Science.gov

Sample records for global local optimization

  1. Local and global strategies for optimal selective mass scaling

    NASA Astrophysics Data System (ADS)

    Tkachuk, Anton; Bischoff, Manfred

    2014-06-01

    The problem of optimal selective mass scaling for linearized elasto-dynamics is discussed. Optimal selective mass scaling should provide solutions for dynamical problems that are close to the ones obtained with a lumped mass matrix, but at much smaller computational costs. It should be equally applicable to all structurally relevant load cases. The three main optimality criteria, namely eigenmode preservation, small number of non-zero entries and good conditioning of the mass matrix are explicitly formulated in the article. An example of optimal mass scaling which relies on redistribution of mass on a global system level is constructed. Alternative local mass scaling strategies are proposed and compared with existing methods using one modal and two transient numerical examples.

  2. Global Optimization, Local Adaptation, and the Role of Growth in Distribution Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2016-09-01

    Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work we show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as leaf and animal vasculature.

  3. More on conditions of local and global minima coincidence in discrete optimization problems

    SciTech Connect

    Lebedeva, T.T.; Sergienko, I.V.; Soltan, V.P.

    1994-05-01

    In some areas of discrete optimization, it is necessary to isolate classes of problems whose target functions do not have local or strictly local minima that differ from the global minima. Examples include optimizations on discrete metric spaces and graphs, lattices and partially ordered sets, and linear combinatorial problems. A unified schema that to a certain extent generalizes the convexity models on which the above-cited works are based has been presented in articles. This article is a continuation of that research.

  4. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    SciTech Connect

    Ambur, D.R.; Jaunky, N.; Knight, N.F. Jr.

    1996-04-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  5. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.

    1996-01-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  6. SU-E-J-130: Automating Liver Segmentation Via Combined Global and Local Optimization

    SciTech Connect

    Li, Dengwang; Wang, Jie; Kapp, Daniel S.; Xing, Lei

    2015-06-15

    Purpose: The aim of this work is to develop a robust algorithm for accurate segmentation of liver with special attention paid to the problems with fuzzy edges and tumor. Methods: 200 CT images were collected from radiotherapy treatment planning system. 150 datasets are selected as the panel data for shape dictionary and parameters estimation. The remaining 50 datasets were used as test images. In our study liver segmentation was formulated as optimization process of implicit function. The liver region was optimized via local and global optimization during iterations. Our method consists five steps: 1)The livers from the panel data were segmented manually by physicians, and then We estimated the parameters of GMM (Gaussian mixture model) and MRF (Markov random field). Shape dictionary was built by utilizing the 3D liver shapes. 2)The outlines of chest and abdomen were located according to rib structure in the input images, and the liver region was initialized based on GMM. 3)The liver shape for each 2D slice was adjusted using MRF within the neighborhood of liver edge for local optimization. 4)The 3D liver shape was corrected by employing SSR (sparse shape representation) based on liver shape dictionary for global optimization. Furthermore, H-PSO(Hybrid Particle Swarm Optimization) was employed to solve the SSR equation. 5)The corrected 3D liver was divided into 2D slices as input data of the third step. The iteration was repeated within the local optimization and global optimization until it satisfied the suspension conditions (maximum iterations and changing rate). Results: The experiments indicated that our method performed well even for the CT images with fuzzy edge and tumors. Comparing with physician delineated results, the segmentation accuracy with the 50 test datasets (VOE, volume overlap percentage) was on average 91%–95%. Conclusion: The proposed automatic segmentation method provides a sensible technique for segmentation of CT images. This work is

  7. Global-Local Analysis and Optimization of a Composite Civil Tilt-Rotor Wing

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masound

    1999-01-01

    This report gives highlights of an investigation on the design and optimization of a thin composite wing box structure for a civil tilt-rotor aircraft. Two different concepts are considered for the cantilever wing: (a) a thin monolithic skin design, and (b) a thick sandwich skin design. Each concept is examined with three different skin ply patterns based on various combinations of 0, +/-45, and 90 degree plies. The global-local technique is used in the analysis and optimization of the six design models. The global analysis is based on a finite element model of the wing-pylon configuration while the local analysis uses a uniformly supported plate representing a wing panel. Design allowables include those on vibration frequencies, panel buckling, and material strength. The design optimization problem is formulated as one of minimizing the structural weight subject to strength, stiffness, and d,vnamic constraints. Six different loading conditions based on three different flight modes are considered in the design optimization. The results of this investigation reveal that of all the loading conditions the one corresponding to the rolling pull-out in the airplane mode is the most stringent. Also the frequency constraints are found to drive the skin thickness limits, rendering the buckling constraints inactive. The optimum skin ply pattern for the monolithic skin concept is found to be (((0/+/-45/90/(0/90)(sub 2))(sub s))(sub s), while for the sandwich skin concept the optimal ply pattern is found to be ((0/+/-45/90)(sub 2s))(sub s).

  8. Energy landscape paving with local search for global optimization of the BLN off-lattice model

    NASA Astrophysics Data System (ADS)

    Liu, Jingfa; Huang, Weibo; Liu, Wenjie; Song, Beibei; Sun, Yuanyuan; Chen, Mao

    2014-02-01

    The optimization problem for finding the global minimum energy structure is one of the main problems of protein structure prediction and is known to be an NP-hard problem in computational molecular biology. The low-energy conformational search problem in the hydrophobic-hydrophilic-neutral (BLN) off-lattice model is studied. We convert the problem into an unconstrained optimization problem by introducing the penalty function. By putting forward a new updating mechanism of the histogram function in the energy landscape paving (ELP) method and incorporating heuristic conformation update strategies into the ELP method, we obtain an improved ELP (IELP) method. Subsequently, by combining the IELP method with the local search (LS) based on the gradient descent method, we propose a hybrid algorithm, denoted by IELP-LS, for the conformational search of the off-lattice BLN model. Simulation results indicate that IELP-LS can find lower-energy states than other methods in the literature, showing that the proposed method is an effective tool for global optimization in the BLN off-lattice protein model.

  9. Global localization of 3D anatomical structures by pre-filtered Hough forests and discrete optimization.

    PubMed

    Donner, René; Menze, Bjoern H; Bischof, Horst; Langs, Georg

    2013-12-01

    The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates' weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete optimization problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80 mm, 1.19 mm and 2.71 mm, respectively. PMID:23664450

  10. Global localization of 3D anatomical structures by pre-filtered Hough Forests and discrete optimization

    PubMed Central

    Donner, René; Menze, Bjoern H.; Bischof, Horst; Langs, Georg

    2013-01-01

    The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three steps: (1) a classifier for pre-filtering anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates’ weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete optimization problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80 mm, 1.19 mm and 2.71 mm, respectively. PMID:23664450

  11. An optimal adaptive design to address local regulations in global clinical trials.

    PubMed

    Luo, Xiaolong; Shih, Weichung Joe; Ouyang, S Peter; Delap, Robert J

    2010-01-01

    After multi-regional clinical trials (MRCTs) have demonstrated overall significant effects, evaluation for a region-specific effect is often important. Recent guidance from regulatory authorities regarding evaluation for possible country-specific effects has led to research on statistical designs that incorporate such evaluations in MRCTs. These statistical designs are intended to use the MRCTs to address the requirements for global registration of a medicinal product. Adding a regional requirement could change the probability for declaring positive effect for the region when there is indeed no treatment difference as well as when there is in fact a true difference within the region. In this paper, we first quantify those probability structures based on the guidance issued by the Ministry of Health, Labour and Welfare (MHLW) of Japan. An adaptive design is proposed to consider those probabilities and to optimize the efficiency for regional objectives. This two-stage approach incorporates comprehensive global objectives into an integrated study design and may mitigate the need for a separate local bridging study. A procedure is used to optimize region-specific enrollment based on an objective function. The overall sample size requirement is assessed. We will use simulation analyses to illustrate the performance of the proposed study design. PMID:20872620

  12. Local search for optimal global map generation using mid-decadal landsat images

    USGS Publications Warehouse

    Khatib, L.; Gasch, J.; Morris, R.; Covington, S.

    2007-01-01

    NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

  13. PANMIN: sequential and parallel global optimization procedures with a variety of options for the local search strategy

    NASA Astrophysics Data System (ADS)

    Theos, F. V.; Lagaris, I. E.; Papageorgiou, D. G.

    2004-05-01

    We present two sequential and one parallel global optimization codes, that belong to the stochastic class, and an interface routine that enables the use of the Merlin/MCL environment as a non-interactive local optimizer. This interface proved extremely important, since it provides flexibility, effectiveness and robustness to the local search task that is in turn employed by the global procedures. We demonstrate the use of the parallel code to a molecular conformation problem. Program summaryTitle of program: PANMIN Catalogue identifier: ADSU Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSU Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: PANMIN is designed for UNIX machines. The parallel code runs on either shared memory architectures or on a distributed system. The code has been tested on a SUN Microsystems ENTERPRISE 450 with four CPUs, and on a 48-node cluster under Linux, with both the GNU g77 and the Portland group compilers. The parallel implementation is based on MPI and has been tested with LAM MPI and MPICH Installation: University of Ioannina, Greece Programming language used: Fortran-77 Memory required to execute with typical data: Approximately O( n2) words, where n is the number of variables No. of bits in a word: 64 No. of processors used: 1 or many Has the code been vectorised or parallelized?: Parallelized using MPI No. of bytes in distributed program, including test data, etc.: 147163 No. of lines in distributed program, including the test data, etc.: 14366 Distribution format: gzipped tar file Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be

  14. Optimizing Land and Water Use at the Local Level to Enhance Global Food Security through Virtual Resources Trade in the World

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhang, X.; Zhu, T.

    2014-12-01

    Global food security is constrained by local and regional land and water availability, as well as other agricultural input limitations and inappropriate national and global regulations. In a theoretical context, this study assumes that optimal water and land uses in local food production to maximize food security and social welfare at the global level can be driven by global trade. It follows the context of "virtual resources trade", i.e., utilizing international trade of agricultural commodities to reduce dependency on local resources, and achieves land and water savings in the world. An optimization model based on the partial equilibrium of agriculture is developed for the analysis, including local commodity production and land and water resources constraints, demand by country, and global food market. Through the model, the marginal values (MVs) of social welfare for water and land at the level of so-called food production units (i.e., sub-basins with similar agricultural production conditions) are derived and mapped in the world. In this personation, we will introduce the model structure, explain the meaning of MVs at the local level and their distribution around the world, and discuss the policy implications for global communities to enhance global food security. In particular, we will examine the economic values of water and land under different world targets of food security (e.g., number of malnourished population or children in a future year). In addition, we will also discuss the opportunities on data to improve such global modeling exercises.

  15. Sleep locally, act globally.

    PubMed

    Rattenborg, Niels C; Lima, Steven L; Lesku, John A

    2012-10-01

    In most animals, sleep is considered a global brain and behavioral state. However, recent intracortical recordings have shown that aspects of non-rapid eye movement (NREM) sleep and wakefulness can occur simultaneously in different parts of the cortex in mammals, including humans. Paradoxically, however, NREM sleep still manifests as a global behavioral shutdown. In this review, the authors examine this paradox from an evolutionary perspective. On the basis of strategic modeling, they suggest that in animals with brains composed of heavily interconnected and functionally interdependent units, a global regulator of sleep maintains the behavioral shutdown that defines sleep and thereby ensures that local use-dependent functions are performed in a safe and efficient manner. This novel perspective has implications for understanding deficits in human cognitive performance resulting from sleep deprivation, sleep disorders such as sleepwalking, changes in consciousness that occur during sleep, and the function of sleep itself. PMID:22572533

  16. Optimal piecewise locally linear modeling

    NASA Astrophysics Data System (ADS)

    Harris, Chris J.; Hong, Xia; Feng, M.

    1999-03-01

    Associative memory networks such as Radial Basis Functions, Neurofuzzy and Fuzzy Logic used for modelling nonlinear processes suffer from the curse of dimensionality (COD), in that as the input dimension increases the parameterization, computation cost, training data requirements, etc. increase exponentially. Here a new algorithm is introduced for the construction of a Delaunay input space partitioned optimal piecewise locally linear models to overcome the COD as well as generate locally linear models directly amenable to linear control and estimation algorithms. The training of the model is configured as a new mixture of experts network with a new fast decision rule derived using convex set theory. A very fast simulated reannealing (VFSR) algorithm is utilized to search a global optimal solution of the Delaunay input space partition. A benchmark non-linear time series is used to demonstrate the new approach.

  17. Global/Local Dynamic Models

    SciTech Connect

    Pfeffer, A; Das, S; Lawless, D; Ng, B

    2006-10-10

    Many dynamic systems involve a number of entities that are largely independent of each other but interact with each other via a subset of state variables. We present global/local dynamic models (GLDMs) to capture these kinds of systems. In a GLDM, the state of an entity is decomposed into a globally influenced state that depends on other entities, and a locally influenced state that depends only on the entity itself. We present an inference algorithm for GLDMs called global/local particle filtering, that introduces the principle of reasoning globally about global dynamics and locally about local dynamics. We have applied GLDMs to an asymmetric urban warfare environment, in which enemy units form teams to attack important targets, and the task is to detect such teams as they form. Experimental results for this application show that global/local particle filtering outperforms ordinary particle filtering and factored particle filtering.

  18. Global Implications for Local Automation.

    ERIC Educational Resources Information Center

    Tebbetts, Diane R.

    1996-01-01

    Examines the globalization of information and its implications for locally implemented online library systems. Global factors include worldwide telecommunications networks and the need for standards, and local factors include the importance of databases, multilingual requirements in libraries, and regional networking capabilities. Discusses how…

  19. Global Is Local.

    ERIC Educational Resources Information Center

    Somerville, Mary R.

    1995-01-01

    By reflecting the new global community in staffing, collections, programs, exhibits, and services, public libraries will be fulfilling their role in the acculturation and education of new citizens, as well as contributing to greater community understanding and a new world order. A sidebar lists seven steps for serving recent immigrants. (AEF)

  20. Making global solidarity local.

    PubMed

    Corbin, Brian R

    2006-01-01

    In an effort to strengthen services for local immigrants, Catholic organizations throughout Ohio are turning to the newcomers' home countries to learn more about their culture and needs. The outreach has helped these ministries to address the challenges immigrants face and to provide services in a culturally appropriate way. This intensified focus on the newcomers' plight began in earnest in 2001, when three northeastern Ohio dioceses created a collaborative to address the social, pastoral, and legal needs of their "new neighbors". The dioceses established a centrally located site to provide a wide range of services; but, early on, the collaborative recognized that access to health care was a particular challenge for the immigrants. Wanting to fully understand the newcomers' origins before developing health care solutions for them, representatives from the collaborative visited countries from which many immigrants migrate to Ohio. The trips were instructive: The visitors not only learned about the cultural idiosyncrasies of each area they visited; they also discovered how church organizations there developed solutions to their own health care access problems. The Ohio collaborative has used this wisdom to tailor its health care offerings to meet the unique needs of area immigrants. The ongoing relationship between Catholic organizations in the United States and those abroad continues to yield valuable insights that benefit the immigrant community.

  1. Global Optimality of the Successive Maxbet Algorithm.

    ERIC Educational Resources Information Center

    Hanafi, Mohamed; ten Berge, Jos M. F.

    2003-01-01

    It is known that the Maxbet algorithm, which is an alternative to the method of generalized canonical correlation analysis and Procrustes analysis, may converge to local maxima. Discusses an eigenvalue criterion that is sufficient, but not necessary, for global optimality of the successive Maxbet algorithm. (SLD)

  2. Homotopy optimization methods for global optimization.

    SciTech Connect

    Dunlavy, Daniel M.; O'Leary, Dianne P. (University of Maryland, College Park, MD)

    2005-12-01

    We define a new method for global optimization, the Homotopy Optimization Method (HOM). This method differs from previous homotopy and continuation methods in that its aim is to find a minimizer for each of a set of values of the homotopy parameter, rather than to follow a path of minimizers. We define a second method, called HOPE, by allowing HOM to follow an ensemble of points obtained by perturbation of previous ones. We relate this new method to standard methods such as simulated annealing and show under what circumstances it is superior. We present results of extensive numerical experiments demonstrating performance of HOM and HOPE.

  3. Intervals in evolutionary algorithms for global optimization

    SciTech Connect

    Patil, R.B.

    1995-05-01

    Optimization is of central concern to a number of disciplines. Interval Arithmetic methods for global optimization provide us with (guaranteed) verified results. These methods are mainly restricted to the classes of objective functions that are twice differentiable and use a simple strategy of eliminating a splitting larger regions of search space in the global optimization process. An efficient approach that combines the efficient strategy from Interval Global Optimization Methods and robustness of the Evolutionary Algorithms is proposed. In the proposed approach, search begins with randomly created interval vectors with interval widths equal to the whole domain. Before the beginning of the evolutionary process, fitness of these interval parameter vectors is defined by evaluating the objective function at the center of the initial interval vectors. In the subsequent evolutionary process the local optimization process returns an estimate of the bounds of the objective function over the interval vectors. Though these bounds may not be correct at the beginning due to large interval widths and complicated function properties, the process of reducing interval widths over time and a selection approach similar to simulated annealing helps in estimating reasonably correct bounds as the population evolves. The interval parameter vectors at these estimated bounds (local optima) are then subjected to crossover and mutation operators. This evolutionary process continues for predetermined number of generations in the search of the global optimum.

  4. Enhancing Polyhedral Relaxations for Global Optimization

    ERIC Educational Resources Information Center

    Bao, Xiaowei

    2009-01-01

    During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…

  5. Computational methods for global/local analysis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Mccleary, Susan L.; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    Computational methods for global/local analysis of structures which include both uncoupled and coupled methods are described. In addition, global/local analysis methodology for automatic refinement of incompatible global and local finite element models is developed. Representative structural analysis problems are presented to demonstrate the global/local analysis methods.

  6. Local and global visual processing.

    PubMed

    Burr, D C; Morrone, M C; Ross, J

    1986-01-01

    The fundamental sinusoidal components of a chequerboard pattern are oriented at 45 degrees to the orientation of the chequerboard edges. Removal of one of the fundamental sinusoids (at +45 degrees) creates a useful pattern for studying the mechanisms of visual analysis. Close up, the pattern appears to be oriented +45 degrees, although there is no global energy at that orientation, implying local analysis. At a distance, the perceived diagonality switches to -45 degrees implying access to global information. Measurements show that contrast thresholds for seeing diagonality at +45 degrees follow closely those for detecting the 5th harmonic component of the pattern, over a wide range of spatial frequencies and luminances. Low pass filtering also causes the pattern to be perceived according to its global energy, provided that the cutoff frequency is set to remove the fifth harmonic. We conclude that, at least for this particular stimulus, the visual system performs a local analysis if the fifth harmonic is visible and a global analysis if not.

  7. Global Design Optimization for Fluid Machinery Applications

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Tucker, Kevin; Vaidyanathan, Raj; Griffin, Lisa

    2000-01-01

    Recent experiences in utilizing the global optimization methodology, based on polynomial and neural network techniques for fluid machinery design are summarized. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. Another advantage is that these methods do not need to calculate the sensitivity of each design variable locally. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables and methods for predicting the model performance. Examples of applications selected from rocket propulsion components including a supersonic turbine and an injector element and a turbulent flow diffuser are used to illustrate the usefulness of the global optimization method.

  8. Optimal Coordination and Synchronization in Local Air Quality and GHG Emissions: An Economic Study of Multiple Gases Issue in Integrated Assessment of Global Change

    SciTech Connect

    Yang, Zili

    2009-03-19

    In the duration of this project, we finished the main tasks set up in the initial proposal. These tasks include: collecting needed data of regional aerosol emissions (mainly SO2); building the RICES model; conducting preliminary simulation runs on some policy scenarios. We established a unified and transparent IA modeling platform that connecting climate change and local air pollution. The RICES model is the pioneering IA model that treats climate change and local air pollution as correlated global and local stock externalities.

  9. Optimal reconstruction of images from localized phase.

    PubMed

    Urieli, S; Porat, M; Cohen, N

    1998-01-01

    The importance of localized phase in signal representation is investigated. The convergence rate of the POCS algorithm (projection onto convex sets) used for image reconstruction from spectral phase is defined and analyzed, and the characteristics of images optimally reconstructed from phase-only information are presented. It is concluded that images of geometric form are most efficiently reconstructed from their spectral phase, whereas images of symmetric form have the poorest convergence characteristics. The transition between the two extremes is shown to be continuous. The results provide a new approach and analysis of the previously reported advantages of the localized phase representation over the global approach, and suggest possible compression schemes.

  10. Local optimization of energy systems

    SciTech Connect

    Lozano, M.A.; Valero, A.; Serra, L.

    1996-12-31

    Many thermal systems are very complex due to the number of components and/or its strong interdependence. This complexity makes difficult the optimization of the system design and operation. The theory of Exergetic Cost is based on concepts such as resources, structure, efficiency and purpose (belonging to any theory of production) and on the Second Law. This paper will show how it is possible to obtain from the theory of exergetic cost the marginal costs (Lagrange multipliers) of local resources being consumed by a component. This paper also shows the advantage of the proposed Theory of Perturbations when describing the complexity of structural interactions in a straightforward way. This theory allows to formulate simple procedures for local optimization of components in a plant. Finally, strategies for optimization of complex systems are shown. They are based in the sequential optimization from component to component. This clear and efficient method comes form the fact that the authors have now an operative application of the Thermoeconomic Isolation Principle. This is applied here to thermal power plants.

  11. Global versus local adsorption selectivity

    NASA Astrophysics Data System (ADS)

    Pauzat, Françoise; Marloie, Gael; Markovits, Alexis; Ellinger, Yves

    2015-10-01

    The origin of the enantiomeric excess found in the amino acids present in the organic matter of carbonaceous meteorites is still unclear. Selective adsorption of one of the two enantiomers existing after a racemic formation could be part of the answer. Hereafter we report a comparative study of the adsorption of the R and S enantiomers of α-alanine and lactic acid on the hydroxylated { } chiral surface of α-quartz using numerical simulation techniques. Structurally different adsorption sites were found with opposite R versus S selectivity for the same molecule-surface couple, raising the problem of whether to consider adsorption as a local property or as a global response characteristic of the whole surface. To deal with the second term of this alternative, a statistical approach was designed, based on the occurrence of each adsorption site whose energy was calculated using first principle periodic density functional theory. It was found that R-alanine and S-lactic acid are the enantiomers preferentially adsorbed, even if the adsorption process on the quartz { } surface stays with a disappointingly poor enantio-selectivity. Nevertheless, it highlighted the important point that considering adsorption as a global property changes perspectives in the search for more efficient enantio-selective supports and more generally changes the way to apprehend adsorption processes in astro-chemistry/biology.

  12. An approximation based global optimization strategy for structural synthesis

    NASA Technical Reports Server (NTRS)

    Sepulveda, A. E.; Schmit, L. A.

    1991-01-01

    A global optimization strategy for structural synthesis based on approximation concepts is presented. The methodology involves the solution of a sequence of highly accurate approximate problems using a global optimization algorithm. The global optimization algorithm implemented consists of a branch and bound strategy based on the interval evaluation of the objective function and constraint functions, combined with a local feasible directions algorithm. The approximate design optimization problems are constructed using first order approximations of selected intermediate response quantities in terms of intermediate design variables. Some numerical results for example problems are presented to illustrate the efficacy of the design procedure setforth.

  13. On Global Optimal Sailplane Flight Strategy

    NASA Technical Reports Server (NTRS)

    Sander, G. J.; Litt, F. X.

    1979-01-01

    The derivation and interpretation of the necessary conditions that a sailplane cross-country flight has to satisfy to achieve the maximum global flight speed is considered. Simple rules are obtained for two specific meteorological models. The first one uses concentrated lifts of various strengths and unequal distance. The second one takes into account finite, nonuniform space amplitudes for the lifts and allows, therefore, for dolphin style flight. In both models, altitude constraints consisting of upper and lower limits are shown to be essential to model realistic problems. Numerical examples illustrate the difference with existing techniques based on local optimality conditions.

  14. Do local and global perceptual biases tell us anything about local and global selective attention?

    PubMed

    Caparos, Serge; Linnell, Karina J; Bremner, Andrew J; de Fockert, Jan W; Davidoff, Jules

    2013-02-01

    Local, as opposed to global, perceptual bias has been linked to a lesser ability to attend globally. We examined this proposed link in Himba observers, members of a remote Namibian population who have demonstrated a strong local bias compared with British observers. If local perceptual bias is related to a lesser ability to attend globally, Himba observers, relative to British observers, should be less distracted by global information when performing a local-selection task but more distracted by local information when performing a global-selection task. However, Himba observers performed better than British observers did on both a local-selection task and a global-selection task (both of which used local/global hierarchical figures as stimuli), which suggests that they possessed greater control over attentional selection in response to task demands. We conclude that local and global perceptual biases must be distinguished from local and global selective attention.

  15. Thinking Globally when Teaching Locally

    ERIC Educational Resources Information Center

    Van Reken, Ruth E.; Rushmore, Sally

    2009-01-01

    Advances in science and technology, globalization of trade, international competition for markets, ethnic conflicts, and the limits of the planet's ecosystem have brought global issues and the people of the world to doorsteps and classrooms. With the increasing interaction among peoples of the world, skills in cross-cultural communication,…

  16. THE LOCAL LIMIT OF GLOBAL GYROKINETIC SIMULATIONS

    SciTech Connect

    CANDY J; WALTZ RE; DORLAND W

    2003-10-01

    OAK-B135 Global gyrokinetic simulations of turbulence include physical effects that are not retained in local flux-tube simulations. nevertheless, in the limit of sufficiently small {rho}* (gyroradius compared to system size) it is expected that a local simulation should agree with a global one (at the local simulation radius) since all effects that are dropped in the local simulations are expected to vanish as {rho}* {yields} 0. In this note, global simulations of a well-established test case are indeed shown to recover the flux-tube limit at each radius.

  17. Application of clustering global optimization to thin film design problems.

    PubMed

    Lemarchand, Fabien

    2014-03-10

    Refinement techniques usually calculate an optimized local solution, which is strongly dependent on the initial formula used for the thin film design. In the present study, a clustering global optimization method is used which can iteratively change this initial formula, thereby progressing further than in the case of local optimization techniques. A wide panel of local solutions is found using this procedure, resulting in a large range of optical thicknesses. The efficiency of this technique is illustrated by two thin film design problems, in particular an infrared antireflection coating, and a solar-selective absorber coating. PMID:24663856

  18. Application of clustering global optimization to thin film design problems.

    PubMed

    Lemarchand, Fabien

    2014-03-10

    Refinement techniques usually calculate an optimized local solution, which is strongly dependent on the initial formula used for the thin film design. In the present study, a clustering global optimization method is used which can iteratively change this initial formula, thereby progressing further than in the case of local optimization techniques. A wide panel of local solutions is found using this procedure, resulting in a large range of optical thicknesses. The efficiency of this technique is illustrated by two thin film design problems, in particular an infrared antireflection coating, and a solar-selective absorber coating.

  19. Local Literacies, Global Scales: The Labor of Global Connectivity

    ERIC Educational Resources Information Center

    Stornaiuolo, Amy; LeBlanc, Robert Jean

    2014-01-01

    While connecting students and teachers in new configurations using digital technologies offers great promise for literacy and learning, this column considers the complexities of negotiating local and global literacies in global collaborations. It introduces the theoretical concept of "scaling" to highlight the ways teachers actively and…

  20. Local Decisions and Global Networks

    ERIC Educational Resources Information Center

    King, David C.; Long, Cathryn J.

    1976-01-01

    Impact of economic and urban planning on the natural environment can be studied through local situations: California conservation students realized the detrimental effects of a seemingly beneficial dam project. Students were inspired to initiate community-state action to correct damage to wildlife, sanitation, and farming. (AV)

  1. Global optimality of extremals: An example

    NASA Technical Reports Server (NTRS)

    Kreindler, E.; Newman, F.

    1980-01-01

    The question of the existence and location of Darboux points is crucial for minimally sufficient conditions for global optimality and for computation of optimal trajectories. A numerical investigation is presented of the Darboux points and their relationship with conjugate points for a problem of minimum fuel, constant velocity, and horizontal aircraft turns to capture a line. This simple second order optimal control problem shows that ignoring the possible existence of Darboux points may play havoc with the computation of optimal trajectories.

  2. Global Change and Local Places

    NASA Astrophysics Data System (ADS)

    Association Of American Geographers Gclp Research Team

    2003-08-01

    This study of greenhouse gas emissions examines the causes and effects of climate changes triggered by human activities. It is the first major, comparative study of how the emissions vary nationally--at the local level and on a daily basis. The authors assess the degree of control households and firms have over the emissions they produce; how willing they are to modify their behavior to lessen climate change, and how they might adapt to the changes that will occur.

  3. Consuming Globalization, Local Identities, and Common Experiences

    ERIC Educational Resources Information Center

    Filax, Gloria

    2004-01-01

    In articulating global and local forms of sexuality and its impact on how people conceptualise conceptualised LGBT issues in education, the author explores three timely texts: (1) Dennis Altman's "Global Sex" (2000); (2) Vanessa Baird's "The No-Nonsense Guide to Sexual Diversity" (2001); and (3) an edited volume by Evelyn Blackwood and Saskia…

  4. Spanish as a World Language: The Interplay of Globalized Localization and Localized Globalization

    ERIC Educational Resources Information Center

    Nino-Murcia, Mercedes; Godenzzi, Juan Carlos; Rothman, Jason

    2008-01-01

    This article argues that two movements in constant interplay operate within the historical trajectory of the Spanish language: the localization that becomes globalized and the globalization that becomes localized. Equally, this article illustrates how, at the same time that Spanish is expanding in the world, new idiosyncratic and localized forms…

  5. Applications of parallel global optimization to mechanics problems

    NASA Astrophysics Data System (ADS)

    Schutte, Jaco Francois

    Global optimization of complex engineering problems, with a high number of variables and local minima, requires sophisticated algorithms with global search capabilities and high computational efficiency. With the growing availability of parallel processing, it makes sense to address these requirements by increasing the parallelism in optimization strategies. This study proposes three methods of concurrent processing. The first method entails exploiting the structure of population-based global algorithms such as the stochastic Particle Swarm Optimization (PSO) algorithm and the Genetic Algorithm (GA). As a demonstration of how such an algorithm may be adapted for concurrent processing we modify and apply the PSO to several mechanical optimization problems on a parallel processing machine. Desirable PSO algorithm features such as insensitivity to design variable scaling and modest sensitivity to algorithm parameters are demonstrated. A second approach to parallelism and improving algorithm efficiency is by utilizing multiple optimizations. With this method a budget of fitness evaluations is distributed among several independent sub-optimizations in place of a single extended optimization. Under certain conditions this strategy obtains a higher combined probability of converging to the global optimum than a single optimization which utilizes the full budget of fitness evaluations. The third and final method of parallelism addressed in this study is the use of quasiseparable decomposition, which is applied to decompose loosely coupled problems. This yields several sub-problems of lesser dimensionality which may be concurrently optimized with reduced effort.

  6. Local and Global Thinking in Statistical Inference

    ERIC Educational Resources Information Center

    Pratt, Dave; Johnston-Wilder, Peter; Ainley, Janet; Mason, John

    2008-01-01

    In this reflective paper, we explore students' local and global thinking about informal statistical inference through our observations of 10- to 11-year-olds, challenged to infer the unknown configuration of a virtual die, but able to use the die to generate as much data as they felt necessary. We report how they tended to focus on local changes…

  7. Similarity-based global optimization of buildings in urban scene

    NASA Astrophysics Data System (ADS)

    Zhu, Quansheng; Zhang, Jing; Jiang, Wanshou

    2013-10-01

    In this paper, an approach for the similarity-based global optimization of buildings in urban scene is presented. In the past, most researches concentrated on single building reconstruction, making it difficult to reconstruct reliable models from noisy or incomplete point clouds. To obtain a better result, a new trend is to utilize the similarity among the buildings. Therefore, a new similarity detection and global optimization strategy is adopted to modify local-fitting geometric errors. Firstly, the hierarchical structure that consists of geometric, topological and semantic features is constructed to represent complex roof models. Secondly, similar roof models can be detected by combining primitive structure and connection similarities. At last, the global optimization strategy is applied to preserve the consistency and precision of similar roof structures. Moreover, non-local consolidation is adapted to detect small roof parts. The experiments reveal that the proposed method can obtain convincing roof models and promote the reconstruction quality of 3D buildings in urban scene.

  8. Unconscious local motion alters global image speed.

    PubMed

    Khuu, Sieu K; Chung, Charles Y L; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed.

  9. Unconscious Local Motion Alters Global Image Speed

    PubMed Central

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  10. Global perceptions of local temperature change

    NASA Astrophysics Data System (ADS)

    Howe, Peter D.; Markowitz, Ezra M.; Lee, Tien Ming; Ko, Chia-Ying; Leiserowitz, Anthony

    2013-04-01

    It is difficult to detect global warming directly because most people experience changes only in local weather patterns, which are highly variable and may not reflect long-term global climate trends. However, local climate-change experience may play an important role in adaptation and mitigation behaviour and policy support. Previous research indicates that people can perceive and adapt to aspects of climate variability and change based on personal observations. Experience with local weather may also influence global warming beliefs. Here we examine the extent to which respondents in 89 countries detect recent changes in average local temperatures. We demonstrate that public perceptions correspond with patterns of observed temperature change from climate records: individuals who live in places with rising average temperatures are more likely than others to perceive local warming. As global climate change intensifies, changes in local temperatures and weather patterns may be increasingly detected by the global public. These findings also suggest that public opinion of climate change may shift, at least in part, in response to the personal experience of climate change.

  11. Global optimization of digital circuits

    NASA Astrophysics Data System (ADS)

    Flandera, Richard

    1991-12-01

    This thesis was divided into two tasks. The first task involved developing a parser which could translate a behavioral specification in Very High-Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) into the format used by an existing digital circuit optimization tool, Boolean Reasoning In Scheme (BORIS). Since this tool is written in Scheme, a dialect of Lisp, the parser was also written in Scheme. The parser was implemented is Artez's modification of Earley's Algorithm. Additionally, a VHDL tokenizer was implemented in Scheme and a portion of the VHDL grammar was converted into the format which the parser uses. The second task was the incorporation of intermediate functions into BORIS. The existing BORIS contains a recursive optimization system that optimizes digital circuits by using circuit outputs as inputs into other circuits. Intermediate functions provide a greater selection of functions to be used as circuits inputs. Using both intermediate functions and output functions, the costs of the circuits in the test set were reduced by 43 percent. This is a 10 percent reduction when compared to the existing recursive optimization system. Incorporating intermediate functions into BORIS required the development of an intermediate-function generator and a set of control methods to keep the computation time from increasing exponentially.

  12. Tsunamis: Global Exposure and Local Risk Analysis

    NASA Astrophysics Data System (ADS)

    Harbitz, C. B.; Løvholt, F.; Glimsdal, S.; Horspool, N.; Griffin, J.; Davies, G.; Frauenfelder, R.

    2014-12-01

    The 2004 Indian Ocean tsunami led to a better understanding of the likelihood of tsunami occurrence and potential tsunami inundation, and the Hyogo Framework for Action (HFA) was one direct result of this event. The United Nations International Strategy for Disaster Risk Reduction (UN-ISDR) adopted HFA in January 2005 in order to reduce disaster risk. As an instrument to compare the risk due to different natural hazards, an integrated worldwide study was implemented and published in several Global Assessment Reports (GAR) by UN-ISDR. The results of the global earthquake induced tsunami hazard and exposure analysis for a return period of 500 years are presented. Both deterministic and probabilistic methods (PTHA) are used. The resulting hazard levels for both methods are compared quantitatively for selected areas. The comparison demonstrates that the analysis is rather rough, which is expected for a study aiming at average trends on a country level across the globe. It is shown that populous Asian countries account for the largest absolute number of people living in tsunami prone areas, more than 50% of the total exposed people live in Japan. Smaller nations like Macao and the Maldives are among the most exposed by population count. Exposed nuclear power plants are limited to Japan, China, India, Taiwan, and USA. On the contrary, a local tsunami vulnerability and risk analysis applies information on population, building types, infrastructure, inundation, flow depth for a certain tsunami scenario with a corresponding return period combined with empirical data on tsunami damages and mortality. Results and validation of a GIS tsunami vulnerability and risk assessment model are presented. The GIS model is adapted for optimal use of data available for each study. Finally, the importance of including landslide sources in the tsunami analysis is also discussed.

  13. Global nonlinear optimization of spacecraft protective structures design

    NASA Technical Reports Server (NTRS)

    Mog, R. A.; Lovett, J. N., Jr.; Avans, S. L.

    1990-01-01

    The global optimization of protective structural designs for spacecraft subject to hypervelocity meteoroid and space debris impacts is presented. This nonlinear problem is first formulated for weight minimization of the space station core module configuration using the Nysmith impact predictor. Next, the equivalence and uniqueness of local and global optima is shown using properties of convexity. This analysis results in a new feasibility condition for this problem. The solution existence is then shown, followed by a comparison of optimization techniques. Finally, a sensitivity analysis is presented to determine the effects of variations in the systemic parameters on optimal design. The results show that global optimization of this problem is unique and may be achieved by a number of methods, provided the feasibility condition is satisfied. Furthermore, module structural design thicknesses and weight increase with increasing projectile velocity and diameter and decrease with increasing separation between bumper and wall for the Nysmith predictor.

  14. Global Response to Local Ionospheric Mass Ejection

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.

    2010-01-01

    We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.

  15. Optimal localization by pointing off axis.

    PubMed

    Yovel, Yossi; Falk, Ben; Moss, Cynthia F; Ulanovsky, Nachum

    2010-02-01

    Is centering a stimulus in the field of view an optimal strategy to localize and track it? We demonstrated, through experimental and computational studies, that the answer is no. We trained echolocating Egyptian fruit bats to localize a target in complete darkness, and we measured the directional aim of their sonar clicks. The bats did not center the sonar beam on the target, but instead pointed it off axis, accurately directing the maximum slope ("edge") of the beam onto the target. Information-theoretic calculations showed that using the maximum slope is optimal for localizing the target, at the cost of detection. We propose that the tradeoff between detection (optimized at stimulus peak) and localization (optimized at maximum slope) is fundamental to spatial localization and tracking accomplished through hearing, olfaction, and vision.

  16. FPSO global strength and hull optimization

    NASA Astrophysics Data System (ADS)

    Ma, Junyuan; Xiao, Jianhua; Ma, Rui; Cao, Kai

    2014-03-01

    Global strength is a significant item for floating production storage and offloading (FPSO) design, and steel weight plays an important role in the building costs of FPSO. It is the main task to consider and combine these two aspects by optimizing hull dimensions. There are many optional methods for the global strength analysis. A common method is to use the ABS FPSO Eagle software to analyze the global strength including the rule check and direct strength analysis. And the same method can be adopted for the FPSO hull optimization by changing the depth. After calculation and optimization, the results are compared and analyzed. The results can be used as a reference for the future design or quotation purpose.

  17. Globally optimal impulsive transfers via Green's theorem

    NASA Astrophysics Data System (ADS)

    Hazelrigg, G. A., Jr.

    1984-08-01

    For certain classes of trajectories the cost function (characteristic velocity) can be written as a 'quasilinear' function of the change in state. In the case presented, impulsive transfers between coplanar, coaxial orbits with transfer time and angle unrestricted, Green's theorem can be used to determine the optimal transfer between given terminal states. This is done in a manner which places no restrictions on the number of impulses used and leads to globally optimal results. These results are used to show that the Hohmann transfer and the biparabolic transfer provide global minima in their respective regions. The regions in which monoelliptic and biparabolic trajectories are globally optimal are also defined for elliptic terminal states. The results are applicable to the case in which restrictions are placed on the radius of closest approach or greatest recession from the center of the force field.

  18. Thriving locally in the global economy.

    PubMed

    Kanter, Rosabeth Moss

    2003-08-01

    More and more small and midsize companies are joining corporate giants in striving to exploit international growth markets. At the same time, civic leaders worry about their communities' economic future in light of the impact of global forces on the operation and survival of business. How can communities retain local vitality yet still link their business to the global economy? Harvard professor Rosabeth Moss Kanter addresses that question in this classic HBR article, orginally published in 1995. To avoid a clash between international economic interests and local political interests, globalizing business must learn how to be responsive to the communities in which they operate, Kanter says. And communities must determine how to create a civic culture that will attract and retain footloose companies. The author surveyed five U.S. regions with direct connections to the global economy--Boston, Cleveland, Miami, Seattle, and the Spartanburg-Greenville region of South Carolina--to determine their business and civic leader's strategies for improving their constituent's quality of life. She identified ways in which the global economy can work locally by capitalizing on the resources that distinguish one place from another. Kanter argues that regions can invest in capabilities that connect their local populations to the global economy in one of three ways: as thinkers, makers, or traders. She points to the Spartanburg-Greenville region as a good example of a world-class makers, with its exceptional blue-collar workforce that has attracted more than 200 companies from 18 countries. The history of the economic development of this region is a lesson for those seeking to understand how to achieve world-class status and bring local residents into the world economy.

  19. Optimal recovery of local truth

    NASA Astrophysics Data System (ADS)

    Rodriguez, C. C.

    2001-05-01

    Probability mass curves the data space with horizons!. Let f be a multivariate probability density function with continuous second order partial derivatives. Consider the problem of estimating the true value of f(z)>0 at a single point z, from n independent observations. It is shown that, the fastest possible estimators (like the k-nearest neighbor and kernel) have minimum asymptotic mean-square errors when the space of observations is thought as conformally curved. The optimal metric is shown to be generated by the Hessian of f in the regions where the Hessian is definite. Thus, the peaks and valleys of f are surrounded by singular horizons when the Hessian changes signature from Riemannian to pseudo-Riemannian. Adaptive estimators based on the optimal variable metric show considerable theoretical and practical improvements over traditional methods. The formulas simplify dramatically when the dimension of the data space is 4. The similarities with General Relativity are striking but possibly illusory at this point. However, these results suggest that nonparametric density estimation may have something new to say about current physical theory.

  20. Exploring Local to Global Leadership Education Assessment

    ERIC Educational Resources Information Center

    Dugan, John P.

    2012-01-01

    From individual student learning outcomes to full-scale program enhancement, assessment is critical in developing and sustaining leadership education. This chapter will look at assessment techniques and trends spanning from local to global frameworks. International Leadership Association overarching Outcomes and Assessment Guiding Question: "What…

  1. Orbit design and optimization based on global telecommunication performance metrics

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Lee, Charles H.; Kerridge, Stuart; Cheung, Kar-Ming; Edwards, Charles D.

    2006-01-01

    The orbit selection of telecommunications orbiters is one of the critical design processes and should be guided by global telecom performance metrics and mission-specific constraints. In order to aid the orbit selection, we have coupled the Telecom Orbit Analysis and Simulation Tool (TOAST) with genetic optimization algorithms. As a demonstration, we have applied the developed tool to select an optimal orbit for general Mars telecommunications orbiters with the constraint of being a frozen orbit. While a typical optimization goal is to minimize tele-communications down time, several relevant performance metrics are examined: 1) area-weighted average gap time, 2) global maximum of local maximum gap time, 3) global maximum of local minimum gap time. Optimal solutions are found with each of the metrics. Common and different features among the optimal solutions as well as the advantage and disadvantage of each metric are presented. The optimal solutions are compared with several candidate orbits that were considered during the development of Mars Telecommunications Orbiter.

  2. Electronic neural networks for global optimization

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.

    1990-01-01

    An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.

  3. Nonlinear and locally optimal controllers design for input affine locally controllable systems

    NASA Astrophysics Data System (ADS)

    Sahnoun, Mariem; Andrieu, Vincent; Nadri, Madiha

    2012-02-01

    Given a global nonlinear state feedback which globally stabilises an equilibrium, the aim of this article is to modify the local behaviour of the trajectories in order to get local optimality with respect to a given quadratic cost. A sufficient condition is given in terms of Linear Matrix Inequalities (LMIs) to design a locally optimal and globally stabilising control law. This approach is illustrated on an academic inverted pendulum model in order to stabilise its upper equilibrium point. An extension of the main result is then given to address the problematic cases. Moreover, the cases in which the previous LMI condition failed to be satisfied is addressed and a new sufficient condition is then given (which is not anymore linear).

  4. Strategies for Global Optimization of Temporal Preferences

    NASA Technical Reports Server (NTRS)

    Morris, Paul; Morris, Robert; Khatib, Lina; Ramakrishnan, Sailesh

    2004-01-01

    A temporal reasoning problem can often be naturally characterized as a collection of constraints with associated local preferences for times that make up the admissible values for those constraints. Globally preferred solutions to such problems emerge as a result of well-defined operations that compose and order temporal assignments. The overall objective of this work is a characterization of different notions of global preference, and to identify tractable sub-classes of temporal reasoning problems incorporating these notions. This paper extends previous results by refining the class of useful notions of global temporal preference that are associated with problems that admit of tractable solution techniques. This paper also answers the hitherto open question of whether problems that seek solutions that are globally preferred from a Utilitarian criterion for global preference can be found tractably.

  5. From local perception to global perspective

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Stocker, Thomas F.

    2015-08-01

    Recent sociological studies show that over short time periods the large day-to-day, month-to-month or year-to-year variations in weather at a specific location can influence and potentially bias our perception of climate change, a more long-term and global phenomenon. By weighting local temperature anomalies with the number of people that experience them and considering longer time periods, we illustrate that the share of the world population exposed to warmer-than-normal temperatures has steadily increased during the past few decades. Therefore, warming is experienced by an increasing number of individuals, counter to what might be simply inferred from global mean temperature anomalies. This behaviour is well-captured by current climate models, offering an opportunity to increase confidence in future projections of climate change irrespective of the personal local perception of weather.

  6. A Novel Particle Swarm Optimization Algorithm for Global Optimization

    PubMed Central

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387

  7. Particle Swarm Optimization Method Based on Chaotic Local Search and Roulette Wheel Mechanism

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohua

    Combining the particle swarm optimization (PSO) technique with the chaotic local search (CLS) and roulette wheel mechanism (RWM), an efficient optimization method solving the constrained nonlinear optimization problems is presented in this paper. PSO can be viewed as the global optimizer while the CLS and RWM are employed for the local search. Thus, the possibility of exploring a global minimum in problems with many local optima is increased. The search will continue until a termination criterion is satisfied. Benefit from the fast globally converging characteristics of PSO and the effective local search ability of CLS and RWM, the proposed method can obtain the global optimal results quickly which was tested for six benchmark optimization problems. And the improved performance comparing with the standard PSO and genetic algorithm (GA) testified its validity.

  8. Global optimization of bilinear engineering design models

    SciTech Connect

    Grossmann, I.; Quesada, I.

    1994-12-31

    Recently Quesada and Grossmann have proposed a global optimization algorithm for solving NLP problems involving linear fractional and bilinear terms. This model has been motivated by a number of applications in process design. The proposed method relies on the derivation of a convex NLP underestimator problem that is used within a spatial branch and bound search. This paper explores the use of alternative bounding approximations for constructing the underestimator problem. These are applied in the global optimization of problems arising in different engineering areas and for which different relaxations are proposed depending on the mathematical structure of the models. These relaxations include linear and nonlinear underestimator problems. Reformulations that generate additional estimator functions are also employed. Examples from process design, structural design, portfolio investment and layout design are presented.

  9. Global optimization algorithm for heat exchanger networks

    SciTech Connect

    Quesada, I.; Grossmann, I.E. )

    1993-03-01

    This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem is used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.

  10. Solving global optimization problems on GPU cluster

    NASA Astrophysics Data System (ADS)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya

    2016-06-01

    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  11. Local and global strategies for InSAR phase unwrapping

    NASA Astrophysics Data System (ADS)

    Refice, Alberto; Chiaradia, Maria T.; Guerriero, Luciano; Nico, Giovanni; Blonda, Palma N.; Pasquariello, Guido; Satalino, Giuseppe; Stramaglia, Sebastiano; Veneziani, Nicola

    1998-11-01

    In the last years, both local and global analysis techniques for the effective processing of interferometric SAR data have been proposed. We developed two local approaches to eliminate inconsistencies in the measured (wrapped) phase field, based on the local configurations of phase gradients in finite windows. The first technique adopts a fixed search strategy which 'cures' isolated residue couples by an appropriate series of corrections determined a priori. A second strategy uses the generalization capabilities of a neural network, trained on a suitable number of simulated target phase fields, to add 2 - (pi) cycles to the proper locations of the interferogram. These approaches, in spite of the high dimensionality of this problem, are able to correctly remove more than half the original number of pointlike inconsistencies on real noisy interferograms. This stems from the observation that phase unwrapping is an ill-posed problem, which has to be solved globally. Hence, a global stochastic method has been implemented, based on the minimization of a functional measuring the regularity of the phase field. The optimization tool used is simulated annealing with constraints. This methodology gives excellent results also in difficult conditions. We will present some of the recent results which aim at integrating the above-mentioned methodologies into powerful processing chains optimized for operating on large IFSAR datasets from real scenes. The effectiveness of such phase retrieving methods allows the application of sophisticated and innovative remote sensing techniques, such as differential interferometry.

  12. Combinatorics of locally optimal RNA secondary structures.

    PubMed

    Fusy, Eric; Clote, Peter

    2014-01-01

    It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles).

  13. Combinatorics of locally optimal RNA secondary structures.

    PubMed

    Fusy, Eric; Clote, Peter

    2014-01-01

    It is a classical result of Stein and Waterman that the asymptotic number of RNA secondary structures is 1.104366∙n-3/2∙2.618034n. Motivated by the kinetics of RNA secondary structure formation, we are interested in determining the asymptotic number of secondary structures that are locally optimal, with respect to a particular energy model. In the Nussinov energy model, where each base pair contributes -1 towards the energy of the structure, locally optimal structures are exactly the saturated structures, for which we have previously shown that asymptotically, there are 1.07427∙n-3/2∙2.35467n many saturated structures for a sequence of length n. In this paper, we consider the base stacking energy model, a mild variant of the Nussinov model, where each stacked base pair contributes -1 toward the energy of the structure. Locally optimal structures with respect to the base stacking energy model are exactly those secondary structures, whose stems cannot be extended. Such structures were first considered by Evers and Giegerich, who described a dynamic programming algorithm to enumerate all locally optimal structures. In this paper, we apply methods from enumerative combinatorics to compute the asymptotic number of such structures. Additionally, we consider analogous combinatorial problems for secondary structures with annotated single-stranded, stacking nucleotides (dangles). PMID:23263300

  14. p-MEMPSODE: Parallel and irregular memetic global optimization

    NASA Astrophysics Data System (ADS)

    Voglis, C.; Hadjidoukas, P. E.; Parsopoulos, K. E.; Papageorgiou, D. G.; Lagaris, I. E.; Vrahatis, M. N.

    2015-12-01

    A parallel memetic global optimization algorithm suitable for shared memory multicore systems is proposed and analyzed. The considered algorithm combines two well-known and widely used population-based stochastic algorithms, namely Particle Swarm Optimization and Differential Evolution, with two efficient and parallelizable local search procedures. The sequential version of the algorithm was first introduced as MEMPSODE (MEMetic Particle Swarm Optimization and Differential Evolution) and published in the CPC program library. We exploit the inherent and highly irregular parallelism of the memetic global optimization algorithm by means of a dynamic and multilevel approach based on the OpenMP tasking model. In our case, tasks correspond to local optimization procedures or simple function evaluations. Parallelization occurs at each iteration step of the memetic algorithm without affecting its searching efficiency. The proposed implementation, for the same random seed, reaches the same solution irrespectively of being executed sequentially or in parallel. Extensive experimental evaluation has been performed in order to illustrate the speedup achieved on a shared-memory multicore server.

  15. A novel support vector machine with globality-locality preserving.

    PubMed

    Ma, Cheng-Long; Yuan, Yu-Bo

    2014-01-01

    Support vector machine (SVM) is regarded as a powerful method for pattern classification. However, the solution of the primal optimal model of SVM is susceptible for class distribution and may result in a nonrobust solution. In order to overcome this shortcoming, an improved model, support vector machine with globality-locality preserving (GLPSVM), is proposed. It introduces globality-locality preserving into the standard SVM, which can preserve the manifold structure of the data space. We complete rich experiments on the UCI machine learning data sets. The results validate the effectiveness of the proposed model, especially on the Wine and Iris databases; the recognition rate is above 97% and outperforms all the algorithms that were developed from SVM. PMID:25045750

  16. Global optimization for multisensor fusion in seismic imaging

    SciTech Connect

    Barhen, J.; Protopopescu, V.; Reister, D.

    1997-06-01

    The accurate imaging of subsurface structures requires the fusion of data collected from large arrays of seismic sensors. The fusion process is formulated as an optimization problem and yields an extremely complex energy surface. Due to the very large number of local minima to be explored and escaped from, the seismic imaging problem has typically been tackled with stochastic optimization methods based on Monte Carlo techniques. Unfortunately, these algorithms are very cumbersome and computationally intensive. Here, the authors present TRUST--a novel deterministic algorithm for global optimization that they apply to seismic imaging. The excellent results demonstrate that TRUST may provide the necessary breakthrough to address major scientific and technological challenges in fields as diverse as seismic modeling, process optimization, and protein engineering.

  17. Local and Global Comparison of Continuous Functions

    SciTech Connect

    Edelsbrunner, H; Harer, J; Natarajan, V; Pascucci, V

    2004-12-16

    We introduce local and global comparison measures for a collection of k {<=} d real-valued smooth functions on a common d-dimensional Riemannian manifold. For k = d = 2 we relate the measures to the set of critical points of one function restricted to the level sets of the other. The definition of the measures extends to piecewise linear functions for which they are easy to compute. The computation of the measures forms the centerpiece of a software tool which we use to study scientific datasets.

  18. Global functions in global-local finite-element analysis of localized stresses in prismatic structures

    NASA Technical Reports Server (NTRS)

    Dong, Stanley B.

    1989-01-01

    An important consideration in the global local finite-element method (GLFEM) is the availability of global functions for the given problem. The role and mathematical requirements of these global functions in a GLFEM analysis of localized stress states in prismatic structures are discussed. A method is described for determining these global functions. Underlying this method are theorems due to Toupin and Knowles on strain energy decay rates, which are related to a quantitative expression of Saint-Venant's principle. It is mentioned that a mathematically complete set of global functions can be generated, so that any arbitrary interface condition between the finite element and global subregions can be represented. Convergence to the true behavior can be achieved with increasing global functions and finite-element degrees of freedom. Specific attention is devoted to mathematically two-dimensional and three-dimensional prismatic structures. Comments are offered on the GLFEM analysis of NASA flat panel with a discontinuous stiffener. Methods for determining global functions for other effects are also indicated, such as steady-state dynamics and bodies under initial stress.

  19. Global-local methodologies and their application to nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1989-01-01

    An assessment is made of the potential of different global-local analysis strategies for predicting the nonlinear and postbuckling responses of structures. Two postbuckling problems of composite panels are used as benchmarks and the application of different global-local methodologies to these benchmarks is outlined. The key elements of each of the global-local strategies are discussed and future research areas needed to realize the full potential of global-local methodologies are identified.

  20. Automated parameterization of intermolecular pair potentials using global optimization techniques

    NASA Astrophysics Data System (ADS)

    Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk

    2014-12-01

    In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.

  1. Salient object detection fusing global and local information based on nonsubsampled contourlet transform.

    PubMed

    Liu, Dongmei; Chang, Faliang; Liu, Chunsheng

    2016-08-01

    The nonsubsampled contourlet transform (NSCT) has properties of multiresolution, localization, directionality, and anisotropy. The directionality property permits it to resolve intrinsic directional features that characterize the analyzed image. In this paper, we present a bottom-up salient object detection approach fusing global and local information based on NSCT. Images are first decomposed by applying NSCT. The coefficients of bandpass subbands are categorized and optimized accordingly to get better representation. Then feature maps are obtained by performing the inverse NSCT on these optimized coefficients. The global and local saliency maps are generated from these feature maps. Global saliency is obtained by utilizing the likelihood of features, and local saliency is measured by calculating the local self-information. In the end, the final saliency map is computed by fusing the global and local saliency maps together. Experimental results on MSRA 10K demonstrate the effectiveness and promising performance of our proposed method.

  2. Optimal Jammer Placement in Wireless Localization Systems

    NASA Astrophysics Data System (ADS)

    Gezici, Sinan; Bayram, Suat; Kurt, Mehmet Necip; Gholami, Mohammad Reza

    2016-09-01

    In this study, the optimal jammer placement problem is proposed and analyzed for wireless localization systems. In particular, the optimal location of a jammer node is obtained by maximizing the minimum of the Cramer-Rao lower bounds (CRLBs) for a number of target nodes under location related constraints for the jammer node. For scenarios with more than two target nodes, theoretical results are derived to specify conditions under which the jammer node is located as close to a certain target node as possible, or the optimal location of the jammer node is determined by two of the target nodes. Also, explicit expressions are provided for the optimal location of the jammer node in the presence of two target nodes. In addition, in the absence of distance constraints for the jammer node, it is proved, for scenarios with more than two target nodes, that the optimal jammer location lies on the convex hull formed by the locations of the target nodes and is determined by two or three of the target nodes, which have equalized CRLBs. Numerical examples are presented to provide illustrations of the theoretical results in different scenarios.

  3. On computational schemes for global-local stress analysis

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1989-01-01

    An overview is given of global-local stress analysis methods and associated difficulties and recommendations for future research. The phrase global-local analysis is understood to be an analysis in which some parts of the domain or structure are identified, for reasons of accurate determination of stresses and displacements or for more refined analysis than in the remaining parts. The parts of refined analysis are termed local and the remaining parts are called global. Typically local regions are small in size compared to global regions, while the computational effort can be larger in local regions than in global regions.

  4. Global network influences on local functional connectivity

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.; Willis, Cory M.; Smith, Matthew A.

    2015-01-01

    A central neuroscientific pursuit is understanding neuronal interactions that support computations underlying cognition and behavior. Although neurons interact across disparate scales – from cortical columns to whole-brain networks – research has been restricted to one scale at a time. We measured local interactions through multi-neuronal recordings while accessing global networks using scalp EEG in rhesus macaques. We measured spike count correlation, an index of functional connectivity with computational relevance, and EEG oscillations, which have been linked to various cognitive functions. We found a surprising non-monotonic relationship between EEG oscillation amplitude and spike count correlation, contrary to the intuitive expectation of a direct relationship. With a widely-used network model we replicated these findings by incorporating a private signal targeting inhibitory neurons, a common mechanism proposed for gain modulation. Finally, we report that spike count correlation explains nonlinearities in the relationship between EEG oscillations and response time in a spatial selective attention task. PMID:25799040

  5. Capillary Flow Resistors: Local and Global Resistors.

    PubMed

    Berthier, Jean; Gosselin, David; Pham, Andrew; Delapierre, Guillaume; Belgacem, Naceur; Chaussy, Didier

    2016-01-26

    The use of capillary systems in space and biotechnology applications requires the regulation of the capillary flow velocity. It has been observed that constricted sections act as flow resistors. In this work, we also show that enlarged sections temporarily reduce the velocity of the flow. In this work, the theory of the dynamics of capillary flows passing through a constricted or an enlarged channel section is presented. It is demonstrated that the physics of a capillary flow in a channel with a constriction or an enlargement is different and that a constriction acts as a global flow resistor and an enlargement as a local flow resistor. The theoretical results are checked against experimental approaches. PMID:26704147

  6. Multi-fidelity global design optimization including parallelization potential

    NASA Astrophysics Data System (ADS)

    Cox, Steven Edward

    The DIRECT global optimization algorithm is a relatively new space partitioning algorithm designed to determine the globally optimal design within a designated design space. This dissertation examines the applicability of the DIRECT algorithm to two classes of design problems: unimodal functions where small amplitude, high frequency fluctuations in the objective function make optimization difficult; and multimodal functions where multiple local optima are formed by the underlying physics of the problem (as opposed to minor fluctuations in the analysis code). DIRECT is compared with two other multistart local optimization techniques on two polynomial test problems and one engineering conceptual design problem. Three modifications to the DIRECT algorithm are proposed to increase the effectiveness of the algorithm. The DIRECT-BP algorithm is presented which alters the way DIRECT searches the neighborhood of the current best point as optimization progresses. The algorithm reprioritizes which points to analyze at each iteration. This is to encourage analysis of points that surround the best point but that are farther away than the points selected by the DIRECT algorithm. This increases the robustness of the DIRECT search and provides more information on the characteristics of the neighborhood of the point selected as the global optimum. A multifidelity version of the DIRECT algorithm is proposed to reduce the cost of optimization using DIRECT. By augmenting expensive high-fidelity analysis with cheap low-fidelity analysis, the optimization can be performed with fewer high-fidelity analyses. Two correction schemes are examined using high- and low-fidelity results at one point to correct the low-fidelity result at a nearby point. This corrected value is then used in place of a high-fidelity analysis by the DIRECT algorithm. In this way the number of high-fidelity analyses required is reduced and the optimization became less expensive. Finally the DIRECT algorithm is

  7. Hybrid Optimized and Localized Vibrational Coordinates.

    PubMed

    Klinting, Emil Lund; König, Carolin; Christiansen, Ove

    2015-11-01

    We present a new type of vibrational coordinates denoted hybrid optimized and localized coordinates (HOLCs) aiming at a good set of rectilinear vibrational coordinates supporting fast convergence in vibrational stucture calculations. The HOLCs are obtained as a compromise between the recently promoted optimized coordinates (OCs) and localized coordinates (LCs). The three sets of coordinates are generally different from each other and differ from standard normal coordinates (NCs) as well. In determining the HOLCs, we optimize the vibrational self-consistent field (VSCF) energy with respect to orthogonal transformation of the coordinates, which is similar to determining OCs but for HOLCs we additionally introduce a penalty for delocalization, by using a measure of localization similar to that employed in determining LCs. The same theory and implementation covers OCs, LCs, and HOLCs. It is shown that varying one penalty parameter allows for connecting OCs and LCs. The HOLCs are compared to NCs, OCs, and LCs in their nature and performance as basis for vibrational coupled cluster (VCC) response calculations of vibrational anharmonic energies for a small set of simple systems comprising water, formaldehyde, and ethylene. It is found that surprisingly good results can be obtained with HOLCs by using potential energy surfaces as simple as quadratic Taylor expansions. Quite similar coordinates are found for the already established OCs but obtaining these OCs requires much more elaborate and expensive potential energy surfaces and localization is generally not guaranteed. The ability to compute HOLCs for somewhat larger systems is demonstrated for coumarin and the alanine quadramer. The good agreement between HOLCs and OCs, together with the much easier applicability of HOLCs for larger systems, suggests that HOLCs may be a pragmatically very interesting option for anharmonic calculations on medium to large molecular systems.

  8. Optimal design of auxetic hexachiral metamaterials with local resonators

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Andrea; Lepidi, Marco; Gnecco, Giorgio; Gambarotta, Luigi

    2016-05-01

    A parametric beam lattice model is formulated to analyze the propagation properties of elastic in-plane waves in an auxetic material based on a hexachiral topology of the periodic cell, equipped with inertial local resonators. The Floquet-Bloch boundary conditions are imposed on a low-order linear model, suitably reduced to the only dynamically active degrees-of-freedom through a quasistatic stiffness condensation. Since the resonators can be designed to open and shift band gaps, an optimal design, focused on the largest possible gap in the low-frequency range, is achieved by solving a maximization problem in the bounded space of the significant geometrical and mechanical parameters. A local optimized solution, for the lowest pair of consecutive dispersion curves, is found by employing the globally convergent version of the method of moving asymptotes, combined with Monte Carlo and quasi-Monte Carlo multi-start techniques.

  9. Optimal design of auxetic hexachiral metamaterials with local resonators

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Andrea; Lepidi, Marco; Gnecco, Giorgio; Gambarotta, Luigi

    2016-05-01

    A parametric beam lattice model is formulated to analyze the propagation properties of elastic in-plane waves in an auxetic material based on a hexachiral topology of the periodic cell, equipped with inertial local resonators. The Floquet–Bloch boundary conditions are imposed on a low-order linear model, suitably reduced to the only dynamically active degrees-of-freedom through a quasistatic stiffness condensation. Since the resonators can be designed to open and shift band gaps, an optimal design, focused on the largest possible gap in the low-frequency range, is achieved by solving a maximization problem in the bounded space of the significant geometrical and mechanical parameters. A local optimized solution, for the lowest pair of consecutive dispersion curves, is found by employing the globally convergent version of the method of moving asymptotes, combined with Monte Carlo and quasi-Monte Carlo multi-start techniques.

  10. Local empathy provides global minimization of congestion in communication networks

    NASA Astrophysics Data System (ADS)

    Meloni, Sandro; Gómez-Gardeñes, Jesús

    2010-11-01

    We present a mechanism to avoid congestion in complex networks based on a local knowledge of traffic conditions and the ability of routers to self-coordinate their dynamical behavior. In particular, routers make use of local information about traffic conditions to either reject or accept information packets from their neighbors. We show that when nodes are only aware of their own congestion state they self-organize into a hierarchical configuration that delays remarkably the onset of congestion although leading to a sharp first-order-like congestion transition. We also consider the case when nodes are aware of the congestion state of their neighbors. In this case, we show that empathy between nodes is strongly beneficial to the overall performance of the system and it is possible to achieve larger values for the critical load together with a smooth, second-order-like, transition. Finally, we show how local empathy minimize the impact of congestion as much as global minimization. Therefore, here we present an outstanding example of how local dynamical rules can optimize the system’s functioning up to the levels reached using global knowledge.

  11. Local vs global motions in protein folding

    PubMed Central

    Maisuradze, Gia G.; Liwo, Adam; Senet, Patrick; Scheraga, Harold A.

    2013-01-01

    It is of interest to know whether local fluctuations in a polypeptide chain play any role in the mechanism by which the chain folds to the native structure of a protein. This question is addressed by analyzing folding and non-folding trajectories of a protein; as an example, the analysis is applied to the 37-residue triple β-strand WW domain from the Formin binding protein 28 (FBP28) (PDB ID: 1E0L). Molecular dynamics (MD) trajectories were generated with the coarse-grained united-residue force field, and one- and two-dimensional free-energy landscapes (FELs) along the backbone virtual-bond angle θ and backbone virtual-bond-dihedral angle γ of each residue, and principal components, respectively, were analyzed. The key residues involved in the folding of the FBP28 WW domain are elucidated by this analysis. The correlations between local and global motions are found. It is shown that most of the residues in the folding trajectories of the system studied here move in a concerted fashion, following the dynamics of the whole system. This demonstrates how the choice of a pathway has to involve concerted movements in order for this protein to fold. This finding also sheds light on the effectiveness of principal component analysis (PCA) for the description of the folding dynamics of the system studied. It is demonstrated that the FEL along the PCs, computed by considering only several critically-placed residues, can correctly describe the folding dynamics. PMID:23914144

  12. STP: A Stochastic Tunneling Algorithm for Global Optimization

    SciTech Connect

    Oblow, E.M.

    1999-05-20

    A stochastic approach to solving continuous function global optimization problems is presented. It builds on the tunneling approach to deterministic optimization presented by Barhen et al, by combining a series of local descents with stochastic searches. The method uses a rejection-based stochastic procedure to locate new local minima descent regions and a fixed Lipschitz-like constant to reject unpromising regions in the search space, thereby increasing the efficiency of the tunneling process. The algorithm is easily implemented in low-dimensional problems and scales easily to large problems. It is less effective without further heuristics in these latter cases, however. Several improvements to the basic algorithm which make use of approximate estimates of the algorithms parameters for implementation in high-dimensional problems are also discussed. Benchmark results are presented, which show that the algorithm is competitive with the best previously reported global optimization techniques. A successful application of the approach to a large-scale seismology problem of substantial computational complexity using a low-dimensional approximation scheme is also reported.

  13. Line orientation adaptation: local or global?

    PubMed

    Gheorghiu, Elena; Bell, Jason; Kingdom, Frederick A A

    2013-01-01

    Prolonged exposure to an oriented line shifts the perceived orientation of a subsequently observed line in the opposite direction, a phenomenon known as the tilt aftereffect (TAE). Here we consider whether the TAE for line stimuli is mediated by a mechanism that integrates the local parts of the line into a single global entity prior to the site of adaptation, or the result of the sum of local TAEs acting separately on the parts of the line. To test between these two alternatives we used the fact the TAE transfers almost completely across luminance contrast polarity [1]. We measured the TAE using adaptor and test lines that (1) either alternated in luminance polarity or were of a single polarity, and (2) either alternated in local orientation or were of a single orientation. We reasoned that if the TAE was agnostic to luminance polarity and was parts-based, we should obtain large TAEs using alternating-polarity adaptors with single-polarity tests. However we found that (i) TAEs using one-alternating-polarity adaptors with all-white tests were relatively small, increased slightly for two-alternating-polarity adaptors, and were largest with all-white or all-black adaptors. (ii) however TAEs were relatively large when the test was one-alternating polarity, irrespective of the adaptor type. (iii) The results with orientation closely mirrored those obtained with polarity with the difference that the TAE transfer across orthogonal orientations was weak. Taken together, our results demonstrate that the TAE for lines is mediated by a global shape mechanism that integrates the parts of lines into whole prior to the site of orientation adaptation. The asymmetry in the magnitude of TAE depending on whether the alternating-polarity lines was the adaptor or test can be explained by an imbalance in the population of neurons sensitive to 1(st)-and 2(nd)-order lines, with the 2(nd)-order lines being encoded by a subset of the mechanisms sensitive to 1(st)-order lines.

  14. LDRD Final Report: Global Optimization for Engineering Science Problems

    SciTech Connect

    HART,WILLIAM E.

    1999-12-01

    For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.

  15. Local-in-Time Adjoint-Based Method for Optimal Control/Design Optimization of Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2009-01-01

    .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.

  16. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David

    2016-01-01

    Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.

  17. GenMin: An enhanced genetic algorithm for global optimization

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, I. E.

    2008-06-01

    A new method that employs grammatical evolution and a stopping rule for finding the global minimum of a continuous multidimensional, multimodal function is considered. The genetic algorithm used is a hybrid genetic algorithm in conjunction with a local search procedure. We list results from numerical experiments with a series of test functions and we compare with other established global optimization methods. The accompanying software accepts objective functions coded either in Fortran 77 or in C++. Program summaryProgram title: GenMin Catalogue identifier: AEAR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 35 810 No. of bytes in distributed program, including test data, etc.: 436 613 Distribution format: tar.gz Programming language: GNU-C++, GNU-C, GNU Fortran 77 Computer: The tool is designed to be portable in all systems running the GNU C++ compiler Operating system: The tool is designed to be portable in all systems running the GNU C++ compiler RAM: 200 KB Word size: 32 bits Classification: 4.9 Nature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a least squares type of objective, one may encounter many local minima that do not correspond to solutions (i.e. they are far from zero). Solution method: Grammatical evolution and a stopping rule. Running time: Depending on the

  18. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  19. Traffic optimization in transport networks based on local routing

    NASA Astrophysics Data System (ADS)

    Scellato, S.; Fortuna, L.; Frasca, M.; Gómez-Gardeñes, J.; Latora, V.

    2010-01-01

    Congestion in transport networks is a topic of theoretical interest and practical importance. In this paper we study the flow of vehicles in urban street networks. In particular, we use a cellular automata model on a complex network to simulate the motion of vehicles along streets, coupled with a congestion-aware routing at street crossings. Such routing makes use of the knowledge of agents about traffic in nearby roads and allows the vehicles to dynamically update the routes towards their destinations. By implementing the model in real urban street patterns of various cities, we show that it is possible to achieve a global traffic optimization based on local agent decisions.

  20. What is Local Mode (LM)? Global Mode (GM)? Calibration Mode?

    Atmospheric Science Data Center

    2014-12-08

    ... measurement in Global Mode (GM), Local Mode (LM), and Calibration. Global Mode is the normal acquisition with pole to pole coverage ... targets approximately 300 km in length Calibration Implemented bi-monthly Spectralon solar ...

  1. Binding global and local object features in visual working memory.

    PubMed

    Ericson, Justin M; Beck, Melissa R; van Lamsweerde, Amanda E

    2016-01-01

    When briefly presented with global and local visual information, individuals report global information more quickly and more accurately than local information, a phenomenon known as the global precedence effect (GPE; Navon, 1977). We investigated whether a bias toward global information persists in visual working memory (VWM) and whether the VWM representations for global and local features include information bound to their hierarchical levels and to each other. Navon figures, in which a larger (global) letter is composed of smaller (local) letters, were presented, and participants performed a change detection task that required participants to remember features only (either a global or local letter changed to a new identity); features bound to their hierarchical levels (the global and local letters within an object swapped levels); or features bound to each other within an object (2 letters from the same level swapped between objects). Performance suggested that there was a GPE in VWM (new global letters were more accurately detected than new local letters) and that although global and local features were not necessarily bound together in VWM, they were bound to their corresponding hierarchical levels. These results indicate that level binding in VWM occurs more readily than binding specific object features together. These findings further our understanding of how hierarchical objects are represented in VWM.

  2. A Novel Hybrid Firefly Algorithm for Global Optimization

    PubMed Central

    Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao

    2016-01-01

    Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869

  3. A self-learning particle swarm optimizer for global optimization problems.

    PubMed

    Li, Changhe; Yang, Shengxiang; Nguyen, Trung Thanh

    2012-06-01

    Particle swarm optimization (PSO) has been shown as an effective tool for solving global optimization problems. So far, most PSO algorithms use a single learning pattern for all particles, which means that all particles in a swarm use the same strategy. This monotonic learning pattern may cause the lack of intelligence for a particular particle, which makes it unable to deal with different complex situations. This paper presents a novel algorithm, called self-learning particle swarm optimizer (SLPSO), for global optimization problems. In SLPSO, each particle has a set of four strategies to cope with different situations in the search space. The cooperation of the four strategies is implemented by an adaptive learning framework at the individual level, which can enable a particle to choose the optimal strategy according to its own local fitness landscape. The experimental study on a set of 45 test functions and two real-world problems show that SLPSO has a superior performance in comparison with several other peer algorithms.

  4. Local versus global biological network alignment

    PubMed Central

    Meng, Lei; Striegel, Aaron; Milenković, Tijana

    2016-01-01

    Motivation: Network alignment (NA) aims to find regions of similarities between species’ molecular networks. There exist two NA categories: local (LNA) and global (GNA). LNA finds small highly conserved network regions and produces a many-to-many node mapping. GNA finds large conserved regions and produces a one-to-one node mapping. Given the different outputs of LNA and GNA, when a new NA method is proposed, it is compared against existing methods from the same category. However, both NA categories have the same goal: to allow for transferring functional knowledge from well- to poorly-studied species between conserved network regions. So, which one to choose, LNA or GNA? To answer this, we introduce the first systematic evaluation of the two NA categories. Results: We introduce new measures of alignment quality that allow for fair comparison of the different LNA and GNA outputs, as such measures do not exist. We provide user-friendly software for efficient alignment evaluation that implements the new and existing measures. We evaluate prominent LNA and GNA methods on synthetic and real-world biological networks. We study the effect on alignment quality of using different interaction types and confidence levels. We find that the superiority of one NA category over the other is context-dependent. Further, when we contrast LNA and GNA in the application of learning novel protein functional knowledge, the two produce very different predictions, indicating their complementarity. Our results and software provide guidelines for future NA method development and evaluation. Availability and implementation: Software: http://www.nd.edu/~cone/LNA_GNA Contact: tmilenko@nd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27357169

  5. Joint global optimization of tomographic data based on particle swarm optimization and decision theory

    NASA Astrophysics Data System (ADS)

    Paasche, H.; Tronicke, J.

    2012-04-01

    In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto

  6. Local Optimization Strategies in Urban Vehicular Mobility.

    PubMed

    Mastroianni, Pierpaolo; Monechi, Bernardo; Liberto, Carlo; Valenti, Gaetano; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    The comprehension of vehicular traffic in urban environments is crucial to achieve a good management of the complex processes arising from people collective motion. Even allowing for the great complexity of human beings, human behavior turns out to be subject to strong constraints--physical, environmental, social, economic--that induce the emergence of common patterns. The observation and understanding of those patterns is key to setup effective strategies to optimize the quality of life in cities while not frustrating the natural need for mobility. In this paper we focus on vehicular mobility with the aim to reveal the underlying patterns and uncover the human strategies determining them. To this end we analyze a large dataset of GPS vehicles tracks collected in the Rome (Italy) district during a month. We demonstrate the existence of a local optimization of travel times that vehicle drivers perform while choosing their journey. This finding is mirrored by two additional important facts, i.e., the observation that the average vehicle velocity increases by increasing the travel length and the emergence of a universal scaling law for the distribution of travel times at fixed traveled length. A simple modeling scheme confirms this scenario opening the way to further predictions.

  7. Local Optimization Strategies in Urban Vehicular Mobility

    PubMed Central

    Mastroianni, Pierpaolo; Monechi, Bernardo; Liberto, Carlo; Valenti, Gaetano; Servedio, Vito D. P.; Loreto, Vittorio

    2015-01-01

    The comprehension of vehicular traffic in urban environments is crucial to achieve a good management of the complex processes arising from people collective motion. Even allowing for the great complexity of human beings, human behavior turns out to be subject to strong constraints—physical, environmental, social, economic—that induce the emergence of common patterns. The observation and understanding of those patterns is key to setup effective strategies to optimize the quality of life in cities while not frustrating the natural need for mobility. In this paper we focus on vehicular mobility with the aim to reveal the underlying patterns and uncover the human strategies determining them. To this end we analyze a large dataset of GPS vehicles tracks collected in the Rome (Italy) district during a month. We demonstrate the existence of a local optimization of travel times that vehicle drivers perform while choosing their journey. This finding is mirrored by two additional important facts, i.e., the observation that the average vehicle velocity increases by increasing the travel length and the emergence of a universal scaling law for the distribution of travel times at fixed traveled length. A simple modeling scheme confirms this scenario opening the way to further predictions. PMID:26656106

  8. Local Optimization Strategies in Urban Vehicular Mobility.

    PubMed

    Mastroianni, Pierpaolo; Monechi, Bernardo; Liberto, Carlo; Valenti, Gaetano; Servedio, Vito D P; Loreto, Vittorio

    2015-01-01

    The comprehension of vehicular traffic in urban environments is crucial to achieve a good management of the complex processes arising from people collective motion. Even allowing for the great complexity of human beings, human behavior turns out to be subject to strong constraints--physical, environmental, social, economic--that induce the emergence of common patterns. The observation and understanding of those patterns is key to setup effective strategies to optimize the quality of life in cities while not frustrating the natural need for mobility. In this paper we focus on vehicular mobility with the aim to reveal the underlying patterns and uncover the human strategies determining them. To this end we analyze a large dataset of GPS vehicles tracks collected in the Rome (Italy) district during a month. We demonstrate the existence of a local optimization of travel times that vehicle drivers perform while choosing their journey. This finding is mirrored by two additional important facts, i.e., the observation that the average vehicle velocity increases by increasing the travel length and the emergence of a universal scaling law for the distribution of travel times at fixed traveled length. A simple modeling scheme confirms this scenario opening the way to further predictions. PMID:26656106

  9. Global/local methods research using the CSM testbed

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. Hayden, Jr.; Thompson, Danniella M.

    1990-01-01

    Research activities in global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  10. Global/local stress analysis of composite panels

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Knight, Norman F., Jr.

    1989-01-01

    A method for performing a global/local stress analysis is described, and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.

  11. A global optimization algorithm for protein surface alignment

    PubMed Central

    2010-01-01

    Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. PMID:20920230

  12. New Algorithms for Global Optimization and Reaction Path Determination.

    PubMed

    Weber, D; Bellinger, D; Engels, B

    2016-01-01

    We present new schemes to improve the convergence of an important global optimization problem and to determine reaction pathways (RPs) between identified minima. Those methods have been implemented into the CAST program (Conformational Analysis and Search Tool). The first part of this chapter shows how to improve convergence of the Monte Carlo with minimization (MCM, also known as Basin Hopping) method when applied to optimize water clusters or aqueous solvation shells using a simple model. Since the random movement on the potential energy surface (PES) is an integral part of MCM, we propose to employ a hydrogen bonding-based algorithm for its improvement. We show comparisons of the results obtained for random dihedral and for the proposed random, rigid-body water molecule movement, giving evidence that a specific adaption of the distortion process greatly improves the convergence of the method. The second part is about the determination of RPs in clusters between conformational arrangements and for reactions. Besides standard approaches like the nudged elastic band method, we want to focus on a new algorithm developed especially for global reaction path search called Pathopt. We started with argon clusters, a typical benchmark system, which possess a flat PES, then stepwise increase the magnitude and directionality of interactions. Therefore, we calculated pathways for a water cluster and characterize them by frequency calculations. Within our calculations, we were able to show that beneath local pathways also additional pathways can be found which possess additional features. PMID:27497166

  13. Optimizing a global alignment of protein interaction networks

    PubMed Central

    Chindelevitch, Leonid; Ma, Cheng-Yu; Liao, Chung-Shou; Berger, Bonnie

    2013-01-01

    Motivation: The global alignment of protein interaction networks is a widely studied problem. It is an important first step in understanding the relationship between the proteins in different species and identifying functional orthologs. Furthermore, it can provide useful insights into the species’ evolution. Results: We propose a novel algorithm, PISwap, for optimizing global pairwise alignments of protein interaction networks, based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other intractable problems. PISwap can begin with different types of network alignment approaches and then iteratively adjust the initial alignments by incorporating network topology information, trading it off for sequence information. In practice, our algorithm efficiently refines other well-studied alignment techniques with almost no additional time cost. We also show the robustness of the algorithm to noise in protein interaction data. In addition, the flexible nature of this algorithm makes it suitable for different applications of network alignment. This algorithm can yield interesting insights into the evolutionary dynamics of related species. Availability: Our software is freely available for non-commercial purposes from our Web site, http://piswap.csail.mit.edu/. Contact: bab@csail.mit.edu or csliao@ie.nthu.edu.tw Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24048352

  14. Global smoothing and continuation for large-scale molecular optimization

    SciTech Connect

    More, J.J.; Wu, Zhijun

    1995-10-01

    We discuss the formulation of optimization problems that arise in the study of distance geometry, ionic systems, and molecular clusters. We show that continuation techniques based on global smoothing are applicable to these molecular optimization problems, and we outline the issues that must be resolved in the solution of large-scale molecular optimization problems.

  15. Think Globally, Act Locally: A Library Perspective

    ERIC Educational Resources Information Center

    Clausen, Beth E.

    2015-01-01

    In this article, the author presents observations learned while "on loan" from Northwestern University (NU), Evanston, Illinois, to the campus library in Doha, Qatar, (NU-Q) Middle East. The author's ongoing experience is helping her see how important global exposure can be to a library professional's attaining a deeper and wider level…

  16. Academic Inbreeding: Local Challenge, Global Problem

    ERIC Educational Resources Information Center

    Altbach, Philip G.; Yudkevich, Maria; Rumbley, Laura E.

    2015-01-01

    "Academic inbreeding"--involving the appointment of faculty members who graduated from the institution employing them--is considered a small and peripheral aspect of the academic profession but is quite widespread globally. This paper analyzes the nature of inbreeding and its impact on universities. Data from eight countries where…

  17. Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.

    PubMed

    Dash, Tirtharaj; Sahu, Prabhat K

    2015-05-30

    The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. PMID:25779670

  18. Asymmetrical hemisphere activation enhances global-local processing.

    PubMed

    Gable, Philip A; Poole, Bryan D; Cook, Mary S

    2013-12-01

    Decades of research focusing on the neurophysiological underpinnings related to global-local processing of hierarchical stimuli have associated global processing with the right hemisphere and local processing with the left hemisphere. The current experiment sought to expand this research by testing the causal contributions of hemisphere activation to global-local processing. To manipulate hemisphere activation, participants engaged in contralateral hand contractions. Then, EEG activity and attentional scope were measured. Right-hand contractions caused greater relative left-cortical activity than left-hand contractions. Participants were more narrowly focused after left-hemisphere activation than after right-hemisphere activation. Moreover, N1 amplitudes to local targets in the left hemisphere were larger after left-hemisphere activation than after right-hemisphere activation. Consistent with past research investigating hemispheric asymmetry and attentional scope, the current results suggest that manipulating left (right) hemisphere activity enhanced local (global) attentional processing.

  19. Parallel global optimization with the particle swarm algorithm.

    PubMed

    Schutte, J F; Reinbolt, J A; Fregly, B J; Haftka, R T; George, A D

    2004-12-01

    Present day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima-large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available.

  20. Parallel global optimization with the particle swarm algorithm

    PubMed Central

    Schutte, J. F.; Reinbolt, J. A.; Fregly, B. J.; Haftka, R. T.; George, A. D.

    2007-01-01

    SUMMARY Present day engineering optimization problems often impose large computational demands, resulting in long solution times even on a modern high-end processor. To obtain enhanced computational throughput and global search capability, we detail the coarse-grained parallelization of an increasingly popular global search method, the particle swarm optimization (PSO) algorithm. Parallel PSO performance was evaluated using two categories of optimization problems possessing multiple local minima—large-scale analytical test problems with computationally cheap function evaluations and medium-scale biomechanical system identification problems with computationally expensive function evaluations. For load-balanced analytical test problems formulated using 128 design variables, speedup was close to ideal and parallel efficiency above 95% for up to 32 nodes on a Beowulf cluster. In contrast, for load-imbalanced biomechanical system identification problems with 12 design variables, speedup plateaued and parallel efficiency decreased almost linearly with increasing number of nodes. The primary factor affecting parallel performance was the synchronization requirement of the parallel algorithm, which dictated that each iteration must wait for completion of the slowest fitness evaluation. When the analytical problems were solved using a fixed number of swarm iterations, a single population of 128 particles produced a better convergence rate than did multiple independent runs performed using sub-populations (8 runs with 16 particles, 4 runs with 32 particles, or 2 runs with 64 particles). These results suggest that (1) parallel PSO exhibits excellent parallel performance under load-balanced conditions, (2) an asynchronous implementation would be valuable for real-life problems subject to load imbalance, and (3) larger population sizes should be considered when multiple processors are available. PMID:17891226

  1. Global interference during early visual processing: ERP evidence from a rapid global/local selective task.

    PubMed

    Beaucousin, Virginie; Simon, Grégory; Cassotti, Mathieu; Pineau, Arlette; Houdé, Olivier; Poirel, Nicolas

    2013-01-01

    Visual perception depends on the integration of local elements of a visual scene into a global frame. Evidence from behavioral studies shows that (1) the detection of the global frame is faster than the detection of the local parts, a phenomenon called the global advantage, and that (2) an interference of the global shape is also present during local processing. Together, these effects are called the global precedence effect (GPE). Even if the global advantage appears to impact neural processing as early as the first 100 ms post-stimulus, previous studies failed to find a global interference effect before 200 ms post-stimulus. Using for the first time a rapid display of letter component stimuli during a global/local selective task in which conditions with perceptual conflict, congruent and incongruent conditions were considered, the present event-related potential (ERP) study shows a global interference effect occurring as early as the time range of the N1 component. In particular, only congruent stimuli elicited similar N1 amplitude during the global and local tasks, whereas an increased of the N1 amplitude during the global task was observed (as compared to the local task) for both stimuli with perceptual conflict and incongruent stimuli. This finding corroborates the recent neural models of human visual perception.

  2. Governing the global commons with local institutions.

    PubMed

    Bodnar, Todd; Salathé, Marcel

    2012-01-01

    Most problems faced by modern human society have two characteristics in common--they are tragedy-of-the-commons type of problems, and they are global problems. Tragedy-of-the-commons type of problems are those where a commonly shared resource is overexploited by free riders at the expense of everyone sharing the resource. The exploitation of global resources such as clean air and water, political stability and peace, etc. underlies many of the most pressing human problems. Punishment of free riding behavior is one of the most frequently used strategies to combat the problem, but the spatial reach of sanctioning institutions is often more limited than the spatial effects of overexploitation. Here, we analyze a general game theoretical model to assess under what circumstances sanctioning institutions with limited reach can maintain the larger commons. We find that the effect of the spatial reach has a strong effect on whether and how the commons can be maintained, and that the transitions between those outcomes are characterized by phase transitions. The latter indicates that a small change in the reach of sanctioning systems can profoundly change the way the global commons can be managed. PMID:22509269

  3. Governing the global commons with local institutions.

    PubMed

    Bodnar, Todd; Salathé, Marcel

    2012-01-01

    Most problems faced by modern human society have two characteristics in common--they are tragedy-of-the-commons type of problems, and they are global problems. Tragedy-of-the-commons type of problems are those where a commonly shared resource is overexploited by free riders at the expense of everyone sharing the resource. The exploitation of global resources such as clean air and water, political stability and peace, etc. underlies many of the most pressing human problems. Punishment of free riding behavior is one of the most frequently used strategies to combat the problem, but the spatial reach of sanctioning institutions is often more limited than the spatial effects of overexploitation. Here, we analyze a general game theoretical model to assess under what circumstances sanctioning institutions with limited reach can maintain the larger commons. We find that the effect of the spatial reach has a strong effect on whether and how the commons can be maintained, and that the transitions between those outcomes are characterized by phase transitions. The latter indicates that a small change in the reach of sanctioning systems can profoundly change the way the global commons can be managed.

  4. Auditory local bias and reduced global interference in autism.

    PubMed

    Bouvet, Lucie; Simard-Meilleur, Andrée-Anne; Paignon, Adeline; Mottron, Laurent; Donnadieu, Sophie

    2014-06-01

    Processing local elements of hierarchical patterns at a superior level and independently from an intact global influence is a well-established characteristic of autistic visual perception. However, whether this confirmed finding has an equivalent in the auditory modality is still unknown. To fill this gap, 18 autistics and 18 typical participants completed a melodic decision task where global and local level information can be congruent or incongruent. While focusing either on the global (melody) or local level (group of notes) of hierarchical auditory stimuli, participants have to decide whether the focused level is rising or falling. Autistics showed intact global processing, a superior performance when processing local elements and a reduced global-to-local interference compared to typical participants. These results are the first to demonstrate that autistic processing of auditory hierarchical stimuli closely parallels processing of visual hierarchical stimuli. When analyzing complex auditory information, autistic participants present a local bias and a more autonomous local processing, but not to the detriment of global processing.

  5. Global Optimization and Broadband Analysis Software for Interstellar Chemistry (GOBASIC)

    NASA Astrophysics Data System (ADS)

    Rad, Mary L.; Zou, Luyao; Sanders, James L.; Widicus Weaver, Susanna L.

    2016-01-01

    Context. Broadband receivers that operate at millimeter and submillimeter frequencies necessitate the development of new tools for spectral analysis and interpretation. Simultaneous, global, multimolecule, multicomponent analysis is necessary to accurately determine the physical and chemical conditions from line-rich spectra that arise from sources like hot cores. Aims: We aim to provide a robust and efficient automated analysis program to meet the challenges presented with the large spectral datasets produced by radio telescopes. Methods: We have written a program in the MATLAB numerical computing environment for simultaneous global analysis of broadband line surveys. The Global Optimization and Broadband Analysis Software for Interstellar Chemistry (GOBASIC) program uses the simplifying assumption of local thermodynamic equilibrium (LTE) for spectral analysis to determine molecular column density, temperature, and velocity information. Results: GOBASIC achieves simultaneous, multimolecule, multicomponent fitting for broadband spectra. The number of components that can be analyzed at once is only limited by the available computational resources. Analysis of subsequent sets of molecules or components is performed iteratively while taking the previous fits into account. All features of a given molecule across the entire window are fitted at once, which is preferable to the rotation diagram approach because global analysis is less sensitive to blended features and noise features in the spectra. In addition, the fitting method used in GOBASIC is insensitive to the initial conditions chosen, the fitting is automated, and fitting can be performed in a parallel computing environment. These features make GOBASIC a valuable improvement over previously available LTE analysis methods. A copy of the sofware is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A23

  6. Global and local pitch perception in children with developmental dyslexia.

    PubMed

    Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M

    2012-03-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global condition). Compared to normally developing children, dyslexics showed robust pitch perception deficits in the local but not the global condition. This finding was replicated in a simple pitch direction task, which minimizes sequencing and short term memory. Results are consistent with a left-hemisphere deficit in dyslexia because local pitch changes are supposedly processed by the left hemisphere, whereas global pitch changes are processed by the right hemisphere. The present data suggest a link between impaired pitch processing and abnormal phonological development in children with dyslexia, which makes pitch pattern processing a potent tool for early diagnosis and remediation of dyslexia. PMID:22204845

  7. Modeling Global Change in Local Places: Capturing Global Change and Local Impacts in a Global Land System Change Model

    NASA Astrophysics Data System (ADS)

    Verburg, P.; Eitelberg, D.; Ornetsmueller, C.; van Vliet, J.

    2015-12-01

    Global land use models are driven by demands for food and urban space. However, at the same time many transitions in land use and land cover are driven by societal changes and the demand for a wide range of landscape functions or ecosystem services, including the conservation of biodiversity, regulation of climate and floods, and recreation. Some of these demands lead to tele-connected land use change through the transport of good and services, others are place-based and shape the local realities of land system change. Most current land use change models focus on land cover changes alone and ignore the importance of changes in land management and landscape configuration that affect climate, biodiversity and the provisioning of ecosystem services. This talk will present an alternative approach to global land use modelling based on the simulation of changes in land systems in response to a wide set of ecosystem service demands. Simulations at global scale illustrate that accounting for demands for livestock products, carbon sequestration and biological conservation (following the Aichi targets) leads to different outcomes of land change models and allows the identification of synergies between carbon and biodiversity targets. An application in Laos indicates the complex transitions in land systems and landscapes that occur upon the transition from shifting cultivation to permanent agriculture and tree-crop plantations. We discuss the implications of such land system representations for Earth system modelling.

  8. Cortical systems for local and global integration in discourse comprehension.

    PubMed

    Egidi, Giovanna; Caramazza, Alfonso

    2013-05-01

    To understand language, we integrate what we hear or read with prior context. This research investigates the neural systems underlying this integration process, in particular the integration of incoming linguistic information with local, proximal context and with global, distal context. The experiments used stories whose endings were locally consistent or locally inconsistent. In addition, the stories' global context was either relevant or irrelevant for the integration of the endings. In Experiment 1, reading latencies showed that the perceived consistency of an ending depended on its fit with the local context, but the availability of a relevant global context attenuated this effect. Experiment 2 used BOLD fMRI to study whether different neural systems are sensitive to the local consistency of the endings and the relevance of the global context. A first analysis evaluated BOLD responses during the comprehension of story endings. It identified three networks: one sensitive to consistency with local context, one sensitive to the relevance of the global context, and one sensitive to both factors. These findings suggest that some regions respond to the holistic relation of local and global contexts while others track only the global or the local contexts. A second analysis examined correlations between BOLD activity during listening of the story endings and subsequent memory for those endings. It revealed two distinct networks: Positive correlations in areas usually involved in semantic processing and memory for language, and negative correlations in sensory, motor, and visual areas, indicating that weaker activity in the latter regions is conducive to better memory for linguistic content. More widespread memory correlates were found when global context was relevant for understanding a story ending. We conclude that integration at the discourse level involves the cooperation of different networks each sensitive to separate aspects of the task, and that integration is

  9. Contextual Cueing in Naturalistic Scenes: Global and Local Contexts

    ERIC Educational Resources Information Center

    Brockmole, James R.; Castelhano, Monica S.; Henderson, John M.

    2006-01-01

    In contextual cueing, the position of a target within a group of distractors is learned over repeated exposure to a display with reference to a few nearby items rather than to the global pattern created by the elements. The authors contrasted the role of global and local contexts for contextual cueing in naturalistic scenes. Experiment 1 showed…

  10. Cultural Variations in Global versus Local Processing: A Developmental Perspective

    ERIC Educational Resources Information Center

    Oishi, Shigehiro; Jaswal, Vikram K.; Lillard, Angeline S.; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro

    2014-01-01

    We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 ("N" = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 ("N" =…

  11. The Implications of the Local Context in Global Online Education

    ERIC Educational Resources Information Center

    Rye, Stale Angen; Stokken, Anne Marie

    2012-01-01

    This paper investigates how features in students' everyday life influence their participation in online global collaboration, and it suggests that students' local context should be recognised as a significant part of their educational space. In this exploratory case study of students engaged in a global online master's programme, the discussion is…

  12. Hybrid and adaptive meta-model-based global optimization

    NASA Astrophysics Data System (ADS)

    Gu, J.; Li, G. Y.; Dong, Z.

    2012-01-01

    As an efficient and robust technique for global optimization, meta-model-based search methods have been increasingly used in solving complex and computation intensive design optimization problems. In this work, a hybrid and adaptive meta-model-based global optimization method that can automatically select appropriate meta-modelling techniques during the search process to improve search efficiency is introduced. The search initially applies three representative meta-models concurrently. Progress towards a better performing model is then introduced by selecting sample data points adaptively according to the calculated values of the three meta-models to improve modelling accuracy and search efficiency. To demonstrate the superior performance of the new algorithm over existing search methods, the new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization example involving vehicle crash simulation. The method is particularly suitable for design problems involving computation intensive, black-box analyses and simulations.

  13. Optimizing global liver function in radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Wu, Victor W.; Epelman, Marina A.; Wang, Hesheng; Romeijn, H. Edwin; Feng, Mary; Cao, Yue; Ten Haken, Randall K.; Matuszak, Martha M.

    2016-09-01

    Liver stereotactic body radiation therapy (SBRT) patients differ in both pre-treatment liver function (e.g. due to degree of cirrhosis and/or prior treatment) and radiosensitivity, leading to high variability in potential liver toxicity with similar doses. This work investigates three treatment planning optimization models that minimize risk of toxicity: two consider both voxel-based pre-treatment liver function and local-function-based radiosensitivity with dose; one considers only dose. Each model optimizes different objective functions (varying in complexity of capturing the influence of dose on liver function) subject to the same dose constraints and are tested on 2D synthesized and 3D clinical cases. The normal-liver-based objective functions are the linearized equivalent uniform dose (\\ell \\text{EUD} ) (conventional ‘\\ell \\text{EUD} model’), the so-called perfusion-weighted \\ell \\text{EUD} (\\text{fEUD} ) (proposed ‘fEUD model’), and post-treatment global liver function (GLF) (proposed ‘GLF model’), predicted by a new liver-perfusion-based dose-response model. The resulting \\ell \\text{EUD} , fEUD, and GLF plans delivering the same target \\ell \\text{EUD} are compared with respect to their post-treatment function and various dose-based metrics. Voxel-based portal venous liver perfusion, used as a measure of local function, is computed using DCE-MRI. In cases used in our experiments, the GLF plan preserves up to 4.6 % ≤ft(7.5 % \\right) more liver function than the fEUD (\\ell \\text{EUD} ) plan does in 2D cases, and up to 4.5 % ≤ft(5.6 % \\right) in 3D cases. The GLF and fEUD plans worsen in \\ell \\text{EUD} of functional liver on average by 1.0 Gy and 0.5 Gy in 2D and 3D cases, respectively. Liver perfusion information can be used during treatment planning to minimize the risk of toxicity by improving expected GLF; the degree of benefit varies with perfusion pattern. Although fEUD model optimization is computationally inexpensive and

  14. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    PubMed

    Zhang, Jun; Dolg, Michael

    2015-10-01

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters. PMID:26327507

  15. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  16. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems

    PubMed Central

    Cao, Leilei; Xu, Lihong; Goodman, Erik D.

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421

  17. A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.

    PubMed

    Cao, Leilei; Xu, Lihong; Goodman, Erik D

    2016-01-01

    A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.

  18. Interior search algorithm (ISA): a novel approach for global optimization.

    PubMed

    Gandomi, Amir H

    2014-07-01

    This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune.

  19. Global and Local Pitch Perception in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Ziegler, Johannes C.; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M.

    2012-01-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global…

  20. Turkish Elementary School Students' Perceptions of Local and Global Terrorism

    ERIC Educational Resources Information Center

    Aricak, Tolga; Bekci, Banu; Siyahhan, Sinem; Martinez, Rebecca

    2008-01-01

    Introduction: Historically, terrorism has occurred in various regions of the world and has been considered a local problem until the September, 11 terrorist attacks on the United States in 2001. After 9/11, terrorism has become a global concern. The definition of terrorism has changed from a violent act of a group of local people against their…

  1. Joint local and global consistency on interdocument and interword relationships for co-clustering.

    PubMed

    Bao, Bing-Kun; Min, Weiqing; Li, Teng; Xu, Changsheng

    2015-01-01

    Co-clustering has recently received a lot of attention due to its effectiveness in simultaneously partitioning words and documents by exploiting the relationships between them. However, most of the existing co-clustering methods neglect or only partially reveal the interword and interdocument relationships. To fully utilize those relationships, the local and global consistencies on both word and document spaces need to be considered, respectively. Local consistency indicates that the label of a word/document can be predicted from its neighbors, while global consistency enforces a smoothness constraint on words/documents labels over the whole data manifold. In this paper, we propose a novel co-clustering method, called co-clustering via local and global consistency, to not only make use of the relationship between word and document, but also jointly explore the local and global consistency on both word and document spaces, respectively. The proposed method has the following characteristics: 1) the word-document relationships is modeled by following information-theoretic co-clustering (ITCC); 2) the local consistency on both interword and interdocument relationships is revealed by a local predictor; and 3) the global consistency on both interword and interdocument relationships is explored by a global smoothness regularization. All the fitting errors from these three-folds are finally integrated together to formulate an objective function, which is iteratively optimized by a convergence provable updating procedure. The extensive experiments on two benchmark document datasets validate the effectiveness of the proposed co-clustering method.

  2. From local to global changes in proteins: a network view.

    PubMed

    Vuillon, Laurent; Lesieur, Claire

    2015-04-01

    To fulfill the biological activities in living organisms, proteins are endowed with dynamics, robustness and adaptability. The three properties co-exist because they allow global changes in structure to arise from local perturbations (dynamics). Robustness refers to the ability of the protein to incur such changes without suffering loss of function; adaptability is the emergence of a new biological activity. Since loss of function may jeopardize the survival of the organism and lead to disease, adaptability may occur through the combination of two local perturbations that together rescue the initial function. The review highlights the relevancy of computational network analysis to understand how a local change produces global changes. PMID:25791607

  3. Global localization from monocular SLAM on a mobile phone.

    PubMed

    Ventura, Jonathan; Arth, Clemens; Reitmayr, Gerhard; Schmalstieg, Dieter

    2014-04-01

    We propose the combination of a keyframe-based monocular SLAM system and a global localization method. The SLAM system runs locally on a camera-equipped mobile client and provides continuous, relative 6DoF pose estimation as well as keyframe images with computed camera locations. As the local map expands, a server process localizes the keyframes with a pre-made, globally-registered map and returns the global registration correction to the mobile client. The localization result is updated each time a keyframe is added, and observations of global anchor points are added to the client-side bundle adjustment process to further refine the SLAM map registration and limit drift. The end result is a 6DoF tracking and mapping system which provides globally registered tracking in real-time on a mobile device, overcomes the difficulties of localization with a narrow field-of-view mobile phone camera, and is not limited to tracking only in areas covered by the offline reconstruction.

  4. An evolutionary algorithm for global optimization based on self-organizing maps

    NASA Astrophysics Data System (ADS)

    Barmada, Sami; Raugi, Marco; Tucci, Mauro

    2016-10-01

    In this article, a new population-based algorithm for real-parameter global optimization is presented, which is denoted as self-organizing centroids optimization (SOC-opt). The proposed method uses a stochastic approach which is based on the sequential learning paradigm for self-organizing maps (SOMs). A modified version of the SOM is proposed where each cell contains an individual, which performs a search for a locally optimal solution and it is affected by the search for a global optimum. The movement of the individuals in the search space is based on a discrete-time dynamic filter, and various choices of this filter are possible to obtain different dynamics of the centroids. In this way, a general framework is defined where well-known algorithms represent a particular case. The proposed algorithm is validated through a set of problems, which include non-separable problems, and compared with state-of-the-art algorithms for global optimization.

  5. Local and global contributions to hemodynamic activity in mouse cortex

    PubMed Central

    Pisauro, M. Andrea; Benucci, Andrea

    2016-01-01

    Imaging techniques such as functional magnetic resonance imaging seek to estimate neural signals in local brain regions through measurements of hemodynamic activity. However, hemodynamic activity is accompanied by large vascular fluctuations of unclear significance. To characterize these fluctuations and their impact on estimates of neural signals, we used optical imaging in visual cortex of awake mice. We found that hemodynamic activity can be expressed as the sum of two components, one local and one global. The local component reflected presumed neural signals driven by visual stimuli in the appropriate retinotopic region. The global component constituted large fluctuations shared by larger cortical regions, which extend beyond visual cortex. These fluctuations varied from trial to trial, but they did not constitute noise; they correlated with pupil diameter, suggesting that they reflect variations in arousal or alertness. Distinguishing local and global contributions to hemodynamic activity may help understand neurovascular coupling and interpret measurements of hemodynamic responses. PMID:26984421

  6. Local, Optimization-based Simplicial Mesh Smoothing

    1999-12-09

    OPT-MS is a C software package for the improvement and untangling of simplicial meshes (triangles in 2D, tetrahedra in 3D). Overall mesh quality is improved by iterating over the mesh vertices and adjusting their position to optimize some measure of mesh quality, such as element angle or aspect ratio. Several solution techniques (including Laplacian smoothing, "Smart" Laplacian smoothing, optimization-based smoothing and several combinations thereof) and objective functions (for example, element angle, sin (angle), and aspectmore » ratio) are available to the user for both two and three-dimensional meshes. If the mesh contains invalid elements (those with negative area) a different optimization algorithm for mesh untangling is provided.« less

  7. Nonlinear Global Optimization Using Curdling Algorithm

    1996-03-01

    An algorithm for performing curdling optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single external extremal points. The program is interactive and collects information on control parameters and constraints using menus. For up to four dimensions, function convergence is displayed graphically. Because the algorithm does not compute derivatives,more » gradients or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. Constraints are handled as being initially fuzzy, but become tighter with each iteration.« less

  8. Neural network training with global optimization techniques.

    PubMed

    Yamazaki, Akio; Ludermir, Teresa B

    2003-04-01

    This paper presents an approach of using Simulated Annealing and Tabu Search for the simultaneous optimization of neural network architectures and weights. The problem considered is the odor recognition in an artificial nose. Both methods have produced networks with high classification performance and low complexity. Generalization has been improved by using the backpropagation algorithm for fine tuning. The combination of simple and traditional search methods has shown to be very suitable for generating compact and efficient networks.

  9. Existence and computation of optimally localized coherent states

    SciTech Connect

    Holschneider, Matthias; Teschke, Gerd

    2006-12-15

    This paper is concerned with localization properties of coherent states. Instead of classical uncertainty relations we consider 'generalized' localization quantities. This is done by introducing measures on the reproducing kernel. In this context we may prove the existence of optimally localized states. Moreover, we provide a numerical scheme for deriving them.

  10. Dispositional optimism and terminal decline in global quality of life.

    PubMed

    Zaslavsky, Oleg; Palgi, Yuval; Rillamas-Sun, Eileen; LaCroix, Andrea Z; Schnall, Eliezer; Woods, Nancy F; Cochrane, Barbara B; Garcia, Lorena; Hingle, Melanie; Post, Stephen; Seguin, Rebecca; Tindle, Hilary; Shrira, Amit

    2015-06-01

    We examined whether dispositional optimism relates to change in global quality of life (QOL) as a function of either chronological age or years to impending death. We used a sample of 2,096 deceased postmenopausal women from the Women's Health Initiative clinical trials who were enrolled in the 2005-2010 Extension Study and for whom at least 1 global QOL and optimism measure were analyzed. Growth curve models were examined. Competing models were contrasted using model fit criteria. On average, levels of global QOL decreased with both higher age and closer proximity to death (e.g., M(score) = 7.7 eight years prior to death vs. M(score) = 6.1 one year prior to death). A decline in global QOL was better modeled as a function of distance to death (DtD) than as a function of chronological age (Bayesian information criterion [BIC](DtD) = 22,964.8 vs. BIC(age) = 23,322.6). Optimism was a significant correlate of both linear (estimate(DtD) = -0.01, SE(DtD) = 0.005; ρ = 0.004) and quadratic (estimate(DtD) = -0.006, SE(DtD) = 0.002; ρ = 0.004) terminal decline in global QOL so that death-related decline in global QOL was steeper among those with a high level of optimism than those with a low level of optimism. We found that dispositional optimism helps to maintain positive psychological perspective in the face of age-related decline. Optimists maintain higher QOL compared with pessimists when death-related trajectories were considered; however, the gap between those with high optimism and those with low optimism progressively attenuated with closer proximity to death, to the point that is became nonsignificant at the time of death.

  11. Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelièvre, Peter; Bijani, Rodrigo; Farquharson, Colin

    2016-04-01

    We are investigating the use of Pareto multi-objective global optimization (PMOGO) methods to solve numerically complicated geophysical inverse problems. PMOGO methods can be applied to highly nonlinear inverse problems, to those where derivatives are discontinuous or simply not obtainable, and to those were multiple minima exist in the problem space. PMOGO methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. This allows a more complete assessment of the possibilities and provides opportunities to calculate statistics regarding the likelihood of particular model features. We are applying PMOGO methods to four classes of inverse problems. The first are discrete-body problems where the inversion determines values of several parameters that define the location, orientation, size and physical properties of an anomalous body represented by a simple shape, for example a sphere, ellipsoid, cylinder or cuboid. A PMOGO approach can determine not only the optimal shape parameters for the anomalous body but also the optimal shape itself. Furthermore, when one expects several anomalous bodies in the subsurface, a PMOGO inversion approach can determine an optimal number of parameterized bodies. The second class of inverse problems are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The third class of problems are lithological inversions, which are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the fourth class, surface geometry inversions, we consider a fundamentally different type of problem in which a model comprises wireframe surfaces representing contacts between rock units. The physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. Surface geometry inversion can be

  12. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  13. Optimizing human activity patterns using global sensitivity analysis

    SciTech Connect

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  14. Incremental triangulation by way of edge swapping and local optimization

    NASA Technical Reports Server (NTRS)

    Wiltberger, N. Lyn

    1994-01-01

    This document is intended to serve as an installation, usage, and basic theory guide for the two dimensional triangulation software 'HARLEY' written for the Silicon Graphics IRIS workstation. This code consists of an incremental triangulation algorithm based on point insertion and local edge swapping. Using this basic strategy, several types of triangulations can be produced depending on user selected options. For example, local edge swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax triangulation) or which maximizes the minimum interior angle (a MaxMin or Delaunay triangulation). It should be noted that the MinMax triangulation is generally only locally optical (not globally optimal) in this measure. The MaxMin triangulation, however, is both locally and globally optical. In addition, Steiner triangulations can be constructed by inserting new sites at triangle circumcenters followed by edge swapping based on the MaxMin criteria. Incremental insertion of sites also provides flexibility in choosing cell refinement criteria. A dynamic heap structure has been implemented in the code so that once a refinement measure is specified (i.e., maximum aspect ratio or some measure of a solution gradient for the solution adaptive grid generation) the cell with the largest value of this measure is continually removed from the top of the heap and refined. The heap refinement strategy allows the user to specify either the number of cells desired or refine the mesh until all cell refinement measures satisfy a user specified tolerance level. Since the dynamic heap structure is constantly updated, the algorithm always refines the particular cell in the mesh with the largest refinement criteria value. The code allows the user to: triangulate a cloud of prespecified points (sites), triangulate a set of prespecified interior points constrained by prespecified boundary curve(s), Steiner triangulate the interior/exterior of prespecified boundary curve

  15. Global optimization of multicomponent distillation configurations: 2. Enumeration based global minimization algorithm

    DOE PAGES

    Nallasivam, Ulaganathan; Shah, Vishesh H.; Shenvi, Anirudh A.; Huff, Joshua; Tawarmalani, Mohit; Agrawal, Rakesh

    2016-02-10

    We present a general Global Minimization Algorithm (GMA) to identify basic or thermally coupled distillation configurations that require the least vapor duty under minimum reflux conditions for separating any ideal or near-ideal multicomponent mixture into a desired number of product streams. In this algorithm, global optimality is guaranteed by modeling the system using Underwood equations and reformulating the resulting constraints to bilinear inequalities. The speed of convergence to the globally optimal solution is increased by using appropriate feasibility and optimality based variable-range reduction techniques and by developing valid inequalities. As a result, the GMA can be coupled with already developedmore » techniques that enumerate basic and thermally coupled distillation configurations, to provide for the first time, a global optimization based rank-list of distillation configurations.« less

  16. Towards Real-Time Global Localization in Dynamic Unstructured Environments

    NASA Astrophysics Data System (ADS)

    Tanaka, Kanji; Kondo, Eiji

    Global localization is the problem in which a mobile robot has to estimate the self-position with respect to an a priori given map as it navigates without using any a priori knowledge of the initial self-position. Previous studies on global localization mainly focused on static environments, where the a priori map is almost correct. On the other hand, in dynamic environments, there are several sources of computational complexity. For example, not only the self-position but also the map should be estimated due to the map errors. The main contribution of this paper is to address such computational complexity by decomposing our global localization problem into two smaller subproblems, and solving the subproblems in a practical computation time. Also, we demonstrate the robustness and the efficiency of the proposed method in various large and complex environments.

  17. Interaction and localization diversities of global and local hubs in human protein-protein interaction networks.

    PubMed

    Kiran, M; Nagarajaram, H A

    2016-08-16

    Hubs, the highly connected nodes in protein-protein interaction networks (PPINs), are associated with several characteristic properties and are known to perform vital roles in cells. We defined two classes of hubs, global (housekeeping) and local (tissue-specific) hubs. These two categories of hubs are distinct from each other with respect to their abundance, structure and function. However, how distinct are the spatial expression pattern and other characteristics of their interacting partners is still not known. Our investigations revealed that the partners of the local hubs compared with those of global hubs are conserved across the tissues in which they are expressed. Partners of local hubs show diverse subcellular localizations as compared with the partners of global hubs. We examined the nature of interacting domains in both categories of hubs and found that they are promiscuous in global hubs but not so in local hubs. Deletion of some of the local and global hubs has an impact on the characteristic path length of the network indicating that those hubs are inter-modular in nature. Our present study has, therefore, shed further light on the characteristic features of the local and global hubs in human PPIN. This knowledge of different topological aspects of hubs with regard to their types and subtypes is essential as it helps in better understanding of roles of hub proteins in various cellular processes under various conditions including those caused by host-pathogen interactions and therefore useful in prioritizing targets for drug design and repositioning.

  18. Interaction and localization diversities of global and local hubs in human protein-protein interaction networks.

    PubMed

    Kiran, M; Nagarajaram, H A

    2016-08-16

    Hubs, the highly connected nodes in protein-protein interaction networks (PPINs), are associated with several characteristic properties and are known to perform vital roles in cells. We defined two classes of hubs, global (housekeeping) and local (tissue-specific) hubs. These two categories of hubs are distinct from each other with respect to their abundance, structure and function. However, how distinct are the spatial expression pattern and other characteristics of their interacting partners is still not known. Our investigations revealed that the partners of the local hubs compared with those of global hubs are conserved across the tissues in which they are expressed. Partners of local hubs show diverse subcellular localizations as compared with the partners of global hubs. We examined the nature of interacting domains in both categories of hubs and found that they are promiscuous in global hubs but not so in local hubs. Deletion of some of the local and global hubs has an impact on the characteristic path length of the network indicating that those hubs are inter-modular in nature. Our present study has, therefore, shed further light on the characteristic features of the local and global hubs in human PPIN. This knowledge of different topological aspects of hubs with regard to their types and subtypes is essential as it helps in better understanding of roles of hub proteins in various cellular processes under various conditions including those caused by host-pathogen interactions and therefore useful in prioritizing targets for drug design and repositioning. PMID:27400769

  19. Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar; Fiege, Jason

    2015-08-01

    The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.

  20. Managing for interactions between local and global stressors of ecosystems.

    PubMed

    Brown, Christopher J; Saunders, Megan I; Possingham, Hugh P; Richardson, Anthony J

    2013-01-01

    Global stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem management is thus attempting to compensate for the impacts of global stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects. It is not clear, however, how management should proceed for antagonistic interactions among stressors, where multiple stressors do not have an additive or greater impact. Research to date has focussed on identifying synergisms among stressors, but antagonisms may be just as common. We examined the effectiveness of management when faced with different types of interactions in two systems--seagrass and fish communities--where the global stressor was climate change but the local stressors were different. When there were synergisms, mitigating local stressors delivered greater gains, whereas when there were antagonisms, management of local stressors was ineffective or even degraded ecosystems. These results suggest that reducing a local stressor can compensate for climate change impacts if there is a synergistic interaction. Conversely, if there is an antagonistic interaction, management of local stressors will have the greatest benefits in areas of refuge from climate change. A balanced research agenda, investigating both antagonistic and synergistic interaction types, is needed to inform management priorities. PMID:23776542

  1. Managing for interactions between local and global stressors of ecosystems.

    PubMed

    Brown, Christopher J; Saunders, Megan I; Possingham, Hugh P; Richardson, Anthony J

    2013-01-01

    Global stressors, including climate change, are a major threat to ecosystems, but they cannot be halted by local actions. Ecosystem management is thus attempting to compensate for the impacts of global stressors by reducing local stressors, such as overfishing. This approach assumes that stressors interact additively or synergistically, whereby the combined effect of two stressors is at least the sum of their isolated effects. It is not clear, however, how management should proceed for antagonistic interactions among stressors, where multiple stressors do not have an additive or greater impact. Research to date has focussed on identifying synergisms among stressors, but antagonisms may be just as common. We examined the effectiveness of management when faced with different types of interactions in two systems--seagrass and fish communities--where the global stressor was climate change but the local stressors were different. When there were synergisms, mitigating local stressors delivered greater gains, whereas when there were antagonisms, management of local stressors was ineffective or even degraded ecosystems. These results suggest that reducing a local stressor can compensate for climate change impacts if there is a synergistic interaction. Conversely, if there is an antagonistic interaction, management of local stressors will have the greatest benefits in areas of refuge from climate change. A balanced research agenda, investigating both antagonistic and synergistic interaction types, is needed to inform management priorities.

  2. Exploring Local Approaches to Communicating Global Climate Change Information

    NASA Astrophysics Data System (ADS)

    Stevermer, A. J.

    2002-12-01

    Expected future climate changes are often presented as a global problem, requiring a global solution. Although this statement is accurate, communicating climate change science and prospective solutions must begin at local levels, each with its own subset of complexities to be addressed. Scientific evaluation of local changes can be complicated by large variability occurring over small spatial scales; this variability hinders efforts both to analyze past local changes and to project future ones. The situation is further encumbered by challenges associated with scientific literacy in the U.S., as well as by pressing economic difficulties. For people facing real-life financial and other uncertainties, a projected ``1.4 to 5.8 degrees Celsius'' rise in global temperature is likely to remain only an abstract concept. Despite this lack of concreteness, recent surveys have found that most U.S. residents believe current global warming science, and an even greater number view the prospect of increased warming as at least a ``somewhat serious'' problem. People will often be able to speak of long-term climate changes in their area, whether observed changes in the amount of snow cover in winter, or in the duration of extreme heat periods in summer. This work will explore the benefits and difficulties of communicating climate change from a local, rather than global, perspective, and seek out possible strategies for making less abstract, more concrete, and most importantly, more understandable information available to the public.

  3. Combined discriminative global and generative local models for visual tracking

    NASA Astrophysics Data System (ADS)

    Zhao, Liujun; Zhao, Qingjie; Chen, Yanming; Lv, Peng

    2016-03-01

    It is a challenging task to develop an effective visual tracking algorithm due to factors such as pose variation, rotation, and so on. Combined discriminative global and generative local appearance models are proposed to address this problem. Specifically, we develop a compact global object representation by extracting the low-frequency coefficients of the color and texture of the object based on two-dimensional discrete cosine transform. Then, with the global appearance representation, we learn a discriminative metric classifier in an online fashion to differentiate the target object from its background, which is very important to robustly indicate the changes in appearance. Second, we develop a new generative local model that exploits the scale invariant feature transform and its spatial geometric information. To make use of the advantages of the global discriminative model and the generative local model, we incorporate them into Bayesian inference framework. In this framework, the complementary models help the tracker locate the target more accurately. Furthermore, we use different mechanisms to update global and local templates to capture appearance changes. The experimental results demonstrate that the proposed approach performs favorably against state-of-the-art methods in terms of accuracy.

  4. Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Shang, C.; Wales, D. J.

    2014-08-01

    A fundamental problem associated with global optimization is the large free energy barrier for the corresponding solid-solid phase transitions for systems with multi-funnel energy landscapes. To address this issue we consider the Tsallis weight instead of the Boltzmann weight to define the acceptance ratio for basin-hopping global optimization. Benchmarks for atomic clusters show that using the optimal Tsallis weight can improve the efficiency by roughly a factor of two. We present a theory that connects the optimal parameters for the Tsallis weighting, and demonstrate that the predictions are verified for each of the test cases.

  5. Communication: Optimal parameters for basin-hopping global optimization based on Tsallis statistics

    SciTech Connect

    Shang, C. Wales, D. J.

    2014-08-21

    A fundamental problem associated with global optimization is the large free energy barrier for the corresponding solid-solid phase transitions for systems with multi-funnel energy landscapes. To address this issue we consider the Tsallis weight instead of the Boltzmann weight to define the acceptance ratio for basin-hopping global optimization. Benchmarks for atomic clusters show that using the optimal Tsallis weight can improve the efficiency by roughly a factor of two. We present a theory that connects the optimal parameters for the Tsallis weighting, and demonstrate that the predictions are verified for each of the test cases.

  6. Correlation and network topologies in global and local stock indices

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Lee, Sungmin; Kim, Doo Hwan; Lee, Jae Woo

    2014-07-01

    We examined how the correlation and network structure of the global indices and local Korean indices have changed during years 2000-2012. The average correlations of the global indices increased with time, while the local indices showed a decreasing trend except for drastic changes during the crises. A significant change in the network topologies was observed due to the financial crises in both markets. The Jaccard similarities identified the change in the market state due to a crisis in both markets. The dynamic change of the Jaccard index can be used as an indicator of systemic risk or precursors of the crisis.

  7. A deterministic global approach for mixed-discrete structural optimization

    NASA Astrophysics Data System (ADS)

    Lin, Ming-Hua; Tsai, Jung-Fa

    2014-07-01

    This study proposes a novel approach for finding the exact global optimum of a mixed-discrete structural optimization problem. Although many approaches have been developed to solve the mixed-discrete structural optimization problem, they cannot guarantee finding a global solution or they adopt too many extra binary variables and constraints in reformulating the problem. The proposed deterministic method uses convexification strategies and linearization techniques to convert a structural optimization problem into a convex mixed-integer nonlinear programming problem solvable to obtain a global optimum. To enhance the computational efficiency in treating complicated problems, the range reduction technique is also applied to tighten variable bounds. Several numerical experiments drawn from practical structural design problems are presented to demonstrate the effectiveness of the proposed method.

  8. Global search acceleration in the nested optimization scheme

    NASA Astrophysics Data System (ADS)

    Grishagin, Vladimir A.; Israfilov, Ruslan A.

    2016-06-01

    Multidimensional unconstrained global optimization problem with objective function under Lipschitz condition is considered. For solving this problem the dimensionality reduction approach on the base of the nested optimization scheme is used. This scheme reduces initial multidimensional problem to a family of one-dimensional subproblems being Lipschitzian as well and thus allows applying univariate methods for the execution of multidimensional optimization. For two well-known one-dimensional methods of Lipschitz optimization the modifications providing the acceleration of the search process in the situation when the objective function is continuously differentiable in a vicinity of the global minimum are considered and compared. Results of computational experiments on conventional test class of multiextremal functions confirm efficiency of the modified methods.

  9. Joint Geophysical Inversion With Multi-Objective Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Lelievre, P. G.; Bijani, R.; Farquharson, C. G.

    2015-12-01

    Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.

  10. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  11. Particle swarm optimization and its application in MEG source localization using single time sliced data

    NASA Astrophysics Data System (ADS)

    Lin, Juan; Liu, Chenglian; Guo, Yongning

    2014-10-01

    The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.

  12. Global processing takes time: A meta-analysis on local-global visual processing in ASD.

    PubMed

    Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan

    2015-05-01

    What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research.

  13. Global/local finite element analysis for textile composites

    NASA Technical Reports Server (NTRS)

    Woo, Kyeongsik; Whitcomb, John

    1993-01-01

    Conventional analysis of textile composites is impractical because of the complex microstructure. Global/local methodology combined with special macro elements is proposed herein as a practical alternative. Initial tests showed dramatic reductions in the computational effort with only small loss in accuracy.

  14. Local and Global Processing: Observations from a Remote Culture

    ERIC Educational Resources Information Center

    Davidoff, Jules; Fonteneau, Elisabeth; Fagot, Joel

    2008-01-01

    In Experiment 1, a normal adult population drawn from a remote culture (Himba) in northern Namibia made similarity matches to [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. "Cognitive Psychology", 9, 353-383] hierarchical figures. The Himba showed a local bias stronger than that has been previously…

  15. Global and Local Sensitivity Analysis Methods for a Physical System

    ERIC Educational Resources Information Center

    Morio, Jerome

    2011-01-01

    Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.…

  16. A Comparison of Local and Global Formulations of Thermodynamics

    ERIC Educational Resources Information Center

    DeVoe, Howard

    2013-01-01

    Several educators have advocated teaching thermodynamics using a"global" approach in place of the conventional "local" approach. This article uses four examples of experiments to illustrate the two formulations and the definitions of heat and work associated with them. Advantages and disadvantages of both approaches are…

  17. Factors Affecting the Comprehension of Global and Local Main Idea

    ERIC Educational Resources Information Center

    Wang, Danhua

    2009-01-01

    This study investigated factors that would affect a reader's understanding of the main idea at the global level and explicit and implicit main ideas at the local level. Fifty-seven first-year university students taking a college reading course took a comprehension test on an expository text. Statistical analyses revealed that text structure had a…

  18. Designing for Local and Global Meanings of Randomness

    ERIC Educational Resources Information Center

    Paparistodemou, Efi; Noss, Richard

    2004-01-01

    This research aims to study the ways in which "local" events of randomness, based on experiencing the outcome of individual events, can be developed into "global" understandings that focus on an aggregated view of probability (e.g. probability of an event). The findings reported in the paper are part of a broader study that adopted a strategy of…

  19. WATER CONSERVATION: LOCAL SOLUTIONS TO A GLOBAL PROBLEM

    EPA Science Inventory

    Water conservation issues are discussed. Local solutions to a global problem include changing old habits relating to the usage and abuse of water resources. While the suggested behavioral changes may not solve the world's pending water crisis, they may ease the impact of the l...

  20. Going Glocal: Adaptive Education for Local and Global Citizenship

    ERIC Educational Resources Information Center

    Harth, Chris

    2010-01-01

    Technological advances in communications, transportation, and information processing have deepened and broadened connections on multiple levels, local through global, thickening the webs of interactivity that bind us to each other economically, politically, militarily, socially, culturally, environmentally, and ethically. As with most complex…

  1. Youth Studies, Comparative Inquiry, and the Local/Global Problematic

    ERIC Educational Resources Information Center

    McLeod, Julie

    2009-01-01

    The field of youth studies appears to have increasingly taken on a self-consciously "international" orientation, characterized by grappling with how to represent local youth identities and social practices within international, transnational, or global contexts. This challenge is repeated across many different types of study and worked through in…

  2. Global and Local Collaborators: A Study of Scientific Collaboration.

    ERIC Educational Resources Information Center

    Pao, Miranda Lee

    1992-01-01

    Describes an empirical study that was conducted to examine the relationship among scientific co-authorship (i.e., collaboration), research funding, and productivity. Bibliographic records from the MEDLINE database that used the subject heading for schistosomiasis are analyzed, global and local collaborators are discussed, and scientific…

  3. Global Thinking, Local Acting: Movements to Save the Planet.

    ERIC Educational Resources Information Center

    Gerlach, Luther P.

    1991-01-01

    Thinking globally, acting locally has come to be a maxim for an emerging myth about ordinary people acting heroically, from the grassroots, to save the world from environmental contamination. The characteristics of social movements and ideologies concerned with the environment are examined. (SLD)

  4. An Improved Teaching-Learning-Based Optimization with the Social Character of PSO for Global Optimization.

    PubMed

    Zou, Feng; Chen, Debao; Wang, Jiangtao

    2016-01-01

    An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods. PMID:27057157

  5. An Improved Teaching-Learning-Based Optimization with the Social Character of PSO for Global Optimization

    PubMed Central

    Zou, Feng; Chen, Debao; Wang, Jiangtao

    2016-01-01

    An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods. PMID:27057157

  6. Checkpoint regulation of replication forks: global or local?

    PubMed

    Iyer, Divya Ramalingam; Rhind, Nicholas

    2013-12-01

    Cell-cycle checkpoints are generally global in nature: one unattached kinetochore prevents the segregation of all chromosomes; stalled replication forks inhibit late origin firing throughout the genome. A potential exception to this rule is the regulation of replication fork progression by the S-phase DNA damage checkpoint. In this case, it is possible that the checkpoint is global, and it slows all replication forks in the genome. However, it is also possible that the checkpoint acts locally at sites of DNA damage, and only slows those forks that encounter DNA damage. Whether the checkpoint regulates forks globally or locally has important mechanistic implications for how replication forks deal with damaged DNA during S-phase.

  7. Global mental health and its discontents: an inquiry into the making of global and local scale.

    PubMed

    Bemme, Doerte; D'souza, Nicole A

    2014-12-01

    Global Mental Health's (GMH) proposition to "scale up" evidence-based mental health care worldwide has sparked a heated debate among transcultural psychiatrists, anthropologists, and GMH proponents; a debate characterized by the polarization of "global" and "local" approaches to the treatment of mental health problems. This article highlights the institutional infrastructures and underlying conceptual assumptions that are invested in the production of the "global" and the "local" as distinct, and seemingly incommensurable, scales. It traces how the conception of mental health as a "global" problem became possible through the emergence of Global Health, the population health metric DALY, and the rise of evidence-based medicine. GMH also advanced a moral argument to act globally emphasizing the notion of humanity grounded in a shared biology and the universality of human rights. However, despite the frequent criticism of GMH promoting the "bio"-medical model, we argue that novel logics have emerged which may be more important for establishing global applicability than arguments made in the name of "nature": the procedural standardization of evidence and the simplification of psychiatric expertise. Critical scholars, on the other hand, argue against GMH in the name of the "local"; a trope that underlines specificity, alterity, and resistance against global claims. These critics draw on the notions of "culture," "colonialism," the "social," and "community" to argue that mental health knowledge is locally contingent. Yet, paying attention to the divergent ways in which both sides conceptualize the "social" and "community" may point to productive spaces for an analysis of GMH beyond the "global/local" divide.

  8. Local and global processing: observations from a remote culture.

    PubMed

    Davidoff, Jules; Fonteneau, Elisabeth; Fagot, Joel

    2008-09-01

    In Experiment 1, a normal adult population drawn from a remote culture (Himba) in northern Namibia made similarity matches to [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383] hierarchical figures. The Himba showed a local bias stronger than that has been previously observed in any other non-clinical human population. However, in Experiment 2, their recognition of normal or distorted ("Thatcherized") faces did not appear to have been affected by their attention to detail as has been suggested for autistic populations. The data are consistent with a cultural/experiential origin for population differences in local processing and suggest that attention to the local and global properties of stimuli may differ for hierarchical figures and faces. PMID:18662813

  9. A global optimization paradigm based on change of measures

    PubMed Central

    Sarkar, Saikat; Roy, Debasish; Vasu, Ram Mohan

    2015-01-01

    A global optimization framework, COMBEO (Change Of Measure Based Evolutionary Optimization), is proposed. An important aspect in the development is a set of derivative-free additive directional terms, obtainable through a change of measures en route to the imposition of any stipulated conditions aimed at driving the realized design variables (particles) to the global optimum. The generalized setting offered by the new approach also enables several basic ideas, used with other global search methods such as the particle swarm or the differential evolution, to be rationally incorporated in the proposed set-up via a change of measures. The global search may be further aided by imparting to the directional update terms additional layers of random perturbations such as ‘scrambling’ and ‘selection’. Depending on the precise choice of the optimality conditions and the extent of random perturbation, the search can be readily rendered either greedy or more exploratory. As numerically demonstrated, the new proposal appears to provide for a more rational, more accurate and, in some cases, a faster alternative to many available evolutionary optimization schemes. PMID:26587268

  10. Global Optimal Trajectory in Chaos and NP-Hardness

    NASA Astrophysics Data System (ADS)

    Latorre, Vittorio; Gao, David Yang

    This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.

  11. Simple proof of the global optimality of the Hohmann transfer

    NASA Technical Reports Server (NTRS)

    Prussing, John E.

    1992-01-01

    The case of two-impulse transfer between coplanar circular orbits is considered. The global optimality of the Hohmann transfer among the class of two-impulse transfers is proved via ordinary calculus by using the familiar orbital elements, eccentricity e and parameter (semilatus rectum) p. It is noted that this proof is simpler than existing proofs in the literature.

  12. Simple proof of the global optimality of the Hohmann transfer

    NASA Astrophysics Data System (ADS)

    Prussing, John E.

    1992-08-01

    The case of two-impulse transfer between coplanar circular orbits is considered. The global optimality of the Hohmann transfer among the class of two-impulse transfers is proved via ordinary calculus by using the familiar orbital elements, eccentricity e and parameter (semilatus rectum) p. It is noted that this proof is simpler than existing proofs in the literature.

  13. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. PMID:24929345

  14. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    PubMed

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance.

  15. Optimization of receiver arrangements for passive emitter localization methods.

    PubMed

    Flückiger, M; Neild, A; Nelson, B J

    2012-03-01

    Passive localization of an object from its emission can be based on time difference of arrival or phase shift measurements for different receiver groups in sensor arrays. The accuracy of the localization primarily depends on accurate time and/or phase measurements. The frequency of the emission and the number and arrangement of the receivers mainly effect the resolution of the emitter localization. In this paper optimal receiver positions for passive localization methods are proposed, resulting in a maximal resolution for the emitter location estimate. The optimization is done by analyzing the uncertainty of the emitted signal, including its frequency. The technique has been developed specifically for ultrasound signals obtained from omnidirectional transducers, although the results apply for other application using passive localization techniques.

  16. Local coordinates alignment with global preservation for dimensionality reduction.

    PubMed

    Chen, Jing; Ma, Zhengming; Liu, Yang

    2013-01-01

    Dimensionality reduction is vital in many fields, and alignment-based methods for nonlinear dimensionality reduction have become popular recently because they can map the high-dimensional data into a low-dimensional subspace with the property of local isometry. However, the relationships between patches in original high-dimensional space cannot be ensured to be fully preserved during the alignment process. In this paper, we propose a novel method for nonlinear dimensionality reduction called local coordinates alignment with global preservation. We first introduce a reasonable definition of topology-preserving landmarks (TPLs), which not only contribute to preserving the global structure of datasets and constructing a collection of overlapping linear patches, but they also ensure that the right landmark is allocated to the new test point. Then, an existing method for dimensionality reduction that has good performance in preserving the global structure is used to derive the low-dimensional coordinates of TPLs. Local coordinates of each patch are derived using tangent space of the manifold at the corresponding landmark, and then these local coordinates are aligned into a global coordinate space with the set of landmarks in low-dimensional space as reference points. The proposed alignment method, called landmarks-based alignment, can produce a closed-form solution without any constraints, while most previous alignment-based methods impose the unit covariance constraint, which will result in the deficiency of global metrics and undesired rescaling of the manifold. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of the proposed algorithm.

  17. Obstetricians’ Opinions of the Optimal Caesarean Rate: A Global Survey

    PubMed Central

    Cavallaro, Francesca L.; Cresswell, Jenny A.; Ronsmans, Carine

    2016-01-01

    Background The debate surrounding the optimal caesarean rate has been ongoing for several decades, with the WHO recommending an “acceptable” rate of 5–15% since 1997, despite a weak evidence base. Global expert opinion from obstetric care providers on the optimal caesarean rate has not been documented. The objective of this study was to examine providers’ opinions of the optimal caesarean rate worldwide, among all deliveries and within specific sub-groups of deliveries. Methods A global online survey of medical doctors who had performed at least one caesarean in the last five years was conducted between August 2013 and January 2014. Respondents were asked to report their opinion of the optimal caesarean rate—defined as the caesarean rate that would minimise poor maternal and perinatal outcomes—at the population level and within specific sub-groups of deliveries (including women with demographic and clinical risk factors for caesareans). Median reported optimal rates and corresponding inter-quartile ranges (IQRs) were calculated for the sample, and stratified according to national caesarean rate, institutional caesarean rate, facility level, and respondent characteristics. Results Responses were collected from 1,057 medical doctors from 96 countries. The median reported optimal caesarean rate was 20% (IQR: 15–30%) for all deliveries. Providers in private for-profit facilities and in facilities with high institutional rates reported optimal rates of 30% or above, while those in Europe, in public facilities and in facilities with low institutional rates reported rates of 15% or less. Reported optimal rates were lowest among low-risk deliveries and highest for Absolute Maternal Indications (AMIs), with wide IQRs observed for most categories other than AMIs. Conclusions Three-quarters of respondents reported an optimal caesarean rate above the WHO 15% upper threshold. There was substantial variation in responses, highlighting a lack of consensus around

  18. Thinking/acting locally/globally: Western science and environmental education in a global knowledge economy

    NASA Astrophysics Data System (ADS)

    Gough, Noel

    2002-11-01

    This paper critically appraises a number of approaches to 'thinking globally' in environmental education, with particular reference to popular assumptions about the universal applicability of Western science. Although the transnational character of many environmental issues demands that we 'think globally', I argue that the contribution of Western science to understanding and resolving environmental problems might be enhanced by seeing it as one among many local knowledge traditions. The production of a 'global knowledge economy' in/for environmental education can then be understood as creating transnational 'spaces' in which local knowledge traditions can be performed together, rather than as creating a 'common market' in which representations of local knowledge must be translated into (or exchanged for) the terms of a universal discourse.

  19. Globally Optimal Segmentation of Permanent-Magnet Systems

    NASA Astrophysics Data System (ADS)

    Insinga, A. R.; Bjørk, R.; Smith, A.; Bahl, C. R. H.

    2016-06-01

    Permanent-magnet systems are widely used for generation of magnetic fields with specific properties. The reciprocity theorem, an energy-equivalence principle in magnetostatics, can be employed to calculate the optimal remanent flux density of the permanent-magnet system, given any objective functional that is linear in the magnetic field. This approach, however, yields a continuously varying remanent flux density, while in practical applications, magnetic assemblies are realized by combining uniformly magnetized segments. The problem of determining the optimal shape of each of these segments remains unsolved. We show that the problem of optimal segmentation of a two-dimensional permanent-magnet assembly with respect to a linear objective functional can be reduced to the problem of piecewise linear approximation of a plane curve by perimeter maximization. Once the problem has been cast into this form, the globally optimal solution can be easily computed employing dynamic programming.

  20. Local and global processing in savant artists with autism.

    PubMed

    Pring, Linda; Ryder, Nicola; Crane, Laura; Hermelin, Beate

    2010-01-01

    We explored the hypothesis that an enhanced local processing style is characteristic of both art and autism spectrum disorder (ASD) by examining local and global processing in savant artists with ASD. Specifically, savant artists were compared against non-talented individuals with ASD or mild/moderate learning difficulties (MLD), as well as artistically talented or nontalented students, on the block-design task and meaningful and abstract versions of the embedded figures test (EFT). Results demonstrated that there were no significant differences between the meaningful and abstract versions of the EFT, in any of the groups. This suggests that the primary process governing performance on this task was perceptual (local), rather than conceptual (global). More interestingly, the savant artists performed above the level of the ASD and MLD groups on the block-design test, but not the EFT. Despite both the block-design task and the EFT measuring local processing abilities, we suggest that this result is due to the block-design task being an active construction task (requiring the conversion of a visual input into a motor output), whereas the EFT is a passive recognition task. Therefore, although an enhanced local processing style is an important aspect of savant artistic talent, motor control also appears to be a necessary skill.

  1. Local Origin of Global Contact Numbers in Frictional Ellipsoid Packings

    NASA Astrophysics Data System (ADS)

    Schaller, Fabian M.; Neudecker, Max; Saadatfar, Mohammad; Delaney, Gary W.; Schröder-Turk, Gerd E.; Schröter, Matthias

    2015-04-01

    In particulate soft matter systems the average number of contacts Z of a particle is an important predictor of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional, oblate ellipsoids of various aspect ratios α , prepared at different global volume fractions ϕg. We find that Z is a monotonically increasing function of ϕg for all α . We demonstrate that this functional dependence can be explained by a local analysis where each particle is described by its local volume fraction ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl: Z (ϕg,α ,X )=∫Zl(ϕl,α ,X )P (ϕl|ϕg)d ϕl . The local contact number function Zl(ϕl,α ,X ) describes the relevant physics in term of locally defined variables only, including possible higher order terms X . The conditional probability P (ϕl|ϕg) to find a specific value of ϕl given a global packing fraction ϕg is found to be independent of α and X . Our results demonstrate that for frictional particles a local approach is not only a theoretical requirement but also feasible.

  2. Global and Local Distortion Inference During Embedded Zerotree Wavelet Decompression

    NASA Technical Reports Server (NTRS)

    Huber, A. Kris; Budge, Scott E.

    1996-01-01

    This paper presents algorithms for inferring global and spatially local estimates of the squared-error distortion measures for the Embedded Zerotree Wavelet (EZW) image compression algorithm. All distortion estimates are obtained at the decoder without significantly compromising EZW's rate-distortion performance. Two methods are given for propagating distortion estimates from the wavelet domain to the spatial domain, thus giving individual estimates of distortion for each pixel of the decompressed image. These local distortion estimates seem to provide only slight improvement in the statistical characterization of EZW compression error relative to the global measure, unless actual squared errors are propagated. However, they provide qualitative information about the asymptotic nature of the error that may be helpful in wavelet filter selection for low bit rate applications.

  3. Reconstruction of biofilm images: combining local and global structural parameters

    SciTech Connect

    Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk

    2014-11-07

    Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parameters into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.

  4. Emotional state and local versus global spatial memory.

    PubMed

    Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A

    2009-02-01

    The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition.

  5. Geometrical optimization of a local ballistic magnetic sensor

    SciTech Connect

    Kanda, Yuhsuke; Hara, Masahiro; Nomura, Tatsuya; Kimura, Takashi

    2014-04-07

    We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.

  6. An adaptive metamodel-based global optimization algorithm for black-box type problems

    NASA Astrophysics Data System (ADS)

    Jie, Haoxiang; Wu, Yizhong; Ding, Jianwan

    2015-11-01

    In this article, an adaptive metamodel-based global optimization (AMGO) algorithm is presented to solve unconstrained black-box problems. In the AMGO algorithm, a type of hybrid model composed of kriging and augmented radial basis function (RBF) is used as the surrogate model. The weight factors of hybrid model are adaptively selected in the optimization process. To balance the local and global search, a sub-optimization problem is constructed during each iteration to determine the new iterative points. As numerical experiments, six standard two-dimensional test functions are selected to show the distributions of iterative points. The AMGO algorithm is also tested on seven well-known benchmark optimization problems and contrasted with three representative metamodel-based optimization methods: efficient global optimization (EGO), GutmannRBF and hybrid and adaptive metamodel (HAM). The test results demonstrate the efficiency and robustness of the proposed method. The AMGO algorithm is finally applied to the structural design of the import and export chamber of a cycloid gear pump, achieving satisfactory results.

  7. Global optimization based on metamodel construction app lied to design axial turbomachinery cascades using CFD

    NASA Astrophysics Data System (ADS)

    Raimunda da Silva, E.; Camacho, R. G. R.; Filho, N. M.

    2010-08-01

    It presents a methodology for global optimization with constraints of expensive functions using response surfaces models for aerodynamic cascade representing the turbomachine axial with profiles of family NACA65. For the calculation of flow, is used Fluent CFD software, which is on a local and global variations in the flow field. It has been verified that small geometric on the stagger angle, format airfoil and the spacing between the blades, can lead to changes in the efficiency of the blade. Accordingly, we intend to integrate the solution flow through CFD optimization programs based on the construction of metamodels, aiming to obtain considerable gains in computational time. Integration with the optimization programs is necessary to build "script" command to automatically generate the mesh, where the design variables that define the geometry of the blade cascade as stagger angle, pitch to chord and the camber be modified among pre-established limits based on optimization algorithms, in order to achieve an objective function pre-defined, how to obtain the maximum ratio of Cl/ Cd (lift/drag). This methodology for global optimization based on the construction of metamodels together with the random search algorithm controlled (CRSA) is based on iterative construction of response surfaces with radial basis functions (multiquadric) and the application of heuristic criteria to update the database during the optimization process. Cyclical patterns of search are iteratively used to determine the candidate points to be included in the database.

  8. A global optimization approach to multi-polarity sentiment analysis.

    PubMed

    Li, Xinmiao; Li, Jing; Wu, Yukeng

    2015-01-01

    Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From

  9. Global Design Optimization for Aerodynamics and Rocket Propulsion Components

    NASA Technical Reports Server (NTRS)

    Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)

    2000-01-01

    Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design

  10. Global and local obstacle avoidance technique for an autonomous vehicle

    NASA Astrophysics Data System (ADS)

    Gray, Keith W.; Saunders, Kevin S.

    1999-07-01

    The Center for Self-Organizing and Intelligent Systems (CSOIS) is engaged in developing autonomous ground vehicles. A significant problem for such vehicles is obstacle detection and avoidance. After studying various methods of detection, a scanning laser system was chosen that can detect objects at a distance of up to thirty feet while traveling between five and ten miles per hour. Once an object is detected, the vehicle must avoid it. The project employs a mission-level path planner that predetermines the path of a vehicle. One avoidance scheme is to inform the path planner of the obstacle and then let it re-plan the path. This is the global approach to the problem, which allows the use of existing software for maneuvering the vehicle. However, replanning is time consuming and lacks knowledge of the entire obstacle. An alternative approach is to use local avoidance, whereby a vehicle determines how to get by an obstacle without help from the path planner. This approach offers faster response without requiring the computing resource of the path planner. The disadvantage is that during local avoidance the vehicle ignores the global map of known obstacles and does not know to turn control back to the path planner if mission efficiency is adversely affected. This paper will describe a method for combining the current global path planner with a local obstacle avoidance technique to efficiently complete required tasks in a partially unknown environment.

  11. Local paths to global coherence: Cutting networks down to size

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Trousdale, James; Josić, Krešimir; Shea-Brown, Eric

    2014-03-01

    How does connectivity impact network dynamics? We address this question by linking network characteristics on two scales. On the global scale, we consider the coherence of overall network dynamics. We show that such global coherence in activity can often be predicted from the local structure of the network. To characterize local network structure, we use "motif cumulants," a measure of the deviation of pathway counts from those expected in a minimal probabilistic network model. We extend previous results in three ways. First, we give acombinatorial formulation of motif cumulants that relates to the allied concept in probability theory. Second, we show that the link between global network dynamics and local network architecture is strongly affected by heterogeneity in network connectivity. However, we introduce a network-partitioning method that recovers a tight relationship between architecture and dynamics. Third, for a particular set of models, we generalize the underlying theory to treat dynamical coherence at arbitrary orders (i.e., triplet correlations and beyond). We show that at any order, only a highly restricted set of motifs impacts dynamical correlations.

  12. Globally engaged nursing education with local immigrant populations.

    PubMed

    Riner, Mary E

    2013-05-01

    This case study describes how a community health nursing practicum course was redesigned to increase undergraduate students' knowledge of and interactions with local immigrant populations. The goal of this tailored practicum is to develop students' sense of global engagement while remaining in the local community. The GENE framework is applied to course planning, delivery, and evaluation of the experience. The key components of the GENE framework are organizational mission/course goals, global health core content, program characteristics, learner characteristics, reflection, and transformational learning. The practicum design, learning objectives, and community partnership development served to create a co-learning environment. Use of an experiential education philosophy allowed the practicum to evolve as students, faculty, agency staff, and community residents learned together over the practicum. Students developed a more complex understanding of health and social conditions of immigrant populations. They moved from a primarily mono- to an increasingly multicultural orientation. The GENE model was useful in offering a globally focused learning experience within a local community.

  13. Learning Human Actions by Combining Global Dynamics and Local Appearance.

    PubMed

    Luo, Guan; Yang, Shuang; Tian, Guodong; Yuan, Chunfeng; Hu, Weiming; Maybank, Stephen J

    2014-12-01

    In this paper, we address the problem of human action recognition through combining global temporal dynamics and local visual spatio-temporal appearance features. For this purpose, in the global temporal dimension, we propose to model the motion dynamics with robust linear dynamical systems (LDSs) and use the model parameters as motion descriptors. Since LDSs live in a non-Euclidean space and the descriptors are in non-vector form, we propose a shift invariant subspace angles based distance to measure the similarity between LDSs. In the local visual dimension, we construct curved spatio-temporal cuboids along the trajectories of densely sampled feature points and describe them using histograms of oriented gradients (HOG). The distance between motion sequences is computed with the Chi-Squared histogram distance in the bag-of-words framework. Finally we perform classification using the maximum margin distance learning method by combining the global dynamic distances and the local visual distances. We evaluate our approach for action recognition on five short clips data sets, namely Weizmann, KTH, UCF sports, Hollywood2 and UCF50, as well as three long continuous data sets, namely VIRAT, ADL and CRIM13. We show competitive results as compared with current state-of-the-art methods. PMID:26353152

  14. A deterministic global optimization using smooth diagonal auxiliary functions

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.

    2015-04-01

    In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.

  15. Comments upon the usage of derivatives in Lipschitz global optimization

    NASA Astrophysics Data System (ADS)

    Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.

    2016-06-01

    An optimization problem is considered where the objective function f (x) is black-box and multiextremal and the information about its gradient ∇ f (x) is available during the search. It is supposed that ∇ f (x) satisfies the Lipschitz condition over the admissible hyperinterval with an unknown Lipschitz constant K. Some numerical Lipschitz global optimization methods based on geometric ideas with the usage of different estimates of the Lipschitz constant K are presented. Results of their systematic experimental investigation are reported and commented on.

  16. Global Optimization Methods for Gravitational Lens Systems with Regularized Sources

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Fiege, Jason D.

    2012-11-01

    Several approaches exist to model gravitational lens systems. In this study, we apply global optimization methods to find the optimal set of lens parameters using a genetic algorithm. We treat the full optimization procedure as a two-step process: an analytical description of the source plane intensity distribution is used to find an initial approximation to the optimal lens parameters; the second stage of the optimization uses a pixelated source plane with the semilinear method to determine an optimal source. Regularization is handled by means of an iterative method and the generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) functions that are commonly used in standard image deconvolution problems. This approach simultaneously estimates the optimal regularization parameter and the number of degrees of freedom in the source. Using the GCV and UPRE functions, we are able to justify an estimation of the number of source degrees of freedom found in previous work. We test our approach by applying our code to a subset of the lens systems included in the SLACS survey.

  17. Global and local curvature in density functional theory

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Ioannidis, Efthymios I.; Kulik, Heather J.

    2016-08-01

    Piecewise linearity of the energy with respect to fractional electron removal or addition is a requirement of an electronic structure method that necessitates the presence of a derivative discontinuity at integer electron occupation. Semi-local exchange-correlation (xc) approximations within density functional theory (DFT) fail to reproduce this behavior, giving rise to deviations from linearity with a convex global curvature that is evidence of many-electron, self-interaction error and electron delocalization. Popular functional tuning strategies focus on reproducing piecewise linearity, especially to improve predictions of optical properties. In a divergent approach, Hubbard U-augmented DFT (i.e., DFT+U) treats self-interaction errors by reducing the local curvature of the energy with respect to electron removal or addition from one localized subshell to the surrounding system. Although it has been suggested that DFT+U should simultaneously alleviate global and local curvature in the atomic limit, no detailed study on real systems has been carried out to probe the validity of this statement. In this work, we show when DFT+U should minimize deviations from linearity and demonstrate that a "+U" correction will never worsen the deviation from linearity of the underlying xc approximation. However, we explain varying degrees of efficiency of the approach over 27 octahedral transition metal complexes with respect to transition metal (Sc-Cu) and ligand strength (CO, NH3, and H2O) and investigate select pathological cases where the delocalization error is invisible to DFT+U within an atomic projection framework. Finally, we demonstrate that the global and local curvatures represent different quantities that show opposing behavior with increasing ligand field strength, and we identify where these two may still coincide.

  18. A Localization Method for Multistatic SAR Based on Convex Optimization.

    PubMed

    Zhong, Xuqi; Wu, Junjie; Yang, Jianyu; Sun, Zhichao; Huang, Yuling; Li, Zhongyu

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function's maximum is on the circumference of the ellipse which is the iso-range for its model function's T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031

  19. A Localization Method for Multistatic SAR Based on Convex Optimization

    PubMed Central

    2015-01-01

    In traditional localization methods for Synthetic Aperture Radar (SAR), the bistatic range sum (BRS) estimation and Doppler centroid estimation (DCE) are needed for the calculation of target localization. However, the DCE error greatly influences the localization accuracy. In this paper, a localization method for multistatic SAR based on convex optimization without DCE is investigated and the influence of BRS estimation error on localization accuracy is analysed. Firstly, by using the information of each transmitter and receiver (T/R) pair and the target in SAR image, the model functions of T/R pairs are constructed. Each model function’s maximum is on the circumference of the ellipse which is the iso-range for its model function’s T/R pair. Secondly, the target function whose maximum is located at the position of the target is obtained by adding all model functions. Thirdly, the target function is optimized based on gradient descent method to obtain the position of the target. During the iteration process, principal component analysis is implemented to guarantee the accuracy of the method and improve the computational efficiency. The proposed method only utilizes BRSs of a target in several focused images from multistatic SAR. Therefore, compared with traditional localization methods for SAR, the proposed method greatly improves the localization accuracy. The effectivity of the localization approach is validated by simulation experiment. PMID:26566031

  20. Global optimization using the y-ybar diagram

    NASA Astrophysics Data System (ADS)

    Brown, Daniel M.

    1991-12-01

    Software is under development at Teledyne Brown Engineering to represent a lens configuration as a y-ybar or Delano diagram. The program determines third-order Seidel and chromatic aberrations for each configuration. It performs a global search through all valid permutations of configuration space and determines, to within a step increment of the space, the configuration with smallest third-order aberrations. The program was developed to generate first-order optical layouts which promised to reach global minima during subsequent conventional optimization. Other operations allowed by the program are: add or delete surfaces, couple surfaces (for Mangin mirrors), shift the stop position, and display first-order properties and the optical layout (surface radii and thicknesses) for subsequent entry into a conventional lens-design program with automatic optimization. Algorithms for performing some of the key functions, not covered by previous authors, are discussed in this paper.

  1. Pneumothorax detection in chest radiographs using local and global texture signatures

    NASA Astrophysics Data System (ADS)

    Geva, Ofer; Zimmerman-Moreno, Gali; Lieberman, Sivan; Konen, Eli; Greenspan, Hayit

    2015-03-01

    A novel framework for automatic detection of pneumothorax abnormality in chest radiographs is presented. The suggested method is based on a texture analysis approach combined with supervised learning techniques. The proposed framework consists of two main steps: at first, a texture analysis process is performed for detection of local abnormalities. Labeled image patches are extracted in the texture analysis procedure following which local analysis values are incorporated into a novel global image representation. The global representation is used for training and detection of the abnormality at the image level. The presented global representation is designed based on the distinctive shape of the lung, taking into account the characteristics of typical pneumothorax abnormalities. A supervised learning process was performed on both the local and global data, leading to trained detection system. The system was tested on a dataset of 108 upright chest radiographs. Several state of the art texture feature sets were experimented with (Local Binary Patterns, Maximum Response filters). The optimal configuration yielded sensitivity of 81% with specificity of 87%. The results of the evaluation are promising, establishing the current framework as a basis for additional improvements and extensions.

  2. Well-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felicio Bruzzi

    2016-07-01

    Using the locally-enriched strategy to enrich a small/local part of the problem by generalized/extended finite element method (G/XFEM) leads to non-optimal convergence rate and ill-conditioning system of equations due to presence of blending elements. The local enrichment can be chosen from polynomial, singular, branch or numerical types. The so-called stable version of G/XFEM method provides a well-conditioning approach when only singular functions are used in the blending elements. This paper combines numeric enrichment functions obtained from global-local G/XFEM method with the polynomial enrichment along with a well-conditioning approach, stable G/XFEM, in order to show the robustness and effectiveness of the approach. In global-local G/XFEM, the enrichment functions are constructed numerically from the solution of a local problem. Furthermore, several enrichment strategies are adopted along with the global-local enrichment. The results obtained with these enrichments strategies are discussed in detail, considering convergence rate in strain energy, growth rate of condition number, and computational processing. Numerical experiments show that using geometrical enrichment along with stable G/XFEM for global-local strategy improves the convergence rate and the conditioning of the problem. In addition, results shows that using polynomial enrichment for global problem simultaneously with global-local enrichments lead to ill-conditioned system matrices and bad convergence rate.

  3. Well-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felicio Bruzzi

    2016-11-01

    Using the locally-enriched strategy to enrich a small/local part of the problem by generalized/extended finite element method (G/XFEM) leads to non-optimal convergence rate and ill-conditioning system of equations due to presence of blending elements. The local enrichment can be chosen from polynomial, singular, branch or numerical types. The so-called stable version of G/XFEM method provides a well-conditioning approach when only singular functions are used in the blending elements. This paper combines numeric enrichment functions obtained from global-local G/XFEM method with the polynomial enrichment along with a well-conditioning approach, stable G/XFEM, in order to show the robustness and effectiveness of the approach. In global-local G/XFEM, the enrichment functions are constructed numerically from the solution of a local problem. Furthermore, several enrichment strategies are adopted along with the global-local enrichment. The results obtained with these enrichments strategies are discussed in detail, considering convergence rate in strain energy, growth rate of condition number, and computational processing. Numerical experiments show that using geometrical enrichment along with stable G/XFEM for global-local strategy improves the convergence rate and the conditioning of the problem. In addition, results shows that using polynomial enrichment for global problem simultaneously with global-local enrichments lead to ill-conditioned system matrices and bad convergence rate.

  4. Asynchronous global optimization techniques for medium and large inversion problems

    SciTech Connect

    Pereyra, V.; Koshy, M.; Meza, J.C.

    1995-04-01

    We discuss global optimization procedures adequate for seismic inversion problems. We explain how to save function evaluations (which may involve large scale ray tracing or other expensive operations) by creating a data base of information on what parts of parameter space have already been inspected. It is also shown how a correct parallel implementation using PVM speeds up the process almost linearly with respect to the number of processors, provided that the function evaluations are expensive enough to offset the communication overhead.

  5. Global and local Joule heating effects seen by DE 2

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Coley, W. R.

    1988-01-01

    In the altitude region between 350 and 550 km, variations in the ion temperature principally reflect similar variations in the local frictional heating produced by a velocity difference between the ions and the neutrals. Here, the distribution of the ion temperature in this altitude region is shown, and its attributes in relation to previous work on local Joule heating rates are discussed. In addition to the ion temperature, instrumentation on the DE 2 satellite also provides a measure of the ion velocity vector representative of the total electric field. From this information, the local Joule heating rate is derived. From an estimate of the height-integrated Pedersen conductivity it is also possible to estimate the global (height-integrated) Joule heating rate. Here, the differences and relationships between these various parameters are described.

  6. Optimal Design of General Stiffened Composite Circular Cylinders for Global Buckling with Strength Constraints

    NASA Technical Reports Server (NTRS)

    Jaunky, N.; Ambur, D. R.; Knight, N. F., Jr.

    1998-01-01

    A design strategy for optimal design of composite grid-stiffened cylinders subjected to global and local buckling constraints and strength constraints was developed using a discrete optimizer based on a genetic algorithm. An improved smeared stiffener theory was used for the global analysis. Local buckling of skin segments were assessed using a Rayleigh-Ritz method that accounts for material anisotropy. The local buckling of stiffener segments were also assessed. Constraints on the axial membrane strain in the skin and stiffener segments were imposed to include strength criteria in the grid-stiffened cylinder design. Design variables used in this study were the axial and transverse stiffener spacings, stiffener height and thickness, skin laminate stacking sequence and stiffening configuration, where stiffening configuration is a design variable that indicates the combination of axial, transverse and diagonal stiffener in the grid-stiffened cylinder. The design optimization process was adapted to identify the best suited stiffening configurations and stiffener spacings for grid-stiffened composite cylinder with the length and radius of the cylinder, the design in-plane loads and material properties as inputs. The effect of having axial membrane strain constraints in the skin and stiffener segments in the optimization process is also studied for selected stiffening configurations.

  7. In silico Prediction of Aqueous Solubility: a Comparative Study of Local and Global Predictive Models.

    PubMed

    Raevsky, Oleg A; Polianczyk, Daniel E; Grigorev, Veniamin Yu; Raevskaja, Olga E; Dearden, John C

    2015-06-01

    32 Quantitative Structure-Property Relationship (QSPR) models were constructed for prediction of aqueous intrinsic solubility of liquid and crystalline chemicals. Data sets contained 1022 liquid and 2615 crystalline compounds. Multiple Linear Regression (MLR), Support Vector Machine (SVM) and Random Forest (RF) methods were used to construct global models, and k-nearest neighbour (kNN), Arithmetic Mean Property (AMP) and Local Regression Property (LoReP) were used to construct local models. A set of the best QSPR models was obtained: for liquid chemicals with RMSE (root mean square error) of prediction in the range 0.50-0.60 log unit; for crystalline chemicals 0.80-0.90 log unit. In the case of global models the large number of descriptors makes mechanistic interpretation difficult. The local models use only one or two descriptors, so that a medicinal chemist working with sets of structurally-related chemicals can readily estimate their solubility. However, construction of stable local models requires the presence of closely related neighbours for each chemical considered. It is probable that a consensus of global and local QSPR models will be the optimal approach for construction of stable predictive QSPR models with mechanistic interpretation.

  8. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  9. A comparison of two global optimization algorithms with sequential niche technique for structural model updating

    NASA Astrophysics Data System (ADS)

    Shabbir, Faisal; Omenzetter, Piotr

    2014-04-01

    Much effort is devoted nowadays to derive accurate finite element (FE) models to be used for structural health monitoring, damage detection and assessment. However, formation of a FE model representative of the original structure is a difficult task. Model updating is a branch of optimization which calibrates the FE model by comparing the modal properties of the actual structure with these of the FE predictions. As the number of experimental measurements is usually much smaller than the number of uncertain parameters, and, consequently, not all uncertain parameters are selected for model updating, different local minima may exist in the solution space. Experimental noise further exacerbates the problem. The attainment of a global solution in a multi-dimensional search space is a challenging problem. Global optimization algorithms (GOAs) have received interest in the previous decade to solve this problem, but no GOA can ensure the detection of the global minimum either. To counter this problem, a combination of GOA with sequential niche technique (SNT) has been proposed in this research which systematically searches the whole solution space. A dynamically tested full scale pedestrian bridge is taken as a case study. Two different GOAs, namely particle swarm optimization (PSO) and genetic algorithm (GA), are investigated in combination with SNT. The results of these GOA are compared in terms of their efficiency in detecting global minima. The systematic search enables to find different solutions in the search space, thus increasing the confidence of finding the global minimum.

  10. Methods for accurate homology modeling by global optimization.

    PubMed

    Joo, Keehyoung; Lee, Jinwoo; Lee, Jooyoung

    2012-01-01

    High accuracy protein modeling from its sequence information is an important step toward revealing the sequence-structure-function relationship of proteins and nowadays it becomes increasingly more useful for practical purposes such as in drug discovery and in protein design. We have developed a protocol for protein structure prediction that can generate highly accurate protein models in terms of backbone structure, side-chain orientation, hydrogen bonding, and binding sites of ligands. To obtain accurate protein models, we have combined a powerful global optimization method with traditional homology modeling procedures such as multiple sequence alignment, chain building, and side-chain remodeling. We have built a series of specific score functions for these steps, and optimized them by utilizing conformational space annealing, which is one of the most successful combinatorial optimization algorithms currently available.

  11. Global effects of land use on local terrestrial biodiversity.

    PubMed

    Newbold, Tim; Hudson, Lawrence N; Hill, Samantha L L; Contu, Sara; Lysenko, Igor; Senior, Rebecca A; Börger, Luca; Bennett, Dominic J; Choimes, Argyrios; Collen, Ben; Day, Julie; De Palma, Adriana; Díaz, Sandra; Echeverria-Londoño, Susy; Edgar, Melanie J; Feldman, Anat; Garon, Morgan; Harrison, Michelle L K; Alhusseini, Tamera; Ingram, Daniel J; Itescu, Yuval; Kattge, Jens; Kemp, Victoria; Kirkpatrick, Lucinda; Kleyer, Michael; Correia, David Laginha Pinto; Martin, Callum D; Meiri, Shai; Novosolov, Maria; Pan, Yuan; Phillips, Helen R P; Purves, Drew W; Robinson, Alexandra; Simpson, Jake; Tuck, Sean L; Weiher, Evan; White, Hannah J; Ewers, Robert M; Mace, Georgina M; Scharlemann, Jörn P W; Purvis, Andy

    2015-04-01

    Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

  12. International trade of health services: global trends and local impact.

    PubMed

    Lautier, Marc

    2014-10-01

    Globalization is a key challenge facing health policy-makers. A significant dimension of this is trade in health services. Traditionally, the flow of health services exports went from North to South, with patients travelling in the opposite direction. This situation is changing and a number of papers have discussed the growth of health services exports from Southern countries in its different dimensions. Less attention has been paid to assess the real scope of this trade at the global level and its potential impact at the local level. Given the rapid development of this area, there are little empirical data. This paper therefore first built an estimate of the global size and of the growth trend of international trade in health services since 1997, which is compared with several country-based studies. The second purpose of the paper is to demonstrate the significant economic impact of this trade at the local level for the exporting country. We consider the case of health providers in the South-Mediterranean region for which the demand potential, the economic effects and the consequence for the health system are presented. These issues lead to the overall conclusion that different policy options would be appropriate, in relation to the nature of the demand. PMID:25063193

  13. International trade of health services: global trends and local impact.

    PubMed

    Lautier, Marc

    2014-10-01

    Globalization is a key challenge facing health policy-makers. A significant dimension of this is trade in health services. Traditionally, the flow of health services exports went from North to South, with patients travelling in the opposite direction. This situation is changing and a number of papers have discussed the growth of health services exports from Southern countries in its different dimensions. Less attention has been paid to assess the real scope of this trade at the global level and its potential impact at the local level. Given the rapid development of this area, there are little empirical data. This paper therefore first built an estimate of the global size and of the growth trend of international trade in health services since 1997, which is compared with several country-based studies. The second purpose of the paper is to demonstrate the significant economic impact of this trade at the local level for the exporting country. We consider the case of health providers in the South-Mediterranean region for which the demand potential, the economic effects and the consequence for the health system are presented. These issues lead to the overall conclusion that different policy options would be appropriate, in relation to the nature of the demand.

  14. Global effects of land use on local terrestrial biodiversity

    NASA Astrophysics Data System (ADS)

    Newbold, Tim; Hudson, Lawrence N.; Hill, Samantha L. L.; Contu, Sara; Lysenko, Igor; Senior, Rebecca A.; Börger, Luca; Bennett, Dominic J.; Choimes, Argyrios; Collen, Ben; Day, Julie; de Palma, Adriana; Díaz, Sandra; Echeverria-Londoño, Susy; Edgar, Melanie J.; Feldman, Anat; Garon, Morgan; Harrison, Michelle L. K.; Alhusseini, Tamera; Ingram, Daniel J.; Itescu, Yuval; Kattge, Jens; Kemp, Victoria; Kirkpatrick, Lucinda; Kleyer, Michael; Correia, David Laginha Pinto; Martin, Callum D.; Meiri, Shai; Novosolov, Maria; Pan, Yuan; Phillips, Helen R. P.; Purves, Drew W.; Robinson, Alexandra; Simpson, Jake; Tuck, Sean L.; Weiher, Evan; White, Hannah J.; Ewers, Robert M.; Mace, Georgina M.; Scharlemann, Jörn P. W.; Purvis, Andy

    2015-04-01

    Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

  15. Global Properties of Fully Convective Accretion Disks from Local Simulations

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Cattaneo, F.; Mignone, A.; Ponzo, F.; Rossi, P.

    2015-08-01

    We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction is analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.

  16. Competition between global and local online social networks.

    PubMed

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-01-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability. PMID:27117826

  17. Competition between global and local online social networks

    PubMed Central

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-01-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability. PMID:27117826

  18. Effects of local and global network connectivity on synergistic epidemics

    NASA Astrophysics Data System (ADS)

    Broder-Rodgers, David; Pérez-Reche, Francisco J.; Taraskin, Sergei N.

    2015-12-01

    Epidemics in networks can be affected by cooperation in transmission of infection and also connectivity between nodes. An interplay between these two properties and their influence on epidemic spread are addressed in the paper. A particular type of cooperative effects (called synergy effects) is considered, where the transmission rate between a pair of nodes depends on the number of infected neighbors. The connectivity effects are studied by constructing networks of different topology, starting with lattices with only local connectivity and then with networks that have both local and global connectivity obtained by random bond-rewiring to nodes within a certain distance. The susceptible-infected-removed epidemics were found to exhibit several interesting effects: (i) for epidemics with strong constructive synergy spreading in networks with high local connectivity, the bond rewiring has a negative role in epidemic spread, i.e., it reduces invasion probability; (ii) in contrast, for epidemics with destructive or weak constructive synergy spreading on networks of arbitrary local connectivity, rewiring helps epidemics to spread; (iii) and, finally, rewiring always enhances the spread of epidemics, independent of synergy, if the local connectivity is low.

  19. Competition between global and local online social networks

    NASA Astrophysics Data System (ADS)

    Kleineberg, Kaj-Kolja; Boguñá, Marián

    2016-04-01

    The overwhelming success of online social networks, the key actors in the Web 2.0 cosmos, has reshaped human interactions globally. To help understand the fundamental mechanisms which determine the fate of online social networks at the system level, we describe the digital world as a complex ecosystem of interacting networks. In this paper, we study the impact of heterogeneity in network fitnesses on the competition between an international network, such as Facebook, and local services. The higher fitness of international networks is induced by their ability to attract users from all over the world, which can then establish social interactions without the limitations of local networks. In other words, inter-country social ties lead to increased fitness of the international network. To study the competition between an international network and local ones, we construct a 1:1000 scale model of the digital world, consisting of the 80 countries with the most Internet users. Under certain conditions, this leads to the extinction of local networks; whereas under different conditions, local networks can persist and even dominate completely. In particular, our model suggests that, with the parameters that best reproduce the empirical overtake of Facebook, this overtake could have not taken place with a significant probability.

  20. On Vertically Global, Horizontally Local Models for Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    McNally, Colin P.; Pessah, Martin E.

    2015-10-01

    Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.

  1. ON VERTICALLY GLOBAL, HORIZONTALLY LOCAL MODELS FOR ASTROPHYSICAL DISKS

    SciTech Connect

    McNally, Colin P.; Pessah, Martin E. E-mail: mpessah@nbi.dk

    2015-10-01

    Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.

  2. Nonlinear Inertia Weighted Teaching-Learning-Based Optimization for Solving Global Optimization Problem.

    PubMed

    Wu, Zong-Sheng; Fu, Wei-Ping; Xue, Ru

    2015-01-01

    Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well.

  3. Nonlinear Inertia Weighted Teaching-Learning-Based Optimization for Solving Global Optimization Problem

    PubMed Central

    Wu, Zong-Sheng; Fu, Wei-Ping; Xue, Ru

    2015-01-01

    Teaching-learning-based optimization (TLBO) algorithm is proposed in recent years that simulates the teaching-learning phenomenon of a classroom to effectively solve global optimization of multidimensional, linear, and nonlinear problems over continuous spaces. In this paper, an improved teaching-learning-based optimization algorithm is presented, which is called nonlinear inertia weighted teaching-learning-based optimization (NIWTLBO) algorithm. This algorithm introduces a nonlinear inertia weighted factor into the basic TLBO to control the memory rate of learners and uses a dynamic inertia weighted factor to replace the original random number in teacher phase and learner phase. The proposed algorithm is tested on a number of benchmark functions, and its performance comparisons are provided against the basic TLBO and some other well-known optimization algorithms. The experiment results show that the proposed algorithm has a faster convergence rate and better performance than the basic TLBO and some other algorithms as well. PMID:26421005

  4. Global environmental change: local perceptions, understandings, and explanations

    PubMed Central

    Pyhälä, Aili; Fernández-Llamazares, Álvaro; Lehvävirta, Hertta; Byg, Anja; Ruiz-Mallén, Isabel; Salpeteur, Matthieu; Thornton, Thomas F.

    2016-01-01

    Global environmental change (GEC) is an increasingly discussed phenomenon in the scientific literature as evidence of its presence and impacts continues to grow. Yet, while the documentation of GEC is becoming more readily available, local perceptions of GEC— particularly in small-scale societies—and preferences about how to deal with it, are still largely overlooked. Local knowledge and perceptions of GEC are important in that agents make decisions (including on natural resource management) based on individual perceptions. We carried out a systematic literature review that aims to provide an exhaustive state-of-the-art of the degree to and manner in which the study of local perceptions of change are being addressed in GEC research. We reviewed 126 articles found in peer-reviewed journals (between 1998 and 2014) that address local perceptions of GEC. We used three particular lenses of analysis that are known to influence local perceptions, namely (i) cognition, (ii) culture and knowledge, and (iii) possibilities for adaptation.We present our findings on the geographical distribution of the current research, the most common changes reported, perceived drivers and impacts of change, and local explanations and evaluations of change and impacts. Overall, we found the studies to be geographically biased, lacking methodological reporting, mostly theory based with little primary data, and lacking of indepth analysis of the psychological and ontological influences in perception and implications for adaptation. We provide recommendations for future GEC research and propose the development of a “meta-language” around adaptation, perception, and mediation to encourage a greater appreciation and understanding of the diversity around these phenomena across multiple scales, and improved codesign and facilitation of locally relevant adaptation and mitigation strategies. PMID:27695479

  5. Global environmental change: local perceptions, understandings, and explanations

    PubMed Central

    Pyhälä, Aili; Fernández-Llamazares, Álvaro; Lehvävirta, Hertta; Byg, Anja; Ruiz-Mallén, Isabel; Salpeteur, Matthieu; Thornton, Thomas F.

    2016-01-01

    Global environmental change (GEC) is an increasingly discussed phenomenon in the scientific literature as evidence of its presence and impacts continues to grow. Yet, while the documentation of GEC is becoming more readily available, local perceptions of GEC— particularly in small-scale societies—and preferences about how to deal with it, are still largely overlooked. Local knowledge and perceptions of GEC are important in that agents make decisions (including on natural resource management) based on individual perceptions. We carried out a systematic literature review that aims to provide an exhaustive state-of-the-art of the degree to and manner in which the study of local perceptions of change are being addressed in GEC research. We reviewed 126 articles found in peer-reviewed journals (between 1998 and 2014) that address local perceptions of GEC. We used three particular lenses of analysis that are known to influence local perceptions, namely (i) cognition, (ii) culture and knowledge, and (iii) possibilities for adaptation.We present our findings on the geographical distribution of the current research, the most common changes reported, perceived drivers and impacts of change, and local explanations and evaluations of change and impacts. Overall, we found the studies to be geographically biased, lacking methodological reporting, mostly theory based with little primary data, and lacking of indepth analysis of the psychological and ontological influences in perception and implications for adaptation. We provide recommendations for future GEC research and propose the development of a “meta-language” around adaptation, perception, and mediation to encourage a greater appreciation and understanding of the diversity around these phenomena across multiple scales, and improved codesign and facilitation of locally relevant adaptation and mitigation strategies.

  6. A global/local affinity graph for image segmentation.

    PubMed

    Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen

    2015-04-01

    Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the

  7. A global/local affinity graph for image segmentation.

    PubMed

    Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen

    2015-04-01

    Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the

  8. PSCL: predicting protein subcellular localization based on optimal functional domains.

    PubMed

    Wang, Kai; Hu, Le-Le; Shi, Xiao-He; Dong, Ying-Song; Li, Hai-Peng; Wen, Tie-Qiao

    2012-01-01

    It is well known that protein subcellular localizations are closely related to their functions. Although many computational methods and tools are available from Internet, it is still necessary to develop new algorithms in this filed to gain a better understanding of the complex mechanism of plant subcellular localization. Here, we provide a new web server named PSCL for plant protein subcellular localization prediction by employing optimized functional domains. After feature optimization, 848 optimal functional domains from InterPro were obtained to represent each protein. By calculating the distances to each of the seven categories, PSCL showing the possibilities of a protein located into each of those categories in ascending order. Toward our dataset, PSCL achieved a first-order predicted accuracy of 75.7% by jackknife test. Gene Ontology enrichment analysis showing that catalytic activity, cellular process and metabolic process are strongly correlated with the localization of plant proteins. Finally, PSCL, a Linux Operate System based web interface for the predictor was designed and is accessible for public use at http://pscl.biosino.org/.

  9. Local and global gravitomagnetic effects in Kerr spacetime

    SciTech Connect

    Tsoubelis, D.; Economou, A.; Stoghianidis, E.

    1987-08-15

    The integral shift in orientation of a gyroscope in closed polar orbit in the Kerr spacetime is examined as an example of a global gravitomagnetic effect. The exact dependence of this effect on the mass and angular momentum parameters of the Kerr field is determined and the well-known weak-field slow-motion limit pertinent to forthcoming experiments is analyzed. The precession of the spin vector of a gyroscope stationed at a given point of the Kerr spacetime's symmetry axis is presented as a local counterpart of the above gravitomagnetic effect.

  10. Global structual optimizations of surface systems with a genetic algorithm

    SciTech Connect

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Aln algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems.

  11. Global efficiency of local immunization on complex networks

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2013-07-01

    Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.

  12. Global efficiency of local immunization on complex networks

    PubMed Central

    Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2013-01-01

    Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario. PMID:23842121

  13. A Global Optimization Approach to Multi-Polarity Sentiment Analysis

    PubMed Central

    Li, Xinmiao; Li, Jing; Wu, Yukeng

    2015-01-01

    Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From

  14. What does global mean temperature tell us about local climate?

    PubMed

    Sutton, Rowan; Suckling, Emma; Hawkins, Ed

    2015-11-13

    The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.

  15. Efficient frequency conversion based on local optimization theory

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Chen, Changshui; Zhao, Xiangyang; Liu, Tuo; Hu, Hui

    2015-12-01

    We discuss theoretically a robustness of the difference frequency conversion method and demonstrate it by numerical simulation. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance called ‘local optimization’, can keep the intermediate frequency fixed and make the counterintuitive ordering emerge automatically. Here we show an efficient frequency conversion in two-process three wave mixing (TWM). And because the local optimization method is a well-defined, automated computational procedure, we think it would be very useful in the efficient conversion of complicated multi-process TWM, which is a difficult subject in STIRAP.

  16. The factor of local cultural specificity and process of globalization.

    PubMed

    Rudnev, Viacheslav

    2012-12-01

    Cultural polymorphism is a difficult phenomenon, which has multiform influence on the society's life. The active interest of society to local folk knowledge in life-support activities and Nature using is one of the distinctive marks of modern time. This interest has fallen on the period of active transformations of environment as a result of industrial society's pressing on Nature, and the generating of new approaches in the studying of Nature and human activity based on the "technologies" of wild life. The success of humankind in creating artificial surroundings has led to both great success in improving the quality of peoples' lives, and also to problems with renewable resources and human health and to changing for the worse ecology. In 1992 the Unites Nations Conference on Environment and Development (Rio de Janeiro, Brazil) set fixed standards defining global violations of the environment. The zAgenda 21', adopted at this Conference, focused on the necessity of new solutions for problems of the relationships between Nature and Society, mentioning interdisciplinary research as a positive way to search for solutions to new problems, and citing as a goal a zbalance of Nature, Society and Humans'. Pre-industrial society had a different experience in using Nature and solving problems of life-support activity under a regime of sparing nature. Experience has shown that Folk knowledge and Folk technology can, in a number of instances, actually assist in solving high level problems caused by human impact on the environment, e.g., farming methods, and, as a result offering possibilities for a more sound and at the same time effective basis for long-term sustainable production at the local level. The traditional cultures of Eurasia were engaged in agricultural pursuits and had acquired unique experiences in maintaining soil fertility and a technology which limited the impact they were having on the environment. The value of Folk heritage in exploiting the environment

  17. PROSPECT: A Computer System for Globally-Optimal Threading

    SciTech Connect

    Xu, D.; Xu, Y.

    1999-08-06

    This paper presents a new computer system, PROSPECT, for protein threading. PROSPECT employs an energy function that consists of three additive terms: (1) a singleton fitness term, (2) a distance-dependent pairwise-interaction preference term, and (3) alignment gap penalty; and currently uses FSSP as its threading template database. PROSPECT uses a divide-and-conquer algorithm to find an alignment between a query protein sequence and a protein fold template, which is guaranteed to be globally optimal for its energy function. The threading algorithm presented here significantly improves the computational efficiency of our previously-published algorithm, which makes PROSPECT a practical tool even for large protein threading problems. Mathematically, PROSPECT finds a globally-optimal threading between a query sequence of n residues and a fold template of m residues and M core secondary structures in O(nm + MnN{sup 1.5C{minus}1}) time and O(nm + nN{sup C{minus}1}) space, where C, the topological complexity of the template fold as we term, is a value which characterizes the overall structure of the considered pairwise interactions in the fold; and N represents the maximum number of possible alignments between an individual core of the fold and the query sequence when its neighboring cores are already aligned. PROSPECT allows a user to incorporate known biological constraints about the query sequence during the threading process. For given constraints, the system finds a globally-optimal threading which satisfies the constraints. Currently PROSPECT can deal with constraints which reflect geometrical relationships among residues of disulfide bonds, active sites, or determined by the NOE constraints of (low-resolution) NMR spectral data.

  18. Practical strategy for global optimization of zoom lenses

    NASA Astrophysics Data System (ADS)

    Kuper, Thomas G.; Harris, Thomas I.

    1998-09-01

    The effectiveness of global optimizers for non-zoomed lenses has been steadily improving, but until recently their application to zoom lens design has been less successful. Although some methods have been able to make minor improvements to initial design forms, the algorithms have not consistently discovered new solutions with different group power distributions in a single run. In many cases, the difficulty appears related to how effective focal length (EFL) is controlled across zoom positions. Improvements made to the Global SynthesisTM (GS) algorithm in Code VTM, together with a revised strategy for controlling the EFL via weighted constraints, have significantly improved the ability of GS to discover distinct zoom lens solutions, including those with different group powers. We offer a plausible explanation for the success of these changes, and we discuss an example zoom lens design problem based on a 2-group, 7-element patent design.

  19. Local to global avalanches in sheared granular materials

    NASA Astrophysics Data System (ADS)

    Weng, Dengming; Wang, Dong; Bertrand, Thibault; Bares, Jonathan; Berhinger, Bob

    2015-11-01

    Commonly, granular materials yield or flow if sufficiently large shear stress is applied, leading to avalanche-like behavior. Rearrangement phenomenon can produce dramatic events like snow avalanches, land-slides or earthquakes. For experimentally sheared media, we seek to understand the dynamics of the grain rearrangements from the local to the global scale. In this work, force networks and displacement fields are measured on two-dimensional sheared material for cyclically sheared photoelastic circular particles. Avalanches, their size, location and duration are extracted at the global scale from the rapid variation of the macroscopic energy stored in the system whereas at the local scale they are measured from the energy drop, displacement and rotation of each particle. Statistics of those different quantities are computed and correlated to test their intrinsic entanglement and analyze their universal dynamics. These results are quantitatively different from what has been observed for different analytic coarse-grained approaches and permit a clear measurement of the effect of the packing fraction and inter-particle friction coefficient on the statistical behavior.

  20. Detecting Surgical Tools by Modelling Local Appearance and Global Shape.

    PubMed

    Bouget, David; Benenson, Rodrigo; Omran, Mohamed; Riffaud, Laurent; Schiele, Bernt; Jannin, Pierre

    2015-12-01

    Detecting tools in surgical videos is an important ingredient for context-aware computer-assisted surgical systems. To this end, we present a new surgical tool detection dataset and a method for joint tool detection and pose estimation in 2d images. Our two-stage pipeline is data-driven and relaxes strong assumptions made by previous works regarding the geometry, number, and position of tools in the image. The first stage classifies each pixel based on local appearance only, while the second stage evaluates a tool-specific shape template to enforce global shape. Both local appearance and global shape are learned from training data. Our method is validated on a new surgical tool dataset of 2 476 images from neurosurgical microscopes, which is made freely available. It improves over existing datasets in size, diversity and detail of annotation. We show that our method significantly improves over competitive baselines from the computer vision field. We achieve 15% detection miss-rate at 10(-1) false positives per image (for the suction tube) over our surgical tool dataset. Results indicate that performing semantic labelling as an intermediate task is key for high quality detection.

  1. Global optimization for optical thin-film design using Latin Squares

    NASA Astrophysics Data System (ADS)

    Li, Dong-guang; Watson, Anthony

    1997-10-01

    There are many advanced local and global optimization techniques, such as Gradient, Simplex, Flip-flop, Needle, Genetic and Simulated Annealing, which have been successfully applied to optical thin-film design. However, all these optimization techniques either require a selection of a reasonable starting design, which is a big obstacle to an inexperienced designer, or they have some kind of inbuilt random feature, which may give rise to different answers each time. To find the true global optimized solution for a thin film design problem, we need to solve an array of interlinked multi-dimensional simultaneous equations. Until recently, for more than just a few layers, this has been a very difficult task, requiring the use of a supercomputer and highly skilled programming. By using orthogonal Latin Square theory and an experimental design methodology in a search space reduction process, a Windows based program has been written that can operate on even a 20 MHz 386 computer. It can find the global optimum design for up to 23 layers using as many dispersive and lossy materials as one wishes, within a period of hours. Additionally this methodology (called DGL-Optimization) allows the use of multiple target spectra with such as both s & p polarization, for reflection and transmission simultaneously.

  2. An Adaptive Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-11-03

    In this paper, we propose a new adaptive unified differential evolution algorithm for single-objective global optimization. Instead of the multiple mutation strate- gies proposed in conventional differential evolution algorithms, this algorithm employs a single equation unifying multiple strategies into one expression. It has the virtue of mathematical simplicity and also provides users the flexibility for broader exploration of the space of mutation operators. By making all control parameters in the proposed algorithm self-adaptively evolve during the process of optimization, it frees the application users from the burden of choosing appro- priate control parameters and also improves the performance of the algorithm. In numerical tests using thirteen basic unimodal and multimodal functions, the proposed adaptive unified algorithm shows promising performance in compari- son to several conventional differential evolution algorithms.

  3. Design and global optimization of high-efficiency thermophotovoltaic systems.

    PubMed

    Bermel, Peter; Ghebrebrhan, Michael; Chan, Walker; Yeng, Yi Xiang; Araghchini, Mohammad; Hamam, Rafif; Marton, Christopher H; Jensen, Klavs F; Soljačić, Marin; Joannopoulos, John D; Johnson, Steven G; Celanovic, Ivan

    2010-09-13

    Despite their great promise, small experimental thermophotovoltaic (TPV) systems at 1000 K generally exhibit extremely low power conversion efficiencies (approximately 1%), due to heat losses such as thermal emission of undesirable mid-wavelength infrared radiation. Photonic crystals (PhC) have the potential to strongly suppress such losses. However, PhC-based designs present a set of non-convex optimization problems requiring efficient objective function evaluation and global optimization algorithms. Both are applied to two example systems: improved micro-TPV generators and solar thermal TPV systems. Micro-TPV reactors experience up to a 27-fold increase in their efficiency and power output; solar thermal TPV systems see an even greater 45-fold increase in their efficiency (exceeding the Shockley-Quiesser limit for a single-junction photovoltaic cell).

  4. Teaching global and local environmental change through Remote Sensing

    NASA Astrophysics Data System (ADS)

    Mauri, Emanuela Paola; Rossi, Giovanni

    2013-04-01

    Human beings perceive the world primarily through their sense of sight. This can explain why the use of images is so important and common in educational materials, in particular for scientific subjects. The development of modern technologies for visualizing the scientific features of the Earth has provided new opportunities for communicating the increasing complexity of science both to the public and in school education. In particular, the use of Earth observation satellites for civil purposes, which started in the 70s, has opened new perspectives in the study of natural phenomena and human impact on the environment; this is particularly relevant for those processes developing on a long term period and on a global scale. Instruments for Remote Sensing increase the power of human sight, giving access to additional information about the physical world, which the human eye could not otherwise perceive. The possibility to observe from a remote perspective significant processes like climate change, ozone depletion, desertification, urban development, makes it possible for observers to better appreciate and experience the complexity of environment. Remote Sensing reveals the impact of human activities on ecosystems: this allows students to understand important concepts like global and local change in much more depth. This poster describes the role and effectiveness of Remote Sensing imagery in scientific education, and its importance towards a better global environmental awareness.

  5. A Unified Differential Evolution Algorithm for Global Optimization

    SciTech Connect

    Qiang, Ji; Mitchell, Chad

    2014-06-24

    Abstract?In this paper, we propose a new unified differential evolution (uDE) algorithm for single objective global optimization. Instead of selecting among multiple mutation strategies as in the conventional differential evolution algorithm, this algorithm employs a single equation as the mutation strategy. It has the virtue of mathematical simplicity and also provides users the flexbility for broader exploration of different mutation strategies. Numerical tests using twelve basic unimodal and multimodal functions show promising performance of the proposed algorithm in comparison to convential differential evolution algorithms.

  6. The global potential of local peri-urban food production

    NASA Astrophysics Data System (ADS)

    Kriewald, Steffen; Garcia Cantu Ros, Anselmo; Sterzel, Till; Kropp, Jürgen P.

    2013-04-01

    One big challenge for the rest of the 21st century will be the massive urbanisation. It is expected that more than 7 out of 10 persons will live in a city by the year 2050. Crucial developments towards a sustainable future will therefore take place in cities. One important approach for a sustainable city development is to re-localize food production and to close urban nutrient cycles through better waste management. The re-location of food production avoids CO2 emissions from transportation of food to cities and can also generate income for inhabitants. Cities are by definition locations where fertility accumulates. As cities are often built along rivers, their soils are often fertile. Furthermore, labour force and the possibility of producing fertilizer from human fecal matter within the city promises sustainable nutrients cycles. Although urban and peri-urban agriculture can be found in many cities worldwide and already have a substantial contribution to food supply, it has not jet been comprehensibly structured by research. We combine several worldwide data sets to determine the supply of cities with regional food production, where regional is defined as a production that occurs very close to the consumption within the peri-urban area. Therefore, urban areas are not defined by administrative boundaries but by connected built-up urban areas, and peri-urban area by the surrounding area with the same size multiplied with a scaling parameter. Both together accumulate to an urban-bio-region (UBR). With regard to national food consumption, a linear program achieves the best possible yield on agricultural areas and allows the computation of the fraction of population, which can be nourished. Additionally, several climate scenarios and different dietary patterns were considered. To close the gap between single case studies and to provide a quantitative overview of the global potential of peri-urban food production we used high resolution land-use data Global Land Cover

  7. Damage localization using experimental modal parameters and topology optimization

    NASA Astrophysics Data System (ADS)

    Niemann, Hanno; Morlier, Joseph; Shahdin, Amir; Gourinat, Yves

    2010-04-01

    This work focuses on the development of a damage detection and localization tool using the topology optimization feature of MSC.Nastran. This approach is based on the correlation of a local stiffness loss and the change in modal parameters due to damages in structures. The loss in stiffness is accounted by the topology optimization approach for updating undamaged numerical models towards similar models with embedded damages. Hereby, only a mass penalization and the changes in experimentally obtained modal parameters are used as objectives. The theoretical background for the implementation of this method is derived and programmed in a Nastran input file and the general feasibility of the approach is validated numerically, as well as experimentally by updating a model of an experimentally tested composite laminate specimen. The damages have been introduced to the specimen by controlled low energy impacts and high quality vibration tests have been conducted on the specimen for different levels of damage. These supervised experiments allow to test the numerical diagnosis tool by comparing the result with both NDT technics and results of previous works (concerning shifts in modal parameters due to damage). Good results have finally been achieved for the localization of the damages by the topology optimization.

  8. Sustained Attention to Local and Global Target Features Is Different: Performance and Tympanic Membrane Temperature

    ERIC Educational Resources Information Center

    Helton, William S.; Hayrynen, Lauren; Schaeffer, David

    2009-01-01

    Vision researchers have investigated the differences between global and local feature perception. No one has, however, examined the role of global and local feature discrimination in sustained attention tasks. In this experiment participants performed a sustained attention task requiring either global or local letter target discriminations or…

  9. Localization/Globalization and the Midwife State: Strategic Dilemmas for State Feminism in Education?

    ERIC Educational Resources Information Center

    Blackmore, Jill

    1999-01-01

    Explores implications of the globalization/localization process for state feminism, focusing on Australia. Localization is one response to globalization, exemplified by devolution to self-managing schools. However, global/local relations have gendered effects that resonate cross-nationally. Problems will emerge as the state withdraws from its…

  10. Avoiding coral reef functional collapse requires local and global action.

    PubMed

    Kennedy, Emma V; Perry, Chris T; Halloran, Paul R; Iglesias-Prieto, Roberto; Schönberg, Christine H L; Wisshak, Max; Form, Armin U; Carricart-Ganivet, Juan P; Fine, Maoz; Eakin, C Mark; Mumby, Peter J

    2013-05-20

    Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification. While the abundance of coral has declined in recent decades, the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services. PMID:23664976

  11. Avoiding coral reef functional collapse requires local and global action.

    PubMed

    Kennedy, Emma V; Perry, Chris T; Halloran, Paul R; Iglesias-Prieto, Roberto; Schönberg, Christine H L; Wisshak, Max; Form, Armin U; Carricart-Ganivet, Juan P; Fine, Maoz; Eakin, C Mark; Mumby, Peter J

    2013-05-20

    Coral reefs face multiple anthropogenic threats, from pollution and overfishing to the dual effects of greenhouse gas emissions: rising sea temperature and ocean acidification. While the abundance of coral has declined in recent decades, the implications for humanity are difficult to quantify because they depend on ecosystem function rather than the corals themselves. Most reef functions and ecosystem services are founded on the ability of reefs to maintain their three-dimensional structure through net carbonate accumulation. Coral growth only constitutes part of a reef's carbonate budget; bioerosion processes are influential in determining the balance between net structural growth and disintegration. Here, we combine ecological models with carbonate budgets and drive the dynamics of Caribbean reefs with the latest generation of climate models. Budget reconstructions using documented ecological perturbations drive shallow (6-10 m) Caribbean forereefs toward an increasingly fragile carbonate balance. We then projected carbonate budgets toward 2080 and contrasted the benefits of local conservation and global action on climate change. Local management of fisheries (specifically, no-take marine reserves) and the watershed can delay reef loss by at least a decade under "business-as-usual" rises in greenhouse gas emissions. However, local action must be combined with a low-carbon economy to prevent degradation of reef structures and associated ecosystem services.

  12. How the global informs the local: the Botswana Citizenship Case.

    PubMed

    Dow, J U

    2001-06-01

    In this article I put forward the following positions. First is that women in Africa have not been involved in the formulation and/or interpretation and or implementation of what are now accepted norms and concepts that inform current notions of human rights, democracy, and good governance. Second, women's contact with systems that are traditionally viewed as the bedrock of democracy and good governance have been from a position of weakness, in roles of servants, objects, and exceptions to the general rule. Third, women have not been participants, on an equal basis with men, in the negotiation, formulation, development, and implementation of national constitutions. Fourth, many national constitutions fail to guarantee women equal rights with men under the law. Fifth, I suggest that only when women are equal actors in the process can there be a legitimate claim that Africa is on the road to democracy. Finally, the local cannot remain isolated and exclusively self-informing, and, consequently, the global must inform and influence the local. Such influence is legitimate, justified, and necessary if women are to gain their human rights at the local level. I use my case, that is, the case of The Attorney General of the Republic of Botswana v Unity Dow Civil Appeal No. 4/91, often referred to as the Citizenship Case, or the Dow Case, to demonstrate these positions. This is a case in which I successfully challenged the Citizenship Act of 1984 on the grounds that it discriminated against women. PMID:11813782

  13. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  14. A Framework for Parallel Nonlinear Optimization by Partitioning Localized Constraints

    SciTech Connect

    Xu, You; Chen, Yixin

    2008-06-28

    We present a novel parallel framework for solving large-scale continuous nonlinear optimization problems based on constraint partitioning. The framework distributes constraints and variables to parallel processors and uses an existing solver to handle the partitioned subproblems. In contrast to most previous decomposition methods that require either separability or convexity of constraints, our approach is based on a new constraint partitioning theory and can handle nonconvex problems with inseparable global constraints. We also propose a hypergraph partitioning method to recognize the problem structure. Experimental results show that the proposed parallel algorithm can efficiently solve some difficult test cases.

  15. Handling inequality constraints in continuous nonlinear global optimization

    SciTech Connect

    Wang, Tao; Wah, B.W.

    1996-12-31

    In this paper, we present a new method to handle inequality constraints and apply it in NOVEL (Nonlinear Optimization via External Lead), a system we have developed for solving constrained continuous nonlinear optimization problems. In general, in applying Lagrange-multiplier methods to solve these problems, inequality constraints are first converted into equivalent equality constraints. One such conversion method adds a slack variable to each inequality constraint in order to convert it into an equality constraint. The disadvantage of this conversion is that when the search is inside a feasible region, some satisfied constraints may still pose a non-zero weight in the Lagrangian function, leading to possible oscillations and divergence when a local optimum lies on the boundary of a feasible region. We propose a new conversion method called the MaxQ method such that all satisfied constraints in a feasible region always carry zero weight in the Lagrange function; hence, minimizing the Lagrange function in a feasible region always leads to local minima of the objective function. We demonstrate that oscillations do not happen in our method. We also propose methods to speed up convergence when a local optimum lies on the boundary of a feasible region. Finally, we show improved experimental results in applying our proposed method in NOVEL on some existing benchmark problems and compare them to those obtained by applying the method based on slack variables.

  16. Fast globally optimal segmentation of cells in fluorescence microscopy images.

    PubMed

    Bergeest, Jan-Philip; Rohr, Karl

    2011-01-01

    Accurate and efficient segmentation of cells in fluorescence microscopy images is of central importance for the quantification of protein expression in high-throughput screening applications. We propose a new approach for segmenting cell nuclei which is based on active contours and convex energy functionals. Compared to previous work, our approach determines the global solution. Thus, the approach does not suffer from local minima and the segmentation result does not depend on the initialization. We also suggest a numeric approach for efficiently computing the solution. The performance of our approach has been evaluated using fluorescence microscopy images of different cell types. We have also performed a quantitative comparison with previous segmentation approaches.

  17. GMG: A Guaranteed, Efficient Global Optimization Algorithm for Remote Sensing.

    SciTech Connect

    D'Helon, CD

    2004-08-18

    The monocular passive ranging (MPR) problem in remote sensing consists of identifying the precise range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem may be set as a global optimization problem (GOP) whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. Using additional information about the error function between the predicted and observed radiances of the target, we developed GMG, a new algorithm to find the Global Minimum with a Guarantee. The new algorithm transforms the original continuous GOP into a discrete search problem, thereby guaranteeing to find the position of the global minimum in a reasonably short time. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions and then applied to various realizations of the MPR problem.

  18. GMG - A guaranteed global optimization algorithm: Application to remote sensing

    SciTech Connect

    D'Helon, Cassius; Protopopescu, Vladimir A; Wells, Jack C; Barhen, Jacob

    2007-01-01

    We investigate the role of additional information in reducing the computational complexity of the global optimization problem (GOP). Following this approach, we develop GMG -- an algorithm to find the Global Minimum with a Guarantee. The new algorithm breaks up an originally continuous GOP into a discrete (grid) search problem followed by a descent problem. The discrete search identifies the basin of attraction of the global minimum after which the actual location of the minimizer is found upon applying a descent algorithm. The algorithm is first applied to the golf course problem, which serves as a litmus test for its performance in the presence of both complete and degraded additional information. GMG is further assessed on a set of standard benchmark functions. We then illustrate the performance of the the validated algorithm on a simple realization of the monocular passive ranging (MPR) problem in remote sensing, which consists of identifying the range of an airborne target (missile, plane, etc.) from its observed radiance. This inverse problem is set as a GOP whereby the difference between the observed and model predicted radiances is minimized over the possible ranges and atmospheric conditions. We solve the GOP using GMG and report on the performance of the algorithm.

  19. What does global mean temperature tell us about local climate?

    PubMed Central

    Sutton, Rowan; Suckling, Emma; Hawkins, Ed

    2015-01-01

    The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies. PMID:26438282

  20. Local and Global Illumination in the Volume Rendering Integral

    SciTech Connect

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  1. New orbit correction method uniting global and local orbit corrections

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Takaki, H.; Sakai, H.; Satoh, M.; Harada, K.; Kamiya, Y.

    2006-01-01

    A new orbit correction method, called the eigenvector method with constraints (EVC), is proposed and formulated to unite global and local orbit corrections for ring accelerators, especially synchrotron radiation(SR) sources. The EVC can exactly correct the beam positions at arbitrarily selected ring positions such as light source points, simultaneously reducing closed orbit distortion (COD) around the whole ring. Computer simulations clearly demonstrate these features of the EVC for both cases of the Super-SOR light source and the Advanced Light Source (ALS) that have typical structures of high-brilliance SR sources. In addition, the effects of errors in beam position monitor (BPM) reading and steering magnet setting on the orbit correction are analytically expressed and also compared with the computer simulations. Simulation results show that the EVC is very effective and useful for orbit correction and beam position stabilization in SR sources.

  2. Local and global uncertainty analyses of a methane flame model.

    PubMed

    Zádor, Judit; Zsély, István Gy; Turányi, Tamás; Ratto, Marco; Tarantola, Stefano; Saltelli, Andrea

    2005-11-01

    Local and global uncertainty analyses of a flat, premixed, stationary, laminar methane flame model were carried out using the Leeds methane oxidation mechanism at lean (phi = 0.70), stoichiometric (phi = 1.00), and rich (phi = 1.20) equivalence ratios. Uncertainties of laminar flame velocity, maximal flame temperature, and maximal concentrations of radicals H, O, OH, CH, and CH(2) were investigated. Global uncertainty analysis methods included the Morris method, the Monte Carlo analysis with Latin hypercube sampling, and an improved version of the Sobol' method. Assumed probability density functions (pdf's) were assigned to the rate coefficients of all the 175 reactions and to the enthalpies of formation of the 37 species. The analyses provided the following answers: approximate pdf's and standard deviations of the model results, minimum and maximum values of the results at any physically realistic parameter combination, and the contribution of the uncertainty of each parameter to the uncertainty of the model result. The uncertainty of a few rate parameters and a few enthalpies of formation causes most of the uncertainty of the model results. Most uncertainty comes from the inappropriate knowledge of kinetic data, but the uncertainty caused by thermodynamic data is also significant. PMID:16833293

  3. Global dispersion and local diversification of the methane seep microbiome

    PubMed Central

    Ruff, S. Emil; Biddle, Jennifer F.; Teske, Andreas P.; Knittel, Katrin; Boetius, Antje

    2015-01-01

    Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate–methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance of ANME (anaerobic methanotrophic archaea), as well as aerobic Methylococcales, sulfate-reducing Desulfobacterales, and sulfide-oxidizing Thiotrichales, matches the most favorable microbial metabolisms at methane seeps in terms of substrate supply and distinguishes the seep microbiome from other seafloor microbiomes. The key functional taxa varied in relative sequence abundance between different seeps due to the environmental factors, sediment depth and seafloor temperature. The degree of endemism of the methane seep microbiome suggests a high local diversification in these heterogeneous but long-lived ecosystems. Our results indicate that the seep microbiome is structured according to metacommunity processes and that few cosmopolitan microbial taxa mediate the bulk of methane oxidation, with global relevance to methane emission in the ocean. PMID:25775520

  4. Global dispersion and local diversification of the methane seep microbiome.

    PubMed

    Ruff, S Emil; Biddle, Jennifer F; Teske, Andreas P; Knittel, Katrin; Boetius, Antje; Ramette, Alban

    2015-03-31

    Methane seeps are widespread seafloor ecosystems shaped by the emission of gas from seabed reservoirs. The microorganisms inhabiting methane seeps transform the chemical energy in methane to products that sustain rich benthic communities around the gas leaks. Despite the biogeochemical relevance of microbial methane removal at seeps, the global diversity and dispersion of seep microbiota remain unknown. Here we determined the microbial diversity and community structure of 23 globally distributed methane seeps and compared these to the microbial communities of 54 other seafloor ecosystems, including sulfate-methane transition zones, hydrothermal vents, coastal sediments, and deep-sea surface and subsurface sediments. We found that methane seep communities show moderate levels of microbial richness compared with other seafloor ecosystems and harbor distinct bacterial and archaeal taxa with cosmopolitan distribution and key biogeochemical functions. The high relative sequence abundance of ANME (anaerobic methanotrophic archaea), as well as aerobic Methylococcales, sulfate-reducing Desulfobacterales, and sulfide-oxidizing Thiotrichales, matches the most favorable microbial metabolisms at methane seeps in terms of substrate supply and distinguishes the seep microbiome from other seafloor microbiomes. The key functional taxa varied in relative sequence abundance between different seeps due to the environmental factors, sediment depth and seafloor temperature. The degree of endemism of the methane seep microbiome suggests a high local diversification in these heterogeneous but long-lived ecosystems. Our results indicate that the seep microbiome is structured according to metacommunity processes and that few cosmopolitan microbial taxa mediate the bulk of methane oxidation, with global relevance to methane emission in the ocean.

  5. Reinforcement active learning in the vibrissae system: optimal object localization.

    PubMed

    Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud

    2013-01-01

    Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. PMID:22789551

  6. Reinforcement active learning in the vibrissae system: optimal object localization.

    PubMed

    Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud

    2013-01-01

    Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment.

  7. An adaptive locally optimal method detecting weak deterministic signals

    NASA Astrophysics Data System (ADS)

    Wang, C. H.

    1983-10-01

    A new method for detecting weak signals in interference and clutter in radar systems is presented. The detector which uses this method is adaptive for an environment varying with time and locally optimal for detecting targets and constant false-alarm ratio (CFAR) for the statistics of interference and clutter varying with time. The loss of CFAR is small, and the detector is also simple in structure. The statistical equivalent transfer characteristic of a rank quantizer which can be used as part of an adaptive locally most powerful detector (ALMP) is obtained. It is shown that the distribution-free Doppler processor of Dillard (1974) is not only a nonparameter detector, but also an ALMP detector under certain conditions.

  8. Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms

    NASA Astrophysics Data System (ADS)

    Göktürkler, G.; Balkaya, Ç.

    2012-10-01

    Three naturally inspired meta-heuristic algorithms—the genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization (PSO)—were used to invert some of the self-potential (SP) anomalies originated by some polarized bodies with simple geometries. Both synthetic and field data sets were considered. The tests with the synthetic data comprised of the solutions with both noise-free and noisy data; in the tests with the field data some SP anomalies observed over a copper belt (India), graphite deposits (Germany) and metallic sulfide (Turkey) were inverted. The model parameters included the electric dipole moment, polarization angle, depth, shape factor and origin of the anomaly. The estimated parameters were compared with those from previous studies using various optimization algorithms, mainly least-squares approaches, on the same data sets. During the test studies the solutions by GA, PSO and SA were characterized as being consistent with each other; a good starting model was not a requirement to reach the global minimum. It can be concluded that the global optimization algorithms considered in this study were able to yield compatible solutions with those from widely used local optimization algorithms.

  9. A graph-based approach for local and global panorama imaging in cystoscopy

    NASA Astrophysics Data System (ADS)

    Bergen, Tobias; Wittenberg, Thomas; Münzenmayer, Christian; Chen, Chi Chiung Grace; Hager, Gregory D.

    2013-03-01

    Inspection of the urinary bladder with an endoscope (cystoscope) is the usual procedure for early detection of bladder cancer. The very limited field of view provided by the endoscope makes it challenging to ensure, that the interior bladder wall has been examined completely. Panorama imaging techniques can be used to assist the surgeon and provide a larger view field. Different approaches have been proposed, but generating a panorama image of the entire bladder from real patient data is still a challenging research topic. We propose a graph-based and hierarchical approach to assess this problem to first generate several local panorama images, followed by a global textured three-dimensional reconstruction of the organ. In this contribution, we address details of the first level of the approach including a graph-based algorithm to deal with the challenging condition of in-vivo data. This graph strategy gives rise to a robust relocalization strategy in case of tracking failure, an effective keyframe selection process as well as the concept of building locally optimized sub-maps, which lay the ground for a global optimization process. Our results show the successful application of the method to four in-vivo data sets.

  10. Asymptotically optimal data analysis for rejecting local realism

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbao; Glancy, Scott; Knill, Emanuel

    2011-12-01

    Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR) analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett , Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.66.042111 66, 042111 (2002)]. If the prepared state does not vary in time, the p values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137]. We find that the p values of the former can be too small and are therefore not statistically valid, while those derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.

  11. Asymptotically optimal data analysis for rejecting local realism

    SciTech Connect

    Zhang, Yanbao; Glancy, Scott; Knill, Emanuel

    2011-12-15

    Reliable experimental demonstrations of violations of local realism are highly desirable for fundamental tests of quantum mechanics. One can quantify the violation witnessed by an experiment in terms of a statistical p value, which can be defined as the maximum probability according to local realism of a violation at least as high as that witnessed. Thus, high violation corresponds to small p value. We propose a prediction-based-ratio (PBR) analysis protocol whose p values are valid even if the prepared quantum state varies arbitrarily and local realistic models can depend on previous measurement settings and outcomes. It is therefore not subject to the memory loophole [J. Barrett et al., Phys. Rev. A 66, 042111 (2002)]. If the prepared state does not vary in time, the p values are asymptotically optimal. For comparison, we consider protocols derived from the number of standard deviations of violation of a Bell inequality and from martingale theory [R. Gill, e-print arXiv:quant-ph/0110137]. We find that the p values of the former can be too small and are therefore not statistically valid, while those derived from the latter are suboptimal. PBR p values do not require a predetermined Bell inequality and can be used to compare results from different tests of local realism independent of experimental details.

  12. WFH: closing the global gap--achieving optimal care.

    PubMed

    Skinner, Mark W

    2012-07-01

    For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan

  13. WFH: closing the global gap--achieving optimal care.

    PubMed

    Skinner, Mark W

    2012-07-01

    For 50 years, the World Federation of Hemophilia (WFH) has been working globally to close the gap in care and to achieve Treatment for All patients, men and women, with haemophilia and other inherited bleeding disorders, regardless of where they might live. The WFH estimates that more than one in 1000 men and women has a bleeding disorder equating to 6,900,000 worldwide. To close the gap in care between developed and developing nations a continued focus on the successful strategies deployed heretofore will be required. However, in response to the rapid advances in treatment and emerging therapeutic advances on the horizon it will also require fresh approaches and renewed strategic thinking. It is difficult to predict what each therapeutic advance on the horizon will mean for the future, but there is no doubt that we are in a golden age of research and development, which has the prospect of revolutionizing treatment once again. An improved understanding of "optimal" treatment is fundamental to the continued evolution of global care. The challenges of answering government and payer demands for evidence-based medicine, and cost justification for the introduction and enhancement of treatment, are ever-present and growing. To sustain and improve care it is critical to build the body of outcome data for individual patients, within haemophilia treatment centers (HTCs), nationally, regionally and globally. Emerging therapeutic advances (longer half-life therapies and gene transfer) should not be justified or brought to market based only on the notion that they will be economically more affordable, although that may be the case, but rather more importantly that they will be therapeutically more advantageous. Improvements in treatment adherence, reductions in bleeding frequency (including microhemorrhages), better management of trough levels, and improved health outcomes (including quality of life) should be the foremost considerations. As part of a new WFH strategic plan

  14. Global optimization for future gravitational wave detector sites

    NASA Astrophysics Data System (ADS)

    Hu, Yi-Ming; Raffai, Péter; Gondán, László; Heng, Ik Siong; Kelecsényi, Nándor; Hendry, Martin; Márka, Zsuzsa; Márka, Szabolcs

    2015-05-01

    We consider the optimal site selection of future generations of gravitational wave (GW) detectors. Previously, Raffai et al optimized a two-detector network with a combined figure of merit (FoM). This optimization was extended to networks with more than two detectors in a limited way by first fixing the parameters of all other component detectors. In this work we now present a more general optimization that allows the locations of all detectors to be simultaneously chosen. We follow the definition of Raffai et al on the metric that defines the suitability of a certain detector network. Given the locations of the component detectors in the network, we compute a measure of the network's ability to distinguish the polarization, constrain the sky localization and reconstruct the parameters of a GW source. We further define the ‘flexibility index’ for a possible site location, by counting the number of multi-detector networks with a sufficiently high FoM that include that site location. We confirm the conclusion of Raffai et al, that in terms of the flexibility index as defined in this work, Australia hosts the best candidate site to build a future generation GW detector. This conclusion is valid for either a three-detector network or a five-detector network. For a three-detector network, site locations in Northern Europe display a comparable flexibility index to sites in Australia. However, for a five-detector network, Australia is found to be a clearly better candidate than any other location.

  15. Quantum-inspired immune clonal algorithm for global optimization.

    PubMed

    Jiao, Licheng; Li, Yangyang; Gong, Maoguo; Zhang, Xiangrong

    2008-10-01

    Based on the concepts and principles of quantum computing, a novel immune clonal algorithm, called a quantum-inspired immune clonal algorithm (QICA), is proposed to deal with the problem of global optimization. In QICA, the antibody is proliferated and divided into a set of subpopulation groups. The antibodies in a subpopulation group are represented by multistate gene quantum bits. In the antibody's updating, the general quantum rotation gate strategy and the dynamic adjusting angle mechanism are applied to accelerate convergence. The quantum not gate is used to realize quantum mutation to avoid premature convergences. The proposed quantum recombination realizes the information communication between subpopulation groups to improve the search efficiency. Theoretical analysis proves that QICA converges to the global optimum. In the first part of the experiments, 10 unconstrained and 13 constrained benchmark functions are used to test the performance of QICA. The results show that QICA performs much better than the other improved genetic algorithms in terms of the quality of solution and computational cost. In the second part of the experiments, QICA is applied to a practical problem (i.e., multiuser detection in direct-sequence code-division multiple-access systems) with a satisfying result.

  16. "Glocalization": Going beyond the Dichotomy of Global versus Local through Additive Multilingualism

    ERIC Educational Resources Information Center

    Joseph, Michael; Ramani, Esther

    2012-01-01

    This article interrogates the notion of "glocalization" (Moja, 2004, based on Castells, 2001) as a concept that seeks to integrate the local and the global to address both the need for social justice and the need to participate in a global market economy. The article argues that the relation between the global and the local cannot be explored…

  17. Coupled effects of local movement and global interaction on contagion

    NASA Astrophysics Data System (ADS)

    Zhong, Li-Xin; Xu, Wen-Juan; Chen, Rong-Da; Qiu, Tian; Shi, Yong-Dong; Zhong, Chen-Yang

    2015-10-01

    By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we propose a generalized epidemic model which can change from the territorial epidemic model to the networked epidemic model. The role of the individual-based linkage between different spatial domains is investigated. As we adjust the timescale parameter τ from 0 to unity, which represents the degree of activation of the individual-based linkage, three regions are found. Within the region of 0 < τ < 0.02, the epidemic is determined by local movement and is sensitive to the timescale τ. Within the region of 0.02 < τ < 0.5, the epidemic is insensitive to the timescale τ. Within the region of 0.5 < τ < 1, the outbreak of the epidemic is determined by the structure of the individual-based linkage. As we keep an eye on the first region, the role of activating the individual-based linkage in the present model is similar to the role of the shortcuts in the two-dimensional small world network. Only activating a small number of the individual-based linkage can prompt the outbreak of the epidemic globally. The role of narrowing segregated spatial domain and reducing mobility in epidemic control is checked. These two measures are found to be conducive to curbing the spread of infectious disease only when the global interaction is suppressed. A log-log relation between the change in the number of infected individuals and the timescale τ is found. By calculating the epidemic threshold and the mean first encounter time, we heuristically analyze the microscopic characteristics of the propagation of the epidemic in the present model.

  18. The local, remote, and global consequences of climate feedbacks

    NASA Astrophysics Data System (ADS)

    Feldl, Nicole

    Climate feedbacks offer a powerful framework for revealing the energetic pathways by which the system adjusts to an imposed forcing, such as an increase in atmospheric CO2. We investigate how local atmospheric feedbacks, such as those associated with Arctic sea ice and the Walker circulation, affect both global climate sensitivity and spatial patterns of warming. Emphasis is placed on a general circulation model with idealized boundary conditions, for the clarity it provides. For this aquaplanet simulation, we account for rapid tropospheric adjustments to CO2 and explicitly diagnose feedbacks (using radiative kernels) and forcing for this precise model set-up. In particular, a detailed closure of the energy budget within a clean experimental set-up allows us to consider nonlinear interactions between feedbacks. The inclusion of a tropical Walker circulation is found to prime the Hadley Circulation for a larger deceleration under CO2 doubling, by altering subtropical stratus decks and the meridional feedback gradient. We perform targeted experiments to isolate the atmospheric processes responsible for the variability in climate sensitivity, with implications for high-sensitivity paleoclimates. The local climate response is characterized in terms of the meridional structure of feedbacks, atmospheric heat transport, nonlinearities, and forcing. Our results display a combination of positive subtropical feedbacks and polar amplified warming. These two factors imply a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: anomalous divergence of heat flux away from positive feedbacks in the subtropics; clear-sky nonlinearities that reinforce the pattern of tropical cooling and high-latitude warming tendencies; and strong ice-line feedbacks that drive further amplification of polar warming. These results have implications for regional climate

  19. Local and global navigational coordinate systems in desert ants.

    PubMed

    Collett, Matthew; Collett, Thomas S

    2009-04-01

    While foraging, the desert ant Cataglyphis fortis keeps track of its position with respect to its nest through a process of path integration (PI). Once it finds food, it can then follow a direct home vector to its nest. Furthermore, it remembers the coordinates of a food site, and uses these coordinates to return to the site. Previous studies suggest, however, that it does not associate any coordinates remembered from previous trips with familiar views such that it can produce a home vector when displaced to a familiar site. We ask here whether a desert ant uses any association between PI coordinates and familiar views to ensure consistent PI coordinates as it travels along a habitual route. We describe an experiment in which we manipulated the PI coordinates an ant has when reaching a distinctive point along a habitual route on the way to a feeder. The subsequent home vectors of the manipulated ants, when displaced from the food-site to a test ground, show that also when a route memory is evoked at a significant point on the way to a food site, C. fortis does not reset its PI coordinates to those it normally has at that point. We use this result to argue that local vector memories, which encode the metric properties of a segment of a habitual route, must be encoded in a route-based coordinate system that is separate from the nest-based global coordinates. We propose a model for PI-based guidance that can account for several puzzling observations, and that naturally produces the route-based coordinate system required for learning and following local vectors.

  20. A Functional Near-Infrared Spectroscopy Study of Sustained Attention to Local and Global Target Features

    ERIC Educational Resources Information Center

    De Joux, Neil; Russell, Paul N.; Helton, William S.

    2013-01-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a…

  1. Which way is which? Examining global/local processing with symbolic cues.

    PubMed

    Mills, Mark; Dodd, Michael D

    2014-08-01

    A new method combining spatial-cueing and compound-stimulus paradigms draws on involuntary attentional orienting elicited by a spatially uninformative central arrow cue to investigate global/local processing under incidental processing conditions, wherein global/local levels were uninformative (do not aid performance) and task-irrelevant (need not be processed to perform the task). The task was peripheral target detection. Cues were compound arrows, which were either consistent (global/local arrows oriented in same direction) or inconsistent (global/local arrows oriented in opposite directions). Global/local processing was measured by spatial-cueing effects (response time [RT] difference between target locations validly cued by an arrow and targets at different locations), with the test of global/local advantage represented by the effect of cue-level for inconsistent cues (RT difference between global-valid and local-valid cues). Cue-target interval (stimulus-onset-asynchrony [SOA]) was manipulated to test whether global/local advantage varied with relative stimulus availability. Experiment 1 observed a Cue-Level × SOA interaction such that an early, large global cueing effect was followed by a later, smaller local cueing effect, indicative of a global-to-local shift in advantage. This occurred despite knowledge that global/local arrows were uninformative and task-irrelevant and could therefore be ignored, thus displaying key properties of an involuntary process. Experiment 2 added neutral cues (arrow at one level, rectangle at the other) and determined that the reversal was not due to inhibition of the globally cued location or to attenuation of global information but rather to the presence of conflicting spatial information. Experiments 3 and 4 ruled out alternative accounts for these results. These data indicate global precedence in attended but incidentally processed objects.

  2. Global versus local conservation focus of U.S. state agency endangered bird species lists.

    PubMed

    Wells, Jeffrey V; Robertson, Bruce; Rosenberg, Kenneth V; Mehlman, David W

    2010-01-06

    The development of species priorities for conservation at local or regional scales (for example, within a state or province) poses an interesting paradox. One the one hand, locally or regionally-derived species priorities may lead to greater interest in and resources directed to biodiversity conservation by local or regional institutions. On the other hand, locally or regionally-derived species priorities could overlook national or global priorities. We assessed U.S. state government agency endangered-threatened bird lists to determine the comparative representation of species of global versus local conservation significance on them. State lists tended to be represented primarily by species of low global risk-low global responsibility (range: 15-100%; mean 51%) and high global risk-high global responsibility (range: 0-73%; mean 35%). In 25 states, more than half of the species on the state lists were in the low global risk-low global responsibility category. Most U.S. state agency lists represent a combined strategy of highlighting species of both local and global conservation significance. Even with this combined local-global strategy, most state lists were predominated by species that represent local but not global conservation significance. Such a strategy could have profound negative consequences for many species that are not formally recognized under national endangered species protections but that are also left off of state-level endangered species lists.

  3. Global versus local change effects on a large European river.

    PubMed

    Floury, M; Delattre, C; Ormerod, S J; Souchon, Y

    2012-12-15

    Water temperature and discharge are fundamental to lotic ecosystem function, and both are strongly affected by climate. In large river catchments, however, climatic effects might be difficult to discern from background variability and other cumulative sources of anthropogenic change arising from local land and water management. Here, we use trend analysis and generalised linear modelling on the Loire, the longest river in France to test the hypotheses that i) long-term trends in discharge and river temperature have arisen from climate change and ii) climatic effects on water quality have not been overridden by local effects. Over 32 years (1977-2008), discharge in the Middle Loire fell by about 100 m³/s while water temperature increased by 1.2 °C with greatest effects during the warm period (May-August). Although increasing air temperature explained 80% of variations in water temperature, basin-wide precipitation showed no long-term trend and accounted for only 18% of inter-annual fluctuations in flow. We suggest that trends in abstraction coupled with a potential increase in evapo-transpiration at the catchment scale could be responsible for the majority of the long-term discharge trend. Discharge and water temperature explained only 20% of long-term variations in major water quality variables (conductivity, dissolved oxygen, pH, suspended matter, biochemical oxygen demand, nitrate, phosphate and chlorophyll-a), with phosphate and chlorophyll declining contrary to expectations from global change probably as a consequence of improved wastewater treatment. These data partially support our first hypothesis in revealing how warming in the Loire has been consistent with recent atmospheric warming. However, local management has had larger effects on discharge and water quality in ways that could respectively exacerbate (abstraction) or ameliorate (reduced point-source pollution) warming effects. As one of the first case-studies of its kind, this multi-parametric study

  4. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    PubMed Central

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  5. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks.

    PubMed

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  6. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks.

    PubMed

    Lee, JongHyup; Pak, Dohyun

    2016-08-29

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections.

  7. Characteristic matrix operation for finding global solution of one-time ray-tracing optimization method.

    PubMed

    Tsai, Ko-Fan; Chu, Shu-Chun

    2016-09-19

    The one-time ray-tracing optimization method is a fast way to design LED illumination systems [Opt. Express22, 5357 (2014)10.1364/OE.22.005357]. The method optimizes the performance of LED illumination systems by modifying the LEDs' luminous intensity distribution curve (LIDC) with a freeform lens, instead of modifying the illumination system structure. In finding the LEDs' LIDC for optimizing the illumination system's performance, the LEDs' LIDC found by means of a general gradient descent method can be trapped in a local solution. This study develops a matrix operation method to directly find the global solution of the LEDs' LIDC for the optimization of the illumination system's performance for any initial design of an illumination system structure. As compared with the gradient descent method, using the proposed characteristic matrix operation method to find the best LEDs' LIDC reduces the cost in time by several orders of magnitude. The proposed characteristic matrix operation method ensures that the one-time ray-tracing optimization method is an efficient and reliable method for designing LED illumination systems. PMID:27661876

  8. Characteristic matrix operation for finding global solution of one-time ray-tracing optimization method.

    PubMed

    Tsai, Ko-Fan; Chu, Shu-Chun

    2016-09-19

    The one-time ray-tracing optimization method is a fast way to design LED illumination systems [Opt. Express22, 5357 (2014)10.1364/OE.22.005357]. The method optimizes the performance of LED illumination systems by modifying the LEDs' luminous intensity distribution curve (LIDC) with a freeform lens, instead of modifying the illumination system structure. In finding the LEDs' LIDC for optimizing the illumination system's performance, the LEDs' LIDC found by means of a general gradient descent method can be trapped in a local solution. This study develops a matrix operation method to directly find the global solution of the LEDs' LIDC for the optimization of the illumination system's performance for any initial design of an illumination system structure. As compared with the gradient descent method, using the proposed characteristic matrix operation method to find the best LEDs' LIDC reduces the cost in time by several orders of magnitude. The proposed characteristic matrix operation method ensures that the one-time ray-tracing optimization method is an efficient and reliable method for designing LED illumination systems.

  9. On the performance of linear decreasing inertia weight particle swarm optimization for global optimization.

    PubMed

    Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka

    2013-01-01

    Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383

  10. A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2008-01-01

    An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent

  11. The L_infinity constrained global optimal histogram equalization technique for real time imaging

    NASA Astrophysics Data System (ADS)

    Ren, Qiongwei; Niu, Yi; Liu, Lin; Jiao, Yang; Shi, Guangming

    2015-08-01

    Although the current imaging sensors can achieve 12 or higher precision, the current display devices and the commonly used digital image formats are still only 8 bits. This mismatch causes significant waste of the sensor precision and loss of information when storing and displaying the images. For better usage of the precision-budget, tone mapping operators have to be used to map the high-precision data into low-precision digital images adaptively. In this paper, the classic histogram equalization tone mapping operator is reexamined in the sense of optimization. We point out that the traditional histogram equalization technique and its variants are fundamentally improper by suffering from local optimum problems. To overcome this drawback, we remodel the histogram equalization tone mapping task based on graphic theory which achieves the global optimal solutions. Another advantage of the graphic-based modeling is that the tone-continuity is also modeled as a vital constraint in our approach which suppress the annoying boundary artifacts of the traditional approaches. In addition, we propose a novel dynamic programming technique to solve the histogram equalization problem in real time. Experimental results shows that the proposed tone-preserved global optimal histogram equalization technique outperforms the traditional approaches by exhibiting more subtle details in the foreground while preserving the smoothness of the background.

  12. Local and global visual processing and eating disorder traits: An event-related potential study.

    PubMed

    Moynihan, Jennifer; Rose, Mark; van Velzen, Jose; de Fockert, Jan

    2016-03-01

    Recent studies have suggested that individuals with eating disorders show a stronger local processing bias and/or a weaker global bias in visual processing than typical individuals. In this study, healthy participants with varying scores on the Eating Disorder Examination Questionnaire (EDE-Q) performed the Navon task, a standard task of local and global visual processing, whilst electrophysiological measures were recorded. Global stimuli were presented that were made up of many local parts, and the information between levels was either compatible or incompatible. Participants were instructed to report the identity of either a global or a local target shape, while ignoring the other level. Higher EDE-Q scores were associated with enhanced amplitude of the P3 component during local visual processing, as well as greater P1 amplitude during local incompatible trials. These findings support the claim that eating disorders are associated with differences in local and global visual processing.

  13. Local and global visual processing and eating disorder traits: An event-related potential study.

    PubMed

    Moynihan, Jennifer; Rose, Mark; van Velzen, Jose; de Fockert, Jan

    2016-03-01

    Recent studies have suggested that individuals with eating disorders show a stronger local processing bias and/or a weaker global bias in visual processing than typical individuals. In this study, healthy participants with varying scores on the Eating Disorder Examination Questionnaire (EDE-Q) performed the Navon task, a standard task of local and global visual processing, whilst electrophysiological measures were recorded. Global stimuli were presented that were made up of many local parts, and the information between levels was either compatible or incompatible. Participants were instructed to report the identity of either a global or a local target shape, while ignoring the other level. Higher EDE-Q scores were associated with enhanced amplitude of the P3 component during local visual processing, as well as greater P1 amplitude during local incompatible trials. These findings support the claim that eating disorders are associated with differences in local and global visual processing. PMID:26777337

  14. Artificial neural networks optimization method for radioactive source localization

    SciTech Connect

    Wacholder, E.; Elias, E.; Merlis, Y.

    1995-05-01

    An optimization artificial neural networks model is developed for solving the ill-posed inverse transport problem associated with localizing radioactive sources in a medium with known properties and dimensions. The model is based on the recurrent (or feedback) Hopfield network with fixed weights. The source distribution is determined based on the response of a limited number of external detectors of known spatial deployment in conjunction with a radiation transport model. The algorithm is tested and evaluated for a large number of simulated two-dimensional cases. Computations are carried out at different noise levels to account for statistical errors encountered in engineering applications. The sensitivity to noise is found to depend on the number of detectors and on their spatial deployment. A pretest empirical procedure is, therefore, suggested for determining an effective arrangement of detectors for a given problem.

  15. Towards optimal design of locally resonant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.

    2014-11-01

    The paper presents an in-depth analysis of solid locally resonant acoustic metamaterials (LRAMs) consisting of rubber-coated inclusions. Dispersion properties of two-dimensional LRAMs are studied by means of finite-element modal analysis. For an incompressible rubber, only one practically important spectral band gap is found for in-plane modes in a low-frequency range. This result is in striking contrast with the compressible coating case, previously studied in the literature. For inclusions with a circular cross-section, the lower bound of the band gap can be evaluated exactly by means of the derived analytical solution, which is also valid for compressible coatings and can therefore be used to determine lower bounds of higher band gaps as well. The influence of geometric and material parameters, filling fraction and inclusion shape on the width of the lowest band gap is investigated in detail. Based on the results of this analysis, an optimal microstructure of LRAMs yielding the widest low-frequency band gap is proposed. To achieve the band gap at the lowest possible frequencies in LRAMs suitable for practical applications, the use of the tungsten core material is advised, as a safe and economically viable alternative to commonly considered lead and gold. Two configurations of LRAM with various sizes of coated tungsten cylindrical inclusions with circular cross-section are considered. The evolution of dispersion spectra due to the presence of different inclusions is investigated, and the parameters for optimal design of LRAMs are determined.

  16. Assessing Significance of Global Climate Change in Local Climate Time Series

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Bair, A.; Livezey, R.; Hollingshead, A.; Horsfall, F. M. C.; Meyers, J. C.

    2014-12-01

    A common question by users to NOAA National Weather Service (NWS) local offices is how significant is global climate change in their local area. The scientific community provides copious information on global climate change, including assessments, for large regions. However, most decisions are made at the local level, where little or no information typically exists. To address this need, NOAA NWS released operationally the Local Climate Analysis Tool (LCAT) in 2013 and specifically incorporated a capability into the tool to determine the local Rate of Change (ROC). Although ROC provides answers to some questions, we have seen an additional need for clarification on the significance of the ROC, such as whether or not it differentiates natural variability from a real signal of longer-term climate change. This question becomes very important for decision makers in consideration of their long term planning efforts to build local resilience to changes in climate. LCAT uses three trend adjustment methods in computing ROC: Hinge, Optimal Climate Normals (OCN), and Exponentially Weighted Moving Average (EWMA). The Hinge tracks changes in climate time series, and OCN and EWMS track changes in climate normals. ROC is the slope of the straight line fit of the trend. Standard statistical methodology in use provides guidance for confidence intervals of the slope parameter (von Storch and Zwiers, 1999), which works well for a linear regression fit and can be used for ROCs of OCN and EWMA. However the Hinge, which is a linear fit anchored on one end, needs some additional adjustments and most likely will have smaller confidence intervals than those estimated by the statistical method. An additional way to look at the problem is to assess how the climate change signal compares to climate variability in the local time series. Livezey et al. (2007) suggested the use of the signal to noise ratio to estimate the significance of the rate of climate change. The signal to noise ratio of

  17. CH4 parameter estimation in CLM4.5bgc using surrogate global optimization

    NASA Astrophysics Data System (ADS)

    Müller, J.; Paudel, R.; Shoemaker, C. A.; Woodbury, J.; Wang, Y.; Mahowald, N.

    2015-10-01

    Over the anthropocene methane has increased dramatically. Wetlands are one of the major sources of methane to the atmosphere, but the role of changes in wetland emissions is not well understood. The Community Land Model (CLM) of the Community Earth System Models contains a module to estimate methane emissions from natural wetlands and rice paddies. Our comparison of CH4 emission observations at 16 sites around the planet reveals, however, that there are large discrepancies between the CLM predictions and the observations. The goal of our study is to adjust the model parameters in order to minimize the root mean squared error (RMSE) between model predictions and observations. These parameters have been selected based on a sensitivity analysis. Because of the cost associated with running the CLM simulation (15 to 30 min on the Yellowstone Supercomputing Facility), only relatively few simulations can be allowed in order to find a near-optimal solution within an acceptable time. Our results indicate that the parameter estimation problem has multiple local minima. Hence, we use a computationally efficient global optimization algorithm that uses a radial basis function (RBF) surrogate model to approximate the objective function. We use the information from the RBF to select parameter values that are most promising with respect to improving the objective function value. We show with pseudo data that our optimization algorithm is able to make excellent progress with respect to decreasing the RMSE. Using the true CH4 emission observations for optimizing the parameters, we are able to significantly reduce the overall RMSE between observations and model predictions by about 50 %. The methane emission predictions of the CLM using the optimized parameters agree better with the observed methane emission data in northern and tropical latitudes. With the optimized parameters, the methane emission predictions are higher in northern latitudes than when the default parameters are

  18. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.

    PubMed

    Moon, Sojin; Bannen, Ryan M; Rutkoski, Thomas J; Phillips, George N; Bae, Euiyoung

    2014-10-01

    Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability.

  19. Effectiveness and limitations of local structural entropy optimization in the thermal stabilization of mesophilic and thermophilic adenylate kinases.

    PubMed

    Moon, Sojin; Bannen, Ryan M; Rutkoski, Thomas J; Phillips, George N; Bae, Euiyoung

    2014-10-01

    Local structural entropy (LSE) is a descriptor for the extent of conformational heterogeneity in short protein sequences that is computed from structural information derived from the Protein Data Bank. Reducing the LSE of a protein sequence by introducing amino acid mutations can result in fewer conformational states and thus a more stable structure, indicating that LSE optimization can be used as a protein stabilization method. Here, we describe a series of LSE optimization experiments designed to stabilize mesophilic and thermophilic adenylate kinases (AKs) and report crystal structures of LSE-optimized AK variants. In the mesophilic AK, thermal stabilization by LSE reduction was effective but limited. Structural analyses of the LSE-optimized mesophilic AK variants revealed a strong correlation between LSE and the apolar buried surface area. Additional mutations designed to introduce noncovalent interactions between distant regions of the polypeptide resulted in further stabilization. Unexpectedly, optimizing the LSE of the thermophilic AK resulted in a decrease in thermal stability. This destabilization was reduced when charged residues were excluded from the possible substitutions during LSE optimization. These observations suggest that stabilization by LSE reduction may result from the optimization of local hydrophobic contacts. The limitations of this process are likely due to ignorance of other interactions that bridge distant regions in a given amino acid sequence. Our results illustrate the effectiveness and limitations of LSE optimization as a protein stabilization strategy and highlight the importance and complementarity of local conformational stability and global interactions in protein thermal stability. PMID:24931334

  20. Chaotic Teaching-Learning-Based Optimization with Lévy Flight for Global Numerical Optimization.

    PubMed

    He, Xiangzhu; Huang, Jida; Rao, Yunqing; Gao, Liang

    2016-01-01

    Recently, teaching-learning-based optimization (TLBO), as one of the emerging nature-inspired heuristic algorithms, has attracted increasing attention. In order to enhance its convergence rate and prevent it from getting stuck in local optima, a novel metaheuristic has been developed in this paper, where particular characteristics of the chaos mechanism and Lévy flight are introduced to the basic framework of TLBO. The new algorithm is tested on several large-scale nonlinear benchmark functions with different characteristics and compared with other methods. Experimental results show that the proposed algorithm outperforms other algorithms and achieves a satisfactory improvement over TLBO. PMID:26941785

  1. Chaotic Teaching-Learning-Based Optimization with Lévy Flight for Global Numerical Optimization.

    PubMed

    He, Xiangzhu; Huang, Jida; Rao, Yunqing; Gao, Liang

    2016-01-01

    Recently, teaching-learning-based optimization (TLBO), as one of the emerging nature-inspired heuristic algorithms, has attracted increasing attention. In order to enhance its convergence rate and prevent it from getting stuck in local optima, a novel metaheuristic has been developed in this paper, where particular characteristics of the chaos mechanism and Lévy flight are introduced to the basic framework of TLBO. The new algorithm is tested on several large-scale nonlinear benchmark functions with different characteristics and compared with other methods. Experimental results show that the proposed algorithm outperforms other algorithms and achieves a satisfactory improvement over TLBO.

  2. Chaotic Teaching-Learning-Based Optimization with Lévy Flight for Global Numerical Optimization

    PubMed Central

    He, Xiangzhu; Huang, Jida; Rao, Yunqing; Gao, Liang

    2016-01-01

    Recently, teaching-learning-based optimization (TLBO), as one of the emerging nature-inspired heuristic algorithms, has attracted increasing attention. In order to enhance its convergence rate and prevent it from getting stuck in local optima, a novel metaheuristic has been developed in this paper, where particular characteristics of the chaos mechanism and Lévy flight are introduced to the basic framework of TLBO. The new algorithm is tested on several large-scale nonlinear benchmark functions with different characteristics and compared with other methods. Experimental results show that the proposed algorithm outperforms other algorithms and achieves a satisfactory improvement over TLBO. PMID:26941785

  3. Sustained attention to local and global target features is different: performance and tympanic membrane temperature.

    PubMed

    Helton, William S; Hayrynen, Lauren; Schaeffer, David

    2009-10-01

    Vision researchers have investigated the differences between global and local feature perception. No one has, however, examined the role of global and local feature discrimination in sustained attention tasks. In this experiment participants performed a sustained attention task requiring either global or local letter target discriminations or watched the same displays without any work imperative. Reaction time to targets was slower when global feature discriminations were required than when local feature discriminations were required. Tympanic membrane temperature (TMT) was utilized in this study as an index of cerebral activation. Participants in the global letter detection condition had elevated post-task right TMT, indicative of reduced cerebral activation in the right hemisphere, in comparison to participants in the local letter detection or no-work imperative conditions. Both the performance and physiological results of this study indicate increased cognitive fatigue when global feature discriminations are required.

  4. Genetically controlled random search: a global optimization method for continuous multidimensional functions

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Lagaris, Isaac E.

    2006-01-01

    A new stochastic method for locating the global minimum of a multidimensional function inside a rectangular hyperbox is presented. A sampling technique is employed that makes use of the procedure known as grammatical evolution. The method can be considered as a "genetic" modification of the Controlled Random Search procedure due to Price. The user may code the objective function either in C++ or in Fortran 77. We offer a comparison of the new method with others of similar structure, by presenting results of computational experiments on a set of test functions. Program summaryTitle of program: GenPrice Catalogue identifier:ADWP Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWP Program available from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: the tool is designed to be portable in all systems running the GNU C++ compiler Installation: University of Ioannina, Greece Programming language used: GNU-C++, GNU-C, GNU Fortran-77 Memory required to execute with typical data: 200 KB No. of bits in a word: 32 No. of processors used: 1 Has the code been vectorized or parallelized?: no No. of lines in distributed program, including test data, etc.:13 135 No. of bytes in distributed program, including test data, etc.: 78 512 Distribution format: tar. gz Nature of physical problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques are frequently trapped in local minima. Global optimization is hence the appropriate tool. For example, solving a nonlinear system of equations via optimization, employing a "least squares" type of objective, one may encounter many local minima that do not correspond to solutions, i.e. minima with values

  5. Local and global aspects of the linear MRI in accretion discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik N.; Fromang, Sebastien; Faure, Julien

    2015-11-01

    We revisit the linear magnetorotational instability (MRI) in a cylindrical model of an accretion disc and uncover a number of attractive results overlooked in previous treatments. In particular, we elucidate the connection between local axisymmetric modes and global modes, and show that a local channel flow corresponds to the evanescent part of a global mode. In addition, we find that the global problem reproduces the local dispersion relation without approximation, a result that helps explain the success the local analysis enjoys in predicting global growth rates. MRI channel flows are non-linear solutions to the governing equations in the local shearing box. However, only a small subset of MRI modes share the same property in global disc models, providing further evidence that the prominence of channels in local boxes is artificial. Finally, we verify our results via direct numerical simulations with the Godunov code RAMSES.

  6. Global and local mapping of motor blocks liners roughness for the analysis of honing performance

    NASA Astrophysics Data System (ADS)

    Cabanettes, F.; Fahlgren, L.; Hoering, T.; Rosén, B.-G.

    2014-03-01

    The manufacturing and finishing (honing) of cylinder liners for the automotive industry is a constant challenge in order to reduce friction losses and oil consumption. A better knowledge of surfaces generated during plateau honing is then required for optimization of the process. Despite a well-known and controlled honing process, variations in surface roughness appear at both global (due to honing tool wear) and local (TDC, middle stroke, BDC) scales and need to be mapped and analysed. The following paper proposes to map the global and local variations in roughness by using a confocal 3D measuring equipment able to measure and scan any area of a cylinder liner. Six motor blocks (five liners each) are evaluated with twenty topography measurements per liner. In total, six hundred 3D measurements of size 1×1 mm are performed and roughness parameters are computed. The results show that some parameters do correlate with the honing tool wear specific to each cylinder. Experimental models could be built. Furthermore surface roughness varies significantly over the axial length of the liners due to waviness deviations combined with a lack of flexibility of the honing tool in axial direction.

  7. Contributions of projected land use to global radiative forcing ascribed to local sources

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2013-12-01

    With global demand for food expected to dramatically increase and put additional pressures on natural lands, there is a need to understand the environmental impacts of land use and land cover change (LULCC). Previous studies have shown that the magnitude and even the sign of the radiative forcing (RF) of biogeophysical effects from LULCC depends on the latitude and forest ecology of the disturbed region. Here we ascribe the contributions to the global RF by land-use related anthropogenic activities to their local sources, organized on a grid of 1.9 degrees latitude by 2.5 degrees longitude. We use RF estimates for the year 2100, using five future LULCC projections, computed from simulations with the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. Our definition of the LULCC RF includes changes to terrestrial carbon storage, methane and nitrous oxide emissions, atmospheric chemistry, aerosol emissions, and surface albedo. We ascribe the RF to gridded locations based on LULCC-related emissions of relevant trace gases and aerosols, including emissions from fires. We find that the largest contributions to the global RF in year 2100 from LULCC originate in the tropics for all future scenarios. In fact, LULCC is the largest tropical source of anthropogenic RF. The LULCC RF in the tropics is dominated by emissions of CO2 from deforestation and methane emissions from livestock and soils. Land surface albedo change is rarely the dominant forcing agent in any of the future LULCC projections, at any location. By combining the five future scenarios we find that deforested area at a specific tropical location can be used to predict the contribution to global RF from LULCC at that location (the relationship does not hold as well in the extratropics). This information could support global efforts like REDD (Reducing Emissions from Deforestation and Forest Degradation), that aim to reduce greenhouse gas

  8. Globalizing Education, Educating the Local: How Method Made Us Mad

    ERIC Educational Resources Information Center

    Stronach, Ian

    2011-01-01

    This book offers a critical and deconstructive account of global discourses on education, arguing that these overblown "hypernarratives" are neither economically, technically nor philosophically defensible. Nor even sane. Their "mythic economic instrumentalism" mimic rather than meet the economic needs of global capitalism in ways that the Crash…

  9. Local Collective Identity Enculturation with a Global Media Consumption Culture.

    ERIC Educational Resources Information Center

    Choi, Chul-Byung

    2002-01-01

    Argues that shift from modern nation-state collective identity to postmodern globally constructed collective identify is influenced by a global electronic media and television consumption culture. Illustrates shift on three levels: socioeconomic, socialization, and the production of symbolic goods. (Contains 76 references.) (PKP)

  10. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  11. Local and Global Bifurcations of Flow Fields During Physical Vapor Transport: Application to a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W. M. B.; Singh, N. B.; Glicksman, M. E.

    1996-01-01

    The local bifurcation of the flow field, during physical vapor transport for a parametric range of experimental interest, shows that its dynamical state ranges from steady to aperiodic. Comparison of computationally predicted velocity profiles with laser doppler velocimetry measurements shows reasonable agreement in both magnitude and planform. Correlation of experimentally measured crystal quality with the predicted dynamical state of the flow field shows a degradation of quality with an increase in Rayleigh number. The global bifurcation of the flow field corresponding to low crystal quality indicates the presence of a traveling wave for Ra = 1.09 x 10(exp 5). For this Rayleigh number threshold a chaotic transport state occurs. However, a microgravity environment for this case effectively stabilizes the flow to diffusive-advective and provides the setting to grow crystals with optimal quality.

  12. Auditory global-local processing: effects of attention and musical experience.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Hyde, Krista L

    2012-10-01

    In vision, global (whole) features are typically processed before local (detail) features ("global precedence effect"). However, the distinction between global and local processing is less clear in the auditory domain. The aims of the present study were to investigate: (i) the effects of directed versus divided attention, and (ii) the effect musical training on auditory global-local processing in 16 adult musicians and 16 non-musicians. Participants were presented with short nine-tone melodies, each comprised of three triplet sequences (three-tone units). In a "directed attention" task, participants were asked to focus on either the global or local pitch pattern and had to determine if the pitch pattern went up or down. In a "divided attention" task, participants judged whether the target pattern (up or down) was present or absent. Overall, global structure was perceived faster and more accurately than local structure. The global precedence effect was observed regardless of whether attention was directed to a specific level or divided between levels. Musicians performed more accurately than non-musicians overall, but non-musicians showed a more pronounced global advantage. This study provides evidence for an auditory global precedence effect across attention tasks, and for differences in auditory global-local processing associated with musical experience. PMID:23039447

  13. Auditory global-local processing: effects of attention and musical experience.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Hyde, Krista L

    2012-10-01

    In vision, global (whole) features are typically processed before local (detail) features ("global precedence effect"). However, the distinction between global and local processing is less clear in the auditory domain. The aims of the present study were to investigate: (i) the effects of directed versus divided attention, and (ii) the effect musical training on auditory global-local processing in 16 adult musicians and 16 non-musicians. Participants were presented with short nine-tone melodies, each comprised of three triplet sequences (three-tone units). In a "directed attention" task, participants were asked to focus on either the global or local pitch pattern and had to determine if the pitch pattern went up or down. In a "divided attention" task, participants judged whether the target pattern (up or down) was present or absent. Overall, global structure was perceived faster and more accurately than local structure. The global precedence effect was observed regardless of whether attention was directed to a specific level or divided between levels. Musicians performed more accurately than non-musicians overall, but non-musicians showed a more pronounced global advantage. This study provides evidence for an auditory global precedence effect across attention tasks, and for differences in auditory global-local processing associated with musical experience.

  14. Global/Local Processing in Autism: Not a Disability, but a Disinclination

    ERIC Educational Resources Information Center

    Koldewyn, Kami; Jiang, Yuhong V.; Weigelt, Sarah; Kanwisher, Nancy

    2013-01-01

    It is widely suggested that ASD is characterized by atypical local/global processing, but the published findings are contradictory. In an effort to resolve this question, we tested a large group of children on both a free-choice task and an instructed task using hierarchical local-global stimuli. We find that although children with autism showed a…

  15. Global-Local Visual Processing in High Functioning Children with Autism: Structural vs. Implicit Task Biases

    ERIC Educational Resources Information Center

    Iarocci, Grace; Burack, Jacob A.; Shore, David I.; Mottron, Laurent; Enns, James T.

    2006-01-01

    Global-local processing was examined in high-functioning children with autism and in groups of typically developing children. In experiment 1, the effects of structural bias were tested by comparing visual search that favored access to either local or global targets. The children with autism were not unusually sensitive to either level of visual…

  16. Behavioral and Physiological Findings of Gender Differences in Global-Local Visual Processing

    ERIC Educational Resources Information Center

    Roalf, David; Lowery, Natasha; Turetsky, Bruce I.

    2006-01-01

    Hemispheric asymmetries in global-local visual processing are well-established, as are gender differences in cognition. Although hemispheric asymmetry presumably underlies gender differences in cognition, the literature on gender differences in global-local processing is sparse. We employed event related brain potential (ERP) recordings during…

  17. Alerting enhances attentional bias for salient stimuli: evidence from a global/local processing task.

    PubMed

    Weinbach, Noam; Henik, Avishai

    2014-11-01

    The present study examined the role of alerting in modulating attentional bias to salient events. In a global/local processing task, participants were presented with a large arrow (global level) comprised of smaller arrows (local level) pointing in the same or opposite directions and had to indicate the direction of the large or small arrows in different blocks. Saliency of the global and local levels was manipulated, creating global-salient and local-salient conditions. Alerting signals were presented in half of the trials prior to the target. Results revealed a double dissociation in the effects of alerting on global/local interference effects. In a global salient condition, alerting increased global interference and decreased local interference. In a local salient condition, alerting reduced global interference and increased local interference. We demonstrate that within a single task, alerting can increase and reduce conflict based on perceptual saliency. These findings help to better understand disorders like hemispatial neglect in which both arousal and attention to salient events are impaired. These results also challenge previous theories suggesting that alerting acts to increase conflict interference. We argue that alerting is an adaptive mechanism that diverts attention to salient events, but comes at a cost when selective attention to less salient details is required.

  18. Global/local methods research using a common structural analysis framework

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  19. The Development of Global and Local Processing: A Comparison of Children to Adults

    ERIC Educational Resources Information Center

    Peterson, Eric; Peterson, Robin L.

    2014-01-01

    In light of the adult model of a hemispheric asymmetry of global and local processing, we compared children (M [subscript age] = 8.4 years) to adults in a global-local reaction time (RT) paradigm. Hierarchical designs (large shapes made of small shapes) were presented randomly to each visual field, and participants were instructed to identify…

  20. Local and Global Cross-Modal Influences between Vision and Hearing, Tasting, Smelling, or Touching

    ERIC Educational Resources Information Center

    Forster, Jens

    2011-01-01

    It is suggested that the distinction between global versus local processing styles exists across sensory modalities. Activation of one-way of processing in one modality should affect processing styles in a different modality. In 12 studies, auditory, haptic, gustatory or olfactory global versus local processing was induced, and participants were…

  1. Age-Related Change in Shifting Attention between Global and Local Levels of Hierarchical Stimuli

    ERIC Educational Resources Information Center

    Huizinga, Mariette; Burack, Jacob A.; Van der Molen, Maurits W.

    2010-01-01

    The focus of this study was the developmental pattern of the ability to shift attention between global and local levels of hierarchical stimuli. Children aged 7 years and 11 years and 21-year-old adults were administered a task (two experiments) that allowed for the examination of 1) the direction of attention to global or local stimulus levels;…

  2. Schizophrenia patients show deficits in shifts of attention to different levels of global-local stimuli: evidence for magnocellular dysfunction.

    PubMed

    Coleman, Michael J; Cestnick, Laurie; Krastoshevsky, Olga; Krause, Verena; Huang, Zhuying; Mendell, Nancy R; Levy, Deborah L

    2009-11-01

    Abnormalities of attention and visual perception are well documented in schizophrenia. The global-local task is a measure of attention and perceptual organization that utilizes visual stimuli comprised of large letters (global level) made up of smaller letters (local level). Subjects identify target letters appearing at either the global or local level of the stimulus. In this study, we used a version of the global-local task specifically designed to examine lateralized hemispheric processing and attention shifting in 30 schizophrenia patients and 24 normal controls. Global-local stimuli were presented in couplets (consecutive pairs). Reaction time for the second target in a couplet was compared under conditions in which the target remained at the same level (global-global, local-local) and when the target changed levels (global-local, local-global). Level-specific priming (ie, global to global and local to local) and the local-to-global level shift were similar in both groups. Schizophrenia patients were significantly slower, however, shifting attention from the global to the local level. These results implicate an impairment in shifting attentional resources from predominantly right lateralized magnocellular/dorsal stream processing of global targets to predominantly left lateralized parvocellular/ventral stream processing of local targets. Local interference effects in global processing provide further support for impaired magnocellular processing in schizophrenia patients.

  3. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation.

    PubMed

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-06-18

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires.

  4. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  5. Local/Global Cognitive Interfaces within Industrial Districts: An Italian Case Study

    ERIC Educational Resources Information Center

    Grandinetti, Roberto

    2011-01-01

    Purpose: With the advance of globalization the competitive chances of industrial districts depends increasingly on their ability to connect to the cognitive circuits of the global economy. This challenge demands the presence of local actors capable of acting as cognitive interfaces between the district context and the global environment. The paper…

  6. Exploring the Global/Local Boundary in Education in Developing Countries: The Case of the Caribbean

    ERIC Educational Resources Information Center

    George, June; Lewis, Theodore

    2011-01-01

    This article focuses on education in developing countries in the context of globalization and with specific reference to the Caribbean. It examines the concept of globalization and related concepts and positions developing countries within this context. It explores the possibility of the creation of a third space where the local and the global can…

  7. Global Citizenship Education in Context: Teacher Perceptions at an International School and a Local Israeli School

    ERIC Educational Resources Information Center

    Goren, Heela; Yemini, Miri

    2016-01-01

    We apply semi-structured interviews to conceptualise perceptions of global citizenship among teachers at an international school and teachers at a local public school in Israel, revealing discrepancies between theory and practice in global citizenship education (GCE). We find that teachers perceive global citizenship differently along three major…

  8. Translating Globalization and Democratization into Local Policy: Educational Reform in Hong Kong and Taiwan

    NASA Astrophysics Data System (ADS)

    Law, Wing-Wah

    2004-11-01

    The past two decades have witnessed three important international trends: an increase in the number of democratic states; economic globalization; and educational reforms in light of the challenges of the new millennium. A great deal of research has addressed educational change in relation to either globalization or democratization, but little has been said about the complex interactions among all three processes. In view of recent educational reforms in Hong Kong and Taiwan, the present contribution examines the local nature of education policy in a globalized age. It challenges those globalization theories which minimize the role of the state and exaggerate the power of globalization over local factors. In particular, it explores how the governments of these two Chinese societies have employed democratization to generate and legitimate reform proposals and have used economic globalization to justify educational reforms. The study concludes by discussing the complex interrelations of these processes, including tensions between global and local concerns in educational reform.

  9. Optimal global value of information trials: better aligning manufacturer and decision maker interests and enabling feasible risk sharing.

    PubMed

    Eckermann, Simon; Willan, Andrew R

    2013-05-01

    Risk sharing arrangements relate to adjusting payments for new health technologies given evidence of their performance over time. Such arrangements rely on prospective information regarding the incremental net benefit of the new technology, and its use in practice. However, once the new technology has been adopted in a particular jurisdiction, randomized clinical trials within that jurisdiction are likely to be infeasible and unethical in the cases where they would be most helpful, i.e. with current evidence of positive while uncertain incremental health and net monetary benefit. Informed patients in these cases would likely be reluctant to participate in a trial, preferring instead to receive the new technology with certainty. Consequently, informing risk sharing arrangements within a jurisdiction is problematic given the infeasibility of collecting prospective trial data. To overcome such problems, we demonstrate that global trials facilitate trialling post adoption, leading to more complete and robust risk sharing arrangements that mitigate the impact of costs of reversal on expected value of information in jurisdictions who adopt while a global trial is undertaken. More generally, optimally designed global trials offer distinct advantages over locally optimal solutions for decision makers and manufacturers alike: avoiding opportunity costs of delay in jurisdictions that adopt; overcoming barriers to evidence collection; and improving levels of expected implementation. Further, the greater strength and translatability of evidence across jurisdictions inherent in optimal global trial design reduces barriers to translation across jurisdictions characteristic of local trials. Consequently, efficiently designed global trials better align the interests of decision makers and manufacturers, increasing the feasibility of risk sharing and the expected strength of evidence over local trials, up until the point that current evidence is globally sufficient.

  10. Optimal global value of information trials: better aligning manufacturer and decision maker interests and enabling feasible risk sharing.

    PubMed

    Eckermann, Simon; Willan, Andrew R

    2013-05-01

    Risk sharing arrangements relate to adjusting payments for new health technologies given evidence of their performance over time. Such arrangements rely on prospective information regarding the incremental net benefit of the new technology, and its use in practice. However, once the new technology has been adopted in a particular jurisdiction, randomized clinical trials within that jurisdiction are likely to be infeasible and unethical in the cases where they would be most helpful, i.e. with current evidence of positive while uncertain incremental health and net monetary benefit. Informed patients in these cases would likely be reluctant to participate in a trial, preferring instead to receive the new technology with certainty. Consequently, informing risk sharing arrangements within a jurisdiction is problematic given the infeasibility of collecting prospective trial data. To overcome such problems, we demonstrate that global trials facilitate trialling post adoption, leading to more complete and robust risk sharing arrangements that mitigate the impact of costs of reversal on expected value of information in jurisdictions who adopt while a global trial is undertaken. More generally, optimally designed global trials offer distinct advantages over locally optimal solutions for decision makers and manufacturers alike: avoiding opportunity costs of delay in jurisdictions that adopt; overcoming barriers to evidence collection; and improving levels of expected implementation. Further, the greater strength and translatability of evidence across jurisdictions inherent in optimal global trial design reduces barriers to translation across jurisdictions characteristic of local trials. Consequently, efficiently designed global trials better align the interests of decision makers and manufacturers, increasing the feasibility of risk sharing and the expected strength of evidence over local trials, up until the point that current evidence is globally sufficient. PMID:23529209

  11. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  12. Implications for local and global climate of alternative forest management strategies in Norway

    NASA Astrophysics Data System (ADS)

    Bright, Ryan M.; Antón-Fernández, Clara; Astrup, Rasmus; Cherubini, Francesco; Kvalevåg, Maria; Hammer Strømman, Anders

    2014-05-01

    We applied a mix of observation and empirical models to evaluate both local and global climate effects of three realistic alternative forest management scenarios in the boreal forests of Norway's largest logging region. The alternative management scenarios embraced strategies aimed at increasing harvest intensities and allowing harvested conifer sites to regenerate naturally with broadleaved species. Stand-level analysis was firstly executed to attribute differences in daily, seasonal, and annual mean surface temperatures to differences in surface intrinsic biophysical properties across coniferous, deciduous, and clear-cut sites. Relative to a coniferous site, we observed a slight local cooling of 0.13 °C at a deciduous site and 0.25 °C at a clear-cut site over a 6-year period which was mostly attributed to a higher albedo throughout the year. When monthly mean albedo trajectories over the entire managed forest landscape were taken into consideration, we found that strategies promoting natural regeneration of coniferous sites with native deciduous species led to substantial global direct climate cooling benefits relative to those maintaining current silviculture regimes - despite predicted long-term regional warming feedbacks and a reduced albedo in spring and autumn months. The magnitude and duration of the cooling benefit depended largely on whether management strategies simultaneously promoted an enhanced material supply over business-as-usual levels. While additional climate impact linked to changes in life-cycle emissions and to changes in the global supply and demand of timber products ought to be factored into any mitigation-oriented climate policy involving the forestry sector, our analysis demonstrates that - within the boundaries of the managed forest ecosystem - excluding important biogeophysical considerations like surface albedo change may lead to sub-optimal climate policy.

  13. Global optimization of fuel consumption in rendezvous scenarios by the method of interval analysis

    NASA Astrophysics Data System (ADS)

    Ma, Hongliang; Xu, Shijie

    2015-03-01

    To reduce the optimal but large Δv of the fixed-short-time two impulse Lambert rendezvous between two spacecrafts along two coplanar circular orbits, the three-impulse Lambert rendezvous optimized via the optimization algorithm-interval analysis (IA) is proposed in this paper. The purpose of optimization is to minimize the velocity increment of the fixed-short-time three-impulse Lambert rendezvous. The optimization algorithm IA is given for solving the rendezvous optimization problem with multiple uncertain variables, and strong nonlinearity and nonconvexity. Numerical examples of the time-open, coplanar-circular-orbit, multiple-revolution Lambert rendezvous with a parking time optimized via the optimization algorithm IA are firstly undertaken to validate the feasibility of the optimization algorithm IA by comparing the optimization results with those of the globally optimal Hohmann transfer. The results indicate that the globally optimal parameters of the time-open coplanar-circular-orbit multiple-revolution Lambert rendezvous can be obtained by the optimization algorithm IA, and the initial separation angle of two spacecrafts with different orbit radius can be adjusted to obtain the globally optimal and small Δv by distributing an optimal parking time. After that, for the fixed-short-time two-impulse Lambert rendezvous problem without sufficient time to adjust the separation angle by distributing a parking time like the open-time Lambert rendezvous problem, three-impulse Lambert rendezvous involving multiple optimization variables is given and the variables are optimized by the optimization algorithm IA to obtain an optimal and small Δv. Numerical simulation indicates that the optimal and small Δv of the fixed short time, three-impulse Lambert rendezvous can be obtained using the optimization algorithm IA.

  14. Optimizing molecular properties using a relative index of thermodynamic stability and global optimization techniques.

    PubMed

    Fournier, René; Mohareb, Amir

    2016-01-14

    We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of CumSnn (+) (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each CumSnn (+) species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV. PMID:26772561

  15. Optimizing molecular properties using a relative index of thermodynamic stability and global optimization techniques

    NASA Astrophysics Data System (ADS)

    Fournier, René; Mohareb, Amir

    2016-01-01

    We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of Cu m Snn + (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each Cu m S nn + species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV.

  16. Global/local stress analysis of composite structures. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    1989-01-01

    A method for performing a global/local stress analysis is described and its capabilities are demonstrated. The method employs spline interpolation functions which satisfy the linear plate bending equation to determine displacements and rotations from a global model which are used as boundary conditions for the local model. Then, the local model is analyzed independent of the global model of the structure. This approach can be used to determine local, detailed stress states for specific structural regions using independent, refined local models which exploit information from less-refined global models. The method presented is not restricted to having a priori knowledge of the location of the regions requiring local detailed stress analysis. This approach also reduces the computational effort necessary to obtain the detailed stress state. Criteria for applying the method are developed. The effectiveness of the method is demonstrated using a classical stress concentration problem and a graphite-epoxy blade-stiffened panel with a discontinuous stiffener.

  17. Do you want to see the tree? Ignore the forest: inhibitory control during local processing: a negative priming study of local-global processing.

    PubMed

    Poirel, Nicolas; Krakowski, Claire Sara; Sayah, Sabrina; Pineau, Arlette; Houdé, Olivier; Borst, Grégoire

    2014-01-01

    The visual environment consists of global structures (e.g., a forest) made up of local parts (e.g., trees). When compound stimuli are presented (e.g., large global letters composed of arrangements of small local letters), the global unattended information slows responses to local targets. Using a negative priming paradigm, we investigated whether inhibition is required to process hierarchical stimuli when information at the local level is in conflict with the one at the global level. The results show that when local and global information is in conflict, global information must be inhibited to process local information, but that the reverse is not true. This finding has potential direct implications for brain models of visual recognition, by suggesting that when local information is conflicting with global information, inhibitory control reduces feedback activity from global information (e.g., inhibits the forest) which allows the visual system to process local information (e.g., to focus attention on a particular tree).

  18. Modified patch-based locally optimal Wiener method for interferometric SAR phase filtering

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Huang, Haifeng; Dong, Zhen; Wu, Manqing

    2016-04-01

    This paper presents a modified patch-based locally optimal Wiener (PLOW) method for interferometric synthetic aperture radar (InSAR) phase filtering. PLOW is a linear minimum mean squared error (LMMSE) estimator based on a Gaussian additive noise condition. It jointly estimates moments, including mean and covariance, using a non-local technique. By using similarities between image patches, this method can effectively filter noise while preserving details. When applied to InSAR phase filtering, three modifications are proposed based on spatial variant noise. First, pixels are adaptively clustered according to their coherence magnitudes. Second, rather than a global estimator, a locally adaptive estimator is used to estimate noise covariance. Third, using the coherence magnitudes as weights, the mean of each cluster is estimated, using a weighted mean to further reduce noise. The performance of the proposed method is experimentally verified using simulated and real data. The results of our study demonstrate that the proposed method is on par or better than the non-local interferometric SAR (NL-InSAR) method.

  19. Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors.

    PubMed

    Türetken, Engin; González, Germán; Blum, Christian; Fua, Pascal

    2011-09-01

    We present a novel probabilistic approach to fully automated delineation of tree structures in noisy 2D images and 3D image stacks. Unlike earlier methods that rely mostly on local evidence, ours builds a set of candidate trees over many different subsets of points likely to belong to the optimal tree and then chooses the best one according to a global objective function that combines image evidence with geometric priors. Since the best tree does not necessarily span all the points, the algorithm is able to eliminate false detections while retaining the correct tree topology. Manually annotated brightfield micrographs, retinal scans and the DIADEM challenge datasets are used to evaluate the performance of our method. We used the DIADEM metric to quantitatively evaluate the topological accuracy of the reconstructions and showed that the use of the geometric regularization yields a substantial improvement. PMID:21573886

  20. Active Contours Using Additive Local and Global Intensity Fitting Models for Intensity Inhomogeneous Image Segmentation

    PubMed Central

    Soomro, Shafiullah; Kim, Jeong Heon; Soomro, Toufique Ahmed

    2016-01-01

    This paper introduces an improved region based active contour method with a level set formulation. The proposed energy functional integrates both local and global intensity fitting terms in an additive formulation. Local intensity fitting term influences local force to pull the contour and confine it to object boundaries. In turn, the global intensity fitting term drives the movement of contour at a distance from the object boundaries. The global intensity term is based on the global division algorithm, which can better capture intensity information of an image than Chan-Vese (CV) model. Both local and global terms are mutually assimilated to construct an energy function based on a level set formulation to segment images with intensity inhomogeneity. Experimental results show that the proposed method performs better both qualitatively and quantitatively compared to other state-of-the-art-methods. PMID:27800011

  1. Optimizing Virtual Land and Water Resources Flow Through Global Trade to Meet World Food and Biofuel Demand

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2013-12-01

    Biofuels is booming in recent years due to its potential contributions to energy sustainability, environmental improvement and economic opportunities. Production of biofuels not only competes for land and water with food production, but also directly pushes up food prices when crops such as maize and sugarcane are used as biofuels feedstock. Meanwhile, international trade of agricultural commodities exports and imports water and land resources in a virtual form among different regions, balances overall water and land demands and resource endowment, and provides a promising solution to the increasingly severe food-energy competition. This study investigates how to optimize water and land resources uses for overall welfare at global scale in the framework of 'virtual resources'. In contrast to partial equilibrium models that usually simulate trades year-by-year, this optimization model explores the ideal world where malnourishment is minimized with optimal resources uses and trade flows. Comparing the optimal production and trade patterns with historical data can provide meaningful implications regarding how to utilize water and land resources more efficiently and how the trade flows would be changed for overall welfare at global scale. Valuable insights are obtained in terms of the interactions among food, water and bioenergy systems. A global hydro-economic optimization model is developed, integrating agricultural production, market demands (food, feed, fuel and other), and resource and environmental constraints. Preliminary results show that with the 'free market' mechanism and land as well as water resources use optimization, the malnourished population can be reduced by as much as 65%, compared to the 2000 historical value. Expected results include: 1) optimal trade paths to achieve global malnourishment minimization, 2) how water and land resources constrain local supply, 3) how policy affects the trade pattern as well as resource uses. Furthermore, impacts of

  2. From Local to Global Processing: The Development of Illusory Contour Perception

    PubMed Central

    Nayar, Kritika; Franchak, John; Adolph, Karen; Kiorpes, Lynne

    2015-01-01

    Global visual processing is important for segmenting scenes, extracting form from background, and recognizing objects. Local processing involves attention to the local elements, contrast, and boundaries of an image at the expense of extracting a global percept. Previous work is inconclusive regarding the relative development of local and global processing. Some studies suggest that global perception is already present by 8 months of age, whereas others suggest that the ability arises in childhood and continues to develop in adolescence. We used a novel method to assess the development of global processing in 3- to 10-year-old children and an adult comparison group. We used Kanizsa illusory contours as an assay of global perception and measured responses on a touch screen while monitoring eye position with a head-mounted eye tracker. Participants were tested using a similarity match-to-sample paradigm. Using converging measures, we found a clear developmental progression with age such that the youngest children performed near chance on the illusory contour discrimination whereas 7- to 8-year-olds performed nearly perfectly, as did adults. There was clear evidence of a gradual shift from a local to a global processing strategy: Young children looked predominantly at and touched the pacman inducers of the illusory form, whereas older children and adults looked predominantly at and touched the middle of the form. These data show a prolonged developmental trajectory in appreciation of global form, with a transition from local to global visual processing between 4 and 7 years of age. PMID:25514785

  3. LOCAL AND GLOBAL DYNAMICS OF POLYLACTIDES. (R826733)

    EPA Science Inventory

    Polylactides (PLAs) are a family of degradable plastics having a component of the dipole moment both perpendicular and parallel to the polymer backbone (i.e. is a type-A polymer). We have studied the sub-glass, segmental and global chain dynamics in a series of fully amorphous...

  4. Global English and Local Language Policies: What Denmark Needs.

    ERIC Educational Resources Information Center

    Phillipson, Robert

    2001-01-01

    Analyzes the mythology and imagery underpinning global English, the many labels used to describe English, and the transition from an imperialist language into one that meshes with ongoing processes of Europeanization and Americanization, largely through the influence of transnational corporations. Implications are drawn for Danish, in Denmark, a…

  5. Cultural Globalization and Teacher Education: A Local Perspective

    ERIC Educational Resources Information Center

    Stephenson, Maxine; Rio, Nane; Anderson, Helen; Millward, Pam

    2008-01-01

    This article examines the nature of cultural globalization and its effects as experienced and confronted in a teacher education program that is located in New Zealand's most ethnically diverse and fastest growing city. The students in the program bring a wide range of cultural, social, and experiential perspectives to their tertiary study, and are…

  6. Persisting Inequalities: Childhood between Global Influences and Local Traditions

    ERIC Educational Resources Information Center

    Buhler-Niederberger, Doris; Van Kreiken, Robert

    2008-01-01

    This article analyses the central themes running through the collection of papers in this special issue of Childhood, which were all given as papers at the XVI Durban World Congress of Sociology, 23-29 July 2006. These themes encompass the ways in which global processes of social change combining modernity with tradition have become important for…

  7. Global History from the Local Perspective: An Instructional Technique.

    ERIC Educational Resources Information Center

    Maiewskij-Hay, Valentina

    1999-01-01

    Presents a genealogy/migration assignment that encourages students to recognize how their individual histories fit into the global world. Expounds that the students traced the migration of their ancestors from the Eastern Hemisphere to the United States and then within the United States to the Appalachian region. (CMK)

  8. Global Impacts of the Bologna Process: International Perspectives, Local Particularities

    ERIC Educational Resources Information Center

    Zmas, Aristotelis

    2015-01-01

    The paper examines the transfer of the Bologna Process (BP) outside Europe, focusing on its "external dimension" and dynamics in global settings. It argues that the BP impacts on the internationalisation activities of universities, especially with regard to cross-border transparency of qualifications, transnational improvement of quality…

  9. Local Action for Global Change. World Education Reports, Number 29.

    ERIC Educational Resources Information Center

    Garb, Gillian, Ed.; Baltz, Davis, Ed.

    1991-01-01

    This issue contains five articles that address environmental concerns. "Poverty and Environmental Decline" (Alan Durning) analyzes accelerating environmental decline and discusses the need for action at every level to reverse global deterioration. "Integrated Pest Management (IPM) Made Easy" (Cesar Galvan, Peter Kenmore) explains how Filipino…

  10. Migration and Adult Language Learning: Global Flows and Local Transpositions

    ERIC Educational Resources Information Center

    Burns, Anne; Roberts, Celia

    2010-01-01

    In the 21st century, global flows politically, socially, economically, and environmentally are creating widespread movements of people around the world and giving rise to increased resettlements of immigrants and refugees internationally. The reality in most countries worldwide is that contemporary populations are multifaceted, multicultural,…

  11. Upgrading the local: Belgian cuisine in global waves.

    PubMed

    Scholliers, Peter; Geyzen, Anneke

    2010-01-01

    This essay touches upon questions about the use of food as an identity marker, the nature of local food, and the influence of foreign food. Since 1830, Belgium witnessed two international food waves that alternated with two local food waves, both opposing as well as using each other's characteristics. In this process, local food was continuously redefined. Belgium reveals a relationship between local and foreign food both in the sense of incorporation and exclusion. Foreign food always influenced local cooking and eating. The opposition between the “self” and the “other” is at times strongly upheld: local food is labeled as “our,” “authentic,” “national,” or “regional” (the “self”) to make the difference with “their,” “artificial,” or “international” (the “other”). This classification of foodways as national/regional is used to forge sentiments of belonging, especially in Belgium where strong separatist political feelings lead to intense regional reactions.

  12. Rapid communication: Global-local processing affects recognition of distractor emotional faces.

    PubMed

    Srinivasan, Narayanan; Gupta, Rashmi

    2011-03-01

    Recent studies have shown links between happy faces and global, distributed attention as well as sad faces to local, focused attention. Emotions have been shown to affect global-local processing. Given that studies on emotion-cognition interactions have not explored the effect of perceptual processing at different spatial scales on processing stimuli with emotional content, the present study investigated the link between perceptual focus and emotional processing. The study investigated the effects of global-local processing on the recognition of distractor faces with emotional expressions. Participants performed a digit discrimination task with digits at either the global level or the local level presented against a distractor face (happy or sad) as background. The results showed that global processing associated with broad scope of attention facilitates recognition of happy faces, and local processing associated with narrow scope of attention facilitates recognition of sad faces. The novel results of the study provide conclusive evidence for emotion-cognition interactions by demonstrating the effect of perceptual processing on emotional faces. The results along with earlier complementary results on the effect of emotion on global-local processing support a reciprocal relationship between emotional processing and global-local processing. Distractor processing with emotional information also has implications for theories of selective attention.

  13. Feature binding and the processing of global-local shapes in bilingual and monolingual children.

    PubMed

    Cottini, Milvia; Pieroni, Laura; Spataro, Pietro; Devescovi, Antonella; Longobardi, Emiddia; Rossi-Arnaud, Clelia

    2015-04-01

    In the present study, we examined the effects of bilingualism and age on a color-shape binding task (assessing visual working memory) and a global-local task (assessing inhibitory processes) in a sample of 55 bilingual and 49 monolingual children 8 and 10 years old. In the color-shape binding task, corrected recognition scores increased in older children; bilingual children performed better than monolinguals in the shape-only condition, but the two groups were equally accurate in the color-only and combination conditions. In the global-local task, accuracy was higher in bilingual than in monolingual children, particularly on incongruent trials; monolingual children showed a strong global precedence effect (higher accuracy in the global than in the local conditions and greater global-to-local interference), whereas bilingual children exhibited a small, but significant, local precedence effect (higher accuracy in the local than in the global conditions and greater local-to-global interference). These findings confirm and extend previous evidence indicating that the bilingualism advantage is more pronounced in working memory tasks involving inhibitory processes.

  14. Identification of inelastic parameters based on deep drawing forming operations using a global-local hybrid Particle Swarm approach

    NASA Astrophysics Data System (ADS)

    Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.

    2016-04-01

    Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.

  15. Electron transport in radiotherapy using local-to-global Monte Carlo

    SciTech Connect

    Svatos, M.M.; Chandler, W.P.; Siantar, C.L.H.; Rathkopf, J.A.; Ballinger, C.T.; Neuenschwander, H.; Mackie, T.R.; Reckwerdt, P.J.

    1994-09-01

    Local-to-Global (L-G) Monte Carlo methods are a way to make three-dimensional electron transport both fast and accurate relative to other Monte Carlo methods. This is achieved by breaking the simulation into two stages: a local calculation done over small geometries having the size and shape of the ``steps`` to be taken through the mesh; and a global calculation which relies on a stepping code that samples the stored results of the local calculation. The increase in speed results from taking fewer steps in the global calculation than required by ordinary Monte Carlo codes and by speeding up the calculation per step. The potential for accuracy comes from the ability to use long runs of detailed codes to compile probability distribution functions (PDFs) in the local calculation. Specific examples of successful Local-to-Global algorithms are given.

  16. Local and global cross-modal influences between vision and hearing, tasting, smelling, or touching.

    PubMed

    Förster, Jens

    2011-08-01

    It is suggested that the distinction between global versus local processing styles exists across sensory modalities. Activation of one-way of processing in one modality should affect processing styles in a different modality. In 12 studies, auditory, haptic, gustatory or olfactory global versus local processing was induced, and participants were tested with a measure of their global versus local visual attention; the content of this measure was unrelated to the inductions. In a different set of 4 studies, the effect of local versus global visual processing on the way people listen to a poem or touch, taste, and smell objects was examined. In all experiments, global/local processing in 1 modality shifted to global/local processing in the other modality. A final study found more pronounced shifts when compatible processing styles were induced in 2 rather than 1 modality. Moreover, the study explored mediation by relative right versus left hemisphere activation as measured with the line bisection task and accessibility of semantic associations. It is concluded that the effects reflect procedural rather than semantic priming effects that occurred out of participants' awareness. Because global/local processing has been shown to affect higher order processing, future research may activate processing styles in other sensory modalities to produce similar effects. Furthermore, because global/local processing is triggered by a variety of real world variables, one may explore effects on other sensory modalities than vision. The results are consistent with the global versus local processing model, a systems account (GLOMOsys; Förster & Dannenberg, 2010).

  17. Nonlinear Global Optimization Using Curdling Algorithm in Mathematica Environmet

    SciTech Connect

    Craig Loehle, Ph. D.

    1997-08-05

    An algorithm for performing optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software as OPTIMIZE. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single extremal points. the program is interactive and collects information on control parameters and constraints using menus. For up to two (and potentially three) dimensions, function convergence is displayed graphically. Because the algorithm does not compute derivatives, gradients, or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. OPTIMIZE-M is a modification of OPTIMIZE designed for use within the Mathematica environment created by Wolfram Research.

  18. Nonlinear Global Optimization Using Curdling Algorithm in Mathematica Environmet

    1997-08-05

    An algorithm for performing optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software as OPTIMIZE. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single extremal points. the program is interactive and collects information on control parameters and constraints using menus. For up to two (and potentially three) dimensions, function convergence is displayed graphically. Because the algorithm doesmore » not compute derivatives, gradients, or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. OPTIMIZE-M is a modification of OPTIMIZE designed for use within the Mathematica environment created by Wolfram Research.« less

  19. A study of local anisotropy in globally isotropic incompressible MHD

    NASA Astrophysics Data System (ADS)

    Milano, L. J.; Dmitruk, P.; Matthaeus, W. H.; Montgomery, D.

    2000-10-01

    It is a well known fact that in presence of a DC applied field, MHD turbulence develops spectral anisotropy from an isotropic initial condition [1]. Typically, the reduced spectrum is steeper in the direction of the magnetic field than it is in any transverse direction. Theoretical insight into the origin of this effect has been derived from simulations in which there is a uniform DC magnetic field, but suggestions of a similar anisotropy is seen in various laboratory devices and also in the solar wind [2,3]. One might expect that a DC field is not essential, and it is the local mean field that is responsible. Here we investigate the occurence of local anisotropy in 3 dimensional MHD, i.e. we search for a local version of the spectral anisotropy effect. We perform 3D MHD pseudo-spectral incompressible relaxation simulations, and compute structure functions accumulated according to whether the separation is parallel to, or transverse to, the local magnetic field. Preliminary results show that correlations decay slower in the locally averaged magnetic field direction. [1] J. Shebalin, W. Matthaeus and D. Montgomery, J. Plasma Phys. 29, 525 (1983) [2] W.H. Matthaeus, M.L. Goldsteon and D.A. Roberts, J. Geophys. Res. 95, 20 673 (1990) [3] J. Armstrong, W. Coles, M. Kojima and B. Rickett, Ap. J. 358, 685 (1990)

  20. The ecology of dust: local- to global-scale perspectives

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne; Breshears, David D; Neff, Jason; Okin, Gregory S; Painter, Thomas H; Ravi, Sujith; Reheis, Marith C; Reynolds, Richard L

    2009-01-01

    Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbance affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.

  1. Land System Science: between global challenges and local realities.

    PubMed

    Verburg, Peter H; Erb, Karl-Heinz; Mertz, Ole; Espindola, Giovana

    2013-10-01

    This issue of Current Opinion in Environmental Sustainability provides an overview of recent advances in Land System Science while at the same time setting the research agenda for the Land System Science community. Land System Science is not just representing land system changes as either a driver or a consequence of global environmental change. Land systems also offer solutions to global change through adaptation and mitigation and can play a key role in achieving a sustainable future earth. The special issue assembles 14 articles that entail different perspectives on land systems and their dynamics, synthesizing current knowledge, highlighting currently under-researched topics, exploring scientific frontiers and suggesting ways ahead, integrating a plethora of scientific disciplines. PMID:24851141

  2. From Local to Global Dilemmas in Social Networks

    PubMed Central

    Pinheiro, Flávio L.; Pacheco, Jorge M.; Santos, Francisco C.

    2012-01-01

    Social networks affect in such a fundamental way the dynamics of the population they support that the global, population-wide behavior that one observes often bears no relation to the individual processes it stems from. Up to now, linking the global networked dynamics to such individual mechanisms has remained elusive. Here we study the evolution of cooperation in networked populations and let individuals interact via a 2-person Prisoner's Dilemma – a characteristic defection dominant social dilemma of cooperation. We show how homogeneous networks transform a Prisoner's Dilemma into a population-wide evolutionary dynamics that promotes the coexistence between cooperators and defectors, while heterogeneous networks promote their coordination. To this end, we define a dynamic variable that allows us to track the self-organization of cooperators when co-evolving with defectors in networked populations. Using the same variable, we show how the global dynamics — and effective dilemma — co-evolves with the motifs of cooperators in the population, the overall emergence of cooperation depending sensitively on this co-evolution. PMID:22363804

  3. Local-global overlap in diversity informs mechanisms of bacterial biogeography.

    PubMed

    Livermore, Joshua A; Jones, Stuart E

    2015-11-01

    Spatial variation in environmental conditions and barriers to organism movement are thought to be important factors for generating endemic species, thus enhancing global diversity. Recent microbial ecology research suggested that the entire diversity of bacteria in the global oceans could be recovered at a single site, thus inferring a lack of bacterial endemism. We argue this is not the case in the global ocean, but might be in other bacterial ecosystems with higher dispersal rates and lower global diversity, like the human gut. We quantified the degree to which local and global bacterial diversity overlap in a diverse set of ecosystems. Upon comparison of observed local-global diversity overlap with predictions from a neutral biogeography model, human-associated microbiomes (gut, skin, mouth) behaved much closer to neutral expectations whereas soil, lake and marine communities deviated strongly from the neutral expectations. This is likely a result of differences in dispersal rate among 'patches', global diversity of these systems, and local densities of bacterial cells. It appears that overlap of local and global bacterial diversity is surprisingly large (but likely not one-hundred percent), and most importantly this overlap appears to be predictable based upon traditional biogeographic parameters like community size, global diversity, inter-patch environmental heterogeneity and patch connectivity.

  4. Think Global, Act Local--A Power Generation Case Study

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2012-01-01

    This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme. (Contains 1 figure, 1 table, and 3 photos.)

  5. Teaching Geography through "Chinatowns": Global Connections and Local Spaces

    ERIC Educational Resources Information Center

    Ho, Li-Ching; Seow, Tricia

    2013-01-01

    Chinatowns are familiar emblems of "Chineseness" in many countries and are among the most visible and tangible spatial manifestations of Chinese migration. Large and well-established Chinatowns can be found in diverse locales, including New York, San Francisco, Vancouver, Paris, Sydney, and Singapore. Despite sharing numerous easily recognizable…

  6. They Thought Globally, But Now Colleges Push Online Programs Locally

    ERIC Educational Resources Information Center

    Parry, Marc

    2009-01-01

    For years, some universities have dreamed of border-defying online programs that vacuum up tuition dollars far beyond local students. But now a growing number of institutions are ramping up their efforts to attract working adults in their own backyards. Commuter-serving urban universities can not match the marketing muscle of faster-growing,…

  7. Complementary Constrains on Component based Multiphase Flow Problems, Should It Be Implemented Locally or Globally?

    NASA Astrophysics Data System (ADS)

    Shao, H.; Huang, Y.; Kolditz, O.

    2015-12-01

    Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in

  8. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  9. Global and local processing of incidental information and memory retrieval at 6 months.

    PubMed

    Bhatt, R S; Rovee-Collier, C; Shyi, G C

    1994-04-01

    In five experiments, we examined the role of global and local cues in memory retrieval in infancy. Six-month-old infants were trained at home in a distinctive context (playpen liner) to kick to move a mobile. The liners were yellow and displayed either green stripes, green squares aligned vertically in stripe-like columns, or green squares in a grid pattern. The stripes and columns liners had a similar global configuration but different local components; the columns and grid liners had identical local components but different global configurations. When infants were tested 24 h after training in the presence of context liners that differed from the training context in either global configurations or local features, their memory retrieval was disrupted (Experiments 1 and 2). However, a change from stripes to columns failed to disrupt memory retrieval, even though the reverse change, from columns to stripes, did. Experiments 3, 4, and 5 revealed that this asymmetry was due to the fact that, when discriminative local information is not directly associated with training, a postperceptual strategy enables infants to disregard a mismatch in local information between training and test contexts and to generalize on the basis of a match in global information during the 24-h retention test. Thus, infants encode and remember for substantial periods of time both global configuration information and local component information in the incidental context in which an event occurs and flexibly utilize this information when responding to new events. PMID:8169579

  10. Alpine hydropower in a low carbon economy: Assessing the local implication of global policies

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    In the global transition towards a more efficient and low-carbon economy, renewable energy plays a major role in displacing fossil fuels, meeting global energy demand while reducing carbon dioxide emissions. In Europe, Variable Renewable Sources (VRS), such as wind and solar power sources, are becoming a relevant share of the generation portfolios in many countries. Beside the indisputable social and environmental advantages of VRS, on the short medium term the VRS-induced lowering energy prices and increasing price's volatility might challenge traditional power sources and, among them, hydropower production, because of smaller incomes and higher maintenance costs associated to a more flexible operation of power systems. In this study, we focus on the Swiss hydropower sector analysing how different low-carbon targets and strategies established at the Swiss and European level might affect energy price formation and thus impact - through hydropower operation - water availability and ecosystems services at the catchment scale. We combine a hydrological model to simulate future water availability and an electricity market model to simulate future evolution of energy prices based on official Swiss and European energy roadmaps and CO2 price trends in the European Union. We use Multi-Objective optimization techniques to design alternative hydropower reservoir operation strategies, aiming to maximise the hydropower companies' income or to provide reliable energy supply with respect to the energy demand. This integrated model allows analysing to which extent global low-carbon policies impact reservoir operation at the local scale, and to gain insight on how to prioritise compensation measures and/or adaptation strategies to mitigate the impact of VRS on hydropower companies in increasingly water constrained settings. Numerical results are shown for a real-world case study in the Swiss Alps.

  11. Efficient Parallel Global Optimization for High Resolution Hydrologic and Climate Impact Models

    NASA Astrophysics Data System (ADS)

    Shoemaker, C. A.; Mueller, J.; Pang, M.

    2013-12-01

    High Resolution hydrologic models are typically computationally expensive, requiring many minutes or perhaps hours for one simulation. Optimization can be used with these models for parameter estimation or for analyzing management alternatives. However Optimization of these computationally expensive simulations requires algorithms that can obtain accurate answers with relatively few simulations to avoid infeasibly long computation times. We have developed a number of efficient parallel algorithms and software codes for optimization of expensive problems with multiple local minimum. This is open source software we are distributing. It runs in Matlab and Python, and has been run on Yellowstone supercomputer. The talk will quickly discuss the characteristics of the problem (e.g. the presence of integer as well as continuous variables, the number of dimensions, the availability of parallel/grid computing, the number of simulations that can be allowed to find a solution, etc. ) that determine which algorithms are most appropriate for each type of problem. A major application of this optimization software is for parameter estimation for nonlinear hydrologic models, including contaminant transport in subsurface (e.g. for groundwater remediation or multi-phase flow for carbon sequestration), nutrient transport in watersheds, and climate models. We will present results for carbon sequestration plume monitoring (multi-phase, multi-constiuent), for groundwater remediation, and for the CLM climate model. The carbon sequestration example is based on the Frio CO2 field site and the groundwater example is for a 50,000 acre remediation site (with model requiring about 1 hour per simulation). Parallel speed-ups are excellent in most cases, and our serial and parallel algorithms tend to outperform alternative methods on complex computationally expensive simulations that have multiple global minima.

  12. Multiple core computer processor with globally-accessible local memories

    DOEpatents

    Shalf, John; Donofrio, David; Oliker, Leonid

    2016-09-20

    A multi-core computer processor including a plurality of processor cores interconnected in a Network-on-Chip (NoC) architecture, a plurality of caches, each of the plurality of caches being associated with one and only one of the plurality of processor cores, and a plurality of memories, each of the plurality of memories being associated with a different set of at least one of the plurality of processor cores and each of the plurality of memories being configured to be visible in a global memory address space such that the plurality of memories are visible to two or more of the plurality of processor cores.

  13. Overview: Global and Local Impact of Antibiotic Resistance.

    PubMed

    Watkins, Richard R; Bonomo, Robert A

    2016-06-01

    The rapid and ongoing spread of antibiotic resistance poses a serious threat to global public health. The indiscriminant use of antibiotics in agriculture and human medicine along with increasingly connected societies has fueled the distribution of antibiotic-resistant bacteria. These factors together have led to rising numbers of infections caused by multidrug-resistant and pan-resistant bacteria, with increases in morbidity and mortality. This article summarizes the trends in antibiotic resistance, discusses the impact of antibiotic resistance on society, and reviews the use of antibiotics in agriculture. Feasible ways to tackle antibiotic resistance to avert a post-antibiotic era are suggested.

  14. The global, the local, and the science curriculum: a struggle for balance in Cyprus

    NASA Astrophysics Data System (ADS)

    Zembylas, Michalinos

    2002-05-01

    In documenting educational reforms in the science curriculum of developing countries, a number of tensions become apparent as a result of struggles to preserve local values while incorporating global trends. This article describes and analyses these tensions and paradoxes, and discusses the intersections of cultural, economic, administrative and educational history of elementary school science curriculum development in Cyprus since its independence from the British in 1960. Using a combination of methodological tools that range from document analysis, historical research and ethnographic methods of collecting data, it is argued that the global and the local can be viewed spatially in terms of linking people, spaces and diverse knowledges. In order to ensure that local values in science curriculum development can be sustained without being absorbed by globalization curriculum developers in developing countries need to create spaces in which the local can be performed together with the global.

  15. The effects of local rotation on roll vection induced by globally rotating visual inducer

    PubMed Central

    Nakamura, Shinji

    2015-01-01

    A visual stimulus rotating globally along an observer's line of sight can induce the illusory perception of self-rotation in the opposite direction (roll vection). Psychophysical experiments were conducted to examine the effects of local rotations of visual elements of the stimulus that were manipulated independently of the global rotation. The results indicated that the addition of local rotations inconsistent with the global rotation (assumed to be the primary inducer of roll vection), generally decreased the strength of perceived self-rotation. The uniformity of orientation of the elements composing the global visual pattern and the visual polarities assigned to each visual element, i.e., intrinsic directionality concerning up and down, were observed to function as modulators of the effects of the local rotation. These results suggested that local motion signals arising from independent rotations assigned to each element of a visual object cannot be ignored in the perceptual mechanism underlying roll vection. PMID:26074848

  16. The effects of local rotation on roll vection induced by globally rotating visual inducer.

    PubMed

    Nakamura, Shinji

    2015-01-01

    A visual stimulus rotating globally along an observer's line of sight can induce the illusory perception of self-rotation in the opposite direction (roll vection). Psychophysical experiments were conducted to examine the effects of local rotations of visual elements of the stimulus that were manipulated independently of the global rotation. The results indicated that the addition of local rotations inconsistent with the global rotation (assumed to be the primary inducer of roll vection), generally decreased the strength of perceived self-rotation. The uniformity of orientation of the elements composing the global visual pattern and the visual polarities assigned to each visual element, i.e., intrinsic directionality concerning up and down, were observed to function as modulators of the effects of the local rotation. These results suggested that local motion signals arising from independent rotations assigned to each element of a visual object cannot be ignored in the perceptual mechanism underlying roll vection.

  17. Inequality measures perform differently in global and local assessments: An exploratory computational experiment

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Sheng

    2015-11-01

    Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.

  18. Measuring capital market efficiency: Global and local correlations structure

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2013-01-01

    We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.

  19. Think globally, research locally: paradigms and place in agroecological research.

    PubMed

    Reynolds, Heather L; Smith, Alex A; Farmer, James R

    2014-10-01

    Conducting science for practical ends implicates scientists, whether they wish it or not, as agents in social-ecological systems, raising ethical, economic, environmental, and political issues. Considering these issues helps scientists to increase the relevance and sustainability of research outcomes. As we rise to the worthy call to connect basic research with food production, scientists have the opportunity to evaluate alternative food production paradigms and consider how our research funds and efforts are best employed. In this contribution, we review some of the problems produced by science conducted in service of industrial agriculture and its associated economic growth paradigm. We discuss whether the new concept of "ecological intensification" can rescue the industrial agriculture/growth paradigm and present an emerging alternative paradigm of decentralized, localized, biodiversity-promoting agriculture for a steady-state economy. This "custom fit" agriculture engages constructively with complex and highly localized ecosystems, and we draw from examples of published work to demonstrate how ecologists can contribute by using approaches that acknowledge local agricultural practices and draw on community participation. PMID:25326612

  20. Think globally, research locally: paradigms and place in agroecological research.

    PubMed

    Reynolds, Heather L; Smith, Alex A; Farmer, James R

    2014-10-01

    Conducting science for practical ends implicates scientists, whether they wish it or not, as agents in social-ecological systems, raising ethical, economic, environmental, and political issues. Considering these issues helps scientists to increase the relevance and sustainability of research outcomes. As we rise to the worthy call to connect basic research with food production, scientists have the opportunity to evaluate alternative food production paradigms and consider how our research funds and efforts are best employed. In this contribution, we review some of the problems produced by science conducted in service of industrial agriculture and its associated economic growth paradigm. We discuss whether the new concept of "ecological intensification" can rescue the industrial agriculture/growth paradigm and present an emerging alternative paradigm of decentralized, localized, biodiversity-promoting agriculture for a steady-state economy. This "custom fit" agriculture engages constructively with complex and highly localized ecosystems, and we draw from examples of published work to demonstrate how ecologists can contribute by using approaches that acknowledge local agricultural practices and draw on community participation.

  1. Global Optimization Using Mixed Surrogates and Space Elimination in Computationally Intensive Engineering Designs

    NASA Astrophysics Data System (ADS)

    Younis, Adel; Dong, Zuomin

    2012-07-01

    Surrogate-based modeling is an effective search method for global design optimization over well-defined areas using complex and computationally intensive analysis and simulation tools. However, indentifying the appreciate surrogate models and their suitable areas remains a challenge that requires extensive human intervention. In this work, a new global optimization algorithm, namely Mixed Surrogate and Space Elimination (MSSE) method, is introduced. Representative surrogate models, including Quadratic Response Surface, Radial Basis function, and Kriging, are mixed with different weight ratios to form an adaptive metamodel with best tested performance. The approach divides the field of interest into several unimodal regions; identifies and ranks the regions that likely contain the global minimum; fits the weighted surrogate models over each promising region using additional design experiment data points from Latin Hypercube Designs and adjusts the weights according to the performance of each model; identifies its minimum and removes the processed region; and moves to the next most promising region until all regions are processed and the global optimum is identified. The proposed algorithm was tested using several benchmark problems for global optimization and compared with several widely used space exploration global optimization algorithms, showing reduced computation efforts, robust performance and comparable search accuracy, making the proposed method an excellent tool for computationally intensive global design optimization problems.

  2. Global-National-Local Dynamics in Policy Processes: A Case of 'Quality' Policy in Higher Education

    ERIC Educational Resources Information Center

    Vidovich, Lesley

    2004-01-01

    This paper moves beyond a conceptualization of globalization as a top-down imposition of policy directions 'from above' to focus on the active two-way dynamics between global, national and local levels of policy processes. Arguably, the particular 'case' examined here of 'quality' policy is especially appropriate as quality policy and…

  3. Climate-soil Interactions: Global Change, Local Properties, and Ecological Sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global climate change is predicted to alter historic patterns of precipitation and temperature in rangelands globally. Vegetation community response to altered weather patterns will be mediated at the site level by local-scale properties that govern ecological potential, including geology, topograph...

  4. Zooming into creativity: individual differences in attentional global-local biases are linked to creative thinking.

    PubMed

    Zmigrod, Sharon; Zmigrod, Leor; Hommel, Bernhard

    2015-01-01

    While recent studies have investigated how processes underlying human creativity are affected by particular visual-attentional states, we tested the impact of more stable attention-related preferences. These were assessed by means of Navon's global-local task, in which participants respond to the global or local features of large letters constructed from smaller letters. Three standard measures were derived from this task: the sizes of the global precedence effect, the global interference effect (i.e., the impact of incongruent letters at the global level on local processing), and the local interference effect (i.e., the impact of incongruent letters at the local level on global processing). These measures were correlated with performance in a convergent-thinking creativity task (the Remote Associates Task), a divergent-thinking creativity task (the Alternate Uses Task), and a measure of fluid intelligence (Raven's matrices). Flexibility in divergent thinking was predicted by the local interference effect while convergent thinking was predicted by intelligence only. We conclude that a stronger attentional bias to visual information about the "bigger picture" promotes cognitive flexibility in searching for multiple solutions.

  5. [Effect of conflict frequency associated with presentation hemifield on global/local processing].

    PubMed

    Kuratomi, Kei; Yoshizaki, Kazuhito

    2013-12-01

    We used a global/local processing task with hierarchically structured visual stimuli to investigate whether each hemisphere independently modulates visual selectivity depending on conflict frequency. In both of the present experiments, a hierarchical pattern consisting of large (global) letter made up of small (local) letters was briefly presented to unilateral visual-field (LVF/RVF) and the congruency between the local and global levels was manipulated. An important manipulation was that the congruency ratio in a given block differed between the two visual-fields (80% and 20%). We required right-handed participants to identify the global (Experiment 1) and local level (Experiment 2) of the hierarchical stimulus. The results showed that when the stimuli were projected to the nondominant hemisphere for the task demand (left hemisphere in the global task and right hemisphere in the local task) the size of the interference (local interference in Experiment 1 and global interference in Experiment 2) was larger in the 80% congruent condition than in the 20% congruent condition, whereas it was invariant when the stimuli were projected to the dominant hemisphere. These results demonstrate that each hemisphere independently works cognitive control.

  6. Zooming into creativity: individual differences in attentional global-local biases are linked to creative thinking

    PubMed Central

    Zmigrod, Sharon; Zmigrod, Leor; Hommel, Bernhard

    2015-01-01

    While recent studies have investigated how processes underlying human creativity are affected by particular visual-attentional states, we tested the impact of more stable attention-related preferences. These were assessed by means of Navon’s global-local task, in which participants respond to the global or local features of large letters constructed from smaller letters. Three standard measures were derived from this task: the sizes of the global precedence effect, the global interference effect (i.e., the impact of incongruent letters at the global level on local processing), and the local interference effect (i.e., the impact of incongruent letters at the local level on global processing). These measures were correlated with performance in a convergent-thinking creativity task (the Remote Associates Task), a divergent-thinking creativity task (the Alternate Uses Task), and a measure of fluid intelligence (Raven’s matrices). Flexibility in divergent thinking was predicted by the local interference effect while convergent thinking was predicted by intelligence only. We conclude that a stronger attentional bias to visual information about the “bigger picture” promotes cognitive flexibility in searching for multiple solutions. PMID:26579030

  7. Differences in global and local level information processing in autism: an fMRI investigation

    PubMed Central

    Gadgil, Milind; Peterson, Eric; Tregellas, Jason; Hepburn, Susan; Rojas, Donald

    2013-01-01

    People with autism spectrum disorders (ASD) have atypical visual perception of global and local information. Previous neuroimaging studies have examined the functional anatomy of locally-directed attention during visual processing in ASD, but few have examined differences in both globally-and locally-directed attention. We performed functional magnetic resonance imaging (fMRI) in 17 adults with ASD and 16 typically developing (TD) subjects to examine the neurobiology of both global- and local- level information processing in ASD using an abstract hierarchical design task. TD subjects showed no regions of increased brain activation relative to subjects with ASD using whole brain analysis. Subjects with ASD exhibited greater activation in right superior frontal gyrus during locally directed attention. During globally directed attention, the ASD group showed greater right lateral occipital activation. Additionally, subjects with ASD showed less deactivation in medial prefrontal cortex (part of the default mode network) in the globally directed attention condition. Our findings help elucidate networks of brain activation related to atyipcal global and local feature processing in ASD. PMID:23768913

  8. Comparisons between global and local gyrokinetic simulations of an ASDEX Upgrade H-mode plasma

    NASA Astrophysics Data System (ADS)

    Navarro, Alejandro Bañón; Told, Daniel; Jenko, Frank; Görler, Tobias; Happel, Tim

    2016-04-01

    We investigate by means of local and global nonlinear gyrokinetic GENE simulations an ASDEX Upgrade H-mode plasma. We find that for the outer core positions (i.e., ρ tor ≈ 0.5 - 0.7 ), nonlocal effects are important. For nominal input parameters local simulations over-predict the experimental heat fluxes by a large factor, while a good agreement is found with global simulations. This was a priori not expected, since the values of 1 / ρ ⋆ were large enough that global and local simulations should have been in accordance. Nevertheless, due to the high sensitivity of the heat fluxes with respect to the input parameters, it is still possible to match the heat fluxes in local simulations with the experimental and global results by varying the ion temperature gradient within the experimental uncertainties. In addition to that, once an agreement in the transport quantities between local (flux-matched) and global simulations is achieved, an agreement for other quantities, such as density and temperature fluctuations, is also found. The case presented here clearly shows that even in the presence of global size-effects, the local simulation approach is still a valid and accurate approach.

  9. The role of local and global processing in the recognition of living and nonliving things.

    PubMed

    Thomas, Richard; Forde, Emer

    2006-01-01

    We report a study on a patient (DW) with integrative visual agnosia and a category-specific recognition impairment for living things. We assessed DW's local and global processing and tested if his integrative agnosia could have led directly to his category-specific impairment. The main findings were: (i) DW was faster at identifying local compared to global letters. (ii) DW showed no local-to-global (or global-to-local) interference effects in selective attention tasks. (iii) DW showed a congruency effect in a divided attention task, suggesting that, when his attention was cued to both levels, he could process information simultaneously and integrate local and global information. (iv) Controls were poorer at naming nonliving compared to living things when presented with silhouettes. These data suggest that local and global information are differentially weighted in the visual recognition of living and nonliving things, and that an impairment in processing the overall shape of an object can lead to a category-specific deficit for living things. Crucially, this implies that category-specific impairments do not necessarily reflect damage to the semantic system, and models of semantic memory based on this assumption need to be revised. PMID:16253294

  10. Cultures in orbit: Satellite technologies, global media and local practice

    NASA Astrophysics Data System (ADS)

    Parks, Lisa Ann

    Since the launch of Sputnik in 1957, satellite technologies have had a profound impact upon cultures around the world. "Cultures in Orbit" examines these seemingly disembodied, distant relay machines in relation to situated social and cultural processes on earth. Drawing upon a range of materials including NASA and UNESCO documents, international satellite television broadcasts, satellite 'development' projects, documentary and science fiction films, remote sensing images, broadcast news footage, World Wide Web sites, and popular press articles I delineate and analyze a series of satellite mediascapes. "Cultures in Orbit" analyzes uses of satellites for live television relay, surveillance, archaeology and astronomy. The project examines such satellite media as the first live global satellite television program Our World, Elvis' Aloha from Hawaii concert, Aboriginal Australian satellite programs, and Star TV's Asian music videos. In addition, the project explores reconnaissance images of mass graves in Bosnia, archaeological satellite maps of Cleopatra's underwater palace in Egypt, and Hubble Space Telescope images. These case studies are linked by a theoretical discussion of the satellite's involvement in shifting definitions of time, space, vision, knowledge and history. The satellite fosters an aesthetic of global realism predicated on instantaneous transnational connections. It reorders linear chronologies by revealing traces of the ancient past on the earth's surface and by searching in deep space for the "edge of time." On earth, the satellite is used to modernize and develop "primitive" societies. Satellites have produced new electronic spaces of international exchange, but they also generate strategic maps that advance Western political and cultural hegemony. By technologizing human vision, the satellite also extends the epistemologies of the visible, the historical and the real. It allows us to see artifacts and activities on earth from new vantage points

  11. Optimization of precision localization microscopy using CMOS camera technology

    NASA Astrophysics Data System (ADS)

    Fullerton, Stephanie; Bennett, Keith; Toda, Eiji; Takahashi, Teruo

    2012-02-01

    Light microscopy imaging is being transformed by the application of computational methods that permit the detection of spatial features below the optical diffraction limit. Successful localization microscopy (STORM, dSTORM, PALM, PhILM, etc.) relies on the precise position detection of fluorescence emitted by single molecules using highly sensitive cameras with rapid acquisition speeds. Electron multiplying CCD (EM-CCD) cameras are the current standard detector for these applications. Here, we challenge the notion that EM-CCD cameras are the best choice for precision localization microscopy and demonstrate, through simulated and experimental data, that certain CMOS detector technology achieves better localization precision of single molecule fluorophores. It is well-established that localization precision is limited by system noise. Our findings show that the two overlooked noise sources relevant for precision localization microscopy are the shot noise of the background light in the sample and the excess noise from electron multiplication in EM-CCD cameras. At low light conditions (< 200 photons/fluorophore) with no optical background, EM-CCD cameras are the preferred detector. However, in practical applications, optical background noise is significant, creating conditions where CMOS performs better than EM-CCD. Furthermore, the excess noise of EM-CCD is equivalent to reducing the information content of each photon detected which, in localization microscopy, reduces the precision of the localization. Thus, new CMOS technology with 100fps, <1.3 e- read noise and high QE is the best detector choice for super resolution precision localization microscopy.

  12. Computerized prediction of breast cancer risk: comparison between the global and local bilateral mammographic tissue asymmetry

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Lederman, Dror; Tan, Jun; Wang, Xiao Hui; Zheng, Bin

    2011-03-01

    We have developed and preliminarily tested a new breast cancer risk prediction model based on computerized bilateral mammographic tissue asymmetry. In this study, we investigated and compared the performance difference of our risk prediction model when the bilateral mammographic tissue asymmetrical features were extracted in two different methods namely (1) the entire breast area and (2) the mirror-matched local strips between the left and right breast. A testing dataset including bilateral craniocaudal (CC) view images of 100 negative and 100 positive cases for developing breast abnormalities or cancer was selected from a large and diverse full-field digital mammography (FFDM) image database. To detect bilateral mammographic tissue asymmetry, a set of 20 initial "global" features were extracted from the entire breast areas of two bilateral mammograms in CC view and their differences were computed. Meanwhile, a pool of 16 local histogram-based statistic features was computed from eight mirror-matched strips between the left and right breast. Using a genetic algorithm (GA) to select optimal features, two artificial neural networks (ANN) were built to predict the risk of a test case developing cancer. Using the leave-one-case-out training and testing method, two GAoptimized ANNs yielded the areas under receiver operating characteristic (ROC) curves of 0.754+/-0.024 (using feature differences extracted from the entire breast area) and 0.726+/-0.026 (using the feature differences extracted from 8 pairs of local strips), respectively. The risk prediction model using either ANN is able to detect 58.3% (35/60) of cancer cases 6 to 18 months earlier at 80% specificity level. This study compared two methods to compute bilateral mammographic tissue asymmetry and demonstrated that bilateral mammographic tissue asymmetry was a useful breast cancer risk indicator with high discriminatory power.

  13. Resource redistribution in polydomous ant nest networks: local or global?

    PubMed Central

    Franks, Daniel W.; Robinson, Elva J.H.

    2014-01-01

    An important problem facing organisms in a heterogeneous environment is how to redistribute resources to where they are required. This is particularly complex in social insect societies as resources have to be moved both from the environment into the nest and between individuals within the nest. Polydomous ant colonies are split between multiple spatially separated, but socially connected, nests. Whether, and how, resources are redistributed between nests in polydomous colonies is unknown. We analyzed the nest networks of the facultatively polydomous wood ant Formica lugubris. Our results indicate that resource redistribution in polydomous F. lugubris colonies is organized at the local level between neighboring nests and not at the colony level. We found that internest trails connecting nests that differed more in their amount of foraging were stronger than trails between nests with more equal foraging activity. This indicates that resources are being exchanged directly from nests with a foraging excess to nests that require resources. In contrast, we found no significant relationships between nest properties, such as size and amount of foraging, and network measures such as centrality and connectedness. This indicates an absence of a colony-level resource exchange. This is a clear example of a complex behavior emerging as a result of local interactions between parts of a system. PMID:25214755

  14. Flow-based local optimization for image-to-geometry projection.

    PubMed

    Dellepiane, Matteo; Marroquim, Ricardo; Callieri, Marco; Cignoni, Paolo; Scopigno, Roberto

    2012-03-01

    The projection of a photographic data set on a 3D model is a robust and widely applicable way to acquire appearance information of an object. The first step of this procedure is the alignment of the images on the 3D model. While any reconstruction pipeline aims at avoiding misregistration by improving camera calibrations and geometry, in practice a perfect alignment cannot always be reached. Depending on the way multiple camera images are fused on the object surface, remaining misregistrations show up either as ghosting or as discontinuities at transitions from one camera view to another. In this paper we propose a method, based on the computation of Optical Flow between overlapping images, to correct the local misalignment by determining the necessary displacement. The goal is to correct the symptoms of misregistration, instead of searching for a globally consistent mapping, which might not exist. The method scales up well with the size of the data set (both photographic and geometric) and is quite independent of the characteristics of the 3D model (topology cleanliness, parametrization, density). The method is robust and can handle real world cases that have different characteristics: low level geometric details and images that lack enough features for global optimization or manual methods. It can be applied to different mapping strategies, such as texture or per-vertex attribute encoding. PMID:21519108

  15. Development and verification of global/local analysis techniques for laminated composites

    NASA Technical Reports Server (NTRS)

    Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.

    1991-01-01

    A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.

  16. Sequence information signal processor for local and global string comparisons

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1997-01-01

    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.

  17. Protein surface matching by combining local and global geometric information.

    PubMed

    Ellingson, Leif; Zhang, Jinfeng

    2012-01-01

    Comparison of the binding sites of proteins is an effective means for predicting protein functions based on their structure information. Despite the importance of this problem and much research in the past, it is still very challenging to predict the binding ligands from the atomic structures of protein binding sites. Here, we designed a new algorithm, TIPSA (Triangulation-based Iterative-closest-point for Protein Surface Alignment), based on the iterative closest point (ICP) algorithm. TIPSA aims to find the maximum number of atoms that can be superposed between two protein binding sites, where any pair of superposed atoms has a distance smaller than a given threshold. The search starts from similar tetrahedra between two binding sites obtained from 3D Delaunay triangulation and uses the Hungarian algorithm to find additional matched atoms. We found that, due to the plasticity of protein binding sites, matching the rigid body of point clouds of protein binding sites is not adequate for satisfactory binding ligand prediction. We further incorporated global geometric information, the radius of gyration of binding site atoms, and used nearest neighbor classification for binding site prediction. Tested on benchmark data, our method achieved a performance comparable to the best methods in the literature, while simultaneously providing the common atom set and atom correspondences.

  18. Local thermodynamic equilibrium for globally disequilibrium open systems under stress

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury

    2016-04-01

    Predictive modeling of far and near equilibrium processes is essential for understanding of patterns formation and for quantifying of natural processes that are never in global equilibrium. Methods of both equilibrium and non-equilibrium thermodynamics are needed and have to be combined. For example, predicting temperature evolution due to heat conduction requires simultaneous use of equilibrium relationship between internal energy and temperature via heat capacity (the caloric equation of state) and disequilibrium relationship between heat flux and temperature gradient. Similarly, modeling of rocks deforming under stress, reactions in system open for the porous fluid flow, or kinetic overstepping of the equilibrium reaction boundary necessarily needs both equilibrium and disequilibrium material properties measured under fundamentally different laboratory conditions. Classical irreversible thermodynamics (CIT) is the well-developed discipline providing the working recipes for the combined application of mutually exclusive experimental data such as density and chemical potential at rest under constant pressure and temperature and viscosity of the flow under stress. Several examples will be presented.

  19. Avoiding spurious submovement decompositions : a globally optimal algorithm.

    SciTech Connect

    Rohrer, Brandon Robinson; Hogan, Neville

    2003-07-01

    Evidence for the existence of discrete submovements underlying continuous human movement has motivated many attempts to extract them. Although they produce visually convincing results, all of the methodologies that have been employed are prone to produce spurious decompositions. Examples of potential failures are given. A branch-and-bound algorithm for submovement extraction, capable of global nonlinear minimization (and hence capable of avoiding spurious decompositions), is developed and demonstrated.

  20. Choice as a Global Language in Local Practice: A Mixed Model of School Choice in Taiwan

    ERIC Educational Resources Information Center

    Mao, Chin-Ju

    2015-01-01

    This paper uses school choice policy as an example to demonstrate how local actors adopt, mediate, translate, and reformulate "choice" as neo-liberal rhetoric informing education reform. Complex processes exist between global policy about school choice and the local practice of school choice. Based on the theoretical sensibility of…

  1. The Changing Image of World Affairs and the Role of Citizen: Local Communities and Global Education.

    ERIC Educational Resources Information Center

    Woyach, Robert B.

    Two assumptions of efforts to use the community in global studies are: (1) Local communities are significant points of origin and points of impact for much of what we mean by world affairs, and (2) the linkage between the community and world affairs creates for local people a legitimate citizenship interest and role with respect to world affairs.…

  2. Identity Formation of American Indian Adolescents: Local, National, and Global Considerations

    ERIC Educational Resources Information Center

    Markstrom, Carol A.

    2011-01-01

    A conceptual model is presented that approaches identity formation of American Indian adolescents according to 3 levels of social contextual influence--local, national, and global--relative to types of identity, dynamics of identity, and sources of influence. Ethnic identity of American Indians is embedded within the local cultural milieu and…

  3. Teaching and Learning Road Map for Schools: Global and yet Local!

    ERIC Educational Resources Information Center

    Mehrmohammadi, Mahmoud

    2011-01-01

    What is a viable theoretical scheme that can guide school curriculum deliberations, maintaining both a global and a local quality OR which curriculum theory has the power of being adopted universally and the versatility of being adapted locally? Can the notion of "Glocal" coined in the field of sociology (2010) be regarded as a meaningful and…

  4. Global stability and optimal control of an SIRS epidemic model on heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Sun, Jitao

    2014-09-01

    In this paper, we consider an SIRS epidemic model with vaccination on heterogeneous networks. By constructing suitable Lyapunov functions, global stability of the disease-free equilibrium and the endemic equilibrium of the model is investigated. Also we firstly study an optimally controlled SIRS epidemic model on complex networks. We show that an optimal control exists for the control problem. Finally some examples are presented to show the global stability and the efficiency of this optimal control. These results can help in adopting pragmatic treatment upon diseases in structured populations.

  5. Relating Local to Global Spatial Knowledge: Heuristic Influence of Local Features on Direction Estimates

    ERIC Educational Resources Information Center

    Phillips, Daniel W.; Montello, Daniel R.

    2015-01-01

    Previous research has examined heuristics--simplified decision-making rules-of-thumb--for geospatial reasoning. This study examined at two locations the influence of beliefs about local coastline orientation on estimated directions to local and distant places; estimates were made immediately or after fifteen seconds. This study goes beyond…

  6. Optimal local transformations of flip and exchange symmetric entangled states

    NASA Astrophysics Data System (ADS)

    Karpat, G.; Gedik, Z.

    2011-12-01

    Local quantum operations relating multiqubit flip (0-1) and exchange symmetric (FES) states, with the maximum possible probability of success, have been determined by assuming that the states are converted via one-shot FES transformations. It has been shown that certain entangled states are more robust than others, in the sense that the optimum probability of converting these robust states to the states lying in the close neighborhood of separable ones vanish under local FES operations.

  7. Cerebral responses to local and global auditory novelty under general anesthesia.

    PubMed

    Uhrig, Lynn; Janssen, David; Dehaene, Stanislas; Jarraya, Béchir

    2016-11-01

    Primate brains can detect a variety of unexpected deviations in auditory sequences. The local-global paradigm dissociates two hierarchical levels of auditory predictive coding by examining the brain responses to first-order (local) and second-order (global) sequence violations. Using the macaque model, we previously demonstrated that, in the awake state, local violations cause focal auditory responses while global violations activate a brain circuit comprising prefrontal, parietal and cingulate cortices. Here we used the same local-global auditory paradigm to clarify the encoding of the hierarchical auditory regularities in anesthetized monkeys and compared their brain responses to those obtained in the awake state as measured with fMRI. Both, propofol, a GABAA-agonist, and ketamine, an NMDA-antagonist, left intact or even enhanced the cortical response to auditory inputs. The local effect vanished during propofol anesthesia and shifted spatially during ketamine anesthesia compared with wakefulness. Under increasing levels of propofol, we observed a progressive disorganization of the global effect in prefrontal, parietal and cingulate cortices and its complete suppression under ketamine anesthesia. Anesthesia also suppressed thalamic activations to the global effect. These results suggest that anesthesia preserves initial auditory processing, but disturbs both short-term and long-term auditory predictive coding mechanisms. The disorganization of auditory novelty processing under anesthesia relates to a loss of thalamic responses to novelty and to a disruption of higher-order functional cortical networks in parietal, prefrontal and cingular cortices.

  8. Brain MR image segmentation using local and global intensity fitting active contours/surfaces.

    PubMed

    Wang, Li; Li, Chunming; Sun, Quansen; Xia, Deshen; Kao, Chiu-Yen

    2008-01-01

    In this paper, we present an improved region-based active contour/surface model for 2D/3D brain MR image segmentation. Our model combines the advantages of both local and global intensity information, which enable the model to cope with intensity inhomogeneity. We define an energy functional with a local intensity fitting term and an auxiliary global intensity fitting term. In the associated curve evolution, the motion of the contour is driven by a local intensity fitting force and a global intensity fitting force, induced by the local and global terms in the proposed energy functional, respectively. The influence of these two forces on the curve evolution is complementary. When the contour is close to object boundaries, the local intensity fitting force became dominant, which attracts the contour toward object boundaries and finally stops the contour there. The global intensity fitting force is dominant when the contour is far away from object boundaries, and it allows more flexible initialization of contours by using global image information. The proposed model has been applied to both 2D and 3D brain MR image segmentation with promising results.

  9. Cerebral responses to local and global auditory novelty under general anesthesia.

    PubMed

    Uhrig, Lynn; Janssen, David; Dehaene, Stanislas; Jarraya, Béchir

    2016-11-01

    Primate brains can detect a variety of unexpected deviations in auditory sequences. The local-global paradigm dissociates two hierarchical levels of auditory predictive coding by examining the brain responses to first-order (local) and second-order (global) sequence violations. Using the macaque model, we previously demonstrated that, in the awake state, local violations cause focal auditory responses while global violations activate a brain circuit comprising prefrontal, parietal and cingulate cortices. Here we used the same local-global auditory paradigm to clarify the encoding of the hierarchical auditory regularities in anesthetized monkeys and compared their brain responses to those obtained in the awake state as measured with fMRI. Both, propofol, a GABAA-agonist, and ketamine, an NMDA-antagonist, left intact or even enhanced the cortical response to auditory inputs. The local effect vanished during propofol anesthesia and shifted spatially during ketamine anesthesia compared with wakefulness. Under increasing levels of propofol, we observed a progressive disorganization of the global effect in prefrontal, parietal and cingulate cortices and its complete suppression under ketamine anesthesia. Anesthesia also suppressed thalamic activations to the global effect. These results suggest that anesthesia preserves initial auditory processing, but disturbs both short-term and long-term auditory predictive coding mechanisms. The disorganization of auditory novelty processing under anesthesia relates to a loss of thalamic responses to novelty and to a disruption of higher-order functional cortical networks in parietal, prefrontal and cingular cortices. PMID:27502046

  10. Local flow regulation and irrigation raise global human water consumption and footprint

    NASA Astrophysics Data System (ADS)

    Jaramillo, Fernando; Destouni, Georgia

    2015-12-01

    Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km3/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km3/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling.

  11. Local flow regulation and irrigation raise global human water consumption and footprint.

    PubMed

    Jaramillo, Fernando; Destouni, Georgia

    2015-12-01

    Flow regulation and irrigation alter local freshwater conditions, but their global effects are highly uncertain. We investigated these global effects from 1901 to 2008, using hydroclimatic observations in 100 large hydrological basins. Globally, we find consistent and dominant effects of increasing relative evapotranspiration from both activities, and decreasing temporal runoff variability from flow regulation. The evapotranspiration effect increases the long-term average human consumption of fresh water by 3563 ± 979 km(3)/year from 1901-1954 to 1955-2008. This increase raises a recent estimate of the current global water footprint of humanity by around 18%, to 10,688 ± 979 km(3)/year. The results highlight the global impact of local water-use activities and call for their relevant account in Earth system modeling.

  12. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes.

    PubMed

    Hama, Hiroshi; Hara, Chikako; Yamaguchi, Kazuhiko; Miyawaki, Atsushi

    2004-02-01

    Here we provide evidence that astrocytes affect neuronal synaptogenesis by the process of adhesion. Local contact with astrocytes via integrin receptors elicited protein kinase C (PKC) activation in individual dissociated neurons cultured in astrocyte-conditioned medium. This activation, initially focal, soon spread throughout the entire neuron. We then demonstrated pharmacologically that the arachidonic acid cascade, triggered by the integrin reception, is responsible for the global activation of PKC. Local astrocytic contact also facilitated excitatory synaptogenesis throughout the neuron, a process which could be blocked by inhibitors of both integrins and PKC. Thus, propagation of PKC signaling represents an underlying mechanism for global neuronal maturation following local astrocyte adhesion.

  13. Study of global and local crystallography at the domain boundaries of lead zirconate titanate piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Farooq, M. U.; Villaurrutia, R.; MacLaren, I.; Kungl, H.; Hoffmann, M. J.; Fundenberger, J.-J.; Bouzy, E.

    2008-08-01

    Reliable automated orientation mapping of 90° domains in a tetragonal perovskite has been achieved for the first time using both EBSD and TEM-Kikuchi pattern analysis. This has been used to compare local measurements of c/a ratios in PZT with global measurements by X-ray diffraction. The local c/a rations are in broad agreement with the global measurements, but further work is needed to determine whether the small discrepancies are real local variations or are caused by experimental factors.

  14. The relationship between regional and local species diversity in marine benthic communities: a global perspective.

    PubMed

    Witman, Jon D; Etter, Ron J; Smith, Franz

    2004-11-01

    The number of species coexisting in ecological communities must be a consequence of processes operating on both local and regional scales. Although a great deal of experimental work has been devoted to local causes of diversity, little is known about the effects of regional processes on local diversity and how they contribute to global diversity patterns in marine systems. We tested the effects of latitude and the richness of the regional species pool on the species richness of local epifaunal invertebrate communities by sampling the diversity of local sites in 12 independent biogeographic regions from 62 degrees S to 63 degrees N latitude. Both regional and local species richness displayed significant unimodal patterns with latitude, peaking at low latitudes and decreasing toward high latitudes. The latitudinal diversity gradient was represented at the scale of local sites because local species richness was positively and linearly related to regional species richness. The richness of the regional species pool explained 73-76% of local species richness. On a global scale, the extent of regional influence on local species richness was nonrandom-the proportion of regional biota represented in local epifaunal communities increased significantly from low to high latitudes. The strong effect of the regional species pool implies that patterns of local diversity in temperate, tropical, and high-latitude marine benthic communities are influenced by processes operating on larger spatiotemporal scales than previously thought.

  15. A functional near-infrared spectroscopy study of sustained attention to local and global target features.

    PubMed

    De Joux, Neil; Russell, Paul N; Helton, William S

    2013-04-01

    Despite a long history of vigilance research, the role of global and local feature discrimination in vigilance tasks has been relatively neglected. In this experiment participants performed a sustained attention task requiring either global or local shape stimuli discrimination. Reaction time to local feature discriminations was characterized by a quadratic trend over time-on-task with performance levels returning to initial levels late in the task. This trend did not occur in the global shape discrimination task. Functional near-infrared spectroscopy (fNIRS) was utilized in this study as an index of cerebral activation. In both tasks there was increased right hemisphere relative to left hemisphere oxygenation and right hemisphere oxygenation increased with time-on-task. Left hemisphere oxygenation, however, decreased slightly in the global task, but increased significantly in the local task as task duration increased. Indeed, total oxygenation, averaging both right and left, increased more with time-on-task in the local discrimination task. Both the performance and physiological results of this study indicate increased utilization of bilateral cerebral resources with time-on-task in the local, but not the global discrimination vigil.

  16. Global evolutionary isolation measures can capture key local conservation species in Nearctic and Neotropical bird communities

    PubMed Central

    Redding, David W.; Mooers, Arne O.; Şekercioğlu, Çağan H.; Collen, Ben

    2015-01-01

    Understanding how to prioritize among the most deserving imperilled species has been a focus of biodiversity science for the past three decades. Though global metrics that integrate evolutionary history and likelihood of loss have been successfully implemented, conservation is typically carried out at sub-global scales on communities of species rather than among members of complete taxonomic assemblages. Whether and how global measures map to a local scale has received little scrutiny. At a local scale, conservation-relevant assemblages of species are likely to be made up of relatively few species spread across a large phylogenetic tree, and as a consequence there are potentially relatively large amounts of evolutionary history at stake. We ask to what extent global metrics of evolutionary history are useful for conservation priority setting at the community level by evaluating the extent to which three global measures of evolutionary isolation (evolutionary distinctiveness (ED), average pairwise distance (APD) and the pendant edge or unique phylogenetic diversity (PD) contribution) capture community-level phylogenetic and trait diversity for a large sample of Neotropical and Nearctic bird communities. We find that prioritizing the most ED species globally safeguards more than twice the total PD of local communities on average, but that this does not translate into increased local trait diversity. By contrast, global APD is strongly related to the APD of those same species at the community level, and prioritizing these species also safeguards local PD and trait diversity. The next step for biologists is to understand the variation in the concordance of global and local level scores and what this means for conservation priorities: we need more directed research on the use of different measures of evolutionary isolation to determine which might best capture desirable aspects of biodiversity. PMID:25561674

  17. Global evolutionary isolation measures can capture key local conservation species in Nearctic and Neotropical bird communities.

    PubMed

    Redding, David W; Mooers, Arne O; Şekercioğlu, Çağan H; Collen, Ben

    2015-02-19

    Understanding how to prioritize among the most deserving imperilled species has been a focus of biodiversity science for the past three decades. Though global metrics that integrate evolutionary history and likelihood of loss have been successfully implemented, conservation is typically carried out at sub-global scales on communities of species rather than among members of complete taxonomic assemblages. Whether and how global measures map to a local scale has received little scrutiny. At a local scale, conservation-relevant assemblages of species are likely to be made up of relatively few species spread across a large phylogenetic tree, and as a consequence there are potentially relatively large amounts of evolutionary history at stake. We ask to what extent global metrics of evolutionary history are useful for conservation priority setting at the community level by evaluating the extent to which three global measures of evolutionary isolation (evolutionary distinctiveness (ED), average pairwise distance (APD) and the pendant edge or unique phylogenetic diversity (PD) contribution) capture community-level phylogenetic and trait diversity for a large sample of Neotropical and Nearctic bird communities. We find that prioritizing the most ED species globally safeguards more than twice the total PD of local communities on average, but that this does not translate into increased local trait diversity. By contrast, global APD is strongly related to the APD of those same species at the community level, and prioritizing these species also safeguards local PD and trait diversity. The next step for biologists is to understand the variation in the concordance of global and local level scores and what this means for conservation priorities: we need more directed research on the use of different measures of evolutionary isolation to determine which might best capture desirable aspects of biodiversity. PMID:25561674

  18. Global evolutionary isolation measures can capture key local conservation species in Nearctic and Neotropical bird communities.

    PubMed

    Redding, David W; Mooers, Arne O; Şekercioğlu, Çağan H; Collen, Ben

    2015-02-19

    Understanding how to prioritize among the most deserving imperilled species has been a focus of biodiversity science for the past three decades. Though global metrics that integrate evolutionary history and likelihood of loss have been successfully implemented, conservation is typically carried out at sub-global scales on communities of species rather than among members of complete taxonomic assemblages. Whether and how global measures map to a local scale has received little scrutiny. At a local scale, conservation-relevant assemblages of species are likely to be made up of relatively few species spread across a large phylogenetic tree, and as a consequence there are potentially relatively large amounts of evolutionary history at stake. We ask to what extent global metrics of evolutionary history are useful for conservation priority setting at the community level by evaluating the extent to which three global measures of evolutionary isolation (evolutionary distinctiveness (ED), average pairwise distance (APD) and the pendant edge or unique phylogenetic diversity (PD) contribution) capture community-level phylogenetic and trait diversity for a large sample of Neotropical and Nearctic bird communities. We find that prioritizing the most ED species globally safeguards more than twice the total PD of local communities on average, but that this does not translate into increased local trait diversity. By contrast, global APD is strongly related to the APD of those same species at the community level, and prioritizing these species also safeguards local PD and trait diversity. The next step for biologists is to understand the variation in the concordance of global and local level scores and what this means for conservation priorities: we need more directed research on the use of different measures of evolutionary isolation to determine which might best capture desirable aspects of biodiversity.

  19. From local to global processing: the development of illusory contour perception.

    PubMed

    Nayar, Kritika; Franchak, John; Adolph, Karen; Kiorpes, Lynne

    2015-03-01

    Global visual processing is important for segmenting scenes, extracting form from background, and recognizing objects. Local processing involves attention to the local elements, contrast, and boundaries of an image at the expense of extracting a global percept. Previous work is inconclusive regarding the relative development of local and global processing. Some studies suggest that global perception is already present by 8 months of age, whereas others suggest that the ability arises during childhood and continues to develop during adolescence. We used a novel method to assess the development of global processing in 3- to 10-year-old children and an adult comparison group. We used Kanizsa illusory contours as an assay of global perception and measured responses on a touch-sensitive screen while monitoring eye position with a head-mounted eye tracker. Participants were tested using a similarity match-to-sample paradigm. Using converging measures, we found a clear developmental progression with age such that the youngest children performed near chance on the illusory contour discrimination, whereas 7- and 8-year-olds performed nearly perfectly, as did adults. There was clear evidence of a gradual shift from a local processing strategy to a global one; young children looked predominantly at and touched the "pacman" inducers of the illusory form, whereas older children and adults looked predominantly at and touched the middle of the form. These data show a prolonged developmental trajectory in appreciation of global form, with a transition from local to global visual processing between 4 and 7 years of age.

  20. Coevolution of competing systems: local cooperation and global inhibition

    NASA Astrophysics Data System (ADS)

    Albornoz, J. M.; Parravano, A.

    2010-03-01

    Using a set of heterogeneous competing systems with intra-system cooperation and inter-system aggression, we show how the coevolution of the system parameters (degree of organization and conditions for aggression) depends on the rate of supply of resources dot{S}. The model consists of a number of units grouped into systems that compete for the resource S; within each system several units can be aggregated into cooperative arrangements whose size is a measure of the degree of organization in the system. Aggression takes place when the systems release inhibitors that impair the performance of other systems. Using a mean field approximation we show that i) even in the case of identical systems there are stable inhomogeneous solutions; ii) a system steadily producing inhibitors needs large perturbations to leave this regime; and iii) aggression may give comparative advantages. A discrete model is used in order to examine how the particular configuration of the units within a system determines its performance in the presence of aggression. We find that full-scale, one sided aggression is only profitable for less-organized systems, and that systems with a mixture of degrees of organization exhibit robustness against aggression. By using a genetic algorithm we find that, in terms of the full-occupation resource supply rate dot{S}F, the coevolution of the set of systems displays the following behavior: i) for dot{S}< dot{S}F/10 aggressions are irrelevant and most systems exhibit a high degree of organization; ii) For dot{S}F/10 < dot{S} < dot{S}F/3 aggressions are frequent, making systems with a low degree of organization competitive; iii) for dot{S}F/3 < dot{S} < dot{S}F/2 the systems display global evolutive transitions between periods of calm (few aggressions and high degree of organization) and periods of belligerence (frequent aggressions and low degree of organization); iv) for dot{S} > dot{S}F/2 the periods of aggression becomes progressively rarer and shorter

  1. Thinking/Acting Locally/Globally: Western Science and Environmental Education in a Global Knowledge Economy.

    ERIC Educational Resources Information Center

    Gough, Noel

    2002-01-01

    Appraises a number of approaches to 'thinking globally' in environmental education with particular reference to popular assumptions about the universal applicability of Western science. Suggests that the contribution of Western science to understanding and resolving environmental problems might be enhanced by seeing it as one among many local…

  2. Optimization modeling of U.S. renewable electricity deployment using local input variables

    NASA Astrophysics Data System (ADS)

    Bernstein, Adam

    For the past five years, state Renewable Portfolio Standard (RPS) laws have been a primary driver of renewable electricity (RE) deployments in the United States. However, four key trends currently developing: (i) lower natural gas prices, (ii) slower growth in electricity demand, (iii) challenges of system balancing intermittent RE within the U.S. transmission regions, and (iv) fewer economical sites for RE development, may limit the efficacy of RPS laws over the remainder of the current RPS statutes' lifetime. An outsized proportion of U.S. RE build occurs in a small number of favorable locations, increasing the effects of these variables on marginal RE capacity additions. A state-by-state analysis is necessary to study the U.S. electric sector and to generate technology specific generation forecasts. We used LP optimization modeling similar to the National Renewable Energy Laboratory (NREL) Renewable Energy Development System (ReEDS) to forecast RE deployment across the 8 U.S. states with the largest electricity load, and found state-level RE projections to Year 2031 significantly lower than thoseimplied in the Energy Information Administration (EIA) 2013 Annual Energy Outlook forecast. Additionally, the majority of states do not achieve their RPS targets in our forecast. Combined with the tendency of prior research and RE forecasts to focus on larger national and global scale models, we posit that further bottom-up state and local analysis is needed for more accurate policy assessment, forecasting, and ongoing revision of variables as parameter values evolve through time. Current optimization software eliminates much of the need for algorithm coding and programming, allowing for rapid model construction and updating across many customized state and local RE parameters. Further, our results can be tested against the empirical outcomes that will be observed over the coming years, and the forecast deviation from the actuals can be attributed to discrete parameter

  3. Identifying local-scale wilderness for on-ground conservation actions within a global biodiversity hotspot

    PubMed Central

    Lin, Shiwei; Wu, Ruidong; Hua, Chaolang; Ma, Jianzhong; Wang, Wenli; Yang, Feiling; Wang, Junjun

    2016-01-01

    Protecting wilderness areas (WAs) is a crucial proactive approach to sustain biodiversity. However, studies identifying local-scale WAs for on-ground conservation efforts are still very limited. This paper investigated the spatial patterns of wilderness in a global biodiversity hotspot – Three Parallel Rivers Region (TPRR) in southwest China. Wilderness was classified into levels 1 to 10 based on a cluster analysis of five indicators, namely human population density, naturalness, fragmentation, remoteness, and ruggedness. Only patches characterized by wilderness level 1 and ≥1.0 km2 were considered WAs. The wilderness levels in the northwest were significantly higher than those in the southeast, and clearly increased with the increase in elevation. The WAs covered approximately 25% of TPRR’s land, 89.3% of which was located in the >3,000 m elevation zones. WAs consisted of 20 vegetation types, among which temperate conifer forest, cold temperate shrub and alpine ecosystems covered 79.4% of WAs’ total area. Most WAs were still not protected yet by existing reserves. Topography and human activities are the primary influencing factors on the spatial patterns of wilderness. We suggest establishing strictly protected reserves for most large WAs, while some sustainable management approaches might be more optimal solutions for many highly fragmented small WAs. PMID:27181186

  4. Automated global structure extraction for effective local building block processing in XCS.

    PubMed

    Butz, Martin V; Pelikan, Martin; Llorà, Xavier; Goldberg, David E

    2006-01-01

    Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.

  5. Identifying local-scale wilderness for on-ground conservation actions within a global biodiversity hotspot

    NASA Astrophysics Data System (ADS)

    Lin, Shiwei; Wu, Ruidong; Hua, Chaolang; Ma, Jianzhong; Wang, Wenli; Yang, Feiling; Wang, Junjun

    2016-05-01

    Protecting wilderness areas (WAs) is a crucial proactive approach to sustain biodiversity. However, studies identifying local-scale WAs for on-ground conservation efforts are still very limited. This paper investigated the spatial patterns of wilderness in a global biodiversity hotspot – Three Parallel Rivers Region (TPRR) in southwest China. Wilderness was classified into levels 1 to 10 based on a cluster analysis of five indicators, namely human population density, naturalness, fragmentation, remoteness, and ruggedness. Only patches characterized by wilderness level 1 and ≥1.0 km2 were considered WAs. The wilderness levels in the northwest were significantly higher than those in the southeast, and clearly increased with the increase in elevation. The WAs covered approximately 25% of TPRR’s land, 89.3% of which was located in the >3,000 m elevation zones. WAs consisted of 20 vegetation types, among which temperate conifer forest, cold temperate shrub and alpine ecosystems covered 79.4% of WAs’ total area. Most WAs were still not protected yet by existing reserves. Topography and human activities are the primary influencing factors on the spatial patterns of wilderness. We suggest establishing strictly protected reserves for most large WAs, while some sustainable management approaches might be more optimal solutions for many highly fragmented small WAs.

  6. 'Local Food-Nutraceuticals': bridging the gap between local knowledge and global needs.

    PubMed

    Heinrich, Michael; Nebel, Sabine; Leonti, Marco; Rivera, Diego; Obón, Concepción

    2006-01-01

    Food use is changing very fast all over the world. This and other changes (e.g. reduced physical activity, increased longevity) result in novel health risks for the populations in European countries and beyond. Also, in recent decades the convenience food market has grown dramatically and offers novel opportunities for small and large industries alike. Simultaneously, there is a dramatic and irrevocable loss of the local knowledge which forms the basis of many cultural traditions (traditional food knowledge--TFK). The Mediterranean region is well known for a dietary tradition commonly called 'Mediterranean diet(s)', which is renowned for health benefits based among others on widely consumed foods and beverages. While the focus of research has mostly been on the more widely used elements of the Mediterranean diets (especially olive oil and red wine), in this review the focus is on 'local food'. These are ingredients, which are gathered, grown or produced locally and prepared into dishes, which often represent local specialities. Such food is derived from animals, fungi and plants, but in this paper the main subject is food of botanical origin. Particularly important among these local foods are vegetables and salads derived from wild greens (gathered food plants--GFPs) and local cultivars of fruit trees and shrubs. In this review we discuss the theoretical basis (including the concept of traditional knowledge systems) and general approach of an EU-funded multidisciplinary ethnobotanicalpharmacological project focusing on the use of such local resources in several regions of the Mediterranean including the ethnobotanical documentation of food products of selected communities in southern Italy, Spain, Greece (mostly Crete), the identification of extracts/pure compounds (leads for new health food supplements) with potent activity on a series of in vitro targets, especially ones relevant to assess for antioxidant activity, the more detailed in vivo study of some lead

  7. Visual-based simultaneous localization and mapping and global positioning system correction for geo-localization of a mobile robot

    NASA Astrophysics Data System (ADS)

    Berrabah, Sid Ahmed; Sahli, Hichem; Baudoin, Yvan

    2011-12-01

    This paper introduces an approach combining visual-based simultaneous localization and mapping (V-SLAM) and global positioning system (GPS) correction for accurate multi-sensor localization of an outdoor mobile robot in geo-referenced maps. The proposed framework combines two extended Kalman filters (EKF); the first one, referred to as the integration filter, is dedicated to the improvement of the GPS localization based on data from an inertial navigation system and wheels' encoders. The second EKF implements the V-SLAM process. The linear and angular velocities in the dynamic model of the V-SLAM EKF filter are given by the GPS/INS/Encoders integration filter. On the other hand, the output of the V-SLAM EKF filter is used to update the dynamics estimation in the integration filter and therefore the geo-referenced localization. This solution increases the accuracy and the robustness of the positioning during GPS outage and allows SLAM in less featured environments.

  8. The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.

    PubMed

    Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal

    2016-01-01

    Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.

  9. The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention

    PubMed Central

    Munsters, Nicolette M.; van den Boomen, Carlijn; Hooge, Ignace T. C.; Kemner, Chantal

    2016-01-01

    Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli. PMID:27560368

  10. Random matrix theory and cross-correlations in global financial indices and local stock market indices

    NASA Astrophysics Data System (ADS)

    Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo

    2013-02-01

    We analyzed cross-correlations between price fluctuations of global financial indices (20 daily stock indices over the world) and local indices (daily indices of 200 companies in the Korean stock market) by using random matrix theory (RMT). We compared eigenvalues and components of the largest and the second largest eigenvectors of the cross-correlation matrix before, during, and after the global financial the crisis in the year 2008. We find that the majority of its eigenvalues fall within the RMT bounds [ λ -, λ +], where λ - and λ + are the lower and the upper bounds of the eigenvalues of random correlation matrices. The components of the eigenvectors for the largest positive eigenvalues indicate the identical financial market mode dominating the global and local indices. On the other hand, the components of the eigenvector corresponding to the second largest eigenvalue are positive and negative values alternatively. The components before the crisis change sign during the crisis, and those during the crisis change sign after the crisis. The largest inverse participation ratio (IPR) corresponding to the smallest eigenvector is higher after the crisis than during any other periods in the global and local indices. During the global financial the crisis, the correlations among the global indices and among the local stock indices are perturbed significantly. However, the correlations between indices quickly recover the trends before the crisis.

  11. The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.

    PubMed

    Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal

    2016-01-01

    Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli. PMID:27560368

  12. Impairment in local and global processing and set-shifting in body dysmorphic disorder.

    PubMed

    Kerwin, Lauren; Hovav, Sarit; Hellemann, Gerhard; Feusner, Jamie D

    2014-10-01

    Body dysmorphic disorder (BDD) is characterized by distressing and often debilitating preoccupations with misperceived defects in appearance. Research suggests that aberrant visual processing may contribute to these misperceptions. This study used two tasks to probe global and local visual processing as well as set-shifting in individuals with BDD. Eighteen unmedicated individuals with BDD and 17 non-clinical controls completed two global-local tasks. The embedded figures task requires participants to determine which of three complex figures contains a simpler figure embedded within it. The Navon task utilizes incongruent stimuli comprised of a large letter (global level) made up of smaller letters (local level). The outcome measures were response time and accuracy rate. On the embedded figures task, BDD individuals were slower and less accurate than controls. On the Navon task, BDD individuals processed both global and local stimuli slower and less accurately than controls, and there was a further decrement in performance when shifting attention between the different levels of stimuli. Worse insight correlated with poorer performance on both tasks. Taken together, these results suggest abnormal global and local processing for non-appearance related stimuli among BDD individuals, in addition to evidence of poor set-shifting abilities. Moreover, these abnormalities appear to relate to the important clinical variable of poor insight. Further research is needed to explore these abnormalities and elucidate their possible role in the development and/or persistence of BDD symptoms.

  13. A global/local analysis method for treating details in structural design

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.; Mccleary, Susan L.; Ransom, Jonathan B.

    1993-01-01

    A method for analyzing global/local behavior of plate and shell structures is described. In this approach, a detailed finite element model of the local region is incorporated within a coarser global finite element model. The local model need not be nodally compatible (i.e., need not have a one-to-one nodal correspondence) with the global model at their common boundary; therefore, the two models may be constructed independently. The nodal incompatibility of the models is accounted for by introducing appropriate constraint conditions into the potential energy in a hybrid variational formulation. The primary advantage of this method is that the need for transition modeling between global and local models is eliminated. Eliminating transition modeling has two benefits. First, modeling efforts are reduced since tedious and complex transitioning need not be performed. Second, errors due to the mesh distortion, often unavoidable in mesh transitioning, are minimized by avoiding distorted elements beyond what is needed to represent the geometry of the component. The method is applied reduced to a plate loaded in tension and transverse bending. The plate has a central hole, and various hole sixes and shapes are studied. The method is also applied to a composite laminated fuselage panel with a crack emanating from a window in the panel. While this method is applied herein to global/local problems, it is also applicable to the coupled analysis of independently modeled components as well as adaptive refinement.

  14. A comparison study of atlas-based 3D cardiac MRI segmentation: global versus global and local transformations

    NASA Astrophysics Data System (ADS)

    Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  15. OPTIMIZE-M. Nonlinear Global Optimization Using Curdling Algorithm in Mathematica Environmet

    SciTech Connect

    Loehle, C.

    1997-07-01

    An algorithm for performing optimization which is a derivative-free, grid-refinement approach to nonlinear optimization was developed and implemented in software as OPTIMIZE. This approach overcomes a number of deficiencies in existing approaches. Most notably, it finds extremal regions rather than only single extremal points. the program is interactive and collects information on control parameters and constraints using menus. For up to two (and potentially three) dimensions, function convergence is displayed graphically. Because the algorithm does not compute derivatives, gradients, or vectors, it is numerically stable. It can find all the roots of a polynomial in one pass. It is an inherently parallel algorithm. OPTIMIZE-M is a modification of OPTIMIZE designed for use within the Mathematica environment created by Wolfram Research.

  16. A Global Optimization Methodology for Rocket Propulsion Applications

    NASA Technical Reports Server (NTRS)

    2001-01-01

    While the response surface method is an effective method in engineering optimization, its accuracy is often affected by the use of limited amount of data points for model construction. In this chapter, the issues related to the accuracy of the RS approximations and possible ways of improving the RS model using appropriate treatments, including the iteratively re-weighted least square (IRLS) technique and the radial-basis neural networks, are investigated. A main interest is to identify ways to offer added capabilities for the RS method to be able to at least selectively improve the accuracy in regions of importance. An example is to target the high efficiency region of a fluid machinery design space so that the predictive power of the RS can be maximized when it matters most. Analytical models based on polynomials, with controlled level of noise, are used to assess the performance of these techniques.

  17. Metamodel-based global optimization using fuzzy clustering for design space reduction

    NASA Astrophysics Data System (ADS)

    Li, Yulin; Liu, Li; Long, Teng; Dong, Weili

    2013-09-01

    High fidelity analysis are utilized in modern engineering design optimization problems which involve expensive black-box models. For computation-intensive engineering design problems, efficient global optimization methods must be developed to relieve the computational burden. A new metamodel-based global optimization method using fuzzy clustering for design space reduction (MGO-FCR) is presented. The uniformly distributed initial sample points are generated by Latin hypercube design to construct the radial basis function metamodel, whose accuracy is improved with increasing number of sample points gradually. Fuzzy c-mean method and Gath-Geva clustering method are applied to divide the design space into several small interesting cluster spaces for low and high dimensional problems respectively. Modeling efficiency and accuracy are directly related to the design space, so unconcerned spaces are eliminated by the proposed reduction principle and two pseudo reduction algorithms. The reduction principle is developed to determine whether the current design space should be reduced and which space is eliminated. The first pseudo reduction algorithm improves the speed of clustering, while the second pseudo reduction algorithm ensures the design space to be reduced. Through several numerical benchmark functions, comparative studies with adaptive response surface method, approximated unimodal region elimination method and mode-pursuing sampling are carried out. The optimization results reveal that this method captures the real global optimum for all the numerical benchmark functions. And the number of function evaluations show that the efficiency of this method is favorable especially for high dimensional problems. Based on this global design optimization method, a design optimization of a lifting surface in high speed flow is carried out and this method saves about 10 h compared with genetic algorithms. This method possesses favorable performance on efficiency, robustness

  18. Locality versus globality in bacterial signalling: can local communication stabilize bacterial communities?

    PubMed Central

    2010-01-01

    Background Microbial consortia are a major form of life; however their stability conditions are poorly understood and are often explained in terms of species-specific defence mechanisms (secretion of extracellular matrix, antimicrobial compounds, siderophores, etc.). Here we propose a hypothesis that the primarily local nature of intercellular signalling can be a general mechanism underlying the stability of many forms of microbial communities. Presentation of the hypothesis We propose that a large microbial community can be pictured as a theatre of spontaneously emerging, partially overlapping, locally recruited microcommunities whose members interact primarily among themselves, via secreted (signalling) molecules or cell-cell contacts. We hypothesize that stability in an open environment relies on a predominantly local steady state of intercellular communication which ensures that i) deleterious mutants or strains can be excluded by a localized collapse, while ii) microcommunities harbouring useful traits can persist and/or spread even in the absence of specific protection mechanisms. Testing the hypothesis Some elements of this model can be tested experimentally by analyzing the behaviour of synthetic consortia composed of strains having well-defined communication systems and devoid of specific defence mechanisms. Supporting evidence can be obtained by in silico simulations. Implications of the hypothesis The hypothesis provides a framework for a systematic comparison of bacterial community behavior in open and closed environments. The model predicts that local signalling may enable multispecies communities to colonize open, structured environments. On the other hand, a confined niche or a host may be more likely to be colonized by a bacterial mono-species community, and local communication here provides a control against spontaneously arising cheaters, provided that survival depends on cooperation. Reviewers This article was reviewed by G. Jékely, L. Aravind

  19. Visual arts training is linked to flexible attention to local and global levels of visual stimuli.

    PubMed

    Chamberlain, Rebecca; Wagemans, Johan

    2015-10-01

    Observational drawing skill has been shown to be associated with the ability to focus on local visual details. It is unclear whether superior performance in local processing is indicative of the ability to attend to, and flexibly switch between, local and global levels of visual stimuli. It is also unknown whether these attentional enhancements remain specific to observational drawing skill or are a product of a wide range of artistic activities. The current study aimed to address these questions by testing if flexible visual processing predicts artistic group membership and observational drawing skill in a sample of first-year bachelor's degree art students (n=23) and non-art students (n=23). A pattern of local and global visual processing enhancements was found in relation to artistic group membership and drawing skill, with local processing ability found to be specifically related to individual differences in drawing skill. Enhanced global processing and more fluent switching between local and global levels of hierarchical stimuli predicted both drawing skill and artistic group membership, suggesting that these are beneficial attentional mechanisms for art-making in a range of domains. These findings support a top-down attentional model of artistic expertise and shed light on the domain specific and domain-general attentional enhancements induced by proficiency in the visual arts.

  20. The relative contributions of global and local acceleration components on speed perception and discriminability following adaptation.

    PubMed

    Hietanen, Markus A

    2015-10-01

    The perception of speed is dependent on the history of previously presented speeds. Adaptation to a given speed regularly results in a reduction of perceived speed and an increase in speed discriminability and in certain circumstances can result in an increase in perceived speed. In order to determine the relative contributions of the local and global speed components on perceived speed, this experiment used expanding dot flow fields with accelerating (global), decelerating (global) and mixed accelerating/decelerating (local) speed patterns. Profound decreases in perceived speed are found when viewing low test speeds after adaptation to high speeds. Small increases in the perceived speed of high test speeds occur following adaptation to low speeds. There were small but significant differences in perceived stimulus speed after adaptation due to different acceleration profiles. No evidence for global modulation of speed discriminability following adaptation was found.

  1. Shifts in winter distribution in birds: effects of global warming and local habitat change.

    PubMed

    Valiela, Ivan; Bowen, Jennifer L

    2003-11-01

    As global warming intensified toward the end of the 20th century, there was a northward shift in winter ranges of bird species in Cape Cod, Massachusetts, USA. These poleward shifts were correlated to local increases in minimum winter temperatures and global temperature anomalies. This evidence, plus other recent results, suggests that during the last two decades global warming has led to massive and widespread biogeographic shifts with potentially major ecological and human consequences. Local habitat changes associated with urban sprawl affected mainly forest birds with more northern winter distributions. In Cape Cod, the effects of warming on bird distributions are more substantial at the start of the 21st century, than those of habitat alteration, but as urban sprawl continues its importance may rival that of global warming.

  2. Maximal incompatibility of locally classical behavior and global causal order in multiparty scenarios

    NASA Astrophysics Data System (ADS)

    Baumeler, ńmin; Feix, Adrien; Wolf, Stefan

    2014-10-01

    Quantum theory in a global spacetime gives rise to nonlocal correlations, which cannot be explained causally in a satisfactory way; this motivates the study of theories with reduced global assumptions. Oreshkov, Costa, and Brukner [Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076] proposed a framework in which quantum theory is valid locally but where, at the same time, no global spacetime, i.e., predefined causal order, is assumed beyond the absence of logical paradoxes. It was shown for the two-party case, however, that a global causal order always emerges in the classical limit. Quite naturally, it has been conjectured that the same also holds in the multiparty setting. We show that, counter to this belief, classical correlations locally compatible with classical probability theory exist that allow for deterministic signaling between three or more parties incompatible with any predefined causal order.

  3. Overlapping local/global iteration framework for whole-core transport solution

    SciTech Connect

    Cho, N. Z.; Yuk, S.; Yoo, H. J.; Yun, S.

    2012-07-01

    In current practice of reactor design analysis, whole-core diffusion nodal method is used in which nodal parameters are provided by single-assembly lattice physics calculation with net current zero boundary condition. Thus, the whole-core solution is not transport, because the inter-assembly transport effect is not incorporated. In this paper, the overlapping local/global iteration framework is described that removes the limitation of the current method. It consists of two-level iterative computations: half-node overlapping local problems embedded in a global problem. The local problem can employ fine-group deterministic or continuous-energy stochastic (Monte Carlo) transport methods, while the global problem is an equivalent coarse-group transport model based on p-CMFD methodology. The method is tested on several highly heterogeneous multi-slab problems with encouraging results. (authors)

  4. Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels

    NASA Astrophysics Data System (ADS)

    Kosaraju, Srinivas

    2015-11-01

    T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.

  5. Investigating the stability of and relationships among global/local processing measures.

    PubMed

    Dale, Gillian; Arnell, Karen M

    2013-04-01

    Global/local stimuli have been used to estimate global processing biases in individuals and groups, as well as in response to various manipulations. Throughout the literature, multiple different versions of global/local stimuli have been used, such as traditional hierarchical letters and numbers (i.e., Navon letters), abstract hierarchical shapes, and high- and low-spatial-frequency gratings and faces. However, currently it is unclear how reliable or stable performance is on these measures within individuals over time, and whether these seemingly different measures are tapping into the same underlying process. As such, the purpose of the present study was to examine the stability of individual performance on three distinct global/local measures over time and to examine the relationships among the measures. In two studies, we examined the reliability of the biases within, and the relationships among, standard Navon letters in a traditional interference task, hierarchical shapes in a forced choice task, and superimposed high- and low-pass spatial frequency faces in a forced choice task. In both studies, participants completed all three of the tasks, and then returned 7-10 days later to again complete the same tasks. The degree of global/local bias within an individual was found to be highly reliable in the hierarchical shape task and the spatial frequency face task, but less reliable in the traditional Navon letter task. Interestingly, in both studies we found that none of the three measures of global bias were related to each other. Therefore, while these measures do appear to be reliable over time, they may be tapping into distinct aspects of global/local processing.

  6. Global stability of travelling wave fronts for non-local diffusion equations with delay

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lv, G.

    2014-04-01

    This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted L^\\infty-spaces. Moreover, we obtain the decay rates of \\sup_{x\\in{R}}\\vert u(x,t)-\\varphi(x+ct)\\vert using weighted energy estimates.

  7. Effects of Age and Attention on Auditory Global-Local Processing in Children with Autism Spectrum Disorder.

    PubMed

    Foster, Nicholas E V; Ouimet, Tia; Tryfon, Ana; Doyle-Thomas, Krissy; Anagnostou, Evdokia; Hyde, Krista L

    2016-04-01

    In vision, typically-developing (TD) individuals perceive "global" (whole) before "local" (detailed) features, whereas individuals with autism spectrum disorder (ASD) exhibit a local bias. However, auditory global-local distinctions are less clear in ASD, particularly in terms of age and attention effects. To these aims, here ASD and TD children judged local and global pitch structure in nine-tone melodies. Both groups showed a similar global precedence effect, but ASD children were less sensitive to global interference than TD children at younger ages. There was no effect of attention task. These findings provide novel evidence of developmental differences in auditory perception and may help to refine sensory phenotypes in ASD.

  8. Towards social radiology as an information infrastructure: reconciling the local with the global.

    PubMed

    Motta, Gustavo Henrique Matos Bezerra

    2014-10-03

    The current widespread use of medical images and imaging procedures in clinical practice and patient diagnosis has brought about an increase in the demand for sharing medical imaging studies among health professionals in an easy and effective manner. This article reveals the existence of a polarization between the local and global demands for radiology practice. While there are no major barriers for sharing such studies, when access is made from a (local) picture archive and communication system (PACS) within the domain of a healthcare organization, there are a number of impediments for sharing studies among health professionals on a global scale. Social radiology as an information infrastructure involves the notion of a shared infrastructure as a public good, affording a social space where people, organizations and technical components may spontaneously form associations in order to share clinical information linked to patient care and radiology practice. This article shows however, that such polarization establishes a tension between local and global demands, which hinders the emergence of social radiology as an information infrastructure. Based on an analysis of the social space for radiology practice, the present article has observed that this tension persists due to the inertia of a locally installed base in radiology departments, for which common teleradiology models are not truly capable of reorganizing as a global social space for radiology practice. Reconciling the local with the global signifies integrating PACS and teleradiology into an evolving, secure, heterogeneous, shared, open information infrastructure where the conceptual boundaries between (local) PACS and (global) teleradiology are transparent, signaling the emergence of social radiology as an information infrastructure.

  9. Asymmetrical white matter networks for attending to global versus local features.

    PubMed

    Chechlacz, Magdalena; Mantini, Dante; Gillebert, Celine R; Humphreys, Glyn W

    2015-11-01

    The ability to draw objects is a complex process depending on an array of cognitive mechanisms including routines for spatial coding, attention and the processing of both local and global features. Previous studies using both neuropsychological and neuroimaging data have reported hemispheric asymmetries in attending to local versus global features linked to a variety of cortical loci. However, it has not been examined to date whether such asymmetries exist at the level of white matter pathways sub-serving global/local attention. The current study provides a comprehensive analysis of brain-behaviour relationships in the processing of local versus global features based on data from a large cohort of sub-acute stroke patients (n = 248) and behavioural measures from a complex figure copy task. The data analysis used newly developed methods for automated delineation of stroke lesions combined with track-wise lesion deficits procedures. We found (i) that reproduction of local features in figure copying was supported by a neural network confined to the left hemisphere, consisting of cortical loci within parietal, occipital and insular lobes and interconnected by the inferior-fronto-occipital fasciculus (IFOF), and (ii) that global feature processing was associated with a right hemisphere network interconnected by the third branch of the superior longitudinal fasciculus and the long segment of the perisylvian network. The data support the argument that asymmetrical white matter disconnections within long-range association pathways predict poor complex figure drawing resulting from deficits in hierarchical representation. We conclude that hemispheric asymmetries in attending to local versus global features exist on the level of both cortical loci and the supporting white matter pathways.

  10. Asymmetrical white matter networks for attending to global versus local features

    PubMed Central

    Chechlacz, Magdalena; Mantini, Dante; Gillebert, Celine R.; Humphreys, Glyn W.

    2015-01-01

    The ability to draw objects is a complex process depending on an array of cognitive mechanisms including routines for spatial coding, attention and the processing of both local and global features. Previous studies using both neuropsychological and neuroimaging data have reported hemispheric asymmetries in attending to local versus global features linked to a variety of cortical loci. However, it has not been examined to date whether such asymmetries exist at the level of white matter pathways sub-serving global/local attention. The current study provides a comprehensive analysis of brain-behaviour relationships in the processing of local versus global features based on data from a large cohort of sub-acute stroke patients (n = 248) and behavioural measures from a complex figure copy task. The data analysis used newly developed methods for automated delineation of stroke lesions combined with track-wise lesion deficits procedures. We found (i) that reproduction of local features in figure copying was supported by a neural network confined to the left hemisphere, consisting of cortical loci within parietal, occipital and insular lobes and interconnected by the inferior-fronto-occipital fasciculus (IFOF), and (ii) that global feature processing was associated with a right hemisphere network interconnected by the third branch of the superior longitudinal fasciculus and the long segment of the perisylvian network. The data support the argument that asymmetrical white matter disconnections within long–range association pathways predict poor complex figure drawing resulting from deficits in hierarchical representation. We conclude that hemispheric asymmetries in attending to local versus global features exist on the level of both cortical loci and the supporting white matter pathways. PMID:25727548

  11. Towards Social Radiology as an Information Infrastructure: Reconciling the Local With the Global

    PubMed Central

    2014-01-01

    The current widespread use of medical images and imaging procedures in clinical practice and patient diagnosis has brought about an increase in the demand for sharing medical imaging studies among health professionals in an easy and effective manner. This article reveals the existence of a polarization between the local and global demands for radiology practice. While there are no major barriers for sharing such studies, when access is made from a (local) picture archive and communication system (PACS) within the domain of a healthcare organization, there are a number of impediments for sharing studies among health professionals on a global scale. Social radiology as an information infrastructure involves the notion of a shared infrastructure as a public good, affording a social space where people, organizations and technical components may spontaneously form associations in order to share clinical information linked to patient care and radiology practice. This article shows however, that such polarization establishes a tension between local and global demands, which hinders the emergence of social radiology as an information infrastructure. Based on an analysis of the social space for radiology practice, the present article has observed that this tension persists due to the inertia of a locally installed base in radiology departments, for which common teleradiology models are not truly capable of reorganizing as a global social space for radiology practice. Reconciling the local with the global signifies integrating PACS and teleradiology into an evolving, secure, heterogeneous, shared, open information infrastructure where the conceptual boundaries between (local) PACS and (global) teleradiology are transparent, signaling the emergence of social radiology as an information infrastructure. PMID:25600710

  12. The global and beyond: adventures in the local historiographies of science.

    PubMed

    Nappi, Carla

    2013-03-01

    As we strive for a more polyvocal history of science, historians have placed increasing emphasis on local case studies as a way to globalize the field. This tension between the local and the global extends to the practice as well as the content of the history of science, as the field has begun to pay more attention not just to local case studies, but also to local cultures of historiography. Many historians of science want multiple historiographical voices that take seriously the concerns and literatures in different linguistic and national contexts. As more journals urge translation into what are perceived as the dominant languages in "global" humanities discourses and scholars are encouraged to facilitate the Englishing of their historical research, many questions remain: In what ways does it make sense to nationalize or culturally locate individual cultures of the history of science? Is translation a democratic and positive force in the discipline, and/or does it kill local difference? Will it continue to be meaningful to talk about the history of science? A collective dialogue within the field depends on finding a way to take local diversity in historiography and epistemology seriously while translating that local difference into a meaningful common conversation. This essay considers the challenges of embracing multiple ways of knowing that might fall under the purview of the history of science, while wondering what that means for the coherence of the field as we move forward into the next century of work in Isis.

  13. Method for using global optimization to the estimation of surface-consistent residual statics

    DOEpatents

    Reister, David B.; Barhen, Jacob; Oblow, Edward M.

    2001-01-01

    An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.

  14. Global parameter optimization for maximizing radioisotope detection probabilities at fixed false alarm rates

    NASA Astrophysics Data System (ADS)

    Portnoy, David; Feuerbach, Robert; Heimberg, Jennifer

    2011-10-01

    Today there is a tremendous amount of interest in systems that can detect radiological or nuclear threats. Many of these systems operate in extremely high throughput situations where delays caused by false alarms can have a significant negative impact. Thus, calculating the tradeoff between detection rates and false alarm rates is critical for their successful operation. Receiver operating characteristic (ROC) curves have long been used to depict this tradeoff. The methodology was first developed in the field of signal detection. In recent years it has been used increasingly in machine learning and data mining applications. It follows that this methodology could be applied to radiological/nuclear threat detection systems. However many of these systems do not fit into the classic principles of statistical detection theory because they tend to lack tractable likelihood functions and have many parameters, which, in general, do not have a one-to-one correspondence with the detection classes. This work proposes a strategy to overcome these problems by empirically finding parameter values that maximize the probability of detection for a selected number of probabilities of false alarm. To find these parameter values a statistical global optimization technique that seeks to estimate portions of a ROC curve is proposed. The optimization combines elements of simulated annealing with elements of genetic algorithms. Genetic algorithms were chosen because they can reduce the risk of getting stuck in local minima. However classic genetic algorithms operate on arrays of Booleans values or bit strings, so simulated annealing is employed to perform mutation in the genetic algorithm. The presented initial results were generated using an isotope identification algorithm developed at Johns Hopkins University Applied Physics Laboratory. The algorithm has 12 parameters: 4 real-valued and 8 Boolean. A simulated dataset was used for the optimization study; the "threat" set of spectra

  15. GOSIM: A multi-scale iterative multiple-point statistics algorithm with global optimization

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Hou, Weisheng; Cui, Chanjie; Cui, Jie

    2016-04-01

    Most current multiple-point statistics (MPS) algorithms are based on a sequential simulation procedure, during which grid values are updated according to the local data events. Because the realization is updated only once during the sequential process, errors that occur while updating data events cannot be corrected. Error accumulation during simulations decreases the realization quality. Aimed at improving simulation quality, this study presents an MPS algorithm based on global optimization, called GOSIM. An objective function is defined for representing the dissimilarity between a realization and the TI in GOSIM, which is minimized by a multi-scale EM-like iterative method that contains an E-step and M-step in each iteration. The E-step searches for TI patterns that are most similar to the realization and match the conditioning data. A modified PatchMatch algorithm is used to accelerate the search process in E-step. M-step updates the realization based on the most similar patterns found in E-step and matches the global statistics of TI. During categorical data simulation, k-means clustering is used for transforming the obtained continuous realization into a categorical realization. The qualitative and quantitative comparison results of GOSIM, MS-CCSIM and SNESIM suggest that GOSIM has a better pattern reproduction ability for both unconditional and conditional simulations. A sensitivity analysis illustrates that pattern size significantly impacts the time costs and simulation quality. In conditional simulations, the weights of conditioning data should be as small as possible to maintain a good simulation quality. The study shows that big iteration numbers at coarser scales increase simulation quality and small iteration numbers at finer scales significantly save simulation time.

  16. Self-Orientation Modulates the Neural Correlates of Global and Local Processing.

    PubMed

    Liddell, Belinda J; Das, Pritha; Battaglini, Eva; Malhi, Gin S; Felmingham, Kim L; Whitford, Thomas J; Bryant, Richard A

    2015-01-01

    Differences in self-orientation (or "self-construal") may affect how the visual environment is attended, but the neural and cultural mechanisms that drive this remain unclear. Behavioral studies have demonstrated that people from Western backgrounds with predominant individualistic values are perceptually biased towards local-level information; whereas people from non-Western backgrounds that support collectivist values are preferentially focused on contextual and global-level information. In this study, we compared two groups differing in predominant individualistic (N = 15) vs collectivistic (N = 15) self-orientation. Participants completed a global/local perceptual conflict task whilst undergoing functional Magnetic Resonance Imaging (fMRI) scanning. When participants high in individualistic values attended to the global level (ignoring the local level), greater activity was observed in the frontoparietal and cingulo-opercular networks that underpin attentional control, compared to the match (congruent) baseline. Participants high in collectivistic values activated similar attentional control networks o only when directly compared with global processing. This suggests that global interference was stronger than local interference in the conflict task in the collectivistic group. Both groups showed increased activity in dorsolateral prefrontal regions involved in resolving perceptual conflict during heightened distractor interference. The findings suggest that self-orientation may play an important role in driving attention networks to facilitate interaction with the visual environment. PMID:26270820

  17. Self-Orientation Modulates the Neural Correlates of Global and Local Processing.

    PubMed

    Liddell, Belinda J; Das, Pritha; Battaglini, Eva; Malhi, Gin S; Felmingham, Kim L; Whitford, Thomas J; Bryant, Richard A

    2015-01-01

    Differences in self-orientation (or "self-construal") may affect how the visual environment is attended, but the neural and cultural mechanisms that drive this remain unclear. Behavioral studies have demonstrated that people from Western backgrounds with predominant individualistic values are perceptually biased towards local-level information; whereas people from non-Western backgrounds that support collectivist values are preferentially focused on contextual and global-level information. In this study, we compared two groups differing in predominant individualistic (N = 15) vs collectivistic (N = 15) self-orientation. Participants completed a global/local perceptual conflict task whilst undergoing functional Magnetic Resonance Imaging (fMRI) scanning. When participants high in individualistic values attended to the global level (ignoring the local level), greater activity was observed in the frontoparietal and cingulo-opercular networks that underpin attentional control, compared to the match (congruent) baseline. Participants high in collectivistic values activated similar attentional control networks o only when directly compared with global processing. This suggests that global interference was stronger than local interference in the conflict task in the collectivistic group. Both groups showed increased activity in dorsolateral prefrontal regions involved in resolving perceptual conflict during heightened distractor interference. The findings suggest that self-orientation may play an important role in driving attention networks to facilitate interaction with the visual environment.

  18. Self-Orientation Modulates the Neural Correlates of Global and Local Processing

    PubMed Central

    Liddell, Belinda J.; Das, Pritha; Battaglini, Eva; Malhi, Gin S.; Felmingham, Kim L.; Whitford, Thomas J.; Bryant, Richard A.

    2015-01-01

    Differences in self-orientation (or “self-construal”) may affect how the visual environment is attended, but the neural and cultural mechanisms that drive this remain unclear. Behavioral studies have demonstrated that people from Western backgrounds with predominant individualistic values are perceptually biased towards local-level information; whereas people from non-Western backgrounds that support collectivist values are preferentially focused on contextual and global-level information. In this study, we compared two groups differing in predominant individualistic (N = 15) vs collectivistic (N = 15) self-orientation. Participants completed a global/local perceptual conflict task whilst undergoing functional Magnetic Resonance Imaging (fMRI) scanning. When participants high in individualistic values attended to the global level (ignoring the local level), greater activity was observed in the frontoparietal and cingulo-opercular networks that underpin attentional control, compared to the match (congruent) baseline. Participants high in collectivistic values activated similar attentional control networks o only when directly compared with global processing. This suggests that global interference was stronger than local interference in the conflict task in the collectivistic group. Both groups showed increased activity in dorsolateral prefrontal regions involved in resolving perceptual conflict during heightened distractor interference. The findings suggest that self-orientation may play an important role in driving attention networks to facilitate interaction with the visual environment. PMID:26270820

  19. Gaps between Global Guidelines and Local Practices in CKD-MBD.

    PubMed

    Kim, Gheun-Ho

    2014-12-01

    The term 'chronic kidney disease-mineral bone disorder' (CKD-MBD) is a new term that, in contrast to the old term 'renal osteodystrophy', implies a systemic syndrome associated with cardiovascular morbidity and mortality. This new terminology is in line with previous studies that show elevated serum calcium, phosphorus, and parathyroid hormone (PTH) levels associated with increased cardiovascular and all-cause mortality. In order to improve outcomes in patients with CKD-MBD, many countries have developed clinical practice guidelines. Globally, the Kidney Disease Outcome Quality Initiative (KDOQI) and Kidney Disease: Improving Global Outcomes (KDIGO) guidelines are the most commonly used. However, whether these global guidelines can be successfully implemented on a local level needs to be studied. Differences in medical care and social factors between countries may limit the generalizability of global guidelines. Reports from the Korean registry and the Dialysis Outcomes and Practice Patterns Study (DOPPS) suggest that many dialysis patients are not within the target ranges recommended by the KDOQI and KDIGO guidelines for serum calcium, phosphorus, and PTH, suggesting gaps between global guidelines and local practices. Clinical studies with Korean CKD-MBD patients are necessary to compare Korean practices and outcomes to those suggested by global guidelines and to determine the target serum mineral levels associated with the best local outcomes. PMID:25606042

  20. Symmetrized local co-registration optimization for anomalous change detection

    SciTech Connect

    Wohlberg, Brendt E; Theiler, James P

    2009-01-01

    The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene, based on two images of the scene taken at different times and under different conditions. The actual anomalous changes need to be distinguished from the incidental differences that occur throughout the imagery, and one of the most common and confounding of these incidental differences is due to the misregistration of the images, due to limitations of the registration pre-processing applied to the image pair. We propose a general method to compensate for residual misregistration in any ACD algorithm which constructs an estimate of the degree of 'anomalousness' for every pixel in the image pair. The method computes a modified misregistration-insensitive anomalousness by making local re-registration adjustments to minimize the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find significant performance improvements in the anomalous change detection ROC curves for a number of real and synthetic data sets.

  1. Symmetrized local co-registration optimization for anomalous change detection

    NASA Astrophysics Data System (ADS)

    Wohlberg, Brendt; Theiler, James

    2010-01-01

    The goal of anomalous change detection (ACD) is to identify what unusual changes have occurred in a scene, based on two images of the scene taken at different times and under different conditions. The actual anomalous changes need to be distinguished from the incidental differences that occur throughout the imagery, and one of the most common and confounding of these incidental differences is due to the misregistration of the images, due to limitations of the registration pre-processing applied to the image pair. We propose a general method to compensate for residual misregistration in any ACD algorithm which constructs an estimate of the degree of "anomalousness" for every pixel in the image pair. The method computes a modified misregistration-insensitive anomalousness by making local re-registration adjustments to minimize the local anomalousness. In this paper we describe a symmetrized version of our initial algorithm, and find significant performance improvements in the anomalous change detection ROC curves for a number of real and synthetic data sets.

  2. Multicultural adolescents between tradition and postmodernity: Dialogical Self Theory and the paradox of localization and globalization.

    PubMed

    van Meijl, Toon

    2012-01-01

    This chapter builds on Dialogical Self Theory to investigate the identity development of adolescents growing up in multicultural societies. Their cultural identity is not only compounded by the rapid cultural changes associated with globalization, but also by the paradoxical revival of cultural traditions which the large-scale compression of time and space has incited at local levels of society. Dialogical Self Theory, which is based on the metaphor of the self as a "society of mind," helps to understand the dilemmas of tradition and postmodernity, of localization and globalization, within the self of individual youngsters.

  3. Global-local visual processing impacts risk taking behaviors, but only at first.

    PubMed

    Lim, Stephen Wee Hun; Yuen, Alexander Y L; Tong, Eddie M W

    2015-01-01

    We investigated the impact of early visual processing on decision-making during unpredictable, risky situations. Participants undertook Navon's (1977) task and attended to either global letters or local letters only, following which they completed the Balloon Analogue Risk Task (BART). It was observed that global-focused individuals made more balloon pumps during the BART (i.e., took more risk), whereas local-focused individuals took less risk, albeit only initially. The theory of predictive and reactive control systems (PARCS) provides an excellent account of the data. Implications and future directions are discussed. PMID:26379586

  4. Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees.

    PubMed

    Lihoreau, Mathieu; Ings, Thomas C; Chittka, Lars; Reynolds, Andy M

    2016-01-01

    Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m(3) enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards.

  5. Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees.

    PubMed

    Lihoreau, Mathieu; Ings, Thomas C; Chittka, Lars; Reynolds, Andy M

    2016-01-01

    Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m(3) enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards. PMID:27459948

  6. Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees

    NASA Astrophysics Data System (ADS)

    Lihoreau, Mathieu; Ings, Thomas C.; Chittka, Lars; Reynolds, Andy M.

    2016-07-01

    Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards.

  7. Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees

    PubMed Central

    Lihoreau, Mathieu; Ings, Thomas C.; Chittka, Lars; Reynolds, Andy M.

    2016-01-01

    Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards. PMID:27459948

  8. Optimization of global model composed of radial basis functions using the term-ranking approach

    SciTech Connect

    Cai, Peng; Tao, Chao Liu, Xiao-Jun

    2014-03-15

    A term-ranking method is put forward to optimize the global model composed of radial basis functions to improve the predictability of the model. The effectiveness of the proposed method is examined by numerical simulation and experimental data. Numerical simulations indicate that this method can significantly lengthen the prediction time and decrease the Bayesian information criterion of the model. The application to real voice signal shows that the optimized global model can capture more predictable component in chaos-like voice data and simultaneously reduce the predictable component (periodic pitch) in the residual signal.

  9. Ab initio global optimization of the structures of Si{sub n}H, n=4-10, using parallel genetic algorithms

    SciTech Connect

    Ona, Ofelia; Facelli, Julio C.; Bazterra, Victor E.; Caputo, Maria C.; Ferraro, Marta B.

    2005-11-15

    The results of ab initio global optimizations of the structures of Si{sub n}H, n=4-10, atomic clusters using a parallel genetic algorithm are presented. Driving the global search with the parallel implementation of the genetic algorithm are presented and using the density functional theory as implemented in the Carr-Parinello molecular dynamics code to calculate atomic cluster energies and perform the local optimization of their structures, we have been able to demonstrate that it is possible to perform global optimizations of the structure of atomic clusters using ab initio methods. The results show that this approach is able to find many structures that were not previously reported in the literature. Moreover, in most cases the new structures have considerable lower energies than those previously known. The results clearly demonstrate that these calculations are now possible and in spite of their larger computational demands provide more reliable results.

  10. Global and local spatial landmarks: their role during foraging by Columbian ground squirrels (Spermophilus columbianus).

    PubMed

    Vlasak, Anna N

    2006-01-01

    Locating food and refuge is essential for an animal's survival. However, little is known how mammals navigate under natural conditions and cope with given environmental constraints. In a series of six experiments, I investigated landmark-based navigation in free-ranging Columbian ground squirrels (Spermophilus columbianus). Squirrels were trained individually to find a baited platform within an array of nine identical platforms and artificial landmarks set up on their territories. After animals learned the location of the food platform in the array, the position of the latter with respect to local artificial, local natural, and global landmarks was manipulated, and the animal's ability to find the food platform was tested. When only positions of local artificial landmarks were changed, squirrels located food with high accuracy. When the location of the array relative to global landmarks was altered, food-finding accuracy decreased but remained significant. In the absence of known global landmarks, the presence of a familiar route and natural local landmarks resulted in significant but not highly accurate performance. Squirrels likely relied on multiple types of cues when orienting towards a food platform. Local landmarks were used only as a secondary mechanism of navigation, and were not attended to when a familiar route and known global landmarks were present. This study provided insights into landmark use by a wild mammal in a natural situation, and it demonstrated that an array of platforms can be employed to investigate landmark-based navigation under such conditions. PMID:16163480

  11. Integration Processes Compared: Cortical Differences for Consistency Evaluation and Passive Comprehension in Local and Global Coherence.

    PubMed

    Egidi, Giovanna; Caramazza, Alfonso

    2016-10-01

    This research studies the neural systems underlying two integration processes that take place during natural discourse comprehension: consistency evaluation and passive comprehension. Evaluation was operationalized with a consistency judgment task and passive comprehension with a passive listening task. Using fMRI, the experiment examined the integration of incoming sentences with more recent, local context and with more distal, global context in these two tasks. The stimuli were stories in which we manipulated the consistency of the endings with the local context and the relevance of the global context for the integration of the endings. A whole-brain analysis revealed several differences between the two tasks. Two networks previously associated with semantic processing and attention orienting showed more activation during the judgment than the passive listening task. A network previously associated with episodic memory retrieval and construction of mental scenes showed greater activity when global context was relevant, but only during the judgment task. This suggests that evaluation, more than passive listening, triggers the reinstantiation of global context and the construction of a rich mental model for the story. Finally, a network previously linked to fluent updating of a knowledge base showed greater activity for locally consistent endings than inconsistent ones, but only during passive listening, suggesting a mode of comprehension that relies on a local scope approach to language processing. Taken together, these results show that consistency evaluation and passive comprehension weigh differently on distal and local information and are implemented, in part, by different brain networks. PMID:27243613

  12. Integration Processes Compared: Cortical Differences for Consistency Evaluation and Passive Comprehension in Local and Global Coherence.

    PubMed

    Egidi, Giovanna; Caramazza, Alfonso

    2016-10-01

    This research studies the neural systems underlying two integration processes that take place during natural discourse comprehension: consistency evaluation and passive comprehension. Evaluation was operationalized with a consistency judgment task and passive comprehension with a passive listening task. Using fMRI, the experiment examined the integration of incoming sentences with more recent, local context and with more distal, global context in these two tasks. The stimuli were stories in which we manipulated the consistency of the endings with the local context and the relevance of the global context for the integration of the endings. A whole-brain analysis revealed several differences between the two tasks. Two networks previously associated with semantic processing and attention orienting showed more activation during the judgment than the passive listening task. A network previously associated with episodic memory retrieval and construction of mental scenes showed greater activity when global context was relevant, but only during the judgment task. This suggests that evaluation, more than passive listening, triggers the reinstantiation of global context and the construction of a rich mental model for the story. Finally, a network previously linked to fluent updating of a knowledge base showed greater activity for locally consistent endings than inconsistent ones, but only during passive listening, suggesting a mode of comprehension that relies on a local scope approach to language processing. Taken together, these results show that consistency evaluation and passive comprehension weigh differently on distal and local information and are implemented, in part, by different brain networks.

  13. Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure

    NASA Astrophysics Data System (ADS)

    Stegmann, Mikkel B.; Skoglund, Karl; Ryberg, Charlotte

    2005-04-01

    This paper describes methods for automatic localization of the mid-sagittal plane (MSP) and mid-sagittal surface (MSS). The data used is a subset of the Leukoaraiosis And DISability (LADIS) study consisting of three-dimensional magnetic resonance brain data from 62 elderly subjects (age 66 to 84 years). Traditionally, the mid-sagittal plane is localized by global measures. However, this approach fails when the partitioning plane between the brain hemispheres does not coincide with the symmetry plane of the head. We instead propose to use a sparse set of profiles in the plane normal direction and maximize the local symmetry around these using a general-purpose optimizer. The plane is parameterized by azimuth and elevation angles along with the distance to the origin in the normal direction. This approach leads to solutions confirmed as the optimal MSP in 98 percent of the subjects. Despite the name, the mid-sagittal plane is not always planar, but a curved surface resulting in poor partitioning of the brain hemispheres. To account for this, this paper also investigates an optimization strategy which fits a thin-plate spline surface to the brain data using a robust least median of squares estimator. Albeit computationally more expensive, mid-sagittal surface fitting demonstrated convincingly better partitioning of curved brains into cerebral hemispheres.

  14. Global standards and local knowledge building: Upgrading small producers in developing countries

    PubMed Central

    Perez-Aleman, Paola

    2012-01-01

    Local knowledge building is a crucial factor for upgrading small producers and improving their market competitiveness and livelihoods. The rise of global standards affecting food safety and environmental sustainability in agriculture sparks debates on the impact on smallholders in developing countries. This article presents a perspective on the links of international standards to knowledge and institution building for developing the capabilities of small producers. Interacting with global practices, indigenous private and public actors create local institutions to develop capabilities for product and process innovations that contribute to economic development and enhance food security. Local innovation depends on collective strategic efforts through increasing networks among small producers and other organizations, including firms, nongovernmental organizations, and government, that foster knowledge circulation and bring diverse resources and support to build local capabilities. PMID:21670309

  15. Optimizing Local Memory Allocation and Assignment through a Decoupled Approach

    NASA Astrophysics Data System (ADS)

    Diouf, Boubacar; Ozturk, Ozcan; Cohen, Albert

    Software-controlled local memories (LMs) are widely used to provide fast, scalable, power efficient and predictable access to critical data. While many studies addressed LM management, keeping hot data in the LM continues to cause major headache. This paper revisits LM management of arrays in light of recent progresses in register allocation, supporting multiple live-range splitting schemes through a generic integer linear program. These schemes differ in the grain of decision points. The model can also be extended to address fragmentation, assigning live ranges to precise offsets. We show that the links between LM management and register allocation have been underexploited, leaving much fundamental questions open and effective applications to be explored.

  16. Simulation to Support Local Search in Trajectory Optimization Planning

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Venable, K. Brent; Lindsey, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and civil tilt rotors. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. One way to address the rotorcraft noise problem is by exploiting powerful search techniques coming from artificial intelligence coupled with simulation and field tests to design low-noise flight profiles which can be tested in simulation or through field tests. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints directly into the problem formulation that addresses passenger safety and comfort.

  17. Optimal Drift Correction for Superresolution Localization Microscopy with Bayesian Inference.

    PubMed

    Elmokadem, Ahmed; Yu, Ji

    2015-11-01

    Single-molecule-localization-based superresolution microscopy requires accurate sample drift correction to achieve good results. Common approaches for drift compensation include using fiducial markers and direct drift estimation by image correlation. The former increases the experimental complexity and the latter estimates drift at a reduced temporal resolution. Here, we present, to our knowledge, a new approach for drift correction based on the Bayesian statistical framework. The technique has the advantage of being able to calculate the drifts for every image frame of the data set directly from the single-molecule coordinates. We present the theoretical foundation of the algorithm and an implementation that achieves significantly higher accuracy than image-correlation-based estimations.

  18. Think Locally, Act Globally! Linking Local and Global Communities through Democracy and Environment. Hands-On! Developing Active Learning Modules on the Human Dimensions of Global Change.

    ERIC Educational Resources Information Center

    Dowler, Lorraine

    Designed so that it can be adapted to a wide range of student abilities and institutional settings, this learning module on the human dimensions of global change seeks to: actively engage students in problem solving, challenge them to think critically, invite them to participate in the process of scientific inquiry, and involve them in cooperative…

  19. Effects of Age and Attention on Auditory Global-Local Processing in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Foster, Nicholas E. V.; Ouimet, Tia; Tryfon, Ana; Doyle-Thomas, Krissy; Anagnostou, Evdokia; Hyde, Krista L.

    2016-01-01

    In vision, typically-developing (TD) individuals perceive "global" (whole) before "local" (detailed) features, whereas individuals with autism spectrum disorder (ASD) exhibit a local bias. However, auditory global-local distinctions are less clear in ASD, particularly in terms of age and attention effects. To these aims, here…

  20. Switching between forest and trees: opposite relationship of progesterone and testosterone to global-local processing.

    PubMed

    Pletzer, Belinda; Petasis, Ourania; Cahill, Larry

    2014-07-01

    Sex differences in attentional selection of global and local components of stimuli have been hypothesized to underlie sex differences in cognitive strategy choice. A Navon figure paradigm was employed in 32 men, 41 naturally cycling women (22 follicular, 19 luteal) and 19 users of oral contraceptives (OCs) containing first to third generation progestins in their active pill phase. Participants were first asked to detect targets at any level (divided attention) and then at either the global or the local level only (focused attention). In the focused attention condition, luteal women showed reduced global advantage (i.e. faster responses to global vs. local targets) compared to men, follicular women and OC users. Accordingly, global advantage during the focused attention condition related significantly positively to testosterone levels and significantly negatively to progesterone, but not estradiol levels in a multiple regression model including all naturally cycling women and men. Interference (i.e. delayed rejection of stimuli displaying targets at the non-attended level) was significantly enhanced in OC users as compared to naturally cycling women and related positively to testosterone levels in all naturally cycling women and men. Remarkably, when analyzed separately for each group, the relationship of testosterone to global advantage and interference was reversed in women during their luteal phase as opposed to men and women during their follicular phase. As global processing is lateralized to the right and local processing to the left hemisphere, we speculate that these effects stem from a testosterone-mediated enhancement of right-hemisphere functioning as well as progesterone-mediated inter-hemispheric decoupling.