heat stress than other regions do, with a total frequency of heat stress 250-300 d yr-1. The most severe heat stress is found in the Sahel and south India. Present-day GCM simulations tend to underestimate heat stress over the tropics due to dry and cold model biases. The model based estimates are in better agreement with observation in mid to high latitudes, but this is due to compensating errors in humidity and temperature. The severity of heat stress is projected to increase by the end of the century under climate change scenario RCP8.5, reaching unprecedented levels in some regions compared with observations. An analysis of the different factors contributing to the total spread of projected heat stress shows that spread is primarily driven by the choice of GCMs rather than the choice of indicators, even when the simulated indicators are bias-corrected. This supports the utility of the multi-model ensemble approach to assess the impacts of climate change on heat stress.

  15. Predicted changes in energy demands for heating and cooling due to climate change

    NASA Astrophysics Data System (ADS)

    Dolinar, Mojca; Vidrih, Boris; Kajfež-Bogataj, Lučka; Medved, Sašo

    In the last 3 years in Slovenia we experienced extremely hot summers and demand for cooling the buildings have risen significantly. Since climate change scenarios predict higher temperatures for the whole country and for all seasons, we expect that energy demand for heating would decrease while demand for cooling would increase. An analysis for building with permitted energy demand and for low-energy demand building in two typical urban climates in Slovenia was performed. The transient systems simulation program (TRNSYS) was used for simulation of the indoor conditions and the energy use for heating and cooling. Climate change scenarios were presented in form of “future” Test Reference Years (TRY). The time series of hourly data for all meteorological variables for different scenarios were chosen from actual measurements, using the method of highest likelihood. The climate change scenarios predicted temperature rise (+1 °C and +3 °C) and solar radiation increase (+3% and +6%). With the selection of these scenarios we covered the spectra of possible predicted climate changes in Slovenia. The results show that energy use for heating would decrease from 16% to 25% (depends on the intensity of warming) in subalpine region, while in Mediterranean region the rate of change would not be significant. In summer time we would need up to six times more energy for cooling in subalpine region and approximately two times more in Mediterranean region. low-energy building proved to be very economical in wintertime while on average higher energy consumption for cooling is expected in those buildings in summertime. In case of significant warmer and more solar energy intensive climate, the good isolated buildings are more efficient than standard buildings. TRY proved not to be efficient for studying extreme conditions like installed power of the cooling system.

  16. The exterior unsteady viscous flow and heat transfer due to a porous expanding or contracting cylinder.

    PubMed

    Wang, Chao; Si, Xinhui; Shen, Yanan; Zheng, Liancun; Lin, Ping

    2015-01-01

    Since the vessels in the biological tissues are characterized by low seepage Reynolds numbers and contracting or expanding walls, more attention is paid on the viscous flow outside the porous pipe with small expansion or contraction. This paper presents a numerical solution of the flow and heat transfer outside an expanding or contracting porous cylinder. The coupled nonlinear similarity equations are solved by Bvp4c, which is a collocation method with MATLAB. The effects of the different physical parameters, namely the permeability Reynolds number,the expansion ratio and the Prandtl number, on the velocity and temperature distribution are obtained and the results are shown graphically.

  17. Circulation in the high-latitude thermosphere due to electric fields and Joule heating

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Megill, L. R.

    1975-01-01

    Electric fields in the earth's upper atmosphere are capable of setting the neutral atmosphere in motion via ion-neutral collisions as well as pressure gradients from resultant Joule heating. By means of simple models for the high-latitude thermosphere and electric fields a simplified set of coupled equations is solved which show that moderate electric fields, when present for a period of several hours, are capable of displacing the neutral atmosphere of the order of 50 km in the vertical, a few hundred kilometers in the north-south direction and over 1000 km in the east-west direction.

  18. Mapping Uncertainty Due to Missing Data in the Global Ocean Health Index

    PubMed Central

    Longo, Catherine; Halpern, Benjamin S.

    2016-01-01

    Indicators are increasingly used to measure environmental systems; however, they are often criticized for failing to measure and describe uncertainty. Uncertainty is particularly difficult to evaluate and communicate in the case of composite indicators which aggregate many indicators of ecosystem condition. One of the ongoing goals of the Ocean Health Index (OHI) has been to improve our approach to dealing with missing data, which is a major source of uncertainty. Here we: (1) quantify the potential influence of gapfilled data on index scores from the 2015 global OHI assessment; (2) develop effective methods of tracking, quantifying, and communicating this information; and (3) provide general guidance for implementing gapfilling procedures for existing and emerging indicators, including regional OHI assessments. For the overall OHI global index score, the percent contribution of gapfilled data was relatively small (18.5%); however, it varied substantially among regions and goals. In general, smaller territorial jurisdictions and the food provision and tourism and recreation goals required the most gapfilling. We found the best approach for managing gapfilled data was to mirror the general framework used to organize, calculate, and communicate the Index data and scores. Quantifying gapfilling provides a measure of the reliability of the scores for different regions and components of an indicator. Importantly, this information highlights the importance of the underlying datasets used to calculate composite indicators and can inform and incentivize future data collection. PMID:27483378

  19. Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling.

    PubMed

    Baker, Allan J; Pereira, Sergio Luiz; Haddrath, Oliver P; Edge, Kerri-Anne

    2006-01-07

    Classic problems in historical biogeography are where did penguins originate, and why are such mobile birds restricted to the Southern Hemisphere? Competing hypotheses posit they arose in tropical-warm temperate waters, species-diverse cool temperate regions, or in Gondwanaland approximately 100 mya when it was further north. To test these hypotheses we constructed a strongly supported phylogeny of extant penguins from 5851 bp of mitochondrial and nuclear DNA. Using Bayesian inference of ancestral areas we show that an Antarctic origin of extant taxa is highly likely, and that more derived taxa occur in lower latitudes. Molecular dating estimated penguins originated about 71 million years ago in Gondwanaland when it was further south and cooler. Moreover, extant taxa are inferred to have originated in the Eocene, coincident with the extinction of the larger-bodied fossil taxa as global climate cooled. We hypothesize that, as Antarctica became ice-encrusted, modern penguins expanded via the circumpolar current to oceanic islands within the Antarctic Convergence, and later to the southern continents. Thus, global cooling has had a major impact on penguin evolution, as it has on vertebrates generally. Penguins only reached cooler tropical waters in the Galapagos about 4 mya, and have not crossed the equatorial thermal barrier.

  20. Mapping Uncertainty Due to Missing Data in the Global Ocean Health Index.

    PubMed

    Frazier, Melanie; Longo, Catherine; Halpern, Benjamin S

    2016-01-01

    Indicators are increasingly used to measure environmental systems; however, they are often criticized for failing to measure and describe uncertainty. Uncertainty is particularly difficult to evaluate and communicate in the case of composite indicators which aggregate many indicators of ecosystem condition. One of the ongoing goals of the Ocean Health Index (OHI) has been to improve our approach to dealing with missing data, which is a major source of uncertainty. Here we: (1) quantify the potential influence of gapfilled data on index scores from the 2015 global OHI assessment; (2) develop effective methods of tracking, quantifying, and communicating this information; and (3) provide general guidance for implementing gapfilling procedures for existing and emerging indicators, including regional OHI assessments. For the overall OHI global index score, the percent contribution of gapfilled data was relatively small (18.5%); however, it varied substantially among regions and goals. In general, smaller territorial jurisdictions and the food provision and tourism and recreation goals required the most gapfilling. We found the best approach for managing gapfilled data was to mirror the general framework used to organize, calculate, and communicate the Index data and scores. Quantifying gapfilling provides a measure of the reliability of the scores for different regions and components of an indicator. Importantly, this information highlights the importance of the underlying datasets used to calculate composite indicators and can inform and incentivize future data collection.

  1. Electron residual energy due to stochastic heating in field-ionized plasma

    SciTech Connect

    Khalilzadeh, Elnaz; Yazdanpanah, Jam Chakhmachi, Amir; Jahanpanah, Jafar; Yazdani, Elnaz

    2015-11-15

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  2. Electron residual energy due to stochastic heating in field-ionized plasma

    NASA Astrophysics Data System (ADS)

    Khalilzadeh, Elnaz; Yazdanpanah, Jam; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz

    2015-11-01

    The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.

  3. Strong radiative heating due to wintertime black carbon aerosols in the Brahmaputra River Valley

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Garro, Mark A.; Wilcox, Eric M.; Moosmüller, Hans

    2012-05-01

    The Brahmaputra River Valley (BRV) of Southeast Asia recently has been experiencing extreme regional climate change. A week-long study using a micro-Aethalometer was conducted during January-February 2011 to measure black carbon (BC) aerosol mass concentrations in Guwahati (India), the largest city in the BRV region. Daily median values of BC mass concentration were 9-41 μgm-3, with maxima over 50 μgm-3 during evenings and early mornings. Median BC concentrations were higher than in mega cities of India and China, and significantly higher than in urban locations of Europe and USA. The corresponding mean cloud-free aerosol radiative forcing is -63.4 Wm-2 at the surface and +11.1 Wm-2 at the top of the atmosphere with the difference giving the net atmospheric BC solar absorption, which translates to a lower atmospheric heating rate of ˜2 K/d. Potential regional climatic impacts associated with large surface cooling and high lower-atmospheric heating are discussed.

  4. Flow regulation and river fragmentation in large basins due to global dam development (Invited)

    NASA Astrophysics Data System (ADS)

    Grill, G. O.; Lehner, B.

    2013-12-01

    Dam construction has recently received new interest as an alternative and renewable source of energy, especially in developing countries, and as a means to provide water security in regions with naturally variable water flows. On the other hand, the negative effects from increased fragmentation of the world's large rivers through hydropower and irrigation dams is a matter of great concern for ecologists and conservationists. The main negative effects of dams result from their role as a barrier for migratory fish species, as well as the alteration of the natural flow regime owing to artificial water release schedules. While the trade-offs between these antagonistic effects are usually assessed locally by conducting environmental impact assessments at and in the vicinity of the construction site, the cumulative effects of multiple dams located in the same basin are generally neglected in such plans. To address the cumulative effects at the scale of large river networks, we developed a new impact assessment approach by combining state-of-the-art global scale hydrographic (HydroSHEDS) and hydrological models (WaterGAP) with a river routing scheme (HydroROUT). This combination enables modelers to simulate scenarios for historic, current and future conditions that allow for comparisons between the large river basins of the world. We derive indices that can describe the relative impact of individual and multiple dams regarding flow alteration and habitat fragmentation at a global scale. Our model also allows for the application of tailor-made weighting schemes to include information of eco-hydrological classifications, as well as species richness and diversity. Furthermore, we include natural barriers such as waterfalls, and examine their effect on river network connectivity. Results for the Greater Mekong Region show that ecosystem connectivity and flow alteration are most strongly affected by dams located at the mainstream rivers, particularly for basins where the main

  5. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes

    SciTech Connect

    Tian, Hanqin; Chen, Guangsheng; Lu, Chaoqun; Xu, Xiaofeng; Ren, Wei; Zhang, Bowen; Banger, Kamaljit; Tao, Bo; Pan, Shufen; Chu, Mingliang; Zhang, Chi; Bruhwiler, Lori; Wofsy, Steven

    2015-03-16

    Greenhouse gas (GHG)-induced climate change is among the most pressing sustainability challenges facing humanity today, posing serious risks for ecosystem health. Methane (CH4) and nitrous oxide (N2O) are the two most important GHGs after carbon dioxide (CO2), but their regional and global budgets are not well known. In this paper, we applied a process-based coupled biogeochemical model to concurrently estimate the magnitude and spatial and temporal patterns of CH4 and N2O fluxes as driven by multiple environmental changes, including climate variability, rising atmospheric CO2, increasing nitrogen deposition, tropospheric ozone pollution, land use change, and nitrogen fertilizer use.

  6. Global response of the low-latitude to midlatitude ionosphere due to the Bastille Day flare

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Warren, H. P.; Joyce, G.; Pi, X.; Iijima, B.; Coker, C.

    2005-08-01

    The first global simulation study and comparison to data of the ionospheric effects associated with the enhanced EUV irradiance of the Bastille Day flare are presented. This is done by incorporating a time-dependent EUV spectrum, based on data and hydrodynamic modeling, into the NRL ionosphere model SAMI3. The simulation results indicate that the total electron content (TEC) increases to over 7 TEC units in the daytime, low-latitude ionosphere. In addition, it is predicted that the maximum density in the F-layer (NmF2) increases by $\\lesssim$20% and that the height of the maximum electron density (HmF2) decreases by $\\lesssim$20%. These results are explained by the increased ionization at altitudes <400 km which increases TEC and NmF2 while decreasing HmF2. The results are in reasonably good agreement with data obtained from GPS satellites and the TOPEX satellite.

  7. A global approach for solving evolutive heat transfer for image denoising and inpainting.

    PubMed

    Auclair-Fortier, Marie-Flavie; Ziou, Djemel

    2006-09-01

    This paper proposes an alternative to partial differential equations (PDEs) for solving problems in computer vision based on evolutive heat transfer. Traditionally, the method for solving such physics-based problems is to discretize and solve a PDE by a purely mathematical process. Instead of using the PDE, we propose to use the global heat principle and to decompose it into basic laws. We show that some of these laws admit an exact global version since they arise from conservative principles. We also show that the assumptions made about the other basic Iaws can be made wisely, taking into account knowledge about the problem and the domain. The numerical scheme is derived in a straightforward way from the modeled problem, thus providing a physical explanation for each step in the solution. The advantage of such an approach is that it minimizes the approximations made during the whole process and it modularizes it, allowing changing the application to a great number of problems. We apply the scheme to two applications: image denoising and inpainting which are modeled with heat transfer. For denoising, we propose a new approximation for the conductivity coefficient and we add thin lines to the features in order to block diffusion.

  8. Sensitivity of global ocean heat content from reanalyses to the atmospheric reanalysis forcing: A comparative study

    NASA Astrophysics Data System (ADS)

    Storto, Andrea; Yang, Chunxue; Masina, Simona

    2016-05-01

    The global ocean heat content evolution is a key component of the Earth's energy budget and can be consistently determined by ocean reanalyses that assimilate hydrographic profiles. This work investigates the impact of the atmospheric reanalysis forcing through a multiforcing ensemble ocean reanalysis, where the ensemble members are forced by five state-of-the-art atmospheric reanalyses during the meteorological satellite era (1979-2013). Data assimilation leads the ensemble to converge toward robust estimates of ocean warming rates and significantly reduces the spread (1.48 ± 0.18 W/m2, per unit area of the World Ocean); hence, the impact of the atmospheric forcing appears only marginal for the global heat content estimates in both upper and deeper oceans. A sensitivity assessment performed through realistic perturbation of the main sources of uncertainty in ocean reanalyses highlights that bias correction and preprocessing of in situ observations represent the most crucial component of the reanalysis, whose perturbation accounts for up to 60% of the ocean heat content anomaly variability in the pre-Argo period. Although these results may depend on the single reanalysis system used, they reveal useful information for the ocean observation community and for the optimal generation of perturbations in ocean ensemble systems.

  9. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient.

    PubMed

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.

  10. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.

  11. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  12. Interannual and Spatial Variability of Global Ocean Heat/Freshwater Content Identified from GTSPP

    NASA Astrophysics Data System (ADS)

    Chu, P. C.; Sun, C.

    2013-12-01

    Global Temperature and Salinity Profile Program (GTSPP) is a cooperative international project since 1990. The GTSPP handles all temperature and salinity profile data including XBT, CTDs, thermistor chain data, and Argo observations. Near-real time gridded (T, S) dataset was established from GTSPP since 1990 with horizontal resolution of (1o×1o) and temporal increment of 1 month using the recently developed optimal spectral decomposition (OSD) method. With this new monthly varying gridded dataset, the upper ocean (surface to 300 m depth) heat content OHC300 and freshwater content FWC300 were calculated at each horizontal grid point. The empirical orthogonal function (EOF) analysis was conducted on the temporally varying global 2D OHC300 anomaly relative to its seasonal variation. A new phenomenon, global ocean tripole, was discovered. The EOF-1 mode (44.2% variance) represents the classical El Nino/La Nina phenomenon. The EOF-2 mode (14.6%) represents the Indian Ocean Dipole mode and the El Nino Modoki. Its features and connection to climate variability is also discussed. The empirical orthogonal function (EOF) analysis was conducted on the temporally varying global 2D FWC300 anomaly relative to its seasonal variation. The EOF-1 mode (73.7% variance) represents near global-scale variability with the largest anomaly appearing in the Indian Ocean near southeast of Africa. The first principal component (PC1) shows decadal variability. The temporal-spatial variability represented by the EOF-1 mode shows rapid increasing of global FWC300 from 1999 to 2005 and sustaining the high values after 2005. Interpretations of the observational results to recent global warming will also be presented.

  13. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data.

    PubMed

    Ganachaud, A; Wunsch, C

    2000-11-23

    Through its ability to transport large amounts of heat, fresh water and nutrients, the ocean is an essential regulator of climate. The pathways and mechanisms of this transport and its stability are critical issues in understanding the present state of climate and the possibilities of future changes. Recently, global high-quality hydrographic data have been gathered in the World Ocean Circulation Experiment (WOCE), to obtain an accurate picture of the present circulation. Here we combine the new data from high-resolution trans-oceanic sections and current meters with climatological wind fields, biogeochemical balances and improved a priori error estimates in an inverse model, to improve estimates of the global circulation and heat fluxes. Our solution resolves globally vertical mixing across surfaces of equal density, with coefficients in the range (3-12) x 10(-4) m2 s(-1). Net deep-water production rates amount to (15 +/- 12) x 10(6) m3 s(-1) in the North Atlantic Ocean and (21 +/- 6) x 10(6) m3 s(-1) in the Southern Ocean. Our estimates provide a new reference state for future climate studies with rigorous estimates of the uncertainties.

  14. The synchronous instability of a compressor rotor due to bearing journal differential heating

    SciTech Connect

    Jongh, F.M. de; Morton, P.G.

    1996-10-01

    The paper describes a synchronous vibration instability problem encountered on a centrifugal compressor with oil-lubricated bearings. The problem was solved by modification of the compressor rotor; however, the root cause was not completely understood at that time. A possible explanation was based on a theory that suggested differential heating of the bearing journals. It was decided to verify this theory by experiments. Therefore a test rotor was designed with identical rotor dynamic characteristics to those of the compressor rotor. To fill a gap in the published research on bearing thermohydrodynamics, an experimental technique was devised to measure the surface temperature variations around one of the journals of this rotor. The dependence of significant temperature differentials across the journal upon its orbit was confirmed.

  15. Numerical analysis of the electrical failure of a metallic nanowire mesh due to Joule heating.

    PubMed

    Li, Yuan; Tsuchiya, Kaoru; Tohmyoh, Hironori; Saka, Masumi

    2013-08-30

    To precisely examine the electrical failure behavior of a metallic nanowire mesh induced by Joule heating (i.e., melting), a previously developed numerical method was modified with regard to the maximum temperature in the mesh and the electrical resistivity of the nanowire. A sample case of an Ag nanowire mesh under specific working conditions was analyzed with highly accurate numerical results. By monitoring the temperature in the mesh, the current required to trigger the melting of a mesh segment (i.e., the melting current) could be obtained. The melting process of a mesh equipped with a current source during actual operation was predicted on the basis of the obtained relationship between the melting current and the corresponding melting voltage in the numerical melting process. Local unstable and stable melting could be precisely identified for both the current-controlled and voltage-controlled current sources in the present example.

  16. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions.

    PubMed

    Nagelkerken, Ivan; Connell, Sean D

    2015-10-27

    Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth's heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems.

  17. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions

    PubMed Central

    Nagelkerken, Ivan; Connell, Sean D.

    2015-01-01

    Rising anthropogenic CO2 emissions are anticipated to drive change to ocean ecosystems, but a conceptualization of biological change derived from quantitative analyses is lacking. Derived from multiple ecosystems and latitudes, our metaanalysis of 632 published experiments quantified the direction and magnitude of ecological change resulting from ocean acidification and warming to conceptualize broadly based change. Primary production by temperate noncalcifying plankton increases with elevated temperature and CO2, whereas tropical plankton decreases productivity because of acidification. Temperature increases consumption by and metabolic rates of herbivores, but this response does not translate into greater secondary production, which instead decreases with acidification in calcifying and noncalcifying species. This effect creates a mismatch with carnivores whose metabolic and foraging costs increase with temperature. Species diversity and abundances of tropical as well as temperate species decline with acidification, with shifts favoring novel community compositions dominated by noncalcifiers and microorganisms. Both warming and acidification instigate reduced calcification in tropical and temperate reef-building species. Acidification leads to a decline in dimethylsulfide production by ocean plankton, which as a climate gas, contributes to cloud formation and maintenance of the Earth’s heat budget. Analysis of responses in short- and long-term experiments and of studies at natural CO2 vents reveals little evidence of acclimation to acidification or temperature changes, except for microbes. This conceptualization of change across whole communities and their trophic linkages forecast a reduction in diversity and abundances of various key species that underpin current functioning of marine ecosystems. PMID:26460052

  18. Changes in US background ozone due to global anthropogenic emissions from 1970 to 2020

    NASA Astrophysics Data System (ADS)

    Nopmongcol, Uarporn; Jung, Jaegun; Kumar, Naresh; Yarwood, Greg

    2016-09-01

    Estimates of North American and US Background (NAB and USB) ozone (O3) are critical in setting and implementing the US National Ambient Air Quality Standards (NAAQS) and therefore influence population exposure to O3 across the US. NAB is defined as the O3 concentration in the absence of anthropogenic O3 precursor emissions from North America whereas USB excludes anthropogenic emissions inside the US alone. NAB and USB vary geographically and with time of year. Analyses of O3 trends at rural locations near the west coast suggest that background O3 is rising in response to increasing non-US emissions. As the O3 NAAQS is lowered, rising background O3 would make attaining the NAAQS more difficult. Most studies of changing US background O3 have inferred trends from observations whereas air quality management decisions tend to rely on models. Thus, it is important that the models used to develop O3 management strategies are able to represent the changes in background O3 in order to increase confidence that air quality management strategies will succeed. We focus on how changing global emissions influence USB rather than the effects of inter-annual meteorological variation or long-term climate change. We use a regional model (CAMx) nested within a global model (GEOS-Chem) to refine our grid resolution over high terrain in the western US and near US borders where USB tends to be higher. We determine USB from CAMx simulations that exclude US anthropogenic emissions. Over five decades, from 1970 to 2020, estimated USB for the annual fourth highest maximum daily 8-h average O3 (H4MDA8) in the western US increased from mostly in the range of 40-55 ppb to 45-60 ppb, but remained below 45 ppb in the eastern US. USB increases in the southwestern US are consistent with rising emissions in Asia and Mexico. USB decreases in the northeast US after 1990 follow declining Canadian emissions. Our results show that the USB increases both for the top 30 MDA8 days and the H4MDA8 (the former

  19. Uncertainties in global ocean surface heat flux climatologies derived from ship observations

    SciTech Connect

    Gleckler, P.J.; Weare, B.C.

    1995-08-01

    A methodology to define uncertainties associated with ocean surface heat flux calculations has been developed and applied to a revised version of the Oberhuber global climatology, which utilizes a summary of the COADS surface observations. Systematic and random uncertainties in the net oceanic heat flux and each of its four components at individual grid points and for zonal averages have been estimated for each calendar month and the annual mean. The most important uncertainties of the 2{degree} x 2{degree} grid cell values of each of the heat fluxes are described. Annual mean net shortwave flux random uncertainties associated with errors in estimating cloud cover in the tropics yield total uncertainties which are greater than 25 W m{sup {minus}2}. In the northern latitudes, where the large number of observations substantially reduce the influence of these random errors, the systematic uncertainties in the utilized parameterization are largely responsible for total uncertainties in the shortwave fluxes which usually remain greater than 10 W m{sup {minus}2}. Systematic uncertainties dominate in the zonal means because spatial averaging has led to a further reduction of the random errors. The situation for the annual mean latent heat flux is somewhat different in that even for grid point values the contributions of the systematic uncertainties tend to be larger than those of the random uncertainties at most all latitudes. Latent heat flux uncertainties are greater than 20 W m{sup {minus}2} nearly everywhere south of 40{degree}N, and in excess of 30 W m{sup {minus}2} over broad areas of the subtropics, even those with large numbers of observations. Resulting zonal mean latent heat flux uncertainties are largest ({approximately}30 W m{sup {minus}2}) in the middle latitudes and subtropics and smallest ({approximately}10--25 W m{sup {minus}2}) near the equator and over the northernmost regions.

  20. Global Warming Impacts on Heating and Cooling Degree-Days in the United States

    NASA Astrophysics Data System (ADS)

    Petri, Y.; Caldeira, K.

    2014-12-01

    Anthropogenic climate change is expected to significantly alter residential air conditioning and space heating requirements, which account for 41% of U.S. household energy expenditures. The degree-day method can be used for reliable estimation of weather related building energy consumption and costs, as well as outdoor climatic thermal comfort. Here, we use U.S. Climate Normals developed by NOAA based on weather station observations along with Climate Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble simulations. We add the projected change in heating and cooling degree-days based on the climate models to the estimates based on the NOAA U.S. Climate Normals to project future heating and cooling degree-days. We find locations with the lowest and highest combined index of cooling (CDDs) and heating degree-days (HDDs) for the historical period (1981 - 2010) and future period (2080 - 2099) under the Representation Concentration Pathway 8.5 (RCP8.5) climate change scenario. Our results indicate that in both time frames and among the lower 48 states, coastal areas in the West and South California will have the smallest degree-day sum (CDD + HDD), and hence from a climatic perspective become the best candidates for residential real estate. The Rocky Mountains region in Wyoming, in addition to northern Minnesota and North Dakota, will have the greatest CDD + HDD. While global warming is projected to reduce the median heating and cooling demand (- 5%) at the end of the century, CDD + HDD will decrease in the North, with an opposite effect in the South. This work could be helpful in deciding where to live in the United States based on present and future thermal comfort, and could also provide a basis for estimates of changes in heating and cooling energy demand.

  1. Histopathologic Alterations Associated with Global Gene Expression Due to Chronic Dietary TCDD Exposure in Juvenile Zebrafish

    PubMed Central

    Liu, Qing; Spitsbergen, Jan M.; Cariou, Ronan; Huang, Chun-Yuan; Jiang, Nan; Goetz, Giles; Hutz, Reinhold J.; Tonellato, Peter J.; Carvan, Michael J.

    2014-01-01

    The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb) and male (18.04 ppb) fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption. PMID:24988445

  2. Global pattern of soil carbon losses due to the conversion of forests to agricultural land.

    PubMed

    Wei, Xiaorong; Shao, Mingan; Gale, William; Li, Linhai

    2014-02-11

    Several reviews have analyzed the factors that affect the change in soil organic C (SOC) when forest is converted to agricultural land; however, the effects of forest type and cultivation stage on these changes have generally been overlooked. We collated observations from 453 paired or chronosequential sites where forests have been converted to agricultural land and then assessed the effects of forest type, cultivation stage, climate factors, and soil properties on the change in the SOC stock and the SOC turnover rate constant (k). The percent decrease in SOC stocks and the turnover rate constants both varied significantly according to forest type and cultivation stage. The largest decrease in SOC stocks was observed in temperate regions (52% decrease), followed by tropical regions (41% decrease) and boreal regions (31% decrease). Climate and soil factors affected the decrease in SOC stocks. The SOC turnover rate constant after the conversion of forests to agricultural land increased with the mean annual precipitation and temperature. To our knowledge, this is the first time that original forest type was considered when evaluating changes in SOC after being converted to agricultural land. The differences between forest types should be considered when calculating global changes in SOC stocks.

  3. Solar Effects on Global Climate Due to Cosmic Rays and Solar Energetic Particles

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Raeder, J.; DAuria, R.

    2005-01-01

    Although the work reported here does not directly connect solar variability with global climate change, this research establishes a plausible quantitative causative link between observed solar activity and apparently correlated variations in terrestrial climate parameters. Specifically, we have demonstrated that ion-mediated nucleation of atmospheric particles is a likely, and likely widespread, phenomenon that relates solar variability to changes in the microphysical properties of clouds. To investigate this relationship, we have constructed and applied a new model describing the formation and evolution of ionic clusters under a range of atmospheric conditions throughout the lower atmosphere. The activation of large ionic clusters into cloud nuclei is predicted to be favorable in the upper troposphere and mesosphere, and possibly in the lower stratosphere. The model developed under this grant needs to be extended to include additional cluster families, and should be incorporated into microphysical models to further test the cause-and-effect linkages that may ultimately explain key aspects of the connections between solar variability and climate.

  4. Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms

    NASA Technical Reports Server (NTRS)

    Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.

    2012-01-01

    The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.

  5. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  6. Measurements of thermal electron heating and the formation of a non-Maxwellian energy distribution due to ion acoustic turbulence

    SciTech Connect

    Hargreaves, T.A.

    1982-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in the U.C. Davis Prometheus III Device. P-polarized microwaves (f = 1.2 GHz, P/sub 0/ less than or equal to 5 KW) are incident on an essentially collisionless plasma with a long scale length in an oversized waveguide. For modest powers, large amplitude ion acoustic turbulence is observed on the underdense plasma shelf due to a combination of the parametric decay and the electron drift instabilities. Suprathermal and thermal electrons are strongly heated in this region with the thermal heating due to scattering with the ion turbulence. Since the cross section for interaction decreases rapidly as the electron energy increases, the low energy electrons are preferentially heated. The electron distribution function is measured and agrees with theory; the power absorption is reduced by up to a factor of two compared to a Maxwellian distribution. After the microwaves have been measured to decay, the electron distribution function is seen to relax back to its initial Maxwellian form. This occurs, as theory predicts, roughly on the electron-electron collision time scale.

  7. Global distribution of moisture, evaporation-precipitation, and diabatic heating rates

    NASA Technical Reports Server (NTRS)

    Christy, John R.

    1989-01-01

    Global archives were established for ECMWF 12-hour, multilevel analysis beginning 1 January 1985; day and night IR temperatures, and solar incoming and solar absorbed. Routines were written to access these data conveniently from NASA/MSFC MASSTOR facility for diagnostic analysis. Calculations of diabatic heating rates were performed from the ECMWF data using 4-day intervals. Calculations of precipitable water (W) from 1 May 1985 were carried out using the ECMWF data. Because a major operational change on 1 May 1985 had a significant impact on the moisture field, values prior to that date are incompatible with subsequent analyses.

  8. Hot-spot heating susceptibility due to reverse bias operating conditions

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.

    1985-01-01

    Because of field experience (indicating that cell and module degradation could occur as a result of hot spot heating), a laboratory test was developed at JPL to determine hot spot susceptibility of modules. The initial hot spot testing work at JPL formed a foundation for the test development. Test parameters are selected as follows. For high shunt resistance cells, the applied back bias test current is set equal to the test cell current at maximum power. For low shunt resistance cells, the test current is set equal to the cell short circuit current. The shadow level is selected to conform to that which would lead to maximum back bias voltage under the appropriate test current level. The test voltage is determined by the bypass diode frequency. The test conditions are meant to simulate the thermal boundary conditions for 100 mW/sq cm, 40C ambient environment. The test lasts 100 hours. A key assumption made during the development of the test is that no current imbalance results from the connecting of multiparallel cell strings. Therefore, the test as originally developed was applicable for single string case only.

  9. Cold tolerance in sealworm ( Pseudoterranova decipiens) due to heat-shock adaptations.

    PubMed

    Stormo, S K; Praebel, K; Elvevoll, E O

    2009-09-01

    Third-stage larvae of Pseudoterranova decipiens commonly infect whitefish such as cod, and the parasite can be transferred to humans through lightly prepared (sushi) meals. Because little is known about the nematode's cold tolerance capacity, we examined the nematode's ability to supercool, and whether or not cold acclimation could induce physiological changes that might increase its ability to tolerate freezing conditions. Even if third-stage Pseudoterranova decipiens larvae have some supercooling ability, they show no potential for freezing avoidance because they are not able to withstand inoculative freezing. Still, they have the ability to survive freezing at high subzero temperatures, something which suggests that these nematodes have a moderate freeze tolerance. We also show that acclimation to high temperatures triggers trehalose accumulation to an even greater extent than cold acclimation. Trehalose is a potential cryoprotectant which has been shown to play a vital role in the freeze tolerance of nematodes. We suggest that the trehalose accumulation observed for the cold acclimation is a general response to thermal stress, and that the nematode's moderate freeze tolerance may be acquired through adaptation to heat rather than coldness.

  10. Gravity wave forcing in the middle atmosphere due to reduced ozone heating during a solar eclipse

    NASA Technical Reports Server (NTRS)

    Fritts, David C.; Luo, Zhangai

    1993-01-01

    We present an analysis of the gravity wave structure and the associated forcing of the middle atmosphere induced by the screening of the ozone layer from solar heating during a solar eclipse. Fourier integral techniques and numerical evaluation of the integral solutions were used to assess the wave field structure and to compute the gravity wave forcing of the atmosphere at greater heights. Our solutions reveal dominant periods of a few hours, characteristic horizontal and vertical scales of about 5000 to 10,000 km and 200 km, respectively, and an integrated momentum flux in the direction of eclipse motion of about 5.6 x 10 exp 8 N at each height above the forcing level. These results suggest that responses to solar eclipses may be difficult to detect above background gravity wave and tidal fluctuations until well into the thermosphere. Conversely, the induced body forces may penetrate to considerable heights because of the large wave scales and will have significant effects at levels where the wave field is dissipated.

  11. Far-field optical degradation due to near-field transmission through a turbulent heated jet.

    PubMed

    Cicchiello, J M; Jumper, E J

    1997-09-01

    When a laser beam traverses an optically active, turbulent flow field, the laser wave front is aberrated by the flow. Density variations in a heated two-dimensional jet, for example, correspond to index-of-refraction variations, and this modulation of the index in the fluid can imprint an optical phase disturbance, or phase error, onto the laser wave front. Adaptive-optic systems seek to correct the phase error of the wave front, and thus restore the integrity of the far-field irradiance pattern. Given a near-field spatial mapping of a phase disturbance, the far-field irradiance pattern of the affected wave front can be calculated with Fourier-optics techniques. A Fourier-optics computer code was used to study the far-field irradiance patterns arising from actual time-varying measurements of a fluid-induced phase error. The time-averaged Strehl ratio was studied to provide insight into the spatial and temporal design requirements for adaptive-optic systems applied to the time series of near-field spatial phase-error maps.

  12. Decrease in Penicillin Susceptibility Due to Heat Shock Protein ClpL in Streptococcus pneumoniae▿†

    PubMed Central

    Tran, Thao Dang-Hien; Kwon, Hyog-Young; Kim, Eun-Hye; Kim, Ki-Woo; Briles, David E.; Pyo, Suhkneung; Rhee, Dong-Kwon

    2011-01-01

    Antibiotic resistance and tolerance are increasing threats to global health as antibiotic-resistant bacteria can cause severe morbidity and mortality and can increase treatment cost 10-fold. Although several genes contributing to antibiotic tolerance among pneumococci have been identified, we report here that ClpL, a major heat shock protein, could modulate cell wall biosynthetic enzymes and lead to decreased penicillin susceptibility. On capsular type 1, 2, and 19 genetic backgrounds, mutants lacking ClpL were more susceptible to penicillin and had thinner cell walls than the parental strains, whereas a ClpL-overexpressing strain showed a higher resistance to penicillin and a thicker cell wall. Although exposure of Streptococcus pneumoniae D39 to penicillin inhibited expression of the major cell wall synthesis gene pbp2x, heat shock induced a ClpL-dependent increase in the mRNA levels and protein synthesized by pbp2x. Inducible ClpL expression correlated with PBP2x expression and penicillin susceptibility. Fractionation and electron micrograph data revealed that ClpL induced by heat shock is localized at the cell wall, and the ΔclpL showed significantly reduced net translocation of PBP2x into the cell wall. Moreover, coimmunoprecipitation with either ClpL or PBP2x antibody followed by reprobing with ClpL or PBP2x antibody showed an interaction between ClpL and PBP2x after heat stress. This interaction was confirmed by His tag pulldown assay with either ClpLHis6 or PBP2xHis6. Thus, ClpL stabilized pbp2x expression, interacted with PBP2x, and facilitated translocation of PBP2x, a key protein of cell wall synthesis process, contributing to the decrease of antibiotic susceptibility in S. pneumoniae. PMID:21422206

  13. Characterizing waveform uncertainty due to ambient noise for the Global Seismic Network

    NASA Astrophysics Data System (ADS)

    Guandique, J. A.; Burdick, S.; Lekic, V.

    2015-12-01

    Ambient seismic noise is the vibration present on seismograms not due by any earthquake or discrete source. It can be caused by trees swaying in the wind or trucks rumbling on the freeway, but the main source of noise is the microseism caused by ocean waves. The frequency content and amplitude of seismic noise varies due to weather, season, and the location of a station, among other factors. Because noise affects recordings of earthquake waveforms, better understanding it could improve the detection of small earthquakes, reduce false positives in earthquake early warning, and quantify uncertainty in waveform-based studies In this study, we used two years of 3-component accelerograms from stations in the GSN. We eliminate days with major earthquakes, aggregate analysis by month, and calculate the mean power spectrum for each component and the transfer function between components. For each power spectrum, we determine the dominant frequency and amplitude of the primary (PM) and secondary (SM) microseisms which appear at periods of ~14s and ~7s, as well as any other prominent peaks. The cross-component terms show that noise recorded on different components cannot be treated as independent. Trends in coherence and phase delay suggest directionality in the noise and information about in which modes it propagates. Preliminary results show that the noise on island stations exhibits less monthly variability, and its PM peaks tend to be much weaker than the SM peaks. The continental stations show much less consistent behavior, with higher variability in the PM peaks between stations and higher frequency content during winter months. Stations that are further inland have smaller SM peaks compared to coastal stations, which are more similar to island stations. Using these spectra and cross-component results, we develop a method for generating realistic 3-component seismic noise and covariance matrices, which can be used across various seismic applications.

  14. Lithospheric stresses due to radiogenic heating of an ice-silicate planetary body - Implications for Ganymede's tectonic evolution

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Parmentier, E. M.

    1984-01-01

    Thermal evolution models of differentiated and undifferentiated ice-silicate bodies containing long-lived radiogenic heat sources are examined. Lithospheric sresses arise due to volume change of the interior and temperature change in the lithosphere. For an undifferentiated body, the surface stress peaks early in the evolution, while in the differentiated case, stresses peak later and continue to accumulate for longer periods of time. The variation of near-surface stress with depth shows that stresses for the undifferentiated body initially penetrate to great depths, but rapidly concentrate within a few kilometers of the surface. For the differentiated body, elastic stresses never accumulate at a depth greater than a few kilometers. These models are applied to consider long-term rdioactive heating as a possible mechanism of tectonic activity and bright terrain formation on Ganymede.

  15. Thermoacoustic Contrast of Prostate Cancer due to Heating by Very High Frequency Irradiation

    PubMed Central

    Hull, D; Thomas, M; Griep, SK; Jacobsohn, K; See, WA

    2015-01-01

    Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo thermoacoustic computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology. PMID:25554968

  16. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; Hull, D.; Thomas, M.; Griep, SK; Jacobsohn, K.; See, WA

    2015-01-01

    Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo TA computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology.

  17. Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation.

    PubMed

    Patch, S K; Hull, D; Thomas, M; Griep, S K; Jacobsohn, K; See, W A

    2015-01-21

    Applying the thermoacoustic (TA) effect to diagnostic imaging was first proposed in the 1980s. The object under test is irradiated by high-power pulses of electromagnetic energy, which heat tissue and cause thermal expansion. Outgoing TA pressure pulses are detected by ultrasound transducers and reconstructed to provide images of the object. The TA contrast mechanism is strongly dependent upon the frequency of the irradiating electromagnetic pulse. When very high frequency (VHF) electromagnetic irradiation is utilized, TA signal production is driven by ionic content. Prostatic fluids contain high levels of ionic metabolites, including citrate, zinc, calcium, and magnesium. Healthy prostate glands produce more ionic metabolites than diseased glands. VHF pulses are therefore expected to generate stronger TA signal in healthy prostate glands than in diseased glands. A benchtop system for performing ex vivo TA computed tomography with VHF energy is described and images are presented. The system utilizes irradiation pulses of 700 ns duration exceeding 20 kW power. Reconstructions frequently visualize anatomic landmarks such as the urethra and verumontanum. TA reconstructions from three freshly excised human prostate glands with little, moderate, and severe cancerous involvement are compared with histology. TA signal strength is negatively correlated with percent cancerous involvement in this small sample size. For the 45 regions of interest analyzed, a reconstruction value of 0.4 mV provides 100% sensitivity but only 29% specificity. This sample size is far too small to draw sweeping conclusions, but the results warrant a larger volume study including comparison of TA images to the gold standard, histology.

  18. Modeling Subducting Slabs: Structural Variations due to Thermal Models, Latent Heat Feedback, and Thermal Parameter

    NASA Astrophysics Data System (ADS)

    Marton, F. C.

    2001-12-01

    The thermal, mineralogical, and buoyancy structures of thermal-kinetic models of subducting slabs are highly dependent upon a number of parameters, especially if the metastable persistence of olivine in the transition zone is investigated. The choice of starting thermal model for the lithosphere, whether a cooling halfspace (HS) or plate model, can have a significant effect, resulting in metastable wedges of olivine that differ in size by up to two to three times for high values of the thermal parameter (ǎrphi). Moreover, as ǎrphi is the product of the age of the lithosphere at the trench, convergence rate, and dip angle, slabs with similar ǎrphis can show great variations in structures as these constituents change. This is especially true for old lithosphere, as the lithosphere continually cools and thickens with age for HS models, but plate models, with parameters from Parson and Sclater [1977] (PS) or Stein and Stein [1992] (GDH1), achieve a thermal steady-state and constant thickness in about 70 My. In addition, the latent heats (q) of the phase transformations of the Mg2SiO4 polymorphs can also have significant effects in the slabs. Including q feedback in models raises the temperature and reduces the extent of metastable olivine, causing the sizes of the metastable wedges to vary by factors of up to two times. The effects of the choice of thermal model, inclusion and non-inclusion of q feedback, and variations in the constituents of ǎrphi are investigated for several model slabs.

  19. Available potential energy gain from mixing due to the nonlinearity of the equation of state in a global ocean model

    NASA Astrophysics Data System (ADS)

    Urakawa, L. S.; Saenz, J. A.; Hogg, A. M.

    2013-05-01

    Densification in the ocean interior upon mixing at high latitudes, due to the nonlinear equation of state (EoS) of seawater, enhances the meridional overturning circulation (MOC). However, recent calculations using numerical simulations of global ocean circulation have shown that the nonlinearity of the EoS leads to a sink of gravitational potential energy (PE), from which one might infer that there is less energy available to be released to the MOC. Here the available PE (APE) budget of the global ocean is investigated using a numerical model with a nonlinear EoS under a realistic configuration. The results show that, while the nonlinearity of the EoS leads to a loss of gravitational PE, it is a source of APE. For the model used in this study, nonlinearity of the EoS is as significant as surface buoyancy forcing in generating APE.

  20. Estimating Orion Heat Shield Failure Due To Ablator Cracking During The EFT-1 Mission

    NASA Technical Reports Server (NTRS)

    Vander Kam, Jeremy C.; Gage, Peter

    2016-01-01

    The Orion EFT-1 heatshield suffered from two major certification challenges: First, the mechanical properties used in design were not evident in the flight hardware and second, the flight article itself cracked during fabrication. The combination of these events motivated the Orion Program to pursue an engineering-level Probabilistic Risk Assessment (PRA) as part of heatshield certification rationale. The PRA provided loss of Mission (LOM) likelihoods considering the probability of a crack occurring during the mission and the likelihood of subsequent structure over-temperature. The methods and input data for the PRA are presented along with a discussion of the test data used to anchor the results. The Orion program accepted an EFT-1 Loss of Vehicle (LOV) risk of 1-in-160,000 due to in-mission Avcoat cracking based on the results of this analysis. Conservatisms in the result, along with future considerations for Exploration Missions (EM) are also addressed.

  1. Gamma-effects on 2-dimensional transonic aerodynamics. [specific heat ratio due to shock induced separation

    NASA Technical Reports Server (NTRS)

    Tuzla, K.; Russell, D. A.; Wai, J. C.

    1976-01-01

    Nonlifting 10% biconvex airfoils are mounted in a 30 x 40 cm Ludwieg-tube-driven transonic test-section and the flow field recorded with a holographic interferometer. Nitrogen, argon, and carbon dioxide are used as the principal test gases. Experiments are conducted with Reynolds number based on chord of (0.5-3.5) x 10 to the 6th with Mach numbers of 0.70, 0.75, and 0.80. Supporting calculations use inviscid transonic small-disturbance and full-potential computer codes coupled with simple integral boundary-layer modeling. Systematic studies show that significant gamma-effects can occur due to shock-induced separation.

  2. The Impact of Individual Anthropogenic Emissions Sectors on the Global Burden of Human Mortality due to Ambient Air Pollution

    PubMed Central

    Silva, Raquel A.; Adelman, Zachariah; Fry, Meridith M.; West, J. Jason

    2016-01-01

    Background: Exposure to ozone and fine particulate matter (PM2.5) can cause adverse health effects, including premature mortality due to cardiopulmonary diseases and lung cancer. Recent studies quantify global air pollution mortality but not the contribution of different emissions sectors, or they focus on a specific sector. Objectives: We estimated the global mortality burden of anthropogenic ozone and PM2.5, and the impact of five emissions sectors, using a global chemical transport model at a finer horizontal resolution (0.67° × 0.5°) than previous studies. Methods: We performed simulations for 2005 using the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), zeroing out all anthropogenic emissions and emissions from specific sectors (All Transportation, Land Transportation, Energy, Industry, and Residential and Commercial). We estimated premature mortality using a log-linear concentration–response function for ozone and an integrated exposure–response model for PM2.5. Results: We estimated 2.23 (95% CI: 1.04, 3.33) million deaths/year related to anthropogenic PM2.5, with the highest mortality in East Asia (48%). The Residential and Commercial sector had the greatest impact globally—675 (95% CI: 428, 899) thousand deaths/year—and in most regions. Land Transportation dominated in North America (32% of total anthropogenic PM2.5 mortality), and it had nearly the same impact (24%) as Residential and Commercial (27%) in Europe. Anthropogenic ozone was associated with 493 (95% CI: 122, 989) thousand deaths/year, with the Land Transportation sector having the greatest impact globally (16%). Conclusions: The contributions of emissions sectors to ambient air pollution–related mortality differ among regions, suggesting region-specific air pollution control strategies. Global sector-specific actions targeting Land Transportation (ozone) and Residential and Commercial (PM2.5) sectors would particularly benefit human health. Citation: Silva RA

  3. Electron density changes in the nighttime D region due to heating by very-low-frequency transmitters

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan V.; Inan, Umran S.

    1994-01-01

    Modification of the nighttime D region electron density (N(sub e)) due to heating by very-low-frequency (VLF) transmitters is investigated theoretically using a four-species model of the ion chemistry. The effects of a 100 kW, a 265 kW, and a 1000 kW VLF transmitter are calculated for three ambient N(sub e) profiles. Results indicate that N(sub e) is reduced by up to 26% at approximately 80 km altitude over a 1000 kW transmitter.

  4. Ground heat flux: An analytical review of 6 models evaluated at 88 sites and globally

    NASA Astrophysics Data System (ADS)

    Purdy, A. J.; Fisher, J. B.; Goulden, M. L.; Famiglietti, J. S.

    2016-12-01

    Uncertainty in ground heat flux (G) means that evaluation of the other terms in the surface energy balance (e.g., latent and sensible heat fluxes (LE and H)) remains problematic. Algorithms that calculate LE and H require available energy, the difference between net radiation, RNET, and G. There are a wide range of approaches to model G for large-scale applications, with a subsequent wide range of estimates and accuracies. We provide the largest review of these methods to date (N = 6), evaluating modeled G against measured G from 88 FLUXNET sites. The instantaneous midday variability in G is best captured by models forced with net radiation, while models forced by temperature show the least error at both instantaneous and daily time scales. We produce global decadal data sets of G to illustrate regional and seasonal sensitivities, as well as uncertainty. Global model mean midmorning instantaneous G is highest during September, October, and November at 63.42 (±16.84) Wm-2, while over December, January, and February G is lowest at 53.86 (±18.09) Wm-2 but shows greater intermodel uncertainty. Results from this work have the potential to improve evapotranspiration estimates and guide appropriate G model selection and development for various land uses.

  5. Satellite-based detection of global urban heat-island temperature influence

    USGS Publications Warehouse

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  6. Changes in optical properties of ex vivo rat prostate due to heating.

    PubMed

    Skinner, M G; Everts, S; Reid, A D; Vitkin, I A; Lilge, L; Sherar, M D

    2000-05-01

    This study examines the effectiveness of a single, first-order Arrhenius process in accurately modelling the thermally induced changes in the optical properties, particularly the reduced scattering coefficient, mu(s)', and the absorption coefficient, mu(a), of ex vivo rat prostate. Recent work has shown that mu(s)' can increase as much as five-fold due to thermal coagulation, and the observed change in mu(s)' has been modelled well according to a first-order rate process in albumen. Conversely, optical property measurements conducted using pig liver suggest that this change in mu(s)' cannot suitably be described using a single rate parameter. In canine prostate, measurements have indicated that while the absorption coefficient varies with temperature, it does not do so according to first-order kinetics. A double integrating sphere system was used to measure the reflectance and transmittance of light at 810 nm through a thin sample of prostate. Using prostate samples collected from Sprague Dawley rats, optical properties were measured at a constant elevated temperature. Tissue samples were measured over the range 54-83 degrees C. The optical properties of the sample were determined through comparison with reflectance and transmittance values predicted by a Monte Carlo simulation of light propagation in turbid media. A first order Arrhenius model was applied to the observed change in mu(s)' and mu(a) to determine the rate process parameters for thermal coagulation. The measured rate coefficients were Ea = (7.18 +/- 1.74) x 10(4) J mol(-1) and Afreq = 3.14 x 10(8) s(-1) for mu(s)'. It was determined that the change in mu(s)' is well described by a single first-order rate process. Similar analysis performed on the changes in mu(a) due to increased temperatures yielded Ea = (1.01 +/- 0.35) x 10(5) J mol(-1) and Afreq = 8.92 x 10(12) s(-1). The results for mu(a) suggest that the Arrhenius model may be applicable to the changes in absorption.

  7. Stage-specific heat effects: timing and duration of heat waves alter demographic rates of a global insect pest.

    PubMed

    Zhang, Wei; Rudolf, Volker H W; Ma, Chun-Sen

    2015-12-01

    The frequency and duration of periods with high temperatures are expected to increase under global warming. Thus, even short-lived organisms are increasingly likely to experience periods of hot temperatures at some point of their life-cycle. Despite recent progress, it remains unclear how various temperature experiences during the life-cycle of organisms affect demographic traits. We simulated hot days (daily mean temperature of 30 °C) increasingly experienced under field conditions and investigated how the timing and duration of such hot days during the life cycle of Plutella xylostella affects adult traits. We show that hot days experienced during some life stages (but not all) altered adult lifespan, fecundity, and oviposition patterns. Importantly, the effects of hot days were contingent on which stage was affected, and these stage-specific effects were not always additive. Thus, adults that experience different temporal patterns of hot periods (i.e., changes in timing and duration) during their life-cycle often had different demographic rates and reproductive patterns. These results indicate that we cannot predict the effects of current and future climate on natural populations by simply focusing on changes in the mean temperature. Instead, we need to incorporate the temporal patterns of heat events relative to the life-cycle of organisms to describe population dynamics and how they will respond to future climate change.

  8. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  9. Improved time-space method for 3-D heat transfer problems including global warming

    SciTech Connect

    Saitoh, T.S.; Wakashima, Shinichiro

    1999-07-01

    In this paper, the Time-Space Method (TSM) which has been proposed for solving general heat transfer and fluid flow problems was improved in order to cover global and urban warming. The TSM is effective in almost all-transient heat transfer and fluid flow problems, and has been already applied to the 2-D melting problems (or moving boundary problems). The computer running time will be reduced to only 1/100th--1/1000th of the existing schemes for 2-D and 3-D problems. However, in order to apply to much larger-scale problems, for example, global warming, urban warming and general ocean circulation, the SOR method (or other iterative methods) in four dimensions is somewhat tedious and provokingly slow. Motivated by the above situation, the authors improved the speed of iteration of the previous TSM by introducing the following ideas: (1) Timewise chopping: Time domain is chopped into small peaches to save memory requirement; (2) Adaptive iteration: Converged region is eliminated for further iteration; (3) Internal selective iteration: Equation with slow iteration speed in iterative procedure is selectively iterated to accelerate entire convergence; and (4) False transient integration: False transient term is added to the Poisson-type equation and the relevant solution is regarded as a parabolic equation. By adopting the above improvements, the higher-order finite different schemes and the hybrid mesh, the computer running time for the TSM is reduced to some 1/4600th of the conventional explicit method for a typical 3-D natural convection problem in a closed cavity. The proposed TSM will be more efficacious for large-scale environmental problems, such as global warming, urban warming and general ocean circulation, in which a tremendous computing time would be required.

  10. Change of tropical cyclone heat potential in response to global warming

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Chen, Changlin; Wang, Guihua

    2016-04-01

    Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.

  11. Heat fluxes of the Indian Ocean from a global eddy-resolving model

    NASA Astrophysics Data System (ADS)

    Garternicht, U.; Schott, F.

    1997-09-01

    The output of the global eddy-resolving ¼° ocean model of Semtner/Chervin (run by the Naval Postgraduate School, Monterey, California) has been used to study the oceanic temperature and heat flux in the Indian Ocean. The meridional heat flux in the northern Indian Ocean is at the low end of the observed values. A vertical overturning cell in the upper 500 m is the main contributor to the annual mean meridional heat flux across 5°S, whereas the horizontal gyre circulation, confined to the upper 500 m, dominates north of the equator. The change of monsoon winds is manifested in a reversal of the meridional circulation throughout the whole water column. The most notable result is a strong linear relationship of the meridional temperature flux and the zonal wind stress component north of 20°S. The model's Pacific-Indian Ocean throughflow across the section at 120°E accounts for -8.8±5.1 Sv (1 Sv≡106 m3 s-1). A strong interannual variability during the model run of 3 years shows a maximum range of 12 Sv in January/February and a minimum during March through June. The inflow from the Pacific into the Indian Ocean results in a total annual mean temperature flux of -0.9 PW (1 PW≡1015 W). In the model the temperature flux from the Pacific through the Indian Ocean to the south dominates in comparison with the input of solar heat from the northern Indian Ocean.

  12. An Efficient Approximation of the Coronal Heating Rate for use in Global Sun-Heliosphere Simulations

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2010-02-01

    The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of debate. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent one-dimensional models have been found to reproduce many observed features of the solar wind by assuming the energy comes from Alfvén waves that are partially reflected, then dissipated by magnetohydrodynamic turbulence. However, the nonlocal physics of wave reflection has made it difficult to apply these processes to more sophisticated (three-dimensional) models. This paper presents a set of robust approximations to the solutions of the linear Alfvén wave reflection equations. A key ingredient of the turbulent heating rate is the ratio of inward-to-outward wave power, and the approximations developed here allow this to be written explicitly in terms of local plasma properties at any given location. The coronal heating also depends on the frequency spectrum of Alfvén waves in the open-field corona, which has not yet been measured directly. A model-based assumption is used here for the spectrum, but the results of future measurements can be incorporated easily. The resulting expression for the coronal heating rate is self-contained, computationally efficient, and applicable directly to global models of the corona and heliosphere. This paper tests and validates the approximations by comparing the results to exact solutions of the wave transport equations in several cases relevant to the fast and slow solar wind.

  13. Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage

    NASA Astrophysics Data System (ADS)

    Avnery, Shiri; Mauzerall, Denise L.; Liu, Junfeng; Horowitz, Larry W.

    2011-04-01

    Exposure to elevated concentrations of surface ozone (O 3) causes substantial reductions in the agricultural yields of many crops. As emissions of O 3 precursors rise in many parts of the world over the next few decades, yield reductions from O 3 exposure appear likely to increase the challenges of feeding a global population projected to grow from 6 to 9 billion between 2000 and 2050. This study estimates year 2000 global yield reductions of three key staple crops (soybean, maize, and wheat) due to surface ozone exposure using hourly O 3 concentrations simulated by the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2). We calculate crop losses according to two metrics of ozone exposure - seasonal daytime (08:00-19:59) mean O 3 (M12) and accumulated O 3 above a threshold of 40 ppbv (AOT40) - and predict crop yield losses using crop-specific O 3 concentration:response functions established by field studies. Our results indicate that year 2000 O 3-induced global yield reductions ranged, depending on the metric used, from 8.5-14% for soybean, 3.9-15% for wheat, and 2.2-5.5% for maize. Global crop production losses totaled 79-121 million metric tons, worth $11-18 billion annually (USD 2000). Our calculated yield reductions agree well with previous estimates, providing further evidence that yields of major crops across the globe are already being substantially reduced by exposure to surface ozone - a risk that will grow unless O 3-precursor emissions are curbed in the future or crop cultivars are developed and utilized that are resistant to O 3.

  14. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  15. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  16. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  17. A Thermo-Hydro-Mechanical modeling of fracture opening and closing due heat extraction from geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Nand Pandey, Sachchida; Chaudhuri, Abhijit; Kelkar, Sharad

    2015-04-01

    Increasing the carbon dioxide concentration in atmosphere become challenging task for the scientific community. To achieve the sustainable growth with minimum pollution in atmosphere requires the development of low carbon technology or switch towards renewable energy. Geothermal energy is one of the promising source of clean energy. Geothermal energy is also considered a sustainable, reliable and least-expensive. This study presents a numerical modeling of subsurface heat extraction from the reservoir. The combine flow, heat transfer and geo-mechanical problem are modeled using FEHM code, which was validated against existing field data, numerical code and commercial software. In FEHM the flow and heat transfer in reservoir are solved by control volume method while for mechanical deformation finite element technique is used. The 3-D computational domain (230m × 200m × 1000m) has single horizontal fault/fracture, which is located at 800 m depth from the ground surface. The fracture connects the injection and production wells. The distance between the wells is 100 m. A geothermal gradient 0.08 °C/m is considered. The temperatures at top and bottom boundaries are held fixed as 20 and 100 °C respectively. The zero heat and mass flux boundary conditions are imposed to all vertical side boundaries of the domain. The simulation results for 100 days suggests that the computational domain is sufficiently large as the temperature along the vertical boundaries are not affected by cold-water injection. To model the thermo-poro-elastic deformation, zero all three components of displacement are specified as zero at the bottom. The zero stress condition along all other boundaries allows the boundaries to move freely. The temperature and pressure dependent fluid properties such as density and viscosity with single phase flow in saturated medium is considered. We performed a series of thermo-hydro-mechanical (THM) simulations to show aperture alteration due to cold

  18. Quantitative Assessment of the Integrated Response in Global Heat and Moisture Budgets to Changing Solar Irradiance

    NASA Technical Reports Server (NTRS)

    White, Warren B.; Cayan, Daniel R.; Dettinger, Michael; Sharber, James (Technical Monitor)

    2001-01-01

    Earlier, we found time sequences of basin- and global-average upper ocean temperature (that is, diabatic heat storage above the main pycnocline) for 40 years from 1955-1994 and of sea surface temperature for 95 years from 1900-1994 associated with changes in the Sun's radiative forcing on decadal and interdecadal timescales, lagging by 10 deg.- 30 deg. of phase and confined to the upper 60-120 m. Yet, the observed changes in upper ocean temperature (approx. 0.1 K) were approximately twice those expected from the Stefan-Boltzmann black-body radiation law for the Earth's surface, with phase lags (0 deg. to 30 deg. of phase) much shorter than the 90 deg. phase shift expected as well. Moreover, White et al. (1997, 1998) found the Earth's global decadal mode in covarying SST and SLP anomalies phase locked to the decadal signal in the Sun's irradiance. Yet, Allan (2000) found this decadal signal also characterized by patterns similar to those observed on biennial and interannual time scales; that is, the Troposphere Biennial Oscillation (TBO) and the El Nino and the Southern Oscillation (ENSO). This suggested that small changes in the Sun's total irradiance could excite this global decadal mode in the Earth's ocean-atmosphere-terrestrial system similar to those excited internally on biennial and interannual period scales. This is a significant finding, proving that energy budget models (that is, models based on globally-averaged radiation balances) yield unrealistic responses. Thus, the true response must include positive and negative feedbacks in the Earth's ocean-atmosphere-terrestrial system as its internal mode (that is, the natural mode of the system) respond in damped resonance to quasi-periodic decadal changes in the Sun's irradiance. Moreover, these responses are not much different from those occurring internally on biennial and interannual period scales.

  19. Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari

    2010-01-01

    Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers compared with 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This

  20. A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.

    2003-01-01

    To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux

  1. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts.

    PubMed

    Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia

    2016-01-01

    Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed.

  2. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream

    NASA Astrophysics Data System (ADS)

    Javed, T.; Ghaffari, A.; Ahmad, H.

    2016-05-01

    The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.

  3. Global strong solution to compressible Navier-Stokes equations with density dependent viscosity and temperature dependent heat conductivity

    NASA Astrophysics Data System (ADS)

    Duan, Ran; Guo, Ai; Zhu, Changjiang

    2017-04-01

    We obtain existence and uniqueness of global strong solution to one-dimensional compressible Navier-Stokes equations for ideal polytropic gas flow, with density dependent viscosity and temperature dependent heat conductivity under stress-free and thermally insulated boundary conditions. Here we assume viscosity coefficient μ (ρ) = 1 +ρα and heat conductivity coefficient κ (θ) =θβ for all α ∈ [ 0 , ∞) and β ∈ (0 , + ∞).

  4. An estimation of the global burden of disease due to skin lesions caused by arsenic in drinking water.

    PubMed

    Fewtrell, Lorna; Fuge, Ron; Kay, David

    2005-06-01

    The global burden of disease due to skin lesions caused by arsenic in drinking water was estimated by combining country-based exposure data with selected exposure-response relationships derived from the literature. Populations were considered to be exposed to elevated arsenic levels if their drinking water contained arsenic concentrations of 50 microg I(-1) or greater. Elevated arsenic concentrations in drinking water result in a significant global burden of disease, even when confining the health outcome to skin lesions. The burden of disease was particularly marked in the World Health Organization (WHO) comparative risk assessment (CRA) 'Sear D' region, which includes Bangladesh, India and Nepal. Unsurprisingly, Bangladesh was the worst affected country with 143 disability adjusted life years (DALYs) per 1,000 population. Although this initial estimate is subject to a large degree of uncertainty, it does represent an important first step in allowing the comparison of the problem relating to elevated arsenic in drinking water to other environmental health outcomes.

  5. Global ocean circulation and equator-pole heat transport as a function of ocean GCM resolution

    SciTech Connect

    Covey, C.

    1994-06-01

    To determine whether resolution of smaller scales is necessary to simulate large-scale ocean climate correctly, I examine results from a global ocean GCM run with horizontal grid spacings spanning a range from coarse resolutions traditionally used in climate modeling to nearly the highest resolution attained with today`s computers. The experiments include four cases employing 4{degrees}, 2{degrees}, 1{degrees} and 1/2{degrees} spacing in latitude and longitude, which were run with minimal differences among them, i.e., in a controlled experiment. Two additional cases-1/2{degrees} spacing with a more scale-selective sub-gridscale mixing of heat and momentum, and approximate 1/4{degrees} spacing-are also included. The 1/4{degrees} run resolves most of the observed mesoscale eddy energy in the ocean. Several artificial constraints on the model tend to minimize differences among the different resolution cases. Nevertheless, for quantities of interest to global climate studies,the simulations show significant changes as resolution increases.

  6. Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products

    NASA Technical Reports Server (NTRS)

    Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari

    2010-01-01

    Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship to development intensity, size, and ecological setting for more than 3000 urban settlements over the globe. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby non-urban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to insure objective inter-comparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass/shrub biomes, and only a weak UHI or sometimes an Urban Heat Sink (UHS) in cities in and and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) to the difference in vegetation density between urban and rural zones represented by MODIS Normalized Difference Vegetation Index (NDVI). Globally averaged, the daytime UHI amplitude for all settlement is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers, compared to 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variances is explained by ISA for urban settlements within forests at mid-to-high latitudes. This percentage will increase to more than 80% when only USA

  7. Perceived temperature in the course of climate change: an analysis of global heat index from 1979-2013

    NASA Astrophysics Data System (ADS)

    Lee, D.; Brenner, T.

    2015-03-01

    The increase in global mean temperatures resulting from climate change has wide reaching consequences for the earth's ecosystems and other natural systems. Many studies have been devoted to evaluating the distribution and effects of these changes. We go a step further and evaluate global changes to the heat index, a measure of temperature as perceived by humans. Heat index, which is computed from temperature and relative humidity, is more important than temperature for the health of humans and other animals. Even in cases where the heat index does not reach dangerous levels from a health perspective, it has been shown to be an important factor in worker productivity and thus in economic productivity. We compute heat index from dewpoint temperature and absolute temperature 2 m above ground from the ERA-Interim reanalysis dataset for the years 1979-2013. The data is provided aggregated to daily minima, means and maxima (doi:10.1594/PANGAEA.841057). Furthermore, the data is temporally aggregated to monthly and yearly values and spatially aggregated to the level of countries after being weighted by population density in order to demonstrate its usefulness for the analysis of its impact on human health and productivity. The resulting data deliver insights into the spatiotemporal development of near-ground heat index during the course of the past 3 decades. It is shown that the impact of changing heat index is unevenly distributed through space and time, affecting some areas differently than others. The likelihood of dangerous heat index events has increased globally. Also, heat index climate groups that would formerly be expected closer to the tropics have spread latitudinally to include areas closer to the poles. The data can serve in future studies as a basis for evaluating and understanding the evolution of heat index in the course of climate change, as well as its impact on human health and productivity.

  8. Neutral gas density depletion due to neutral gas heating and pressure balance in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Tynan, George R.; Cattolica, Robert

    2007-02-01

    The spatial distribution of neutral gas temperature and total pressure have been measured for pure N2, He/5%N2 and Ar/5%N2 in an inductively coupled plasma (ICP) reactor, and a significant rise in the neutral gas temperature has been observed. When thermal transpiration is used to correct total pressure measurements, the total pressure remains constant regardless of the plasma condition. Neutral pressure is depleted due to the pressure balance when the plasma pressure (mainly electron pressure) becomes comparable to the neutral pressure in high density plasma. Since the neutral gas follows the ideal gas law, the neutral gas density profile was obtained from the neutral gas temperature and the corrected neutral pressure measurements. The results show that the neutral gas density at the centre of the plasma chamber (factor of 2-4 ×) decreases significantly in the presence of a plasma discharge. Significant spatial variation in neutral gas uniformity occurs in such plasmas due to neutral gas heating and pressure balance.

  9. Perceived temperature in the course of climate change: an analysis of global heat index from 1979 to 2013

    NASA Astrophysics Data System (ADS)

    Lee, D.; Brenner, T.

    2015-08-01

    The increase in global mean temperatures resulting from climate change has wide reaching consequences for the earth's ecosystems and other natural systems. Many studies have been devoted to evaluating the distribution and effects of these changes. We go a step further and propose the use of the heat index, a measure of the temperature as perceived by humans, to evaluate global changes. The heat index, which is computed from temperature and relative humidity, is more important than temperature for the health of humans and animals. Even in cases where the heat index does not reach dangerous levels from a health perspective, it has been shown to be an important factor in worker productivity and thus in economic productivity. We compute the heat index from dew point temperature and absolute temperature 2 m above ground from the ERA-Interim reanalysis data set for the years 1979-2013. The described data set provides global heat index aggregated to daily minima, means and maxima per day (doi:10.1594/PANGAEA.841057). This paper examines these data, as well as showing aggregations to monthly and yearly values. Furthermore, the data are spatially aggregated to the level of countries after being weighted by population density in order to facilitate the analysis of its impact on human health and productivity. The resulting data deliver insights into the spatiotemporal development of near-ground heat index during the course of the past three decades. It is shown that the impact of changing heat index is unevenly distributed through space and time, affecting some areas differently than others. The data can serve as a basis for evaluating and understanding the evolution of heat index in the course of climate change, as well as its impact on human health and productivity.

  10. Enhancement of Eddy Heat Transport due to the Anticyclonic Submesoscale Eddies around Ryukyu Islands near Kuroshio in East China Sea

    NASA Astrophysics Data System (ADS)

    Kamidaira, Y.; Uchiyama, Y.; Mitarai, S.; Miyazawa, Y.

    2014-12-01

    A synoptic, regional downscaling experiment of Kuroshio off Ryukyu Islands, Japan, exhibits the evident predominance of submesoscale anticyclonic eddies over cyclones in the narrow strip between Kuroshio and the islands (Uchiyama et al., 2013). In the present study, the mechanism and impacts of the anticyclone dominance are examined with a detailed oceanic downscaling model in a double nested ROMS configuration at the horizontal resolution of 3km (ROMS-L1) and 1km (ROMS-L2), forced by the assimilative JCOPE2 oceanic reanalysis and the JMA GPV-MSM atmospheric hindcast. The model results are extensively validated against a variety of data including shipboard hydrography and satellite altimetry and temperature data to show a good agreement. An alternative ROMS-L2 experiment is also conducted to examine topographic effects on the anticyclones around the Ryukyu Islands by eliminating all the island topography above z > -1000 m, while the other configurations are held unchanged. If the islands are removed, the submesoscale negative vortices on the eastern side of the Kuroshio become much weaker than those of the original case with the islands. The experiment clearly demonstrates that dominance of the negative vorticity between Kuroshio and the Ryukyu Islands is caused by enhanced lateral shear due to the concentrated Kuroshio mean current associated with appropriate formation of the eastern branch, the northward-drifting Ryuku Current, and resultant eddy shedding in the narrow channel between the continental shelf of the East China Sea and the Okinawan ridge. A diagnostic eddy heat flux analysis illustrates that the submesoscale anticyclonic eddies play a crucial role in enhancing the eddy heat transport and thus the lateral mixing between Kuroshio and the islands as compared to those in the coarser resolution models (L1 and JCOPE2), resulting in promoting regional larval and material transport from Kuroshio to the islands.

  11. Experimental observation of microwave absorption and electron heating due to the two plasmon decay instability and resonance absorption

    SciTech Connect

    Rasmussen, D.A.

    1981-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in two experimental devices. In the first device an investigation was made of microwave absorption and electron heating due to the parametric decay of microwaves into electron plasma waves (Two Plasmon Decay instability, TPDI), modeling a process which can occur near the quarter critical surface in laser driven pellets. P-polarized microwave (f = 1.2 GHz, P/sub 0/ less than or equal to 12 kW) are applied to an essentially collisionless, inhomogeneous plasma, in an oversized waveguide, in the U.C. Davis Prometheus III device. The initial density scale length near the quarter critical surface is quite long (L/lambda/sub De/ approx. = 3000 or k/sub 0/L approx. = 15). The observed threshold power for the TPDI is quite low (P/sub T/approx. = 0.1 kW or v/sub os//v/sub e/ approx. = 0.1). Near the threshold the decay waves only occur near the quarter critical surface. As the incident power is increased above threshold, the decay waves spread to lower densities, and for P/sub 0/ greater than or equal to lkW, (v/sub os//v/sub e/ greater than or equal to 0.3) suprathermal electron heating is strong for high powers (T/sub H/ less than or equal to 12 T/sub e/ for P/sub 0/ less than or equal to 8 kW or v/sub os//v/sub e/ less than or equal to 0.9).

  12. Global burden of mortalities due to chronic exposure to ambient PM2.5 from open combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Wiedinmyer, Christine; Ford, Bonne; Cucinotta, Rachel; Gan, Ryan; Magzamen, Sheryl; Pierce, Jeffrey R.

    2016-12-01

    Uncontrolled combustion of domestic waste has been observed in many countries, creating concerns for air quality; however, the health implications have not yet been quantified. We incorporate the Wiedinmyer et al (2014 Environ. Sci. Technol. 48 9523-30) emissions inventory into the global chemical-transport model, GEOS-Chem, and provide a first estimate of premature adult mortalities from chronic exposure to ambient PM2.5 from uncontrolled combustion of domestic waste. Using the concentration-response functions (CRFs) of Burnett et al (2014 Environ. Health Perspect. 122 397-403), we estimate that waste-combustion emissions result in 270 000 (5th-95th: 213 000-328 000) premature adult mortalities per year. The confidence interval results only from uncertainty in the CRFs and assumes equal toxicity of waste-combustion PM2.5 to all other PM2.5 sources. We acknowledge that this result is likely sensitive to choice of chemical-transport model, CRFs, and emission inventories. Our central estimate equates to 9% of adult mortalities from exposure to ambient PM2.5 reported in the Global Burden of Disease Study 2010. Exposure to PM2.5 from waste combustion increases the risk of premature mortality by more than 0.5% for greater than 50% of the population. We consider sensitivity simulations to uncertainty in waste-combustion emission mass, the removal of waste-combustion emissions, and model resolution. A factor-of-2 uncertainty in waste-combustion PM2.5 leads to central estimates ranging from 138 000 to 518 000 mortalities per year for factors-of-2 reductions and increases, respectively. Complete removal of waste combustion would only avoid 191 000 (5th-95th: 151 000-224 000) mortalities per year (smaller than the total contributed premature mortalities due to nonlinear CRFs). Decreasing model resolution from 2° × 2.5° to 4° × 5° results in 16% fewer mortalities attributed to waste-combustion PM2.5, and over Asia, decreasing resolution from 0.5° × 0.666° to 2° × 2

  13. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, Anthony; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.

    2009-01-01

    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.

  14. Dynamical consequences on fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection

    SciTech Connect

    Larsen, T.B.; Yuen, D.A.

    1995-05-15

    The authors have studied 2-D time-dependent convection for a rheology which is both non-Newtonian and temperature-dependent. Strong effects associated with viscous heating are found in the downwelling sheets, which are heated on both sides with an intensity around O(10{sup 2}) times the chondritic value. The magnitude of viscous heating increases strongly with the subduction speed. The slab interior is weakened by viscous heating and slab breakoff then takes place. This process provides a self-regulating mechanism for governing the speed of intact slabs able to reach the deep mantle. Timescales associated with viscous heating are quite short, a few million years. Internal heating by radioactivity decreases the amount of shear heating. 13 refs., 5 figs.

  15. Global heat transport scaling in plume-controlled regime in turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Chong, Kai Leong; Huang, Shi-Di; Xia, Ke-Qing

    2016-11-01

    Previous study by Chong et al. has introduced a normalized aspect-ratio Γ /Γopt (Γopt = 29 . 37 Ra - 0 . 31) where the plume coverage at fixed Γ /Γopt is invariant with respect to Ra in the so-called plume-controlled regime in Rayleigh-Bénard convection. We have studied the global heat transport scaling (expressed as Nusselt number Nu) at fixed Γ /Γopt with the Rayleigh number Ra between 107 and 1010 at fixed Prandtl number Pr = 4 . 38 by direct numerical simulations. It is found that at Γ /Γopt = 1 where the thermal plume becomes highly coherent and system-sized, Nu exhibits the scaling Nu - 1 Ra 0 . 327 +/- 0 . 001 over three decades of Ra . This scaling is different from that found at Γ = 1 for which Nu - 1 Ra 0 . 308 +/- 0 . 001 , and this difference in scaling can be shown evidently in the compensated plots. This work was supported by RGC of HKSAR (No. CUHK404513), CUHK Direct Grant (No. 3132740) and through a HKPhD Fellowship.

  16. Mirror buckling of freestanding graphene membranes induced by local heating due to a scanning tunneling microscope tip

    NASA Astrophysics Data System (ADS)

    Schoelz, J. K.; Neek Amal, M.; Xu, P.; Barber, S. D.; Ackerman, M. L.; Thibado, P. M.; Sadeghi, A.; Peeters, F. M.

    2014-03-01

    Scanning tunneling microscopy has been an invaluable tool in the study of graphene at the atomic scale. Several STM groups have managed to obtain atomic scale images of freestanding graphene membranes providing insight into the behavior of the stabilized ripple geometry. However, we found that the interaction between the STM tip and the freestanding graphene sample may induce additional effects. By varying the tunneling parameters, we can tune the position of the sample, in either a smooth or step like fashion. These phenomena were investigated by STM experiments, continuum elasticity theory and large scale molecular dynamics simulations. These results confirm that by increasing the tip bias, the electrostatic attraction between the tip and sample increases. When applied on a concave surface, this can result in mirror buckling which leads to a large scale movement of the sample. Interestingly, due in part to the negative coefficient of thermal expansion of graphene, buckling transitions can also be induced through local heating of the surface using the STM tip. Financial support by O.N.R. grant N00014-10-1-0181, N.S.F grant DMR-0855358, EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N. A.), ESF-EuroGRAPHENE project CONGRAN, F.S.F (FWO-Vl), and Methusalem Foundation of the Flemish Government.

  17. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming.

    PubMed

    Bergmann, Nina; Winters, Gidon; Rauch, Gisep; Eizaguirre, Christophe; Gu, Jenny; Nelle, Peter; Fricke, Birgit; Reusch, Thorsten B H

    2010-07-01

    Summer heat waves have already resulted in mortality of coastal communities, including ecologically important seagrass meadows. Gene expression studies from controlled experiments can provide important insight as to how species/genotypes react to extreme events that will increase under global warming. In a common stress garden, we exposed three populations of eelgrass, Zostera marina, to extreme sea surface temperatures, simulating the 2003-European heat wave. Populations came from locations widely differing in their thermal regime, two northern European locations [Ebeltoft (Kattegat), Doverodde (Limfjord, Baltic Sea)], and one southern population from Gabicce Mare (Adriatic Sea), allowing to test for population specificity in the response to a realistic heat stress event. Eelgrass survival and growth as well as the expression of 12 stress associated candidate genes were assessed during and after the heat wave. Contrary to expectations, all populations suffered equally from 3 weeks of heat stress in terms of shoot loss. In contrast, populations markedly differed in multivariate measures of gene expression. While the gene expression profiles converged to pre-stress values directly after the heat wave, stress correlated genes were upregulated again 4 weeks later, in line with the observed delay in shoot loss. Target genes had to be selected based on functional knowledge in terrestrial plants, nevertheless, 10/12 genes were induced relative to the control treatment at least once during the heat wave in the fully marine plant Z. marina. This study underlines the importance of realistic stress and recovery scenarios in studying the impact of predicted climate change.

  18. Global transcriptome analysis of the heat shock response of the deep-sea bacterium Shewanella piezotolerans WP3.

    PubMed

    Jian, Huahua; Li, Shengkang; Feng, Xiaoyuan; Xiao, Xiang

    2016-12-01

    For microorganisms, heat shock is a major stressful condition. Heat shock is characterized by sudden temperature increases that damage important protein structures and interfere with essential cellular functions. In this study, global gene expression patterns of the deep-sea bacterium Shewanella piezotolerans WP3 in response to heat shock were studied by DNA microarray analysis. Overall, 438, 573, and 627 genes were found to be differentially expressed after heat shock for 30, 60, and 90min, respectively. Functional classification of differentially transcribed genes was performed using the Clusters of Orthologous Groups of Proteins database. Additionally, 361 genes were identified as common differentially expressed genes. These genes may comprise the core genes responsible for coping with heat shock stress of WP3. Moreover, comparative analysis of gene expression pattern in WP3 and other bacteria indicated the presence of different adaptive strategies. These data represent the first transcriptome resource for the response of this deep-sea bacterium to high-temperature stress. This study contributes to the understanding of the global adaptation mechanisms of benthic bacteria toward environmental stresses.

  19. Origin and correction of errors in the XBT data and their effect on global heat content calculations. (Invited)

    NASA Astrophysics Data System (ADS)

    Gouretski, V. V.

    2010-12-01

    Measurements by means of expendable bathythermographs (XBTs) since late 1960s provided the majority of the subsurface temperature profiles in the global ocean down to about 750 m, until the profiling floats have increasingly become the main data source in the beginning of 2000s. Being not designed initially to provide temperature data for climate applications XBT measurements are prone to systematic errors which are comparable in magnitude to typical decadal temperature changes in the ocean. Neglecting these errors has lead to the overestimation of the decadal scale variability in some earlier global heat content calculations. We use the World Ocean Database 2009 to estimate temperature and sample depth biases of expendable and mechanical (MBT) bathythermographs by comparing bathythermograph temperature profiles with more accurate bottle and conductivity/temperature/depth (CTD) data. It is shown that the application of depth corrections estimated earlier from side-by-side XBT/CTD inter-comparisons, without accounting for a pure thermal bias, leads to even larger disagreement with the CTD and bottle reference temperatures. Our calculations give evidence for a depth-variable multiplicative fall-rate correction with the original depths being underestimated in the upper 150-200 m and overestimated below this depth. These results are in agreement with side-by-side inter-comparisons and direct fall-rate estimates. Correcting XBT sample depths by a multiplicative factor which is constant with depth does not allow an effective elimination of the total temperature bias throughout the whole water column. The analysis further suggests a dependence of the fall rate on the water temperature which was also reported earlier in the literature. Comparisons among different correction schemes show a significant impact of systematic biases on the estimates of the global ocean heat content anomaly. Using monthly temperature climatology based on CTD and Argo profiling float data for the

  20. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness

    PubMed Central

    Nusslé, Sébastien; Matthews, Kathleen R.; Carlson, Stephanie M.

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change. PMID:26565706

  1. Mediating Water Temperature Increases Due to Livestock and Global Change in High Elevation Meadow Streams of the Golden Trout Wilderness.

    PubMed

    Nusslé, Sébastien; Matthews, Kathleen R; Carlson, Stephanie M

    2015-01-01

    Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two "resting" meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a "resting" state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change.

  2. Major CO2 source and sink perturbations of the global carbon cycle due to rapid emplacement of Continental Flood Basalts

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Wright, J. D.; Kent, D. V.

    2011-12-01

    Recent evidence from the ~201.5 Ma Central Atlantic Magmatic Province (CAMP) in the Newark Rift Basin demonstrates that this Large Igneous Province (LIP) produced a transient doubling of atmospheric pCO2, followed by a ~300 kyr falloff to near pre-eruptive concentrations after each major eruptive episode (Schaller, Wright and Kent; Science, 2011). Here we similarly use pedogenic carbonates to test the million-year effects of the CAMP volcanism on Early Jurassic pCO2 in the corollary Hartford Basin of Eastern North America (ENA). In both basins we find a pre-CAMP pCO2 background of ~2000 ± 700 ppm, increasing to ~4500 ± 1600 ppm immediately above the first flow unit, followed by 300 kyr post-extrusive decrease to near background concentrations. The long post-extrusive section of the Hartford Basin shows the same ~300 kyr pCO2 decrease to pre-eruptive background, which continues to levels below pre-CAMP background over the subsequent 1.5 Myr following the final episode of eruptions. We use a geochemical model to demonstrate that the rapidity of the pCO2 decreases, and the fall to concentrations below background may be accounted for by a 1.5-fold amplification of the continental silicate weathering response due to the presence of the more highly weatherable CAMP basalts themselves. This indicates that continental flood basalts capable of producing a short-term perturbation of the carbon system may actually have an overall net-cooling effect on global climates due to a long-term net-decrease in pCO2 to below pre-eruptive levels. Analysis of the effusive potential for various submarine and continental LIPs based on reconstructed volumes suggests that those comparable to, or even larger than the CAMP may have had a significant effect on short term pCO2 concentrations, but this effect is highly dependent on effusive timescale. However, we pose the testable hypothesis that only continental flood basalts participate directly on both the CO2 source and sink side of the

  3. Transport and frictional properties of core samples from Taiwan Chelungpu-fault Drilling Project and its association with the heat generation due to frictional heating

    NASA Astrophysics Data System (ADS)

    Tanikawa, W.; Mizoguchi, K.; Takahashi, M.; Masuda, K.; Hirono, T.; Lin, W.; Soh, W.; Song, S.

    2006-12-01

    Taiwan Chelungpu-fault Drilling Project (TCDP) was started from 2002 to investigate the faulting mechanism of the 1999 Chi-Chi earthquake. TCDP was succeeded in penetrating the Chelungpu fault and recovered core samples from two holes, Hole A and Hole B. In Hole B, three fault zones, FZB1136 (1134-1137 m), FZB1194 (1194-1197 m), and FZB1243 (1242-1244 m), were recognized in the core samples (Hirono et al., 2006). Micro- textual observation and rock magnetic analyses of fault zones implied the evidence of heat generation, though the temperature did not reach the melting point. Borehole temperature measurement in Hole A observed the very low temperature anomaly around the fault zone (Kano et al., 2006). These results suggest the low degree of the frictional heating due to very low friction during the slip. The possible low friction might be explained by the slip within clay rich fault gouge with low shear strength. The other possible mechanisms are dynamic weakening behaviors of the fault zone, such as thermal pressurization and elast-hydrodynamic lubrication. To demonstrate the assumptions, the transport properties and the strength of the fault rocks are measured using core samples. Core samples of three fault zones in Hole B (FZB1136, FZB1194, and FZB1243) are selected for our laboratory experiments. Permeability and specific storage for fault rocks were measured under high confining pressure up to 100 MPa. Nitrogen gas was used as a pore fluid, and gas permeability was transformed to water permeability from gas permeability dependence on pore pressure of Klinkenberg equation. In FZB1136, permeability for fault breccia showed around 10-16 m2 at 1km depth which is similar value to that for host rock of siltstone and fracture rocks. In FZB1194, permeability of black fault gouge was about 10^{-15} m2, is larger than surrounding rocks. Frictional tests were also conducted using fault gouge samples with less than 100 μm of grain size. Tests are performed under the

  4. Global carbon impacts of using forest harvest residues for district heating in Vermont

    SciTech Connect

    McLain, H.A.

    1998-07-01

    Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.

  5. Impact of the filling level on the global heat transfer coefficient of a plate cross section for sorption heat pumps

    NASA Astrophysics Data System (ADS)

    Giraud, Florine; Hamitouche, Yacine; Vallon, Pierrick; Tremeac, Brice

    2017-02-01

    Compact evaporator like plate heat exchangers can play a significant role in reducing the investment cost of low cooling power sorption systems. However, when water is used as refrigerant, the working pressure is very low and vaporization phenomena are really different than vaporization phenomena occurring at higher pressures. Few studies focus on this subject and there is a lack of knowledge about vaporization (boiling or evaporation) phenomena occurring in compact evaporators at low pressure. The design of such evaporators remain manly empirical. There is thus a need of better characterization of the influence of the driving parameters in order to optimize the evaporator design. The objective of this article is thus to go further in the understanding of phenomena occurring in compact plate-type evaporators. In that goal, an experimental campaign was conducted to study continuously the performance of a smooth plate type evaporator as a function of the filling levels. The influence of the saturation pressure and the secondary fluid temperature on an overall heat transfer coefficient is studied. It is show that there is a dependence of the maximal overall heat transfer coefficient to these parameters. It is also shown that there seems to be a strong dependence between phenomena observed and phenomena that happens before. Thus, dynamic and inertia effects must be taken into account and model developed in absorption configuration cannot be applied for this study.

  6. Random regression models to account for the effect of genotype by environment interaction due to heat stress on the milk yield of Holstein cows under tropical conditions.

    PubMed

    Santana, Mário L; Bignardi, Annaiza Braga; Pereira, Rodrigo Junqueira; Menéndez-Buxadera, Alberto; El Faro, Lenira

    2016-02-01

    The present study had the following objectives: to compare random regression models (RRM) considering the time-dependent (days in milk, DIM) and/or temperature × humidity-dependent (THI) covariate for genetic evaluation; to identify the effect of genotype by environment interaction (G×E) due to heat stress on milk yield; and to quantify the loss of milk yield due to heat stress across lactation of cows under tropical conditions. A total of 937,771 test-day records from 3603 first lactations of Brazilian Holstein cows obtained between 2007 and 2013 were analyzed. An important reduction in milk yield due to heat stress was observed for THI values above 66 (-0.23 kg/day/THI). Three phases of milk yield loss were identified during lactation, the most damaging one at the end of lactation (-0.27 kg/day/THI). Using the most complex RRM, the additive genetic variance could be altered simultaneously as a function of both DIM and THI values. This model could be recommended for the genetic evaluation taking into account the effect of G×E. The response to selection in the comfort zone (THI ≤ 66) is expected to be higher than that obtained in the heat stress zone (THI > 66) of the animals. The genetic correlations between milk yield in the comfort and heat stress zones were less than unity at opposite extremes of the environmental gradient. Thus, the best animals for milk yield in the comfort zone are not necessarily the best in the zone of heat stress and, therefore, G×E due to heat stress should not be neglected in the genetic evaluation.

  7. Permanent El Nino Conditions in the Early Pliocene, the Poleward Heat Transport Paradox, and Contemporary Global Warming.

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Brierley, C.

    2007-12-01

    Proxy temperature records show that in the early Pliocene, approximately 3 to 5 million years ago, the tropics were characterized by permanently warm El Nino-like conditions. The equatorial Pacific was as warm as in the east as it is in the west today, and the zonal SST gradient along the equator was significantly reduced or absent. Concurrently, major coastal upwelling regions were up to 10 degrees C warmer than they are today. The globally averaged temperatures of the Earth's surface were also substantially higher. This climate state persisted even though the external factors that control climate were essentially the same as at present and the Earth was experiencing greenhouse conditions similar to today's, with the concentration of CO2 in the atmosphere comparable to present day values. Thus far, there is no satisfactory explanation for the climate state of the Pliocene, especially for the climate conditions in the tropics and subtropics. State-of-the-art climate models fail to reproduce a permanent El Nino even when forced by CO2 concentrations many times larger than those estimated for the early Pliocene. Predicting the impact on the tropics of global warming caused by anthropogenic factors also remains a serious challenge for climate scientists. Coupled general circulation models yield a wide range of possible scenarios for the region, but many suggest a slightly higher likelihood of an El Nino-like state in global warming. Efforts to predict future global warming should benefit enormously from a better understanding of the state of permanent El Nino which imposes a strong dynamical constraint on both oceanic and atmospheric circulations. Modeling permanent El Nino with atmospheric and oceanic GCMs reveals a poleward heat transport paradox: Calculations with ocean-only models suggest that a permanent El Nino should correspond to a reduced poleward heat transport by the ocean. This is related to a deeper thermocline in the eastern equatorial Pacific, which

  8. F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams

    NASA Astrophysics Data System (ADS)

    Mishin, E.; Sutton, E.; Milikh, G.; Galkin, I.; Roth, C.; Förster, M.

    2012-06-01

    We report the first evidence of atmospheric gravity waves (AGWs) generated in the F2 region by high-power HF heating and subauroral polarization streams. Data come from the CHAMP and GRACE spacecraft overflying the High-frequency Active Auroral Research Program (HAARP) heating facility. These observations facilitate a new method of studying the ionosphere-thermosphere coupling in a controlled fashion by using various HF-heating regimes. They also reveal the subauroral F2 region to be a significant source of substorm AGWs, in addition to the well-known auroral E region.

  9. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change.

    PubMed

    Liu, Zhao; Anderson, Bruce; Yan, Kai; Dong, Weihua; Liao, Hua; Shi, Peijun

    2017-03-07

    The frequency and intensity of extreme heat wave events have increased in the past several decades and are likely to continue to increase in the future under the influence of human-induced climate change. Exposure refers to people, property, systems, or other elements present in hazard zones that are thereby subject to potential losses. Exposure to extreme heat and changes therein are not just determined by climate changes but also population changes. Here we analyze output for three scenarios of greenhouse gas emissions and socio-economic growth to estimate future exposure change taking account of both climate and population factors. We find that for the higher emission scenario (RCP8.5-SSP3), the global exposure increases nearly 30-fold by 2100. The average exposure for Africa is over 118 times greater than it has been historically, while the exposure for Europe increases by only a factor of four. Importantly, in the absence of climate change, exposure is reduced by 75-95% globally and across all geographic regions, as compared with exposure under the high emission scenario. Under lower emission scenarios RCP4.5-SSP2 and RCP2.6-SSP1, the global exposure is reduced by 65% and 85% respectively, highlighting the efficacy of mitigation efforts in reducing exposure to extreme heat.

  10. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Anderson, Bruce; Yan, Kai; Dong, Weihua; Liao, Hua; Shi, Peijun

    2017-03-01

    The frequency and intensity of extreme heat wave events have increased in the past several decades and are likely to continue to increase in the future under the influence of human-induced climate change. Exposure refers to people, property, systems, or other elements present in hazard zones that are thereby subject to potential losses. Exposure to extreme heat and changes therein are not just determined by climate changes but also population changes. Here we analyze output for three scenarios of greenhouse gas emissions and socio-economic growth to estimate future exposure change taking account of both climate and population factors. We find that for the higher emission scenario (RCP8.5-SSP3), the global exposure increases nearly 30-fold by 2100. The average exposure for Africa is over 118 times greater than it has been historically, while the exposure for Europe increases by only a factor of four. Importantly, in the absence of climate change, exposure is reduced by 75–95% globally and across all geographic regions, as compared with exposure under the high emission scenario. Under lower emission scenarios RCP4.5-SSP2 and RCP2.6-SSP1, the global exposure is reduced by 65% and 85% respectively, highlighting the efficacy of mitigation efforts in reducing exposure to extreme heat.

  11. Global and regional changes in exposure to extreme heat and the relative contributions of climate and population change

    PubMed Central

    Liu, Zhao; Anderson, Bruce; Yan, Kai; Dong, Weihua; Liao, Hua; Shi, Peijun

    2017-01-01

    The frequency and intensity of extreme heat wave events have increased in the past several decades and are likely to continue to increase in the future under the influence of human-induced climate change. Exposure refers to people, property, systems, or other elements present in hazard zones that are thereby subject to potential losses. Exposure to extreme heat and changes therein are not just determined by climate changes but also population changes. Here we analyze output for three scenarios of greenhouse gas emissions and socio-economic growth to estimate future exposure change taking account of both climate and population factors. We find that for the higher emission scenario (RCP8.5-SSP3), the global exposure increases nearly 30-fold by 2100. The average exposure for Africa is over 118 times greater than it has been historically, while the exposure for Europe increases by only a factor of four. Importantly, in the absence of climate change, exposure is reduced by 75–95% globally and across all geographic regions, as compared with exposure under the high emission scenario. Under lower emission scenarios RCP4.5-SSP2 and RCP2.6-SSP1, the global exposure is reduced by 65% and 85% respectively, highlighting the efficacy of mitigation efforts in reducing exposure to extreme heat. PMID:28266567

  12. Heat-Shocked Monocytes Are Resistant to Staphylococcus aureus-Induced Apoptotic DNA Fragmentation due to Expression of HSP72

    PubMed Central

    Guzik, Krzysztof; Bzowska, Małgorzata; Dobrucki, Jerzy; Pryjma, Juliusz

    1999-01-01

    Human peripheral blood monocytes became apoptotic following phagocytosis of Staphylococcus aureus. The consequences of heat stress for monocytes were studied with regard to the effect on S. aureus-induced apoptosis. Exposure of monocytes to 41.5°C for 1 h resulted in HSP72 expression and had no influence on phagocytosis of bacteria; moreover, phagocytosis of S. aureus immediately or shortly after heat shock had no effect on the S. aureus-induced monocyte apoptosis, as evidenced by DNA fragmentation assay. In contrast, cells which recovered from heat shock for 18 to 24 h, although active as phagocytes, were resistant to the S. aureus-induced apoptosis. The observed protective effect was related to the induction of HSP72, since blocking of HSP72 synthesis by an antisense oligomer abolished the protective effect of heat shock on bacterium-induced monocyte apoptosis. PMID:10417194

  13. PRECISE MEASUREMENT OF THE REIONIZATION OPTICAL DEPTH FROM THE GLOBAL 21 cm SIGNAL ACCOUNTING FOR COSMIC HEATING

    SciTech Connect

    Fialkov, Anastasia; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2016-04-10

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  14. Precise Measurement of the Reionization Optical Depth from the Global 21 cm Signal Accounting for Cosmic Heating

    NASA Astrophysics Data System (ADS)

    Fialkov, Anastasia; Loeb, Abraham

    2016-04-01

    As a result of our limited data on reionization, the total optical depth for electron scattering, τ, limits precision measurements of cosmological parameters from the Cosmic Microwave Background (CMB). It was recently shown that the predicted 21 cm signal of neutral hydrogen contains enough information to reconstruct τ with sub-percent accuracy, assuming that the neutral gas was much hotter than the CMB throughout the entire epoch of reionization (EoR). Here we relax this assumption and use the global 21 cm signal alone to extract τ for realistic X-ray heating scenarios. We test our model-independent approach using mock data for a wide range of ionization and heating histories and show that an accurate measurement of the reionization optical depth at a sub-percent level is possible in most of the considered scenarios even when heating is not saturated during the EoR, assuming that the foregrounds are mitigated. However, we find that in cases where heating sources had hard X-ray spectra and their luminosity was close to or lower than what is predicted based on low-redshift observations, the global 21 cm signal alone is not a good tracer of the reionization history.

  15. Analyzing the effect on heat transfer due to nonuniform distribution of liquid flow among the tubes of a shell-and-tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Zinkevich, A. I.; Sharifullin, V. N.; Sharifullin, A. V.

    2010-09-01

    A method is proposed using which nonuniform distribution of liquid flow among the tubes of a shell-and-tube apparatus can be taken into account by means of a statistical distribution function. A formula showing interrelation of this function with the indicator of heat transfer intensity in the apparatus tube space is given.

  16. Aerothermodynamic heating due to shock wave/laminar boundary-layer interactions in high-enthalpy hypersonic flow

    NASA Technical Reports Server (NTRS)

    Hackett, Charles M.

    1993-01-01

    The interaction between a swept shock wave and a laminar boundary layer was investigated experimentally in high-enthalpy hypersonic flow. The effect of high-temperature, real gas physics on the interaction was examined by conducting tests in air and helium. Heat transfer measurements were made on the surface of a flat plate and a shock-generating fin using thin-film resistance sensors for fin incidence angles of 0, 5, and 10 deg at Mach numbers of 6.9 in air and 7.2 in helium. The experiments were conducted in the NASA HYPULSE expansion tube, an impulse-type facility capable of generating high-enthalpy, high-velocity flow with freestream levels of dissociated species that are particularly low. The measurements indicate that the swept shock wave creates high local heat transfer levels in the interaction region, with the highest heating found in the strongest interaction. The maximum measured heating rates in the interaction are order of magnitude greater than laminar flat plate boundary layer heating levels at the same location.

  17. Atmospheric heating due to black carbon aerosol during the summer monsoon period over Ballia: A rural environment over Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Dumka, U. C.; Hopke, P. K.; Tunved, P.; Srivastava, A. K.; Bisht, D. S.; Chakrabarty, R. K.

    2016-09-01

    Black carbon (BC) aerosols are one of the most uncertain drivers of global climate change. The prevailing view is that BC mass concentrations are low in rural areas where industrialization and vehicular emissions are at a minimum. As part of a national research program called the "Ganga Basin Ground Based Experiment-2014 under the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) Phase-III" of Ministry of Earth Sciences, Government of India, the continuous measurements of BC and particulate matter (PM) mass concentrations, were conducted in a rural environment in the highly-polluted Indo-Gangetic Plain region during 16th June to 15th August (monsoon period), 2014. The mean mass concentration of BC was 4.03 (± 0.85) μg m- 3 with a daily variability between 2.4 and 5.64 μg m- 3, however, the mean mass PM concentrations [near ultrafine (PM1.0), fine (PM2.5) and inhalable (PM10)] were 29.1(± 16.2), 34.7 (± 19.9) and 43.7 (± 28.3) μg m- 3, respectively. The contribution of BC in PM1.0 was approximately 13%, which is one of the highest being recorded. Diurnally, the BC mass concentrations were highest (mean: 5.89 μg m- 3) between 20:00 to 22:00 local time (LT) due to the burning of biofuels/biomass such as wood, dung, straw and crop residue mixed with dung by the local residents for cooking purposes. The atmospheric direct radiative forcing values due to the composite and BC aerosols were determined to be + 78.3, + 44.9, and + 45.0 W m- 2 and + 42.2, + 35.4 and + 34.3 W m- 2 during the months of June, July and August, respectively. The corresponding atmospheric heating rates (AHR) for composite and BC aerosols were 2.21, 1.26 and 1.26; and 1.19, 0.99 and 0.96 K day- 1 for the month of June, July and August, respectively, with a mean of 1.57 and 1.05 K day- 1 which was 33% lower AHR (BC) than for the composite particles during the study period. This high AHR underscores the importance of absorbing aerosols such as BC contributed by

  18. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    PubMed Central

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  19. Slip Flow of Powell-Eyring Liquid Film Due to an Unsteady Stretching Sheet with Heat Generation

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mostafa A. A.; Megahed, Ahmed M.

    2016-06-01

    This paper is focused on the study of the viscous Powell-Eyring liquid thin film flow and heat transfer driven by an unsteady stretching sheet in the presence of slip velocity and non-uniform heat generation. A system of equations for momentum and thermal energy are reduced to a set of coupled non-linear ordinary differential equations with the aid of dimensionless transformation. The resulting seven-parameter problem has been solved numerically by using an efficient shooting technique coupled with the fourth-order Runge-Kutta algorithm over the entire range of physical parameters. To interpret various physical parameters governing the flow and heat transfer which appear in the momentum and energy equations, the results are presented graphically. The present results are compared with some of the earlier published work in some limiting cases and are found to be in an excellent agreement. This favorable comparison lends confidence in the numerical results to be reported in the present work. Furthermore, the effects of the parameters governing the thin film flow and heat transfer are examined and discussed through graphs and tables. Also, the values of the local skin-friction coefficient and the local Nusselt number for different values of physical parameters are presented through tables. Additionally, the obtained results for some particular cases of the present problem appear in good agreement with the literature review.

  20. Biological Heating in a Global Operational Ocean Forecast System: Using VIIRS Products and a Two-band Scheme

    NASA Astrophysics Data System (ADS)

    Kim, H. C.; Mehra, A.; Garraffo, Z. D.; Nadiga, S.; Bayler, E. J.; Behringer, D.

    2015-12-01

    A key long-term goal for the NWS/NCEP Environmental Modeling Center (EMC) is integrating biogeochemical variables within NOAA's Global Real-Time Ocean Forecast System (RTOFS-Global), implementing, as appropriate, the assimilation of relevant observations for an enhanced spectrum and accuracy of forecasts. In this initial effort, we combined VIIRS products with a recent algorithm (Lee et al., 2005) that can resolve vertical distribution of downwelling solar irradiance at two separate bands (EVIS: 400-700 nm and EIR: 700-2000 nm), and examined the heat transfer and its effects on the upper oceanic thermal structure in the operational RTOFS-Global. Our near-term future goals include: coupling of a global ocean biogeochemical model (Gregg, 2008) to the operational RTOFS-Global; and validation of free runs with VIIRS-derived ocean color products. This will eventually lead to the end-point goal, building data assimilative lower trophic ecosystem components in the context of "setting/updating baselines of daily marine ecosystem processes." Assimilation of VIIRS data will provide a unique and timely opportunity to establish a path toward ecological forecasting through biogeochemical analyses and forecasts. This proposed effort fully aligns with NOAA's ecological forecasting roadmap's objectives to: establish the infrastructure capability for operational biogeochemical modeling; quantify forecast accuracy and utility; identify gaps; and prioritize improvements in ecological products and services.

  1. Diabatic heating fields and the generation of available potential energy during FGGE

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Baker, Wayman E.; Kalnay, Eugenia

    1986-01-01

    Global diabatic heating is estimated using fields of directly computed heating components, in particular those due to shortwave radiation, longwave radiation, sensible heating, and latent heating produced every 6 hours. The role of average fields of diabatic heating in the generation of available potential energy is examined. It is observed that latent heating is most significant in generating available potential energy.

  2. Utility of birefringence changes due to collagen thermal denaturation rate process analysis: vessel wall temperature estimation for new short term heating balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Kaneko, Kenji; Shimazaki, Natsumi; Gotoh, Maya; Nakatani, Eriko; Arai, Tsunenori

    2007-02-01

    Our photo thermal reaction heating architecture balloon realizes less than 10 s short term heating that can soften vessel wall collagen without damaging surrounding tissue thermally. New thermal balloon angioplasty, photo-thermo dynamic balloon angioplasty (PTDBA) has experimentally shown sufficient opening with 2 atm low pressure dilation and prevention of chronic phase restenosis and acute phase thrombus in vivo. Even though PTDBA has high therapeutic potential, the most efficient heating condition is still under study, because relationship of treatment and thermal dose to vessel wall is not clarified yet. To study and set the most efficient heating condition, we have been working on establishment of temperature history estimation method from our previous experimental results. Heating target of PTDBA, collagen, thermally denatures following rate process. Denaturation is able to be quantified with measured collagen birefringence value. To express the denaturation with equation of rate process, the following ex vivo experiments were performed. Porcine extracted carotid artery was soaked in two different temperature saline baths to enforce constant temperature heating. Higher temperature bath was set to 40 to 80 degree Celsius and soaking duration was 5 to 40 s. Samples were observed by a polarizing microscope and a scanning electron microscope. The birefringence was measured by polarizing microscopic system using Brace-Koehler compensator 1/30 wavelength. The measured birefringence showed temperature dependency and quite fit with the rate process equation. We think vessel wall temperature is able to be estimated using the birefringence changes due to thermal denaturation.

  3. Flow and Heat Transfer of Powell-Eyring Fluid due to an Exponential Stretching Sheet with Heat Flux and Variable Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Megahed, Ahmed M.

    2015-03-01

    An analysis was carried out to describe the problem of flow and heat transfer of Powell-Eyring fluid in boundary layers on an exponentially stretching continuous permeable surface with an exponential temperature distribution in the presence of heat flux and variable thermal conductivity. The governing partial differential equations describing the problem were transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the shooting method over the entire range of physical parameters. The effects of various parameters like the thermal conductivity parameter, suction parameter, dimensionless Powell-Eyring parameters and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. In this work, special attention was given to investigate the effect of the thermal conductivity parameter on the velocity and temperature fields above the sheet in the presence of heat flux. The numerical results were also validated with results from a previously published work on various special cases of the problem, and good agreements were seen.

  4. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    SciTech Connect

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairs in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  5. Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong

    2016-11-01

    The sensitivity of the precipitation responses to greenhouse warming can depend on the present-day climate. In this study, a robust linkage between the present-day precipitation climatology and precipitation change owing to global warming is examined in inter-model space. A model with drier climatology in the present-day simulation tends to simulate an increase in climatological precipitation owing to global warming. Moreover, the horizontal gradient of the present-day precipitation climatology plays an important role in determining the precipitation changes. On the basis of these robust relationships, future precipitation changes are calibrated by removing the impact of the present-day precipitation bias in the climate models. To validate this result, the perfect model approach is adapted, which treats a particular model's precipitation change as an observed change. The results suggest that the precipitation change pattern can be generally improved by applying the present statistical approach.

  6. Robust Hadley Circulation Changes and Increasing Global Dryness Due to CO2 Warming from CMIP-5 Model Projections

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2015-01-01

    In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness under CO2 warming from CMIP-5 model projections. We find a strengthening of the ascending branch of the HC manifested in a deep-tropics squeeze (DTS), i.e., a deepening and narrowing of the convective zone, increased high clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200-100 hectopascals) of the deep tropics. The DTS induces atmospheric moisture divergence, reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among water cycle parameters examined, global dryness has the highest signal-to-noise ratio. Our results provide scientific bases for inferring that the observed tend of prolonged droughts in recent decades is likely attributable to greenhouse warming.

  7. Influence of Colistin Dose on Global Cure in Patients with Bacteremia Due to Carbapenem-Resistant Gram-Negative Bacilli.

    PubMed

    Gibson, Gabrielle A; Bauer, Seth R; Neuner, Elizabeth A; Bass, Stephanie N; Lam, Simon W

    2015-11-02

    The increasing prevalence of multidrug-resistant (MDR) nosocomial infections accounts for increased morbidity and mortality of such infections. Infections with MDR Gram-negative isolates are frequently treated with colistin. Based on recent pharmacokinetic studies, current colistin dosing regimens may result in a prolonged time to therapeutic concentrations, leading to suboptimal and delayed effective treatment. In addition, studies have demonstrated an association between an increased colistin dose and improved clinical outcomes. However, the specific dose at which these outcomes are observed is unknown and warrants further investigation. This retrospective study utilized classification and regression tree (CART) analysis to determine the dose of colistin most predictive of global cure at day 7 of therapy. Patients were assigned to high- and low-dose cohorts based on the CART-established breakpoint. The secondary outcomes included microbiologic outcomes, clinical cure, global cure, lengths of intensive care unit (ICU) and hospital stays, and 7- and 28-day mortalities. Additionally, safety outcomes focused on the incidence of nephrotoxicity associated with high-dose colistin therapy. The CART-established breakpoint for high-dose colistin was determined to be >4.4 mg/kg of body weight/day, based on ideal body weight. This study evaluated 127 patients; 45 (35%) received high-dose colistin, and 82 (65%) received low-dose colistin. High-dose colistin was associated with day 7 global cure (40% versus 19.5%; P = 0.013) in bivariate and multivariate analyses (odds ratio [OR] = 3.40; 95% confidence interval [CI], 1.37 to 8.45; P = 0.008). High-dose colistin therapy was also associated with day 7 clinical cure, microbiologic success, and mortality but not with the development of acute kidney injury. We concluded that high-dose colistin (>4.4 mg/kg/day) is independently associated with day 7 global cure.

  8. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface

    PubMed Central

    Ahmad Khan, Junaid; Mustafa, M.; Hayat, T.; Alsaedi, A.

    2015-01-01

    This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton’s method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier’s law and the Cattaneo-Christov’s law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature. PMID:26325426

  9. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    SciTech Connect

    Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.; Manuel, Michelle V.

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

  10. Numerical Study of Cattaneo-Christov Heat Flux Model for Viscoelastic Flow Due to an Exponentially Stretching Surface.

    PubMed

    Ahmad Khan, Junaid; Mustafa, M; Hayat, T; Alsaedi, A

    2015-01-01

    This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton's method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier's law and the Cattaneo-Christov's law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature.

  11. Perturbation to global tropospheric oxidizing capacity due to latitudinal redistribution of surface sources of NOx, CH4 and CO

    NASA Astrophysics Data System (ADS)

    Gupta, Mohan L.; Cicerone, Ralph J.; Elliott, Scott

    Economic and social projections indicate that during next several decades there will be major geographical redistribution of surface emissions of O3 precursors, such as NOx, CH4 and CO. A net decrease in their emissions from northern hemispheric mid-latitudes will be accompanied by substantial increases from the tropics. We have investigated a hypothetical scenario of currently underway transition of such emission patterns using a global two-dimensional photochemical model. With overall O3 precursor releases held constant, a simultaneous transfer of their emissions by 25% from the latitude belt 75°N-35°N to 5°S-35°N increases tropospheric oxidizing capacity such that the methane global lifetime and concentrations fall by more than 3%. Seasonally dependent changes in surface O3 concentrations are also calculated. In influencing OH concentration, redistribution of surface NOx emissions is 2-3 orders of magnitude more efficient per unit mass than CO emissions. Shifts in methane sources have insignificant effects on global photochemistry, but lead to a decrease in its interhemispheric gradient.

  12. Heat transport variation due to change of North Pacific subtropical gyre interior flow during 1993-2012

    NASA Astrophysics Data System (ADS)

    Nagano, Akira; Kizu, Shoichi; Hanawa, Kimio; Roemmich, Dean

    2016-12-01

    Applying segment-wise altimetry-based gravest empirical mode method to expendable bathythermograph temperature, Argo salinity, and altimetric sea surface height data in March, June, and November from San Francisco to near Japan (30∘ N, 145∘ E) via Honolulu, we estimated the component of the heat transport variation caused by change in the southward interior geostrophic flow of the North Pacific subtropical gyre in the top 700 m layer during 1993-2012. The volume transport-weighted temperature ( T I) is strongly dependent on the season. The anomaly of T I from the mean seasonal variation, whose standard deviation is 0.14∘C, was revealed to be caused mainly by change in the volume transport in a potential density layer of 25.0-25.5 σ 𝜃 . The anomaly of T I was observed to vary on a decadal or shorter, i.e., quasi-decadal (QD), timescale. The QD-scale variation of T I had peaks in 1998 and 2007, equivalent to the reduction in the net heat transport by 6 and 10 TW, respectively, approximately 1 year before those of sea surface temperature (SST) in the warm pool region, east of the Philippines. This suggests that variation in T I affects the warm pool SST through modification of the heat balance owing to the entrainment of southward transported water into the mixed layer.

  13. Electron heating enhancement due to plasma series resonance in a capacitively coupled RF discharge: Electrical modeling and comparison to experimental measurements

    NASA Astrophysics Data System (ADS)

    Cao, Minglu; Lu, Yijia; Cheng, Jia; Ji, Linhong

    2016-09-01

    The electron heating enhancement due to the self-excitation of the plasma series resonance in capacitively coupled plasmas is revisited by a combination of an equivalent circuit model and experiments. To improve the model accuracy, measured voltage waveforms at the powered electrode are used instead of prescribing a sinusoidal voltage supply in series with a bias capacitance. The results calculated from the electrical model are consistent with the experimental measurements performed by a Langmuir probe with verification of a microwave interferometer, at pressures of 0.2 and 0.3 Torr. High harmonics occurring in the discharge currents agree with observations in previous research. The nonlinear plasma series resonance effect is found to have a notable contribution to both ohmic and stochastic heating evaluated by the electron heating efficiencies.

  14. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Reichstein, Markus; Margolis, Hank A.; Cescatti, Alessandro; Richardson, Andrew D.; Arain, M. Altaf; Arneth, Almut; Bernhofer, Christian; Bonal, Damien; Chen, Jiquan; Gianelle, Damiano; Gobron, Nadine; Kiely, Gerald; Kutsch, Werner; Lasslop, Gitta; Law, Beverly E.; Lindroth, Anders; Merbold, Lutz; Montagnani, Leonardo; Moors, Eddy J.; Papale, Dario; Sottocornola, Matteo; Vaccari, Francesco; Williams, Christopher

    2011-09-01

    We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° × 0.5° spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 ± 7 J × 1018 yr-1), H (164 ± 15 J × 1018 yr-1), and GPP (119 ± 6 Pg C yr-1) were similar to independent estimates. Our global TER estimate (96 ± 6 Pg C yr-1) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

  15. Nuclear data production, calculation and measurement: a global overview of the gamma heating issue

    NASA Astrophysics Data System (ADS)

    Colombier, A.-C.; Amharrak, H.; Fourmentel, D.; Ravaux, S.; Régnier, D.; Gueton, O.; Hudelot, J.-P.; Lemaire, M.

    2013-03-01

    The gamma heating evaluation in different materials found in current and future generations of nuclear reactor (EPRTM, GENIV, MTR-JHR), is becoming an important issue especially for the design of many devices (control rod, heavy reflector, in-core & out-core experiments…). This paper deals with the works started since 2009 in the Reactor Studies Department of CEA Cadarache in ordre to answer to several problematic which have been identified as well for nuclear data production and calculation as for experimental measurement methods. The selected subjects are: Development of a Monte Carlo code (FIFRELIN) to simulate the prompt fission gamma emission which represents the major part of the gamma heating production inside the core Production and qualification of new evaluations of nuclear data especially for radiative capture and inelastic neutron scattering which are the main sources of gamma heating out-core Development and qualification of a recommended method for the total gamma heating calculation using the Monte Carlo simulation code TRIPOLI-4 Development, test and qualification of new devices dedicated to the in-core gamma heating measurement as well in MTR-JHR as in zero power facilities (EOLE-MINERVE) of CEA, Cadarache to increase the experimental measurement accuracy.

  16. Including latent and sensible heat fluxes from sea spray in global weather and climate models

    NASA Astrophysics Data System (ADS)

    Copsey, Dan

    2016-04-01

    Most standard weather and climate models calculate interfacial latent (evaporation) and sensible heat fluxes over the ocean based on parameterisations of atmospheric turbulence, using the wave state only in the calculation of surface roughness length. They ignore latent and sensible heat fluxes generated by sea spray, which is an acceptable assumption at low wind speeds. However at high wind speeds (> 15 m/s) a significant amount of sea spray is generated from the sea surface which, while airborne, cools to an equilibrium temperature, absorbs heat and releases moisture before re-impacting the sea surface. This could impact, for example, the total heat loss from the Southern Ocean (which is anomalously warm in Met Office coupled models) or the accuracy of tropical cyclone forecasts. A modified version of the Fairall sea spray parameterisation scheme has been tested in the Met Office Unified Model including the JULES surface exchange model in both climate and NWP mode. The fast part of the scheme models the temperature change of the droplets to an equilibrium temperature and the slow part of the scheme models the evaporation and heat absorption while the droplets remain airborne. Including this scheme in the model cools and moistens the near surface layers of the atmosphere during high wind events, including tropical cyclones. Sea spray goes on to increase the convection intensity and precipitation near the high wind events in the model.

  17. Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations

    NASA Astrophysics Data System (ADS)

    White, Warren B.; Cayan, Daniel R.; Lean, Judith

    1998-09-01

    We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.

  18. Measured Impact on Space Conditioning Energy Use in a Residence Due to Operating a Heat Pump Water Heater inside the Conditioned Space

    SciTech Connect

    Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2012-01-01

    The impact on space conditioning energy use due to operating a heat pump water heater (HPWH) inside the conditioned space is analyzed based on 2010-2011 data from a research house with simulated occupancy and hot water use controls. The 2700 ft2 (345 m2) house is located in Oak Ridge, TN (mixed-humid climate) and is equipped with a 50 gallon (189 l) HPWH that provided approximately 55 gallons/d (208 l/d) of hot water at 120 F (46 C) to the house during the test period. The HPWH has been operated every other week from December 2010 through November 2011 in two modes; a heat pump only mode, and a standard mode that utilizes 15355 Btu/hr (4500 W) resistance heating elements. The energy consumption of the air-source heat pump (ASHP) that provides space conditioning for the house is compared for the two HPWH operating modes with weather effects taken into account. Impacts during the heating and cooling seasons are compared.

  19. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?

    PubMed Central

    Robinet, Christelle; Rousselet, Jérôme; Pineau, Patrick; Miard, Florie; Roques, Alain

    2013-01-01

    A number of organisms, especially insects, are extending their range in response of the increasing trend of warmer temperatures. However, the effects of more frequent climatic anomalies on these species are not clearly known. The pine processionary moth, Thaumetopoea pityocampa, is a forest pest that is currently extending its geographical distribution in Europe in response to climate warming. However, its population density largely decreased in its northern expansion range (near Paris, France) the year following the 2003 heat wave. In this study, we tested whether the 2003 heat wave could have killed a large part of egg masses. First, the local heat wave intensity was determined. Then, an outdoor experiment was conducted to measure the deviation between the temperatures recorded by weather stations and those observed within sun-exposed egg masses. A second experiment was conducted under laboratory conditions to simulate heat wave conditions (with night/day temperatures of 20/32°C and 20/40°C compared to the control treatment 13/20°C) and measure the potential effects of this heat wave on egg masses. No effects were noticed on egg development. Then, larvae hatched from these egg masses were reared under mild conditions until the third instar and no delayed effects on the development of larvae were found. Instead of eggs, the 2003 heat wave had probably affected directly or indirectly the young larvae that were already hatched when it occurred. Our results suggest that the effects of extreme climatic anomalies occurring over narrow time windows are difficult to determine because they strongly depend on the life stage of the species exposed to these anomalies. However, these effects could potentially reduce or enhance the average warming effects. As extreme weather conditions are predicted to become more frequent in the future, it is necessary to disentangle the effects of the warming trend from the effects of climatic anomalies when predicting the response of a

  20. Are heat waves susceptible to mitigate the expansion of a species progressing with global warming?

    PubMed

    Robinet, Christelle; Rousselet, Jérôme; Pineau, Patrick; Miard, Florie; Roques, Alain

    2013-09-01

    A number of organisms, especially insects, are extending their range in response of the increasing trend of warmer temperatures. However, the effects of more frequent climatic anomalies on these species are not clearly known. The pine processionary moth, Thaumetopoea pityocampa, is a forest pest that is currently extending its geographical distribution in Europe in response to climate warming. However, its population density largely decreased in its northern expansion range (near Paris, France) the year following the 2003 heat wave. In this study, we tested whether the 2003 heat wave could have killed a large part of egg masses. First, the local heat wave intensity was determined. Then, an outdoor experiment was conducted to measure the deviation between the temperatures recorded by weather stations and those observed within sun-exposed egg masses. A second experiment was conducted under laboratory conditions to simulate heat wave conditions (with night/day temperatures of 20/32°C and 20/40°C compared to the control treatment 13/20°C) and measure the potential effects of this heat wave on egg masses. No effects were noticed on egg development. Then, larvae hatched from these egg masses were reared under mild conditions until the third instar and no delayed effects on the development of larvae were found. Instead of eggs, the 2003 heat wave had probably affected directly or indirectly the young larvae that were already hatched when it occurred. Our results suggest that the effects of extreme climatic anomalies occurring over narrow time windows are difficult to determine because they strongly depend on the life stage of the species exposed to these anomalies. However, these effects could potentially reduce or enhance the average warming effects. As extreme weather conditions are predicted to become more frequent in the future, it is necessary to disentangle the effects of the warming trend from the effects of climatic anomalies when predicting the response of a

  1. Ion heating by kinetic cross-field streaming instability due to reflected ions at a quasiperpendicular shock

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.; Wu, C. S.; Mandt, M. E.

    1992-01-01

    The present paper shows that the reflected ion at a supercritical quasi-perpendicular shock wave can excite a purely growing mode propagating parallel to the ambient magnetic field. To discuss the ion heating by such an unstable mode, the self-consistent quasi-linear kinetic equation is solved with the assumption that the present purely growing mode is the dominant unstable mode in the system. In the quasi-linear analysis of the instability, two particular cases are considered: the case of low initial ion beta and that of a high initial ion beta.

  2. Global and Regional Surface Albedo Changes due to Land Use Transformation: an Anthropogenic Source for Climate Change

    NASA Astrophysics Data System (ADS)

    Monier, E.; Wharton, S.; Laabs, B.; Reck, R.

    2005-12-01

    For the past decades, cropland area has been slowly increasing while forests and woodlands diminished, leading to consequent changes in land use resulting from human behavior. Besides, desertification directly affects millions of people around the world and not a single year goes by without new reports of ice melting. More than being an economic issue, land use transformation can prove to have altered the energy balance, and therefore the climate, through surface albedo changes over the past decades. Each land category has its own surface albedo, defined as its solar back scatter and being only a function of the radiation field incident on it and the properties of the land category itself. Using a global surface albedo model (Hummel and Reck, 1979), involving 49 different types of surfaces for each quarter of the year, January-March, April-June, July-September and October-December, surface albedo maps are computed from land usage maps for the 1970s and 1990s. Regional changes in the surface albedo can cause variation in the energy budget of the earth-atmosphere system, specifically in the tropospheric distribution of temperature, and therefore can be an anthropogenic source for climate change at a global scale. Many feedbacks and teleconnections can be found between surface albedo, cloud coverage and CO2 fluxes leading to a potentially unstable energy budget system. In order to fully comprehend climate change, a extensive review on that system and its foundations is expected to be released in 2006.

  3. Robust Hadley Circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections.

    PubMed

    Lau, William K M; Kim, Kyu-Myong

    2015-03-24

    In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness (suppressed rainfall and reduced tropospheric relative humidity) under CO2 warming from Coupled Model Intercomparison Project Phase 5 (CMIP5) model projections. We find a strengthening of the HC manifested in a "deep-tropics squeeze" (DTS), i.e., a deepening and narrowing of the convective zone, enhanced ascent, increased high clouds, suppressed low clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200-100 hPa) of the deep tropics. The DTS induces atmospheric moisture divergence and reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among various water-cycle parameters examined, global dryness is found to have the highest signal-to-noise ratio. Our results provide a physical basis for inferring that greenhouse warming is likely to contribute to the observed prolonged droughts worldwide in recent decades.

  4. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Rossabi, Samuel; Hueber, Jacques; Tans, Pieter; Montzka, Stephen A.; Masarie, Ken; Thoning, Kirk; Plass-Duelmer, Christian; Claude, Anja; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Reimann, Stefan; Vollmer, Martin K.; Steinbrecher, Rainer; Hannigan, James W.; Emmons, Louisa K.; Mahieu, Emmanuel; Franco, Bruno; Smale, Dan; Pozzer, Andrea

    2016-07-01

    Non-methane hydrocarbons such as ethane are important precursors to tropospheric ozone and aerosols. Using data from a global surface network and atmospheric column observations we show that the steady decline in the ethane mole fraction that began in the 1970s halted between 2005 and 2010 in most of the Northern Hemisphere and has since reversed. We calculate a yearly increase in ethane emissions in the Northern Hemisphere of 0.42 (+/-0.19) Tg yr-1 between mid-2009 and mid-2014. The largest increases in ethane and the shorter-lived propane are seen over the central and eastern USA, with a spatial distribution that suggests North American oil and natural gas development as the primary source of increasing emissions. By including other co-emitted oil and natural gas non-methane hydrocarbons, we estimate a Northern Hemisphere total non-methane hydrocarbon yearly emission increase of 1.2 (+/-0.8) Tg yr-1. Atmospheric chemical transport modelling suggests that these emissions could augment summertime mean surface ozone by several nanomoles per mole near oil and natural gas production regions. Methane/ethane oil and natural gas emission ratios could suggest a significant increase in associated methane emissions; however, this increase is inconsistent with observed leak rates in production regions and changes in methane's global isotopic ratio.

  5. Global chemical erosion over the last 250 my: Variations due to changes in paleogeography, paleoclimate, and paleogeology

    SciTech Connect

    Gibbs, M.T.; Bluth, G.J.S.; Fawcett, P.J.; Kump, L.R.

    1999-07-01

    The authors utilize predictions of runoff from two series of GENESIS (version 1.02) climate model experiments to calculate chemical erosion rates for 12 time slices that span the Mesozoic and Cenozoic. A set of control experiments where geography is altered according to published paleogeographic reconstructions and atmospheric pCO{sub 2} is held fixed at the present-day value was designed to elucidate climate sensitivity to geography alone. A second series of experiments, where the (elevated) atmospheric CO{sub 2} level for each time slice was adapted from Berner (1991), was executed to determine the additional climate sensitivity to this parameter. By holding other climate forcing factors (for example, vegetation) constant throughout the sequence of experiments the authors evaluate the effects of systematic/coherent paleogeographic changes on runoff and temperature, and thus on global rates of chemical weathering. By using empirical relationships between runoff and bicarbonate fluxes for different rock types and maps of paleogeology they calculate global bicarbonate fluxes, taking into account spatial variations in lithology and hydrology. They find that spatial variations in lithology account for little variation in the total or silicate chemical erosion rates. Calculations suggest a weaker-than-expected CO{sub 2}-climate weathering feedback. The reasonable atmospheric pCO{sub 2} variations specified for the climate-model simulations do not lead to climatic effects that support large changes in the chemical erosion rate, compared to those generated by changing paleogeography. In general, however, they find that silicate weathering rates are similar to outgassing rates of volcanic and methamorphic CO{sub 2}.

  6. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-12-01

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other.

  7. ENSO Modulations due to Interannual Variability of Freshwater Forcing and Ocean Biology-induced Heating in the Tropical Pacific.

    PubMed

    Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng

    2015-12-18

    Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other.

  8. Heat Transfer and Flow of a Casson Fluid Due to a Stretching Cylinder with the Soret and Dufour Effects

    NASA Astrophysics Data System (ADS)

    Mahdy, A.

    2015-07-01

    Numerical solutions of the problem on flow and heat transfer of a non-Newtonian fluid outside a stretching permeable cylinder are obtained with regard to suction or blowing and the Soret and Dufour effects. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations by employing similarity transformations, and the obtained equations are solved numerically by using the shooting technique. The main purpose of the study is to investigate the effect of the governing parameters, namely, the Casson, Soret, and Dufour parameters, the suction/injection parameter, and the Prandtl and Reynolds numbers, on the velocity and temperature profiles, as well as on the skin friction coefficient and temperature gradient at the surface.

  9. Containment loads due to direct containment heating and associated hydrogen behavior: Analysis and calculations with the CONTAIN code

    SciTech Connect

    Williams, D C; Bergeron, K D; Carroll, D E; Gasser, R D; Tills, J L; Washington, K E

    1987-05-01

    One of the most important unresolved issues governing risk in many nuclear power plants involves the phenomenon called direct containment heating (DCH), in which it is postulated that molten corium ejected under high pressure from the reactor vessel is dispersed into the containment atmosphere, thereby causing sufficient heating and pressurization to threaten containment integrity. Models for the calculation of potential DCH loads have been developed and incorporated into the CONTAIN code for severe accident analysis. Using CONTAIN, DCH scenarios in PWR plants having three different representative containment types have been analyzed: Surry (subatmospheric large dry containment), Sequoyah (ice condenser containment), and Bellefonte (atmospheric large dry containment). A large number of parameter variation and phenomenological uncertainty studies were performed. Response of DCH loads to these variations was found to be quite complex; often the results differ substantially from what has been previously assumed concerning DCH. Containment compartmentalization offers the potential of greatly mitigating DCH loads relative to what might be calculated using single-cell representations of containments, but the actual degree of mitigation to be expected is sensitive to many uncertainties. Dominant uncertainties include hydrogen combustion phenomena in the extreme environments produced by DCH scenarios, and factors which affect the rate of transport of DCH energy to the upper containment. In addition, DCH loads can be aggravated by rapid blowdown of the primary system, co-dispersal of moderate quantities of water with the debris, and quenching of de-entrained debris in water; these factors act by increasing steam flows which, in turn, accelerates energy transport. It may be noted that containment-threatening loads were calculated for a substantial portion of the scenarios treated for some of the plants considered.

  10. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  11. Global scale estimation of land surface heat fluxes from space: current status, opportunities and future direction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While considerable progress has been made in the development of global flux products from space, there remain a number of issues that either limit the application of these data to their fullest extent, or provide an inherent constraint on the accuracy achievable. This is particularly true when using...

  12. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

    NASA Astrophysics Data System (ADS)

    Martin, J.; Reichstein, M.

    2012-12-01

    We upscaled FLUXNET observations of carbon dioxide, water and energy fluxes to the global scale using the machine learning technique, Model Tree Ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5° x 0.5o spatial resolution and a monthly temporal resolution from 1982-2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were weak. Our products are increasingly used to evaluate global land surface models. However, depending on the flux of interest (e.g. gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, evapotranspiration) and the pattern of interest (mean annual map, seasonal cycles, interannual variability, trends) the robustness and uncertainty of these products varies considerably. To avoid pitfalls, this talk also aims at providing an overview of uncertainties associated with these products, and to provide recommendations on the usage for land surface model evaluations. Finally, we present FLUXCOM - an ongoing activity that aims at generating an ensemble of data-driven FLUXNET based products based on diverse approaches.

  13. Enhance of heat transfer on unsteady Hiemenz flow of nanofluid over a porous wedge with heat source/sink due to solar energy radiation with variable stream condition

    NASA Astrophysics Data System (ADS)

    Mohamad, Radiah Bte; Kandasamy, R.; Muhaimin, I.

    2013-09-01

    Nanofluid-based direct solar receivers, where nanoparticles in a liquid medium can scatter and absorb solar radiation, have recently received interest to efficiently distribute and store the thermal energy. The objective of the present work is to investigate theoretically the unsteady homogeneous Hiemenz flow of an incompressible viscous nanofluid past a porous wedge due to solar energy (incident radiation). The conclusion is drawn that the temperature is significantly influenced by magnetic strength, nanoparticle volume fraction, convective radiation and porosity of the wedge sheet.

  14. Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water

    NASA Astrophysics Data System (ADS)

    Norwood, Zack; Kammen, Daniel

    2012-12-01

    We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of 0.25 kWh-1 electricity and 0.03 kWh-1 thermal, for a system with a life cycle global warming potential of ˜80 gCO2eq kWh-1 of electricity and ˜10 gCO2eq kWh-1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of 1.40 m-3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that 0.40-1.90 m-3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

  15. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas

    PubMed Central

    Li, Jun; Huang, Qian; Sun, Mengxiang; Zhang, Tianyao; Li, Hao; Chen, Biyun; Xu, Kun; Gao, Guizhen; Li, Feng; Yan, Guixin; Qiao, Jiangwei; Cai, Yongping; Wu, Xiaoming

    2016-01-01

    Heat stress can induce the cultured microspores into embryogenesis. In this study, whole genome bisulphite sequencing was employed to study global DNA methylation variations after short-term heat shock (STHS) treatments in cultured microspores of Brassica napus cv. Topas. Our results indicated that treatment on cultured Topas microspores at 32 °C for 6 h triggered DNA hypomethylation, particularly in the CG and CHG contexts. And the total number of T32 (Topas 32 °C for 6 h) vs. T0 (Topas 0 h) differentially methylated region-related genes (DRGs) was approximately two-fold higher than that of T18 (Topas 18 °C for 6 h) vs. T0 DRGs, which suggested that 32 °C might be a more intense external stimulus than 18 °C resulting in more changes in the DNA methylation status of cultured microspores. Additionally, 32 °C treatment for 6 h led to increased CHG differential methylations of transposons (DMTs), which were mainly constituted by overlaps between the hypomethylated differentially methylated regions (hypo-DMRs) and transposon elements (TEs). Further analysis demonstrated that the DRGs and their paralogs exhibited differential methylated/demethylated patterns. To summarize, the present study is the first methylome analysis of cultured microspores in response to STHS and may provide valuable information on the roles of DNA methylation in heat response. PMID:27917903

  16. GLOBAL WARMING. Recent hiatus caused by decadal shift in Indo-Pacific heating.

    PubMed

    Nieves, Veronica; Willis, Josh K; Patzert, William C

    2015-07-31

    Recent modeling studies have proposed different scenarios to explain the slowdown in surface temperature warming in the most recent decade. Some of these studies seem to support the idea of internal variability and/or rearrangement of heat between the surface and the ocean interior. Others suggest that radiative forcing might also play a role. Our examination of observational data over the past two decades shows some significant differences when compared to model results from reanalyses and provides the most definitive explanation of how the heat was redistributed. We find that cooling in the top 100-meter layer of the Pacific Ocean was mainly compensated for by warming in the 100- to 300-meter layer of the Indian and Pacific Oceans in the past decade since 2003.

  17. Impacts of global warming on residential heating and cooling degree-days in the United States.

    PubMed

    Petri, Yana; Caldeira, Ken

    2015-08-04

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981-2010) and future (2080-2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making.

  18. Impacts of global warming on residential heating and cooling degree-days in the United States

    PubMed Central

    Petri, Yana; Caldeira, Ken

    2015-01-01

    Climate change is expected to decrease heating demand and increase cooling demand for buildings and affect outdoor thermal comfort. Here, we project changes in residential heating degree-days (HDD) and cooling degree-days (CDD) for the historical (1981–2010) and future (2080–2099) periods in the United States using median results from the Climate Model Intercomparison Project phase 5 (CMIP5) simulations under the Representation Concentration Pathway 8.5 (RCP8.5) scenario. We project future HDD and CDD values by adding CMIP5 projected changes to values based on historical observations of US climate. The sum HDD + CDD is an indicator of locations that are thermally comfortable, with low heating and cooling demand. By the end of the century, station median HDD + CDD will be reduced in the contiguous US, decreasing in the North and increasing in the South. Under the unmitigated RCP8.5 scenario, by the end of this century, in terms of HDD and CDD values considered separately, future New York, NY, is anticipated to become more like present Oklahoma City, OK; Denver, CO, becomes more like Raleigh, NC, and Seattle, WA, becomes more like San Jose, CA. These results serve as an indicator of projected climate change and can help inform decision-making. PMID:26238673

  19. Repair of UVB-induced DNA damage is reduced in melanoma due to low XPC and global genome repair

    PubMed Central

    Budden, Timothy; Davey, Ryan J.; Vilain, Ricardo E.; Ashton, Katie A.; Braye, Stephen G.; Beveridge, Natalie J.; Bowden, Nikola A.

    2016-01-01

    UVB exposure leads to DNA damage, which when unrepaired induces C>T transitions. These mutations are found throughout the melanoma genome, particularly in non-transcribed regions. The global genome repair (GGR) branch of nucleotide excision repair (NER) is responsible for repairing UV-induced DNA damage across non-transcribed and silent regions of the genome. This study aimed to examine the relationship between UVB and GGR in melanoma. DNA repair capacity and relative expression of NER in melanocytes and melanoma cell lines before and after treatment with UVB was quantified. Transcript expression from 196 melanomas was compared to clinical parameters including solar elastosis and whole transcriptome data collected. Melanoma cell lines showed significantly reduced DNA repair when compared to melanocytes, most significantly in the S phase of the cell cycle. Expression of GGR components XPC, DDB1 and DDB2 was significantly lower in melanoma after UVB. In the melanoma tumours, XPC expression correlated with age of diagnosis and low XPC conferred significantly poorer survival. The same trend was seen in the TCGA melanoma dataset. Reduced GGR in melanoma may contribute to the UV mutation spectrum of the melanoma genome and adds further to the growing evidence of the link between UV, NER and melanoma. PMID:27487145

  20. Comprehensive chemical characterisation of size-segregated PM10 in Dresden and estimation of changes due to global warming

    NASA Astrophysics Data System (ADS)

    Scheinhardt, Sebastian; Spindler, Gerald; Leise, Silvia; Müller, Konrad; Iinuma, Yoshiteru; Zimmermann, Frank; Matschullat, Jörg; Herrmann, Hartmut

    2013-08-01

    To identify current and future human health risks from urban air pollution, size-segregated particle samples were collected under various seasonal and meteorological conditions in Dresden, Germany. Sampling days were grouped into twelve categories depending on season, air mass origin and temperature. A comprehensive chemical characterisation and mass closure were performed. The particulate matter (PM) mass concentration and composition were shown to be highly dependent on these categories. The highest PM mass concentrations were found on cold winter days, mainly due to compounds of anthropogenic origin. The current annual mean PM mass concentration and composition were calculated using the occurrence frequencies of the categories (weighted mean). Information about future changes of the occurrence frequencies of the categories was deduced from climate models. Assuming that PM concentration and composition within a given category do not change, the annual mean PM mass concentration and composition were calculated for two scenarios (weighted mean, 2071-2100). As a result, it was found that the annual mean PM mass concentration is likely to decrease slightly by 2100, mainly due to a decrease of sulphate and soot mass concentrations. Generally, chemicals originating from anthropogenic emissions (PAHs, trace metals) are estimated to decrease. However, it is concluded that emission reduction measures are still necessary to control urban air quality including PM even if climate change will lead to a certain reduction in PM.

  1. Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Robertson, Franklin

    1993-01-01

    The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.

  2. Altered proteostasis in aging and heat shock response in C. elegans revealed by analysis of the global and de novo synthesized proteome.

    PubMed

    Liang, Vanessa; Ullrich, Milena; Lam, Hong; Chew, Yee Lian; Banister, Samuel; Song, Xiaomin; Zaw, Thiri; Kassiou, Michael; Götz, Jürgen; Nicholas, Hannah R

    2014-09-01

    Protein misfolding and aggregation as a consequence of impaired protein homeostasis (proteostasis) not only characterizes numerous age-related diseases but also the aging process itself. Functionally related to the aging process are, among others, ribosomal proteins, suggesting an intimate link between proteostasis and aging. We determined by iTRAQ quantitative proteomic analysis in C. elegans how the proteome changes with age and in response to heat shock. Levels of ribosomal proteins and mitochondrial chaperones were decreased in aged animals, supporting the notion that proteostasis is altered during aging. Mitochondrial enzymes of the tricarboxylic acid cycle and the electron transport chain were also reduced, consistent with an age-associated energy impairment. Moreover, we observed an age-associated decline in the heat shock response. In order to determine how protein synthesis is altered in aging and in response to heat shock, we complemented our global analysis by determining the de novo proteome. For that, we established a novel method that enables both the visualization and identification of de novo synthesized proteins, by incorporating the non-canonical methionine analogue, azidohomoalanine (AHA), into the nascent polypeptides, followed by reacting the azide group of AHA by 'click chemistry' with an alkyne-labeled tag. Our analysis of AHA-tagged peptides demonstrated that the decreased abundance of, for example, ribosomal proteins in aged animals is not solely due to degradation but also reflects a relative decrease in their synthesis. Interestingly, although the net rate of protein synthesis is reduced in aged animals, our analyses indicate that the synthesis of certain proteins such as the vitellogenins increases with age.

  3. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century.

    PubMed

    O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W

    2016-08-16

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  4. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    NASA Astrophysics Data System (ADS)

    O'Sullivan, M.; Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-08-01

    The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.

  5. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    PubMed Central

    Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-01-01

    Abstract The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen‐carbon interactions. PMID:27773953

  6. THE MECHANISM OF PORE REDUCTION DUE TO CARBONATION REACTION OF γ-2CaO.SiO2 AND POZZOLANIC ADMIXTURES WITH LOW-HEAT-PORTLAND-CEMENT

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenzo; Yokozeki, Kosuke; Sakata, Noboru; Sakai, Etsuo

    The durability of cementitious material can be effectively improved by reducing permeability and by changing cement hydrates due to car bonation reaction. This paper describes the examination results about the mechanism of pore reductio n during the curing with CO2 gasses of new cementisious materials containing low heat Portland cement, γ-2CaO.SiO2 and pozzolanic admixtures. As a result, it was provided that the pore of the mortar containing the pozzolanic admixtures and γ-2CaO.SiO2 got small, because the pozzolanic admixtures would accelerate the reaction of γ-2CaO.SiO2 and CO2 gasses.

  7. RETRACTION: Unsteady flow and heat transfer of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in a porous medium

    NASA Astrophysics Data System (ADS)

    Attia, H. A.

    2007-04-01

    It has come to the attention of the Institute of Physics that this article should not have been submitted for publication owing to its plagiarism of an earlier paper (Hossain A, Hossain M A and Wilson M 2001 Unsteady flow of viscous incompressible fluid with temperature-dependent viscosity due to a rotating disc in presence of transverse magnetic field and heat transfer Int. J. Therm. Sci. 40 11-20). Therefore this article has been retracted by the Institute of Physics and by the author, Hazem Ali Attia.

  8. An arbitrary wavelength solver for global gyrokinetic simulations. Application to the study of fine radial structures on microturbulence due to non-adiabatic passing electron dynamics

    NASA Astrophysics Data System (ADS)

    Dominski, J.; McMillan, B. F.; Brunner, S.; Merlo, G.; Tran, T.-M.; Villard, L.

    2017-02-01

    The influence of the fine layers of the non-adiabatic passing electron response on electrostatic turbulent transport, previously studied systematically in flux tube geometry [Dominski et al., Phys. Plasmas 22, 062303 (2015)], is pursued in global geometry in conditions relevant for the TCV tokamak with a deuterium plasma (mi/me = 3672). The spectral organization of the passing electron turbulent flux and its dependence on the radial profile of the safety factor are revealed. A radially dependent toroidal spectral analysis of the turbulent fluxes led to the key result that the particle and heat diffusivities of passing-electrons are proportional to the local density of low-order mode rational surfaces. To permit this study of the short radial scales associated with the passing electron dynamics, a new field solver valid at an arbitrary wavelength is implemented in ORB5, for the gyrokinetic quasi-neutrality equation. A benchmark is conducted against the global version of the gyrokinetic code GENE, showing very good agreement.

  9. Thermal transport due to buoyant flow past a vertical, heated superhydrophobic surface with uniform stream-wise slip

    NASA Astrophysics Data System (ADS)

    Searle, Matthew; Maynes, Daniel; Crockett, Julie

    2016-11-01

    An analytical investigation of thermal transport due to a steady, laminar, buoyancy-driven flow past a vertical superhydrophobic (SHPo) surface was performed. The surface temperature was constant and uniform and exceeded the temperature of the surrounding liquid. Uniform stream-wise hydrodynamic slip and temperature jump are imposed at the wall to model the SHPo surface. Applying an integral analysis within the boundary layer results in a system of differential equations which are solved numerically to obtain boundary layer thickness, maximum velocity in the profile, and local and average values of both the friction coefficient and the Nusselt number. The classical smooth hydrophobic scenario with no-slip and no temperature jump showed excellent agreement with previous analysis of the same problem. The influence of varying temperature jump length on the local and average values of the friction coefficient and the Nusselt number was obtained for Rayleigh number ranging from 104 to 109 and Prandtl number ranging from 2 to 11. Local and average Nusselt numbers decrease dramatically, concomitant with a decrease in the maximum fluid velocity, as the temperature jump length increases. National Science Foundation(NSF) Grant No. CBET-1235881.

  10. Clouds, precipitation, and the global heat and moisture budgets during SOP-1, FGGE

    NASA Technical Reports Server (NTRS)

    Pedigo, Catherine B.; Vincent, Dayton G.; Hurrell, James W.

    1989-01-01

    Two sets of precipitation estimates are derived using the budget method equations: one is based on the apparent heat source or Q1-budget technique, the other is based on the apparent moisture sink or Q2-budget technique. Both techniques and application results are presented for the period of January 10 to February 13, 1979 which was part of SOP-1, FGGE. Maps of time-averaged outgoing longwave radiation (OLR) are shown for two periods running from January 10 to January 24, 1979 and from January 26 to February 7, 1979. The present study of estimating precipitation was initiated because of agreement between OLR and circulation patterns, and the noted regional differences and similarities in deep convections between these two periods.

  11. Global Gene-Expression Analysis to Identify Differentially Expressed Genes Critical for the Heat Stress Response in Brassica rapa.

    PubMed

    Dong, Xiangshu; Yi, Hankuil; Lee, Jeongyeo; Nou, Ill-Sup; Han, Ching-Tack; Hur, Yoonkang

    2015-01-01

    Genome-wide dissection of the heat stress response (HSR) is necessary to overcome problems in crop production caused by global warming. To identify HSR genes, we profiled gene expression in two Chinese cabbage inbred lines with different thermotolerances, Chiifu and Kenshin. Many genes exhibited >2-fold changes in expression upon exposure to 0.5- 4 h at 45°C (high temperature, HT): 5.2% (2,142 genes) in Chiifu and 3.7% (1,535 genes) in Kenshin. The most enriched GO (Gene Ontology) items included 'response to heat', 'response to reactive oxygen species (ROS)', 'response to temperature stimulus', 'response to abiotic stimulus', and 'MAPKKK cascade'. In both lines, the genes most highly induced by HT encoded small heat shock proteins (Hsps) and heat shock factor (Hsf)-like proteins such as HsfB2A (Bra029292), whereas high-molecular weight Hsps were constitutively expressed. Other upstream HSR components were also up-regulated: ROS-scavenging genes like glutathione peroxidase 2 (BrGPX2, Bra022853), protein kinases, and phosphatases. Among heat stress (HS) marker genes in Arabidopsis, only exportin 1A (XPO1A) (Bra008580, Bra006382) can be applied to B. rapa for basal thermotolerance (BT) and short-term acquired thermotolerance (SAT) gene. CYP707A3 (Bra025083, Bra021965), which is involved in the dehydration response in Arabidopsis, was associated with membrane leakage in both lines following HS. Although many transcription factors (TF) genes, including DREB2A (Bra005852), were involved in HS tolerance in both lines, Bra024224 (MYB41) and Bra021735 (a bZIP/AIR1 [Anthocyanin-Impaired-Response-1]) were specific to Kenshin. Several candidate TFs involved in thermotolerance were confirmed as HSR genes by real-time PCR, and these assignments were further supported by promoter analysis. Although some of our findings are similar to those obtained using other plant species, clear differences in Brassica rapa reveal a distinct HSR in this species. Our data could also provide a

  12. Systematic errors in digital volume correlation due to the self-heating effect of a laboratory x-ray CT scanner

    NASA Astrophysics Data System (ADS)

    Wang, B.; Pan, B.; Tao, R.; Lubineau, G.

    2017-04-01

    The use of digital volume correlation (DVC) in combination with a laboratory x-ray computed tomography (CT) for full-field internal 3D deformation measurement of opaque materials has flourished in recent years. During x-ray tomographic imaging, the heat generated by the x-ray tube changes the imaging geometry of x-ray scanner, and further introduces noticeable errors in DVC measurements. In this work, to provide practical guidance high-accuracy DVC measurement, the errors in displacements and strains measured by DVC due to the self-heating for effect of a commercially available x-ray scanner were experimentally investigated. The errors were characterized by performing simple rescan tests with different scan durations. The results indicate that the maximum strain errors associated with the self-heating of the x-ray scanner exceed 400 µε. Possible approaches for minimizing or correcting these displacement and strain errors are discussed. Finally, a series of translation and uniaxial compression tests were performed, in which strain errors were detected and then removed using pre-established artificial dilatational strain-time curve. Experimental results demonstrate the efficacy and accuracy of the proposed strain error correction approach.

  13. Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Zhu, Shaoping; Pei, Wenbing; Ye, Wenhua; Li, Meng; Xu, Xiaowen; Wu, Junfeng; Dai, Zhensheng; Wang, Lifeng

    2012-09-01

    Tritium-hydrogen-deuterium (THD) target is adopted in order to experimentally diagnose the properties of the ignition hot spot and the highly compressed main fusion fuel (Edwards M. J. et al., Phys. Plasmas, 18 (2011) 051003). As compared with deuterium-tritium (DT) target, the thermonuclear alpha particles which are needed to heat the fusion fuel, are much less in the THD target. In the present paper, the effect of alpha particle heating on the deceleration phase Rayleigh-Taylor instability (dp-RTI), which is one of the key problems in hot spot formation, is investigated systematically through numerical simulations. It is found that the mass ablation at the hot spot boundary is greatly increased due to the direct alpha particle heating. As a result, the dp-RTI growth rates are greatly reduced and the cut-off mode number decreases greatly from about 33 to 17. This explains why the hydrodynamic instability in the THD target grows more severely than in the DT ignition target.

  14. ESA DUE Permafrost: Evaluation of remote sensing derived products using ground data from the Global Terrestrial Network of Permafrost (GTN-P)

    NASA Astrophysics Data System (ADS)

    Elger, K. K.; Heim, B.; Lantuit, H.; Boike, J.; Bartsch, A.; Paulik, C.; Duguay, C. R.; Hachem, S.; Soliman, A. S.

    2011-12-01

    The task of the ESA DUE Permafrost project is to build up an Earth observation service for high-latitudinal permafrost applications with extensive involvement of the permafrost research community. The DUE Permafrost products derived from remote sensing are land surface temperature (LST), surface soil moisture (SSM), surface frozen and thawed state (freeze/ thaw), terrain, land cover, and surface waters. Weekly and monthly averages for most of the DUE Permafrost products will be made available for the years 2007-2010. The DUE Permafrost products are provided for the circumpolar permafrost area (north of 55°N) with 25 km spatial resolution. In addition, regional products with higher spatial resolution (300-1000 m/ pixel) were developed for five case study regions. These regions are: (1) the Laptev Sea and Eastern Siberian Sea Region (RU, continuous very cold permafrost/ tundra), (2) the Yakutsk Region (RU, continuous cold permafrost/ taiga), (3) the Western Siberian transect including Yamal Peninsula and Ob Region (RU, continuous to discontinuous/ taiga-tundra), (4) the Alaska Highway Transect (US, continuous to discontinuous/ taiga-tundra), and (5) the Mackenzie Delta and Valley Transect (CA, continuous to discontinuous/ taiga-tundra). The challenge of the programme is to adapt remote sensing products that are well established and tested in agricultural low and mid-latitudinal areas for highly heterogeneous taiga/ tundra permafrost landscapes in arctic regions. Ground data is essential for the evaluation of DUE Permafrost products and is provided by user groups and global networks. A major part of the DUE Permafrost core user group is contributing to GTN-P, the Global Terrestrial Network of Permafrost. Its main programmes, the Circumpolar Active Layer Monitoring (CALM) and the Thermal State of Permafrost (TSP) have been thoroughly overhauled during the last International Polar Year (2007-2008). Their spatial coverage has been extended to provide a true circumpolar

  15. Influence of the parallel nonlinearity on zonal flows and heat transport in global gyrokinetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Jolliet, S.; McMillan, B. F.; Vernay, T.; Villard, L.; Hatzky, R.; Bottino, A.; Angelino, P.

    2009-07-01

    In this paper, the influence of the parallel nonlinearity on zonal flows and heat transport in global particle-in-cell ion-temperature-gradient simulations is studied. Although this term is in theory orders of magnitude smaller than the others, several authors [L. Villard, P. Angelino, A. Bottino et al., Plasma Phys. Contr. Fusion 46, B51 (2004); L. Villard, S. J. Allfrey, A. Bottino et al., Nucl. Fusion 44, 172 (2004); J. C. Kniep, J. N. G. Leboeuf, and V. C. Decyck, Comput. Phys. Commun. 164, 98 (2004); J. Candy, R. E. Waltz, S. E. Parker et al., Phys. Plasmas 13, 074501 (2006)] found different results on its role. The study is performed using the global gyrokinetic particle-in-cell codes TORB (theta-pinch) [R. Hatzky, T. M. Tran, A. Könies et al., Phys. Plasmas 9, 898 (2002)] and ORB5 (tokamak geometry) [S. Jolliet, A. Bottino, P. Angelino et al., Comput. Phys. Commun. 177, 409 (2007)]. In particular, it is demonstrated that the parallel nonlinearity, while important for energy conservation, affects the zonal electric field only if the simulation is noise dominated. When a proper convergence is reached, the influence of parallel nonlinearity on the zonal electric field, if any, is shown to be small for both the cases of decaying and driven turbulence.

  16. On the Decadal Trend of Global Mean Sea Level and its Implication on Ocean Heat Content Change

    NASA Astrophysics Data System (ADS)

    Fu, L. L.

    2015-12-01

    The variability of the trend of global mean sea level on decadal scales is of great importance to determining its long-term evolution. How confident can we be in determining if there is acceleration from decade to decade? Trend determination is affected by the temporally correlated processes in the record, which have often not been properly accounted for. The problem is treated as one of optimal estimation weighted by the auto-covariance of the time series, which takes into account the various time scales affecting trend estimation. On decadal scales, the estimated standard error of the trend determined from the global mean sea level record from radar altimetry is about 0.3 mm/yr, which is comparable to the widely quoted 0.4 mm/yr systematic error and cannot be neglected in the error budget. The time scale of the systematic errors is assumed to be much longer than decadal scale, over which the formal error of the trend estimate becomes dominant. The approach is also applied to determining steric sea level from altimeter-measured sea level and ocean mass estimated from the GRACE observations. The estimated trend error of steric sea level, 0.12 mm/yr, suggests that the change of the global ocean heat content over decadal scales can be estimated from space observations to an accuracy on the order of 0.1 W/m2. The difference between of the steric sea level, estimated from Argo plus the estimated contribution from the deep ocean, and that from altimeter and GRACE, 0.18 +/- 0.25 mm/yr, provides an estimate of the combined systematic errors of altimetry minus GRACE observations.

  17. Global existence and asymptotic behavior for the 3D compressible Navier-Stokes equations without heat conductivity in a bounded domain

    NASA Astrophysics Data System (ADS)

    Wu, Guochun

    2017-01-01

    In this paper, we investigate the global existence and uniqueness of strong solutions to the initial boundary value problem for the 3D compressible Navier-Stokes equations without heat conductivity in a bounded domain with slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial data is near its equilibrium in H2 (Ω). Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.

  18. Global Crop Yield Reductions due to Surface Ozone Exposure: Crop Production Losses and Economic Damage in 2000 and 2030 under Two Future Scenarios of O3 Pollution

    NASA Astrophysics Data System (ADS)

    Avnery, S.; Mauzerall, D. L.; Liu, J.; Horowitz, L. W.

    2011-12-01

    Field studies demonstrate that exposure to elevated concentrations of surface ozone (O3) may cause substantial reductions in the agricultural yields of many crops. As emissions of O3 precursors rise in many parts of the world over the next few decades, yield reductions from O3 exposure may increase the challenges of feeding a global population projected to grow from approximately 6 to 8 billion people between 2000 and 2030. This study estimates global yield reductions of three key staple crops (soybean, maize, and wheat) due to surface ozone exposure in 2000 and 2030 according to two trajectories of O3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O3 precursor emissions in 2030. Our results indicate that year 2000 O3-induced global yield reductions ranged, depending on the O3 exposure metric used, from 3.9-15% for wheat, 8.5-14% for soybean, and 2.2-5.5% for maize. Global crop production losses totaled 79-121 million metric tons, worth 11-18 billion annually (USD2000). In the 2030-A2 scenario we find global O3-induced yield loss of wheat to be 5.4-26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth 17-35 billion USD2000 annually (an increase of +6-17 billion in losses from 2000). Under the 2030-B1 scenario, we project less severe but still substantial reductions in yields: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of+ 0.3-0.5%), with total losses worth 12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural

  19. On the global solvability and the non-resistive limit of the one-dimensional compressible heat-conductive MHD equations

    NASA Astrophysics Data System (ADS)

    Zhang, Jianwen; Zhao, Xiaokui

    2017-03-01

    In general, the resistivity is inversely proportional to the electrical conductivity and is usually taken to be zero when the conducting fluid is of extremely high conductivity (e.g., ideal conductors). In this paper, the global well-posedness of strong solution to the one-dimensional compressible, viscous, heat-conductive, non-resistive magnetohydrodynamics equations with large data, and general heat-conductivity is proved. Moreover, the non-resistive limit is justified and the convergence rates in L2-norm are obtained, provided the heat-conductivity satisfies some growth condition.

  20. Observational and modeling studies of heat, moisture, precipitation and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.

    1994-01-01

    This research grant was a revised version of an original proposal. The period of the grant was for three years with a six-month no-cost extension; thus, it was from 20 July 1990 to 19 January 1994. The objectives of the grant were to identify periods and locations of active convection centers, primarily over the Southern Hemisphere tropical Indian and Pacific Oceans; determine reasons for any periodic behavior found in the first objective; identify cases where subtropical jets over the South Pacific persisted for several days and examine the influences of tropical versus extra-tropical mechanisms in maintaining them; obtain estimates of precipitation by Q(sub 1) and Q(sub 2) budgets, including the importance of terms in each of the respective budgets, and compare these estimates to those obtained by other methods; and diagnose the distributions of moisture and precipitable water over the North Atlantic Ocean using routine analyses and satellite microwave data. To accomplish these objectives, we used grant funds to purchase several data sets, including the Global Precipitation Climate Project (GPCP) observations of station precipitation, ECMWF WCRP/TOGA archive two analyses for January 1985 - December 1990, ECMWF WMO analyses for January 1980 - December 1987, and OLR data for July 1974 - December 1991. We already had some SSM/I data and GLA analyses from a previous grant. In addition, to improve our computing power, we also used grant funds to purchase an IBM PS/2 with accessories, a NEC laser jet printer, and a microcomputer system for word processing. This report is organized as follows. Our research team is listed first. Section two contains a summary of our significant accomplishments; however, a detailed discussion of research results is not included since this information can be found in the accompanying reprints and preprints. Section three offers some concluding remarks, and a complete bibliographic summary is given in Section four.

  1. Partial melting of a Pb-Sn mushy layer due to heating from above, and implications for regional melting of Earth's directionally solidified inner core

    NASA Astrophysics Data System (ADS)

    Yu, James; Bergman, Michael I.; Huguet, Ludovic; Alboussiere, Thierry

    2015-09-01

    Superimposed on the radial solidification of Earth's inner core may be hemispherical and/or regional patches of melting at the inner-outer core boundary. Little work has been carried out on partial melting of a dendritic mushy layer due to heating from above. Here we study directional solidification, annealing, and partial melting from above of Pb-rich Sn alloy ingots. We find that partial melting from above results in convection in the mushy layer, with dense, melted Pb sinking and resolidifying at a lower height, yielding a different density profile than for those ingots that are just directionally solidified, irrespective of annealing. Partial melting from above causes a greater density deeper down and a corresponding steeper density decrease nearer the top. There is also a change in microstructure. These observations may be in accordance with inferences of east-west and perhaps smaller-scale variations in seismic properties near the top of the inner core.

  2. Temperature increase due to Joule heating in a nanostructured MgO-based magnetic tunnel junction over a wide current-pulse range.

    PubMed

    Jeong, Boram; Lim, Sang Ho

    2011-07-01

    The temperature increase due to Joule heating in a nanopillar of a magnetic tunnel junction sandwiched by top and bottom electrodes was calculated by the finite element method. The results for the critical condition for the current-induced magnetization switching measured over a wide current-pulse range were taken from the literature. At long pulse widths, the temperature increase was solely dependent on the magnitude of the critical current density. However, no saturation in the temperature increase occurred for short pulse widths. In this case, the temperature increase additionally depended on the pulse width, so that a broad maximum occurred in the pulse width (or the critical current density) dependence of the temperature increase. The original results for the critical condition were corrected by accounting for the temperature increase and these corrected results, together with the Slonczewski equation, were used to extract an accurate value for the thermal stability factor.

  3. Spatially Explicit Analysis of Biodiversity Loss Due to Global Agriculture, Pasture and Forest Land Use from a Producer and Consumer Perspective.

    PubMed

    Chaudhary, Abhishek; Pfister, Stephan; Hellweg, Stefanie

    2016-04-05

    Anthropogenic land use to produce commodities for human consumption is the major driver of global biodiversity loss. Synergistic collaboration between producers and consumers in needed to halt this trend. In this study, we calculate species loss on 5 min × 5 min grid level and per country due to global agriculture, pasture and forestry by combining high-resolution land use data with countryside species area relationship for mammals, birds, amphibians, and reptiles. Results show that pasture was the primary driver of biodiversity loss in Madagascar, China and Brazil, while forest land use contributed the most to species loss in DR Congo and Indonesia. Combined with the yield data, we quantified the biodiversity impacts of 1 m(3) of roundwood produced in 139 countries, concluding that tropical countries with low timber yield and a large presence of vulnerable species suffer the highest impact. We also calculated impacts per kg for 160 crops grown in different countries and linked it with FAO food trade data to assess the biodiversity impacts embodied in Swiss food imports. We found that more than 95% of Swiss consumption impacts rest abroad with cocoa, coffee and palm oil imports being responsible for majority of damage.

  4. Using ground data of the Global Terrestrial Network of Permafrost (GTN-P) for the evaluation of ESA Data User Element (DUE) Permafrost remote sensing derived products

    NASA Astrophysics Data System (ADS)

    Elger, K.; Heim, B.; Bartsch, A.; Paulik, Ch.; Duguay, C.; Hachem, S.; Soliman, A.; Boike, J.; Langer, M.; Lantuit, H.

    2012-04-01

    Permafrost is one of the essential climate variables addressed by the Global Terrestrial Observing System (GCOS). Remote sensing data provide area-wide monitoring of e.g. surface temperatures or soil surface status (frozen or thawed state) in the Arctic and Subarctic, where ground data collection is difficult and restricted to local measurements at few monitoring sites. The task of the ESA Data User Element (DUE) Permafrost project is to build-up an Earth observation service for northern high-latitudinal permafrost applications with extensive involvement of the international permafrost research community (www.ipf.tuwien.ac.at/permafrost). The satellite-derived DUE Permafrost products are Land Surface Temperature, Surface Soil Moisture, Surface Frozen and Thawed State, Digital Elevation Model (locally as remote sensing product and circumpolar as non-remote sensing product) and Subsidence, and Land Cover. Land Surface Temperature, Surface Soil Moisture, and Surface Frozen and Thawed State will be provided for the circumpolar permafrost area north of 55° N with 25 km spatial resolution. In addition, regional products with higher spatial resolution were developed for five case study regions in different permafrost zones of the tundra and taiga (Laptev Sea [RU], Central Yakutia [RU], Western Siberia [RU], Alaska N-S transect, [US] Mackenzie River and Valley [CA]). This study shows the evaluation of two DUE Permafrost regional products, Land Surface Temperature and Surface Frozen and Thawed State, using freely available ground truth data from the Global Terrestrial Network of Permafrost (GTN-P) and monitoring data from the Russian-German Samoylov research station in the Lena River Delta (Central Siberia, RU). The GTN-P permafrost monitoring sites with their position in different permafrost zones are highly qualified for the validation of DUE Permafrost remote sensing products. Air and surface temperatures with high-temporal resolution from eleven GTN-P sites in Alaska

  5. Proteomic analysis reveals significant elevation of heat shock protein 70 in patients with chronic heart failure due to arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Wei, Ying-Jie; Huang, Yin-Xia; Shen, Ya; Cui, Chuan-Jue; Zhang, Xiao-Ling; Zhang, Hao; Hu, Sheng-Shou

    2009-12-01

    As proteins are the ultimate biological determinants of phenotype of disease, we screened altered proteins associated with heart failure due to arrhythmogenic right ventricular cardiomyopathy (ARVC) to identify biomarkers potential for rapid diagnosis of heart failure. By 2-dimensional gel electrophoresis and mass spectrometry, we identified five commonly altered proteins with more than 1.5 fold changes in eight ARVC failing hearts using eight non-failing hearts as reference. Noticeably, one of the altered proteins, heat shock protein 70 (HSP70), was increased by 1.64 fold in ARVC failing hearts compared with non-failing hearts. The increase of cardiac HSP70 was further validated by Western blot, immunochemistry, and enzyme-linked immunosorbent assay (ELISA) in failing hearts due to not only ARVC, but also dilated (DCM, n = 18) and ischemic cardiomyopathy (ICM, n = 8). Serum HSP70 was also observed to be significantly increased in heart failure patients derived from the three forms of cardiomyopathies. In addition, we observed hypoxia/serum depletion stimulation induced significantly elevation of intracellular and extracellular HSP70 in cultured neonatal rat cardiomyocytes. For the first time to our knowledge, we revealed and clearly demonstrated significant up-regulation of cardiac and serum HSP70 in ARVC heart failure patients. Our results indicate that elevated HSP70 is the common feature of heart failure due to ARVC, DCM, and ICM, which suggests that HSP70 may be used as a biomarker for the presence of heart failure due to cardiomyopathies of different etiologies and may hold diagnostic/prognostic potential in clinical practice.

  6. A Unified Theory of Turbulence: Maximum Entropy Increase Due To Turbulent Dissipation In Fluid Systems From Laboratory-scale Turbulence To Global-scale Circulations

    NASA Astrophysics Data System (ADS)

    Ozawa, Hisashi; Shimokawa, Shinya; Sakuma, Hirofumi

    Turbulence is ubiquitous in nature, yet remains an enigma in many respects. Here we investigate dissipative properties of turbulence so as to find out a statistical "law" of turbulence. Two general expressions are derived for a rate of entropy increase due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is found with these equations that phenomenological properties of turbulence such as Malkus's suggestion on maximum heat transport in thermal convection as well as Busse's sug- gestion on maximum momentum transport in shear turbulence can rigorously be ex- plained by a unique state in which the rate of entropy increase due to the turbulent dissipation is at a maximum (dS/dt = Max.). It is also shown that the same state cor- responds to the maximum entropy climate suggested by Paltridge. The tendency to increase the rate of entropy increase has also been confirmed by our recent GCM ex- periments. These results suggest the existence of a universal law that manifests itself in the long-term statistics of turbulent fluid systems from laboratory-scale turbulence to planetary-scale circulations. Ref.) Ozawa, H., Shimokawa, S., and Sakuma, H., Phys. Rev. E 64, 026303, 2001.

  7. Study of global heat transport and plume morphology in severely-confined Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Xia, Ke-Qing; Chong, Kai Leong

    2016-11-01

    We study systematically how severe geometrical confinement influences the global heat transport (expressed as Nusselt number Nu) and the plume morphology in Rayleigh-Bénard convection (RBC) by means of direct numerical simulations. Broad ranges of width-to-height aspect-ratio (1 / 128 <= Γ <= 1) and Rayleigh number (3 ×104 <= Ra <=1011) at fixed Prandtl number Pr = 4 . 38 are considered in present study. It is found that Nu exhibits the scaling Nu - 1 Ra 0 . 61 over three decades of Ra at Γ = 1 / 128 and the flow is dominated by finger-like, long-lived plume columns for such severely-confined situation. The Nu scaling and the flow structures contrast sharply to that found at Γ = 1 for which Nu exhibits the scaling Nu - 1 Ra 0 . 31 and the flow is dominated by mushroom-like, fragmented thermal plumes. Analogy is made between the severely-confined RBC and strongly rotating RBC. This work was supported by RGC of HKSAR (No. CUHK404513), CUHK Direct Grant (No. 3132740) and through a HKPhD Fellowship.

  8. Avermectin induced global DNA hypomethylation and over-expression of heat shock proteins in cardiac tissues of pigeon.

    PubMed

    Liu, Ci; Cao, Ye; Zhou, Shuo; Khoso, Pervez Ahmed; Li, Shu

    2017-01-01

    Despite increasing evidences pointing to residues of avermectin (AVM) pose toxic effects on non-target organisms in environment, but the data in pigeon is insufficient. The alteration of global DNA methylation and response of heat shock proteins (Hsps) are important for assessing the AVM toxicity in cardiac tissues of pigeon (Columba livia). To investigate the effects of AVM exposure in cardiac tissues of pigeon, we detected the expression levels of DNA methyltransferases (Dnmts), methylated DNA-binding domain protein 2 (MBD2), and Hsp 60, 70 and 90. Pigeons were exposed to feed containing AVM (0, 20, 40 and 60mg/kg diet) for 30, 60, 90days respectively, and cardiac tissues were collected and analyzed. We found the transcriptional levels of Dnmt1, Dnmt3a and Dnmt3b mRNA were down-regulated, but the transcriptional levels of MBD2 mRNA were up-regulated by AVM exposure in cardiac tissues of pigeon. Necrocytosis, hemorrhage, infiltration of inflammatory cells and abundant vacuoles appeared in cardiac tissues after AVM exposure. Accompanying this phenotype, the mRNA transcriptional and/or protein levels of Hsp30, Hsp60, Hsp70 and Hsp90 increased. In conclusion, these results underscored AVM exposure caused DNA methylation machinery malfunctions, and induced over-expression of Hsps to improve the protective function against cardiac injury.

  9. Simulated tempering based on global balance or detailed balance conditions: Suwa-Todo, heat bath, and Metropolis algorithms.

    PubMed

    Mori, Yoshiharu; Okumura, Hisashi

    2015-12-05

    Simulated tempering (ST) is a useful method to enhance sampling of molecular simulations. When ST is used, the Metropolis algorithm, which satisfies the detailed balance condition, is usually applied to calculate the transition probability. Recently, an alternative method that satisfies the global balance condition instead of the detailed balance condition has been proposed by Suwa and Todo. In this study, ST method with the Suwa-Todo algorithm is proposed. Molecular dynamics simulations with ST are performed with three algorithms (the Metropolis, heat bath, and Suwa-Todo algorithms) to calculate the transition probability. Among the three algorithms, the Suwa-Todo algorithm yields the highest acceptance ratio and the shortest autocorrelation time. These suggest that sampling by a ST simulation with the Suwa-Todo algorithm is most efficient. In addition, because the acceptance ratio of the Suwa-Todo algorithm is higher than that of the Metropolis algorithm, the number of temperature states can be reduced by 25% for the Suwa-Todo algorithm when compared with the Metropolis algorithm.

  10. Property fluxes at 30[degree]S and their implications for the Pacific-Indian throughflow and the global heat budget

    SciTech Connect

    MacDonald, A.M. )

    1993-04-15

    The author attempts to calculate the flux of heat in all the southern oceans across a latitude of 30[degree] south, and associate some uncertainty with the number. The oceans play a major role in the global heat budget, and hence in climate and climate change. The deep water masses formed in the North Atlantic pass through the South Atlantic in the process of exchange with the rest of the worlds oceans. This is all part of the global thermohaline circulation. Several proposed return paths for this water exist. The return through the Indonesian Passage can range over all previous estimates, 0 to 20 Sv, and still be consistent with the model and data. General averages suggest a value near 10 Sv. Global heat flux is estimated at [minus]0.7 [times] 10[sup 15] W, with an even larger southward flux in the Indian ocean dominating this result. Large northward heat flux values in the South Atlantic are not consistent with the data.

  11. Heat-induced accumulation of protein synthesis elongation factor 1A indicates an important role in heat tolerance in potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress substantially reduces crop productivity worldwide, and will become more severe due to global warming. Identification of proteins involved in heat stress response may help develop varieties for heat tolerance. Eukaryotic elongation factor 1A (eEF1A) is a cytosolic, multifunctional protei...

  12. The impact of past and future climate change on global human mortality due to ozone and PM2.5 outdoor air pollution

    NASA Astrophysics Data System (ADS)

    Silva, R.; West, J.; Anenberg, S.; Lamarque, J.; Shindell, D. T.; Bergmann, D. J.; Berntsen, T.; Cameron-Smith, P. J.; Collins, B.; Ghan, S. J.; Josse, B.; Nagashima, T.; Naik, V.; Plummer, D.; Rodriguez, J. M.; Szopa, S.; Zeng, G.

    2012-12-01

    Climate change can adversely affect air quality, through changes in meteorology, atmospheric chemistry, and emissions. Future changes in air pollutant emissions will also profoundly influence air quality. These changes in air quality can affect human health, as exposure to ground-level ozone and fine particulate matter (PM2.5) has been associated with premature human mortality. Here we will quantify the global mortality impacts of past and future climate change, considering the effects of climate change on air quality isolated from emission changes. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has simulated the past and future surface concentrations of ozone and PM2.5 from each of several GCMs, for emissions from 1850 ("preindustrial") to 2000 ("present-day"), and for the IPCC AR5 Representative Concentration Pathways (RCPs) scenarios to 2100. We will use ozone and PM2.5 concentrations from simulations from five or more global models of atmospheric dynamics and chemistry, for a base year (present-day), pre-industrial conditions, and future scenarios, considering changes in climate and emissions. We will assess the mortality impacts of past climate change by using one simulation ensemble with present emissions and climate and one with present emissions but 1850 climate. We will similarly quantify the potential impacts of future climate change under the four RCP scenarios in 2030, 2050 and 2100. All model outputs will be regridded to the same resolution to estimate multi-model medians and range in each grid cell. Resulting premature deaths will be calculated using these medians along with epidemiologically-derived concentration-response functions, and present-day or future projections of population and baseline mortality rates, considering aging and transitioning disease rates over time. The spatial distributions of current and future global premature mortalities due to ozone and PM2.5 outdoor air pollution will be presented separately

  13. The state of permafrost surrounding "Gabriel de Castilla" Spanish Antarctic Station (Deception Island, Antarctica): Studying the possible degradation due to the infrastructures heating effect.

    NASA Astrophysics Data System (ADS)

    Recio, Cayetana; Ángel de Pablo, MIguel; Ramos, MIguel; Molina, Antonio

    2015-04-01

    Permafrost degradation is one of the effects of the global warming. Many studies reveal the increase of active layer and reduction on permafrost table thickness, also in Antarctica. However, these trends on permafrost can be accelerated by the human activities, as the heating produced by the Antarctic stations infrastructures when they are not properly isolated from the ground. In Deception island, South Shetland Archipelago, we started 3 years ago a monitoring program at the 26 years old "Gabriel de Castilla" Spanish Antarctic Station (SAS), It is focused on charactering the state of permafrost, since in the coastal scarps at tens of meters from the station an increase on erosion had been detected. Although the main cause of the erosion of this coastal volcanoclastic materials is the 2 meters thick icefield which forms during the winter in the inner sea of this volcanic island, we want to detect any possible contribution to the coastal erosion caused by the permafrost degradation related to the SAS presence. We present our preliminary analysis based on three years of continuous ground temperature data, monitored at a shallow borehole (70 cm deep) in the SAS edge, together with the active layer thickness measured around the station and their vicinities in two thawing seasons. We complete this study with the analysis of the continuous temperature data taken inside the SAS and the air and ground temperatures below the station, acquired during the last Antarctic Campaign (December 2014-February 2015). These preliminary results are fundamental 1) to discard any contribution from the SAS presence, and to help to improve its thermal isolation, 2) to help improve our knowledge about the thermal state of permafrost in the area, and 3) to help to understand the causes of the coastal erosion in the volcanic Deception Island.

  14. Comparison between global latent heat flux computed from multisensor (SSM/I and AVHRR) and from in situ data

    NASA Technical Reports Server (NTRS)

    Jourdan, Didier; Gautier, Catherine

    1995-01-01

    Comprehensive Ocean-Atmosphere Data Set (COADS) and satellite-derived parameters are input to a similarity theory-based model and treated in completely equivalent ways to compute global latent heat flux (LHF). In order to compute LHF exclusively from satellite measurements, an empirical relationship (Q-W relationship) is used to compute the air mixing ratio from Special Sensor Microwave/Imager (SSM/I) precipitable water W and a new one is derived to compute the air temperature also from retrieved W(T-W relationship). First analyses indicate that in situ and satellite LHF computations compare within 40%, but systematic errors increase the differences up to 100% in some regions. By investigating more closely the origin of the discrepancies, the spatial sampling of ship reports has been found to be an important source of error in the observed differences. When the number of in situ data records increases (more than 20 per month), the agreement is about 50 W/sq m rms (40 W/sq m rms for multiyear averages). Limitations of both empirical relationships and W retrieval errors strongly affect the LHF computation. Systematic LHF overestimation occurs in strong subsidence regions and LHF underestimation occurs within surface convergence zones and over oceanic upwelling areas. The analysis of time series of the different parameters in these regions confirms that systematic LHF discrepancies are negatively correlated with the differences between COADS and satellite-derived values of the air mixing ratio and air temperature. To reduce the systematic differences in satellite-derived LHF, a preliminary ship-satellite blending procedure has been developed for the air mixing ratio and air temperature.

  15. Quantification and attribution of errors in the simulated annual gross primary production and latent heat fluxes by two global land surface models

    NASA Astrophysics Data System (ADS)

    Li, Jianduo; Wang, Ying-Ping; Duan, Qingyun; Lu, Xingjie; Pak, Bernard; Wiltshire, Andy; Robertson, Eddy; Ziehn, Tilo

    2016-09-01

    Differences in the predicted carbon and water fluxes by different global land models have been quite large and have not decreased over the last two decades. Quantification and attribution of the uncertainties of global land surface models are important for improving the performance of global land surface models, and are the foci of this study. Here we quantified the model errors by comparing the simulated monthly global gross primary productivity (GPP) and latent heat flux (LE) by two global land surface models with the model-data products of global GPP and LE from 1982 to 2005. By analyzing model parameter sensitivities within their ranges, we identified about 2-11 most sensitive model parameters that have strong influences on the simulated GPP or LE by two global land models, and found that the sensitivities of the same parameters are different among the plant functional types (PFT). Using parameter ensemble simulations, we found that 15%-60% of the model errors were reduced by tuning only a few (<4) most sensitive parameters for most PFTs, and that the reduction in model errors varied spatially within a PFT or among different PFTs. Our study shows that future model improvement should optimize key model parameters, particularly those parameters relating to leaf area index, maximum carboxylation rate, and stomatal conductance.

  16. Cardiosphere-derived cells from pediatric end-stage heart failure patients have enhanced functional activity due to the heat shock response regulating the secretome.

    PubMed

    Sharma, Sudhish; Mishra, Rachana; Simpson, David; Wehman, Brody; Colletti, Evan J; Deshmukh, Savitha; Datla, Srinivasa Raju; Balachandran, Keerti; Guo, Yin; Chen, Ling; Siddiqui, Osama T; Kaushal, Shalesh; Kaushal, Sunjay

    2015-04-01

    We have demonstrated that human neonatal cardiosphere-derived cells (CDCs) derived from the young are more regenerative due to their robust secretome. However, it is unclear how the decompensated pediatric heart impacts the functional activity of their CDCs. Our aim was to characterize the potency of pediatric CDCs derived from normal functioning myocardium of control heart disease (CHD) patients to those generated from age-matched end stage heart failure (ESHF) patients and to determine the mechanisms involved. ESHF-derived CDCs contained a higher number of c-kit(+) , Islet-1(+) , and Sca-1(+) cells. When transplanted into an infarcted rodent model, ESHF-derived CDCs significantly demonstrated higher restoration of ventricular function, prevented adverse remodeling, and enhanced angiogenesis when compared with CHD patients. The superior functional recovery of the ESHF-derived CDCs was mediated in part by increased SDF-1α and VEGF-A secretion resulting in augmented recruitment of endogenous stem cells and proliferation of cardiomyocytes. We determined the mechanism is due to the secretome directed by the heat shock response (HSR), which is supported by three lines of evidence. First, gain of function studies demonstrated that increased HSR induced the lower functioning CHD-derived CDCs to significantly restore myocardial function. Second, loss-of function studies targeting the HSR impaired the ability of the ESHF-derived CDCs to functionally recover the injured myocardium. Finally, the native ESHF myocardium had an increased number of c-kit(+) cardiac stem cells. These findings suggest that the HSR enhances the functional activity of ESHF-derived CDCs by increasing their secretome activity, notably SDF-1α and VEGF-A.

  17. An investigation of gap heating due to stepped tiles in zero pressure gradient regions of the Shuttle Orbiter Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Smith, D. M.; Petley, D. H.; Edwards, C. L. W.; Patten, A. B.

    1983-01-01

    An analytical study is presented which investigates the cause of the excessive heating in the tile-to-tile gaps of the Shuttle Orbiter Thermal Protection System, as evidenced by the visible discoloration and charring of the filler bar and strain isolation pad used in the attachment of tiles to the aluminum substrate. Techniques are developed to estimate the pressure disturbances due to a stepped tile and to calculate the disturbance-induced mass flow rates in the tile-to-tile gaps, filler bar, strain isolation pad, and the tile itself. A thermal analysis in the tile-to-tile gap is then performed in order to determine the temperature response to the hot gas flow. Calculations are performed at locations on the fuselage and the left wing where damaged filler bars were observed on the first flight of the Shuttle. It is concluded that the steps and gaps must be controlled within tight tolerances during tile installation and the tolerances must be maintained in flight. If the tolerances cannot be maintained, tile-to-tile gap filler may be an alternative.

  18. The collapse of the local, Spitzer-Haerm formulation and a global-local generalization for heat flow in an inhomogeneous, fully ionized plasma

    NASA Technical Reports Server (NTRS)

    Scudder, J. D.; Olbert, S.

    1983-01-01

    The breakdown of the classical (CBES) field aligned transport relations for electrons in an inhomogeneous, fully ionized plasma as a mathematical issue of radius of convergence is addressed, the finite Knudsen number conditions when CBES results are accurate is presented and a global-local (GL) way to describe the results of Coulomb physics moderated conduction that is more nearly appropriate for astrophysical plasmas are defined. This paper shows the relationship to and points of departure of the present work from the CBES approach. The CBES heat law in current use is shown to be an especially restrictive special case of the new, more general GL result. A preliminary evaluation of the dimensionless heat function, using analytic formulas, shows that the dimensionless heat function profiles versus density of the type necessary for a conduction supported high speed solar wind appear possible.

  19. Impact of the seasonal cycle on the decadal predictability of the North Atlantic volume and heat transport under global warming

    NASA Astrophysics Data System (ADS)

    Fischer, Matthias; Müller, Wolfgang A.; Domeisen, Daniela I. V.; Baehr, Johanna

    2016-04-01

    The North Atlantic ocean circulation is projected to change considerably with future climate change. Here, we investigate whether changes in the North Atlantic meridional overturning circulation (AMOC) and the meridional heat transport (OHT) result in changes in their decadal predictability. In MPI-ESM-LR, we generate two hindcast ensembles with 20 start dates and 10 ensemble members per start date for (i) the present climate state in the CMIP5 historical simulation extended with RCP4.5 starting in 1995 and (ii) a future climate state in RCP4.5 starting in 2045. These two hindcast ensembles are compared against the historical simulation and RCP4.5 as control simulation, respectively, using the anomaly correlation coefficient (ACC) and the Brier skill score (BSS) decomposition in combination with reliability diagrams. The analysis is performed for yearly means and multiyear seasonal means of the AMOC and the OHT. Our results show a decrease in predictability of the AMOC and the OHT from the present climate state to the future climate state in RCP4.5. Both, changes in the AMOC and the OHT decadal predictability are largest at latitudes where the mean seasonal cycle of both AMOC and OHT is projected to change. For example around 25°N, the AMOC shows a reduction in the seasonal amplitude of about 0.5 Sv and a shift of up to 5 months in concert with a reduction in predictable lead times from up to 10 years to 2 years in the ACC. For the OHT, we find a reduction in the seasonal amplitude of about 0.1 PW and a shift of up to 5 months in concert with a reduction in predictable lead time from up to 4 years to 2 years in the ACC around 25°N. Similarly, the BSS and reliability diagrams show a reduction in skill from the present climate state to the future climate state. For multiyear seasonal means, summer months dominate the predictability in the present and future climate. Even though the changes in the decadal predictability of AMOC and OHT are small in general, their

  20. A global optimization method synthesizing heat transfer and thermodynamics for the power generation system with Brayton cycle

    NASA Astrophysics Data System (ADS)

    Fu, Rong-Huan; Zhang, Xing

    2016-09-01

    Supercritical carbon dioxide operated in a Brayton cycle offers a numerous of potential advantages for a power generation system, and a lot of thermodynamics analyses have been conducted to increase its efficiency. Because there are a lot of heat-absorbing and heat-lossing subprocesses in a practical thermodynamic cycle and they are implemented by heat exchangers, it will increase the gross efficiency of the whole power generation system to optimize the system combining thermodynamics and heat transfer theory. This paper analyzes the influence of the performance of heat exchangers on the actual efficiency of an ideal Brayton cycle with a simple configuration, and proposes a new method to optimize the power generation system, which aims at the minimum energy consumption. Although the method is operated only for the ideal working fluid in this paper, its merits compared to that only with thermodynamic analysis are fully shown.

  1. Heat wave event dynamics over the territory of Ukraine in the context of the global climate change

    NASA Astrophysics Data System (ADS)

    Khomenko, Inna; Dereviaha, Oleksandr

    2016-04-01

    General circulation models of climate change predict that heatwaves will become more frequent and intense, especially in the higher latitudes, affecting large metropolitan areas. In the study for nine cities of the Ukraine (Kyiv, Lviv, Odesa, Poltava, Simferopol, Uzhgorod, Uman, Kharkiv, Chernivtsi), the series of average daily maximum temperature for periods of 41 to 112 years are analyzed during the warm season (May, 1 to September, 30). The study is based on the Peaks over Threshold Approach, applied to study the frequency of heat waves using three heat indices such as 90th percentile (TX90p), 95th percentile (TX95) and heat wave criterion proposed by WMO (TXA5). For five stations of Chernivtsi, Kharkiv, Kyiv, Odesa and Poltava a linear trend shows the decrease in maximum temperature. For the rest of the stations there is the increase in the year highest temperature. For all stations stepped trend is characterized strong change in the mean value of block maximum temperature. In Kyiv and Lviv the stepped and linear trends don't agree. It shows that in these stations there is different type of variability (for example, cyclical fluctuations). In comparison with the 1961-1990 period for all stations in question number of heat waves is growing. However, most increment of number of heat wave days in the period of 2001-2010 are observed in Kyiv, Simferopol and Uman. For these stations rapid growth in days with maximum temperatures being more than 30 and 35°C, are obtained as well. In Lviv, Poltava and Kharkiv uneven decrease in number of heat wave days occur during XX century for all indices in question. In the other stations periods with small number of heat wave days alternates with ones with large number of heat wave days, which correspond to periods of decrease and increase of maximum temperature. The least length of heat waves takes place in Lviv (doesn't exceed 10 days), Odesa and Chernivtsi (doesn't exceed 15 days) for all indices. The largest length of heat

  2. Urban Heat Wave Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul J.; LaFontaine, Frank J.; Crane, Dakota L.

    2016-01-01

    Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.

  3. Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa

    PubMed Central

    2013-01-01

    Background Brassica rapa includes several important leaf vegetable crops whose production is often damaged by high temperature. Cis-natural antisense transcripts (cis-NATs) and cis-NATs-derived small interfering RNAs (nat-siRNAs) play important roles in plant development and stress responses. However, genome-wide cis-NATs in B. rapa are not known. The NATs and nat-siRNAs that respond to heat stress have never been well studied in B. rapa. Here, we took advantage of RNA-seq and small RNA (sRNA) deep sequencing technology to identify cis-NATs and heat responsive nat-siRNAs in B. rapa. Results Analyses of four RNA sequencing datasets revealed 1031 cis-NATs B. rapa ssp. chinensis cv Wut and B. rapa ssp. pekinensis cv. Bre. Based on sequence homology between Arabidopsis thaliana and B. rapa, 303 conserved cis-NATs in B. rapa were found to correspond to 280 cis-NATs in Arabidopsis; the remaining 728 novel cis-NATs were identified as Brassica-specific ones. Using six sRNA libraries, 4846 nat-siRNAs derived from 150 cis-NATs were detected. Differential expression analysis revealed that nat-siRNAs derived from 12 cis-NATs were responsive to heat stress, and most of them showed strand bias. Real-time PCR indicated that most of the transcripts generating heat-responsive nat-siRNAs were upregulated under heat stress, while the transcripts from the opposite strands of the same loci were downregulated. Conclusions Our results provide the first subsets of genome-wide cis-NATs and heat-responsive nat-siRNAs in B. rapa; these sRNAs are potentially useful for the genetic improvement of heat tolerance in B. rapa and other crops. PMID:24320882

  4. Heat Stress Is More Damaging to Superior Spikelets than Inferiors of Rice (Oryza sativa L.) due to Their Different Organ Temperatures

    PubMed Central

    Fu, Guanfu; Feng, Baohua; Zhang, Caixia; Yang, Yongjie; Yang, Xueqin; Chen, Tingting; Zhao, Xia; Zhang, Xiufu; Jin, Qianyu; Tao, Longxing

    2016-01-01

    In general, the fertility and kernel weight of inferior spikelets of rice (Oryza Sativa L.) are obviously lower than those of superior spikelets, especially under abiotic stress. However, different responses to heat stress are seemed to show between the superior and inferior spikelet, and this response is scarcely documented that the intrinsic factors remain elusive. In order to reveal the mechanism underlying, two rice plants with different heat tolerance were subjected to heat stress of 40°C at anthesis. The results indicated that a greater decrease in fertility and kernel weight was observed in superior spikelets compared to inferior spikelets. This decrease was primarily ascribed to their different organ temperatures, in which the temperature of the superior spikelets was significantly higher than that of inferior spikelets. We inferred the differences in canopy temperature, light intensity and panicle types, were the primary reasons for the temperature difference between superior and inferior spikelets. Under heat stress, the fertility and kernel weight of superior and inferior spikelets decreased as the panicle numbers per plant were reduced, which was accompanied by significantly increasing the canopy temperatures. Thus, it was suggested that the rice plant with characteristic features of an upright growth habit and loose panicles might be more susceptible to heat stress resulting from their higher canopy and spikelets temperatures. PMID:27877180

  5. Medium-sized icy satellites in the outer solar system - differentiation due to radiogenic heating in Charon or the moons of Uranus?

    NASA Astrophysics Data System (ADS)

    Multhaup, K.; Spohn, T.

    2007-08-01

    A thermal history model developed for medium-sized icy satellites containing silicate rock at low volume fractions is applied to Charon and five satellites of Uranus. The model assumes stagnant lid convection in homogeneously accreted bodies either confined to a spherical shell or encompassing the whole interior below the immobile surface layer. We employ a simple model for accretion assuming that infalling planetesimals deposit a fraction of their kinetic energy as heat at the instantaneous surface of the growing moon. Rheology parameters are chosen to match those of ice I, although the satellites under consideration likely contain admixtures of lighter constituents. Consequences thereof are discussed. Thermal evolution calculations considering radiogenic heating by long-lived isotopes suggest that Ariel, Umbriel, Titania, Oberon and Charon may have started to differentiate after a few hundred million years of evolution. Results for Miranda - the smallest satellite of Uranus - however, indicate that it never convected or differentiated. Miranda's interior temperature was found to be not even close to the melting temperatures of reasonable mixtures of water and ammonia. This finding is in contrast to its heavily modified surface and supports theories that propose alternative heating mechanisms such as early tidal heating. Except for Miranda, our results lend support to differentiated icy satellite models. We also point out parallels to previously published results obtained for several of Saturn's icy satellites (Multhaup and Spohn, 2007). The predicted early histories of Ariel, Umbriel and Charon are evocative of Dione's and Rhea's, while Miranda's resembles that of Mimas.

  6. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    SciTech Connect

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; Adams, D. P.; Hirschfeld, D.; Nino, J. C.; Manuel, M. V.

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.

  7. Prediction and characterization of heat-affected zone formation in tin-bismuth alloys due to nickel-aluminum multilayer foil reaction

    DOE PAGES

    Hooper, R. J.; Davis, C. G.; Johns, P. M.; ...

    2015-06-26

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. In this study, most of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To improve the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical modelmore » for the purpose of predicting heat affected zone size in substrate materials. The model is experimentally validated using a commercially available Ni-Al multilayer foils and alloys from the Sn-Bi binary system. To accomplish this, phenomenological models for predicting the variation of physical properties (i.e., thermal conductivity, density, and heat capacity) with temperature and composition in the Sn-Bi system were utilized using literature data.« less

  8. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  9. A global amnesia associated with the specific variant of posterior reversible encephalopathy syndrome (PRES) that developed due to severe preeclampsia and malignant hypertension.

    PubMed

    Borovac, Josip Anđelo; Božić, Joško; Žaja, Nikola; Kolić, Krešimir; Hrboka, Vedran

    2016-04-01

    A case is reported of a 26-year-old primiparous woman in the 32nd week of gestation who presented to the emergency department with the symptoms of a severe headache, nausea and vomiting. The patient was diagnosed with preeclampsia that later progressed to eclampsia. This state was characterized by a sudden onset of a headache and diplopia that advanced to cortical blindness and precipitated significant alterations in mental status, most notable being global amnesia that resolved within 48 h. A post-partum magnetic resonance imaging of the brain in FLAIR mode revealed multiple cortico-subcortical areas of hyperintense signals suggestive of edematous lesions that chiefly involved occipital and parietal lobes with additional atypical manifestations. Such radiologic findings suggested a posterior reversible encephalopathy syndrome variant with the global amnesia as an extraordinary constituent. This unique feature should be acknowledged when treating a preeclamptic or hypertensive patient that exhibits neurological symptomatology and vision disturbances.

  10. A global amnesia associated with the specific variant of posterior reversible encephalopathy syndrome (PRES) that developed due to severe preeclampsia and malignant hypertension

    PubMed Central

    Borovac, Josip Anđelo; Božić, Joško; Žaja, Nikola; Kolić, Krešimir; Hrboka, Vedran

    2016-01-01

    A case is reported of a 26-year-old primiparous woman in the 32nd week of gestation who presented to the emergency department with the symptoms of a severe headache, nausea and vomiting. The patient was diagnosed with preeclampsia that later progressed to eclampsia. This state was characterized by a sudden onset of a headache and diplopia that advanced to cortical blindness and precipitated significant alterations in mental status, most notable being global amnesia that resolved within 48 h. A post-partum magnetic resonance imaging of the brain in FLAIR mode revealed multiple cortico-subcortical areas of hyperintense signals suggestive of edematous lesions that chiefly involved occipital and parietal lobes with additional atypical manifestations. Such radiologic findings suggested a posterior reversible encephalopathy syndrome variant with the global amnesia as an extraordinary constituent. This unique feature should be acknowledged when treating a preeclamptic or hypertensive patient that exhibits neurological symptomatology and vision disturbances. PMID:27099774

  11. Development and structure of {alpha}{sub 2} plates in {gamma}-based titanium aluminides due to the {gamma} to {alpha} transformation on heating

    SciTech Connect

    Ott, E.A.; Pollock, T.M.

    1999-03-19

    Interest in the gamma-based titanium aluminide system for elevated temperature structural components has driven a large research effort in the materials community to understand the physical, metallurgical, and mechanical properties of this class of alloys. The evolution of microstructure in the aluminum lean {gamma} alloys has been shown to be highly dependent upon heat treatment temperature and cooling rate. To date the {gamma} to {alpha} transformation has been studied primarily with the use of isothermal annealing treatments. However it has been reported that the transformation is substantially complete at relatively short annealing times. Therefore, the objective of the study reported here was to examine the development of such structures as a function of heating rate and in the early stages of isothermal anneals.

  12. The Effect of Substrate Microstructure on the Heat-Affected Zone Size in Sn-Zn Alloys Due to Adjoining Ni-Al Reactive Multilayer Foil Reaction

    DOE PAGES

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; ...

    2015-08-05

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less

  13. The Effect of Substrate Microstructure on the Heat-Affected Zone Size in Sn-Zn Alloys Due to Adjoining Ni-Al Reactive Multilayer Foil Reaction

    SciTech Connect

    Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; Manuel, M. V.

    2015-08-05

    The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within the heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.

  14. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    SciTech Connect

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  15. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth.

    PubMed

    Smith, William M; Pham, Thi Huong; Lei, Lin; Dou, Junchao; Soomro, Aijaz H; Beatson, Scott A; Dykes, Gary A; Turner, Mark S

    2012-11-01

    During construction of several gene deletion mutants in Lactococcus lactis MG1363 which involved a high-temperature (37.5°C) incubation step, additional spontaneous mutations were observed which resulted in stable heat resistance and in some cases salt-hypersensitive phenotypes. Whole-genome sequencing of one strain which was both heat resistant and salt hypersensitive, followed by PCR and sequencing of four other mutants which shared these phenotypes, revealed independent mutations in llmg_1816 in all cases. This gene encodes a membrane-bound stress signaling protein of the GdpP family, members of which exhibit cyclic dimeric AMP (c-di-AMP)-specific phosphodiesterase activity. Mutations were predicted to lead to single amino acid substitutions or protein truncations. An independent llmg_1816 mutant (Δ1816), created using a suicide vector, also displayed heat resistance and salt hypersensitivity phenotypes which could be restored to wild-type levels following plasmid excision. L. lactis Δ1816 also displayed improved growth in response to sublethal concentrations of penicillin G. High-temperature incubation of a wild-type industrial L. lactis strain also resulted in spontaneous mutation of llmg_1816 and heat-resistant and salt-hypersensitive phenotypes, suggesting that this is not a strain-specific phenomenon and that it is independent of a plasmid integration event. Acidification of milk by the llmg_1816-altered strain was inhibited by lower salt concentrations than the parent strain. This study demonstrates that spontaneous mutations can occur during high-temperature growth of L. lactis and that inactivation of llmg_1816 leads to temperature resistance and salt hypersensitivity.

  16. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    PubMed

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  17. Lithospheric stress and uppermantle dynamics in mainland China due to mantle flow based on combination of global- and regional-scale seismic tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Tao

    2016-12-01

    In order to explore the importance of mantle flow to lithospheric stress field in mainland China, seismic tomography_based mantle flow models are used to predict the most compressive principal horizontal stress directions (MCPHSDs). Considered that regional-scale seismic tomography models have higher horizontal resolution to map the mantle structure, while global-scale models can present the information out of the imaging domains of regional-scale models although this information has relatively poor horizontal resolution, the combined global- and regional-scale seismic tomography_based mantle flow models (hereafter called combined models) are mainly used in this paper. After the comparison of the observed and our predicted MCPHSDs, it is suggested that (1) a combined model, compared with a only global-scale seismic tomography_based model, could improve greatly the predictions in some regions of mainland China such as Sichuan-Yunnan, South China and North China blocks; (2) the mantle flow model driven by both plate motions and mantle density heterogeneity (hereafter called plate-density-driven model), compared with the flow model driven only by mantle density heterogeneity (hereafter called density-driven model), has much better predictions in the eastern China; (3) the presence of density variations above 250 km could better dramatically the predictions in the eastern China; and (4) sublithospheric mantle flow causes the lithosphere under compression in mainland China, and plays an important role in forming the lithospheric stress in Alashan, Qaidam, western Tibetan and eastern Tarim blocks as well as the east of the eastern China.

  18. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Astrophysics Data System (ADS)

    1981-10-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  19. Steam reforming of n-hexane on pellet and monolithic catalyst beds. A comparative study on improvements due to heat transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Monolithic catalysts with higher available active surface areas and better thermal conductivity than conventional pellets beds, making possible the steam reforming of fuels heavier than naphtha, were examined. Performance comparisons were made between conventional pellet beds and honeycomb monolith catalysts using n-hexane as the fuel. Metal-supported monoliths were examined. These offer higher structural stability and higher thermal conductivity than ceramic supports. Data from two metal monoliths of different nickel catalyst loadings were compared to pellets under the same operating conditions. Improved heat transfer and better conversion efficiencies were obtained with the monolith having higher catalyst loading. Surface-gas interaction was observed throughout the length of the monoliths.

  20. Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Sheikh, Mariam; Abbas, Zaheer

    2015-12-01

    The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.

  1. Mechanisms of Ocean Heat Uptake

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical

  2. Plume's buoyancy and heat fluxes from the deep mantle estimated by an instantaneous mantle flow simulation based on the S40RTS global seismic tomography model

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2012-11-01

    It is still an open question as to how much heat is transported from the deep mantle to the upper mantle by mantle upwelling plumes, which would impose a strong constraint on models of the thermal evolution of the earth. Here I perform numerical computations of instantaneous mantle flow based on a recent highly resolved global seismic tomography model (S40RTS), apply new simple fluid dynamics theories to the plume's radius and velocity, considering a Poiseuille flow assumption and a power-law relationship between the boundary layer thickness and Rayleigh number, and estimate the plume's buoyancy and heat fluxes from the deep lower mantle under varying plume viscosity. The results show that for some major mantle upwelling plumes with localized strong ascent velocity under the South Pacific and Africa, the buoyancy fluxes of each plume beneath the ringwoodite to perovskite + magnesiowüstite ("660-km") phase decomposition boundary are comparable to those inferred from observed hotspot swell volumes on the earth, i.e., on the order of 1 Mg s-1, when the plume viscosity is 1019-1020 Pa s. This result, together with previous numerical simulations of mantle convection and the gentle Clausius-Clapeyron slope for the 660-km phase decomposition derived from recent high-pressure measurements under dehydrated/hydrated conditions in the mantle transition zone, implies that mantle upwelling plumes in the lower mantle penetrate the 660-km phase decomposition boundary without significant loss in thermal buoyancy because of the weak thermal barrier at the 660-km boundary. The total plume heat flux under the South Pacific is estimated to be about 1 TW beneath the 660-km boundary, which is significantly smaller than the core-mantle boundary heat flux. Previously published scaling laws for the plume's radius and velocity based on a plume spacing theory, which explains well plume dynamics in three-dimensional time-dependent mantle convection, suggest that these plume fluxes depend

  3. Coronal Heating by Surface Alfvén Wave Damping: Implementation in a Global Magnetohydrodynamics Model of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Evans, R. M.; Opher, M.; Oran, R.; van der Holst, B.; Sokolov, I. V.; Frazin, R.; Gombosi, T. I.; Vásquez, A.

    2012-09-01

    The heating and acceleration of the solar wind is an active area of research. Alfvén waves, because of their ability to accelerate and heat the plasma, are a likely candidate in both processes. Many models have explored wave dissipation mechanisms which act either in closed or open magnetic field regions. In this work, we emphasize the boundary between these regions, drawing on observations which indicate unique heating is present there. We utilize a new solar corona component of the Space Weather Modeling Framework, in which Alfvén wave energy transport is self-consistently coupled to the magnetohydrodynamic equations. In this solar wind model, the wave pressure gradient accelerates and wave dissipation heats the plasma. Kolmogorov-like wave dissipation as expressed by Hollweg along open magnetic field lines was presented in van der Holst et al. Here, we introduce an additional dissipation mechanism: surface Alfvén wave (SAW) damping, which occurs in regions with transverse (with respect to the magnetic field) gradients in the local Alfvén speed. For solar minimum conditions, we find that SAW dissipation is weak in the polar regions (where Hollweg dissipation is strong), and strong in subpolar latitudes and the boundaries of open and closed magnetic fields (where Hollweg dissipation is weak). We show that SAW damping reproduces regions of enhanced temperature at the boundaries of open and closed magnetic fields seen in tomographic reconstructions in the low corona. Also, we argue that Ulysses data in the heliosphere show enhanced temperatures at the boundaries of fast and slow solar wind, which is reproduced by SAW dissipation. Therefore, the model's temperature distribution shows best agreement with these observations when both dissipation mechanisms are considered. Lastly, we use observational constraints of shock formation in the low corona to assess the Alfvén speed profile in the model. We find that, compared to a polytropic solar wind model, the wave

  4. Effects of temperature dependent conductivity and absorptive/generative heat transfer on MHD three dimensional flow of Williamson fluid due to bidirectional non-linear stretching surface

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Khalil-ur-Rehman; Malik, M. Y.; Hussain, Arif; Khan, Mair

    Present work is communicated to identify characteristics of magnetohydrodynamic (MHD) three dimensional boundary layer flow of Williamson fluid confined by a bidirectional stretched surface. Conductivity of working fluid is assumed to be temperature dependent. Generative/absorptive heat transfer is also taken into account. Mathematical model is formulated in the form of partial expressions and then transmuted into ordinary differential equations with the help of newfangled set of similarity transformations. The resulting non-linear differential system of equations is solved numerically with the aid of Runge-Kutta algorithm supported by shooting method. Flow features are exemplified quantitatively through graphs. Scintillating results for friction factor and convective heat transfer are computed and scrutinized tabularly. Furthermore, the accuracy of present results is tested with existing literature and we found an excellent agreement. It is inferred that velocity along x-direction mounts whereas along y-direction depreciates for incrementing values of stretching ratio parameter. Moreover, it is also elucidated that non-linearity index tends to decrement the velocity and thermal distributions of fluid flow.

  5. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs.

    PubMed

    Walsh, J J; Lenes, J M; Weisberg, R H; Zheng, L; Hu, C; Fanning, K A; Snyder, R; Smith, J

    2017-03-15

    Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~15% of total world-wide annual asthma trigger responses, i.e. amounting to ~45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine.

  6. Effects of high-latitude ionospheric electric field variability on the estimation of global thermospheric Joule heating

    NASA Astrophysics Data System (ADS)

    Matsuo, Tomoko

    One of the outstanding problems in modeling of the magnetosphere-ionosphere-thermosphere system is the quantitative bias systematically seen in simulated thermosphere and ionosphere responses to magnetospheric forcing. This systematic bias is considered to be attributed largely to insufficient Joule heating. In this study, effects of high-latitude ionospheric electric field variability on the estimation of Joule heating are investigated by incorporating the characteristics of electric field variability derived from observations into the forcing of a thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM). First, the magnitude of the variability is quantified as the sample standard deviation of plasma drift measurements from the Dynamics Explorer (DE-2) satellite. The spatial distribution of the standard deviation over the area poleward of 45° magnetic latitude and its climatological behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) and the dipole tilt angle (season) are examined. In general, the magnitude of the standard deviation exceeds the strength of the mean electric field in most of the polar area, especially under northward IMF conditions. The analysis reveals that electric field variability varies with magnetic-latitude, magnetic-local-time, IMF, and season in a manner distinct from that of the climatological electric field. Second, we characterize dominant modes of high-latitude electric field variability as a set of two-dimensional empirical orthogonal functions (EOFs), based on a sequential non-linear regression analysis of the electric field derived from DE-2 data. Together with the mean fields, 11 EOFs are capable of representing 68% of the squared electric field, leaving only a fairly random component as a residual. Third, the temporal coherence of electric field variability whose spatial coherence can be represented in the form of EOFs is estimated for the storm period of January 9

  7. Global warming and Australian public health: reasons to be concerned.

    PubMed

    Saniotis, Arthur; Bi, Peng

    2009-11-01

    Studies in global warming and climate change indicate that human populations will be deleteriously affected in the future. Studies forecast that Australia will experience increasing heat waves and droughts. Heat stress caused by frequent heat waves will have a marked effect on older Australians due to physiological and pharmacological factors. In this paper we present an overview of some of the foreseeable issues which older Australians will face from a public health perspective.

  8. Irreversible phase transitions due to laser-based T-jump heating of precursor Eu:ZrO{sub 2}/Tb:Y{sub 2}O{sub 3} core/shell nanoparticles

    SciTech Connect

    Gunawidjaja, Ray; Diez-y-Riega, Helena; Eilers, Hergen

    2015-09-15

    Amorphous precursors of Eu-doped-ZrO{sub 2}/Tb-doped-Y{sub 2}O{sub 3} (p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3}) core/shell nanoparticles are rapidly heated to temperatures between 200 °C and 950 °C for periods between 2 s and 60 s using a CO{sub 2} laser. During this heating process the nanoparticles undergo irreversible phase changes. The fluorescence spectra due to Eu{sup 3+} dopants in the core and Tb{sup 3+} dopants in the shell are used to identify distinct phases within the material and to generate time/temperature phase diagrams. Such phase diagrams can potentially help to determine unknown time/temperature histories in thermosensor applications. - Graphical abstract: A CO{sub 2} laser is used for rapid heating of p-Eu:ZrO{sub 2}/p-Tb:Y{sub 2}O{sub 3} core/shell nanoparticles. Optical spectra are used to identify distinct phases and to determine its thermal history. - Highlights: • Synthesized oxide precursors of lanthanide doped core/shell nanoparticles. • Heated core/shell nanoparticles via laser-based T-jump technique. • Observed time- and temperature-dependent irreversible phase transition.

  9. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography

    NASA Astrophysics Data System (ADS)

    Talley, L. D.; Feely, R. A.; Sloyan, B. M.; Wanninkhof, R.; Baringer, M. O.; Bullister, J. L.; Carlson, C. A.; Doney, S. C.; Fine, R. A.; Firing, E.; Gruber, N.; Hansell, D. A.; Ishii, M.; Johnson, G. C.; Katsumata, K.; Key, R. M.; Kramp, M.; Langdon, C.; Macdonald, A. M.; Mathis, J. T.; McDonagh, E. L.; Mecking, S.; Millero, F. J.; Mordy, C. W.; Nakano, T.; Sabine, C. L.; Smethie, W. M.; Swift, J. H.; Tanhua, T.; Thurnherr, A. M.; Warner, M. J.; Zhang, J.-Z.

    2016-01-01

    Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (˜20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.

  10. Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography.

    PubMed

    Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z

    2016-01-01

    Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.

  11. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1. [First Global Atmospheric Research Program Global Experiment (FGGE); Special Observing Period (SOP)

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.

    1981-01-01

    By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.

  12. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  13. The Gas Motion Due To Non-Uniform Heating By 3He(n,p)3H Reactions In The Nuclear-Pumped3He -Lasers

    SciTech Connect

    Cetin, Fuesun

    2007-04-23

    In the nuclear pumped-lasers, the passage of these energetic charged particles through gas results in a non-uniform volumetric energy deposition. This spatial non-uniformity induces a gas motion, which results in density and hence refractive index gradients that affects the laser's optical behaviour. The motion of 3He gas in a closed cavity is studied when it experiences transient and spatially non-uniform volumetric heating caused by the passage of 3He(n,p)3H reaction products. Gas motion is described by the radial velocity field of gas flow. Spatial and temporal variations of radial gas velocity are calculated for various tube parameters by using a dynamic energy deposition model. In the calculations, it is assumed that the laser tube is irradiated with neutrons from the pulse at a peak power of 1200 MW corresponding to a maximum thermal neutron flux of 8x1016 n / cm2sn in the central channel of ITU TRIGA Mark II Reactor. Results are examined.

  14. Joule heating induced thermomigration failure in un-powered microbumps due to thermal crosstalk in 2.5D IC technology

    NASA Astrophysics Data System (ADS)

    Li, Menglu; Kim, Dong Wook; Gu, Sam; Parkinson, Dilworth Y.; Barnard, Harold; Tu, K. N.

    2016-08-01

    Thermal-crosstalk induced thermomigration failure in un-powered microbumps has been found in 2.5D integrated circuit (IC) circuit. In 2.5D IC, a Si interposer was used between a polymer substrate and a device chip which has transistors. The interposer has no transistors. If transistors are added to the interposer chip, it becomes 3D IC. In our test structure, there are two Si chips placed horizontally on a Si interposer. The vertical connections between the interposer and the Si chips are through microbumps. We powered one daisy chain of the microbumps under one Si chip; however, the un-powered microbumps in the neighboring chip are failed with big holes in the solder layer. We find that Joule heating from the powered microbumps is transferred horizontally to the bottom of the neighboring un-powered microbumps, and creates a large temperature gradient, in the order of 1000 °C/cm, through the un-powered microbumps in the neighboring chip, so the latter failed by thermomigration. In addition, we used synchrotron radiation tomography to compare three sets of microbumps in the test structure: microbumps under electromigration, microbumps under thermomigration, and microbumps under a constant temperature thermal annealing. The results show that the microbumps under thermomigration have the largest damage. Furthermore, simulation of temperature distribution in the test structure supports the finding of thermomigration.

  15. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Tripathi, D.; Bég, O. Anwar; Khan, Z. H.

    2016-11-01

    A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length.

  16. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1-10 s-1 strain rates

    NASA Astrophysics Data System (ADS)

    Hellouin de Menibus, Arthur; Auzoux, Quentin; Besson, Jacques; Crépin, Jérôme

    2014-11-01

    This study is focused on the impact of rapid Reactivity Initiated Accident (RIA) representative strain rates (about 1 s-1 NEA, 2010) on the behavior and fracture of unirradiated cold work stress relieved Zircaloy-4 cladding tubes. Uniaxial ring tests (HT) and plane strain ring tensile tests (PST) were performed in the 0.1-10 s-1 strain rate range, at 25 °C. The local temperature increase due to plastic dissipation was measured with a high-speed infrared camera. Limited temperature increases were measured at 0.1 s-1 strain rate. Limited but not strongly localized temperature increases were measured at 1 s-1. Large temperature increase were measured at 5 and 10 s-1 (142 °C at 5 s-1 strain rate in HT tests). The local temperature increase induced heterogeneous temperature fields, which enhanced strain localization and resulted in a reduction of the plastic elongation at fracture.

  17. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  18. Global Composite

    Atmospheric Science Data Center

    2013-04-19

    ... cover from one day to another. The lower panel is a composite in which red, green, and blue radiances from MISR's 70-degree ... In relatively clear ocean areas, the oblique-angle composite is generally brighter than its nadir counterpart due to enhanced ... Mar 2002 Images:  Global Composite location:  Global Images thumbnail:  ...

  19. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  20. Heat collector

    DOEpatents

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  1. Heat collector

    DOEpatents

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  2. U.S. Global Climate Change Impacts Report, Global Climate Change

    NASA Astrophysics Data System (ADS)

    Santer, B.

    2009-12-01

    The first Key Finding from the recent USGCRP report “Global Climate Change Impacts in the United States” is: 1. Global warming is unequivocal and primarily human-induced. Global temperature has increased over the past 50 years. This observed increase is due primarily to human-induced emissions of heat-trapping gases. This statement is based on a combination of observational, theoretical and model based analyses and are a consensus opinion of the report’s Lead Author team. The scientific rationale supporting this consensus will be summarized.

  3. Infrared heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    IR heating was first industrially used in the 1930s for automotive curing applications and rapidly became a widely applied technology in the manufacturing industry. Contrarily, a slower pace in the development of IR technologies for processing foods and agricultural products was observed, due to lim...

  4. Stirling Engine Heat Pump

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  5. Reduced Baroclinicity During Martian Global Dust Storms

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph; Szunyogh, Istvan; Lemmon, Mark

    2015-11-01

    The eddy kinetic energy equation is applied to the Mars Analysis Correction Data Assimilation (MACDA) dataset during the pre-winter solstice period for the northern hemisphere of Mars. Traveling waves are triggered by geopotential flux convergence, grow baroclinically, and decay barotropically. Higher optical depth increases the static stability, which reduces vertical and meridional heat fluxes. Traveling waves during a global dust storm year develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Baroclinic energy conversion is reduced during the global dust storm, but eddy intensity is undiminished. Instead, the frequency of storms is reduced due to a stabilized vertical profile.

  6. Heat Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predicted global warming would make it more difficult for farmers to achieve the increases in crop productivity (yield per unit area) needed to meet expected increases in demand for food and animal feed during this century. Due to projected increases in human population and the need for people who c...

  7. A regenerative elastocaloric heat pump

    NASA Astrophysics Data System (ADS)

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini

    2016-10-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  8. Heat exposure on farmers in northeast Ghana

    NASA Astrophysics Data System (ADS)

    Frimpong, Kwasi; Van Etten E J, Eddie; Oosthuzien, Jacques; Fannam Nunfam, Victor

    2017-03-01

    Environmental health hazards faced by farmers, such as exposure to extreme heat stress, are a growing concern due to global climate change, particularly in tropical developing countries. In such environments, farmers are considered to be a population at risk of environmental heat exposure. The situation is exacerbated due to their farming methods that involve the use of primitive equipment and hard manual labour conducted in full sunshine under hot and humid conditions. However, there is inadequate information about the extent of heat exposure to such farmers, both at the household and farm levels. This paper presents results from a study assessing environmental heat exposure on rural smallholder farmers in Bawku East, Northern Ghana. From January to December 2013, Lascar USB temperature and humidity sensors and a calibrated Questemp heat stress monitor were deployed to farms and homes of rural farmers at Pusiga in Bawku East to capture farmers' exposure to heat stress in both their living and working environments as they executed regular farming routines. The Lascar sensors have the capability to frequently, accurately and securely measure temperature and humidity over long periods. The Questemp heat stress monitor was placed in the same vicinity and showed strong correlations to Lascar sensors in terms of derived values of wet-bulb globe temperature (WBGT). The WBGT in the working environment of farmers peaked at 33.0 to 38.1 °C during the middle of the day in the rainy season from March to October and dropped to 14.0-23.7 °C in the early morning during this season. A maximum hourly WBGT of 28.9-37.5 °C (March-October) was recorded in the living environment of farmers, demonstrating little relief from heat exposure during the day. With these levels of heat stress, exposed farmers conducting physically demanding outdoor work risk suffering serious health consequences. The sustainability of manual farming practices is also under threat by such high levels of

  9. Heat exposure on farmers in northeast Ghana

    NASA Astrophysics Data System (ADS)

    Frimpong, Kwasi; Van Etten E J, Eddie; Oosthuzien, Jacques; Fannam Nunfam, Victor

    2016-08-01

    Environmental health hazards faced by farmers, such as exposure to extreme heat stress, are a growing concern due to global climate change, particularly in tropical developing countries. In such environments, farmers are considered to be a population at risk of environmental heat exposure. The situation is exacerbated due to their farming methods that involve the use of primitive equipment and hard manual labour conducted in full sunshine under hot and humid conditions. However, there is inadequate information about the extent of heat exposure to such farmers, both at the household and farm levels. This paper presents results from a study assessing environmental heat exposure on rural smallholder farmers in Bawku East, Northern Ghana. From January to December 2013, Lascar USB temperature and humidity sensors and a calibrated Questemp heat stress monitor were deployed to farms and homes of rural farmers at Pusiga in Bawku East to capture farmers' exposure to heat stress in both their living and working environments as they executed regular farming routines. The Lascar sensors have the capability to frequently, accurately and securely measure temperature and humidity over long periods. The Questemp heat stress monitor was placed in the same vicinity and showed strong correlations to Lascar sensors in terms of derived values of wet-bulb globe temperature (WBGT). The WBGT in the working environment of farmers peaked at 33.0 to 38.1 °C during the middle of the day in the rainy season from March to October and dropped to 14.0-23.7 °C in the early morning during this season. A maximum hourly WBGT of 28.9-37.5 °C (March-October) was recorded in the living environment of farmers, demonstrating little relief from heat exposure during the day. With these levels of heat stress, exposed farmers conducting physically demanding outdoor work risk suffering serious health consequences. The sustainability of manual farming practices is also under threat by such high levels of

  10. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  11. South Pacific convergence zone and global scale circulations (Jul. 1987 - Jul. 1991). Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns (Jul. 1990 - Jul. 1993)

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Robertson, Franklin R.

    1991-01-01

    Several research projects were worked on between August 1990 and May 1991. Topics covered included observational and modeling studies of relationships between tropical heat sources and subtropical jet streams, the intraseasonal (30 to 60 day) oscillation near the equator, and precipitation over tropical oceans. Current research activities and plans for the coming year are outlined.

  12. Contrasting urban and rural heat stress responses to climate change

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  13. Has Northern Hemisphere Heat Flow Been Underestimated?

    NASA Astrophysics Data System (ADS)

    Gosnold, W. D.; Majorowicz, J.; Safanda, J.; Szewczyk, J.

    2005-05-01

    We present three lines of evidence to suggest the hypothesis that heat flow in the northern hemisphere may have been underestimated by 15 to 60 percent in shallow wells due to a large post-glacial warming signal. First, temperature vs. depth (T-z) measurements in parts of Europe and North America show a systematic increase in heat flow with depth. This phenomenon is best recognized in analyses of deep (greater than 2km) boreholes in non-tectonic regions with normal to low background heat flow. In Europe, the increase in heat flow with depth has been observed by analysis of more than 1500 deep boreholes located throughout the Fennoscandian Shield, East European Platform, Danish Basin, Germany, Czech Republic, and Poland. There are significantly fewer deep boreholes in North America, but the increase in heat flow with depth appears in a suite of 759 sites in the IHFC Global Heat Flow Database for the region east of the Rocky Mountains and north of latitude 40 N. Second, surface heat flow values in southern hemisphere shields average approximately 50 mWm-2, but surface heat flow values in northern hemisphere shields average 33 mWm-2. Unless crustal radioactivity or mantle heat flow or both factors are greater in southern hemisphere continents, there is no reason for the northern and southern shield areas having similar ages to have different heat flow values. Third, two recently published surface heat flow maps show anomalously low heat flow in the Canadian Shield in a pattern that is coincident with the Wisconsinan ice sheet. The coincidence of low heat flow and ice accumulation has no geophysical basis, thus the coincidence may suggest the existence of a transient signal caused by a warming event. Recent studies of heat flow in North America indicate that in several sites, the ice base temperature was close to the pressure melting point. We hypothesize that there may have been cold ice-free periods during the Pleistocene that would account for the apparent colder

  14. Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

    PubMed

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M; Gómez, Luis

    2014-02-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.

  15. Plantation Forestry under Global Warming: Hybrid Poplars with Improved Thermotolerance Provide New Insights on the in Vivo Function of Small Heat Shock Protein Chaperones1[C][W

    PubMed Central

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M.; Gómez, Luis

    2014-01-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula × Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones. PMID:24306533

  16. The Argo Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2006

    DTIC Science & Technology

    2006-01-01

    physical environment of ocean ecosystems. Over 90% of the increased heat content due to global warming of the air/sea/ice climate system in the...The Argo Project Global Ocean Observations for Understanding and Prediction of Climate Variability Report for Calendar Year 2006 Dean H...1. REPORT DATE 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE The Argo Project Global Ocean

  17. Dermatoses due to Indian cultural practices.

    PubMed

    Gupta, Divya; Thappa, Devinder Mohan

    2015-01-01

    A wide prevalence of socio-religious and cultural practices in the Asian subcontinent often leads to multitude of skin diseases which may be missed by the dermatologists because of a lack of awareness. 'Henna' use causes IgE-mediated hypersensitivity reactions and contact dermatitis. 'Kumkum' application can result in pigmented contact dermatitis and lichen planus pigmentosus. Sticker 'bindis' and 'alta' induce contact leukoderma. Irritant and allergic contact dermatitis occurs after playing with 'Holi' colors. Threading and drawstring dermatitis lead to koebnerization of pre-existing dermatoses, infections and even squamous cell carcinoma of skin. Mild irritant reactions and contact sensitization occur secondary to balm and hair oil use. 'Mudichood' represents the comedogenic effect of hair oils combined with occlusion and humidity. Aromatherapy oils can cause contact dermatitis and photosensitive reactions. Heavy metal and steroid toxicity along with severe cutaneous adverse effects like erythroderma can occur as a consequent to the use of alternative medicines. Squamous cell carcinoma due to chronic heat exposure from the heating device "kangri" is seen in Kashmiris. Prayer nodules in Muslims and traction alopecia in Sikhs illustrate how religious practices can negatively affect the skin. With increasing globalization and migration, the practice of indigenous customs and traditions is no longer limited to regional territories, making it imperative for the dermatologists to be acquainted with the cutaneous side effects they can cause.

  18. Dermatoses Due to Indian Cultural Practices

    PubMed Central

    Gupta, Divya; Thappa, Devinder Mohan

    2015-01-01

    A wide prevalence of socio-religious and cultural practices in the Asian subcontinent often leads to multitude of skin diseases which may be missed by the dermatologists because of a lack of awareness. ‘Henna’ use causes IgE-mediated hypersensitivity reactions and contact dermatitis. ‘Kumkum’ application can result in pigmented contact dermatitis and lichen planus pigmentosus. Sticker ‘bindis’ and ‘alta’ induce contact leukoderma. Irritant and allergic contact dermatitis occurs after playing with ‘Holi’ colors. Threading and drawstring dermatitis lead to koebnerization of pre-existing dermatoses, infections and even squamous cell carcinoma of skin. Mild irritant reactions and contact sensitization occur secondary to balm and hair oil use. ‘Mudichood’ represents the comedogenic effect of hair oils combined with occlusion and humidity. Aromatherapy oils can cause contact dermatitis and photosensitive reactions. Heavy metal and steroid toxicity along with severe cutaneous adverse effects like erythroderma can occur as a consequent to the use of alternative medicines. Squamous cell carcinoma due to chronic heat exposure from the heating device “kangri” is seen in Kashmiris. Prayer nodules in Muslims and traction alopecia in Sikhs illustrate how religious practices can negatively affect the skin. With increasing globalization and migration, the practice of indigenous customs and traditions is no longer limited to regional territories, making it imperative for the dermatologists to be acquainted with the cutaneous side effects they can cause. PMID:25657390

  19. The evaluation of a shuttle borne lidar experiment to measure the global distribution of aerosols and their effect on the atmospheric heat budget

    NASA Technical Reports Server (NTRS)

    Shipley, S. T.; Joseph, J. H.; Trauger, J. T.; Guetter, P. J.; Eloranta, E. W.; Lawler, J. E.; Wiscombe, W. J.; Odell, A. P.; Roesler, F. L.; Weinman, J. A.

    1975-01-01

    A shuttle-borne lidar system is described, which will provide basic data about aerosol distributions for developing climatological models. Topics discussed include: (1) present knowledge of the physical characteristics of desert aerosols and the absorption characteristics of atmospheric gas, (2) radiative heating computations, and (3) general circulation models. The characteristics of a shuttle-borne radar are presented along with some laboratory studies which identify schemes that permit the implementation of a high spectral resolution lidar system.

  20. Tracking ocean heat uptake during the surface warming hiatus.

    PubMed

    Liu, Wei; Xie, Shang-Ping; Lu, Jian

    2016-03-30

    Ocean heat uptake is observed to penetrate deep into the Atlantic and Southern Oceans during the recent hiatus of global warming. Here we show that the deep heat penetration in these two basins is not unique to the hiatus but is characteristic of anthropogenic warming and merely reflects the depth of the mean meridional overturning circulation in the basin. We find, however, that heat redistribution in the upper 350 m between the Pacific and Indian Oceans is closely tied to the surface warming hiatus. The Indian Ocean shows an anomalous warming below 50 m during hiatus events due to an enhanced heat transport by the Indonesian throughflow in response to the intensified trade winds in the equatorial Pacific. Thus, the Pacific and Indian Oceans are the key regions to track ocean heat uptake during the surface warming hiatus.

  1. Fractal behavior in continental crustal heat production

    NASA Astrophysics Data System (ADS)

    Vedanti, N.; Srivastava, R. P.; Pandey, O. P.; Dimri, V. P.

    2011-02-01

    The distribution of crustal heat production, which is the most important component in the elucidation of continental thermal structure, still remains a theoretical assumption. In general the heat production values must decrease with depth, but the form of decrease of heat production in the crust is not well understood. The commonly used heat production models are: "block model", in which heat production is constant from the surface to a given depth and the "exponential model", in which heat production diminishes as an exponential function of depth. The exponential model is more widely used wherein sources of the errors are heterogeneity of rock and long wavelength changes due to changes in lithology and tectonic elements, and as such exponential distribution does not work satisfactorily for the entire crust. In the present study, we analyze for the first time, deep crustal heat production data of six global areas namely Dharwar craton (India), Kaapvaal craton (South Africa), Baltic shield (Kola, Russia), Hidaka metamorphic belt (Japan), Nissho pluton (Japan) and Continental Deep Drilling site (KTB, Germany). The power spectrum of all the studied data sets exhibits power law behaviour. This would mean slower decay of heat production with depth, which conforms to the known geologic composition of the crust. Minimum value of the scaling exponent has been found for the KTB borehole, which is apparently related to higher heat production of gneisses, however for other study areas, scaling exponent is almost similar. We also found that the lower values of scaling exponents are related to higher heat production in the crust as is the case in KTB. Present finding has a direct relevance in computation of temperature-depth profiles in continental regions.

  2. Quantum heat traces

    NASA Astrophysics Data System (ADS)

    Avramidi, Ivan G.

    2017-02-01

    We study new invariants of elliptic partial differential operators acting on sections of a vector bundle over a closed Riemannian manifold that we call the relativistic heat trace and the quantum heat traces. We obtain some reduction formulas expressing these new invariants in terms of some integral transforms of the usual classical heat trace and compute the asymptotics of these invariants. The coefficients of these asymptotic expansion are determined by the usual heat trace coefficients (which are locally computable) as well as by some new global invariants.

  3. Protecting Workers from Heat Stress

    MedlinePlus

    ... temperatures are high and the job involves physical work. Risk Factors for Heat Illness • High temperature and humidity, ... heat or those that have been away from work to adapt to working in the heat (acclimatization). • Routinely check workers who are at risk of heat stress due to protective clothing and ...

  4. Global Warming Estimation from MSU

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, Robert; Yoo, Jung-Moon

    1998-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz) from sequential, sun-synchronous, polar-orbiting NOAA satellites contain small systematic errors. Some of these errors are time-dependent and some are time-independent. Small errors in Ch 2 data of successive satellites arise from calibration differences. Also, successive NOAA satellites tend to have different Local Equatorial Crossing Times (LECT), which introduce differences in Ch 2 data due to the diurnal cycle. These two sources of systematic error are largely time independent. However, because of atmospheric drag, there can be a drift in the LECT of a given satellite, which introduces time-dependent systematic errors. One of these errors is due to the progressive chance in the diurnal cycle and the other is due to associated chances in instrument heating by the sun. In order to infer global temperature trend from the these MSU data, we have eliminated explicitly the time-independent systematic errors. Both of the time-dependent errors cannot be assessed from each satellite. For this reason, their cumulative effect on the global temperature trend is evaluated implicitly. Christy et al. (1998) (CSL). based on their method of analysis of the MSU Ch 2 data, infer a global temperature cooling trend (-0.046 K per decade) from 1979 to 1997, although their near nadir measurements yield near zero trend (0.003 K/decade). Utilising an independent method of analysis, we infer global temperature warmed by 0.12 +/- 0.06 C per decade from the observations of the MSU Ch 2 during the period 1980 to 1997.

  5. Heat Islands

    EPA Pesticide Factsheets

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  6. Closing the Gap on Measuring Heat Waves

    NASA Astrophysics Data System (ADS)

    Perkins, S. E.; Alexander, L.

    2012-12-01

    Since the 4th IPCC assessment report, the scientific literature has established that anthropogenic climate change encompasses adverse changes in both mean climate conditions and extreme events, such as heat waves. Indeed, the affects of heat waves are felt across many different sectors, and have high economic, human, and physical impacts over many global regions. The spatial and monetary scale of heat wave impacts emphasizes the necessity of measuring and studying such events in an informative manner, which gives justice to the geographical region affected, the communities impacted, and the climatic fields involved. However, due to such wide interest in heat waves, their definition remains broad in describing a period of consecutive days where conditions are excessively hotter than normal. This has allowed for the employment of a plethora of metrics, which are usually unique to a given sector, or do not appropriately describe some of the important features of heat wave events. As such, it is difficult to ascertain a clear message regarding changes in heat waves, both in the observed record and in projections of future climate. This study addresses this issue by developing a multi-index, multi-aspect framework in which to measure heat waves. The methodology was constructed by assessing a wide range of heat wave and heat wave-related indices, both proposed and employed in the scientific literature. The broad implications of the occurrences, frequency and duration of heat waves and respective changes were also highly considered. The resulting indices measure three or more consecutive days where 1) maximum temperature exceeds the 90th percentile (TX90pct); 2) minimum temperature exceeds the 90th percentile (TN90pct); and 3) daily average temperature has a positive excess heat factor (EHF). The 90th percentiles from which TX90pct and TN90pct are calculated are based on 15-day windows for each calendar day, whereas the EHF is based upon two pre-calculated indices that

  7. Heat-pipe Earth.

    PubMed

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  8. The model homologue of the partially defective human 5,10-methylenetetrahydrofolate reductase, considered as a risk factor for stroke due to increased homocysteine level, can be protected and reactivated by heat shock proteins.

    PubMed

    Grabowski, Michał; Banecki, Bogdan; Kadziński, Leszek; Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Węgrzyn, Alicja; Węgrzyn, Grzegorz; Banecka-Majkutewicz, Zyta

    2016-10-01

    The A222 V substitution in the human MTHFR gene product (5,10-methylenetetrahydrofolate reductase) is responsible for a decreased activity of this enzyme. This may cause an increased homocysteine level, considered as a risk factor for arteriosclerosis and stroke. The bacterial homologue of the human enzyme, MetF, has been found to be a useful model in genetic and biochemical studies. The similarity of Escherichia coli MetF and human MTHFR proteins is so high that particular mutations in the corresponding human gene can be reflected by the bacterial mutants. For example, the A222 V substitution in MTHFR (caused by the C667T substitution in the MTHFR gene) can be ascribed to the A117 V substitution in MetF. Here, it is reported that a temperature-sensitive MetF117 (A117 V) protein can be partially protected from a thermal inactivation by the heat shock proteins from the Hsp70/100 systems. Moreover, activity of the thermally denatured enzyme can be partially restored by the same heat shock proteins. High temperature protein G (HtpG) had no effect on MetF117 activity in both experimental systems. The presented results indicate that functions of heat shock proteins may be required for maintenance of the MetF117 function. This may have implications for the mechanisms of arteriosclerosis and stroke, especially in the light of previous findings that the A222 V MTHFR polymorphism may be a risk factor for stroke, as well as recently published results which demonstrated the increased levels of antibodies against heat shock proteins in stroke patients.

  9. Continued global warming after CO2 emissions stoppage

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Winton, M.; Sarmiento, J. L.

    2014-12-01

    Recent studies have suggested that global mean surface temperature would remain approximately constant on multi-century timescales after CO2 emissions are stopped. These studies suggest that the cooling effect of reduction in radiative forcing due to the decrease in atmospheric CO2 is roughly balanced by the warming effect of reduction in ocean heat uptake. Here we use Earth system model simulations of such a stoppage to demonstrate that in some models, surface temperature may actually increase on multi-century timescales after an initial century-long decrease. For example, global mean surface temperature may increase by 0.6°C after carbon emissions are stopped at 2°C above preindustrial. Surprisingly, the temperature increase occurs in spite of a decline in radiative forcing that exceeds the decline in ocean heat uptake—a circumstance that would otherwise be expected to lead to a decline in global temperature. The reason is that the warming effect of decreasing ocean heat uptake together with feedback effects arising in response to the geographic structure of ocean heat uptake overcompensates the cooling effect of decreasing atmospheric CO2 on multi-century timescales in these models. We show that ocean heat uptake, which occurs preferentially at subpolar latitudes, has a larger temperature impact per watt per square meter than the CO2 radiative forcing. In other words, the cooling effect of a high-latitude heat sink is larger than that of an equivalent tropical heat sink. The implications of our results for estimates of allowable carbon emissions required to remain below a specific global warming target will be discussed.

  10. Specific heat revisited

    NASA Astrophysics Data System (ADS)

    Pizarro, C. A.; Condat, C. A.; Lamberti, P. W.; Prato, D. P.

    1996-06-01

    The correlation between potential shape and specific heat is generally absent from textbook discussions. We present a detailed analysis of the specific heat contribution due to independent particles subject to one-dimensional classical and quantum model potentials. For the classical models, we use phase space concepts to develop a clear physical interpretation of the temperature dependence of the specific heat. For the quantum models, we make the interpretation in terms of the differences in quantum levels.

  11. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  12. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  13. Observational and modeling studies of heat, moisture, precipitation and global-scale circulation patterns. Final technical report, 20 July 1990-19 January 1994

    SciTech Connect

    Vincent, D.G.

    1994-01-01

    This research grant was a revised version of an original proposal. The period of the grant was for three years with a six-month no-cost extension; thus, it was from 20 July 1990 to 19 January 1994. The objectives of the grant were to identify periods and locations of active convection centers, primarily over the Southern Hemisphere tropical Indian and Pacific Oceans; determine reasons for any periodic behavior found in the first objective; identify cases where subtropical jets over the South Pacific persisted for several days and examine the influences of tropical versus extra-tropical mechanisms in maintaining them; obtain estimates of precipitation by Q[sub 1] and Q[sub 2] budgets, including the importance of terms in each of the respective budgets, and compare these estimates to those obtained by other methods; and diagnose the distributions of moisture and precipitable water over the North Atlantic Ocean using routine analyses and satellite microwave data. To accomplish these objectives, the authors used grant funds to purchase several data sets, including the Global Precipitation Climate Project (GPCP) observations of station precipitation, ECMWF WCRP/TOGA archive two analyses for January 1985 - December 1990, ECMWF WMO analyses for January 1980 - December 1987, and OLR data for July 1974 - December 1991. They already had some SSM/I data and GLA analyses from a previous grant. In addition, to improve their computing power, they also used grant funds to purchase an IBM PS/2 with accessories, a NEC laser jet printer, and a microcomputer system for word processing.

  14. Heating Structures Derived from Satellite

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Adler, R.; Haddad, Z.; Hou, A.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C.; Lang, S.; Meneghini, R.; Olson, W.

    2004-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. The Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, was launched in November 1997. It provides an accurate measurement of rainfall over the global tropics which can be used to estimate the four-dimensional structure of latent heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. This paper describes several different algorithms for estimating latent heating using TRMM observations. The strengths and weaknesses of each algorithm as well as the heating products are also discussed. The validation of heating products will be exhibited. Finally, the application of this heating information to global circulation and climate models is presented.

  15. Heat Shock Proteins in Association with Heat Tolerance in Grasses

    PubMed Central

    Xu, Yan; Zhan, Chenyang; Huang, Bingru

    2011-01-01

    The grass family Poaceae includes annual species cultivated as major grain crops and perennial species cultivated as forage or turf grasses. Heat stress is a primary factor limiting growth and productivity of cool-season grass species and is becoming a more significant problem in the context of global warming. Plants have developed various mechanisms in heat-stress adaptation, including changes in protein metabolism such as the induction of heat shock proteins (HSPs). This paper summarizes the structure and function of major HSPs, recent research progress on the association of HSPs with grass tolerance to heat stress, and incorporation of HSPs in heat-tolerant grass breeding. PMID:22084689

  16. Heat Pipes

    ERIC Educational Resources Information Center

    Lewis, J.

    1975-01-01

    Describes the construction, function, and applications of heat pipes. Suggests using the heat pipe to teach principles related to heat transfer and gives sources for obtaining instructional kits for this purpose. (GS)

  17. Time variability in Cenozoic reconstructions of mantle heat flow: plate tectonic cycles and implications for Earth's thermal evolution.

    PubMed

    Loyd, S J; Becker, T W; Conrad, C P; Lithgow-Bertelloni, C; Corsetti, F A

    2007-09-04

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by approximately 0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past.

  18. Time variability in Cenozoic reconstructions of mantle heat flow: Plate tectonic cycles and implications for Earth's thermal evolution

    PubMed Central

    Loyd, S. J.; Becker, T. W.; Conrad, C. P.; Lithgow-Bertelloni, C.; Corsetti, F. A.

    2007-01-01

    The thermal evolution of Earth is governed by the rate of secular cooling and the amount of radiogenic heating. If mantle heat sources are known, surface heat flow at different times may be used to deduce the efficiency of convective cooling and ultimately the temporal character of plate tectonics. We estimate global heat flow from 65 Ma to the present using seafloor age reconstructions and a modified half-space cooling model, and we find that heat flow has decreased by ∼0.15% every million years during the Cenozoic. By examining geometric trends in plate reconstructions since 120 Ma, we show that the reduction in heat flow is due to a decrease in the area of ridge-proximal oceanic crust. Even accounting for uncertainties in plate reconstructions, the rate of heat flow decrease is an order of magnitude faster than estimates based on smooth, parameterized cooling models. This implies that heat flow experiences short-term fluctuations associated with plate tectonic cyclicity. Continental separation does not appear to directly control convective wavelengths, but rather indirectly affects how oceanic plate systems adjust to accommodate global heat transport. Given that today's heat flow may be unusually low, secular cooling rates estimated from present-day values will tend to underestimate the average cooling rate. Thus, a mechanism that causes less efficient tectonic heat transport at higher temperatures may be required to prevent an unreasonably hot mantle in the recent past. PMID:17720806

  19. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  20. Global weather research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Modeling, prediction, and analysis of global meteorological phenomena influencing the large scale behavior of the atmosphere are summarized. Prediction of global weather phenomena based on satellite data is discussed and models of global phenomena developed. The atmospheric general circulation model (AGCE) is reviewed, axisymmetric flow calculated, and axisymmetric states in cylindrical, spherical, three dimensional, and spin up numerical models for AGCE described. The role of latent heat release in baroclinic waves, latent heat and cyclonic systems, and a theoretical study of baroclinic flow related to the AGCE and the flow regime were studied with a simplified general circulation model. AGCE and the geophysical fluid flow cell (GFFC) instrumentation are discussed. Investigation of solar and planetary convection for GFFC is described. The utilization of satellite cloud observations to diagnose the energy state and transformations in extratropical cyclones is reviewed.

  1. The use of NOAA AVHRR data for assessment of the urban heat island effect

    NASA Technical Reports Server (NTRS)

    Gallo, K. P.; Mcnab, A. L.; Karl, T. R.; Brown, J. F.; Hood, J. J.; Tarpley, J. D.

    1993-01-01

    The objective of the study was to evaluate the use of a satellite-derived vegetation index and surface temperature estimates for the assessment of the difference in urban and rural air temperature due to the urban heat island effect. The difference in the ND (normalized difference) index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for the urban heat island effect. The use of the approach proposed here may provide a globally consistent method for assessing this phenomenon.

  2. Predicting Indoor Heat Exposure Risk during Extreme Heat Events

    PubMed Central

    Quinn, Ashlinn; Tamerius, James D.; Perzanowski, Matthew; Jacobson, Judith S.; Goldstein, Inge; Acosta, Luis; Shaman, Jeffrey

    2014-01-01

    Increased heat-related morbidity and mortality are expected direct consequences of global warming. In the developed world, most fatal heat exposures occur in the indoor home environment, yet little is known of the correspondence between outdoor and indoor heat. Here we show how summertime indoor heat and humidity measurements from 285 low- and middle-income New York City homes vary as a function of concurrent local outdoor conditions. Indoor temperatures and heat index levels were both found to have strong positive linear associations with their outdoor counterparts; however, among the sampled homes a broad range of indoor conditions manifested for the same outdoor conditions. Using these models, we simulated indoor conditions for two extreme events: the 10-day 2006 NYC heat wave and a 9-day event analogous to the more extreme 2003 Paris heat wave. These simulations indicate that many homes in New York City would experience dangerously high indoor heat index levels during extreme heat events. These findings also suggest that increasing numbers of NYC low- and middle-income households will be exposed to heat index conditions above important thresholds should the severity of heat waves increase with global climate change. The study highlights the urgent need for improved indoor temperature and humidity management. PMID:24893319

  3. Heat exposure on farmers in northeast Ghana.

    PubMed

    Frimpong, Kwasi; Van Etten E J, Eddie; Oosthuzien, Jacques; Fannam Nunfam, Victor

    2017-03-01

    Environmental health hazards faced by farmers, such as exposure to extreme heat stress, are a growing concern due to global climate change, particularly in tropical developing countries. In such environments, farmers are considered to be a population at risk of environmental heat exposure. The situation is exacerbated due to their farming methods that involve the use of primitive equipment and hard manual labour conducted in full sunshine under hot and humid conditions. However, there is inadequate information about the extent of heat exposure to such farmers, both at the household and farm levels. This paper presents results from a study assessing environmental heat exposure on rural smallholder farmers in Bawku East, Northern Ghana. From January to December 2013, Lascar USB temperature and humidity sensors and a calibrated Questemp heat stress monitor were deployed to farms and homes of rural farmers at Pusiga in Bawku East to capture farmers' exposure to heat stress in both their living and working environments as they executed regular farming routines. The Lascar sensors have the capability to frequently, accurately and securely measure temperature and humidity over long periods. The Questemp heat stress monitor was placed in the same vicinity and showed strong correlations to Lascar sensors in terms of derived values of wet-bulb globe temperature (WBGT). The WBGT in the working environment of farmers peaked at 33.0 to 38.1 °C during the middle of the day in the rainy season from March to October and dropped to 14.0-23.7 °C in the early morning during this season. A maximum hourly WBGT of 28.9-37.5 °C (March-October) was recorded in the living environment of farmers, demonstrating little relief from heat exposure during the day. With these levels of heat stress, exposed farmers conducting physically demanding outdoor work risk suffering serious health consequences. The sustainability of manual farming practices is also under threat by such high levels of

  4. An Outbreak of Diarrhea in Mandera, Kenya, Due to Escherichia coli Serogroup O-Nontypable Strain That Had a Coding Gene for Enteroaggregative E. coli Heat-Stable Enterotoxin 1.

    PubMed

    Ochi, Sadayuki; Shah, Mohammad; Odoyo, Erick; Bundi, Martin; Miringu, Gabriel; Guyo, Sora; Wandera, Ernest; Kathiiko, Cyrus; Kariuki, Samuel; Karama, Mohamed; Tsuji, Takao; Ichinose, Yoshio

    2017-02-08

    In an outbreak of gastroenteritis in December 2009, in Mandera, Kenya, Escherichia coli O-nontypable (ONT) strain was isolated from stool specimens of patients (18/24, 75%). The E. coli ONT organisms could not be assigned to any of the recognized diarrheagenic groups of E. coli However, they possessed the enteroaggregative E. coli heat-stable enterotoxin-1 gene. The cell-free culture filtrates of the E. coli ONT strain isolated from the outbreak cases induced considerable amount of fluid accumulation in suckling mouse intestine, indicating production of an enterotoxic factor(s). These results identify E. coli that did not have any diarrheagenic characteristics except astA as the etiological agent of the diarrheal outbreak in Mandera. It is however considered necessary to characterize the fluid accumulation factor(s) to determine whether any novel toxins were responsible for the fluid accumulation. Moreover, it is important to study dissemination of strains producing the enterotoxic factor(s) to assess their public health significance distribution in the environment.

  5. Globalization to amplify economic climate losses

    NASA Astrophysics Data System (ADS)

    Otto, C.; Wenz, L.; Levermann, A.

    2015-12-01

    Economic welfare under enhanced anthropogenic carbon emissions and associated future warming poses a major challenge for a society with an evolving globally connected economy. Unabated climate change will impact economic output for example through heat-stress-related reductions in productivity. Since meteorologically-induced production reductions can propagate along supply chains, structural changes in the economic network may influence climate-related losses. The role of the economic network evolution for climate impacts has been neither quantified nor qualitatively understood. Here we show that since the beginning of the 21st century the structural change of the global supply network has been such that an increase of spillover losses due to unanticipated climatic events has to be expected. We quantify primary, secondary and higher-order losses from reduced labor productivity under past and present economic and climatic conditions and find that indirect losses are significant and increase with rising temperatures. The connectivity of the economic network has increased in such a way as to foster the propagation of production loss. This supply chain connectivity robustly exhibits the characteristic distribution of self-organized criticality which has been shifted towards higher values since 2001. Losses due to this structural evolution dominated over the effect of comparably weak climatic changes during this decade. Our finding suggests that the current form of globalization may amplify losses due to climatic extremes and thus necessitate structural adaptation that requires more foresight than presently prevalent.

  6. Modification of growing-season surface temperature records in the northern great plains due to land-use transformation: verification of modelling results and implication for global climate change

    NASA Astrophysics Data System (ADS)

    Mahmood, Rezaul; Hubbard, Kenneth G.; Carlson, Christy

    2004-03-01

    Land-use and land-cover change can modify near-surface atmospheric condition. Mesoscale modelling studies have shown that modification in land use affects near-surface soil moisture storage and energy balance. Such a study in the Great Plains showed that changes in land use from natural grass to irrigated agriculture enhanced soil water storage in the root zone and increased latent energy flux. This increase in latent energy flux would correspond to a decrease in sensible heat flux and, therefore, modify near-surface temperature records. To verify this deduction, we have investigated the changes in the historical near-surface temperature records in Nebraska, USA. We have analysed the long-term mean monthly maximum, minimum, and monthly mean air temperature data from five irrigated and five non-irrigated sites. The cooperative weather observation (coop) network is the source of the data. We have found that there is a clear trend in decreasing mean maximum and average temperature data for irrigated sites. For example, York, NE, reports that the mean maximum growing season temperature is decreasing at the rate -0.01°C year-1. The results from non-irrigated sites indicated an increasing trend for the same parameters. The data from Halsey, NE, indicate a +0.01°C year-1 increase in this century. In addition, we have conducted similar analyses of temperature data for the National Climatic Data Center's Historical Climatic Network data set for the same locations. The results are similar to that obtained with the coop data set. Further investigation of dew-point temperature records for irrigated and non-irrigated sites also show an increasing and decreasing trend respectively. Therefore, we conclude that the land-use change in the Great Plains has modified near-surface temperature records.

  7. Radiogenic heat production in the continental crust

    NASA Astrophysics Data System (ADS)

    Jaupart, Claude; Mareschal, Jean-Claude; Iarotsky, Lidia

    2016-10-01

    The thermal structure and evolution of continents depend strongly on the amount and distribution of radioactive heat sources in the crust. Determining the contribution of crustal rocks beneath a superficial layer is a major challenge because heat production depends weakly on major element composition and physical properties such as seismic wavespeed and density. Enriched granitic intrusives that lie at the current erosion level have a large impact on the surface heat flux but little influence on temperatures in the deep crust. Many lower crustal rocks that are poor in heat producing elements are restites from ancient orogenic events, implying that enrichment of the upper crust was achieved at the expense of deeper crustal levels. For the same total heat production, concentrating heat sources in an upper layer acts to reduce temperatures in the lower crust, thereby allowing stabilization of the crust. The present-day structure of the crust is a consequence of orogeny and should not be adopted for thermal models of the orogenic event itself. This review summarizes information extracted from large data sets on heat flow and heat production and provides estimates of crustal stratification and heat production in several geological provinces. Analysis of global and regional data sets reveals the absence of a positive correlation between surface heat flow and crustal thickness, showing that the average crustal heat production is not constant. Differences of heat flow between geological provinces are due in large part to changes of crustal structure and bulk composition. Collating values of the bulk crustal heat production in a few age intervals reveals a clear trend of decrease with increasing age. This trend can be accounted for by radioactive decay, indicating that thermal conditions at the time of crustal stabilization have not changed significantly. For the average crustal thickness of 40 km, Moho temperatures are near solidus values at the time of stabilization

  8. Advances in refrigeration and heat transfer engineering

    DOE PAGES

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been themore » most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  9. Advances in refrigeration and heat transfer engineering

    SciTech Connect

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO2 may perhaps have been the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).

  10. Heat Rash

    MedlinePlus

    ... clear up the heat rash?Should I use diaper ointment on my child?What caused my heat rash?Should I stop exercising until the heat rash clears up?What is the best way to prevent heat rash? Last Updated: April 2014 This article was contributed by: familydoctor.org editorial staff Tags: ...

  11. The Argo Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2005

    DTIC Science & Technology

    2005-01-01

    environment of ocean ecosystems. Over 90% of the increased heat content due to global warming of the air/sea/ice climate system in the past 40...years occurred in the oceans. Climate stresses on ocean ecosystems have serious consequences, and sometimes dramatic ones, such as coral reef bleaching ...The Argo Project Global Ocean Observations for Understanding and Prediction of Climate Variability Report for Calendar Year 2005 Dean H

  12. The Ago Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2005

    DTIC Science & Technology

    2005-01-01

    defining the physical environment of ocean ecosystems. Over 90% of the increased heat content due to global warming of the air/sea/ice climate... coral reef bleaching . In the future, the impacts of a varying climate on the health of the seas and coastal ecosystems will become an increasingly...The Argo Project Global Ocean Observations for Understanding and Prediction of Climate Variability Report for Calendar Year 2005 Dean H

  13. The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004

    DTIC Science & Technology

    2004-01-01

    Over 90% of the increased heat content due to global warming of the air/sea/ice climate system in the past 40 years occurred in the oceans. Climate...stresses on ocean ecosystems have serious consequences, and sometimes dramatic ones, such as coral reef bleaching . In the future, the impacts of a...The Argo Project Global Ocean Observations for Understanding and Prediction of Climate Variability Report for Calendar Year 2004 Dean H

  14. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    glaciers, permafrost and sea ice. Other likely effects of the warming include more frequent occurrences of extreme weather events including heat waves, droughts and heavy rainfall events, species extinctions due to shifting temperature regimes, and changes in agricultural yields. Meltwater is the water released by the melting of snow or ice, including glacial ice and ice shelves in the oceans. Meltwater is often found in the ablation zone of glaciers, where the rate of snow cover is reduced. In a report published in June 2007, the United Nations Environment Program estimated that global warming could lead to 40% of the world's population being affected by the loss of glaciers, snow and the associated meltwater in Asia. This is one of many activities of the physics laboratory that the students of our high school are involved in.

  15. Flash heating on the early Earth.

    PubMed

    Lyons, J R; Vasavada, A R

    1999-03-01

    It has been suggested that very large impact events (approximately 500 km diameter impactors) sterilized the surface of the young Earth by producing enough rock vapor to boil the oceans. Here, we consider surface heating due to smaller impactors, and demonstrate that surface temperatures conductive to organic synthesis resulted. In particular, we focus on the synthesis of thermal peptides. Previously, laboratory experiments have demonstrated that dry heating a mixture of amino acids containing excess Asp, Glu, or Lys to temperatures approximately 170 degrees C for approximately 2 hours yields polypeptides. It has been argued that such temperature conditions would not have been available on the early Earth. Here we demonstrate, by analogy with the K/T impact, that the requisite temperatures are achieved on sand surfaces during the atmospheric reentry of fine ejecta particles produced by impacts of bolides approximately 10-20 km in diameter, assuming approximately 1-100 PAL CO2. Impactors of this size struck the Earth with a frequency of approximately 1 per 10(4)-10(5) y at 4.2 Ga. Smaller bolides produced negligible global surface heating, whereas bolides > 30 km in diameter yielded solid surface temperatures > 1000 K, high enough to pyrolyze amino acids and other organic compounds. Thus, peptide formation would have occurred globally for a relatively narrow range of bolide sizes.

  16. Planetary heat flow measurements.

    PubMed

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  17. Silicon Heat Pipe Array

    NASA Technical Reports Server (NTRS)

    Yee, Karl Y.; Ganapathi, Gani B.; Sunada, Eric T.; Bae, Youngsam; Miller, Jennifer R.; Beinsford, Daniel F.

    2013-01-01

    Improved methods of heat dissipation are required for modern, high-power density electronic systems. As increased functionality is progressively compacted into decreasing volumes, this need will be exacerbated. High-performance chip power is predicted to increase monotonically and rapidly with time. Systems utilizing these chips are currently reliant upon decades of old cooling technology. Heat pipes offer a solution to this problem. Heat pipes are passive, self-contained, two-phase heat dissipation devices. Heat conducted into the device through a wick structure converts the working fluid into a vapor, which then releases the heat via condensation after being transported away from the heat source. Heat pipes have high thermal conductivities, are inexpensive, and have been utilized in previous space missions. However, the cylindrical geometry of commercial heat pipes is a poor fit to the planar geometries of microelectronic assemblies, the copper that commercial heat pipes are typically constructed of is a poor CTE (coefficient of thermal expansion) match to the semiconductor die utilized in these assemblies, and the functionality and reliability of heat pipes in general is strongly dependent on the orientation of the assembly with respect to the gravity vector. What is needed is a planar, semiconductor-based heat pipe array that can be used for cooling of generic MCM (multichip module) assemblies that can also function in all orientations. Such a structure would not only have applications in the cooling of space electronics, but would have commercial applications as well (e.g. cooling of microprocessors and high-power laser diodes). This technology is an improvement over existing heat pipe designs due to the finer porosity of the wick, which enhances capillary pumping pressure, resulting in greater effective thermal conductivity and performance in any orientation with respect to the gravity vector. In addition, it is constructed of silicon, and thus is better

  18. K-Pg extinction: Reevaluation of the heat-fire hypothesis

    NASA Astrophysics Data System (ADS)

    Robertson, Douglas S.; Lewis, William M.; Sheehan, Peter M.; Toon, Owen B.

    2013-03-01

    The global debris layer created by the end-Cretaceous impact at Chicxulub contained enough soot to indicate that the entire terrestrial biosphere had burned. Preliminary modeling showed that the reentry of ejecta would have caused a global infrared (IR) pulse sufficient to ignite global fires within a few hours of the Chicxulub impact. This heat pulse and subsequent fires explain the terrestrial survival patterns in the earliest Paleocene, because all the surviving species were plausibly able to take shelter from heat and fire underground or in water. However, new models of the global IR heat pulse as well as the absence of charcoal and the presence of noncharred organic matter have been said to be inconsistent with the idea of global fires that could have caused the extinctions. It was suggested that the soot in the debris layer originated from the impact site itself because the morphology of the soot, the chain length of polycyclic aromatic hydrocarbons, and the presence of carbon cenospheres were said to be inconsistent with burning the terrestrial biosphere. These assertions either are incorrect or have alternate explanations that are consistent with global firestorms. We show that the apparent charcoal depletion in the Cretaceous-Paleogene layer has been misinterpreted due to the failure to correct properly for sediment deposition rates. We also show that the mass of soot potentially released from the impact site is far too low to supply the observed soot. However, global firestorms are consistent with both data and physical modeling.

  19. Health effects of global warming: Problems in assessment

    SciTech Connect

    Longstreth, J.

    1993-06-01

    Global warming is likely to result in a variety of environmental effects ranging from impacts on species diversity, changes in population size in flora and fauna, increases in sea level and possible impacts on the primary productivity of the sea. Potential impacts on human health and welfare have included possible increases in heat related mortality, changes in the distribution of disease vectors, and possible impacts on respiratory diseases including hayfever and asthma. Most of the focus thus far is on effects which are directly related to increases in temperature, e.g., heat stress or perhaps one step removed, e.g., changes in vector distribution. Some of the more severe impacts are likely to be much less direct, e.g., increases in migration due to agricultural failure following prolonged droughts. This paper discusses two possible approaches to the study of these less-direct impacts of global warming and presents information from on-going research using each of these approaches.

  20. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yie...

  1. Observations of joule and particle heating in the auroral zone

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1977-01-01

    Observational data from the Chatanika, Alaska incoherent scatter radar have been used to deduce atmospheric heating rates associated with particle precipitation and joule dissipation. During periods when Chatanika is in the vicinity of the auroral oval the height-integrated heat input to the lower thermosphere can be as large as 100 ergs per sq cm per sec with joule and particle heating rates of comparable magnitude. Altitude profiles of these heat inputs are also obtained, showing that the energy liberated by joule dissipation tends to peak at a substantially higher altitude (about 130 km) than that due to particles (100-120 km). As a consequence, it follows that joule heating can be expected to provide a rapid means for creating thermospheric disturbances. It is also pointed out that joule and particle heating are permanent features of the auroral oval and polar cap. As such, expansion of the auroral oval leads to an increase in the total global heating and, hence, to the close relationship between magnetic disturbances and thermospheric perturbation.

  2. The Global Energy Challenge

    ScienceCinema

    Crabtree, George

    2016-07-12

    The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.   The continued use of fossil fuels raises concerns about supply, security, environment and climate.  New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.

  3. Heat balance of the Earth

    NASA Technical Reports Server (NTRS)

    Budyko, M. I.; Berlyand, T. G.; Yefimova, N. A.; Zubenok, L. I.; Strokina, L. A.

    1980-01-01

    Results of improved calculations of the heat balance components of Earth's surface are reported for yearly average conditions. The technique used to determine the heat-balance components from land- and sea-based actinometric observations as well as from satellite data on the radiation balance of the Earth-atmosphere system is described, with special attention given to short-wavelength solar radiation on the continents, effective radiation from the land surface, the radiation balance of the ocean surface, heat expended by both evaporation from the ocean surface, and turbulent heat transfer between the ocean surface and the atmosphere. World maps of heat-balance components show yearly average values of total radiation, radiation balance, heat expended by evaporation, the turbulent heat flow between Earth's surface and atmosphere, and heat transfer between the ocean surface and underlying waters. The global surface heat balance is estimated along with global values of the various components and the heat-balance components for different latitude zones.

  4. Deaths from heat-stroke in Japan: 1968-1994

    NASA Astrophysics Data System (ADS)

    Nakai, S.; Itoh, T.; Morimoto, T.

    Global warming is increasingly recognized as a threat to the survival of human beings, because it could cause a serious increase in the occurrence of diseases due to environmental heat during intermittent hot weather. To assess the direct impact of extremely hot weather on human health, we investigated heat-related deaths in Japan from 1968 through 1994, analyzing the data to determine the distribution of the deaths by age and their correlation to the incidence of hot days in summer. Vital Statistics of Japan, published by the Ministry of Health and Welfare of Japan, was the source of the heat-related mortality data employed in this study. Meteorological data were obtained from the District Meteorological Observatories in Tokyo and Osaka, the two largest cities in Japan. Heat-related deaths were most prone to occur on days with a peak daily temperature above 38°C, and the incidence of these deaths showed an exponential dependence on the number of hot days. Thus, even a small rise in atmospheric temperature may lead to a considerable increase in heat-related mortality, indicating the importance of combating global warming. Furthermore, half (50.1%) of the above-noted deaths occurred in children (4 years and under) and the elderly (70 years and over) irrespective of gender, indicating the vulnerability of these specific age groups to heat. Since a warmer climate is predicted in the future, the incidence of heat waves will increase, and more comprehensive measures, both medical and social, should be adopted for children of 4 years and younger the elderly to prevent heat-related deaths in these age groups.

  5. Deaths from heat-stroke in Japan: 1968-1994.

    PubMed

    Nakai, S; Itoh, T; Morimoto, T

    1999-11-01

    Global warming is increasingly recognized as a threat to the survival of human beings, because it could cause a serious increase in the occurrence of diseases due to environmental heat during intermittent hot weather. To assess the direct impact of extremely hot weather on human health, we investigated heat-related deaths in Japan from 1968 through 1994, analyzing the data to determine the distribution of the deaths by age and their correlation to the incidence of hot days in summer. Vital Statistics of Japan, published by the Ministry of Health and Welfare of Japan, was the source of the heat-related mortality data employed in this study. Meteorological data were obtained from the District Meteorological Observatories in Tokyo and Osaka, the two largest cities in Japan. Heat-related deaths were most prone to occur on days with a peak daily temperature above 38 degrees C, and the incidence of these deaths showed an exponential dependence on the number of hot days. Thus, even a small rise in atmospheric temperature may lead to a considerable increase in heat-related mortality, indicating the importance of combating global warming. Furthermore, half (50.1%) of the above-noted deaths occurred in children (4 years and under) and the elderly (70 years and over) irrespective of gender, indicating the vulnerability of these specific age groups to heat. Since a warmer climate is predicted in the future, the incidence of heat waves will increase, and more comprehensive measures, both medical and social, should be adopted for children of 4 years and younger the elderly to prevent heat-related deaths in these age groups.

  6. Radiative heating in global climate models

    SciTech Connect

    Baer, F.; Arsky, N.; Rocque, K.

    1996-04-01

    LWR algorithms from various GCMs vary significantly from one another for the same clear sky input data. This variability becomes pronounced when clouds are included. We demonstrate this effect by intercomparing the various models` output using observed data including clouds from ARM/CART data taken in Oklahoma.

  7. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  8. CHaracteristics of Two-Stage Absorption Heat Pump Cycler Driven by Waste Heat From Gas Engine

    NASA Astrophysics Data System (ADS)

    Kojima, Hiroshi; Akisawa, Atsushi; Kashiwagi, Takao

    Recently the energy conservation is expected from the global environment protection view point. In this study, a new concept of a compound gas cooling system using treated sewage water combining a gas engine heat pump and an absorption heat pump is proposed. In this system, the absorption heat pump is driven by the waste heat from the gas engine. In this paper, first, the best absorption cycle for this absorption heat pump is selected for the cooling and heating mode. And finally the simulation model of the two-stage absorption heat pumps for heating mode is demonstrated and the static characteristics are clarified.

  9. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  10. Heat-Related Illnesses

    DTIC Science & Technology

    1988-04-01

    immersion is rapid (see Chapter 3). Convection Heat loss to air and water vapor molecules circulating around the body is termed convection. As ambient...Skin temperature is believed to have an effect on sweating and heat loss , since a person resting in a warm environment with elevated skin temperature...exercise, rapid (10-20 minutes) decreases in central blood volume occur due to several mechanisms, including osmotic loss of plasma water into working

  11. Heat Illness

    MedlinePlus

    ... symptoms include heavy sweating, rapid breathing and a fast, weak pulse Heat cramps - muscle pains or spasms that happen during heavy exercise Heat rash - skin irritation from excessive sweating Centers for Disease Control and Prevention

  12. Heat Stress

    MedlinePlus

    ... Stress Learn some tips to protect workers including: acclimatization, rest breaks, and fluid recommendations. NIOSH Workplace Solution: ... Blog: Adjusting to Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes ...

  13. Extreme Heat

    MedlinePlus

    ... Emergencies Biological Threats Chemical Threats Cyber Incident Drought Earthquakes Extreme Heat Explosions Floods Hazardous Materials Incidents Home ... Emergencies Biological Threats Chemical Threats Cyber ... Heat Explosions Floods Hazardous Materials Incidents Home ...

  14. Link between Surface and Subsurface Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Olesen, Folke; Goettsche, Frank; Blum, Philipp

    2016-04-01

    Urban heat islands exist in all diverse layers of modern cities, such as surface and subsurface. While both layers are typically investigated separately, the coupling of surface and subsurface urban heat islands is insufficiently understood. Hence, this study focuses on the interrelation of both zones and the influence of additional underground heat sources, such as heated basements, on this interaction. Using satellite derived land surface temperatures and interpolated groundwater temperature measurements the spatial properties of both heat islands are compared. Significant correlations of 0.5 up to more than 0.8 are found between surface and subsurface urban heat islands. If groundwater flow is considered this correlation increases by approximately 10%. Next we analyzed the dissimilarities between both heat islands in order to understand the interaction between the urban surface and subsurface. We find that local groundwater hotspots under the city center and industrial areas are not revealed in satellite derived land surface temperatures. Overall groundwater temperatures are higher than land surface temperatures in 95% of the analyzed area due to the influence of below ground anthropogenic heat sources such as sewage systems, district heating systems, and especially elevated basement temperatures. Thus, an estimation method is proposed that relates groundwater temperatures to mean annual land surface temperatures, building density, and elevated basement temperatures. Using this method regional groundwater temperatures can be accurately estimated with a mean absolute error of 0.9 K. Since land surface temperatures and building densities are available from remote sensing, this method has the potential for a large scale estimations of urban groundwater temperatures. Thus, it is feasible to detect subsurface urban heat islands on a global level and to investigate sustainable geothermal potentials using satellite derived data.

  15. Combustion and heat transfer in porous media

    SciTech Connect

    Sathe, S.B.; Peck, R.E.; Tong, T.W.

    1990-06-01

    The objective of the present study is to generate fundamental knowledge about heat transfer and combustion in porous radiant burners (PRBs) in order to improve their performance. A theoretical heat transfer and combustion model is developed to study the characteristics of PRBs. The model accounts for non-local thermal equilibrium between the solid and gas phases. The solid is assumed to absorb, emit and scatter radiant energy. Combustion is modeled as a one-step global reaction. It is revealed that the flame speed inside the porous medium is enhanced compared to the adiabatic flame speeds due to the higher conductivity of the solid compared to the gas as well as due to radiative preheating of the reactants. The effects of the properties of the porous material on the flame speeds, radiative outputs and efficiencies were investigated. To improve the radiative output from the burner, it is desirable that the porous layer has an optical thickness of about ten. The radiative output and the efficiency is higher for lower scattering albedo. The heat transfer coupling between the solid and gas phases should be high enough to ensure local thermal equilibrium, by choosing a fine porous matrix. Higher solid phase conduction enhances the flame speed and the radiative output. Experiments are performed on a ceramic foam to verify the theoretical findings. The existence of the two stability regions was verified experimentally.

  16. Acoustically enhanced heat transport

    NASA Astrophysics Data System (ADS)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  17. Acoustically enhanced heat transport

    SciTech Connect

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K.; Yeo, Leslie Y.

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  18. Acoustically enhanced heat transport.

    PubMed

    Ang, Kar M; Yeo, Leslie Y; Friend, James R; Hung, Yew Mun; Tan, Ming K

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  19. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one