Science.gov

Sample records for global mechanical integrity

  1. Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection

    SciTech Connect

    John W. Berthold

    2006-02-22

    The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

  2. New opportunities for integrating mechanisms into soil carbon models for global simulations (Invited)

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Riley, W. J.; Contributions From: The Lake Constance Think Tank On Global Change; Feedback From Organic Carbon Dynamics-An Esf Workshop

    2010-12-01

    Numerical models of soil carbon cycling are being used to attribute carbon sinks, predict climate-ecosystem feedbacks, and evaluate climate mitigation strategies such as biofuels and sequestration. Current conceptions of SOC cycling and its expression in mathematical models rest heavily on the concept of recalcitrance - that some organic structures are intrinsically inert. However, recent research enabled by isotopic, spectroscopic, and molecular marker tools finds little evidence that recalcitrance, for example through selective preservation of plant derived material or resynthesis products, determines the long residence time of some OC in soils in a generalizable way. More likely, rates of carbon cycling are determined by the interaction of the organic matter and the soil environment including microorganisms, mineralogy, and climate. This does not mean compound chemistry is not important, rather that it does not act in isolation of other factors. Without the foundational principle that chemical composition defines the rate of decomposition, many tenets of old models are not supported, for example regarding decomposition response to change in temperature or plant species composition. Much progress could be made in the near term to improve soil carbon models by, for example, improving representations of oxygen diffusion and limitation, root carbon inputs, isotopic tracers, and making depth- or transport-related processes explicit. In other areas, new research is needed to translate recent findings into new parameters, for example, to replace texture with parameters for reactive mineral surface area to represent organo-mineral interaction. For the next generation of land model in the Community Earth System Model (was Community Climate System Model), we are developing new representations of many of these processes based on new data and understandings, to enable more accurate assessment of the vulnerability of soil organic carbon to predicted global climate change.

  3. GLobal Integrated Design Environment

    NASA Technical Reports Server (NTRS)

    Kunkel, Matthew; McGuire, Melissa; Smith, David A.; Gefert, Leon P.

    2011-01-01

    The GLobal Integrated Design Environment (GLIDE) is a collaborative engineering application built to resolve the design session issues of real-time passing of data between multiple discipline experts in a collaborative environment. Utilizing Web protocols and multiple programming languages, GLIDE allows engineers to use the applications to which they are accustomed in this case, Excel to send and receive datasets via the Internet to a database-driven Web server. Traditionally, a collaborative design session consists of one or more engineers representing each discipline meeting together in a single location. The discipline leads exchange parameters and iterate through their respective processes to converge on an acceptable dataset. In cases in which the engineers are unable to meet, their parameters are passed via e-mail, telephone, facsimile, or even postal mail. The result of this slow process of data exchange would elongate a design session to weeks or even months. While the iterative process remains in place, software can now exchange parameters securely and efficiently, while at the same time allowing for much more information about a design session to be made available. GLIDE is written in a compilation of several programming languages, including REALbasic, PHP, and Microsoft Visual Basic. GLIDE client installers are available to download for both Microsoft Windows and Macintosh systems. The GLIDE client software is compatible with Microsoft Excel 2000 or later on Windows systems, and with Microsoft Excel X or later on Macintosh systems. GLIDE follows the Client-Server paradigm, transferring encrypted and compressed data via standard Web protocols. Currently, the engineers use Excel as a front end to the GLIDE Client, as many of their custom tools run in Excel.

  4. An integrated global chemomics and system biology approach to analyze the mechanisms of the traditional Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills for pulmonary diseases.

    PubMed

    Tao, Jin; Hou, Yuanyuan; Ma, Xiaoyao; Liu, Dan; Tong, Yongling; Zhou, Hong; Gao, Jie; Bai, Gang

    2016-01-08

    Traditional Chinese medicine (TCM) herbal formulae provide valuable therapeutic strategies. However, the active ingredients and mechanisms of action remain unclear for most of these formulae. Therefore, the identification of complex mechanisms is a major challenge in TCM research. This study used a network pharmacology approach to clarify the anti-inflammatory and cough suppressing mechanisms of the Chinese medicinal preparation Eriobotrya japonica - Fritillaria usuriensis dropping pills (ChuanbeiPipa dropping pills, CBPP). The chemical constituents of CBPP were identified by high-quality ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), and anti-inflammatory ingredients were selected and analyzed using the PharmMapper and Kyoto Encyclopedia of Genes and Genomes (KEGG) bioinformatics websites to predict the target proteins and related pathways, respectively. Then, an RNA-sequencing (RNA-Seq) analysis was carried out to investigate the different expression of genes in the lung tissue of rats with chronic bronchitis. Six main constituents affected 19 predicted pathways, including ursolic acid and oleanolic acid from Eriobotrya japonica (Thunb.) Lindl. (Eri), peiminine from Fritillaria usuriensis Maxim. (Fri), platycodigenin and polygalacic acid from Platycodon grandiflorum (Jacq.) A. DC. (Pla) and guanosine from Pinellia ternata (Thunb.) Makino. (Pin). Expression of 34 genes was significantly decreased after CBPP treatment, affecting four therapeutic functions: immunoregulation, anti-inflammation, collagen formation and muscle contraction. The active components acted on the mitogen activated protein kinase (MAPK) pathway, transforming growth factor (TGF)-beta pathway, focal adhesion, tight junctions and the action cytoskeleton to exert anti-inflammatory effects, resolve phlegm, and relieve cough. This novel approach of global chemomics-integrated systems biology represents an effective and accurate strategy for

  5. Integrating global health with medical education.

    PubMed

    Aulakh, Alex; Tweed, Sam; Moore, Jolene; Graham, Wendy

    2017-04-01

    Globalisation has implications for the next generation of doctors, and thus for medical education. Increasingly, global health is being taught in medical schools, although its incorporation into an already full curriculum presents challenges. Global health was introduced into the MBChB curriculum at the University of Aberdeen through a student-selected component (SSC) as part of an existing medical humanities block. The Global Health and Humanities (GHH) module was first delivered in the autumn of 2013 and will shortly enter its third year. This student-led study used quantitative and qualitative methods to assess the module's appropriateness and effectiveness for strengthening learning on global health, consisting of online surveys for course participants and semi-structured interviews with faculty members. Integrating global health into the undergraduate medical curriculum by way of an SSC was regarded by teaching staff as an effective and realistic approach. A recognised strength of delivering global health as part of the medical humanities block was the opportunity to expose students to the social determinants of health through interdisciplinary teaching. Participating students all agreed that the learning approach strengthened both their knowledge of global health and a range of generic skills. SSCs are, by definition, self-selecting, and will have a tendency to attract students already with an interest in a topic - here global health. A wide range of learning opportunities is needed to integrate global health throughout medical curricula, and to reach all students. © 2016 John Wiley & Sons Ltd.

  6. Integrated, High-Throughput, Multiomics Platform Enables Data-Driven Construction of Cellular Responses and Reveals Global Drug Mechanisms of Action.

    PubMed

    Norris, Jeremy L; Farrow, Melissa A; Gutierrez, Danielle B; Palmer, Lauren D; Muszynski, Nicole; Sherrod, Stacy D; Pino, James C; Allen, Jamie L; Spraggins, Jeffrey M; Lubbock, Alex L R; Jordan, Ashley; Burns, William; Poland, James C; Romer, Carrie; Manier, M Lisa; Nei, Yuan-Wei; Prentice, Boone M; Rose, Kristie L; Hill, Salisha; Van de Plas, Raf; Tsui, Tina; Braman, Nathaniel M; Keller, M Ray; Rutherford, Stacey A; Lobdell, Nichole; Lopez, Carlos F; Lacy, D Borden; McLean, John A; Wikswo, John P; Skaar, Eric P; Caprioli, Richard M

    2017-03-03

    An understanding of how cells respond to perturbation is essential for biological applications; however, most approaches for profiling cellular response are limited in scope to pre-established targets. Global analysis of molecular mechanism will advance our understanding of the complex networks constituting cellular perturbation and lead to advancements in areas, such as infectious disease pathogenesis, developmental biology, pathophysiology, pharmacology, and toxicology. We have developed a high-throughput multiomics platform for comprehensive, de novo characterization of cellular mechanisms of action. Platform validation using cisplatin as a test compound demonstrates quantification of over 10 000 unique, significant molecular changes in less than 30 days. These data provide excellent coverage of known cisplatin-induced molecular changes and previously unrecognized insights into cisplatin resistance. This proof-of-principle study demonstrates the value of this platform as a resource to understand complex cellular responses in a high-throughput manner.

  7. Integrated Water Resources Management: A Global Review

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  8. Global Tobacco Control: An integrated approach to global health policy

    PubMed Central

    RUGER, JENNIFER PRAH

    2014-01-01

    Following the development discussion in the last volume on the ‘politics of health’, Jennifer Prah Ruger argues that the Framework Convention on Tobacco Control (FCTC) represents a shift in global health policy that recognizes the importance of addressing health needs on multiple fronts and integrating public policies into a comprehensive set of health improvement strategies. She argues that the FCTC provides a model for multifaceted approaches to health improvement that require simultaneous progress on various dimensions. PMID:25598648

  9. Global change integrating factors: Tropical tropopause trends

    SciTech Connect

    Reck, R.A.

    1994-10-01

    This research proposes new criteria, shifts in the height and temperature of the tropical tropopause, as measures of global climate change. The search for signs of global warming in the temperature signal near the earth`s surface is extremely difficult, largely because numerous factors contribute to surface temperature forcing with only a small signal-to-noise ratio relative to long-term effects. In the long term, no part of the atmosphere can be considered individually because the evolution will be a function of all states of all portions. A large surface greenhouse signal might ultimately be expected, but the analysis of surface temperature may not be particularly useful for early detection. What is suggested here is not an analysis of trends in the surface temperature field or any of its spatial averages, but rather an integrating factor or integrator, a single measure of global change that could be considered a test of significant change for the entire global system. Preferably, this global change integrator would vary slowly and would take into account many of the causes of climate change, with a relatively large signal-to-noise ratio. Such an integrator could be monitored, and abrupt or accelerated changes could serve as an early warning signal for policy makers and the public. Earlier work has suggested that temperature has much less short-term and small-scale noise in the lower stratosphere, and thus the global warming signal at that level might be more easily deconvoluted, because the cooling rate near the 200-mb level is almost constant with latitude. A study of the temperature signal at this pressure level might show a clearer trend due to increased levels of greenhouse gases, but it would yield information about the troposphere only by inference.

  10. Sustainability. Systems integration for global sustainability.

    PubMed

    Liu, Jianguo; Mooney, Harold; Hull, Vanessa; Davis, Steven J; Gaskell, Joanne; Hertel, Thomas; Lubchenco, Jane; Seto, Karen C; Gleick, Peter; Kremen, Claire; Li, Shuxin

    2015-02-27

    Global sustainability challenges, from maintaining biodiversity to providing clean air and water, are closely interconnected yet often separately studied and managed. Systems integration—holistic approaches to integrating various components of coupled human and natural systems—is critical to understand socioeconomic and environmental interconnections and to create sustainability solutions. Recent advances include the development and quantification of integrated frameworks that incorporate ecosystem services, environmental footprints, planetary boundaries, human-nature nexuses, and telecoupling. Although systems integration has led to fundamental discoveries and practical applications, further efforts are needed to incorporate more human and natural components simultaneously, quantify spillover systems and feedbacks, integrate multiple spatial and temporal scales, develop new tools, and translate findings into policy and practice. Such efforts can help address important knowledge gaps, link seemingly unconnected challenges, and inform policy and management decisions. Copyright © 2015, American Association for the Advancement of Science.

  11. 40 CFR 146.89 - Mechanical integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Mechanical integrity. 146.89 Section... Wells § 146.89 Mechanical integrity. (a) A Class VI well has mechanical integrity if: (1) There is no... may require any other test to evaluate mechanical integrity under paragraphs (a)(1) or (a)(2) of this...

  12. 40 CFR 146.89 - Mechanical integrity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Mechanical integrity. 146.89 Section... Wells § 146.89 Mechanical integrity. (a) A Class VI well has mechanical integrity if: (1) There is no... may require any other test to evaluate mechanical integrity under paragraphs (a)(1) or (a)(2) of this...

  13. 40 CFR 146.89 - Mechanical integrity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Mechanical integrity. 146.89 Section... Wells § 146.89 Mechanical integrity. (a) A Class VI well has mechanical integrity if: (1) There is no... may require any other test to evaluate mechanical integrity under paragraphs (a)(1) or (a)(2) of this...

  14. Variational time integrators in computational solid mechanics

    NASA Astrophysics Data System (ADS)

    Lew, Adrian Jose

    This thesis develops the theory and implementation of variational integrators for computational solid mechanics problems, and to some extent, for fluid mechanics problems as well. Variational integrators for finite dimensional mechanical systems are succinctly reviewed, and used as the foundations for the extension to continuum systems. The latter is accomplished by way of a space-tune formulation for Lagrangian continuum mechanics that unifies the derivation of tyre balance of linear momentum, energy and configurational forces, all of there as Euler-Lagrange equations of an extended Hamilton's principle. In this formulation, energy conservation and the path independence of the J- and L-integrals are conserved quantities emanating from Noether's theorem. Variational integrators for continuum mechanics are constructed by mimicking this variational structure, and a discrete Noether's theorem for rather general space-tune discretizations is presented. Additionally, the algorithms are automatically (multi)symplectic, and the (multi)symplectic form is uniquely defined by the theory. For instance, in nonlinear elastodynamics the algorithms exactly preserve linear and angular momenta, whenever the continuous system does. A class of variational algorithms is constructed, termed asynchronous variational integrators (AVI), which permit: the selection of independent time steps in each element of a finite element mesh, and the local time steps need riot bear an integral relation to each other. The conservation properties of both synchronous and asynchronous variational integrators are discussed in detail. In particular, AVI are found to nearly conserve energy both locally and globally, a distinguishing feature of variational integrators. The possibility of adapting the elemental time step to exactly satisfy the local energy balance equation, obtained from the extended variational principle, is analyzed. The AVI are also extended to include dissipative systems. The excellent

  15. Perception of global gestalt by temporal integration in simultanagnosia.

    PubMed

    Huberle, Elisabeth; Rupek, Paul; Lappe, Markus; Karnath, Hans-Otto

    2009-01-01

    Patients with bilateral parieto-occipital brain damage may show intact processing of individual objects, while their perception of multiple objects is disturbed at the same time. The deficit is termed 'simultanagnosia' and has been discussed in the context of restricted visual working memory and impaired visuo-spatial attention. Recent observations indicated that the recognition of global shapes can be modulated by the spatial distance between individual objects in patients with simultanagnosia and thus is not an all-or-nothing phenomenon depending on spatial continuity. However, grouping mechanisms not only require the spatial integration of visual information, but also involve integration processes over time. The present study investigated motion-defined integration mechanisms in two patients with simultanagnosia. We applied hierarchical organized stimuli of global objects that consisted of coherently moving dots ('shape-from-motion'). In addition, we tested the patients' ability to recognize biological motion by presenting characteristic human movements ('point-light-walker'). The data revealed largely preserved perception of biological motion, while the perception of motion-defined shapes was impaired. Our findings suggest separate mechanisms underlying the recognition of biological motion and shapes defined by coherently moving dots. They thus argue against a restriction in the overall capacity of visual working memory over time as a general explanation for the impaired global shape recognition in patients with simultanagnosia.

  16. Multisensory integration mechanisms during aging.

    PubMed

    Freiherr, Jessica; Lundström, Johan N; Habel, Ute; Reetz, Kathrin

    2013-12-13

    The rapid demographical shift occurring in our society implies that understanding of healthy aging and age-related diseases is one of our major future challenges. Sensory impairments have an enormous impact on our lives and are closely linked to cognitive functioning. Due to the inherent complexity of sensory perceptions, we are commonly presented with a complex multisensory stimulation and the brain integrates the information from the individual sensory channels into a unique and holistic percept. The cerebral processes involved are essential for our perception of sensory stimuli and becomes especially important during the perception of emotional content. Despite ongoing deterioration of the individual sensory systems during aging, there is evidence for an increase in, or maintenance of, multisensory integration processing in aging individuals. Within this comprehensive literature review on multisensory integration we aim to highlight basic mechanisms and potential compensatory strategies the human brain utilizes to help maintain multisensory integration capabilities during healthy aging to facilitate a broader understanding of age-related pathological conditions. Further our goal was to identify where further research is needed.

  17. Multisensory integration mechanisms during aging

    PubMed Central

    Freiherr, Jessica; Lundström, Johan N.; Habel, Ute; Reetz, Kathrin

    2013-01-01

    The rapid demographical shift occurring in our society implies that understanding of healthy aging and age-related diseases is one of our major future challenges. Sensory impairments have an enormous impact on our lives and are closely linked to cognitive functioning. Due to the inherent complexity of sensory perceptions, we are commonly presented with a complex multisensory stimulation and the brain integrates the information from the individual sensory channels into a unique and holistic percept. The cerebral processes involved are essential for our perception of sensory stimuli and becomes especially important during the perception of emotional content. Despite ongoing deterioration of the individual sensory systems during aging, there is evidence for an increase in, or maintenance of, multisensory integration processing in aging individuals. Within this comprehensive literature review on multisensory integration we aim to highlight basic mechanisms and potential compensatory strategies the human brain utilizes to help maintain multisensory integration capabilities during healthy aging to facilitate a broader understanding of age-related pathological conditions. Further our goal was to identify where further research is needed. PMID:24379773

  18. Global human capital: integrating education and population.

    PubMed

    Lutz, Wolfgang; KC, Samir

    2011-07-29

    Almost universally, women with higher levels of education have fewer children. Better education is associated with lower mortality, better health, and different migration patterns. Hence, the global population outlook depends greatly on further progress in education, particularly of young women. By 2050, the highest and lowest education scenarios--assuming identical education-specific fertility rates--result in world population sizes of 8.9 and 10.0 billion, respectively. Better education also matters for human development, including health, economic growth, and democracy. Existing methods of multi-state demography can quantitatively integrate education into standard demographic analysis, thus adding the "quality" dimension.

  19. 40 CFR 146.8 - Mechanical integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Mechanical integrity. 146.8 Section...) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146.8 Mechanical integrity. (a) An injection well has mechanical integrity if: (1) There is no significant leak in the casing...

  20. 40 CFR 146.8 - Mechanical integrity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Mechanical integrity. 146.8 Section...) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146.8 Mechanical integrity. (a) An injection well has mechanical integrity if: (1) There is no significant leak in the casing...

  1. 40 CFR 146.89 - Mechanical integrity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Mechanical integrity. 146.89 Section 146.89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED... Wells § 146.89 Mechanical integrity. (a) A Class VI well has mechanical integrity if: (1) There is...

  2. 40 CFR 146.8 - Mechanical integrity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Mechanical integrity. 146.8 Section...) UNDERGROUND INJECTION CONTROL PROGRAM: CRITERIA AND STANDARDS General Provisions § 146.8 Mechanical integrity. (a) An injection well has mechanical integrity if: (1) There is no significant leak in the casing...

  3. Global integrated drought monitoring and prediction system.

    PubMed

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe.

  4. Global integrated drought monitoring and prediction system

    PubMed Central

    Hao, Zengchao; AghaKouchak, Amir; Nakhjiri, Navid; Farahmand, Alireza

    2014-01-01

    Drought is by far the most costly natural disaster that can lead to widespread impacts, including water and food crises. Here we present data sets available from the Global Integrated Drought Monitoring and Prediction System (GIDMaPS), which provides drought information based on multiple drought indicators. The system provides meteorological and agricultural drought information based on multiple satellite-, and model-based precipitation and soil moisture data sets. GIDMaPS includes a near real-time monitoring component and a seasonal probabilistic prediction module. The data sets include historical drought severity data from the monitoring component, and probabilistic seasonal forecasts from the prediction module. The probabilistic forecasts provide essential information for early warning, taking preventive measures, and planning mitigation strategies. GIDMaPS data sets are a significant extension to current capabilities and data sets for global drought assessment and early warning. The presented data sets would be instrumental in reducing drought impacts especially in developing countries. Our results indicate that GIDMaPS data sets reliably captured several major droughts from across the globe. PMID:25977759

  5. Epigenetic Mechanisms of Integrative Medicine

    PubMed Central

    Kanherkar, Riya R.; Stair, Susan E.; Bhatia-Dey, Naina; Mills, Paul J.; Chopra, Deepak

    2017-01-01

    Since time immemorial humans have utilized natural products and therapies for their healing properties. Even now, in the age of genomics and on the cusp of regenerative medicine, the use of complementary and alternative medicine (CAM) approaches represents a popular branch of health care. Furthermore, there is a trend towards a unified medical philosophy referred to as Integrative Medicine (IM) that represents the convergence of CAM and conventional medicine. The IM model not only considers the holistic perspective of the physiological components of the individual, but also includes psychological and mind-body aspects. Justification for and validation of such a whole-systems approach is in part dependent upon identification of the functional pathways governing healing, and new data is revealing relationships between therapies and biochemical effects that have long defied explanation. We review this data and propose a unifying theme: IM's ability to affect healing is due at least in part to epigenetic mechanisms. This hypothesis is based on a mounting body of evidence that demonstrates a correlation between the physical and mental effects of IM and modulation of gene expression and epigenetic state. Emphasis on mapping, deciphering, and optimizing these effects will facilitate therapeutic delivery and create further benefits. PMID:28316635

  6. Epigenetic Mechanisms of Integrative Medicine.

    PubMed

    Kanherkar, Riya R; Stair, Susan E; Bhatia-Dey, Naina; Mills, Paul J; Chopra, Deepak; Csoka, Antonei B

    2017-01-01

    Since time immemorial humans have utilized natural products and therapies for their healing properties. Even now, in the age of genomics and on the cusp of regenerative medicine, the use of complementary and alternative medicine (CAM) approaches represents a popular branch of health care. Furthermore, there is a trend towards a unified medical philosophy referred to as Integrative Medicine (IM) that represents the convergence of CAM and conventional medicine. The IM model not only considers the holistic perspective of the physiological components of the individual, but also includes psychological and mind-body aspects. Justification for and validation of such a whole-systems approach is in part dependent upon identification of the functional pathways governing healing, and new data is revealing relationships between therapies and biochemical effects that have long defied explanation. We review this data and propose a unifying theme: IM's ability to affect healing is due at least in part to epigenetic mechanisms. This hypothesis is based on a mounting body of evidence that demonstrates a correlation between the physical and mental effects of IM and modulation of gene expression and epigenetic state. Emphasis on mapping, deciphering, and optimizing these effects will facilitate therapeutic delivery and create further benefits.

  7. Masking exposes multiple global form mechanisms

    PubMed Central

    Webb, Ben S.; Roach, Neil W.; Peirce, Jon W.

    2011-01-01

    Previous work suggests there are mechanisms at intermediate levels of visual processing specialized for the detection of radial and circular form. The evidence in favor of specialized global form mechanisms is derived from structure detection experiments that have told us very little about their bandwidth or number. To address these related questions, we examined the effects of configural backward masking on human observers’ ability to detect global structure in arrays with different spiral forms. Each array consisted of 100 Gabors randomly positioned within a circular annular window. Observers judged which of two sequentially presented Gabor arrays contained global structure. One array contained Gabors with random orientations; the other contained Gabors with a variable proportion of orientations coherent with a randomly chosen spiral pitch. At its offset, each array was immediately followed by a backward masking Gabor array with a fixed spiral pitch angle. When mask and test had the same spiral pitch, we found an approximately three-fold elevation of structure detection thresholds that was not explained by local orientation masking. The magnitude and breadth of tuning around each masking angle was predicted by a simple model consisting of at least eight detectors broadly tuned for different spiral forms. PMID:18831652

  8. Diversity, Integration, Globalization, and Critical Thinking in the Upper Division.

    ERIC Educational Resources Information Center

    Malekzadeh, Ali R.

    1998-01-01

    Describes a revised business curriculum with four objectives: diversity, integration of business disciplines, globalization, and critical thinking. Explains integrative activities for students: industry study team, business folders, and career plans. (SK)

  9. Developing a Global Mindset: Integrating Demographics, Sustainability, Technology, and Globalization

    ERIC Educational Resources Information Center

    Aggarwal, Raj

    2011-01-01

    Business schools face a number of challenges in responding to the business influences of demographics, sustainability, and technology--all three of which are also the fundamental driving forces for globalization. Demographic forces are creating global imbalances in worker populations and in government finances; the world economy faces…

  10. Developing a Global Mindset: Integrating Demographics, Sustainability, Technology, and Globalization

    ERIC Educational Resources Information Center

    Aggarwal, Raj

    2011-01-01

    Business schools face a number of challenges in responding to the business influences of demographics, sustainability, and technology--all three of which are also the fundamental driving forces for globalization. Demographic forces are creating global imbalances in worker populations and in government finances; the world economy faces…

  11. Global and local horizon quantum mechanics

    NASA Astrophysics Data System (ADS)

    Casadio, Roberto; Giugno, Andrea; Giusti, Andrea

    2017-02-01

    Horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. A global gravitational radius operator can be introduced for a static and spherically symmetric quantum mechanical matter state by lifting the classical "Hamiltonian" constraint that relates the gravitational radius to the ADM mass, thus giving rise to a "horizon wave-function". This minisuperspace-like formalism is shown here to be able to consistently describe also the local gravitational radius related to the Misner-Sharp mass function of the quantum source, provided its energy spectrum is determined by spatially localised modes.

  12. Violence Against Women: Globalizing the Integrated Ecological Model.

    PubMed

    Fulu, Emma; Miedema, Stephanie

    2015-12-01

    Globalization theories have proliferated over the past two decades. However, global developments have yet to be systematically incorporated into theories around violence against women. This article proposes to add a global level to the existing ecological model framework, popularized by Lori Heise in 1998, to explore the relationships between global processes and experiences of violence against women. Data from the Maldives and Cambodia are used to assess how globalized ideologies, economic development and integration, religious fundamentalisms, and global cultural exchange, as components of a larger globalization process, have affected men and women's experiences and perceptions of violence against women. © The Author(s) 2015.

  13. Why mechanical subsystems are difficult to integrate

    SciTech Connect

    Segalman, D.J.; Ortiz, K.; Wesner, J.J.

    1996-12-31

    Though the theme of System Engineering is integration, and it is normal to attempt in integration to ignore the lines between disciplines, there are distinct characteristics of the mechanical design portion of any major system design project that make this difficult. How these characteristics compound the difficulty of integration is discussed and means to minimize the associated obstacles are suggested.

  14. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...

  15. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...

  16. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...

  17. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...

  18. 40 CFR 68.73 - Mechanical integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Mechanical integrity. 68.73 Section 68...) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 3 Prevention Program § 68.73 Mechanical integrity. (a... accepted good engineering practices. (3) The frequency of inspections and tests of process equipment shall...

  19. 40 CFR 147.3107 - Mechanical integrity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Mechanical integrity. 147.3107 Section 147.3107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted...

  20. 40 CFR 147.3107 - Mechanical integrity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Mechanical integrity. 147.3107 Section 147.3107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted...

  1. 40 CFR 147.3107 - Mechanical integrity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Mechanical integrity. 147.3107 Section 147.3107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted...

  2. 40 CFR 147.3107 - Mechanical integrity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Mechanical integrity. 147.3107 Section 147.3107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted...

  3. Asymmetric global motion integration in drifting Gabor arrays.

    PubMed

    Rider, Andrew Thomas; McOwan, Peter William; Johnston, Alan

    2014-07-24

    We examined how ambiguous motion signals are integrated over space to support the unambiguous perception of global motion. The motion of a Gaussian windowed drifting sine grating (Gabor) is consistent with an infinite number of grating velocities. To extract the consistent global motion of multi-Gabor arrays, the visual system must integrate ambiguous motion signals from disparate regions of visual space. We found an interaction between spatial arrangement and global motion integration in this process. Linear arrays of variably oriented Gabor elements appeared to move more slowly, reflecting suboptimal integration, when the direction of global translation was orthogonal to the line as opposed to along it. Circular arrays of Gabor elements appeared to move more slowly when the global motion was an expansion or contraction rather than a rotation. However, there was no difference in perceived speed for densely packed annular arrays for these global motion pattern directions. We conclude that the region over which ambiguous motion is integrated is biased in the direction of global motion, and the concept of the association field, held to link like elements along a contour, needs to be extended to include global motion computation over disparate elements referencing the same global motion.

  4. Integrating Global Poverty into Mainstream Business Classrooms

    ERIC Educational Resources Information Center

    Paton, Bruce; Harris-Boundy, Jason; Melhus, Peter

    2012-01-01

    Most of the products and services discussed in business curricula serve a small portion of humanity. But the great majority of economic growth over the next few decades is expected to occur in emerging and frontier markets. This emerging reality increases the urgency for including topics related to global poverty, unmet human needs, and emergence…

  5. Integrating Global Poverty into Mainstream Business Classrooms

    ERIC Educational Resources Information Center

    Paton, Bruce; Harris-Boundy, Jason; Melhus, Peter

    2012-01-01

    Most of the products and services discussed in business curricula serve a small portion of humanity. But the great majority of economic growth over the next few decades is expected to occur in emerging and frontier markets. This emerging reality increases the urgency for including topics related to global poverty, unmet human needs, and emergence…

  6. Enhanced global integration of closed contours in individuals with high levels of autistic-like traits.

    PubMed

    Almeida, Renita A; Dickinson, J Edwin; Maybery, Murray T; Badcock, Johanna C; Badcock, David R

    2014-10-01

    Individuals with autistic traits (measured with Autism-spectrum Quotient, AQ) often excel in detecting shapes hidden within complex structures (e.g. on the Embedded Figures Test, EFT). This facility has been attributed to either weaker global integration of scene elements or enhanced local processing, but 'local' and 'global' have various meanings in the literature. The function of specific global visual mechanisms involved in integrating contours, similar to EFT targets was examined. High AQ scorers produced enhanced performance on the EFT and an alternative Radial Frequency Search Task. Contrary to 'generic' interpretations of weaker global pooling, this group displayed stronger pooling of contour components that was correlated with search ability. This study therefore shows a global contour integration advantage in high AQ observers. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  7. Integrating Global Content into Special Education Teacher Preparation Programs

    ERIC Educational Resources Information Center

    Xin, Joy F.; Accardo, Amy L.; Shuff, Midge; Cormier, Mary; Doorman, Diane

    2016-01-01

    Globalization affects many aspects of our lives in the 21st century and requires us to adopt an international perspective. For this study, global content was integrated into one course of an undergraduate special education teacher education program. A total of 118 teacher candidates were enrolled in the course over two semesters. A pre-post test…

  8. Integrating Global Content into Special Education Teacher Preparation Programs

    ERIC Educational Resources Information Center

    Xin, Joy F.; Accardo, Amy L.; Shuff, Midge; Cormier, Mary; Doorman, Diane

    2016-01-01

    Globalization affects many aspects of our lives in the 21st century and requires us to adopt an international perspective. For this study, global content was integrated into one course of an undergraduate special education teacher education program. A total of 118 teacher candidates were enrolled in the course over two semesters. A pre-post test…

  9. Integrating Latin America and the Caribbean into Global History.

    ERIC Educational Resources Information Center

    Grahn, Lance

    1997-01-01

    Argues that global studies courses often leave out Third World countries, especially those in Latin America and the Caribbean. Presents a proposal for integrating Latin America and the Caribbean into global history curricula through the thematic categories of economics, politics, and ideas. Provides annotated reading lists. (16 citations) (AJL)

  10. Integrated Global Positioning Systems (GPS) Laboratory

    NASA Technical Reports Server (NTRS)

    Brown, Dewayne Randolph

    2002-01-01

    The purpose of this research is to develop a user-friendly Integrated GPS lab manual. This manual will help range engineers at NASA to integrate the use of GPS Simulators, GPS receivers, computers, MATLAB software, FUGAWI software and SATELLITE TOOL KIT software. The lab manual will be used in an effort to help NASA engineers predict GPS Coverage of planned operations and analyze GPS coverage of operation post mission. The Integrated GPS Laboratory was used to do GPS Coverage for two extensive case studies. The first scenario was an airplane trajectory in which an aircraft flew from Cape Canaveral to Los Angeles, California. In the second scenario, a rocket trajectory was done whereas a rocket was launched from Cape Canaveral to one thousand kilometers due east in the Atlantic Ocean.

  11. Integrating Mechanics with Literature and Writing.

    ERIC Educational Resources Information Center

    Lyons, Bill

    1987-01-01

    Proposes an integrated approach to teaching mechanics that focuses on literature and writing to maintain student interest, but incorporates enough mechanics to eliminate isolated skill lessons. Illustrates the method with an imaginary class discussion of wording in a seventh grader's short story that prompts revision of spelling and diction. (JG)

  12. Cortical systems for local and global integration in discourse comprehension.

    PubMed

    Egidi, Giovanna; Caramazza, Alfonso

    2013-05-01

    To understand language, we integrate what we hear or read with prior context. This research investigates the neural systems underlying this integration process, in particular the integration of incoming linguistic information with local, proximal context and with global, distal context. The experiments used stories whose endings were locally consistent or locally inconsistent. In addition, the stories' global context was either relevant or irrelevant for the integration of the endings. In Experiment 1, reading latencies showed that the perceived consistency of an ending depended on its fit with the local context, but the availability of a relevant global context attenuated this effect. Experiment 2 used BOLD fMRI to study whether different neural systems are sensitive to the local consistency of the endings and the relevance of the global context. A first analysis evaluated BOLD responses during the comprehension of story endings. It identified three networks: one sensitive to consistency with local context, one sensitive to the relevance of the global context, and one sensitive to both factors. These findings suggest that some regions respond to the holistic relation of local and global contexts while others track only the global or the local contexts. A second analysis examined correlations between BOLD activity during listening of the story endings and subsequent memory for those endings. It revealed two distinct networks: Positive correlations in areas usually involved in semantic processing and memory for language, and negative correlations in sensory, motor, and visual areas, indicating that weaker activity in the latter regions is conducive to better memory for linguistic content. More widespread memory correlates were found when global context was relevant for understanding a story ending. We conclude that integration at the discourse level involves the cooperation of different networks each sensitive to separate aspects of the task, and that integration is

  13. Development of an Integrated Global Energy Model

    SciTech Connect

    Krakowski, R.A.

    1999-07-08

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E{sup 3}) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term ({approximately}2,100) context. The E{sup 3} model so developed was applied to create a Los Alamos presence in this E{sup 3} area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E{sup 3} model have been presented at a variety of national and international conferences and workshops. Through use of the E{sup 3} model Los Alamos was afforded the opportunity to participate in a multi-national E{sup 3} study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E{sup 3} model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project.

  14. Global integration of European tuna markets

    NASA Astrophysics Data System (ADS)

    Jiménez-Toribio, Ramòn; Guillotreau, Patrice; Mongruel, Rémi

    2010-07-01

    This paper evaluates the degree of integration between the world market and the major European marketplaces of frozen and canned tuna through both vertical and horizontal price relationships. Spatial linkages are investigated horizontally in order to estimate the connection between the European market and the world-wide market on the primary stage of the value chain. One of the key results is the high level of market integration at the ex-vessel stage, and the price leadership of yellowfin tuna over skipjack tuna. The same approach is applied at the ex-factory level. Basically, the European market for final goods appears to be segmented between the Northern countries consuming low-priced canned skipjack tuna imported from Asia (mainly Thailand) and the Southern countries (Italy, Spain) processing and importing yellowfin-based products sold at higher prices. France appears to be an intermediate market where both products are consumed. The former market is found to be well integrated to the world market and can be considered to be competitive, but there is a suspicion of market power being exercised on the latter. Price relationships are therefore tested vertically between the price of frozen tuna paid by the canneries and the price of canned fish in both Italy and France. The two species show an opposite pattern in prices transmission along the value chain: price changes along the chain are far better transmitted for the “global” skipjack tuna than for the more “European” yellowfin tuna. The results are discussed, along with their implications for the fishing industry.

  15. Integrated Estimates of Global Terrestrial Carbon Sequestration

    SciTech Connect

    Thomson, Allison M.; Izaurralde, R Cesar; Smith, Steven J.; Clarke, Leon E.

    2008-02-01

    Assessing the contribution of terrestrial carbon sequestration to international climate change mitigation requires integration across scientific and disciplinary boundaries. As part of a scenario analysis for the US Climate Change Technology Program, measurements and geographic data were used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were then applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric CO2 stabilization by 2100. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. Terrestrial sequestration reach a peak combined rate of 0.5 to 0.7 Gt carbon yr-1 in mid-century with contributions from agricultural soil (0.21 Gt carbon yr-1), reforestation (0.31 Gt carbon yr-1) and pasture (0.15 Gt carbon yr-1). Sequestration rates vary over time period and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 31 to 41 GtC. The contribution of terrestrial sequestration to mitigation is highest early in the century, reaching up to 20% of total carbon mitigation. This analysis provides insight into the behavior of terrestrial carbon mitigation options in the presence and absence of climate change mitigation policies.

  16. Rethinking global health research: towards integrative expertise

    PubMed Central

    MacLachlan, Malcolm

    2009-01-01

    The Bamako Call for Action on Research for Health stresses the importance of inter-disciplinary, inter-ministerial and inter-sectoral working. This challenges much of our current research and postgraduate research training in health, which mostly seeks to produce narrowly focused content specialists. We now need to compliment this type of research and research training, by offering alternative pathways that seek to create expertise, not only in specific narrow content areas, but also in the process and context of research, as well as in the interaction of these different facets of knowledge. Such an approach, developing 'integrative expertise', could greatly facilitate better research utilisation, helping policy makers and practitioners work through more evidence-based practice and across traditional research boundaries. PMID:19643021

  17. VISTA Telescope opto-mechanical integration

    NASA Astrophysics Data System (ADS)

    Jeffers, Paul; Henry, David

    2010-07-01

    VISTA1 is an infrared survey telescope which delivers 0.5 arc second images over a 1.65 degree diameter unvignetted field of view. The project was split into separate work-packages, which after successful individual acceptance, were integrated by the project office. The main mechanical integration is the matching up of two sides of a controlled interface and should be a straightforward process. This covers the mounting of the M2 Hexapod, the installation of the M2 mirror assembly onto the M2 Hexapod, the M1 attachment to the M1 support system components and installation of the instrument mass simulator. The second stage of this integration is the mechanical alignment of the optical elements (i.e. M1 & M2) to the telescope mechanical axis. This is achieved through use of jigs and alignment equipment combined with the inbuilt adjustment in both the M2 on it's Hexapod and the manual adjustment of the M1 on its positional definers. This then leaves the telescope in a state ready to start optical commissioning using a Shack Hartman wavefront sensor. This paper deals with the mechanical integration and alignment of the telescope components up to the start of optical commissioning. There will be discussion of the build-up of information through the separate component acceptance details, to the equipment methodology, preparation and actual integration of the different systems. There will also be discussion of lessons learned.

  18. MECHANICAL INTEGRITY TESTING AND TRAINING FACILITY

    EPA Science Inventory

    Underground injection control regulations of the U.S. Environmental Protection Agency require that all injection wells demonstrate mechanical integrity, which is defined as no significant leak in the casing, tubing or packer, and no significant fluid movement into an underground ...

  19. 40 CFR 147.3107 - Mechanical integrity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... monitored monthly. (b) Pressure tests conducted pursuant to § 146.8(b)(2) of this chapter shall be performed... Oklahoma Indian Tribes § 147.3107 Mechanical integrity. (a) Monitoring of annulus pressure conducted pursuant to § 146.8(b)(1) shall be preceded by an initial pressure test. A positive gauge pressure on the...

  20. Thermodynamic integration from classical to quantum mechanics.

    PubMed

    Habershon, Scott; Manolopoulos, David E

    2011-12-14

    We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable. © 2011 American Institute of Physics

  1. Global Integration Policies versus Institutional Dynamics of Higher Education

    ERIC Educational Resources Information Center

    Doh, Pascal S.

    2008-01-01

    This paper examines the implications of one of the most recent integration trends in higher education, the Bologna process. The Bologna process can be understood as a sustained, broad-scale initiative among institutions of higher education and national governments to respond to the forces of globalization (Kalvermark and Van der Wende 1997). The…

  2. Extending Global Tool Integration Environment towards Lifecycle Management

    NASA Astrophysics Data System (ADS)

    Kääriäinen, Jukka; Eskeli, Juho; Teppola, Susanna; Välimäki, Antti; Tuuttila, Pekka; Piippola, Markus

    Development and verification of complex systems requires close collaboration between different disciplines and specialists operating in a global development environment with various tools and product data storage. Fluent integration of the tools and databases facilitate a productive development environment by enabling the user to easily launch tools and transfer information between the disconnected databases and tools. The concept of Application Lifecycle Management (ALM) was established to indicate the coordination of activities and the management of artefacts during the software product's lifecycle. This paper presents the analysis of an open source global tool integration environment called ToolChain, and proposes improvement ideas for it towards application lifecycle management. The demonstration of ToolChain and the collection of improvement proposals were carried out in the telecommunication industry. The analysis was made using the ALM framework and Global Software Development (GSD) patterns developed in previous studies in the automation industry.

  3. Thickness measurement locations of mechanical integrity

    SciTech Connect

    Decker, J.R.; Rivas, N.

    1996-07-01

    This paper will describe the importance of establishing thickness measurement location (TNE) criteria. It will also seek to quantify the frequency of inspections and review the methods for establishing techniques to ensure reliability and repeatability of inspections at TMLs using qualified inspectors. Also discussed will be the most useful way to document the results of an inspection and how to effectively maintain consistency in the mechanical integrity program. It reviews different methods of inspection and uses lessons learned from in-service experience with numerous mechanical projects in the petrochemical industry. The importance of qualified inspectors, quality inspection, electronic data acquisition and electronic data storage will be discussed.

  4. Geographic integration of hepatitis C virus: A global threat

    PubMed Central

    Daw, Mohamed A; El-Bouzedi, Abdallah A; Ahmed, Mohamed O; Dau, Aghnyia A; Agnan, Mohamed M; Drah, Aisha M

    2016-01-01

    AIM To assess hepatitis C virus (HCV) geographic integration, evaluate the spatial and temporal evolution of HCV worldwide and propose how to diminish its burden. METHODS A literature search of published articles was performed using PubMed, MEDLINE and other related databases up to December 2015. A critical data assessment and analysis regarding the epidemiological integration of HCV was carried out using the meta-analysis method. RESULTS The data indicated that HCV has been integrated immensely over time and through various geographical regions worldwide. The history of HCV goes back to 1535 but between 1935 and 1965 it exhibited a rapid, exponential spread. This integration is clearly seen in the geo-epidemiology and phylogeography of HCV. HCV integration can be mirrored either as intra-continental or trans-continental. Migration, drug trafficking and HCV co-infection, together with other potential risk factors, have acted as a vehicle for this integration. Evidence shows that the geographic integration of HCV has been important in the global and regional distribution of HCV. CONCLUSION HCV geographic integration is clearly evident and this should be reflected in the prevention and treatment of this ongoing pandemic. PMID:27878104

  5. Integration or Fragmentation? College Student Citizenship in the Global Society

    ERIC Educational Resources Information Center

    Rios-Aguilar, Cecilia; Mars, Matthew M.

    2011-01-01

    Globalization has led to a societal shift toward increased emphasis on the position of individuals in the transnational context and decreased focus on distinct, but unified, national identities. This shift has led scholars to question the relevancy and effectiveness of education as a mechanism of democracy and national unification as prominently…

  6. Integration or Fragmentation? College Student Citizenship in the Global Society

    ERIC Educational Resources Information Center

    Rios-Aguilar, Cecilia; Mars, Matthew M.

    2011-01-01

    Globalization has led to a societal shift toward increased emphasis on the position of individuals in the transnational context and decreased focus on distinct, but unified, national identities. This shift has led scholars to question the relevancy and effectiveness of education as a mechanism of democracy and national unification as prominently…

  7. The formal path integral and quantum mechanics

    SciTech Connect

    Johnson-Freyd, Theo

    2010-11-15

    Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  8. Global land use data for integrated assessment modeling

    SciTech Connect

    Ramankutty, Navin

    2005-12-12

    Changes in land use and land cover have been one of the major drivers of global change over the last three centuries. Detailed spatially-explicit data sets characterizing these historical land cover changes are now emerging. By synthesizing remotely-sensed land cover classification data sets with historical land use census data, our research group has developed comprehensive databases of historical land use and land cover change. Moreover, we are building estimates of the land suitability for agriculture to predict the constraints on future land use. In this project, we have interacted with the Global Trade and Analysis Project (GTAP) at Purdue University, to adapt our land use data for use with the GTAP database, a baseline database widely used by the integrated assessment modeling community. Moreover, we have developed an interactive website for providing these newly emerging land use data products for the integrated assessment (IA) community and to the climate modeling community.

  9. Integrating Global Trends Information Into Army Strategic Planning Processes

    DTIC Science & Technology

    1993-06-01

    report in the following areas’? a. Presentation: b. Completeness: c. Easy to Understand : d. Easy to Implement: e. Adequate Reference Material: f. Relates...Facilities Plan (ALRFP).s 3. Explore the development of methodologies for better determining the facilities-related implications of global trends at the...trends, their interrelationships, and their implications for Army installations. 5. Provide recommendations for better integration of trends

  10. A thermochemically derived global reaction mechanism for detonation application

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Yang, J.; Sun, M.

    2012-07-01

    A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene-oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

  11. Nonbinding Legal Instruments in Governance for Global Health: Lessons from the Global AIDS Reporting Mechanism.

    PubMed

    Taylor, Allyn; Alfoén, Tobias; Hougendobler, Daniel; Buse, Kent

    2014-01-01

    Recent debate over World Health Organization reform has included unprecedented attention to international lawmaking as a future priority function of the Organization. However, the debate is largely focused on the codification of new binding legal instruments. Drawing upon lessons from the success of the Global AIDS Reporting Mechanism, established pursuant to the United Nations' Declaration of Commitment on HIV/AIDS, we argue that effective global health governance requires consideration of a broad range of instruments, both binding and nonbinding. A detailed examination of the Global AIDS Reporting Mechanism reveals that the choice of the nonbinding format makes an important contribution to its effectiveness. For instance, the flexibility and adaptability of the nonbinding format have allowed the global community to: (1) undertake commitments in a timely manner; (2) adapt and experiment in the face of a dynamic pandemic; and (3) grant civil society an unparalleled role in monitoring and reporting on state implementation of global commitments. UNAIDS' institutional support has also played a vital role in ensuring the continuing effectiveness of the Global AIDS Reporting Mechanism. Overall, the experience of the Global AIDS Reporting Mechanism evidences that, at times, nimbler nonbinding instruments can offer benefits over slower, more rigid binding legal approaches to governance, but depend critically, like all instruments, on the perceived legitimacy thereof.

  12. Incremental integration of global contours through interplay between visual cortical areas.

    PubMed

    Chen, Minggui; Yan, Yin; Gong, Xiajing; Gilbert, Charles D; Liang, Hualou; Li, Wu

    2014-05-07

    The traditional view on visual processing emphasizes a hierarchy: local line segments are first linked into global contours, which in turn are assembled into more complex forms. Distinct from this bottom-up viewpoint, here we provide evidence for a theoretical framework whereby objects and their parts are processed almost concurrently in a bidirectional cortico-cortical loop. By simultaneous recordings from V1 and V4 in awake monkeys, we found that information about global contours in a cluttered background emerged initially in V4, started ∼40 ms later in V1, and continued to develop in parallel in both areas. Detailed analysis of neuronal response properties implicated contour integration to emerge from both bottom-up and reentrant processes. Our results point to an incremental integration mechanism: feedforward assembling accompanied by feedback disambiguating to define and enhance the global contours and to suppress background noise. The consequence is a parallel accumulation of contour information over multiple cortical areas.

  13. Statistical Mechanics of Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Wadati, Miki; Kato, Go; Iida, Toshiaki

    Recent developments in statistical mechanics of quantum integrable systems are reviewed. Those studies are fundamental and have a renewed interest related to newly developing fields such as atomic Bose-Einstein condensations, photonic crystals and quantum computations. After a brief summary of the basic concepts and methods, the following three topics are discussed. First, by the thermal Bethe ansatz (TBA), a hard-core Bose gas is exactly solved. The model includes fully the effect of excluded volume and is identified to be a c=1 conformal field theory. Second, the cluster expansion method based on the periodic boundary condition for the Bethe wave function, which we call the Bethe ansatz cluster expansion (BACE) method, is developed for a δ-function gas and the XXX Heisenberg chain. This directly proves the TBA and reveals intrinsic properties of quantum integrable systems. Third, for a δ-function gas, the integral equations for the distribution functions of the quasi-momentum and the quasi-particle energy are solved in the form of power series. In the weak coupling case, the results reproduce those of Bogoliubov theory.

  14. An Integrated Global Atmospheric Composition Observing System: Progress and Impediments

    NASA Astrophysics Data System (ADS)

    Keating, T. J.

    2016-12-01

    In 2003-2005, a vision of an integrated global observing system for atmospheric composition and air quality emerged through several international forums (IGACO, 2004; GEO, 2005). In the decade since, the potential benefits of such a system for improving our understanding and mitigation of health and climate impacts of air pollution have become clearer and the needs more urgent. Some progress has been made towards the goal: technology has developed, capabilities have been demonstrated, and lessons have been learned. In Europe, the Copernicus Atmospheric Monitoring Service has blazed a trail for other regions to follow. Powerful new components of the emerging global system (e.g. a constellation of geostationary instruments) are expected to come on-line in the near term. But there are important gaps in the emerging system that are likely to keep us from achieving for some time the full benefits that were envisioned more than a decade ago. This presentation will explore the components and benefits of an integrated global observing system for atmospheric composition and air quality, some of the gaps and obstacles that exist in our current capabilities and institutions, and efforts that may be needed to achieve the envisioned system.

  15. 76 FR 5834 - International Business Machines Corporation, Global Technology Services Business Unit, Integrated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... Employment and Training Administration International Business Machines Corporation, Global Technology... Business Machines Corporation, Global Technology Services Business Unit, Integrated Technology Services... Mobility Services Team were part of the International Business Machines Corporation, Global...

  16. Toward the Development of an Integrated Global Observing Strategy

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    In the current environment of stagnant or shrinking budgets for space research and exploration, nations can no longer afford to develop costly systems in a vacuum. Greater coordination of existing and planned systems, both among space agencies and between the space agencies and user communities, will enable the maximization of global investments in all areas of space-related research. In this manner, a group of space agencies has embarked on an initiative to link their activities in Earth observation with complementary observation programs. The goal of this initiative is to develop a comprehensive strategy for enhanced levels of support to scientific, operational and research communities. The space agencies, through the Committee on Earth Observation Satellites (CEOS), have embraced the concept of an Integrated Global Observing Strategy (IGOS), primarily in fulfillment of their own set of objectives and to derive greater benefit from both operating and planned Earth observing systems. Through working together, CEOS agencies are in a position to plan their Earth observation projects with the minimum of unnecessary overlap and to devise joint strategies for addressing serious gaps in their observation capabilities. Ultimately, an IGOS should be the joint product of all groups involved in the collection and analysis of both space-based and in-situ data. CEOS is actively seeking IGOS -related partnerships with the Global Climate, Global Ocean and Global Terrestrial Observing Systems, their intergovernmental Sponsors, the International Group of Funding Agencies for Global Change Research, and other scientific and user organizations including the International Geosphere-Biosphere Programme and the World Climate Research Programme.

  17. Toward the Development of an Integrated Global Observing Strategy

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    In the current environment of stagnant or shrinking budgets for space research and exploration, nations can no longer afford to develop costly systems in a vacuum. Greater coordination of existing and planned systems, both among space agencies and between the space agencies and user communities, will enable the maximization of global investments in all areas of space-related research. In this manner, a group of space agencies has embarked on an initiative to link their activities in Earth observation with complementary observation programs. The goal of this initiative is to develop a comprehensive strategy for enhanced levels of support to scientific, operational and research communities. The space agencies, through the Committee on Earth Observation Satellites (CEOS), have embraced the concept of an Integrated Global Observing Strategy (IGOS), primarily in fulfillment of their own set of objectives and to derive greater benefit from both operating and planned Earth observing systems. Through working together, CEOS agencies are in a position to plan their Earth observation projects with the minimum of unnecessary overlap and to devise joint strategies for addressing serious gaps in their observation capabilities. Ultimately, an IGOS should be the joint product of all groups involved in the collection and analysis of both space-based and in-situ data. CEOS is actively seeking IGOS -related partnerships with the Global Climate, Global Ocean and Global Terrestrial Observing Systems, their intergovernmental Sponsors, the International Group of Funding Agencies for Global Change Research, and other scientific and user organizations including the International Geosphere-Biosphere Programme and the World Climate Research Programme.

  18. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  19. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  20. 40 CFR 147.3109 - Timing of mechanical integrity test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Timing of mechanical integrity test... Certain Oklahoma Indian Tribes § 147.3109 Timing of mechanical integrity test. The demonstrations of mechanical integrity required by § 146.14(b)(2) of this chapter prior to approval for the operation of a...

  1. 40 CFR 147.3010 - Mechanical integrity tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Mechanical integrity tests. 147.3010..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3010 Mechanical integrity tests. The... a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at...

  2. 40 CFR 147.3109 - Timing of mechanical integrity test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Timing of mechanical integrity test... Certain Oklahoma Indian Tribes § 147.3109 Timing of mechanical integrity test. The demonstrations of mechanical integrity required by § 146.14(b)(2) of this chapter prior to approval for the operation of a...

  3. 40 CFR 147.3109 - Timing of mechanical integrity test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Timing of mechanical integrity test... Certain Oklahoma Indian Tribes § 147.3109 Timing of mechanical integrity test. The demonstrations of mechanical integrity required by § 146.14(b)(2) of this chapter prior to approval for the operation of a...

  4. 40 CFR 147.3010 - Mechanical integrity tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Mechanical integrity tests. 147.3010..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3010 Mechanical integrity tests. The... a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at...

  5. 40 CFR 147.3010 - Mechanical integrity tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Mechanical integrity tests. 147.3010..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3010 Mechanical integrity tests. The... a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at...

  6. 40 CFR 147.3010 - Mechanical integrity tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Mechanical integrity tests. 147.3010..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3010 Mechanical integrity tests. The... a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at...

  7. 40 CFR 147.3109 - Timing of mechanical integrity test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Timing of mechanical integrity test... Certain Oklahoma Indian Tribes § 147.3109 Timing of mechanical integrity test. The demonstrations of mechanical integrity required by § 146.14(b)(2) of this chapter prior to approval for the operation of a...

  8. 40 CFR 147.3109 - Timing of mechanical integrity test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Timing of mechanical integrity test... Certain Oklahoma Indian Tribes § 147.3109 Timing of mechanical integrity test. The demonstrations of mechanical integrity required by § 146.14(b)(2) of this chapter prior to approval for the operation of a...

  9. 40 CFR 147.3010 - Mechanical integrity tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Mechanical integrity tests. 147.3010..., Ute Mountain Ute, and All Other New Mexico Tribes § 147.3010 Mechanical integrity tests. The... a pressure test, using liquid or gas that clearly demonstrates that mechanical integrity exists at...

  10. Integrative modelling reveals mechanisms linking productivity and plant species richness

    NASA Astrophysics Data System (ADS)

    Grace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Pärtel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.

    2016-01-01

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  11. Developing Global Standards Framework and Quality Integrated Models for Cooperative and Work-Integrated Education Programs

    ERIC Educational Resources Information Center

    Khampirat, Buratin; McRae, Norah

    2016-01-01

    Cooperative and Work-integrated Education (CWIE) programs have been widely accepted as educational programs that can effectively connect what students are learning to the world of work through placements. Because a global quality standards framework could be a very valuable resource and guide to establishing, developing, and accrediting quality…

  12. DESI focal plate mechanical integration and cooling

    NASA Astrophysics Data System (ADS)

    Lambert, A. R.; Besuner, R. W.; Claybaugh, T. M.; Silber, J. H.

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique[1]. The spectra of 40 million galaxies over 14000 sq. deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. This paper describes the mechanical integration of the DESI focal plate and the thermal system design. The DESI focal plate is comprised of ten identical petal assemblies. Each petal contains 500 robotic fiber positioners. Each petal is a complete, self-contained unit, independent from the others, with integrated power supply, controllers, fiber routing, and cooling services. The major advantages of this scheme are: (1) supports installation and removal of complete petal assemblies in-situ, without disturbing the others, (2) component production, assembly stations, and test procedures are repeated and parallelizable, (3) a complete, full-scale prototype can be built and tested at an early date, (4) each production petal can be surveyed and tested as a complete unit, prior to integration, from the fiber tip at the focal surface to the fiber slit at the spectrograph. The ten petal assemblies will be installed in a single integration ring, which is mounted to the DESI corrector. The aluminum integration ring attaches to the steel corrector barrel via a flexured steel adapter, isolating the focal plate from differential thermal expansions. The plate scale will be kept stable by conductive cooling of the petal assembly. The guider and wavefront sensors (one per petal) will be convectively cooled by forced flow of air. Heat will be removed from the system at ten liquid-cooled cold plates, one per petal, operating at ambient temperature. The entire focal plate structure is enclosed in an insulating shroud, which serves as a thermal barrier

  13. Lessons Learned during Thermal Hardware Integration on the Global Precipitation Measurement Satellite

    NASA Technical Reports Server (NTRS)

    Cottingham, Christine; Dwivedi, Vivek H.; Peters, Carlton; Powers, Daniel; Yang, Kan

    2012-01-01

    The Global Precipitation Measurement mission is a joint NASA/JAXA mission scheduled for launch in late 2013. The integration of thermal hardware onto the satellite began in the Fall of 2010 and will continue through the Summer of 2012. The thermal hardware on the mission included several constant conductance heat pipes, heaters, thermostats, thermocouples radiator coatings and blankets. During integration several problems arose and insights were gained that would help future satellite integrations. Also lessons learned from previous missions were implemented with varying degrees of success. These insights can be arranged into three categories. 1) the specification of flight hardware using analysis results and the available mechanical resources. 2) The integration of thermal flight hardware onto the spacecraft, 3) The preparation and implementation of testing the thermal flight via touch tests, resistance measurements and thermal vacuum testing.

  14. Global Ocean Integrals and Means, with Trend Implications.

    PubMed

    Wunsch, Carl

    2016-01-01

    Understanding the ocean requires determining and explaining global integrals and equivalent average values of temperature (heat), salinity (freshwater and salt content), sea level, energy, and other properties. Attempts to determine means, integrals, and climatologies have been hindered by thinly and poorly distributed historical observations in a system in which both signals and background noise are spatially very inhomogeneous, leading to potentially large temporal bias errors that must be corrected at the 1% level or better. With the exception of the upper ocean in the current altimetric-Argo era, no clear documentation exists on the best methods for estimating means and their changes for quantities such as heat and freshwater at the levels required for anthropogenic signals. Underestimates of trends are as likely as overestimates; for example, recent inferences that multidecadal oceanic heat uptake has been greatly underestimated are plausible. For new or augmented observing systems, calculating the accuracies and precisions of global, multidecadal sampling densities for the full water column is necessary to avoid the irrecoverable loss of scientifically essential information.

  15. Improved data for integrated modeling of global environmental change

    NASA Astrophysics Data System (ADS)

    Lotze-Campen, Hermann

    2011-12-01

    The assessment of global environmental changes, their impact on human societies, and possible management options requires large-scale, integrated modeling efforts. These models have to link biophysical with socio-economic processes, and they have to take spatial heterogeneity of environmental conditions into account. Land use change and freshwater use are two key research areas where spatial aggregation and the use of regional average numbers may lead to biased results. Useful insights can only be obtained if processes like economic globalization can be consistently linked to local environmental conditions and resource constraints (Lambin and Meyfroidt 2011). Spatially explicit modeling of environmental changes at the global scale has a long tradition in the natural sciences (Woodward et al 1995, Alcamo et al 1996, Leemans et al 1996). Socio-economic models with comparable spatial detail, e.g. on grid-based land use change, are much less common (Heistermann et al 2006), but are increasingly being developed (Popp et al 2011, Schneider et al 2011). Spatially explicit models require spatially explicit input data, which often constrains their development and application at the global scale. The amount and quality of available data on environmental conditions is growing fast—primarily due to improved earth observation methods. Moreover, systematic efforts for collecting and linking these data across sectors are on the way (www.earthobservations.org). This has, among others, also helped to provide consistent databases on different land cover and land use types (Erb et al 2007). However, spatially explicit data on specific anthropogenic driving forces of global environmental change are still scarce—also because these cannot be collected with satellites or other devices. The basic data on socio-economic driving forces, i.e. population density and wealth (measured as gross domestic product per capita), have been prepared for spatially explicit analyses (CIESIN, IFPRI

  16. An integrated and pragmatic approach: Global plant safety management

    NASA Astrophysics Data System (ADS)

    McNutt, Jack; Gross, Andrew

    1989-05-01

    The Bhopal disaster in India in 1984 has compelled manufacturing companies to review their operations in order to minimize their risk exposure. Much study has been done on the subject of risk assessment and in refining safety reviews of plant operations. However, little work has been done to address the broader needs of decision makers in the multinational environment. The corporate headquarters of multinational organizations are concerned with identifying vulnerable areas to assure that appropriate risk-minimization measures are in force or will be taken. But the task of screening global business units for safety prowess is complicated and time consuming. This article takes a step towards simplifying this process by presenting the decisional model developed by the authors. Beginning with an overview of key issues affecting global safety management, the focus shifts to the multinational vulnerability model developed by the authors, which reflects an integration of approaches. The article concludes with a discussion of areas for further research. While the global chemical industry and major incidents therein are used for illustration, the procedures and solutions suggested here are applicable to all manufacturing operations.

  17. Integration mechanisms and hospital efficiency in integrated health care delivery systems.

    PubMed

    Wan, Thomas T H; Lin, Blossom Yen-Ju; Ma, Allen

    2002-04-01

    This study analyzes integration mechanisms that affect system performances measured by indicators of efficiency in integrated delivery systems (IDSs) in the United States. The research question is, do integration mechanisms improve IDSs' efficiency in hospital care? American Hospital Association's Annual Survey (1998) and Dorenfest's Survey on Information Systems in Integrated Healthcare Delivery Systems (1998) were used to conduct the study, using IDS as the unit of analysis. A covariance structure equation model of the effects of system integration mechanisms on IDS performance was formulated and validated by an empirical examination of IDSs. The study sample includes 973 hospital-based integrated health care delivery systems operating in the United States, carried in the list of Dorenfests Survey on Information Systems in Integrated Health care Delivery Systems. The measurement indicators of system integration mechanisms are categorized into six related domains: informatic integration, case management, hybrid physician-hospital integration, forward integration, backward integration, and high tech medical services. The multivariate analysis reveals that integration mechanisms in system operation are positively correlated and positively affect IDSs' efficiency. The six domains of integration mechanisms account for 58.9% of the total variance in hospital performance. The service differentiation strategy such as having more high tech medical services have much stronger influences on efficiency than other integration mechanisms do. The beneficial effects of integration mechanisms have been realized in IDS performance. High efficiency in hospital care can be achieved by employing proper integration strategies in operations.

  18. An improved global wind resource estimate for integrated assessment models

    DOE PAGES

    Eurek, Kelly; Sullivan, Patrick; Gleason, Michael; ...

    2017-11-25

    This study summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquelymore » detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.« less

  19. Tolerance for local and global differences in the integration of shape information.

    PubMed

    Dickinson, J Edwin; Cribb, Serena J; Riddell, Hugh; Badcock, David R

    2015-03-26

    Shape is a critical cue to object identity. In psychophysical studies, radial frequency (RF) patterns, paths deformed from circular by a sinusoidal modulation of radius, have proved valuable stimuli for the demonstration of global integration of local shape information. Models of the mechanism of integration have focused on the periodicity in measures of curvature on the pattern, despite the fact that other properties covary. We show that patterns defined by rectified sinusoidal modulation also exhibit global integration and are indistinguishable from conventional RF patterns at their thresholds for detection, demonstrating some indifference to the modulating function. Further, irregular patterns incorporating four different frequencies of modulation are globally integrated, indicating that uniform periodicity is not critical. Irregular patterns can be handed in the sense that mirror images cannot be superimposed. We show that mirror images of the same irregular pattern could not be discriminated near their thresholds for detection. The same irregular pattern and a pattern with four cycles of a constant frequency of modulation completing 2π radians were, however, perfectly discriminated, demonstrating the existence of discrete representations of these patterns by which they are discriminated. It has previously been shown that RF patterns of different frequencies are perfectly discriminated but that patterns with the same frequency but different numbers of cycles of modulation were not. We conclude that such patterns are identified, near threshold, by the set of angles subtended at the center of the pattern by adjacent points of maximum convex curvature.

  20. Local and Global Illumination in the Volume Rendering Integral

    SciTech Connect

    Max, N; Chen, M

    2005-10-21

    This article is intended as an update of the major survey by Max [1] on optical models for direct volume rendering. It provides a brief overview of the subject scope covered by [1], and brings recent developments, such as new shadow algorithms and refraction rendering, into the perspective. In particular, we examine three fundamentals aspects of direct volume rendering, namely the volume rendering integral, local illumination models and global illumination models, in a wavelength-independent manner. We review the developments on spectral volume rendering, in which visible light are considered as a form of electromagnetic radiation, optical models are implemented in conjunction with representations of spectral power distribution. This survey can provide a basis for, and encourage, new efforts for developing and using complex illumination models to achieve better realism and perception through optical correctness.

  1. The future of global water stress: An integrated assessment

    NASA Astrophysics Data System (ADS)

    Schlosser, C. Adam; Strzepek, Kenneth; Gao, Xiang; Fant, Charles; Blanc, Élodie; Paltsev, Sergey; Jacoby, Henry; Reilly, John; Gueneau, Arthur

    2014-08-01

    We assess the ability of global water systems, resolved at 282 assessment subregions (ASRs), to the meet water requirements under integrated projections of socioeconomic growth and climate change. We employ a water resource system (WRS) component embedded within the Massachusetts Institute of Technology Integrated Global System Model (IGSM) framework in a suite of simulations that consider a range of climate policies and regional hydroclimate changes out to 2050. For many developing nations, water demand increases due to population growth and economic activity have a much stronger effect on water stress than climate change. By 2050, economic growth and population change alone can lead to an additional 1.8 billion people living under at least moderate water stress, with 80% of these located in developing countries. Uncertain regional climate change can play a secondary role to either exacerbate or dampen the increase in water stress. The strongest climate impacts on water stress are observed in Africa, but strong impacts also occur over Europe, Southeast Asia, and North America. The combined effects of socioeconomic growth and uncertain climate change lead to a 1.0-1.3 billion increase of the world's 2050 projected population living with overly exploited water conditions—where total potential water requirements will consistently exceed surface water supply. This would imply that adaptive measures would be taken to meet these surface water shortfalls and include: water-use efficiency, reduced and/or redirected consumption, recurrent periods of water emergencies or curtailments, groundwater depletion, additional interbasin transfers, and overdraw from flow intended to maintain environmental requirements.

  2. The Glory Program: Global Science from a Unique Spacecraft Integration

    NASA Technical Reports Server (NTRS)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  3. Integrated Decision Support for Global Environmental Change Adaptation

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cantrell, S.; Higgins, G. J.; Marshall, J.; VanWijngaarden, F.

    2011-12-01

    Environmental changes are happening now that has caused concern in many parts of the world; particularly vulnerable are the countries and communities with limited resources and with natural environments that are more susceptible to climate change impacts. Global leaders are concerned about the observed phenomena and events such as Amazon deforestation, shifting monsoon patterns affecting agriculture in the mountain slopes of Peru, floods in Pakistan, water shortages in Middle East, droughts impacting water supplies and wildlife migration in Africa, and sea level rise impacts on low lying coastal communities in Bangladesh. These environmental changes are likely to get exacerbated as the temperatures rise, the weather and climate patterns change, and sea level rise continues. Large populations and billions of dollars of infrastructure could be affected. At Northrop Grumman, we have developed an integrated decision support framework for providing necessary information to stakeholders and planners to adapt to the impacts of climate variability and change at the regional and local levels. This integrated approach takes into account assimilation and exploitation of large and disparate weather and climate data sets, regional downscaling (dynamic and statistical), uncertainty quantification and reduction, and a synthesis of scientific data with demographic and economic data to generate actionable information for the stakeholders and decision makers. Utilizing a flexible service oriented architecture and state-of-the-art visualization techniques, this information can be delivered via tailored GIS portals to meet diverse set of user needs and expectations. This integrated approach can be applied to regional and local risk assessments, predictions and decadal projections, and proactive adaptation planning for vulnerable communities. In this paper we will describe this comprehensive decision support approach with selected applications and case studies to illustrate how this

  4. Molecular mechanisms of retroviral integration site selection

    PubMed Central

    Kvaratskhelia, Mamuka; Sharma, Amit; Larue, Ross C.; Serrao, Erik; Engelman, Alan

    2014-01-01

    Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic. PMID:25147212

  5. Integration of the International Standards Evaluation into a Global Data Assessment

    SciTech Connect

    Muir, D.W. Mengoni, A.; Kodeli, I.

    2008-12-15

    We review the methods employed in the GANDR system to perform a global assessment of nuclear data. We then describe the integration of the International Standards Evaluation into a recently initiated global data assessment.

  6. Applications of parallel global optimization to mechanics problems

    NASA Astrophysics Data System (ADS)

    Schutte, Jaco Francois

    Global optimization of complex engineering problems, with a high number of variables and local minima, requires sophisticated algorithms with global search capabilities and high computational efficiency. With the growing availability of parallel processing, it makes sense to address these requirements by increasing the parallelism in optimization strategies. This study proposes three methods of concurrent processing. The first method entails exploiting the structure of population-based global algorithms such as the stochastic Particle Swarm Optimization (PSO) algorithm and the Genetic Algorithm (GA). As a demonstration of how such an algorithm may be adapted for concurrent processing we modify and apply the PSO to several mechanical optimization problems on a parallel processing machine. Desirable PSO algorithm features such as insensitivity to design variable scaling and modest sensitivity to algorithm parameters are demonstrated. A second approach to parallelism and improving algorithm efficiency is by utilizing multiple optimizations. With this method a budget of fitness evaluations is distributed among several independent sub-optimizations in place of a single extended optimization. Under certain conditions this strategy obtains a higher combined probability of converging to the global optimum than a single optimization which utilizes the full budget of fitness evaluations. The third and final method of parallelism addressed in this study is the use of quasiseparable decomposition, which is applied to decompose loosely coupled problems. This yields several sub-problems of lesser dimensionality which may be concurrently optimized with reduced effort.

  7. Jamming graphs: A local approach to global mechanical rigidity

    NASA Astrophysics Data System (ADS)

    Lopez, Jorge H.; Cao, L.; Schwarz, J. M.

    2013-12-01

    We revisit the concept of minimal rigidity as applied to frictionless, repulsive soft sphere packings in two dimensions with the introduction of the jamming graph. Minimal rigidity is a purely combinatorial property encoded via Laman's theorem in two dimensions. It constrains the global, average coordination number of the graph, for example. However, minimal rigidity does not address the geometry of local mechanical stability. The jamming graph contains both properties of global mechanical stability at the onset of jamming and local mechanical stability. We demonstrate how jamming graphs can be constructed using local moves via the Henneberg construction such that these graphs fall under the jurisdiction of correlated percolation. We then probe how jamming graphs destabilize, or become unjammed, by deleting a bond and computing the resulting rigid cluster distribution. We also study how the system restabilizes with the addition of new contacts and how a jamming graph with extra (redundant) contacts destabilizes. The latter endeavor allows us to probe a disk packing in the rigid phase and uncover a potentially new diverging length scale associated with the random deletion of contacts as compared to the study of cut-out (or frozen-in) subsystems.

  8. Towards an integrated network of coral immune mechanisms

    PubMed Central

    Palmer, C. V.; Traylor-Knowles, N.

    2012-01-01

    Reef-building corals form bio-diverse marine ecosystems of high societal and economic value, but are in significant decline globally due, in part, to rapid climatic changes. As immunity is a predictor of coral disease and thermal stress susceptibility, a comprehensive understanding of this new field will likely provide a mechanistic explanation for ecological-scale trends in reef declines. Recently, several strides within coral immunology document defence mechanisms that are consistent with those of both invertebrates and vertebrates, and which span the recognition, signalling and effector response phases of innate immunity. However, many of these studies remain discrete and unincorporated into the wider fields of invertebrate immunology or coral biology. To encourage the rapid development of coral immunology, we comprehensively synthesize the current understanding of the field in the context of general invertebrate immunology, and highlight fundamental gaps in our knowledge. We propose a framework for future research that we hope will stimulate directional studies in this emerging field and lead to the elucidation of an integrated network of coral immune mechanisms. Once established, we are optimistic that coral immunology can be effectively applied to pertinent ecological questions, improve current prediction tools and aid conservation efforts. PMID:22896649

  9. Globalization and Co-Integration of Universal Education.

    ERIC Educational Resources Information Center

    Ikegulu, T. Nelson

    This paper proposes an educational system in which integrated institutions can become co-integrated and continentally co-integrated institutions can become universally integrated. An integrated institution is one that offers both academic programs and extracurricular activities that meet the needs of students from other institutions and countries.…

  10. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  11. Progress integrating medical humanities into medical education: a global overview.

    PubMed

    Pfeiffer, Stefani; Chen, Yuchia; Tsai, Duujian

    2016-09-01

    The article reviews the most recent developments in integrating humanities into medical education. Global implications and future trends are illustrated. The main concern of medical humanities education is teaching professionalism; one important aspect that has emerged is the goal of nurturing emotion through reflexivity. Relating effectively to all stakeholders and being sensitive to inequitable power dynamics are essential for professional social accountability in modern medical contexts. Mediating doctors' understanding of the clinical encounter through creative arts and narrative is part of most recent pedagogic innovations aimed at motivating learners to become empowered, engaged and caring clinicians. Scenario-based and discursive-oriented evaluations of such activities should be aligned with the medical humanities' problem-based learning curriculum. Medical humanities education fosters professional reflexivity that is important for achieving patient-centered care. Countering insufficient empathy with reflective professionalism is an urgent challenge in medical education; to answer this need, creative arts and narrative understanding have emerged as crucial tools of medical humanities education. To ensure competent professional identity formation in the era of translational medicine, medical humanities programs have adopted scenario-based assessments through inclusion of different voices and emphasizing personal reflection and social critique.

  12. Perceived duration of brief visual events is mediated by timing mechanisms at the global stages of visual processing

    PubMed Central

    Beattie, Lee; Benton, Christopher P.; Hibbard, Paul B.

    2017-01-01

    There is a growing body of evidence pointing to the existence of modality-specific timing mechanisms for encoding sub-second durations. For example, the duration compression effect describes how prior adaptation to a dynamic visual stimulus results in participants underestimating the duration of a sub-second test stimulus when it is presented at the adapted location. There is substantial evidence for the existence of both cortical and pre-cortical visual timing mechanisms; however, little is known about where in the processing hierarchy the cortical mechanisms are likely to be located. We carried out a series of experiments to determine whether or not timing mechanisms are to be found at the global processing level. We had participants adapt to random dot patterns that varied in their motion coherence, thus allowing us to probe the visual system at the level of motion integration. Our first experiment revealed a positive linear relationship between the motion coherence level of the adaptor stimulus and duration compression magnitude. However, increasing the motion coherence level in a stimulus also results in an increase in global speed. To test whether duration compression effects were driven by global speed or global motion, we repeated the experiment, but kept global speed fixed while varying motion coherence levels. The duration compression persisted, but the linear relationship with motion coherence was absent, suggesting that the effect was driven by adapting global speed mechanisms. Our results support previous claims that visual timing mechanisms persist at the level of global processing. PMID:28405382

  13. Cell mechanics: integrating cell responses to mechanical stimuli.

    PubMed

    Janmey, Paul A; McCulloch, Christopher A

    2007-01-01

    Forces are increasingly recognized as major regulators of cell structure and function, and the mechanical properties of cells are essential to the mechanisms by which cells sense forces, transmit them to the cell interior or to other cells, and transduce them into chemical signals that impact a spectrum of cellular responses. Comparison of the mechanical properties of intact cells with those of the purified cytoskeletal biopolymers that are thought to dominate their elasticity reveal the extent to which the studies of purified systems can account for the mechanical properties of the much more heterogeneous and complex cell. This review summarizes selected aspects of current work on cell mechanics with an emphasis on the structures that are activated in cell-cell contacts, that regulate ion flow across the plasma membrane, and that may sense fluid flow that produces low levels of shear stress.

  14. Attention modulates neuronal correlates of interhemispheric integration and global motion perception.

    PubMed

    Akin, Burak; Ozdem, Ceylan; Eroglu, Seda; Keskin, Dudu Taslak; Fang, Fang; Doerschner, Katja; Kersten, Daniel; Boyaci, Huseyin

    2014-10-27

    In early retinotopic areas of the human visual system, information from the left and right visual hemifields (VHFs) is processed contralaterally in two hemispheres. Despite this segregation, we have the perceptual experience of a unified, coherent, and uninterrupted single visual field. How exactly the visual system integrates information from the two VHFs and achieves this perceptual experience still remains largely unknown. In this study using fMRI, we explored candidate areas that are involved in interhemispheric integration and the perceptual experience of a unified, global motion across VHFs. Stimuli were two-dimensional, computer-generated objects with parts in both VHFs. The retinal image in the left VHF always remained stationary, but in the experimental condition, it appeared to have local motion because of the perceived global motion of the object. This perceptual effect could be weakened by directing the attention away from the global motion through a demanding fixation task. Results show that lateral occipital areas, including the medial temporal complex, play an important role in the process of perceptual experience of a unified global motion across VHFs. In early areas, including the lateral geniculate nucleus and V1, we observed correlates of this perceptual experience only when attention is not directed away from the object. These findings reveal effects of attention on interhemispheric integration in motion perception and imply that both the bilateral activity of higher-tier visual areas and feedback mechanisms leading to bilateral activity of early areas play roles in the perceptual experience of a unified visual field. © 2014 ARVO.

  15. Attention modulates neuronal correlates of interhemispheric integration and global motion perception

    PubMed Central

    Akin, Burak; Ozdem, Ceylan; Eroglu, Seda; Keskin, Dudu Taslak; Fang, Fang; Doerschner, Katja; Kersten, Daniel; Boyaci, Huseyin

    2014-01-01

    In early retinotopic areas of the human visual system, information from the left and right visual hemifields (VHFs) is processed contralaterally in two hemispheres. Despite this segregation, we have the perceptual experience of a unified, coherent, and uninterrupted single visual field. How exactly the visual system integrates information from the two VHFs and achieves this perceptual experience still remains largely unknown. In this study using fMRI, we explored candidate areas that are involved in interhemispheric integration and the perceptual experience of a unified, global motion across VHFs. Stimuli were two-dimensional, computer-generated objects with parts in both VHFs. The retinal image in the left VHF always remained stationary, but in the experimental condition, it appeared to have local motion because of the perceived global motion of the object. This perceptual effect could be weakened by directing the attention away from the global motion through a demanding fixation task. Results show that lateral occipital areas, including the medial temporal complex, play an important role in the process of perceptual experience of a unified global motion across VHFs. In early areas, including the lateral geniculate nucleus and V1, we observed correlates of this perceptual experience only when attention is not directed away from the object. These findings reveal effects of attention on interhemispheric integration in motion perception and imply that both the bilateral activity of higher-tier visual areas and feedback mechanisms leading to bilateral activity of early areas play roles in the perceptual experience of a unified visual field. PMID:25349270

  16. Communication as a mechanism for cultural integration.

    PubMed

    Backstrom, Tomas; Hagstrom, Tom; Goransson, Susanna

    2013-01-01

    Providing autonomy for employees ensures innovation competence if balanced by integration into the organization. The aim of this article is to study processes leading to the integration of employees into the company culture. The two research questions are: What makes the culture of a work group similar to the company culture? How is a work group culture constructed? Theories that are employed concern culture as an organizing structure emerging in the interaction, company culture as a way to exert control, and social networks as a way to describe the interaction. Empirical data come from a merchant bank from which 105 respondents from ten work groups answered questions about their communication and their integration into the company culture. The results show that the sub-culture of the group emerges in communication between members of the group. There seems to be a self-reinforcing spiral between collegial talk, especially about goals, plans and changes at the work place, and cultural integration. All members of a group should be included in this communication to create a strong culture. The value system of the supervisor strongly influences the sub-culture of the work group. Appointing supervisors with values that correspond to the company culture and provide for employee communications is thus central for organizations using culture as a tool for control.

  17. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    SciTech Connect

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division; Purdue Univ.

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, the necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.

  18. The Global View of Vocational-Academic Integration.

    ERIC Educational Resources Information Center

    Pritz, Sandra G.

    Education's central challenge is to prepare learners for contributory and satisfying lives in a global economy in which they are productive enough for the nation to be globally competitive. Being globally competitive means that the benefits of foreign trade accrue to all on the basis of each country's pursuing its comparative advantages…

  19. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep.

    PubMed

    Deco, Gustavo; Tagliazucchi, Enzo; Laufs, Helmut; Sanjuán, Ana; Kringelbach, Morten L

    2017-01-01

    A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states.

  20. Integration of nitrogen dynamics into a global terrestrial ecosystem model

    SciTech Connect

    Yang, Xiaojuan; Wittig, Victoria; Jain, Atul; Post, Wilfred M

    2009-01-01

    A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM. For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organicNstorage are in tundra (1.24 KgNm2) and desert soil (0.06 Kg N m2). The vegetation N storage is highest in tropical forests (0.5 Kg N m2), and lowest in tundra and desert (<0.03 Kg N m2). N uptake by vegetation is highest in warm and moist regions, and lowest in cold and dry regions. Higher rates of N leaching are found in tropical regions and subtropical regions where soil moisture is higher. The global patterns of vegetation and soil N, N uptake and N leaching estimated with ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM

  1. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    The Consortium for International Earth Science Information Network (CIESIN) was founded in 1989 as a non-profit corporation dedicated to facilitating access to, use and understanding of global change information worldwide. The Consortium was created to cooperate and coordinate with organizations and researchers throughout the global change community to further access the most advanced technology, the latest scientific research, and the best information available for critical environmental decision making. CIESIN study efforts are guided by Congressional mandates to 'convene key present and potential users to assess the need for investment in integration of earth science information,' to 'outline the desirable pattern of interaction with the scientific and policy community,' and to 'develop recommendations and draft plans to achieve the appropriate level of effort in the use of earth science data for research and public policy purposes.' In addition, CIESIN is tasked by NASA to develop a data center that would extend the benefits of Earth Observing System (EOS) to the users of global change information related to human dimensions issues. For FY 1991, CIESIN focused on two main objectives. The first addressed the identification of information needs of global change research and non-research user groups worldwide. The second focused on an evaluation of the most efficient mechanisms for making this information available in usable forms.

  2. Integrating Global Hydrology Into Graduate Engineering Education and Research

    NASA Astrophysics Data System (ADS)

    Griffis, V. W.

    2007-12-01

    Worldwide, polluted water affects the health of 1.2 billion people and contributes to the death of 15 million children under five every year. In addition poor environmental quality contributes to 25 per cent of all preventable ill health in the world. To address some of these problems, at the 2002 World Summit on Sustainable Development, the world community set the goal of halving, by the year 2015, the proportion of people without access to safe drinking water and basic sanitation. Solving sanitation and water resource management problems in any part of the world presents an interdisciplinary, complex challenge. However, when we attempt to solve these problems in an international context, our technical approaches must be tempered with cultural sensitivity and extraordinary management strategies. To meet this challenge, Michigan Tech has developed a unique global partnership with the U.S. Peace Corps to address our acknowledgement of the importance of placing engineering solutions in a global context. The program has graduated 30 students. Program enrollment is now over 30 and over 20 countries have hosted our students. The objective of this presentation is to demonstrate how this unique partnership can be integrated with graduate engineering education and research and also show how such a program may attract a more diverse student population into engineering. All graduate students enrolled in our Master's International Program in Civil and Environmental Engineering must complete specific coursework requirements before departing for their international experience. In CE5993 (Field Engineering in the Developing World) students learn to apply concepts of sustainable development and appropriate technology in the developing world. In FW5770 (Rural Community Development Planning and Analysis) students learn how one involves a community in the decision making process. A common theme in both courses is the role of woman in successful development projects. Technical

  3. Mechanisms Affecting the Overturning Response in Global Warming Simulations.

    NASA Astrophysics Data System (ADS)

    Schweckendiek, U.; Willebrand, J.

    2005-12-01

    Climate models used to produce global warming scenarios exhibit widely diverging responses of the thermohaline circulation (THC). To investigate the mechanisms responsible for this variability, a regional Atlantic Ocean model driven with forcing diagnosed from two coupled greenhouse gas simulations has been employed. One of the coupled models (MPI) shows an almost constant THC, the other (GFDL) shows a declining THC in the twenty-first century.The THC evolution in the regional model corresponds rather closely to that of the respective coupled simulation, that is, it remains constant when driven with the forcing from the MPI model, and declines when driven with the GFDL forcing. These findings indicate that a detailed representation of ocean processes in the region covered by the Atlantic model may not be critical for the simulation of the overall THC changes in a global warming scenario, and specifically that the coupled model’s rather coarse representation of water mass formation processes in the subpolar North Atlantic is unlikely to be the primary cause for the large differences in the THC evolution.Sensitivity experiments have confirmed that a main parameter governing the THC response to global warming is the density of the intermediate waters in the Greenland Iceland Norwegian Seas, which in turn influences the density of the North Atlantic Deep Water, whereas changes in the air sea heat and freshwater fluxes over the subpolar North Atlantic are only of moderate importance, and mainly influence the interannual decadal variability of THC.Finally, as a consequence of changing surface fluxes, the Labrador Sea convection ceases by about 2030 under both forcings (i.e., even in a situation where the overall THC is stable) indicating that the eventual breakdown of the convection is likely but need not coincide with substantial THC changes.

  4. A Novel Cardiotoxic Mechanism for a Pervasive Global Pollutant

    NASA Astrophysics Data System (ADS)

    Brette, Fabien; Shiels, Holly A.; Galli, Gina L. J.; Cros, Caroline; Incardona, John P.; Scholz, Nathaniel L.; Block, Barbara A.

    2017-01-01

    The Deepwater Horizon disaster drew global attention to the toxicity of crude oil and the potential for adverse health effects amongst marine life and spill responders in the northern Gulf of Mexico. The blowout released complex mixtures of polycyclic aromatic hydrocarbons (PAHs) into critical pelagic spawning habitats for tunas, billfishes, and other ecologically important top predators. Crude oil disrupts cardiac function and has been associated with heart malformations in developing fish. However, the precise identity of cardiotoxic PAHs, and the mechanisms underlying contractile dysfunction are not known. Here we show that phenanthrene, a PAH with a benzene 3-ring structure, is the key moiety disrupting the physiology of heart muscle cells. Phenanthrene is a ubiquitous pollutant in water and air, and the cellular targets for this compound are highly conserved across vertebrates. Our findings therefore suggest that phenanthrene may be a major worldwide cause of vertebrate cardiac dysfunction.

  5. A Novel Cardiotoxic Mechanism for a Pervasive Global Pollutant

    PubMed Central

    Brette, Fabien; Shiels, Holly A.; Galli, Gina L. J.; Cros, Caroline; Incardona, John P.; Scholz, Nathaniel L.; Block, Barbara A.

    2017-01-01

    The Deepwater Horizon disaster drew global attention to the toxicity of crude oil and the potential for adverse health effects amongst marine life and spill responders in the northern Gulf of Mexico. The blowout released complex mixtures of polycyclic aromatic hydrocarbons (PAHs) into critical pelagic spawning habitats for tunas, billfishes, and other ecologically important top predators. Crude oil disrupts cardiac function and has been associated with heart malformations in developing fish. However, the precise identity of cardiotoxic PAHs, and the mechanisms underlying contractile dysfunction are not known. Here we show that phenanthrene, a PAH with a benzene 3-ring structure, is the key moiety disrupting the physiology of heart muscle cells. Phenanthrene is a ubiquitous pollutant in water and air, and the cellular targets for this compound are highly conserved across vertebrates. Our findings therefore suggest that phenanthrene may be a major worldwide cause of vertebrate cardiac dysfunction. PMID:28139666

  6. Beyond Scientism and Skepticism: An Integrative Approach to Global Mental Health

    PubMed Central

    Stein, Dan J.; Illes, Judy

    2015-01-01

    The global burden of disorders has shifted from infectious disease to non-communicable diseases, including neuropsychiatric disorders. Whereas infectious disease can sometimes be combated by targeting single causal mechanisms, such as prevention of contact-spread illness by handwashing, in the case of mental disorders multiple causal mechanisms are typically relevant. The emergent field of global mental health has emphasized the magnitude of the treatment gap, particularly in the low- and middle-income world and has paid particular attention to upstream causal factors, for example, poverty, inequality, and gender discrimination in the pathogenesis of mental disorders. However, this field has also been criticized for relying erroneously on Western paradigms of mental illness, which may not be relevant or appropriate to the low- and middle-income context. Here, it is important to steer a path between scientism and skepticism. Scientism regards mental disorders as essential categories, and takes a covering law approach to causality; skepticism regards mental disorders as merely social constructions and emphasizes the role of political power in causal relations. We propose an integrative model that emphasizes the contribution of a broad range of causal mechanisms operating at biological and societal levels to mental disorders and the consequent importance of broad spectrum and multipronged approaches to intervention. PMID:26635641

  7. The EFL NGO Forum: Integrating Cooperative Learning and Global Issues.

    ERIC Educational Resources Information Center

    Yamashiro, Amy D.; McLaughlin, John W.

    This chapter explains the rationale and design of a communicative English-as-a-foreign-language (EFL) course using a mock nongovernmental organization (NGO) forum simulation to encourage students to investigate global issues. Cooperative learning and global education share several common goals: cooperation, interdependence, mutual understanding,…

  8. Polymer quantum mechanics some examples using path integrals

    SciTech Connect

    Parra, Lorena; Vergara, J. David

    2014-01-14

    In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems.

  9. Mechanism of integration and excision in conjugative transposons.

    PubMed

    Mullany, P; Roberts, A P; Wang, H

    2002-12-01

    Translocation of conjugative transposons proceeds via excision of the element to generate a circular molecule that can then integrate into a new site, which can be in the same or a different cell. This review summarises some of the different mechanisms used for excision and integration of conjugative transposons.

  10. MASCARA: opto-mechanical design and integration

    NASA Astrophysics Data System (ADS)

    Spronck, Julien F. P.; Lesage, Anna-Léa.; Stuik, Remko; Bettonvil, Felix; Snellen, Ignas A. G.

    2014-07-01

    MASCARA, the Multi-site All-Sky CAmeRA, consists of several fully-automated stations. Its goal is to find exoplanets transiting the brightest stars, in the mV = 4 to 8 magnitude range. Each station contains five wide- angle cameras monitoring the near-entire sky at each location. The five cameras are located in a temperature- controlled enclosure and look at the sky through five windows. A housing with a moving roof protects MASCARA from the environment. Here, we present the opto-mechanical design of the first MASCARA station.

  11. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    PubMed

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  12. Dynamic network mechanisms of relational integration.

    PubMed

    Parkin, Beth L; Hellyer, Peter J; Leech, Robert; Hampshire, Adam

    2015-05-20

    A prominent hypothesis states that specialized neural modules within the human lateral frontopolar cortices (LFPCs) support "relational integration" (RI), the solving of complex problems using inter-related rules. However, it has been proposed that LFPC activity during RI could reflect the recruitment of additional "domain-general" resources when processing more difficult problems in general as opposed to RI specifically. Moreover, theoretical research with computational models has demonstrated that RI may be supported by dynamic processes that occur throughout distributed networks of brain regions as opposed to within a discrete computational module. Here, we present fMRI findings from a novel deductive reasoning paradigm that controls for general difficulty while manipulating RI demands. In accordance with the domain-general perspective, we observe an increase in frontoparietal activation during challenging problems in general as opposed to RI specifically. Nonetheless, when examining frontoparietal activity using analyses of phase synchrony and psychophysiological interactions, we observe increased network connectivity during RI alone. Moreover, dynamic causal modeling with Bayesian model selection identifies the LFPC as the effective connectivity source. Based on these results, we propose that during RI an increase in network connectivity and a decrease in network metastability allows rules that are coded throughout working memory systems to be dynamically bound. This change in connectivity state is top-down propagated via a hierarchical system of domain-general networks with the LFPC at the apex. In this manner, the functional network perspective reconciles key propositions of the globalist, modular, and computational accounts of RI within a single unified framework.

  13. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented

  14. High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig

    2014-01-01

    The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.

  15. Integration of NDE Reliability and Fracture Mechanics

    SciTech Connect

    Becker, F. L.; Doctor, S. R.; Heas!er, P. G.; Morris, C. J.; Pitman, S. G.; Selby, G. P.; Simonen, F. A.

    1981-03-01

    The Pacific Northwest Laboratory is conducting a four-phase program for measuring and evaluating the effectiveness and reliability of in-service inspection (lSI} performed on the primary system piping welds of commercial light water reactors (LWRs). Phase I of the program is complete. A survey was made of the state of practice for ultrasonic rsr of LWR primary system piping welds. Fracture mechanics calculations were made to establish required nondestrutive testing sensitivities. In general, it was found that fatigue flaws less than 25% of wall thickness would not grow to failure within an inspection interval of 10 years. However, in some cases failure could occur considerably faster. Statistical methods for predicting and measuring the effectiveness and reliability of lSI were developed and will be applied in the "Round Robin Inspections" of Phase II. Methods were also developed for the production of flaws typical of those found in service. Samples fabricated by these methods wilI be used in Phase II to test inspection effectiveness and reliability. Measurements were made of the influence of flaw characteristics {i.e., roughness, tightness, and orientation) on inspection reliability. These measurernents, as well as the predictions of a statistical model for inspection reliability, indicate that current reporting and recording sensitivities are inadequate.

  16. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    ERIC Educational Resources Information Center

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  17. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    ERIC Educational Resources Information Center

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  18. Functional integral approach: a third formulation of quantum statistical mechanics.

    PubMed

    Dai, Xian Xi; Evenson, William E

    2002-02-01

    Quantum statistical mechanics has developed primarily through two approaches, pioneered by Gibbs and Feynman, respectively. In Gibbs' method one calculates partition functions from phase-space integrations or sums over stationary states. Alternatively, in Feynman's approach, the focus is on the path-integral formulation. The Hubbard-Stratonovich transformation leads to a functional-integral formulation for calculating partition functions. We outline here the functional integral approach to quantum statistical mechanics, including generalizations and improvements to Hubbard's formulation. We show how the dimensionality of the integrals is reduced exactly, how the problem of assuming an unknown canonical transformation is avoided, how the reality of the partition function in the complex representation is guaranteed, and how the extremum conditions are simplified. This formulation can be applied to general systems, including superconductors.

  19. HBV DNA Integration: Molecular Mechanisms and Clinical Implications

    PubMed Central

    Tu, Thomas; Budzinska, Magdalena A.; Shackel, Nicholas A.; Urban, Stephan

    2017-01-01

    Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies. PMID:28394272

  20. Integrated waveguide-DBR microcavity opto-mechanical system.

    PubMed

    Pruessner, Marcel W; Stievater, Todd H; Khurgin, Jacob B; Rabinovich, William S

    2011-10-24

    Cavity opto-mechanics exploits optical forces acting on mechanical structures. Many opto-mechanics demonstrations either require extensive alignment of optical components for probing and measurement, which limits the number of opto-mechanical devices on-chip; or the approaches limit the ability to control the opto-mechanical parameters independently. In this work, we propose an opto-mechanical architecture incorporating a waveguide-DBR microcavity coupled to an in-plane micro-bridge resonator, enabling large-scale integration on-chip with the ability to individually tune the optical and mechanical designs. We experimentally characterize our device and demonstrate mechanical resonance damping and amplification, including the onset of coherent oscillations. The resulting collapse of the resonance linewidth implies a strong increase in effective mechanical quality-factor, which is of interest for high-resolution sensing.

  1. Specifying Globalization Effects on National Policy: A Focus on the Mechanisms.

    ERIC Educational Resources Information Center

    Dale, Roger

    1999-01-01

    Clarifies the concept of globalization and explores how globalization affects national education systems. Compares eight mechanisms of external effects (borrowing, learning, teaching, harmonization, dissemination, standardization, interdependence, and imposition) and organizations associated with them. Effects have been largely indirect, the…

  2. Integrating Kinetic Effects into Global Models for Reconnection

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    2012-01-01

    Magnetic reconnection is the most striking example of how the coupling between global and kinetic scales can lead to fast energy release. Explosive solar activity, such as coronal mass ejections and flares for example, is widely believed to be due to the release of magnetic energy stored on global scales by magnetic reconnection operating on kinetic scales. Understanding how processes couple across spatial scales is one of the most difficult challenges in all of physics, and is undoubtedly the main obstacle to developing predictive models for the Sun's activity. Consequently, the NASA Living With a Star Program selected a Focused Science Team to attack the problem of cross-scale coupling in reconnection. In this talk I will present some of the results of the Team and review our latest theories and methods for modeling the global-local coupling in solar reconnection.

  3. Integrated studies of uncultured microbes in the global ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Dupont, C.; Rusch, D.; Martiny, A.; Lasken, R.

    2010-12-01

    The Global Ocean Sampling (GOS) initiative at the J. Craig Venter Institute represents the most extensive metagenomic study of a single environment. Early findings highlighted the potential of shotgun metagenomics to expand our knowledge of marine microbial biodiversity and physiology. However, it also became clear that many of the abundant marine microbes remain uncultured, hindering a direct connection between phylogeny and ecophysiology. In two recent studies, a combination of single cell genomics and aggressive assembly of binned metagenomic data have resulted in the acquisition of multiple genomes for two uncultured but globally relevant organisms. Metabolic reconstructions of the whole genomes revealed unique physiological adaptations in marine Prochlorococcus to high nutrient, low Fe regions of the global ocean and illuminated the potential ecological role of the gamma-proteobacterial 16S clade SAR86. The internal reference genomes also facilitate fragment recruitment based biogeographical studies, both at the whole genome level and the protein level.

  4. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NASA Astrophysics Data System (ADS)

    Shongwe, M. E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often interpolated or extrapolated to give an indication of the likelihood of a certain event within a given period or interval. Under changing climatic conditions, the statistical properties of climate extremes are also changing. It is an important scientific goal to predict how the properties of extreme events change. To achieve this goal, observational and model studies aimed at revealing important features are a necessary prerequisite. Notable progress has been made in understanding mechanisms that influence climate variability and extremes in many parts of the globe including Europe. However, some of the recently observed unprecedented extremes cannot be fully explained from the already identified forcing factors. A better understanding of why these extreme events occur and their sensitivity to certain reinforcing and/or competing factors is useful. Understanding their basic form as well as their temporal variability is also vital and can contribute to global scientific efforts directed at advancing climate prediction capabilities, particularly making skilful forecasts and realistic projections of extremes. In this thesis temperature and precipitation extremes in Europe and Africa, respectively, are investigated. Emphasis is placed on the mechanisms underlying the occurrence of the extremes, their predictability and their likely response to global warming. The focus is on some selected seasons when extremes typically occur. An atmospheric energy budget analysis for the record-breaking European Autumn 2006 event has been carried out with the goal to identify the sources of energy for the extreme event. Net radiational heating is compared to surface turbulent fluxes of

  5. Global mechanical behavior of Sutong Bridge under static loads

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Zhang, Q. W.

    2010-04-01

    The global mechanical behaviors of Sutong Bridge, China, the longest cable-stayed bridge in the world, are presented by using measurements from field static load tests compared with numerical analysis in this paper. A total of 37 loading cases with 64 test trucks, each being 300kN in weight, were conducted on 10 key sections to investigate the bridge behavior. The level of loading is about 50-88% of the code-specified serviceability load. A three-dimensional finite-element model is developed and calibrated to match the experiment data. The results show that, under the load test conditions, the incremental deflections, stresses as well as cable force of the structure are linearly proportional to the incremental loads. Moreover, the transverse shear lag effects of the steel box girder are significant and the longitudinal stress distributions in the slabs and diaphragms of the box girder are non-uniform. A good agreement is achieved between the experimental tests and the numerical simulations based on the nonlinear theories of long span bridges.

  6. Holocaust Education: Global Forces Shaping Curricula Integration and Implementation

    ERIC Educational Resources Information Center

    Davis, Bryan L.; Rubinstein-Avila, Eliane

    2013-01-01

    The article provides a critical review of the global scholarship on Holocaust education (HE). Despite the growing body of work on this topic, a search through major academic databases by the authors revealed that no such review of the research literature has been published as of yet. The review focuses on three main themes across the research…

  7. An integrative review of global nursing workforce issues.

    PubMed

    Nichols, Barbara L; Davis, Catherine R; Richardson, Donna R

    2010-01-01

    Migration has been a way of life since the beginning of time, with migrants seeking other lands for personal and professional betterment. Today, in an era of globalization, trade agreements and technological advances, an increase in migration is inevitable. All professions have been affected, but the migration of health professionals, particularly nurses, has been the most dramatic. However, the migration of nurses across national and international borders comes with many challenges: systematic tracking of migration flows, harmonization of standards, recognition of professional credentials, fair and equitable distribution of the global health care workforce, and the effect of migration on the health care infrastructure of both source and destination countries. The international migration of nurses to address shortages in developed countries has, in some instances, left source countries with insufficient resources to address their own health care needs. The increasing complexity of health care delivery, aging of the population and the nursing workforce, and the escalating global demand for nurses create on-going challenges for policy makers. Strategically addressing global nursing workforce issues is paramount to sustaining the health of nations.

  8. Holocaust Education: Global Forces Shaping Curricula Integration and Implementation

    ERIC Educational Resources Information Center

    Davis, Bryan L.; Rubinstein-Avila, Eliane

    2013-01-01

    The article provides a critical review of the global scholarship on Holocaust education (HE). Despite the growing body of work on this topic, a search through major academic databases by the authors revealed that no such review of the research literature has been published as of yet. The review focuses on three main themes across the research…

  9. Integrating Biology, Chemistry, and Mathematics to Evaluate Global Water Problems

    ERIC Educational Resources Information Center

    Kosal, Erica; Lawrence, Carol; Austin, Rodney

    2010-01-01

    An interdisciplinary and context-driven course focused on global water issues was developed and taught at the college level. Students designed a semester-long research project, collected and analyzed data, and ultimately presented their results and conclusions to the larger community. As a result of the course, students' science literacy improved…

  10. Integrating Biology, Chemistry, and Mathematics to Evaluate Global Water Problems

    ERIC Educational Resources Information Center

    Kosal, Erica; Lawrence, Carol; Austin, Rodney

    2010-01-01

    An interdisciplinary and context-driven course focused on global water issues was developed and taught at the college level. Students designed a semester-long research project, collected and analyzed data, and ultimately presented their results and conclusions to the larger community. As a result of the course, students' science literacy improved…

  11. Integrating forest products with ecosystem services: a global perspective

    Treesearch

    Robert L. Deal; Rachel. White

    2012-01-01

    Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....

  12. Integrating NASA Earth Science Enterprise (ESE) Data Into Global Agricultural Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.

    2003-12-01

    Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to

  13. Global pharmaceutical regulation: the challenge of integration for developing states.

    PubMed

    Pezzola, Anthony; Sweet, Cassandra M

    2016-12-20

    This paper has set out to map the state of pharmaceutical regulation in the developing world through the construction of cross-national indices drawing from World Health Organization data. The last two decades have been characterized by deep changes for the pharmaceutical sector, including the complete transformation of intellectual property systems at the behest of the World Trade Organization and the consolidation of global active ingredient suppliers in China and India. Although the rules for ownership of medicine have been set and globally implemented, we know surprisingly little about how the standards for market entrance and regulation of pharmaceutical products have changed at the national level. How standardized are national pharmaceutical market systems? Do we find homogeneity or variation across the developing world? Are their patterns for understanding why some countries have moved closer to one global norm for pharmaceutical regulation and others have developed hybrid models for oversight of this sector? Access to medicine is a core tool in public health. This paper gauges the levels of standards in public and private generics markets for developing countries building on national-level pharmaceutical market surveys for 78 countries to offer three indicators of market oversight: State Regulatory Infrastructure, Monitoring the Private Market and Public Quality Control. Identifying the different variables that affect a state's institutional capacity and current standard level offers new insights to the state of pharmaceuticals in the developing world. It is notable that there are very few (none at the time of this paper) studies that map out the new global terrain for pharmaceutical regulation in the post-TRIPS context. This paper uses item response theory to develop original indicators of pharmaceutical regulation. We find remarkable resistance to the implementation of global pharmaceutical norms for quality standards in developing states and in

  14. A global mechanism creating low atmospheric luminous cold plasmas

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Petter Strand, Erling

    2014-05-01

    Red, white/yellow and blue balls of light have been observed in the low atmosphere over the Hessdalen valley , Norway, standing still and moving horizontally with random speed. Characteristics of these transient luminous phenomena in Hessdalen, and data from America, suggest that the process which creates these low atmospheric plasmas is a global mechanism, not only localized to the remote and desolated Hessdalen valley in Norway (62Deg.N - 11Deg.E). Transient luminous phenomena's has been observed in the low atmosphere over the Hessdalen valley for over 200 years. The first written documentation goes back to 1811 when the priest Jakob Tode Krogh wrote about it in his diary. Since 1982, inhabitants, tourists, journalists and scientists have done recurrent observations. E.P.Strand conducted the first scientific campaign in 1984, documenting over 50 observations in one month. 15 years later, Norwegian and Italian scientists installed the first permanent automated research base here. In 2010 French researchers joined this collaboration and installed two additional research bases. This transient luminous phenomenon, TLP, has been detected simultaneously on optical and radar devices, but electromagnetic radiation from this phenomenon has until now eluded detection. Smirnov (1994) and Zou(1994) was among the first scientist who used plasma physics trying to explain this phenomenon. Work done by Pavia & Taft (2010 and 2012) suggests that the TLP in Hessdalen probably is dusty or cold plasma, arranged as a cluster of Coulomb crystals. Optical spectrum data obtained by Strand (1984), Teodorani (2004) and Hauge (2007) showing a continuous optical spectrum support this hypothesis. Pictures of spiraling light rays obtained by Strand in 1984, and Hauge in 2004 and 2010 suggests that this plasma is moving in a strong magnetic field, and might be created by it. Radar reflections from the TLP in Hessdalen obtained by Strand in 1984 and Montebugnoli and Monari in 2007 points

  15. Integrating global socio-economic influences into a regional land use change model for China

    NASA Astrophysics Data System (ADS)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  16. Mechanical Model of Traditional Thai Massage for Integrated Healthcare.

    PubMed

    Rattanaphan, Salinee; Srichandr, Panya

    2015-01-01

    In this study, a mechanical model was developed, aiming to provide standardized and programmable traditional Thai massage (TTM) therapy to patients. The TTM was modeled and integrated into a mechanical hand (MH) system, and a prototype massage chair was built and tested for user satisfaction. Three fundamental principles of Thai massage were integrated: pull, press, and pin. Based on these principles, the mechanics of Thai massage was studied and a mathematical model was developed to describe the dynamics and conditions for the design and prototyping of an MH. On average, it was found that users were satisfied with the treatment and felt that the treatment was similar to that performed by human hands. According to the interview results, users indicated that they were likely to utilize the MH as an alternative to traditional massage. Therefore, integrated TTM with an MH may help healthcare providers deliver standardized, programmable massage therapy to patients as opposed to variable, inconsistent human massage.

  17. Reference value developed for mechanical integrity of storage caverns

    SciTech Connect

    Crotogino, F.

    1996-10-28

    A reference value to verify the mechanical integrity of salt-cavern wells used in hydrocarbon storage has been developed. Salt caverns play important roles in large-scale storage of hydrocarbon gases and liquids. Required for safe and economical operation of these storage caverns is verification of the external mechanical integrity of the access (injection and withdrawal) wells. This study had the following goals: Provision of an overview of current practice; and Development of a reference for external well mechanical-integrity testing with respect to performance, data evaluation, and assessment. The storage cavern operators expected to gain the following: Comparability between method and assessments; Aid in influencing the movement towards standardization by regulators; and A firm technical base for use in litigation between the operator and other parties.

  18. Integrating Global Learning into a Psychology Course Using an Online Platform

    ERIC Educational Resources Information Center

    Forden, Carie L.; Carrillo, Amy M.

    2014-01-01

    There is a demand for the integration of global learning/diversity across the curriculum. A series of cross-cultural assignments was created to facilitate global learning in two social psychology classes, one in Egypt, and one in the USA. In these assignments, students collected data and applied course concepts to real-life problems, then…

  19. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Treesearch

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  20. Integrating Global Learning into a Psychology Course Using an Online Platform

    ERIC Educational Resources Information Center

    Forden, Carie L.; Carrillo, Amy M.

    2014-01-01

    There is a demand for the integration of global learning/diversity across the curriculum. A series of cross-cultural assignments was created to facilitate global learning in two social psychology classes, one in Egypt, and one in the USA. In these assignments, students collected data and applied course concepts to real-life problems, then…

  1. Beyond reduction: mechanisms, multifield integration and the unity of neuroscience.

    PubMed

    Craver, Carl F

    2005-06-01

    Philosophers of neuroscience have traditionally described interfield integration using reduction models. Such models describe formal inferential relations between theories at different levels. I argue against reduction and for a mechanistic model of interfield integration. According to the mechanistic model, different fields integrate their research by adding constraints on a multilevel description of a mechanism. Mechanistic integration may occur at a given level or in the effort to build a theory that oscillates among several levels. I develop this alternative model using a putative exemplar of reduction in contemporary neuroscience: the relationship between the psychological phenomena of learning and memory and the electrophysiological phenomenon known as Long-Term Potentiation. A new look at this historical episode reveals the relative virtues of the mechanistic model over reduction as an account of interfield integration.

  2. Multiple methods integration for structural mechanics analysis and design

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Aminpour, M. A.

    1991-01-01

    A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.

  3. Global Environmental Multiscale model - a platform for integrated environmental predictions

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Neary, Lori; Dearden, Frank

    2017-04-01

    The Global Environmental Multiscale model was developed by the Government of Canada as an operational weather prediction model in the mid-1990s. Subsequently, it was used as the host meteorological model for an on-line implementation of air quality chemistry and aerosols from global to the meso-gamma scale. Further model developments led to the vertical extension of the modelling domain to include stratospheric chemistry, aerosols, and formation of polar stratospheric clouds. In parallel, the modelling platform was used for planetary applications where dynamical, radiative transfer and chemical processes in the atmosphere of Mars were successfully simulated. Undoubtedly, the developed modelling platform can be classified as an example capable of the seamless and coupled modelling of the dynamics and chemistry of planetary atmospheres. We will present modelling results for global, regional, and local air quality episodes and the long-term air quality trends. Upper troposphere and lower stratosphere modelling results will be presented in terms of climate change and subsonic aviation emissions modelling. Model results for the atmosphere of Mars will be presented in the context of the 2016 ExoMars mission and the anticipated observations from the NOMAD instrument. Also, we will present plans and the design to extend the GEM model to the F region with further coupling with a magnetospheric model that extends to 15 Re.

  4. A Physical Mechanism and Global Quantification of Breast Cancer.

    PubMed

    Yu, Chong; Wang, Jin

    2016-01-01

    Initiation and progression of cancer depend on many factors. Those on the genetic level are often considered crucial. To gain insight into the physical mechanisms of breast cancer, we construct a gene regulatory network (GRN) which reflects both genetic and environmental aspects of breast cancer. The construction of the GRN is based on available experimental data. Three basins of attraction, representing the normal, premalignant and cancer states respectively, were found on the phenotypic landscape. The progression of breast cancer can be seen as switching transitions between different state basins. We quantified the stabilities and kinetic paths of the three state basins to uncover the biological process of breast cancer formation. The gene expression levels at each state were obtained, which can be tested directly in experiments. Furthermore, by performing global sensitivity analysis on the landscape topography, six key genes (HER2, MDM2, TP53, BRCA1, ATM, CDK2) and four regulations (HER2⊣TP53, CDK2⊣BRCA1, ATM→MDM2, TP53→ATM) were identified as being critical for breast cancer. Interestingly, HER2 and MDM2 are the most popular targets for treating breast cancer. BRCA1 and TP53 are the most important oncogene of breast cancer and tumor suppressor gene, respectively. This further validates the feasibility of our model and the reliability of our prediction results. The regulation ATM→MDM2 has been extensive studied on DNA damage but not on breast cancer. We notice the importance of ATM→MDM2 on breast cancer. Previous studies of breast cancer have often focused on individual genes and the anti-cancer drugs are mainly used to target the individual genes. Our results show that the network-based strategy is more effective on treating breast cancer. The landscape approach serves as a new strategy for analyzing breast cancer on both the genetic and epigenetic levels and can help on designing network based medicine for breast cancer.

  5. A Physical Mechanism and Global Quantification of Breast Cancer

    PubMed Central

    Yu, Chong; Wang, Jin

    2016-01-01

    Initiation and progression of cancer depend on many factors. Those on the genetic level are often considered crucial. To gain insight into the physical mechanisms of breast cancer, we construct a gene regulatory network (GRN) which reflects both genetic and environmental aspects of breast cancer. The construction of the GRN is based on available experimental data. Three basins of attraction, representing the normal, premalignant and cancer states respectively, were found on the phenotypic landscape. The progression of breast cancer can be seen as switching transitions between different state basins. We quantified the stabilities and kinetic paths of the three state basins to uncover the biological process of breast cancer formation. The gene expression levels at each state were obtained, which can be tested directly in experiments. Furthermore, by performing global sensitivity analysis on the landscape topography, six key genes (HER2, MDM2, TP53, BRCA1, ATM, CDK2) and four regulations (HER2⊣TP53, CDK2⊣BRCA1, ATM→MDM2, TP53→ATM) were identified as being critical for breast cancer. Interestingly, HER2 and MDM2 are the most popular targets for treating breast cancer. BRCA1 and TP53 are the most important oncogene of breast cancer and tumor suppressor gene, respectively. This further validates the feasibility of our model and the reliability of our prediction results. The regulation ATM→MDM2 has been extensive studied on DNA damage but not on breast cancer. We notice the importance of ATM→MDM2 on breast cancer. Previous studies of breast cancer have often focused on individual genes and the anti-cancer drugs are mainly used to target the individual genes. Our results show that the network-based strategy is more effective on treating breast cancer. The landscape approach serves as a new strategy for analyzing breast cancer on both the genetic and epigenetic levels and can help on designing network based medicine for breast cancer. PMID:27410227

  6. Left Atrial Mechanical Function and Global Strain in Hypertrophic Cardiomyopathy

    PubMed Central

    Yoon, Yeonyee E.; Kim, Hack-Lyoung; Lee, Seung-Pyo; Kim, Hyung-Kwan; Kim, Yong-Jin; Cho, Goo-Yeong; Zo, Joo-Hee; Sohn, Dae-Won

    2016-01-01

    Background Atrial fibrillation is the most common arrhythmia and is associated with adverse outcomes in hypertrophic cardiomyopathy (HCM). Although left atrial (LA) remodeling and dysfunction are known to associate with the development of atrial fibrillation in HCM, the changes of the LA in HCM patients remain unclear. This study aimed to evaluate the changes in LA size and mechanical function in HCM patients compared to control subjects and to determine the characteristics of HCM associated with LA remodeling and dysfunction. Methods Seventy-nine HCM patients (mean age, 54 ± 11 years; 76% were men) were compared to 79 age- and sex-matched controls (mean age, 54 ± 11 years; 76% were men) and 20 young healthy controls (mean age, 33 ± 5 years; 45% were men). The LA diameter, volume, and mechanical function, including global strain (ε), were evaluated by 2D-speckle tracking echocardiography. The phenotype of HCM, maximal left ventricular (LV) wall thickness, LV mass, and presence and extent of late gadolinium enhancement (LGE) were evaluated with cardiac magnetic resonance imaging. Results HCM patients showed increased LA volume index, impaired reservoir function, and decreased LA ε compared to the control subjects. When we divided the HCM group according to a maximal LA volume index (LAVImax) of 38.7 ml/m2 or LA ε of 21%, no significant differences in the HCM phenotype and maximal LV wall thickness were observed for patients with LAVImax >38.7 ml/m2 or LA ε ≤21%. Conversely, the LV mass index was significantly higher both in patients with maximal LA volume index >38.7 ml/m2 and with LA ε ≤21% and was independently associated with LAVImax and LA ε. Although the LGE extent was increased in patients with LA ε ≤21%, it was not independently associated with either LAVImax or LA ε. Conclusions HCM patients showed progressed LA remodeling and dysfunction; the determinant of LA remodeling and dysfunction was LV mass index rather than LV myocardial fibrosis

  7. Vision 2015: A Globally Networked and Integrated Intelligence Enterprise

    DTIC Science & Technology

    2008-07-01

    threats from non-traditional actors, new modes of attack, and more lethal impact . Intelligence must be more integrated and agile to assist in...technological innovation and diffusion, environmental pressures and growing energy demand, broad geopolitical changes and new forms of gover- nance. Each...include infectious diseases, science and technology surprises, financial conta- gions, economic competition, environmental issues, energy

  8. Global Design as the Integral Person Formation Strategy

    ERIC Educational Resources Information Center

    Stepanov, Alexander V.; Fedorov, Vladimir A.; Vorobyeva, Julia A.; Marakulina, Ulyana ?.; Ovchinnikov, Vladislav I.

    2016-01-01

    The relevance of the problem under study is based on the society's need for educating an integral person who is able to solve ecumenical project tasks. Currently this problem (as natural order from the society) is emerging in the educational system and social practices but has yet to obtain substantial scientific and theoretical justification. The…

  9. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    SciTech Connect

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Kuball, Martin; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  10. Global health diplomacy: an integrative review of the literature and implications for nursing.

    PubMed

    Hunter, Anita; Wilson, Lynda; Stanhope, Marcia; Hatcher, Barbara; Hattar, Marianne; Hilfinger Messias, Deanne K; Powell, Dorothy

    2013-01-01

    The increasing interconnectedness of the world and the factors that affect health lay the foundation for the evolving practice of global health diplomacy. There has been limited discussion in the nursing literature about the concept of global health diplomacy or the role of nurses in such initiatives. A discussion of this concept is presented here by the members of a Task Force on Global Health Diplomacy of the American Academy of Nursing Expert Panel on Global Nursing and Health (AAN EPGNH). The purpose of this article is to present an integrative review of literature on the concept of global health diplomacy and to identify implications of this emerging field for nursing education, practice, and research. The steps proposed by Whittemore and Knafl (2005) were adapted and applied to the integrative review of theoretical and descriptive articles about the concept of global health diplomacy. This review included an analysis of the historical background, definition, and challenges of global health diplomacy and suggestions about the preparation of global health diplomats. The article concludes with a discussion of implications for nursing practice, education, and research. The Task Force endorses the definition of global health diplomacy proposed by Adams, Novotny, and Leslie (2008) but recommends that further dialogue and research is necessary to identify opportunities and educational requirements for nurses to contribute to the emerging field of global health diplomacy. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The Development of a Proposed Global Work-Integrated Learning Framework

    ERIC Educational Resources Information Center

    McRae, Norah; Johnston, Nancy

    2016-01-01

    Building on the work completed in BC that resulted in the development of a WIL Matrix for comparing and contrasting various forms of WIL with the Canadian co-op model, this paper proposes a Global Work-Integrated Learning Framework that allows for the comparison of a variety of models of work-integrated learning found in the international…

  12. The Integration of Young Children's Literature with Multicultural, Nonsexist, and Global Education Goals and Themes.

    ERIC Educational Resources Information Center

    Thompson, Debra S.

    Designed to help early childhood and elementary educators in Iowa integrate multicultural, nonsexist, and global (MNG) perspectives into the existing curriculum, this paper discusses issues surrounding their integration and provides two extensive bibliographies of curriculum resources. First, the paper reviews the definition and purposes of MNG…

  13. The global mechanical properties and multi-scale failure mechanics of heterogeneous human stratum corneum.

    PubMed

    Liu, X; Cleary, J; German, G K

    2016-10-01

    The outermost layer of skin, or stratum corneum, regulates water loss and protects underlying living tissue from environmental pathogens and insults. With cracking, chapping or the formation of exudative lesions, this functionality is lost. While stratum corneum exhibits well defined global mechanical properties, macroscopic mechanical testing techniques used to measure them ignore the structural heterogeneity of the tissue and cannot provide any mechanistic insight into tissue fracture. As such, a mechanistic understanding of failure in this soft tissue is lacking. This insight is critical to predicting fracture risk associated with age or disease. In this study, we first quantify previously unreported global mechanical properties of isolated stratum corneum including the Poisson's ratio and mechanical toughness. African American breast stratum corneum is used for all assessments. We show these parameters are highly dependent on the ambient humidity to which samples are equilibrated. A multi-scale investigation assessing the influence of structural heterogeneities on the microscale nucleation and propagation of cracks is then performed. At the mesoscale, spatially resolved equivalent strain fields within uniaxially stretched stratum corneum samples exhibit a striking heterogeneity, with localized peaks correlating closely with crack nucleation sites. Subsequent crack propagation pathways follow inherent topographical features in the tissue and lengthen with increased tissue hydration. At the microscale, intact corneocytes and polygonal shaped voids at crack interfaces highlight that cracks propagate in superficial cell layers primarily along intercellular junctions. Cellular fracture does occur however, but is uncommon. Human stratum corneum protects the body against harmful environmental pathogens and insults. Upon mechanical failure, this barrier function is lost. Previous studies characterizing the mechanics of stratum corneum have used macroscopic testing

  14. Integrating Thermal Tools Into the Mechanical Design Process

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  15. Integrating Thermal Tools Into the Mechanical Design Process

    NASA Technical Reports Server (NTRS)

    Tsuyuki, Glenn T.; Siebes, Georg; Novak, Keith S.; Kinsella, Gary M.

    1999-01-01

    The intent of mechanical design is to deliver a hardware product that meets or exceeds customer expectations, while reducing cycle time and cost. To this end, an integrated mechanical design process enables the idea of parallel development (concurrent engineering). This represents a shift from the traditional mechanical design process. With such a concurrent process, there are significant issues that have to be identified and addressed before re-engineering the mechanical design process to facilitate concurrent engineering. These issues also assist in the integration and re-engineering of the thermal design sub-process since it resides within the entire mechanical design process. With these issues in mind, a thermal design sub-process can be re-defined in a manner that has a higher probability of acceptance, thus enabling an integrated mechanical design process. However, the actual implementation is not always problem-free. Experience in applying the thermal design sub-process to actual situations provides the evidence for improvement, but more importantly, for judging the viability and feasibility of the sub-process.

  16. Measuring state trait properties of detail processing and global integration ability in eating disorders.

    PubMed

    Harrison, Amy; Tchanturia, Kate; Treasure, Janet

    2011-09-01

    Women with eating disorders (EDs) are reported to have strengths in local or detailed information processing and difficulties with coherence or global processing/integration. This study aimed to replicate these findings and additionally explore a global integration task which has not previously been reported for an ED group, the Fragmented Pictures Task (FPT). Two hundred and twenty-two women (50 with anorexia nervosa (AN), 48 with bulimia nervosa (BN), 35 recovered from AN and 89 controls (HC)) completed the Rey-Osterrieth Complex Figure Task (RCFT) to measure global/local processing strategies, the Group Embedded Figures Task (GEFT) to measure local processing and the FPT to measure global integration. Superior detail processing skills (GEFT) and a tendency to utilise detail processing strategies (RCFT) were associated with having AN, BN and being in recovery from AN. Global integration difficulties (FPT) were only observed in acute AN, whereas participants in the BN and recovered group performed similarly to HCs. People currently ill with, and recovered from EDs are skilled at detail processing. The acute phase of AN is associated with difficulties in global integration. © 2011 Informa Healthcare

  17. Data sharing: A critical foundation to advance global integrated Earth system science

    NASA Astrophysics Data System (ADS)

    Halpern, David; Doldirina, Catherine; Withee, Gregory

    A critical foundation for a successful Global Earth Observation System of Systems (GEOSS) is the exchange of observations recorded from in-situ, aircraft, and satellite networks in a full and open manner with minimum time delay and minimum cost, recognizing relevant international instruments and national policies and legislation. This is, in its simplest form, the GEOSS Data Sharing Principles, which initially were adopted at the First Earth Observation Summit on 31 July 2003 in Washington, United States. It was restated in the 2006-2015 GEOSS Implementation Plan, which is adopted by Group on Earth Observation (GEO) Members and Participating Organizations. Currently, there are 90 Members and 77 Participating Organizations. This paper will describe the evolution of data sharing within the GEO since announcing a principle, creating an action plan, establishing mechanisms, and witnessing progress. Topics include highlights from the 2009 Implementation Guidelines, 2010 GEOSS Data Sharing Action Plan, and GEO infrastructure activities such as the GEO Data Sharing Working Group, GEOSS Data-CORE, GEOSS Data Quality Guidelines, and others. The paper will conclude with audience suggestions on how to improve sharing of Earth observations to enhance understanding of the global integrated Earth system.

  18. SIDD: A Semantically Integrated Database towards a Global View of Human Disease

    PubMed Central

    Cheng, Liang; Wang, Guohua; Li, Jie; Zhang, Tianjiao; Xu, Peigang; Wang, Yadong

    2013-01-01

    Background A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data. Methodology To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy. Conclusions A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD. PMID:24146757

  19. Integrated micro-electro-mechanical sensor development for inertial applications

    SciTech Connect

    Allen, J.J.; Kinney, R.D.; Sarsfield, J.

    1998-04-01

    Electronic sensing circuitry and micro electro mechanical sense elements can be integrated to produce inertial instruments for applications unheard of a few years ago. This paper will describe the Sandia M3EMS fabrication process, inertial instruments that have been fabricated, and the results of initial characterization tests of micro-machined accelerometers.

  20. Efficient Integration of Quantum Mechanical Wave Equations by Unitary Transforms

    SciTech Connect

    Bauke, Heiko; Keitel, Christoph H.

    2009-08-13

    The integration of time dependent quantum mechanical wave equations is a fundamental problem in computational physics and computational chemistry. The energy and momentum spectrum of a wave function imposes fundamental limits on the performance of numerical algorithms for this problem. We demonstrate how unitary transforms can help to surmount these limitations.

  1. The power of integration: radiotherapy and global palliative care.

    PubMed

    Rodin, Danielle; Grover, Surbhi; Elmore, Shekinah N; Knaul, Felicia M; Atun, Rifat; Caulley, Lisa; Herrera, Cristian A; Jones, Joshua A; Price, Aryeh J; Munshi, Anusheel; Gandhi, Ajeet K; Shah, Chiman; Gospodarowicz, Mary

    2016-07-01

    Radiotherapy (RT) is a powerful tool for the palliation of the symptoms of advanced cancer, although access to it is limited or absent in many low- and middle-income countries (LMICs). There are multiple factors contributing to this, including assumptions about the economic feasibility of RT in LMICs, the logical challenges of building capacity to deliver it in those regions, and the lack of political support to drive change of this kind. It is encouraging that the problem of RT access has begun to be included in the global discourse on cancer control and that palliative care and RT have been incorporated into national cancer control plans in some LMICs. Further, RT twinning programs involving high- and low-resource settings have been established to improve knowledge transfer and exchange. However, without large-scale action, the consequences of limited access to RT in LMICs will become dire. The number of new cancer cases around the world is expected to double by 2030, with twice as many deaths occurring in LMICs as in high-income countries (HICs). A sustained and coordinated effort involving research, education, and advocacy is required to engage global institutions, universities, health care providers, policymakers, and private industry in the urgent need to build RT capacity and delivery in LMICs.

  2. Future Earth, Global Science and Regional Programs: Building regional integrated science capacities in a global science organization

    NASA Astrophysics Data System (ADS)

    Tewksbury, J.

    2016-12-01

    Future Earth has emerged from the more than 30-year history of Global Change Research Programs, including IGBP, DIVERSITAS and IHDP. These programs supported interdisciplinary science in service of societies around the world. Now, their focus on building a greater understanding of changing Earth systems and their couplings with society has passed to Future Earth - with an important addition: Future Earth was also established to focus global change efforts around key societal challenges. The implications for the structure of Future Earth are large. Many challenges within topics, such as the water, energy, food nexus or the future of cities, are manifested within local, national, and regional contexts. How should we organize globally to most effectively confront these multi-scale challenges? The solution proposed in the framing of Future Earth was the formation of regional as well as national committees, as well as the formation of regional centers and offices. Regional Committees serve to both advocate for Future Earth in their regions and to advocate for regional interests in the global Future Earth platform, while regional Centers and offices are built into the Future Earth secretariat to perform a parallel regional implementation function. Implementation has not been easy, and the process has placed regionally-focused projects in an awkward place. Programs such as the Monsoon Asia Integrated Regional Study (MAIRS), the Northern Eurasia Earth Science Partnership Initiative (NEESPI), and the South/Southeast Asia Research Initiative (SARI) represent some of the best global change communities in the world, but by design, their focus is regional. The effective integration of these communities into the Future Earth architecture will be critical, and this integration will require the formation of strong regional committees and regional centers.

  3. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    NASA Astrophysics Data System (ADS)

    Joshi, Sneh; Kar, Sarat C.

    2017-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  4. A Global MBA for Tomorrow's Global Business Leaders: Integrating Best Practice with Boston's Locational Advantage

    ERIC Educational Resources Information Center

    Delaunay, Christian J.; Blodgett, Mark S.

    2005-01-01

    Traditional IB programs have received mixed reviews from the corporate world. With this in mind, the Suffolk GMBA was benchmarked against the leading international business programs. The Suffolk GMBA was designed to be different and to ascertain the global environment in which business operates. A unique feature of the GMBA curriculum detailed in…

  5. A Global MBA for Tomorrow's Global Business Leaders: Integrating Best Practice with Boston's Locational Advantage

    ERIC Educational Resources Information Center

    Delaunay, Christian J.; Blodgett, Mark S.

    2005-01-01

    Traditional IB programs have received mixed reviews from the corporate world. With this in mind, the Suffolk GMBA was benchmarked against the leading international business programs. The Suffolk GMBA was designed to be different and to ascertain the global environment in which business operates. A unique feature of the GMBA curriculum detailed in…

  6. A Distinct Mechanism of Temporal Integration for Motion through Depth.

    PubMed

    Katz, Leor N; Hennig, Jay A; Cormack, Lawrence K; Huk, Alexander C

    2015-07-15

    Temporal integration of visual motion has been studied extensively within the frontoparallel plane (i.e., 2D). However, the majority of motion occurs within a 3D environment, and it is unknown whether the principles from 2D motion processing generalize to more realistic 3D motion. We therefore characterized and compared temporal integration underlying 2D (left/right) and 3D (toward/away) direction discrimination in human observers, varying motion coherence across a range of viewing durations. The resulting discrimination-versus-duration functions followed three stages, as follows: (1) a steep improvement during the first ∼150 ms, likely reflecting early sensory processing; (2) a subsequent, more gradual benefit of increasing duration over several hundreds of milliseconds, consistent with some form of temporal integration underlying decision formation; and (3) a final stage in which performance ceased to improve with duration over ∼1 s, which is consistent with an upper limit on integration. As previously found, improvements in 2D direction discrimination with time were consistent with near-perfect integration. In contrast, 3D motion sensitivity was lower overall and exhibited a substantial departure from perfect integration. These results confirm that there are overall differences in sensitivity for 2D and 3D motion that are consistent with a sensory difference between binocular and dichoptic sensory mechanisms. They also reveal a difference at the integration stage, in which 3D motion is not accumulated as perfectly as in the 2D motion model system.

  7. Progress toward an Integrated Global Greenhouse Gas Information System (IG3IS)

    NASA Astrophysics Data System (ADS)

    DeCola, P.; Butler, J. H.; Stanitski, D.; Tarasova, O. A.; Terblanche, D. E.; Duren, R. M.; Gurney, K. R.; Manning, A.; Reimann, S.; Ciais, P.; Arnold, T.; Burston, J.; Rayner, P. J.; Wofsy, S. C.; Hamburg, S.; Zavala-Araiza, D.; Miller, J. B.; Gerbig, C.; Vogel, F. R.; Canadell, J.

    2016-12-01

    Accurate and precise atmospheric long-term measurements of greenhouse gas (GHG) concentrations have revealed the rapid and unceasing rise of global GHG concentrations due to human socioeconomic activity. Long-term observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this mounting evidence, nations, sub-national governments, private enterprises and individuals are establishing and accelerating efforts to reduce GHG emissions while meeting the needs for global development and increasing energy access. With this motivation, WMO and its partners have called for an Integrated Global Greenhouse Information System (IG3IS). The IG3IS will serve as an international coordinating mechanism to establish and propagate consistent methods and standards to help assess emission-reduction actions. For the IG3IS initiative to succeed the end users must understand, trust, and recognize the value of the information they receive, and act more effectively in response. Over time, the IG3IS framework will be capable of promoting and accepting advancing technical capabilities (e.g., new satellite observations), continually improving the quality of and confidence in such information. By combining accurate atmospheric measurements with enhanced socioeconomic activity data and model analyses we can meet the overarching goals of IG3IS to: Reduce uncertainty of emission inventory reporting, Locate, quantify and prioritize previously unknown emission reduction opportunities, and Provide national and sub-national governments with timely and quantified information to support their assessment of progress towards their mitigation goals. An effective IG3IS will provide on-going, observation-based information on the relative success of GHG management efforts on policy-relevant scales and the response of the global carbon cycle to a warming world. The presentation will cover the principles and objectives of IG3IS, as well as progress

  8. Local versus global mechanical effects of intramural swelling in carotid arteries.

    PubMed

    Sorrentino, T A; Fourman, L; Ferruzzi, J; Miller, K S; Humphrey, J D; Roccabianca, S

    2015-04-01

    Glycosaminoglycans (GAGs) are increasingly thought to play important roles in arterial mechanics and mechanobiology. We recently suggested that these highly negatively charged molecules, well known for their important contributions to cartilage mechanics, can pressurize intralamellar units in elastic arteries via a localized swelling process and thereby impact both smooth muscle mechanosensing and structural integrity. In this paper, we report osmotic loading experiments on murine common carotid arteries that revealed different degrees and extents of transmural swelling. Overall geometry changed significantly with exposure to hypo-osmotic solutions, as expected, yet mean pressure-outer diameter behaviors remained largely the same. Histological analyses revealed further that the swelling was not always distributed uniformly despite being confined primarily to the media. This unexpected finding guided a theoretical study of effects of different distributions of swelling on the wall stress. Results suggested that intramural swelling can introduce highly localized changes in the wall mechanics that could induce differential mechanobiological responses across the wall. There is, therefore, a need to focus on local, not global, mechanics when examining issues such as swelling-induced mechanosensing.

  9. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    NASA Technical Reports Server (NTRS)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  10. Integrated Transcriptomic and Proteomic Analysis of the Global Response of Synechococcus to High Light Stress*

    PubMed Central

    Xiong, Qian; Feng, Jie; Li, Si-ting; Zhang, Gui-ying; Qiao, Zhi-xian; Chen, Zhuo; Wu, Ying; Lin, Yan; Li, Tao; Ge, Feng; Zhao, Jin-dong

    2015-01-01

    Sufficient light is essential for the growth and physiological functions of photosynthetic organisms, but prolonged exposure to high light (HL) stress can cause cellular damage and ultimately result in the death of these organisms. Synechococcus sp. PCC 7002 (hereafter Synechococcus 7002) is a unicellular cyanobacterium with exceptional tolerance to HL intensities. However, the molecular mechanisms involved in HL response by Synechococcus 7002 are not well understood. Here, an integrated RNA sequencing transcriptomic and quantitative proteomic analysis was performed to investigate the cellular response to HL in Synechococcus 7002. A total of 526 transcripts and 233 proteins were identified to be differentially regulated under HL stress. Data analysis revealed major changes in mRNAs and proteins involved in the photosynthesis pathways, resistance to light-induced damage, DNA replication and repair, and energy metabolism. A set of differentially expressed mRNAs and proteins were validated by quantitative RT-PCR and Western blot, respectively. Twelve genes differentially regulated under HL stress were selected for knockout generation and growth analysis of these mutants led to the identification of key genes involved in the response of HL in Synechococcus 7002. Taken altogether, this study established a model for global response mechanisms to HL in Synechococcus 7002 and may be valuable for further studies addressing HL resistance in photosynthetic organisms. PMID:25681118

  11. Towards Globally Consistent Scan Matchingwith Ground Truth Integration

    NASA Astrophysics Data System (ADS)

    Gailis, J.; Nüchter, A.

    2015-03-01

    The scan matching based simultaneous localization and mapping method with six dimensional poses is capable of creating a three dimensional point cloud map of the environment, as well as estimating the six dimensional path that the vehicle has travelled. The essence of it is the registering and matching of sequentially acquired 3D laser scans, while moving along a path, in a common coordinate frame in order to provide 6D pose estimations at the respective positions, as well as create a three dimensional map of the environment. An approach that could drastically improve the reliability of acquired data is to integrate available ground truth information. This paper is about implementing such functionality as a contribution to 6D SLAM (simultaneous localization and mapping with 6 DoF) in the 3DTK - The 3D Toolkit software (Nüchter and Lingemann, 2011), as well as test the functionality of the implementation using real world datasets.

  12. Geodesy Data and Metadata Integration Strategies for Collaborative Global Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Boler, Fran; Meertens, Charles

    2017-04-01

    Through multiple pathways, UNAVCO is collaborating with US and international partners to integrate geodesy-related research infrastructures. One of the earliest of UNAVCO's efforts at an integrated research infrastructure for geodesy was the Geodesy Seamless Archive Centers (GSAC) software, a web services-based data and metadata search and access system that was pioneered by UNAVCO and collaborators at Scripps and NASA. GSAC was adopted as an enabling technology in the early phases of the European Plate Observing System through the CoopEUS European and US initiative. GSAC is also a core piece of the infrastructure used in Dataworks for GNSS (Global Navigation Satellite System), a UNAVCO effort to build integrated GNSS data system components. In addition to GSAC, Dataworks has components that facilitate data download from a network of GNSS receivers, and data and metadata management. Dataworks has been deployed for capacity building in the Caribbean. The web services approach continues to be a major focus for UNAVCO and has been implemented within the NSF EarthCube Building Block project GeoWS, which takes the web services concept from an inter-domain infrastructure capability (across institutions but within geodesy) to the next level as a cross-domain (geodesy, seismology, marine geophysics) infrastructure capability through definition of common, standards-based vocabularies and exchange formats. In a separate effort focused on metadata, UNAVCO is working under the Data Centers Working Group of the International GNSS Service to establish metadata formats and exchange mechanisms using standards via the GeodesyML effort of Geosciences Australia and others for Open Geospatial Consortium web services for metadata.

  13. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  14. Leveraging non-binding instruments for global health governance: reflections from the Global AIDS Reporting Mechanism for WHO reform.

    PubMed

    Taylor, A L; Alfven, T; Hougendobler, D; Tanaka, S; Buse, K

    2014-02-01

    As countries contend with an increasingly complex global environment with direct implications for population health, the international community is seeking novel mechanisms to incentivize coordinated national and international action towards shared health goals. Binding legal instruments have garnered increasing attention since the World Health Organization adopted its first convention in 2003. This paper seeks to expand the discourse on future global health lawmaking by exploring the potential value of non-binding instruments in global health governance, drawing on the case of the 2001 United Nations General Assembly Special Session Declaration of Commitment on HIV/AIDS. In other realms of international concern ranging from the environment to human rights to arms control, non-binding instruments are increasingly used as effective instruments of international cooperation. The experience of the Global AIDS Reporting Mechanism, established pursuant to the Declaration, evidences that, at times, non-binding legal instruments can offer benefits over slower, more rigid binding legal approaches to governance. The global AIDS response has demonstrated that the use of a non-binding instrument can be remarkably effective in galvanizing increasingly deep commitments, action, reporting compliance and ultimately accountability for results. Based on this case, the authors argued that non-binding instruments deserve serious consideration by the international community for the future of global health governance, including in the context of WHO reform.

  15. Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions.

    PubMed

    Brautigam, Chad A; Zhao, Huaying; Vargas, Carolyn; Keller, Sandro; Schuck, Peter

    2016-05-01

    Isothermal titration calorimetry (ITC) is a powerful and widely used method to measure the energetics of macromolecular interactions by recording a thermogram of differential heating power during a titration. However, traditional ITC analysis is limited by stochastic thermogram noise and by the limited information content of a single titration experiment. Here we present a protocol for bias-free thermogram integration based on automated shape analysis of the injection peaks, followed by combination of isotherms from different calorimetric titration experiments into a global analysis, statistical analysis of binding parameters and graphical presentation of the results. This is performed using the integrated public-domain software packages NITPIC, SEDPHAT and GUSSI. The recently developed low-noise thermogram integration approach and global analysis allow for more precise parameter estimates and more reliable quantification of multisite and multicomponent cooperative and competitive interactions. Titration experiments typically take 1-2.5 h each, and global analysis usually takes 10-20 min.

  16. Integrated ground-based and remotely sensed data to support global studies of environmental change

    SciTech Connect

    Olson, R.J.; Turner, R.S.; Garten, C.T.

    1994-09-15

    Data centers routinely archive and distribute large databases of high quality and with rigorous documentation but, to meet the needs of global studies effectively and efficiently, data centers must go beyond these traditional roles. Global studies of environmental change require integrated databases of multiple data types that are accurately coordinated in terms of spatial, temporal and thematic properties. Such datasets must be designed and developed jointly by scientific researchers, computer specialists, and policy analysts. The presentation focuses on our approach for organizing data from ground-based research programs so that the data can be linked with remotely sensed data and other map data into integrated databases with spatial, temporal, and thematic characteristics relevant to global studies. The development of an integrated database for Net Primary Productivity is described to illustrate the process.

  17. Mechanical design of SIFS SOAR integral field unit spectrograph

    NASA Astrophysics Data System (ADS)

    Macanhan, Vanessa B. P.; Santoro, Fernando G.; Gneiding, Clemens D.; de Oliveira, Antonio C.; Lourenço, Fernando; Barbuy, Beatriz; Lépine, Jacques R. D.; Figueiredo, Militäo V.; Silva, Paulo F.; Castilho, Bruno; Ribeiro, Flavio F.; de Arruda, Marcio V.; Gutierrez, Arturo M.; Zambretti, Luiz R.; Rodrigues, Francisco; Di Pintor Da Luz, Henrique; da Silva, José M.

    2010-07-01

    The SOAR Integral Field Unit Spectrograph (SIFS) is fed by an integral field unit composed of a bi-dimensional arrangement of 1300 optical fibers. It has been developed in Brazil by a team of scientists and engineers led by the National Laboratory of Astrophysics (MCT/LNA) and the Department of Astronomy of the Institute of Astronomy, Geophysics and Atmospheric Sciences of the University of São Paulo (IAG/USP). It comprises three major subsystems; a fore-optics installed on the Nasmyth port of the telescope or the SOAR Adaptive Optics Module, a 14-m optical fiber IFU, and a bench-mounted spectrograph installed on the telescope fork. SIFS is successfully assembled and tested on the SOAR Telescope in Chile and has now moved to the commissioning phase. This paper reports on technical characteristics of the mechanical design and the assembly, integration and technical activities.

  18. Iterative integral parameter identification of a respiratory mechanics model

    PubMed Central

    2012-01-01

    Background Patient-specific respiratory mechanics models can support the evaluation of optimal lung protective ventilator settings during ventilation therapy. Clinical application requires that the individual’s model parameter values must be identified with information available at the bedside. Multiple linear regression or gradient-based parameter identification methods are highly sensitive to noise and initial parameter estimates. Thus, they are difficult to apply at the bedside to support therapeutic decisions. Methods An iterative integral parameter identification method is applied to a second order respiratory mechanics model. The method is compared to the commonly used regression methods and error-mapping approaches using simulated and clinical data. The clinical potential of the method was evaluated on data from 13 Acute Respiratory Distress Syndrome (ARDS) patients. Results The iterative integral method converged to error minima 350 times faster than the Simplex Search Method using simulation data sets and 50 times faster using clinical data sets. Established regression methods reported erroneous results due to sensitivity to noise. In contrast, the iterative integral method was effective independent of initial parameter estimations, and converged successfully in each case tested. Conclusion These investigations reveal that the iterative integral method is beneficial with respect to computing time, operator independence and robustness, and thus applicable at the bedside for this clinical application. PMID:22809585

  19. Progress toward an Integrated Global GHG Information System (IG3IS)

    NASA Astrophysics Data System (ADS)

    DeCola, Philip

    2016-04-01

    Accurate and precise atmospheric measurements of greenhouse gas (GHG) concentrations have shown the inexorable rise of global GHG concentrations due to human socioeconomic activity. Scientific observations also show a resulting rise in global temperatures and evidence of negative impacts on society. In response to this amassing evidence, nations, states, cities and private enterprises are accelerating efforts to reduce emissions of GHGs, and the UNFCCC process recently forged the Paris Agreement. Emission reduction strategies will vary by nation, region, and economic sector (e.g., INDCs), but regardless of the strategies and mechanisms applied, the ability to implement policies and manage them effectively over time will require consistent, reliable and timely information. A number of studies [e.g., Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements (2010); GEO Carbon Strategy (2010); IPCC Task Force on National GHG Inventories: Expert Meeting Report on Uncertainty and Validation of Emission Inventories (2010)] have reported on the state of carbon cycle research, observations and models and the ability of these atmospheric observations and models to independently validate and improve the accuracy of self-reported emission inventories based on fossil fuel usage and land use activities. These studies concluded that by enhancing our in situ and remote-sensing observations and atmospheric data assimilation modeling capabilities, a GHG information system could be achieved in the coming decade to serve the needs of policies and actions to reduce GHG emissions. Atmospheric measurements and models are already being used to provide emissions information on a global and continental scale through existing networks, but these efforts currently provide insufficient information at the human-dimensions where nations, states, cities, and private enterprises can take valuable, and additional action that can reduce emissions for a specific GHG

  20. Integrating Natural Gas Hydrates in the Global Carbon Cycle

    SciTech Connect

    David Archer; Bruce Buffett

    2011-12-31

    We produced a two-dimensional geological time- and basin-scale model of the sedimentary margin in passive and active settings, for the simulation of the deep sedimentary methane cycle including hydrate formation. Simulation of geochemical data required development of parameterizations for bubble transport in the sediment column, and for the impact of the heterogeneity in the sediment pore fluid flow field, which represent new directions in modeling methane hydrates. The model is somewhat less sensitive to changes in ocean temperature than our previous 1-D model, due to the different methane transport mechanisms in the two codes (pore fluid flow vs. bubble migration). The model is very sensitive to reasonable changes in organic carbon deposition through geologic time, and to details of how the bubbles migrate, in particular how efficiently they are trapped as they rise through undersaturated or oxidizing chemical conditions and the hydrate stability zone. The active margin configuration reproduces the elevated hydrate saturations observed in accretionary wedges such as the Cascadia Margin, but predicts a decrease in the methane inventory per meter of coastline relative to a comparable passive margin case, and a decrease in the hydrate inventory with an increase in the plate subduction rate.

  1. Microenvironmental change as a mechanism to study global change.

    NASA Astrophysics Data System (ADS)

    Lortie, C. J.

    2016-12-01

    Global change is a set of significant processes that influence all aspects of ecosystem functioning and often-natural services within Santa Barbara County. The sensitivity of coastal and urban systems is certainly very high. However, profound changes are also predicted for arid and semi-arid systems globally, and California is no exception. These dryland systems are less buffered by oceanic processes and typically express high inter-annual variation in precipitation and temperatures in addition to perturbations associated with long-term droughts. However, climate estimates and downscaled values can present challenges in providing evidence at the scale relevant to individual species or individuals, and the importance of biotic interactions must be coupled to these estimates in space and time. Coupled indicators of key micro-environmental measures to both positive and negative interactions between foundation species and other organisms provide a metric of buffering capacity and resilience to global change at fine spatial scales. Consequently, the primary objective of this research project is to provide both the a well-articulated, ecologically relevant micro-environmental big data measure of global change within Santa Barbara County and a coupled estimate of concurrent changes in interactions in key species within the region. Shrubs directly and indirectly buffered local changes in the microenvironment thereby functioning as refuges for other species within arid and semi-arid regions subject to dramatic global change drivers. The following major patterns were identified: (i) shrub micro-environments reduce the level of stress and amplitude of variation associated with temperature and moisture, (ii) many plant and animal species including threatened lizards are relatively more common with shrubs within the region, and (iii) the variation in the interaction patterns between species relates to the extent of amelioration provided by shrub-biodiversity complexes within

  2. Frida integral field unit opto-mechanical design

    NASA Astrophysics Data System (ADS)

    Cuevas, Salvador; Eikenberry, Stephen S.; Bringas, Vicente; Corrales, Adi; Espejo, Carlos; Lucero, Diana; Rodriguez, Alberto; Sánchez, Beatriz; Uribe, Jorge

    2012-09-01

    FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector. This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system. FRIDA will provide the IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on University of Florida FISICA where the mirror block arrays are diamond turned on monolithic metal blocks. FRIDA IFU is conformed mainly by 3 mirror blocks with 30 spherical mirrors each. It also has a Schwarzschild relay based on two off axis spherical mirrors and an afocal system of two parabolic off axis mirrors. Including two insertion mirrors the IFU holds 96 metal mirrors. Each block or individual mirror is attached on its own mechanical mounting. In order to study beam interferences with mechanical parts, ghosts and scattered light, an iterative optical-mechanical modeling was developed. In this work this iterative modeling is described including pictures showing actual ray tracing on the opto-mechanical components.

  3. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    NASA Astrophysics Data System (ADS)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  4. Thalamocortical mechanisms for integrating musical tone and rhythm

    PubMed Central

    Musacchia, Gabriella; Large, Edward

    2014-01-01

    Studies over several decades have identified many of the neuronal substrates of music perception by pursuing pitch and rhythm perception separately. Here, we address the question of how these mechanisms interact, starting with the observation that the peripheral pathways of the so-called “Core” and “Matrix” thalamocortical system provide the anatomical bases for tone and rhythm channels. We then examine the hypothesis that these specialized inputs integrate tonal content within rhythm context in auditory cortex using classical types of “driving” and “modulatory” mechanisms. This hypothesis provides a framework for deriving testable predictions about the early stages of music processing. Furthermore, because thalamocortical circuits are shared by speech and music processing, such a model provides concrete implications for how music experience contributes to the development of robust speech encoding mechanisms. PMID:24103509

  5. Model-data integration to improve the LPJmL dynamic global vegetation model

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Thonicke, Kirsten; Schaphoff, Sibyll; Thurner, Martin; von Bloh, Werner; Dorigo, Wouter; Carvalhais, Nuno

    2017-04-01

    Dynamic global vegetation models show large uncertainties regarding the development of the land carbon balance under future climate change conditions. This uncertainty is partly caused by differences in how vegetation carbon turnover is represented in global vegetation models. Model-data integration approaches might help to systematically assess and improve model performances and thus to potentially reduce the uncertainty in terrestrial vegetation responses under future climate change. Here we present several applications of model-data integration with the LPJmL (Lund-Potsdam-Jena managed Lands) dynamic global vegetation model to systematically improve the representation of processes or to estimate model parameters. In a first application, we used global satellite-derived datasets of FAPAR (fraction of absorbed photosynthetic activity), albedo and gross primary production to estimate phenology- and productivity-related model parameters using a genetic optimization algorithm. Thereby we identified major limitations of the phenology module and implemented an alternative empirical phenology model. The new phenology module and optimized model parameters resulted in a better performance of LPJmL in representing global spatial patterns of biomass, tree cover, and the temporal dynamic of atmospheric CO2. Therefore, we used in a second application additionally global datasets of biomass and land cover to estimate model parameters that control vegetation establishment and mortality. The results demonstrate the ability to improve simulations of vegetation dynamics but also highlight the need to improve the representation of mortality processes in dynamic global vegetation models. In a third application, we used multiple site-level observations of ecosystem carbon and water exchange, biomass and soil organic carbon to jointly estimate various model parameters that control ecosystem dynamics. This exercise demonstrates the strong role of individual data streams on the

  6. An Overview of the Mechanical Integrity of Dental Implants

    PubMed Central

    Shemtov-Yona, Keren; Rittel, Daniel

    2015-01-01

    With the growing use of dental implants, the incidence of implants' failures grows. Late treatment complications, after reaching full osseointegration and functionality, include mechanical failures, such as fracture of the implant and its components. Those complications are deemed severe in dentistry, albeit being usually considered as rare, and therefore seldom addressed in the clinical literature. The introduction of dental implants into clinical practice fostered a wealth of research on their biological aspects. By contrast, mechanical strength and reliability issues were seldom investigated in the open literature, so that most of the information to date remains essentially with the manufacturers. Over the years, implants have gone through major changes regarding the material, the design, and the surface characteristics aimed at improving osseointegration. Did those changes improve the implants' mechanical performance? This review article surveys the state-of-the-art literature about implants' mechanical reliability, identifying the known causes for fracture, while outlining the current knowledge-gaps. Recent results on various aspects of the mechanical integrity and failure of implants are presented and discussed next. The paper ends by a general discussion and suggestions for future research, outlining the importance of mechanical considerations for the improvement of their future performance. PMID:26583117

  7. An Overview of the Mechanical Integrity of Dental Implants.

    PubMed

    Shemtov-Yona, Keren; Rittel, Daniel

    2015-01-01

    With the growing use of dental implants, the incidence of implants' failures grows. Late treatment complications, after reaching full osseointegration and functionality, include mechanical failures, such as fracture of the implant and its components. Those complications are deemed severe in dentistry, albeit being usually considered as rare, and therefore seldom addressed in the clinical literature. The introduction of dental implants into clinical practice fostered a wealth of research on their biological aspects. By contrast, mechanical strength and reliability issues were seldom investigated in the open literature, so that most of the information to date remains essentially with the manufacturers. Over the years, implants have gone through major changes regarding the material, the design, and the surface characteristics aimed at improving osseointegration. Did those changes improve the implants' mechanical performance? This review article surveys the state-of-the-art literature about implants' mechanical reliability, identifying the known causes for fracture, while outlining the current knowledge-gaps. Recent results on various aspects of the mechanical integrity and failure of implants are presented and discussed next. The paper ends by a general discussion and suggestions for future research, outlining the importance of mechanical considerations for the improvement of their future performance.

  8. Global transcript structure resolution of high gene density genomes through multi-platform data integration

    PubMed Central

    O'Grady, Tina; Wang, Xia; Höner zu Bentrup, Kerstin; Baddoo, Melody; Concha, Monica; Flemington, Erik K.

    2016-01-01

    Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome. PMID:27407110

  9. Contract Research Organizations (CROs) in China: integrating Chinese research and development capabilities for global drug innovation.

    PubMed

    Shi, Yun-Zhen; Hu, Hao; Wang, Chunming

    2014-11-19

    The significance of R&D capabilities of China has become increasingly important as an emerging force in the context of globalization of pharmaceutical research and development (R&D). While China has prospered in its R&D capability in the past decade, how to integrate the rising pharmaceutical R&D capability of China into the global development chain for innovative drugs remains challenging. For many multinational corporations and research organizations overseas, their attempt to integrate China's pharmaceutical R&D capabilities into their own is always hindered by policy constraints and reluctance of local universities and pharmaceutical firms. In light of the situation, contract research organizations (CROs) in China have made great innovation in value proposition, value chain and value networking to be at a unique position to facilitate global and local R&D integration. Chinese CROs are now being considered as the essentially important and highly versatile integrator of local R&D capability for global drug discovery and innovation.

  10. Linking Geophysical Networks to International Economic Development Through Integration of Global and National Monitoring

    NASA Astrophysics Data System (ADS)

    Lerner-Lam, A.

    2007-05-01

    Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus

  11. Mechanical Integrity of a Decellularized and Laser Drilled Medial Meniscus.

    PubMed

    Lakes, Emily H; Matuska, Andrea M; McFetridge, Peter S; Allen, Kyle D

    2016-03-01

    Since the meniscus has limited capacity to self-repair, creating a long-lasting meniscus replacement may help reduce the incidence of osteoarthritis (OA) after meniscus damage. As a first step toward this goal, this study evaluated the mechanical integrity of a decellularized, laser drilled (LD) meniscus as a potential scaffold for meniscal engineering. To evaluate the decellularization process, 24 porcine menisci were processed such that one half remained native tissue, while the other half was decellularized in sodium dodecyl sulphate (SDS). To evaluate the laser drilling process, 24 additional menisci were decellularized, with one half remaining intact while the other half was LD. Decellularization did not affect the tensile properties, but had significant effects on the cyclic compressive hysteresis and unconfined compressive stress relaxation. Laser drilling decreased the Young's modulus and instantaneous stress during unconfined stress relaxation and the circumferential ultimate strength during tensile testing. However, the losses in mechanical integrity in the LD menisci were generally smaller than the variance observed between samples, and thus, the material properties for the LD tissue remained within a physiological range. In the future, optimization of laser drilling patterns may improve these material properties. Moreover, reseeding the construct with cells may further improve the mechanical properties prior to implantation. As such, this work serves as a proof of concept for generating decellularized, LD menisci scaffolds for the purposes of meniscal engineering.

  12. Broadband opto-mechanical phase shifter for photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Guo, Xiang; Zou, Chang-Ling; Ren, Xi-Feng; Sun, Fang-Wen; Guo, Guang-Can

    2012-08-01

    A broadband opto-mechanical phase shifter for photonic integrated circuits is proposed and numerically investigated. The structure consists of a mode-carrying waveguide and a deformable non-mode-carrying nanostring, which are parallel with each other. Since the nanostring can be deflected by the optical gradient force between the waveguide and the nanostring, the effective refractive indices of the waveguide will be changed and a phase shift will be generated. The phase shift under different geometry sizes, launched powers and boundary conditions are calculated and the dynamical properties as well as the thermal noise's effect are also discussed. It is demonstrated that a π phase shift can be realized with only about 0.64 mW launched power and 50 μm long nanostring. The proposed phase shifter may find potential usage in future investigation of photonic integrated circuits.

  13. Elliptic Functions and Integrals with Real Modulus in Fluid Mechanics

    NASA Technical Reports Server (NTRS)

    Legendre, Robert

    1958-01-01

    Advantage of the elliptic functions and of the more general functions of Schwarz for fluid mechanics. Flows outside and inside polygons. Application to the calculation of an elbow diffuser for a wind tunnel. Properties of the elliptic integrals of the first kind and of the elliptic functions. Properties of the theta functions and decomposition of the elliptic functions into products of theta functions. Properties of the zeta functions. Decomposition of the elliptic functions into sums of zeta functions and calculations of the elliptic integrals. Applications to the calculation of wing profiles, of compressor profiles, and to the study of the vibrations of airplane wings and of compressor vanes. The manuscript of the present paper was checked by Mr. Eichelbrenner who corrected several imperfections and suggested numerous improvements to make reading of the paper easier. However, the limited subject does not permit filling in more than an incomplete knowledge of the properties of analytic functions.

  14. Coreference and Lexical Repetition: Mechanisms of Discourse Integration

    PubMed Central

    Ledoux, Kerry; Gordon, Peter C.; Camblin, C. Christine; Swaab, Tamara Y.

    2006-01-01

    The use of repeated expressions to establish coreference allows an investigation of the relationship between basic processes of word recognition and higher-level language processes that involve the integration of information into a discourse model. In two experiments on reading, we used eye tracking and event-related potentials (ERPs) to examine whether repeated expressions that are coreferential within a local discourse context show the kind of repetition priming that is shown in lists of words. In both experiments, effects of lexical repetition were modulated by effects of local discourse context that arose from manipulations of the linguistic prominence of the antecedent of a coreferentially repeated name. These results are interpreted within the context of discourse prominence theory, which suggests that processes of coreferential interpretation interact with basic mechanisms of memory integration during the construction of a model of discourse. PMID:17848036

  15. Mid-Task Break Improves Global Integration of Functional Connectivity in Lower Alpha Band

    PubMed Central

    Li, Junhua; Lim, Julian; Chen, Yu; Wong, Kianfoong; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu

    2016-01-01

    Numerous efforts have been devoted to revealing neurophysiological mechanisms of mental fatigue, aiming to find an effective way to reduce the undesirable fatigue-related outcomes. Until recently, mental fatigue is thought to be related to functional dysconnectivity among brain regions. However, the topological representation of brain functional connectivity altered by mental fatigue is only beginning to be revealed. In the current study, we applied a graph theoretical approach to analyse such topological alterations in the lower alpha band (8~10 Hz) of EEG data from 20 subjects undergoing a two-session experiment, in which one session includes four successive blocks with visual oddball tasks (session 1) whereas a mid-task break was introduced in the middle of four task blocks in the other session (session 2). Phase lag index (PLI) was then employed to measure functional connectivity strengths for all pairs of EEG channels. Behavior and connectivity maps were compared between the first and last task blocks in both sessions. Inverse efficiency scores (IES = reaction time/response accuracy) were significantly increased in the last task block, showing a clear effect of time-on-task in participants. Furthermore, a significant block-by-session interaction was revealed in the IES, suggesting the effectiveness of the mid-task break on maintaining task performance. More importantly, a significant session-independent deficit of global integration and an increase of local segregation were found in the last task block across both sessions, providing further support for the presence of a reshaped topology in functional brain connectivity networks under fatigue state. Moreover, a significant block-by-session interaction was revealed in the characteristic path length, small-worldness, and global efficiency, attributing to the significantly disrupted network topology in session 1 in comparison of the maintained network structure in session 2. Specifically, we found increased

  16. Dissociation between spatial and temporal integration mechanisms in Vernier fusion.

    PubMed

    Drewes, Jan; Zhu, Weina; Melcher, David

    2014-12-01

    The visual system constructs a percept of the world across multiple spatial and temporal scales. This raises the questions of whether different scales involve separate integration mechanisms and whether spatial and temporal factors are linked via spatio-temporal reference frames. We investigated this using Vernier fusion, a phenomenon in which the features of two Vernier stimuli presented in close spatio-temporal proximity are fused into a single percept. With increasing spatial offset, perception changes dramatically from a single percept into apparent motion and later, at larger offsets, into two separately perceived stimuli. We tested the link between spatial and temporal integration by presenting two successive Vernier stimuli presented at varying spatial and temporal offsets. The second Vernier either had the same or the opposite offset as the first. We found that the type of percept depended not only on spatial offset, as reported previously, but interacted with the temporal parameter as well. At temporal separations around 30-40 ms the majority of trials were perceived as motion, while above 70 ms predominantly two separate stimuli were reported. The dominance of the second Vernier varied systematically with temporal offset, peaking around 40 ms ISI. Same-offset conditions showed increasing amounts of perceived separation at large ISIs, but little dependence on spatial offset. As subjects did not always completely fuse stimuli, we separated trials by reported percept (single/fusion, motion, double/segregation). We found systematic indications of spatial fusion even on trials in which subjects perceived temporal segregation. These findings imply that spatial integration/fusion may occur even when the stimuli are perceived as temporally separate entities, suggesting that the mechanisms responsible for temporal segregation and spatial integration may not be mutually exclusive.

  17. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  18. Proving the mechanical integrity of solution mined caverns

    SciTech Connect

    Van Fossan, N.E.

    1982-01-01

    The Safe Drinking Water Act of 1974 (Public Law 93-523) specifies an Underground Injection Control (UIC) program be promulgated to satisfy certain requirements of the act. Underground storage wells are covered by the act. The most crucial item in any UIC program is the requirement of proving the mechanical integrity of a storage system. This work enumerates the individual elements of a hydrocarbon underground storage system in domal salt, addresses the nature and magnitude of the maximum forces which may be exerted on each element, and proposes tests which will prove that each element is capable of resisting these forces. Appropriate safety factors also are proposed.

  19. Mechanical integrity and piping systems -- The forgotten elements

    SciTech Connect

    Miller, S.D.; Uscocovich, J.S.

    1996-07-01

    Many codes and regulations address the issue of process piping inspections, the most recent being AP1570. OSH1910.119 paragraph (j) also contains requirements for maintaining the mechanical integrity of an operating system through inspections and tests. This paper includes details for an examination approach dealing with process piping as a system, including often neglected items such as piping supports and expansion joints. A training methodology will be discussed which incorporates site walkdowns, operating history, typical failures and other items which may be used to formulate a site specific and flexible program to ensure safe and reliable piping systems as well as compliance with OSHA 1910.119 paragraph (j).

  20. Cellular mechanisms for integral feedback in visually guided behavior.

    PubMed

    Schnell, Bettina; Weir, Peter T; Roth, Eatai; Fairhall, Adrienne L; Dickinson, Michael H

    2014-04-15

    Sensory feedback is a ubiquitous feature of guidance systems in both animals and engineered vehicles. For example, a common strategy for moving along a straight path is to turn such that the measured rate of rotation is zero. This task can be accomplished by using a feedback signal that is proportional to the instantaneous value of the measured sensory signal. In such a system, the addition of an integral term depending on past values of the sensory input is needed to eliminate steady-state error [proportional-integral (PI) control]. However, the means by which nervous systems implement such a computation are poorly understood. Here, we show that the optomotor responses of flying Drosophila follow a time course consistent with temporal integration of horizontal motion input. To investigate the cellular basis of this effect, we performed whole-cell patch-clamp recordings from the set of identified visual interneurons [horizontal system (HS) cells] thought to control this reflex during tethered flight. At high stimulus speeds, HS cells exhibit steady-state responses during flight that are absent during quiescence, a state-dependent difference in physiology that is explained by changes in their presynaptic inputs. However, even during flight, the membrane potential of the large-field interneurons exhibits no evidence for integration that could explain the behavioral responses. However, using a genetically encoded indicator, we found that calcium accumulates in the terminals of the interneurons along a time course consistent with the behavior and propose that this accumulation provides a mechanism for temporal integration of sensory feedback consistent with PI control.

  1. Local and Global Properties of Solar Eruption Trigger Mechanisms

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2016-12-01

    While the local magnetic parameters such as decay index and current helicity are commonly used to explain or predict the occurrence of solar eruptions, there can be an alternative view that global properties of the source region should also be counted as an important factor. We discuss this issue based on the Solar Dynamics Observatory (SDO) observations of the NOAA active region 11444, which produced three filament eruptions within two hours on 2012 March 27 at all different locations. We focus on the distribution of three parameters: magnetic free energy, current helicity density, and decay index, as computed from the nonlinear force-free field (NLFFF) model for the active region. In our result, the eruptions occurring in the regions of the more complex magnetic connectivity and higher decay index are more violent, and the flare emissions in the regions of larger magnetic free energy are more intense. The strength of eruption can therefore be predicted based on the local parameters. However, the likelihood of eruption, namely, why one eruption preceded another, could not be explained with the local parameters. We discuss the thermodynamic process in the pre-eruption stage as a key factor for understanding the trigger of the first eruption and the magnetic structure of the active region for the subsequent eruptions.

  2. The Gars Programme And The Integrated Global Observing Strategy For Geohazards

    NASA Astrophysics Data System (ADS)

    Marsh, S.; Paganini, M.; Missotten, R.; Palazzo, F.

    UNESCO and the IUGS have funded the Geological Applications of Remote Sensing Programme (GARS) since 1984. Its aim is to assess the value and utility of remotely sensed data for geoscience, whilst at the same time building capacity in developing countries. It has run projects in Africa on geological mapping, in Latin America on landslide hazards and in Asia on volcanic hazards. It is a main sponsor of the Integrated Global Observing Strategy (IGOS) for Geohazards. The societal impact of geological and related geophysical hazards is enormous. Every year volcanoes, earthquakes, landslides and subsidence claim thousands of lives, injure thousands more, devastate homes and destroy livelihoods. Damaged infrastructure and insurance premiums increase these costs. As population increases, more people live in hazardous areas and the impact grows. The World Summit on Sustainable Development recognised that systematic, joint international observations under initiatives like the Integrated Global Observing Strategy form the basis for an integrated approach to hazard mitigation and preparedness. In this context, the IGOS Partners developed this geohazards theme. Its goal is to integrate disparate, multidisciplinary, applied research into global, operational systems by filling gaps in organisation, observation and knowledge. It has four strategic objectives; building global capacity to mitigate geohazards; improving mapping, monitoring and forecasting, based on satellite and ground-based observations; increasing preparedness, using integrated geohazards information products and improved geohazards models; and promoting global take-up of local best practice in geohazards management. Gaps remain between what is known and the knowledge required to answer citizen's questions, what is observed and what must be observed to provide the necessary information for hazard mitigation and current data integration and the integration needed to make useful geohazard information products. An

  3. Direct experimental visualization of the global Hamiltonian progression of two-dimensional Lagrangian flow topologies from integrable to chaotic state

    SciTech Connect

    Baskan, O.; Clercx, H. J. H; Speetjens, M. F. M.; Metcalfe, G.

    2015-10-15

    Countless theoretical/numerical studies on transport and mixing in two-dimensional (2D) unsteady flows lean on the assumption that Hamiltonian mechanisms govern the Lagrangian dynamics of passive tracers. However, experimental studies specifically investigating said mechanisms are rare. Moreover, they typically concern local behavior in specific states (usually far away from the integrable state) and generally expose this indirectly by dye visualization. Laboratory experiments explicitly addressing the global Hamiltonian progression of the Lagrangian flow topology entirely from integrable to chaotic state, i.e., the fundamental route to efficient transport by chaotic advection, appear non-existent. This motivates our study on experimental visualization of this progression by direct measurement of Poincaré sections of passive tracer particles in a representative 2D time-periodic flow. This admits (i) accurate replication of the experimental initial conditions, facilitating true one-to-one comparison of simulated and measured behavior, and (ii) direct experimental investigation of the ensuing Lagrangian dynamics. The analysis reveals a close agreement between computations and observations and thus experimentally validates the full global Hamiltonian progression at a great level of detail.

  4. Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain

    PubMed Central

    Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.

    2014-01-01

    The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349

  5. Connecting the dots: how local structure affects global integration in infants

    PubMed Central

    Palomares, Melanie; Pettet, Mark; Vildavski, Vladimir; Hou, Chuan; Norcia, Anthony

    2009-01-01

    Glass patterns are moirés created from a sparse random dot field paired with its spatially-shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4–5.5 month old infants are sensitive to the global structure of Glass patterns by measuring Visual Evoked Potentials (VEPs). Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image. PMID:19642888

  6. Connecting the dots: how local structure affects global integration in infants.

    PubMed

    Palomares, Melanie; Pettet, Mark; Vildavski, Vladimir; Hou, Chuan; Norcia, Anthony

    2010-07-01

    Glass patterns are moirés created from a sparse random-dot field paired with its spatially shifted copy. Because discrimination of these patterns is not based on local features, they have been used extensively to study global integration processes. Here, we investigated whether 4- to 5.5-month-old infants are sensitive to the global structure of Glass patterns by measuring visual-evoked potentials. Although we found strong responses to the appearance of the constituent dots, we found sensitivity to the global structure of the Glass patterns in the infants only over a very limited range of spatial separation. In contrast, we observed robust responses in the infants when we connected the dot pairs of the Glass pattern with lines. Moreover, both infants and adults showed differential responses to exchanges between line patterns portraying different global structures. A control study varying luminance contrast in adults suggests that infant sensitivity to global structure is not primarily limited by reduced element visibility. Together our results suggest that the insensitivity to structure in conventional Glass patterns is due to inefficiencies in extracting the local orientation cues generated by the dot pairs. Once the local orientations are made unambiguous or when the interpolation span is small, infants can integrate these signals over the image.

  7. Integrated design of castings: effect of porosity on mechanical performance

    NASA Astrophysics Data System (ADS)

    Hardin, R. A.; Beckermann, C.

    2012-07-01

    Porosity can significantly reduce the strength and durability of castings in service. An integrated design approach has been developed where casting simulation is combined with mechanical performance simulations. Predictions of the porosity distribution from the casting process simulation are transferred to and used in stress and fatigue life simulations. Thus, the effect of casting quality on service performance can be evaluated. Results of a study are presented where the measured porosity distribution in cast steel specimens is transferred to an elasto-plastic finite-element stress analysis model. Methods are developed to locally reduce the mechanical properties according to the porosity present, without having to resolve individual pores. Plastic deformation is modeled using porous metal plasticity theory. The predictions are compared to tensile measurements performed on the specimens. The complex deformations and the reductions in the ductility of the specimens due to porosity are predicted well. The predicted stresses are transferred to a fatigue analysis code that takes the porosity distribution into account as well. The measured and predicted fatigue lives are also in good agreement. Finally, the results of a case study are presented that illustrate the utility of the present integrated approach in optimizing the design of a steel casting.

  8. PSM`s most common struggle: Implementing mechanical integrity

    SciTech Connect

    Remson, A.C.; Farmer, J.H.; King, S.C.

    1995-10-01

    Most companies have found that of the 14 OSHA PSM elements, Mechanical Integrity (MI) presents the greatest implementation challenge. Although maintenance departments have successfully installed, repaired, and replaced plant equipment for decades, many of these same maintenance departments have struggled with OSHA`s PSM requirements. One major challenge is prioritizing resources. Opportunities to improve will always exist; however, it is often difficult to effectively allocate money and manpower. Another challenge is simply getting organized. The MI program should be supported by appropriate, useful procedures; but given the multifaceted and ever-changing nature of maintenance, what procedures should be written? How detailed should be procedures be? With nearly 3 years of PSM enforcement complete, an analysis of OSHA`s MI citation helps to provide insight to these challenges. This paper presents ideas for implementing MI in a manner that meets OSHA`s expectations while contributing to safe, effective maintenance in PSM-covered processes. In particular, the paper presents ideas for developing MI programs that effectively prioritize company resources, with appropriate inspection/test/preventive maintenance and quality assurance (QA) activities. This paper also presents ideas for developing a list of mechanical integrity procedures to address OSHA`s requirements as well as the type of information to include in those procedures. 10 refs., 3 tabs.

  9. 78 FR 10181 - Global Quality Systems-An Integrated Approach To Improving Medical Product Safety; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... ``Global Quality Systems--An Integrated Approach to Improving Medical Product Safety.'' This 2-day public... HUMAN SERVICES Food and Drug Administration Global Quality Systems--An Integrated Approach To Improving Medical Product Safety; Public Workshop AGENCY: Food and Drug Administration, HHS. ACTION: Notice of...

  10. Integrated Modeling of Advanced Opto-Mechanical Systems

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Phillips, Charles J.; Orzewalla, Mathew A.

    2006-01-01

    The design of optical hardware for space applications is particularly challenging when developing high performance, novel systems that have no precedent. Integrated modeling and analysis of such opto-mechanical systems seeks to describe the end-to-end performance of the hardware using mission-relevant metrics. This multidisciplinary analysis might start with thermal disturbances from observation maneuvers, compute the system temperatures, compute the distorted positions and shapes of the hardware and compute the resulting optical performance. Dynamic disturbances such as reaction wheel imbalance or inertia imbalance of optical delay lines might be applied to a structural dynamic model and used in a guidance and control analysis. Mission-relevant science metrics might include wavefront quality, pointing error or imaging stability. Assembling a tool chain that can be both nimble and effective when scaled to the high fidelity models of detail design has been challenging. An integrated thermal, mechanical and optical analysis capability suitable for detail design has been developed and verified through experimental measurement. This capability was used in the design of flight-like breadboard hardware and development of a test apparatus that established both the level of performance of the hardware and the validity of the analysis. The analysis includes prediction of the thermal environment of the test chamber, detailed temperature distributions on the breadboard hardware, fine scale deformations of the optical elements, and computation of the wavefront quality using geometric optics. A battery of tests were conducted to assess the experiment data acquisition, measurement and control system and to establish the performance of the hardware design and accuracy of the integrated modeling. Thermal loads that represent operational observing maneuvers were imposed and the hardware optical performance was measured and compared to analytical predictions.

  11. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    SciTech Connect

    Tilton, Susan C.; Matzke, Melissa M.; Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J.; Morgan, William F.; Waters, Katrina M.

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  12. Social plasticity in fish: integrating mechanisms and function.

    PubMed

    Oliveira, R F

    2012-12-01

    Social plasticity is a ubiquitous feature of animal behaviour. Animals must adjust the expression of their social behaviour to the nuances of daily social life and to the transitions between life-history stages, and the ability to do so affects their Darwinian fitness. Here, an integrative framework is proposed for understanding the proximate mechanisms and ultimate consequences of social plasticity. According to this framework, social plasticity is achieved by rewiring or by biochemically switching nodes of the neural network underlying social behaviour in response to perceived social information. Therefore, at the molecular level, it depends on the social regulation of gene expression, so that different brain genomic and epigenetic states correspond to different behavioural responses and the switches between states are orchestrated by signalling pathways that interface the social environment and the genotype. At the evolutionary scale, social plasticity can be seen as an adaptive trait that can be under positive selection when changes in the environment outpace the rate of genetic evolutionary change. In cases when social plasticity is too costly or incomplete, behavioural consistency can emerge by directional selection that recruits gene modules corresponding to favoured behavioural states in that environment. As a result of this integrative approach, how knowledge of the proximate mechanisms underlying social plasticity is crucial to understanding its costs, limits and evolutionary consequences is shown, thereby highlighting the fact that proximate mechanisms contribute to the dynamics of selection. The role of teleosts as a premier model to study social plasticity is also highlighted, given the diversity and plasticity that this group exhibits in terms of social behaviour. Finally, the proposed integrative framework to social plasticity also illustrates how reciprocal causation analysis of biological phenomena (i.e. considering the interaction between

  13. Global rotation of mechanical metamaterials induced by their internal deformation

    NASA Astrophysics Data System (ADS)

    Dudek, K. K.; Gatt, R.; Mizzi, L.; Dudek, M. R.; Attard, D.; Grima, J. N.

    2017-09-01

    In this work, we propose the concept that a device based on mechanical metamaterials can be used to induce and control its own rotational motion as a result of internal deformations due to the conversion of translational degrees of freedom into rotational ones. The application of a linear force on the structural units of the system may be fine-tuned in order to obtain a desired type of rotation. In particular, we show, how it is possible to maximise the extent of rotation of the system through the alteration of the geometry of the system. We also show how a device based on this concept can be connected to an external body in order to rotate it which result may potentially prove to be very important in the case of applications such as telescopes employed in space.

  14. Mechanism and significance of global coherence in scalp EEG.

    PubMed

    Freeman, Walter J

    2015-04-01

    What distinguishes animals from robots is the neurodynamics of intention. The mechanism is the action-perception cycle that creates and applies knowledge. Knowledge is the condensed, categorized information brains accumulate over lifetimes of experience. Vertebrate intention emerged in the Ordovician period as a tool to prowl first olfactory environments, then environments of other modalities. Action necessitates remembering space-time trajectories. Hence the sensory, motor, and hippocampal cortices interact intimately. Brains create the contextual richness of relevant knowledge almost instantly by exploiting the capacity of cortical neuropil to transit between a gas-like phase with sparse, random firing and a liquid-liked phase of high-energy, narrow band oscillation synchronized widely. They express remembrances in spatial patterns of amplitude modulation (AM) of beta and gamma waves.

  15. Thermoelastic waves and ratcheting - basic mechanism of global tectonics

    NASA Astrophysics Data System (ADS)

    Kalenda, Pavel; Ostřihanský, Lubor; Wandrol, Ivo; Frydrýšek, Karel; Kopf, Tomáš; Neumann, Libor

    2013-04-01

    The deformation measurement of rock mass in the depth and mathematical modelling solved the old question of Wegeneŕs theory "What is the main engine for the lithosphere movement?". The solar energy, which reaches the Earth, is two orders higher than the energy of all earthquakes and volcanoes. Only a small part of the solar energy is accumulated in the rocks and the thermal wave created by the solar irradiation penetrates the subsurface layers. The thermal expansions of rocks give rise to excitation of the thermoelastic waves, which are observable in depths as well as in the whole lithosphere plate. The thermoelastic waves with diurnal and annual periods are well observable. The limit cases were modeled by the Simulation-Based Reliability Assessment (SBRA) method (probabilistic Monte Carlo approach). The upper limit corresponds with slow slip events, tremors, creep or earthquakes, the lower limit corresponds with opening of cracks and faults, which can be filled by ratchets. Such mechanism leads to the non-reversible expansions of rocks and spreading of the ocean floor.

  16. 30 CFR 250.1916 - What criteria for mechanical integrity must my SEMS program meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What criteria for mechanical integrity must my... mechanical integrity must my SEMS program meet? You must develop and implement written procedures that provide instructions to ensure the mechanical integrity and safe operation of equipment through...

  17. Mechanical integrity of subchondral bone in osteochondral autografts and allografts

    PubMed Central

    Wohl, Greg; Goplen, Gordon; Ford, Jason; Novak, Kelli; Hurtig, Mark; McPherson, Roger; McGann, Locksley; Schachar, Norman; Zernicke, Ronald F.

    1998-01-01

    Objective To assess the influence of osteochondral graft preservation techniques on post-transplant biomechanics of graft and host subchondral bone in the knee joint. Design An experimental animal model (sheep), specifically the weight-bearing articular surface of the medial femoral condyle of the knee joints. Intervention Each sheep received, in the ipsilateral knee, an allograft that was (a) frozen without dimethyl sulfoxide (DMSO), (b) snap-frozen in liquid nitrogen or (c) frozen with DMSO. The contralateral knee received an autograft that was (a) snap-frozen, (b) treated with DMSO or (c) left untreated (fresh). Main outcome measures Mechanical and material properties of bone, including maximal compression stress, modulus of elasticity and bone mineral ash content of subchondral bone cores (from the graft centre and surrounding host bone). Results No significant differences were found in the mechanical properties of the subchondral bone under the graft, but there were significant changes in surrounding bone. Bone surrounding the grafts that were snap-frozen or frozen without DMSO was significantly stronger than the normal control bone. However, bone surrounding fresh autografts and cryoprotected allografts was not significantly different from normal control bone. Conclusions The changes in the mechanical behaviour of the host bone may be associated with graft cell viability. The greater stiffness of the subchondral host bone may have consequences for long-term graft integrity and for the development of degenerative osteoarthritis. PMID:9627549

  18. Integrated mechanisms of CaMKII-dependent ventricular remodeling

    PubMed Central

    Kreusser, Michael M.; Backs, Johannes

    2014-01-01

    CaMKII has been shown to be activated during different cardiac pathological processes, and CaMKII-dependent mechanisms contribute to pathological cardiac remodeling, cardiac arrhythmias, and contractile dysfunction during heart failure. Activation of CaMKII during cardiac stress results in a broad number of biological effects such as, on the one hand, acute effects due to phosphorylation of distinct cellular proteins as ion channels and calcium handling proteins and, on the other hand, integrative mechanisms by changing gene expression. This review focuses on transcriptional and epigenetic effects of CaMKII activation during chronic cardiac remodeling. Multiple mechanisms have been described how CaMKII mediates changes in cardiac gene expression. CaMKII has been shown to directly phosphorylate components of the cardiac gene regulation machinery. CaMKII phosphorylates several transcription factors such as CREB that induces the activation of specific gene programs. CaMKII activates transcriptional regulators also indirectly by phosphorylating histone deacetylases, especially HDAC4, which in turn inhibits transcription factors that drive cardiac hypertrophy, fibrosis, and dysfunction. Recent studies demonstrate that CaMKII also phosphorylate directly histones, which may contribute to changes in gene expression. These findings of CaMKII-dependent gene regulation during cardiac remodeling processes suggest novel strategies for CaMKII-dependent “transcriptional or epigenetic therapies” to control cardiac gene expression and function. Manipulation of CaMKII-dependent signaling pathways in the settings of pathological cardiac growth, remodeling, and heart failure represents an auspicious therapeutic approach. PMID:24659967

  19. Water governance, resilience and global environmental change - a reassessment of integrated water resources management (IWRM).

    PubMed

    Galaz, V

    2007-01-01

    Integrated Water Resource Management (IWRM) is gaining increased acceptance among water policy makers and researchers as a way to create more effective governance institutions, leading towards integrated water development solutions for poverty alleviation, while addressing social, economic and environmental aspects of water challenges. However, global environmental change poses fundamental challenges to water policy makers as it implies vast scientific, and hence, policy uncertainty; its implications for international water governance initiatives remain unspecified, effectively hindering dialogue on how current IWRM initiatives should be modified. This paper addresses the lag between our growing understanding of resilient interconnected freshwater resources (and their governance) and the reforms being promoted by policy makers. In particular, there is a need to rethink some of IWRM's key components to better tackle the challenges posed by the complex behaviour of interconnected social-ecological systems and global environmental change.

  20. Integrated rice-duck farming mitigates the global warming potential in rice season.

    PubMed

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH4) and nitrous oxide (N2O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH4 emission by 8.80-16.68%, while increased the N2O emission by 4.23-15.20%, when compared to CF. Given that CH4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH4 and N2O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N2O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. EpiCaster: An Integrated Web Application For Situation Assessment and Forecasting of Global Epidemics

    PubMed Central

    Deodhar, Suruchi; Bisset, Keith; Chen, Jiangzhuo; Barrett, Chris; Wilson, Mandy; Marathe, Madhav

    2016-01-01

    Public health decision makers need access to high resolution situation assessment tools for understanding the extent of various epidemics in different regions of the world. In addition, they need insights into the future course of epidemics by way of forecasts. Such forecasts are essential for planning the allocation of limited resources and for implementing several policy-level and behavioral intervention strategies. The need for such forecasting systems became evident in the wake of the recent Ebola outbreak in West Africa. We have developed EpiCaster, an integrated Web application for situation assessment and forecasting of various epidemics, such as Flu and Ebola, that are prevalent in different regions of the world. Using EpiCaster, users can assess the magnitude and severity of different epidemics at highly resolved spatio-temporal levels. EpiCaster provides time-varying heat maps and graphical plots to view trends in the disease dynamics. EpiCaster also allows users to visualize data gathered through surveillance mechanisms, such as Google Flu Trends (GFT) and the World Health Organization (WHO). The forecasts provided by EpiCaster are generated using different epidemiological models, and the users can select the models through the interface to filter the corresponding forecasts. EpiCaster also allows the users to study epidemic propagation in the presence of a number of intervention strategies specific to certain diseases. Here we describe the modeling techniques, methodologies and computational infrastructure that EpiCaster relies on to support large-scale predictive analytics for situation assessment and forecasting of global epidemics. PMID:27796009

  2. EpiCaster: An Integrated Web Application For Situation Assessment and Forecasting of Global Epidemics.

    PubMed

    Deodhar, Suruchi; Bisset, Keith; Chen, Jiangzhuo; Barrett, Chris; Wilson, Mandy; Marathe, Madhav

    2015-09-01

    Public health decision makers need access to high resolution situation assessment tools for understanding the extent of various epidemics in different regions of the world. In addition, they need insights into the future course of epidemics by way of forecasts. Such forecasts are essential for planning the allocation of limited resources and for implementing several policy-level and behavioral intervention strategies. The need for such forecasting systems became evident in the wake of the recent Ebola outbreak in West Africa. We have developed EpiCaster, an integrated Web application for situation assessment and forecasting of various epidemics, such as Flu and Ebola, that are prevalent in different regions of the world. Using EpiCaster, users can assess the magnitude and severity of different epidemics at highly resolved spatio-temporal levels. EpiCaster provides time-varying heat maps and graphical plots to view trends in the disease dynamics. EpiCaster also allows users to visualize data gathered through surveillance mechanisms, such as Google Flu Trends (GFT) and the World Health Organization (WHO). The forecasts provided by EpiCaster are generated using different epidemiological models, and the users can select the models through the interface to filter the corresponding forecasts. EpiCaster also allows the users to study epidemic propagation in the presence of a number of intervention strategies specific to certain diseases. Here we describe the modeling techniques, methodologies and computational infrastructure that EpiCaster relies on to support large-scale predictive analytics for situation assessment and forecasting of global epidemics.

  3. GLOBAL INTEGRATED ISR: A BETTER ORGANIZATIONAL CONSTRUCT FOR AIR FORCE LD/HD ISR

    DTIC Science & Technology

    2017-04-06

    624 OC and 625 OC into a MDOC and then declare it the Air Force C-NAF to CYBERCOM once this newly authorized FCC is separated from STRATCOM. This... AIR WAR COLLEGE AIR UNIVERSITY GLOBAL INTEGRATED ISR: A BETTER ORGANIZATIONAL CONSTRUCT FOR AIR FORCE LD/HD ISR by Nicholas A. Nobriga...Lieutenant Colonel, United States Air Force A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation Requirements Advisor

  4. Integrated regional assessment of global climatic change: lessons from the Mackenzie Basin Impact Study (MBIS)

    NASA Astrophysics Data System (ADS)

    Cohen, Stewart J.

    1996-04-01

    This paper outlines the potential role integrated regional assessments of global climatic change scenarios could play in building better links between science and related policy concerns. The concept is illustrated through description of an ongoing case study from Canada—the Mackenzie Basin Impact Study (MBIS). As part of the Government of Canada's Green Plan, the Global Warming Science Program includes a study of regional impacts of global warming scenarios in the Mackenzie Basin, located in northwestern Canada. The MBIS is a six-year program focussing on potential climate-induced changes in the land and water resource base, and the implications of four scenarios of global climatic change on land use and economic policies in this region. These policy issues include interjurisdictional water management, sustainability of native lifestyles, economic development opportunities (agriculture, forestry, tourism, etc.), sustainability of ecosystems and infrastructure maintenance. MBIS is due to be completed in 1997. MBIS represents an attempt to address regional impacts by incorporating a "family of integrators" into the study framework, and by directly involving stakeholders in planning and research activities. The experience in organizing and carrying out this project may provide some lessons for others interested in organizing regional or country studies.

  5. Interfacing modules for integrating discipline specific structural mechanics codes

    NASA Technical Reports Server (NTRS)

    Endres, Ned M.

    1989-01-01

    An outline of the organization and capabilities of the Engine Structures Computational Simulator (Simulator) at NASA Lewis Research Center is given. One of the goals of the research at Lewis is to integrate various discipline specific structural mechanics codes into a software system which can be brought to bear effectively on a wide range of engineering problems. This system must possess the qualities of being effective and efficient while still remaining user friendly. The simulator was initially designed for the finite element simulation of gas jet engine components. Currently, the simulator has been restricted to only the analysis of high pressure turbine blades and the accompanying rotor assembly, although the current installation can be expanded for other applications. The simulator presently assists the user throughout its procedures by performing information management tasks, executing external support tasks, organizing analysis modules and executing these modules in the user defined order while maintaining processing continuity.

  6. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    SciTech Connect

    McGee, Mike; Andrews, Richard; Carlson, Kermit; Leibfritz, Jerry; Nobrega, Lucy; Valishev, Alexander

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  7. Entropy-based analysis and bioinformatics-inspired integration of global economic information transfer.

    PubMed

    Kim, Jinkyu; Kim, Gunn; An, Sungbae; Kwon, Young-Kyun; Yoon, Sungroh

    2013-01-01

    The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis.

  8. The Regional Nature of Global Challenges. A Need and Strategy for Integrated Regional Modeling

    SciTech Connect

    Hibbard, Kathleen A.; Janetos, Anthony C.

    2013-01-31

    In this paper, we explore the regional nature of global environmental challenges. We take a broad approach by examining the scientific foundation that is needed to support policy and decision making and identifying some of the most important barriers to progress that are truly scale-dependent. In so doing, we hope to show that understanding global environmental changes requires understanding a number of intrinsically regional phenomena, and that successful decision making likewise requires an integrated approach that accounts for a variety of regional Earth system processes—which we define to include both human activities and environmental systems that operate or interact primarily at sub-continental scales. Understanding regional processes and phenomena, including regional decision-making processes and information needs, should thus be an integral part of the global change research agenda. To address some of the key issues and challenges, we propose an integrated regional modeling approach that accounts for the dynamic interactions among physical, ecological, biogeochemical, and human processes and provides relevant information to regional decision makers and stakeholders.

  9. Entropy-Based Analysis and Bioinformatics-Inspired Integration of Global Economic Information Transfer

    PubMed Central

    An, Sungbae; Kwon, Young-Kyun; Yoon, Sungroh

    2013-01-01

    The assessment of information transfer in the global economic network helps to understand the current environment and the outlook of an economy. Most approaches on global networks extract information transfer based mainly on a single variable. This paper establishes an entirely new bioinformatics-inspired approach to integrating information transfer derived from multiple variables and develops an international economic network accordingly. In the proposed methodology, we first construct the transfer entropies (TEs) between various intra- and inter-country pairs of economic time series variables, test their significances, and then use a weighted sum approach to aggregate information captured in each TE. Through a simulation study, the new method is shown to deliver better information integration compared to existing integration methods in that it can be applied even when intra-country variables are correlated. Empirical investigation with the real world data reveals that Western countries are more influential in the global economic network and that Japan has become less influential following the Asian currency crisis. PMID:23300959

  10. Integrated Force Method Solution to Indeterminate Structural Mechanics Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.; Halford, Gary R.

    2004-01-01

    Strength of materials problems have been classified into determinate and indeterminate problems. Determinate analysis primarily based on the equilibrium concept is well understood. Solutions of indeterminate problems required additional compatibility conditions, and its comprehension was not exclusive. A solution to indeterminate problem is generated by manipulating the equilibrium concept, either by rewriting in the displacement variables or through the cutting and closing gap technique of the redundant force method. Compatibility improvisation has made analysis cumbersome. The authors have researched and understood the compatibility theory. Solutions can be generated with equal emphasis on the equilibrium and compatibility concepts. This technique is called the Integrated Force Method (IFM). Forces are the primary unknowns of IFM. Displacements are back-calculated from forces. IFM equations are manipulated to obtain the Dual Integrated Force Method (IFMD). Displacement is the primary variable of IFMD and force is back-calculated. The subject is introduced through response variables: force, deformation, displacement; and underlying concepts: equilibrium equation, force deformation relation, deformation displacement relation, and compatibility condition. Mechanical load, temperature variation, and support settling are equally emphasized. The basic theory is discussed. A set of examples illustrate the new concepts. IFM and IFMD based finite element methods are introduced for simple problems.

  11. A cellular mechanism for inverse effectiveness in multisensory integration

    PubMed Central

    Truszkowski, Torrey LS; Carrillo, Oscar A; Bleier, Julia; Ramirez-Vizcarrondo, Carolina M; Felch, Daniel L; McQuillan, Molly; Truszkowski, Christopher P; Khakhalin, Arseny S; Aizenman, Carlos D

    2017-01-01

    To build a coherent view of the external world, an organism needs to integrate multiple types of sensory information from different sources, a process known as multisensory integration (MSI). Previously, we showed that the temporal dependence of MSI in the optic tectum of Xenopus laevis tadpoles is mediated by the network dynamics of the recruitment of local inhibition by sensory input (Felch et al., 2016). This was one of the first cellular-level mechanisms described for MSI. Here, we expand this cellular level view of MSI by focusing on the principle of inverse effectiveness, another central feature of MSI stating that the amount of multisensory enhancement observed inversely depends on the size of unisensory responses. We show that non-linear summation of crossmodal synaptic responses, mediated by NMDA-type glutamate receptor (NMDARs) activation, form the cellular basis for inverse effectiveness, both at the cellular and behavioral levels. DOI: http://dx.doi.org/10.7554/eLife.25392.001 PMID:28315524

  12. Two Novel Applications of an Integrated Model for the Assessment of Global Water Resources

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Kanae, S.; Oki, T.

    2009-12-01

    To assess global water availability and use at a subannual timescale, an integrated global water resources model was developed consisting of six modules: land surface hydrology, river routing, crop growth, reservoir operation, environmental flow requirement estimation, and anthropogenic water withdrawal. The model, called H08, simulates both natural and anthropogenic water flow globally (excluding Antarctica) on a daily basis at a spatial resolution of 1.0°×1.0°or 0.5°×0.5° (longitude and latitude). Here, we present two novel applications of H08. First, a global hydrological simulation was conducted for 10 years from 1986 to 1995 at a spatial resolution of 1.0°×1.0°, and global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies using conventional annual basis indices. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3) and the allocation of environmental flow requirements can alter the population under high water stress by approximately -11% to +5% globally. Second, global flows of virtual water (i.e. the volume of water consumption required to produce commodities imported to an exporting nation) were estimated. The H08 model enabled us to simulate the virtual water content of major crops consistent with their global hydrological simulation. Moreover, we were able to assess two major sources of virtual water flow or content simultaneously: green water (evapotranspiration originated from precipitation) and blue water (evapotranspiration originated from irrigation). Blue water was further subdivided into three subcategories (i.e., streamflow, medium-size reservoirs, and nonrenewable and nonlocal blue water). Using global trade data for 2000

  13. Integrated modelling of transitions in mechanical conditions during casting and heat treatment

    NASA Astrophysics Data System (ADS)

    Thorborg, J.; Klinkhammer, J.; Heitzer, M.

    2015-06-01

    The mechanical material behaviour of a cast component changes significantly during casting and heat treatment. The big difference in temperature levels during the different process steps causes different deformation mechanisms to be active. The thermal gradients promote transient stresses that can lead to inelastic deformations, residual stresses and in some cases to defects in the final part. It is a big challenge to make a reasonable transition in the mechanical model, and hence material data, when modelling several different coupled process steps. It is important to use an integrated approach where the transition is included in the full load history of the part. When industrial examples are considered, the sequence of process steps typically also changes the thermal and mechanical boundary conditions significantly e.g. going from being mechanically constrained during casting to being supported point-wise during the heat treatment process. This change includes mapping of results and obtaining equilibrium in a new global system, where the further reaction forces from the supports must be handled with contact conditions to e.g. predict deformations due to gravity during solution heat treatment. The work presented in this paper is focused on modelling the mechanical fields, taking into account the changes in the mechanical material model at different temperature levels, and the transition in mechanical behaviour when the microstructure is changing during the different steps of the heat treatment process. The approach used is based on a unified model where creep effects are considered at high temperature and rate effects are included in general during cooling. Proposals are made to include cooling rate sensitivity, annealing and precipitation hardening via modification of mechanical properties in the different process steps.

  14. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    NASA Astrophysics Data System (ADS)

    Visintainer, Tammie; Linn, Marcia

    2015-04-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.

  15. The response of terrestrial ecosystems to global climate change: towards an integrated approach.

    PubMed

    Rustad, Lindsey E

    2008-10-15

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and international policies regulating carbon sequestration and greenhouse gas emissions. This paper reflects on the nature of current global change experiments, and provides recommendations for a unified multidisciplinary approach to future research in this dynamic field. These recommendations include: (1) better integration between experiments and models, and amongst experimental, monitoring, and space-for-time studies; (2) stable and increased support for long-term studies and multi-factor experiments; (3) explicit inclusion of biodiversity, disturbance, and extreme events in experiments and models; (4) consideration of timing vs intensity of global change factors in experiments and models; (5) evaluation of potential thresholds or ecosystem 'tipping points'; and (6) increased support for model-model and model-experiment comparisons. These recommendations, which reflect discussions within the TERACC international network of global change scientists, will facilitate the unraveling of the complex direct and indirect effects of global climate change on terrestrial ecosystems and their components.

  16. Global integrative meaning as a mediating factor in the relationship between social roles and psychological distress.

    PubMed

    Burton, R P

    1998-09-01

    Previous scholars' attempts to account for the salutary effects of social roles (i.e., employment, marriage, and parenting) on distress have considered the mediating effects of role-specific identity meaning. These attempts, however, have had limited success. I argue that social roles affect distress because they provide a global integrative meaning and that this integrative concept of meaning is theoretically different from role-specific identity meaning. My data were drawn from a national probability sample of 2,248 respondents age 18 years and over. My results provide substantial evidence that social roles have a salutary relationship on distress and that integrative meaning mediates these effects. The effects of the marriage and parenting roles on distress are the most affected by the mediating effects of integrative meaning. My discussion addresses these findings in light of recent research which considers other theoretically important and potentially related constructs such as role-specific identity meaning, global self-esteem and role-specific self-esteem.

  17. Integration of molecular pathology, epidemiology and social science for global precision medicine.

    PubMed

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L; Nishihara, Reiko; Tan, Andy S; Kawachi, Ichiro; Ogino, Shuji

    2016-01-01

    The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science.

  18. Integrated strategy for in vitro characterization of a bileaflet mechanical aortic valve.

    PubMed

    Susin, Francesca Maria; Espa, Stefania; Toninato, Riccardo; Fortini, Stefania; Querzoli, Giorgio

    2017-02-16

    Haemodynamic performance of heart valve prosthesis can be defined as its ability to fully open and completely close during the cardiac cycle, neither overloading heart work nor damaging blood particles when passing through the valve. In this perspective, global and local flow parameters, valve dynamics and blood damage safety of the prosthesis, as well as their mutual interactions, have all to be accounted for when assessing the device functionality. Even though all these issues have been and continue to be widely investigated, they are not usually studied through an integrated approach yet, i.e. by analyzing them simultaneously and highlighting their connections. An in vitro test campaign of flow through a bileaflet mechanical heart valve (Sorin Slimline 25 mm) was performed in a suitably arranged pulsatile mock loop able to reproduce human systemic pressure and flow curves. The valve was placed in an elastic, transparent, and anatomically accurate model of healthy aorta, and tested under several pulsatile flow conditions. Global and local hydrodynamics measurements and leaflet dynamics were analysed focusing on correlations between flow characteristics and valve motion. The haemolysis index due to the valve was estimated according to a literature power law model and related to hydrodynamic conditions, and a correlation between the spatial distribution of experimental shear stress and pannus/thrombotic deposits on mechanical valves was suggested. As main and general result, this study validates the potential of the integrated strategy for performance assessment of any prosthetic valve thanks to its capability of highlighting the complex interaction between the different physical mechanisms that govern transvalvular haemodynamics. We have defined an in vitro procedure for a comprehensive analysis of aortic valve prosthesis performance; the rationale for this study was the belief that a proper and overall characterization of the device should be based on the

  19. Integrative network analysis reveals molecular mechanisms of blood pressure regulation

    PubMed Central

    Huan, Tianxiao; Meng, Qingying; Saleh, Mohamed A; Norlander, Allison E; Joehanes, Roby; Zhu, Jun; Chen, Brian H; Zhang, Bin; Johnson, Andrew D; Ying, Saixia; Courchesne, Paul; Raghavachari, Nalini; Wang, Richard; Liu, Poching; O'Donnell, Christopher J; Vasan, Ramachandran; Munson, Peter J; Madhur, Meena S; Harrison, David G; Yang, Xia; Levy, Daniel

    2015-01-01

    Genome-wide association studies (GWAS) have identified numerous loci associated with blood pressure (BP). The molecular mechanisms underlying BP regulation, however, remain unclear. We investigated BP-associated molecular mechanisms by integrating BP GWAS with whole blood mRNA expression profiles in 3,679 individuals, using network approaches. BP transcriptomic signatures at the single-gene and the coexpression network module levels were identified. Four coexpression modules were identified as potentially causal based on genetic inference because expression-related SNPs for their corresponding genes demonstrated enrichment for BP GWAS signals. Genes from the four modules were further projected onto predefined molecular interaction networks, revealing key drivers. Gene subnetworks entailing molecular interactions between key drivers and BP-related genes were uncovered. As proof-of-concept, we validated SH2B3, one of the top key drivers, using Sh2b3−/− mice. We found that a significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3−/− mice, which demonstrate an exaggerated pressor response to angiotensin II infusion. Our findings may help to identify novel targets for the prevention or treatment of hypertension. PMID:25882670

  20. Fouling mechanisms in the integrated system with softening and ultrafiltration.

    PubMed

    Kweon, Ji Hyang; Lawler, Desmond F

    2004-11-01

    Softening is designed to remove hardness ions, but it can also remove NOM and particles, yielding the possibility to use the process as a pretreatment for ultrafiltration. The objectives of this research were to understand the nature of the fouling mechanisms for ultrafiltration when used for waters that either require softening or have been softened, and to use that understanding to determine promising options for the use of softening as a pretreatment before ultrafiltration. To understand fouling mechanisms in the integrated system with softening and ultrafiltration, three different levels of softening performance in terms of removal of inorganics and organic matter were selected. Experiments were performed with both natural waters and synthetic waters with similar (but separable) inorganic, organic, and particulate characteristics. The synthetic waters were used to distinguish among inorganic fouling by precipitates, organic fouling, particulate fouling, and combined fouling by particles and organic matter. The results showed that organic matter played a major role in fouling, either by itself or by adsorption onto particles, and that softening pretreatment effectively reduced the foulants prior to ultrafiltration.

  1. The mechanical integrity of in vivo engineered heterotopic bone.

    PubMed

    Warnke, Patrick H; Springer, Ingo N; Acil, Yahya; Julga, Gerrit; Wiltfang, Jörg; Ludwig, Klaus; Russo, Paul A J; Sherry, Eugene; Sivananthan, Sureshan; Hedderich, Jürgen; Terheyden, Hendrik

    2006-03-01

    Recent advances in tissue engineering have aroused interest in growth of heterotopic bone for the repair of skeletal defects. This study demonstrates an in vivo method in minipigs of engineering individual human-sized mandible replacements of heterotopic bone with a mechanical integrity similar to natural bone. Ten individualized mandible replacement scaffolds were created using computer-aided design (CAD) techniques. Five had a resorbable external scaffold made of polylactite mesh (test group 1) and five had had a non-resorbable external scaffold of titanium mesh (test group 2). The mesh scaffolds were loaded each with five BioOss blocks serving as internal scaffolds and 3.5 mg recombinant human Bone Morphogenetic Protein-7. The loaded mesh scaffolds were implanted into the latissimus dorsi muscles of five infant minipigs. After 6 weeks the mandible replacements were harvested. Core biopsy cylinders were taken from the replacements of both test groups and from the natural pig mandibles (control 1). Also, core biopsies from plain BioOss Blocks were gained (control 2). The core biopsy cylinders were loaded axially into a compression test device to evaluate the mechanical compression resistance. Additional specimen underwent histological examination. Both test groups resulted in successful bone induction with degrees of compression resistance [Test 1: 1.62 MPa (SD+/-0.73); Test 2: 1.51 MPa (SD+/-0.56)] statistically insignificant when compared to natural porcine mandibular bone [1.75 MPa (SD+/-0.69)]. This differed significantly from the much lower compression resistance seen in the unadulterated BioOss [0.92 MPa (SD+/-0.04)]. Following this, the in vivo engineered bone has a similar mechanical compression stability as natural bone.

  2. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol

    2013-09-01

    Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.

  3. Integrated crop water management might sustainably halve the global food gap

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.

    2016-02-01

    As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.

  4. Integrating scientific argumentation to improve undergraduate writing and learning in a global environmental change course

    NASA Astrophysics Data System (ADS)

    Kreutz, K. J.; Koffman, B. G.; Trenbath, K. L.

    2013-12-01

    What makes a good scientific argument? We began ERS201: Global Environmental Change by asking students to reflect on the mechanics of a strong scientific argument. At the same time, we asked them to evaluate global CO2 and sea level data from different time periods in Earth's history to answer the question, 'Is there a relationship between atmospheric CO2 and sea level, and if so, why?' This question formed the theme for the course, a mid-level, inquiry-based class of about 20 students. Each week, students target specific aspects of the climate system through problem sets, which include experimental and laboratory work, basic statistical analyses of paleoclimate datasets, and the development of simple systems models using STELLA software. Every 2-4 weeks, we challenge students to write short (1500 word) data-driven scientific arguments, which require a synthesis of information from their problem sets and from the scientific literature. Students have to develop a clear, testable hypothesis related to each writing prompt, and then make their case using figures they have generated during the weekly problem sets. We evaluate student writing using a rubric that focuses on the structure and clarity of the argument, relevance of the data included, and integration and quality of the graphics, with a lesser emphasis placed on voice and style. In 2013, student scores improved from a median value of 86 × 9% to 94 × 8% over the course of the semester. More importantly, we found that incorporation of scientific argumentation served to increase student understanding of important and sometimes abstract scientific concepts. For example, on pre- and post-course assessments we asked the question, 'What would happen if a significant portion of the sea ice floating in the Arctic Ocean were to melt?' On the pre-assessment, 80% of students said that it would lead to more coastal flooding, while only 20% correctly stated that a decrease in the reflection of solar energy would lead to

  5. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity

    NASA Astrophysics Data System (ADS)

    Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2016-09-01

    Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered.

  6. Integrated proteomics and metabolomics analysis of rat testis: Mechanism of arsenic-induced male reproductive toxicity

    PubMed Central

    Huang, Qingyu; Luo, Lianzhong; Alamdar, Ambreen; Zhang, Jie; Liu, Liangpo; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2016-01-01

    Arsenic is a widespread metalloid in environment, whose exposure has been associated with a broad spectrum of toxic effects. However, a global view of arsenic-induced male reproductive toxicity is still lack, and the underlying mechanisms remain largely unclear. Our results revealed that arsenic exposure decreased testosterone level and reduced sperm quality in rats. By conducting an integrated proteomics and metabolomics analysis, the present study aims to investigate the global influence of arsenic exposure on the proteome and metabolome in rat testis. The abundance of 70 proteins (36 up-regulated and 34 down-regulated) and 13 metabolites (8 increased and 5 decreased) were found to be significantly altered by arsenic treatment. Among these, 19 proteins and 2 metabolites were specifically related to male reproductive system development and function, including spermatogenesis, sperm function and fertilization, fertility, internal genitalia development, and mating behavior. It is further proposed that arsenic mainly impaired spermatogenesis and fertilization via aberrant modulation of these male reproduction-related proteins and metabolites, which may be mediated by the ERK/AKT/NF-κB-dependent signaling pathway. Overall, these findings will aid our understanding of the mechanisms responsible for arsenic-induced male reproductive toxicity, and from such studies useful biomarkers indicative of arsenic exposure could be discovered. PMID:27585557

  7. Global identification predicts gay-male identity integration and well-being among Turkish gay men.

    PubMed

    Koc, Yasin; Vignoles, Vivian L

    2016-12-01

    In most parts of the world, hegemonic masculinity requires men to endorse traditional masculine ideals, one of which is rejection of homosexuality. Wherever hegemonic masculinity favours heterosexuality over homosexuality, gay males may feel under pressure to negotiate their conflicting male gender and gay sexual identities to maintain positive self-perceptions. However, globalization, as a source of intercultural interaction, might provide a beneficial context for people wishing to create alternative masculinities in the face of hegemonic masculinity. Hence, we tested if global identification would predict higher levels of gay-male identity integration, and indirectly subjective well-being, via alternative masculinity representations for gay and male identities. A community sample of 219 gay and bisexual men from Turkey completed the study. Structural equation modelling revealed that global identification positively predicted gay-male identity integration, and indirectly subjective well-being; however, alternative masculinity representations did not mediate this relationship. Our findings illustrate how identity categories in different domains can intersect and affect each other in complex ways. Moreover, we discuss mental health and well-being implications for gay men living in cultures where they experience high levels of prejudice and stigma. © 2016 The British Psychological Society.

  8. A condensed global photochemical mechanism for two-dimensional atmospheric models

    SciTech Connect

    Tamaresis, J.; Kinnison, D.E.; Wuebbles, D.J.

    1991-01-01

    A condensed chemical mechanism that represents the reactions of organic compounds in the atmosphere is developed and tested using a one-dimensional model. Due to the differences between the full and condensed mechanisms, the reduced version cannot be considered an accurate predictor of globally important trace species concentrations. The condensed mechanism must be improved before it can be used with confidence in two-dimensional models. Appendix contains both full and reduced mechanisms of photolysis and thermal reactions as well as species profile comparisons. 3 refs., 8 figs.

  9. Integration of large chemical kinetic mechanisms via exponential methods with Krylov approximations to Jacobian matrix functions

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio

    2012-06-01

    Recent trends in hydrocarbon fuel research indicate that the number of species and reactions in chemical kinetic mechanisms is rapidly increasing in an effort to provide predictive capabilities for fuels of practical interest. In order to cope with the computational cost associated with the time integration of stiff, large chemical systems, a novel approach is proposed. The approach combines an exponential integrator and Krylov subspace approximations to the exponential function of the Jacobian matrix. The components of the approach are described in detail and applied to the ignition of stoichiometric methane-air and iso-octane-air mixtures, here described by two widely adopted chemical kinetic mechanisms. The approach is found to be robust even at relatively large time steps and the global error displays a nominal third-order convergence. The performance of the approach is improved by utilising an adaptive algorithm for the selection of the Krylov subspace size, which guarantees an approximation to the matrix exponential within user-defined error tolerance. The Krylov projection of the Jacobian matrix onto a low-dimensional space is interpreted as a local model reduction with a well-defined error control strategy. Finally, the performance of the approach is discussed with regard to the optimal selection of the parameters governing the accuracy of its individual components.

  10. Novel Therapeutic Effects of Leonurine On Ischemic Stroke: New Mechanisms of BBB Integrity

    PubMed Central

    Wang, Zhi-Jun; Sun, De-Miao; Xu, Peng; Wu, Wei-Jun; Liu, Xin-Hua

    2017-01-01

    Stroke is a leading cause of morbidity and mortality globally. Leonurine (also named SCM-198), a compound extracted from Herba leonuri, was effective on the prevention of various cardiovascular and brain diseases. The purpose of this study was to explore the possible therapeutic potential of SCM-198 against ischemia reperfusion injury and underlying mechanisms. In the in vivo transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with SCM-198 could decrease infarct volume and improve neurological deficit by protecting against blood-brain barrier (BBB) breakdown. In the in vitro model of cell oxygen-glucose deprivation and reoxygenation (OGD/R), consistent results were obtained with decreased reactive oxygen species (ROS) production and maintained the BBB integrity. Further study demonstrated that SCM-198 increased the expression of histone deacetylase- (HDAC-) 4 which could inhibit NADPH oxidase- (NOX-) 4 and matrix metalloproteinase- (MMP-) 9 expression, resulting in the elevation of tight junction proteins, including claudin-5, occludin, and zonula occluden- (ZO-) 1. These results indicated SCM-198 protected BBB integrity by regulating the HDAC4/NOX4/MMP-9 tight junction pathway. Our findings provided novel insights into the protective effects and mechanisms of SCM-198 on ischemic stroke, indicating SCM-198 as a new class of potential drug against acute onset of ischemic stroke. PMID:28690765

  11. Health technology assessments as a mechanism for increased value for money: recommendations to the Global Fund

    PubMed Central

    2013-01-01

    The Global Fund is experiencing increased pressure to optimize results and improve its impact per dollar spent. It is also in transition from a provider of emergency funding, to a long-term, sustainable financing mechanism. This paper assesses the efficacy of current Global Fund investment and examines how health technology assessments (HTAs) can be used to provide guidance on the relative priority of health interventions currently subsidized by the Global Fund. In addition, this paper identifies areas where the application of HTAs can exert the greatest impact and proposes ways in which this tool could be incorporated, as a routine component, into application, decision, implementation, and monitoring and evaluation processes. Finally, it addresses the challenges facing the Global Fund in realizing the full potential of HTAs. PMID:23965222

  12. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    PubMed

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone.

  13. Integrated molecular mechanism directing nucleosome reorganization by human FACT

    PubMed Central

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-01-01

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  14. Integration, Networking, and Global Biobanking in the Age of New Biology.

    PubMed

    Karimi-Busheri, Feridoun; Rasouli-Nia, Aghdass

    2015-01-01

    Scientific revolution is changing the world forever. Many new disciplines and fields have emerged with unlimited possibilities and opportunities. Biobanking is one of many that is benefiting from revolutionary milestones in human genome, post-genomic, and computer and bioinformatics discoveries. The storage, management, and analysis of massive clinical and biological data sets cannot be achieved without a global collaboration and networking. At the same time, biobanking is facing many significant challenges that need to be addressed and solved including dealing with an ever increasing complexity of sample storage and retrieval, data management and integration, and establishing common platforms in a global context. The overall picture of the biobanking of the future, however, is promising. Many population-based biobanks have been formed, and more are under development. It is certain that amazing discoveries will emerge from this large-scale method of preserving and accessing human samples. Signs of a healthy collaboration between industry, academy, and government are encouraging.

  15. Global land-use allocation model linked to an integrated assessment model.

    PubMed

    Hasegawa, Tomoko; Fujimori, Shinichiro; Ito, Akihiko; Takahashi, Kiyoshi; Masui, Toshihiko

    2017-02-15

    We developed a global land-use allocation model that can be linked to integrated assessment models (IAMs) with a coarser spatial resolution. Using the model, we performed a downscaling of the IAMs' regional aggregated land-use projections to obtain a spatial land-use distribution, which could subsequently be used by Earth system models for global environmental assessments of ecosystem services, food security, and climate policies. Here we describe the land-use allocation model, discuss the verification of the downscaling technique, and explain the influences of the downscaling on estimates of land-use carbon emissions. A comparison of the emissions estimated with and without downscaling suggested that the land-use downscaling would help capture the spatial distribution of carbon stock density and regional heterogeneity of carbon emissions caused by cropland and pasture land expansion. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Graduate Education Program of Design and Integration Capability at Department of Mechanical Engineering, Graduate School of Engineering, Osaka University

    NASA Astrophysics Data System (ADS)

    Fujita, Kikuo

    Department of Mechanical Engineering, Graduate School of Engineering, Osaka University is now developing “Graduate Education Program of Design and Integration Capability” under the MEXT's scheme entitled “Initiatives for Attractive Education in Graduate Schools”. Maturation of society and life, globalization of manufacturing industry, latest demands of human's welfare have changed the meaning of design from functional ensureance to value creation. This requests graduate education of mechanical engineering to turn its definition over both synthesis and analysis and to learning and communication capabilities beyond knowledge itself. With recognizing such a background, the program aims to reform the education curriculum of mechanical engineering by introducing a product design subject which integrates design methodology education and project-based learning over industry- sponsored design problems, several graduate-level fundamental subjects, and the depth area system in which elective subjects are categorized into several areas based on their specialty. This paper describes the objectives, undertakings, promises, etc. of the program.

  17. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    NASA Astrophysics Data System (ADS)

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-08-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon (C) balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil - such as soil microbes, plant roots and their mycorrhizal symbionts - each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge. Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future climate, many plant communities may shift towards dominance by fast growing plants which

  18. 30 CFR 250.1916 - What criteria for mechanical integrity must my SEMS program meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What criteria for mechanical integrity must my... SHELF Safety and Environmental Management Systems (SEMS) § 250.1916 What criteria for mechanical... instructions to ensure the mechanical integrity and safe operation of equipment through inspection,...

  19. 30 CFR 250.1916 - What criteria for mechanical integrity must my SEMS program meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What criteria for mechanical integrity must my... SHELF Safety and Environmental Management Systems (SEMS) § 250.1916 What criteria for mechanical... instructions to ensure the mechanical integrity and safe operation of equipment through inspection,...

  20. 30 CFR 250.1916 - What criteria for mechanical integrity must my SEMS program meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What criteria for mechanical integrity must my... SHELF Safety and Environmental Management Systems (SEMS) § 250.1916 What criteria for mechanical... instructions to ensure the mechanical integrity and safe operation of equipment through inspection,...

  1. Estimating global groundwater withdrawal and depletion using an integrated hydrological model, GRACE, and in situ observations

    NASA Astrophysics Data System (ADS)

    Pokhrel, Y. N.; Koirala, S.; Hanasaki, N.; Yeh, P. J.; Kanae, S.; Oki, T.

    2012-12-01

    In the past several decades extensive use of groundwater, particularly for irrigation, has led to rapid groundwater depletion in many regions. This has not only affected the terrestrial water cycle but also resulted in global sea level rise because a large portion of unsustainably pumped groundwater eventually ends up in the ocean. Therefore, monitoring groundwater resources and their use has become increasingly important. While in situ observations are invaluable for assessing and monitoring groundwater availability, global models and satellite-based observations provide further insights into groundwater dynamics in regions where observations are scarce. In this study, we highlight the major hotspots of global groundwater depletion and the consequent sea level change by using an integrated modeling framework. The model was developed by incorporating a dynamic groundwater scheme and a pumping scheme into a global land surface model (MATSIRO: Minimal Advanced Treatments of Surface Interaction and Runoff) which also accounts for the effects of major human activities (e.g., reservoir operation, irrigation, and water withdrawal) on the terrestrial water cycle. All components of the model are fully coupled and the model tracks the flow of water taking into account the withdrawals of water for agricultural, domestic, and industrial uses from various sources such as river networks, medium-sized reservoirs, and groundwater reservoir. Using model results, GRACE measurement, and ground-based observations by the United States Geological Survey, we demonstrate that groundwater has been declining in many regions with a particular focus on the major aquifers in the United States. In the region overlying the High Plains aquifer, which is extensively irrigated mainly by using groundwater, the simulated groundwater withdrawal of ~23 km3/yr agrees well with the observational record of ~24 km3/yr for circa 2000. Moreover, corresponding closely with the USGS water level observations

  2. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction.

    PubMed

    Trivedi, Pankaj; Anderson, Ian C; Singh, Brajesh K

    2013-12-01

    Soil organic carbon performs a number of functions in ecosystems and it is clear that microbial communities play important roles in land-atmosphere carbon (C) exchange and soil C storage. In this review, we discuss microbial modulators of soil C storage, 'omics'-based approaches to characterize microbial system interactions impacting terrestrial C sequestration, and how data related to microbial composition and activities can be incorporated into mechanistic and predictive models. We argue that although making direct linkage of genomes to global phenomena is a significant challenge, many connections at intermediate scales are viable with integrated application of new systems biology approaches and powerful analytical and modelling techniques. This integration could enhance our capability to develop and evaluate microbial strategies for capturing and sequestering atmospheric CO2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Global integral gradient bounds for quasilinear equations below or near the natural exponent

    NASA Astrophysics Data System (ADS)

    Phuc, Nguyen Cong

    2014-10-01

    We obtain sharp integral potential bounds for gradients of solutions to a wide class of quasilinear elliptic equations with measure data. Our estimates are global over bounded domains that satisfy a mild exterior capacitary density condition. They are obtained in Lorentz spaces whose degrees of integrability lie below or near the natural exponent of the operator involved. As a consequence, nonlinear Calderón-Zygmund type estimates below the natural exponent are also obtained for -superharmonic functions in the whole space ℝ n . This answers a question raised in our earlier work (On Calderón-Zygmund theory for p- and -superharmonic functions, to appear in Calc. Var. Partial Differential Equations, DOI 10.1007/s00526-011-0478-8) and thus greatly improves the result there.

  4. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    NASA Astrophysics Data System (ADS)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  5. A Short Tutorial on Inertial Navigation System and Global Positioning System Integration

    NASA Technical Reports Server (NTRS)

    Smalling, Kyle M.; Eure, Kenneth W.

    2015-01-01

    The purpose of this document is to describe a simple method of integrating Inertial Navigation System (INS) information with Global Positioning System (GPS) information for an improved estimate of vehicle attitude and position. A simple two dimensional (2D) case is considered. The attitude estimates are derived from sensor data and used in the estimation of vehicle position and velocity through dead reckoning within the INS. The INS estimates are updated with GPS estimates using a Kalman filter. This tutorial is intended for the novice user with a focus on bringing the reader from raw sensor measurements to an integrated position and attitude estimate. An application is given using a remotely controlled ground vehicle operating in assumed 2D environment. The theory is developed first followed by an illustrative example.

  6. Integration of Molecular Pathology, Epidemiology, and Social Science for Global Precision Medicine

    PubMed Central

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L.; Nishihara, Reiko; Tan, Andy S.; Kawachi, Ichiro; Ogino, Shuji

    2015-01-01

    Summary The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations, and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial, and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors, and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference, and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology, and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors, and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging, and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science. PMID:26636627

  7. A path-independent integral for fracture of solids under combined electrochemical and mechanical loadings

    NASA Astrophysics Data System (ADS)

    Haftbaradaran, Hamed; Qu, Jianmin

    2014-11-01

    In this study, we first demonstrate that the J-integral in classical linear elasticity becomes path-dependent when the solid is subjected to combined electrical, chemical and mechanical loadings. We then construct an electro-chemo-mechanical J-integral that is path-independent under such combined multiple driving forces. Further, we show that this electro-chemo-mechanical J-integral represents the rate at which the grand potential releases per unit crack growth. As an example, the path-independent nature of the electro-chemo-mechanical J-integral is demonstrated by solving the problem of a thin elastic film delaminated from a thick elastic substrate.

  8. Targeting the SAVA (Substance Abuse, Violence, and AIDS) Syndemic Among Women and Girls: A Global Review of Epidemiology and Integrated Interventions.

    PubMed

    Gilbert, Louisa; Raj, Anita; Hien, Denise; Stockman, Jamila; Terlikbayeva, Assel; Wyatt, Gail

    2015-06-01

    Multiple pathways link gender-based violence (GBV) to HIV and other sexually transmitted infections among women and girls who use or inject drugs. The aim of this article is to synthesize global literature that examines associations among the synergistic epidemics of substance abuse, violence, and HIV/AIDS, known as the SAVA syndemic. It also aims to identify a continuum of multilevel integrated interventions that target key SAVA syndemic mechanisms. We conducted a selective search strategy, prioritizing use of meta-analytic epidemiological and intervention studies that address different aspects of the SAVA syndemic among women and girls who use drugs worldwide from 2000 to 2015 using PubMed, MEDLINE, and Google Scholar. Robust evidence from different countries suggests that GBV significantly increases the risk of HIV and other sexually transmitted infections among women and girls who use drugs. Multiple structural, biological, and behavioral mechanisms link GBV and HIV among women and girls. Emerging research has identified a continuum of brief and extended multilevel GBV prevention and treatment interventions that may be integrated into a continuum of HIV prevention, testing, and treatment interventions to target key SAVA syndemic mechanisms among women and girls who use drugs. There remain significant methodological and geographical gaps in epidemiological and intervention research on the SAVA syndemic, particularly in low- and middle-income countries. This global review underscores the need to advance a continuum of multilevel integrated interventions that target salient mechanisms of the SAVA syndemic, especially for adolescent girls, young women, and transgender women who use drugs.

  9. NG2 glial cells integrate synaptic input in global and dendritic calcium signals

    PubMed Central

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-01-01

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination. DOI: http://dx.doi.org/10.7554/eLife.16262.001 PMID:27644104

  10. Integration of local pattern elements into a global shape in human vision

    PubMed Central

    Saarinen, Jukka; Levi, Dennis M.; Shen, Bridgitte

    1997-01-01

    The spatial extent of the cortical filters selective for different spatial frequencies and orientations is limited. We studied psychophysically how information from the local filters is integrated into global pattern shapes, i.e., whether performance in the identification of a global pattern consisting of small, locally oriented Gabor elements depends on the orientations of those elements. The observer was presented with an E-like stimulus pattern shape comprised of oriented Gabor patches on a blank background, and the performance measure was the threshold contrast for identifying the orientation of the E pattern (four possible rotated orientations). The results showed that contrast thresholds were significantly lower when the local elements all shared the same orientation (e.g., all horizontal) compared with the condition in which the elements had mixed orientations (both horizontal and vertical). The enhancement effect due to uniform local orientations can be explained by two factors: One is local facilitatory interactions between the orientation selective filters, and the other is second-order information integration across the filters. PMID:9223350

  11. Integrated Inertial Navigation System/Global Positioning System (INS/GPS) for automatic space return vehicle

    NASA Astrophysics Data System (ADS)

    Braden, Kevin; Browning, Clint; Gelderloos, Hendrik

    A digital global navigation and communications system that automatically returns a space vehicle from orbit to a precision touchdown/landing is described. It is demonstrated that a capsule or lifting body manned return vehicle (MRV) with integrated INS/GPS (inertial navigation system/Global Positioning System) provides a highly autonomous and automatic deorbit, entry, and precision landing capability. Simulation results are used to demonstrate automatic MRV landing feasibility using absolute GPS for a vertically landing capsule vehicle and the feasibility of using integrated differential GPS/INS to provide the accuracy for a lifting body to perform a safe runway landing without needing TACAN (tactical air navigation) or microwave landing system (MLS) navigational aids. An advanced system using differential GPS/INS will be tested with the NASA Langley transport research vehicle during approach and landing flight phases in October 1990. It is expected that these proof-of-concept flight tests will provide an extensive database on GPS/INS system accuracies and will demonstrate a lower cost alternative to TACAN, DME (distance measuring equipment), and MLS navigation aids.

  12. Integration of Insect Infestations into Dynamic Global Vegetation Models Using Insect Functional Types

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Smith, E.

    2011-12-01

    Many have explored the impact of climate change on insects and explored predictions under future scenarios. But the converse has been limited: no DGVM simulates insect infestation. We are assessing the potential impact of simulating insect infestation processes on DGVMs, and creating a framework for development of insect functional types (IFTs) for integration with DGVMs. Some work have been done devising IFTs for conservation and resource management, but results are limited to qualitative groupings of insect taxa based on resource usage and response to environment. The integration of IFTs into DGVMs would enable exploration of interaction between climate change and vegetation dynamics at the global scale. IFTs have the potential to significantly impact global carbon balance and vegetation distributions, and interaction with other disturbance regimes already modeled in DGVMs (e.g., fire, drought, herbivory). We identify relevant features of existing DGVMs, including spatial and temporal scales, extents, and focuses; how other disturbances are modeled; and model areas where IFTs would link to DGVMs. We identify relevant features of insect models, including hazard and risk models; spatial and temporal resolutions and extents; spatial processes; and commonly used variables. We outline the key considerations, including tradeoffs between accuracy of representation and the breadth of applicability; morphology, physiology, biochemistry, reproductive and demographic characteristics; functional effects vs. functional responses; major axes of specialization that are consistent across environments, biogeographic regions, and major insect taxa; and whether IFTs can be empirically evaluated. We propose major axes to define IFTs, and present a sample IFT, the westwide pine beetle.

  13. NG2 glial cells integrate synaptic input in global and dendritic calcium signals.

    PubMed

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-09-19

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca(2+) signals mediated by low-voltage activated Ca(2+) channels under strict inhibitory control of voltage-gated A-type K(+) channels. Ca(2+) signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca(2+) signals by A-type channels and the global versus local signaling domains make intracellular Ca(2+) in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination.

  14. Global shape integration and illusory form perception in the absence of awareness.

    PubMed

    Jimenez, Mikel; Montoro, Pedro R; Luna, Dolores

    2017-08-01

    Previous research on perceptual organization operations still provides contradictory evidence on whether the integration of sparse local elements into coherently unified shapes and the construction of the illusory form are accomplished without the need of awareness. In the present study, three experiments were conducted in which participants were presented with masked (Experiment 1, SOA=27ms; Experiment 2; SOA=53ms) and unmasked (Experiment 3) primes consisting of geometric shapes (a square or a diamond) that could be congruent or incongruent with subsequent probe stimuli (square vs. diamond). Furthermore, the primes were divided into: a grouping condition (where local elements may group together into global shapes), an illusory condition (where the arrangement of local elements produced illusory shapes) and a hybrid condition (where both operations were presented simultaneously). While no priming effects were found for the shortest SOA (27ms), both grouping and illusory primes produced significant priming effects in the longer SOA (53ms). On the other hand, results in Experiment 3 (unmasked) showed strong priming effects for the grouping of the inducers in both the grouping and the hybrid conditions, and also a significant but weaker priming effect for the illusory condition. Overall, our results support the possibility of the integration of local visual features into a global shape in the absence of awareness and, likewise, they suggest an early -subliminal- construction of the illusory shape, implying that feedback projections from higher to lower visual areas are not crucial in the construction of the illusory form. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Estimating European soil organic carbon mitigation potential in a global integrated land use model

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Böttcher, Hannes; Schneider, Uwe; Schmid, Erwin; Havlík, Petr

    2013-04-01

    Several studies have shown the dynamic interaction between soil organic carbon (SOC) sequestration rates, soil management decisions and SOC levels. Management practices such as reduced and no-tillage, improved residue management and crop rotations as well as the conversion of marginal cropland to native vegetation or conversion of cultivated land to permanent grassland offer the potential to increase SOC content. Even though dynamic interactions are widely acknowledged in literature, they have not been implemented in most existing land use decision models. A major obstacle is the high data and computing requirements for an explicit representation of alternative land use sequences since a model has to be able to track all different management decision paths. To our knowledge no study accounted so far for SOC dynamics explicitly in a global integrated land use model. To overcome these conceptual difficulties described above we apply an approach capable of accounting for SOC dynamics in GLOBIOM (Global Biosphere Management Model), a global recursive dynamic partial equilibrium bottom-up model integrating the agricultural, bioenergy and forestry sectors. GLOBIOM represents all major land based sectors and therefore is able to account for direct and indirect effects of land use change as well as leakage effects (e.g. through trade) implicitly. Together with the detailed representation of technologies (e.g. tillage and fertilizer management systems), these characteristics make the model a highly valuable tool for assessing European SOC emissions and mitigation potential. Demand and international trade are represented in this version of the model at the level of 27 EU member states and 23 aggregated world regions outside Europe. Changes in the demand on the one side, and profitability of the different land based activities on the other side, are the major determinants of land use change in GLOBIOM. In this paper we estimate SOC emissions from cropland for the EU until

  16. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  17. 76 FR 19174 - In the Matter of Circuit Systems, Inc., Global Energy Group, Inc., Integrated Medical Resources...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... COMMISSION File No. 500-1 In the Matter of Circuit Systems, Inc., Global Energy Group, Inc., Integrated... information concerning the securities of Circuit Systems, Inc. because it has not filed any periodic reports... securities of Integrated Medical Resources, Inc. because it has not filed any periodic reports since...

  18. Creation of a global land cover and a probability map through a new map integration method

    NASA Astrophysics Data System (ADS)

    Kinoshita, Tsuguki; Iwao, Koki; Yamagata, Yoshiki

    2014-05-01

    Global land cover maps are widely used for assessment and in research of various kinds, and in recent years have also come to be used for socio-economic forecasting. However, existing maps are not very accurate, and differences between maps also contribute to their unreliability. Improving the accuracy of global land cover maps would benefit a number of research fields. In this paper, we propose a methodology for using ground truth data to integrate existing global land cover maps. We checked the accuracy of a map created using this methodology and found that the accuracy of the new map is 74.6%, which is 3% higher than for existing maps. We then created a 0.5-min latitude by 0.5-min longitude probability map. This map indicates the probability of agreement between the category class of the new map and truth data. Using the map, we found that the probabilities of cropland and grassland are relatively low compared with other land cover types. This appears to be because the definitions of cropland differ between maps, so the accuracy may be improved by including pasture and idle plot categories.

  19. Integration of space and in situ observations to study global climate change

    NASA Technical Reports Server (NTRS)

    Bengtsson, L.; Shukla, J.

    1988-01-01

    The use of model-based global data sets of atmospheric circulation for studying fundamental dynamical and physical processes is discussed, focusing on limitations of the available model-based data sets. Data from the Global Weather Experiment in 1979 were analyzed by two authorized level IIIb data centers in 1980 and in 1981. The analyses led to difference in data-sparse regions such as the tropics. Study areas which can be addressed by an internally-consistent long-term multivariate data set for the atmospheric circulation are considered, including mean climate, forcing for the ocean models, global hydrological cycle, atmospheric energetics, intraseasonal variability, land surface processes, and structure and variability of vertical velocity, divergence, and diabatic heating. It is concluded that the most comprehensive technique for integrating space and in situ observations to produce this type of data set would be a four-dimensional data assimilation system with a realistic physical model of the type employed in operational numerical weather prediction.

  20. Global water resources modeling with an integrated model of the social-economic-environmental system

    NASA Astrophysics Data System (ADS)

    Davies, Evan G. R.; Simonovic, Slobodan P.

    2011-06-01

    Awareness of increasing water scarcity has driven efforts to model global water resources for improved insight into water resources infrastructure and management strategies. Most water resources models focus explicitly on water systems and represent socio-economic and environmental change as external drivers. In contrast, the system dynamics-based integrated assessment model employed here, ANEMI, incorporates dynamic representations of these systems, so that their broader changes affect and are affected by water resources systems through feedbacks. Sectors in ANEMI therefore include the global climate system, carbon cycle, economy, population, land use and agriculture, and novel versions of the hydrological cycle, global water use and water quality. Since the model focus is on their interconnections through explicit nonlinear feedbacks, simulations with ANEMI provide insight into the nature and structure of connections between water resources and socio-economic and environmental change. Of particular interest to water resources researchers and modelers will be the simulated effects of a new water stress definition that incorporates both water quality and water quantity effects into the measurement of water scarcity. Five simulation runs demonstrate the value of wastewater treatment and reuse programs and the feedback-effects of irrigated agriculture and greater consumption of animal products.

  1. Integration of space and in situ observations to study global climate change

    NASA Technical Reports Server (NTRS)

    Bengtsson, L.; Shukla, J.

    1988-01-01

    The use of model-based global data sets of atmospheric circulation for studying fundamental dynamical and physical processes is discussed, focusing on limitations of the available model-based data sets. Data from the Global Weather Experiment in 1979 were analyzed by two authorized level IIIb data centers in 1980 and in 1981. The analyses led to difference in data-sparse regions such as the tropics. Study areas which can be addressed by an internally-consistent long-term multivariate data set for the atmospheric circulation are considered, including mean climate, forcing for the ocean models, global hydrological cycle, atmospheric energetics, intraseasonal variability, land surface processes, and structure and variability of vertical velocity, divergence, and diabatic heating. It is concluded that the most comprehensive technique for integrating space and in situ observations to produce this type of data set would be a four-dimensional data assimilation system with a realistic physical model of the type employed in operational numerical weather prediction.

  2. An integrated representation of the services provided by global water resources.

    PubMed

    Curmi, Elizabeth; Richards, Keith; Fenner, Richard; Allwood, Julian M; Kopec, Grant M; Bajželj, Bojana

    2013-11-15

    Water is essential not only to maintain the livelihoods of human beings but also to sustain ecosystems. Over the last few decades several global assessments have reviewed current and future uses of water, and have offered potential solutions to a possible water crisis. However, these have tended to focus on water supply rather than on the range of demands for all water services (including those of ecosystems). In this paper, a holistic global view of water resources and the services they provide is presented, using Sankey diagrams as a visualisation tool. These diagrams provide a valuable addition to the spatial maps of other global assessments, as they track the sources, uses, services and sinks of water resources. They facilitate comparison of different water services, and highlight trade-offs amongst them. For example, they reveal how increasing the supply of water resources to one service (crop production) can generate a reduction in provision of other water services (e.g., to ecosystem maintenance). The potential impacts of efficiency improvements in the use of water are also highlighted; for example, reduction in soil evaporation from crop production through better farming practices, or the results of improved treatment and re-use of return flows leading to reduction of delivery to final sinks. This paper also outlines the measures needed to ensure sustainable water resource use and supply for multiple competing services in the future, and emphasises that integrated management of land and water resources is essential to achieve this goal.

  3. Balancing global water availability and use at basin scale in an integrated assessment model

    DOE PAGES

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu; ...

    2016-01-22

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less

  4. Balancing global water availability and use at basin scale in an integrated assessment model

    SciTech Connect

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu; Calvin, Katherine; Clarke, Leon; Edmonds, Jae; Kyle, Page; Patel, Pralit; Wise, Marshall; Davies, Evan

    2016-01-22

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economic growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.

  5. Promoting global health: utilizing WHO to integrate public health, innovation and intellectual property.

    PubMed

    Mackey, Tim K; Liang, Bryan A

    2012-12-01

    The appropriate role of innovation and intellectual property (IP) in global public health is a controversial issue. Discussion is one-sided, with potential benefits advocated by industry in stark contrast to condemnation by certain civil society players. WHO's Public Health, Innovation and Intellectual Property Department (PHI) was established to address healthcare resource need for developing countries, assess impact of innovation and IP on access to medicines, explore innovative funding mechanisms for R&D and provide evidence-based policy-making recommendations in response to the changing global health landscape. Importantly, PHI could represent a potential forum to bridge shared, yet often diverse, interests and opportunities between various public and private stakeholders, a crucial issue for ensuring the future viability of WHO.

  6. Progress in Developing an Integrated Global Greenhouse Gas Information System (IG3IS)

    NASA Astrophysics Data System (ADS)

    Decola, P.; Butler, J. H.

    2015-12-01

    Recent studies suggest that, if society can do no better than the commitments it's already made to reducing greenhouse gases, we will achieve a 2C threshold by 2030 and a 3C threshold by 2050 [e.g., Jackson et al., 2015]. Given that a global average of 2C or 3C translates to about three times that (6C, 9C) over continents, this portends a future of on-going climate change for generations to come, with all of its concomitant struggles in adapting. It also portends a global society looking increasingly at ways to mitigate the cause(s) of climate change. Recent events have propelled that to some extent already, but it is likely we will see more as time goes on. Nevertheless, there is a huge difference between making commitments and achieving them. Nations, states, cities, resource managers, energy interests, and other invested parties will be looking at ways to reduce emissions, driven either by markets, taxes, or other relevant policies. Anticipating this need, WMO has begun developing an implementation plan for an Integrated Global Greenhouse Gas Information System (IG3IS). To work effectively, an IG3IS must integrate high quality observations from multiple and varied platforms, incorporate observation-based information from transport models, and deliver useful information at sub-continental, policy-relevant scales. Existing surface-based networks, emerging networks in developing countries, and new aircraft-based measurements and satellite observations make a difference, but additional observations and improved transport modeling are critical. This presentation will look at what is available, what the gaps are, and how IG3IS intends to address them.

  7. Integrated assessment of global water scarcity over the 21st century - Part 1: Global water supply and demand under extreme radiative forcing

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.

    2013-03-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model - namely, the Global Water Availability Model (GWAM) - is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5° × 0.5° resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9-10% of total annual renewable freshwater in 2005 to about 32-37% by 2095. This results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095 36% (28%) and 44% (39%) of the global population, respectively is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  8. Tribo-chemical mechanisms of copper chemical mechanical planarization (CMP) - Fundamental investigations and integrated modeling

    NASA Astrophysics Data System (ADS)

    Tripathi, Shantanu

    In this work, copper Chemical Mechanical Planarization is identified primarily as a wear enhanced corrosion process (as opposed to the corrosion enhanced wear process assumed in existing modeling work), where intermittent abrasive action enhances the local oxidation rate, and is followed by time-dependant passivation of copper. Based on this mechanism, an integrated tribo-chemical model of material removal at the abrasive scale was developed based on oxidation of copper. This considers abrasive and pad properties, process parameters, and slurry chemistry. Three important components of this model -- the passivation kinetics of copper in CMP slurry chemicals; the mechanical properties of passive films on copper; and the interaction frequency of copper and abrasives -- are introduced. The first two components, in particular the passivation kinetics of copper, are extensively studied experimentally, while the third component is addressed theoretically. The passivation kinetics of copper (i.e. decrease in oxidation currents as passive films form on bare copper) were investigated by potential step chronoamperometry. Low cost microelectrodes were developed (first of its kind for studying copper CMP) to reduce many of the problems of traditional macroelectrodes, such as interference from capacitive charging, IR drops and low diffusion limited current. Electrochemical impedance spectroscopy (EIS) was used on copper microelectrodes in CMP slurry constituents to obtain equivalent circuit elements associated with different electrochemical phenomena (capacitive, kinetics, diffusion etc.) at different polarization potentials. The circuit elements were used to simulate chronoamperometry in a system where copper actively corrodes at anodic potentials; from the simulation and the experimental results, the current decay in this system was attributed entirely to capacitive charging. The circuit elements were also used to explain the chronoamperometry results in passivating and

  9. Individuality of breathing patterns in patients under noninvasive mechanical ventilation evidenced by chaotic global models

    NASA Astrophysics Data System (ADS)

    Letellier, Christophe; Rodrigues, Giovani G.; Muir, Jean-François; Aguirre, Luis A.

    2013-03-01

    Autonomous global models based on radial basis functions were obtained from data measured from patients under noninvasive mechanical ventilation. Some of these models, which are discussed in the paper, turn out to have chaotic or quasi-periodic solutions, thus providing a first piece of evidence that the underlying dynamics of the data used to estimate the global models are likely to be chaotic or, at least, have a chaotic component. It is explicitly shown that one of such global models produces attractors characterized by a Horseshoe map, two models produce toroidal chaos, and one model produces a quasi-periodic regime. These topologically inequivalent attractors evidence the individuality of breathing profiles observed in patient under noninvasive ventilation.

  10. Reconciling uncertainties in integrated science and policy models: Applications to global climate change

    SciTech Connect

    Kandlikar, Milind

    1994-12-01

    In this thesis tools of data reconciliation are used to integrate available information into scientific and policy models of greenhouse gases. The role of uncertainties in scientific and policy models of global climate change is examined, and implications for global change policy are drawn. Methane is the second most important greenhouse gas. Global sources and sinks of methane have significant uncertainties. A chance constrained methodology was developed and used to perform inversions on the global methane cycle. Budgets of methane that are consistent with source fluxes, isotopic and ice core measurements were determined. While it is not possible to come up with a single budget for CH{sub 4}, performing the calculation with a number of sets of assumed priors suggests a convergence in the allowed range for sources. In some cases -- wetlands (70-130 Tg/yr), rice paddies (60-125 Tg/yr) a significant reduction in the uncertainty of the source estimate is achieved. Our results compare favorably with the most recent measurements of flux estimates. For comparison, a similar analysis using bayes monte carlo simulation was performed. The question of the missing sink for carbon remains unresolved. Two analyses that attempt to quantify the missing sink were performed. First, a steady state analysis of the carbon cycle was used to determine the pre-industrial inter-hemispheric carbon concentration gradient. Second, a full blown dynamic inversion of the carbon cycle was performed. An advection diffusion ocean model with surface chemistry, coupled to box models of the atmosphere and the biosphere was inverted to fit available measurements of {sup 12}C and {sup 14}C carbon isotopes using Differential-Algebraic Optimization. The model effectively suggests that the {open_quotes}missing{close_quotes} sink for carbon is hiding in the biosphere. Scenario dependent trace gas indices were calculated for CH{sub 4}, N{sub 2}O, HCFC-22.

  11. Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices

    DOE PAGES

    McCollum, David L.; Wilson, Charlie; Pettifor, Hazel; ...

    2016-05-03

    A large body of transport sector-focused research recognizes the complexity of human behavior in relation to mobility. Yet, global integrated assessment models (IAMs), which are widely used to evaluate the costs, potentials, and consequences of different greenhouse gas emission trajectories over the medium-to-long term, typically represent behavior and the end use of energy as a simple rational choice between available alternatives, even though abundant empirical evidence shows that real-world decision making is more complex and less routinely rational. This paper demonstrates the value of incorporating certain features of consumer behavior in IAMs, focusing on light-duty vehicle (LDV) purchase decisions. Anmore » innovative model formulation is developed to represent heterogeneous consumer groups with varying preferences for vehicle novelty, range, refueling/recharging availability, and variety. The formulation is then implemented in the transport module of MESSAGE-Transport, a global IAM, although it also has the generic flexibility to be applied in energy-economy models with varying set-ups. Comparison of conventional and behaviorally-realistic model runs with respect to vehicle purchase decisions shows that consumer preferences may slow down the transition to alternative fuel (low-carbon) vehicles. Consequently, stronger price-based incentives and/or non-price based measures may be needed to transform the global fleet of passenger vehicles, at least in the initial market phases of novel alternatives. Otherwise, the mitigation burden borne by other transport sub-sectors and other energy sectors could be higher than previously estimated. Moreover, capturing behavioral features of energy consumers in global IAMs increases their usefulness to policy makers by allowing a more realistic assessment of a more diverse suite of policies.« less

  12. Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices

    SciTech Connect

    McCollum, David L.; Wilson, Charlie; Pettifor, Hazel; Ramea, Kalai; Krey, Volker; Riahi, Keywan; Bertram, Christoph; Lin, Zhenhong; Edelenbosch, Oreane Y.; Fujisawa, Sei

    2016-05-03

    A large body of transport sector-focused research recognizes the complexity of human behavior in relation to mobility. Yet, global integrated assessment models (IAMs), which are widely used to evaluate the costs, potentials, and consequences of different greenhouse gas emission trajectories over the medium-to-long term, typically represent behavior and the end use of energy as a simple rational choice between available alternatives, even though abundant empirical evidence shows that real-world decision making is more complex and less routinely rational. This paper demonstrates the value of incorporating certain features of consumer behavior in IAMs, focusing on light-duty vehicle (LDV) purchase decisions. An innovative model formulation is developed to represent heterogeneous consumer groups with varying preferences for vehicle novelty, range, refueling/recharging availability, and variety. The formulation is then implemented in the transport module of MESSAGE-Transport, a global IAM, although it also has the generic flexibility to be applied in energy-economy models with varying set-ups. Comparison of conventional and behaviorally-realistic model runs with respect to vehicle purchase decisions shows that consumer preferences may slow down the transition to alternative fuel (low-carbon) vehicles. Consequently, stronger price-based incentives and/or non-price based measures may be needed to transform the global fleet of passenger vehicles, at least in the initial market phases of novel alternatives. Otherwise, the mitigation burden borne by other transport sub-sectors and other energy sectors could be higher than previously estimated. Moreover, capturing behavioral features of energy consumers in global IAMs increases their usefulness to policy makers by allowing a more realistic assessment of a more diverse suite of policies.

  13. Improving the behavioral realism of global integrated assessment models: An application to consumers’ vehicle choices

    SciTech Connect

    McCollum, David L.; Wilson, Charlie; Pettifor, Hazel; Ramea, Kalai; Krey, Volker; Riahi, Keywan; Bertram, Christoph; Lin, Zhenhong; Edelenbosch, Oreane Y.; Fujisawa, Sei

    2016-05-03

    A large body of transport sector-focused research recognizes the complexity of human behavior in relation to mobility. Yet, global integrated assessment models (IAMs), which are widely used to evaluate the costs, potentials, and consequences of different greenhouse gas emission trajectories over the medium-to-long term, typically represent behavior and the end use of energy as a simple rational choice between available alternatives, even though abundant empirical evidence shows that real-world decision making is more complex and less routinely rational. This paper demonstrates the value of incorporating certain features of consumer behavior in IAMs, focusing on light-duty vehicle (LDV) purchase decisions. An innovative model formulation is developed to represent heterogeneous consumer groups with varying preferences for vehicle novelty, range, refueling/recharging availability, and variety. The formulation is then implemented in the transport module of MESSAGE-Transport, a global IAM, although it also has the generic flexibility to be applied in energy-economy models with varying set-ups. Comparison of conventional and behaviorally-realistic model runs with respect to vehicle purchase decisions shows that consumer preferences may slow down the transition to alternative fuel (low-carbon) vehicles. Consequently, stronger price-based incentives and/or non-price based measures may be needed to transform the global fleet of passenger vehicles, at least in the initial market phases of novel alternatives. Otherwise, the mitigation burden borne by other transport sub-sectors and other energy sectors could be higher than previously estimated. Moreover, capturing behavioral features of energy consumers in global IAMs increases their usefulness to policy makers by allowing a more realistic assessment of a more diverse suite of policies.

  14. Preparing Students for Global Citizenship in the Twenty-First Century: Integrating Social Justice through Global Literature

    ERIC Educational Resources Information Center

    Martin, Leisa A.; Smolen, Lynn Atkinson; Oswald, Ruth A.; Milam, Jennifer L.

    2012-01-01

    In our complex, interdependent world, it is critical that educators prepare students for global citizenship. One way to develop students' awareness and understanding of the world is through global literature. Through exposure to this type of literature, students gain multiple perspectives and learn about the social, political, and moral conditions…

  15. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    NASA Astrophysics Data System (ADS)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  16. Mechanism and Experimental Observability of Global Switching Between Reactive and Nonreactive Coordinates at High Total Energies

    NASA Astrophysics Data System (ADS)

    Teramoto, Hiroshi; Toda, Mikito; Takahashi, Masahiko; Kono, Hirohiko; Komatsuzaki, Tamiki

    2015-08-01

    We present a mechanism of global reaction coordinate switching, namely, a phenomenon in which the reaction coordinate dynamically switches to another coordinate as the total energy of the system increases. The mechanism is based on global changes in the underlying phase space geometry caused by a switching of dominant unstable modes from the original reactive mode to another nonreactive mode in systems with more than 2 degrees of freedom. We demonstrate an experimental observability to detect a reaction coordinate switching in an ionization reaction of a hydrogen atom in crossed electric and magnetic fields. For this reaction, the reaction coordinate is a coordinate along which electrons escape and its switching changes the escaping direction from the direction of the electric field to that of the magnetic field and, thus, the switching can be detected experimentally by measuring the angle-resolved momentum distribution of escaping electrons.

  17. Integrative modelling reveals mechanisms linking productivity and plant species richness

    USDA-ARS?s Scientific Manuscript database

    For 40 years ecologists have sought a canonical productivity-species richness relationship 48 (PRR) for ecosystems, despite continuing disagreements about expected form and 49 interpretation. Using a large global dataset of terrestrial grasslands, we consider how 50 productivity and richness relate ...

  18. Systolic hypertension mechanisms: effect of global and local proximal aorta stiffening on pulse pressure.

    PubMed

    Reymond, Philippe; Westerhof, Nico; Stergiopulos, Nikos

    2012-03-01

    Decrease in arterial compliance leads to an increased pulse pressure, as explained by the Windkessel effect. Pressure waveform is the sum of a forward running and a backward running or reflected pressure wave. When the arterial system stiffens, as a result of aging or disease, both the forward and reflected waves are altered and contribute to a greater or lesser degree to the increase in aortic pulse pressure. Two mechanisms have been proposed in the literature to explain systolic hypertension upon arterial stiffening. The most popular one is based on the augmentation and earlier arrival of reflected waves. The second mechanism is based on the augmentation of the forward wave, as a result of an increase of the characteristic impedance of the proximal aorta. The aim of this study is to analyze the two aforementioned mechanisms using a 1-D model of the entire systemic arterial tree. A validated 1-D model of the systemic circulation, representative of a young healthy adult was used to simulate arterial pressure and flow under control conditions and in presence of arterial stiffening. To help elucidate the differences in the two mechanisms contributing to systolic hypertension, the arterial tree was stiffened either locally with compliance being reduced only in the region of the aortic arch, or globally, with a uniform decrease in compliance in all arterial segments. The pulse pressure increased by 58% when proximal aorta was stiffened and the compliance decreased by 43%. Same pulse pressure increase was achieved when compliance of the globally stiffened arterial tree decreased by 47%. In presence of local stiffening in the aortic arch, characteristic impedance increased to 0.10 mmHg s/mL vs. 0.034 mmHg s/mL in control and this led to a substantial increase (91%) in the amplitude of the forward wave, which attained 42 mmHg vs. 22 mmHg in control. Under global stiffening, the pulse pressure of the forward wave increased by 41% and the amplitude of the reflected wave by

  19. The integrated global temperature change potential (iGTP) and relationships between emission metrics

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Aamaas, Borgar; Berntsen, Terje; Fuglestvedt, Jan S.

    2011-12-01

    The Kyoto Protocol compares greenhouse gas emissions (GHGs) using the global warming potential (GWP) with a 100 yr time-horizon. The GWP was developed, however, to illustrate the difficulties in comparing GHGs. In response, there have been many critiques of the GWP and several alternative emission metrics have been proposed. To date, there has been little focus on understanding the linkages between, and interpretations of, different emission metrics. We use an energy balance model to mathematically link the absolute GWP, absolute global temperature change potential (AGTP), absolute ocean heat perturbation (AOHP), and integrated AGTP. For pulse emissions, energy conservation requires that AOHP = AGWP - iAGTP/λ and hence AGWP and iAGTP are closely linked and converge as AOHP decays to zero. When normalizing the metrics with CO2 (GWP, GTP, and iGTP), we find that the iGTP and GWP are similar numerically for a wide range of GHGs and time-horizons, except for very short-lived species. The similarity between the iGTPX and GWPX depends on how well a pulse emission of CO2 can substitute for a pulse emission of X across a range of time-horizons. The ultimate choice of emission metric(s) and time-horizon(s) depends on policy objectives. To the extent that limiting integrated temperature change over a specific time-horizon is consistent with the broader objectives of climate policy, our analysis suggests that the GWP represents a relatively robust, transparent and policy-relevant emission metric.

  20. The Global Integrated Drought Monitoring and Prediction System (GIDMaPS): Overview and Capabilities

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Hao, Z.; Farahmand, A.; Nakhjiri, N.

    2013-12-01

    Development of reliable monitoring and prediction indices and tools are fundamental to drought preparedness and management. Motivated by the Global Drought Information Systems (GDIS) activities, this paper presents the Global Integrated Drought Monitoring and Prediction System (GIDMaPS) which provides near real-time drought information using both remote sensing observations and model simulations. The monthly data from the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA-Land), North American Land Data Assimilation System (NLDAS), and remotely sensed precipitation data are used as input to GIDMaPS. Numerous indices have been developed for drought monitoring based on various indicator variables (e.g., precipitation, soil moisture, water storage). Defining droughts based on a single variable (e.g., precipitation, soil moisture or runoff) may not be sufficient for reliable risk assessment and decision making. GIDMaPS provides drought information based on multiple indices including Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSI) and the Multivariate Standardized Drought Index (MSDI) which combines SPI and SSI probabilistically. In other words, MSDI incorporates the meteorological and agricultural drought conditions for overall characterization of droughts. The seasonal prediction component of GIDMaPS is based on a persistence model which requires historical data and near-past observations. The seasonal drought prediction component is based on two input data sets (MERRA and NLDAS) and three drought indicators (SPI, SSI and MSDI). The drought prediction model provides the empirical probability of drought for different severity levels. In this presentation, both monitoring and prediction components of GIDMaPS will be discussed, and the results from several major droughts including the 2013 Namibia, 2012-2013 United States, 2011-2012 Horn of Africa, and 2010 Amazon Droughts will be presented. The results indicate

  1. The Global Modeling Initiative Assessment Model: Model Description, Integration and Testing of the Transport Shell

    SciTech Connect

    Rotman, D.A.; Tannahill, J.R.; Kinnison, D.E.; Connell, P.S.; Bergmann, D.; Proctor, D.; Rodriquez, J.M.; Lin, S.J.; Rood, R.B.; Prather, M.J.; Rasch, P.J.; Considine, D.B.; Ramaroson, R.; Kawa, S.R.

    2000-04-25

    We describe the three dimensional global stratospheric chemistry model developed under the NASA Global Modeling Initiative (GMI) to assess the possible environmental consequences from the emissions of a fleet of proposed high speed civil transport aircraft. This model was developed through a unique collaboration of the members of the GMI team. Team members provided computational modules representing various physical and chemical processes, and analysis of simulation results through extensive comparison to observation. The team members' modules were integrated within a computational framework that allowed transportability and simulations on massively parallel computers. A unique aspect of this model framework is the ability to interchange and intercompare different submodules to assess the sensitivity of numerical algorithms and model assumptions to simulation results. In this paper, we discuss the important attributes of the GMI effort, describe the GMI model computational framework and the numerical modules representing physical and chemical processes. As an application of the concept, we illustrate an analysis of the impact of advection algorithms on the dispersion of a NO{sub y}-like source in the stratosphere which mimics that of a fleet of commercial supersonic transports (High-Speed Civil Transport (HSCT)) flying between 17 and 20 kilometers.

  2. On Stereo Confidence Measures for Global Methods: Evaluation, New Model and Integration into Occupancy Grids.

    PubMed

    Brandão, Martim; Ferreira, Ricardo; Hashimoto, Kenji; Takanishi, Atsuo; Santos-Victor, José

    2016-01-01

    Stereo confidence measures are important functions for global reconstruction methods and some applications of stereo. In this article we evaluate and compare several models of confidence which are defined at the whole disparity range. We propose a new stereo confidence measure to which we call the Histogram Sensor Model (HSM), and show how it is one of the best performing functions overall. We also introduce, for parametric models, a systematic method for estimating their parameters which is shown to lead to better performance when compared to parameters as computed in previous literature. All models were evaluated when applied to two different cost functions at different window sizes and model parameters. Contrary to previous stereo confidence measure benchmark literature, we evaluate the models with criteria important not only to winner-take-all stereo, but also to global applications. To this end, we evaluate the models on a real-world application using a recent formulation of 3D reconstruction through occupancy grids which integrates stereo confidence at all disparities. We obtain and discuss our results on both indoors' and outdoors' publicly available datasets.

  3. Is It Time To Consider Global Sharing of Integral Physics Data?

    SciTech Connect

    Harold F. McFarlane

    2005-10-01

    The innocent days of the Atoms for Peace program vanished with the suicide attack on the World Trade Center in New York City that occurred while the GLOBAL 2001 international nuclear fuel cycle conference was convened in Paris. Today’s reality is that maintaining an inventory of unirradiated highly enriched uranium or plutonium for critical experiments requires a facility to accept substantial security cost and intrusion. In the context of a large collection of benchmark integral experiments collected over several decades and the ongoing rapid advances in computer modeling and simulation, there seems to be ample incentive to reduce both the number of facilities and material inventory quantities worldwide. As a result of ongoing nonproliferation initiatives, there are viable programs that will accept highly enriched uranium for down blending into commercial fuel. Nevertheless, there are formidable hurdles to overcome before national institutions will voluntarily give up existing nuclear research capabilities. GLOBAL 2005 was the appropriate forum to begin fostering a new spirit of cooperation that could lead to improved international security and better use of precious research and development resources, while ensuring access to existing and future critical experiment data.

  4. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae.

    PubMed

    Yamada, Ryosuke; Wakita, Kazuki; Ogino, Hiroyasu

    2017-01-23

    The use of renewable feedstocks for producing biofuels and biobased chemicals by engineering metabolic pathways of yeast Saccharomyces cerevisiae has recently become an attractive option. Many researchers attempted to increase glucose consumption rate by overexpressing some glycolytic enzymes because most target biobased chemicals are derived through glycolysis. However, these attempts have met with little success. In this study, to create a S. cerevisiae strain with high glucose consumption rate, we used multicopy integration to develop a global metabolic engineering strategy. Among approximately 350 metabolically engineered strains, YPH499/dPdA3-34 exhibited the highest glucose consumption rate. This strain showed 1.3-fold higher cell growth rate and glucose consumption rate than the control strain. Real-time PCR analysis revealed that transcription levels of glycolysis-related genes such as HXK2, PFK1, PFK2, PYK2, PGI1, and PGK1 in YPH499/dPdA3-34 were increased. Our strategy is thus a promising approach to optimize global metabolic pathways in S. cerevisiae.

  5. Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework.

    PubMed

    He, Bin; Kanae, Shinjiro; Oki, Taikan; Hirabayashi, Yukiko; Yamashiki, Yosuke; Takara, Kaoru

    2011-04-01

    This study has analyzed the global nitrogen loading of rivers resulting from atmospheric deposition, direct discharge, and nitrogenous compounds generated by residential, industrial, and agricultural sources. Fertilizer use, population distribution, land cover, and social census data were used in this study. A terrestrial nitrogen cycle model with a 24-h time step and 0.5° spatial resolution was developed to estimate nitrogen leaching from soil layers in farmlands, grasslands, and natural lands. The N-cycle in this model includes the major processes of nitrogen fixation, nitrification, denitrification, immobilization, mineralization, leaching, and nitrogen absorption by vegetation. The previously developed Total Runoff Integrating Pathways network was used to analyze nitrogen transport from natural and anthropogenic sources through river channels, as well as the collecting and routing of nitrogen to river mouths by runoff. Model performance was evaluated through nutrient data measured at 61 locations in several major world river basins. The dissolved inorganic nitrogen concentrations calculated by the model agreed well with the observed data and demonstrate the reliability of the proposed model. The results indicate that nitrogen loading in most global rivers is proportional to the size of the river basin. Reduced nitrate leaching was predicted for basins with low population density, such as those at high latitudes or in arid regions. Nitrate concentration becomes especially high in tropical humid river basins, densely populated basins, and basins with extensive agricultural activity. On a global scale, agriculture has a significant impact on the distribution of nitrogenous compound pollution. The map of nitrate distribution indicates that serious nitrogen pollution (nitrate concentration: 10-50 mg N/L) has occurred in areas with significant agricultural activities and small precipitation surpluses. Analysis of the model uncertainty also suggests that the nitrate

  6. Integration of glacier databases within the Global Terrestrial Network for Glaciers (GTN-G)

    NASA Astrophysics Data System (ADS)

    Zemp, M.; Raup, B. H.; Armstrong, R.; Ballagh, L.; Gärtner-Roer, I.; Haeberli, W.; Hoelzle, M.; Kääb, A.; Kargel, J.; Paul, F.

    2009-04-01

    Changes in glaciers and ice caps provide some of the clearest evidence of climate change and have impacts on global sea level fluctuations, regional hydrological cycles and local natural hazard situations. Internationally coordinated collection and distribution of standardized information about glaciers and ice caps was initiated in 1894 and is today coordinated within the Global Terrestrial Network for Glaciers (GTN-G). A recently established GTN-G Steering Committee coordinates, supports and advices the operational bodies responsible for the international glacier monitoring, which are the World Glacier Monitoring Service (WGMS), the US National Snow and Ice Data Center (NSIDC) and the Global Land Ice Measurements from Space (GLIMS) initiative. In this presentation, we provide an overview of (i) the integration of the various operational databases, (ii) the development of a one-stop web-interface to these databases, and (iii) the available datasets. By joint efforts consistency and interoperability of the different glacier databases is elaborated. Thereby, the lack of a complete worldwide, detailed glacier inventory as well as different historical developments and methodological contexts of the datasets are major challenges for linking individual glaciers throughout the databases. A map-based web-interface, implemented based on OpenLayer 2.0 and Web Map/Feature Services, is elaborated to spatially link the available data and to provide data users a fast overview of all available data. With this new online service, GTN-G provides fast access to information on glacier inventory data from 100,000 glaciers mainly based on aerial photographs and from 80,000 glaciers mainly based on satellite images, length change series from 1,800 glaciers, mass balance series from 230 glaciers, special events (e.g., hazards, surges, calving instabilities) from 130 glaciers, as well as 10,000 photographs from some 470 glaciers.

  7. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs.

    PubMed

    Kagan, Jonathan M; Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-12-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs.

  8. Global Microwave Imager (GMI) Spin Mechanism Assembly Design, Development, and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Kubitschek, Michael; Woolaway, Scott; Guy, Larry; Dayton, Chris; Berdanier, Barry; Newell, David; Pellicciotti, Joseph W.

    2011-01-01

    The GMI Spin Mechanism Assembly (SMA) is a precision bearing and power transfer drive assembly mechanism that supports and spins the Global Microwave Imager (GMI) instrument at a constant rate of 32 rpm continuously for the 3 year plus mission life. The GMI instrument will fly on the core Global Precipitation Measurement (GPM) spacecraft and will be used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements [1]. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center (GSFC) to design, build, and test the GMI instrument. The SMA design has to meet a challenging set of requirements and is based on BATC space mechanisms heritage and lessons learned design changes made to the WindSat BAPTA mechanism that is currently operating on-orbit and has recently surpassed 8 years of Flight operation.

  9. The Integrity of Digital Information: Mechanics and Definitional Issues.

    ERIC Educational Resources Information Center

    Lynch, Clifford A.

    1994-01-01

    Considers issues regarding the migration of a system of literature into electronic formats. Highlights include integrity in an information distribution system; digest technology; tracings that permit detection of copied digital objects; verifying sources; digital signature technology and cryptography; electronic publishing; and intellectual…

  10. 75 FR 20388 - International Business Machines Corporation, Global Technology Services Business Unit, Integrated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... Employment and Training Administration International Business Machines Corporation, Global Technology..., applicable to workers of International Business Machines Corporation, Global Technology Services Business..., New York, location of International Business Machines Corporation, Global Technology Services...

  11. Distinct neural mechanisms for spatially lateralized and spatially global visual working memory representations

    PubMed Central

    Kang, Min-Suk; Woodman, Geoffrey F.

    2016-01-01

    Visual working memory (VWM) allows humans to actively maintain a limited amount of information. Whereas previous electrophysiological studies have found that lateralized event-related potentials (ERPs) track the maintenance of information in VWM, recent imaging experiments have shown that spatially global representations can be read out using the activity across the visual cortex. The goal of the present study was to determine whether both lateralized and spatially global electrophysiological signatures coexist. We first show that it is possible to simultaneously measure lateralized ERPs that track the number of items held in VWM from one visual hemfield and parietooccipital α (8–12 Hz) power over both hemispheres indexing spatially global VWM representations. Next, we replicated our findings and went on to show that this bilateral parietooccipital α power as well as the contralaterally biased ERP correlate of VWM carries a signal that can be used to decode the identity of the representations stored in VWM. Our findings not only unify observations across electrophysiology and imaging techniques but also suggest that ERPs and α-band oscillations index different neural mechanisms that map on to lateralized and spatially global representations, respectively. PMID:27440249

  12. Integration of differential global positioning system with ultrawideband synthetic aperture radar for forward imaging

    NASA Astrophysics Data System (ADS)

    Wong, David C.; Bui, Khang; Nguyen, Lam H.; Smith, Gregory; Ton, Tuan T.

    2003-09-01

    The U.S. Army Research Laboratory (ARL), as part of a customer and mission-funded exploratory development program, has been evaluating low-frequency, ultra-wideband (UWB) imaging radar for forward imaging to support the Army's vision for increased mobility and survivability of unmanned ground vehicle missions. As part of the program to improve the radar system and imaging capability, ARL has incorporated a differential global positioning system (DGPS) for motion compensation into the radar system. The use of DGPS can greatly increase positional accuracy, thereby allowing us to improve our ability to focus better images for the detection of small targets such as plastic mines and other concealed objects buried underground. The ability of UWB radar technology to detect concealed objects could provide an important obstacle avoidance capability for robotic vehicles, which would improve the speed and maneuverability of these vehicles and consequently increase the survivability of the U.S. forces. This paper details the integration and discusses the significance of integrating a DGPS into the radar system for forward imaging. It also compares the difference between DGPS and the motion compensation data collected by the use of the original theodolite-based system.

  13. High accuracy integrated global positioning system/inertial navigation system LDRD: Final report

    SciTech Connect

    Owen, T.E.; Meindl, M.A.; Fellerhoff, J.R.

    1997-03-01

    This report contains the results of a Sandia National Laboratories Directed Research and Development (LDRD) program to investigate the integration of Global Positioning System (GPS) and inertial navigation system (INS) technologies toward the goal of optimizing the navigational accuracy of the combined GPSANS system. The approach undertaken is to integrate the data from an INS, which has long term drifts, but excellent short term accuracy, with GPS carrier phase signal information, which is accurate to the sub-centimeter level, but requires continuous tracking of the GPS signals. The goal is to maintain a sub-meter accurate navigation solution while the vehicle is in motion by using the GPS measurements to estimate the INS navigation errors and then using the refined INS data to aid the GPS carrier phase cycle slip detection and correction and bridge dropouts in the GPS data. The work was expanded to look at GPS-based attitude determination, using multiple GPS receivers and antennas on a single platform, as a possible navigation aid. Efforts included not only the development of data processing algorithms and software, but also the collection and analysis of GPS and INS flight data aboard a Twin Otter aircraft. Finally, the application of improved navigation system accuracy to synthetic aperture radar (SAR) target location is examined.

  14. Integration of global and local knowledge for fuzzy expert system creation: application to arrhythmic beat classification.

    PubMed

    Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I

    2007-01-01

    In this work, we propose a method for the automated expert system creation. The method is based on the integration of global knowledge (i.e. knowledge from the field experts) and local knowledge (i.e. knowledge derived from the available data) in a single inference engine. Starting from an initial set of rules (expert's knowledge) and an annotated dataset, data mining is performed to the dataset and a second set of rules is acquired. Both of them are integrated into a single set of rules. Fuzzy modeling is then applied to the rules, transforming them into a fuzzy model, and finally, an optimization technique is used to tune the fuzzy model's parameters. The method is applied to a medical domain problem, the cardiac arrhythmic beat classification and satisfactory results have been obtained. The method experiences several advantages compared to approaches based solely on expert's knowledge or mined knowledge while the ability to interpret the decisions made from the created fuzzy expert system is a major advantage compared to "black box" approaches.

  15. Alcohol Use Among Female Sex Workers and Male Clients: An Integrative Review of Global Literature

    PubMed Central

    Li, Qing; Li, Xiaoming; Stanton, Bonita

    2010-01-01

    Aims: To review the patterns, contexts and impacts of alcohol use associated with commercial sex reported in the global literature. Methods: We identified peer-reviewed English-language articles from 1980 to 2008 reporting alcohol consumption among female sex workers (FSWs) or male clients. We retrieved 70 articles describing 76 studies, in which 64 were quantitative (52 for FSWs, 12 for male clients) and 12 qualitative. Results: Studies increased over the past three decades, with geographic concentration of the research in Asia and North America. Alcohol use was prevalent among FSWs and clients. Integrating quantitative and qualitative studies, multilevel contexts of alcohol use in the sex work environment were identified, including workplace and occupation-related use, the use of alcohol to facilitate the transition into and practice of commercial sex among both FSWs and male clients, and self-medication among FSWs. Alcohol use was associated with adverse physical health, illicit drug use, mental health problems, and victimization of sexual violence, although its associations with HIV/sexually transmitted infections and unprotected sex among FSWs were inconclusive. Conclusions: Alcohol use in the context of commercial sex is prevalent, harmful among FSWs and male clients, but under-researched. Research in this area in more diverse settings and with standardized measures is required. The review underscores the importance of integrated intervention for alcohol use and related problems in multilevel contexts and with multiple components in order to effectively reduce alcohol use and its harmful effects among FSWs and their clients. PMID:20089544

  16. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses

    PubMed Central

    Cabili, Moran N.; Trapnell, Cole; Goff, Loyal; Koziol, Magdalena; Tazon-Vega, Barbara; Regev, Aviv; Rinn, John L.

    2011-01-01

    Large intergenic noncoding RNAs (lincRNAs) are emerging as key regulators of diverse cellular processes. Determining the function of individual lincRNAs remains a challenge. Recent advances in RNA sequencing (RNA-seq) and computational methods allow for an unprecedented analysis of such transcripts. Here, we present an integrative approach to define a reference catalog of >8000 human lincRNAs. Our catalog unifies previously existing annotation sources with transcripts we assembled from RNA-seq data collected from ∼4 billion RNA-seq reads across 24 tissues and cell types. We characterize each lincRNA by a panorama of >30 properties, including sequence, structural, transcriptional, and orthology features. We found that lincRNA expression is strikingly tissue-specific compared with coding genes, and that lincRNAs are typically coexpressed with their neighboring genes, albeit to an extent similar to that of pairs of neighboring protein-coding genes. We distinguish an additional subset of transcripts that have high evolutionary conservation but may include short ORFs and may serve as either lincRNAs or small peptides. Our integrated, comprehensive, yet conservative reference catalog of human lincRNAs reveals the global properties of lincRNAs and will facilitate experimental studies and further functional classification of these genes. PMID:21890647

  17. Theme 3: Mechanical Integrity - Pre & Post Well Integrity Methods for Hydraulically Fractured/Stimulated Wells

    EPA Pesticide Factsheets

    This presentation looks into wellbore design and monitoring techniques that are critical in assuring that wellbore integrity is maintained in conjunction with hydraulic fracturing/stimulation completion practices.

  18. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  19. Membrane curvature in cell biology: An integration of molecular mechanisms

    PubMed Central

    Daste, Frederic

    2016-01-01

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656

  20. Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data

    NASA Astrophysics Data System (ADS)

    Massias, A.; Diamantis, D.; Mastorakos, E.; Goussis, D. A.

    1999-06-01

    Reduced mechanisms for methane-air and hydrogen-air combustion including NO formation have been constructed with the computational singular perturbation (CSP) method using the fully automated algorithm described by Massias et al. The analysis was performed on solutions of unstrained adiabatic premixed flames with detailed chemical kinetics described by GRI 2.11 for methane and a 71-reaction mechanism for hydrogen including NOx formation. A 10-step reduced mechanism for methane has been constructed which reproduces accurately laminar burning velocities, flame temperatures and mass fraction distributions of major species for the whole flammability range. Many steady-state species are also predicted satisfactorily. This mechanism is an improvement over the seven-step set of Massias et al, especially for rich flames, because the use of HCNO, HCN and C2H2 as major species results in a better calculation of prompt NO. The present 10-step mechanism may thus also be applicable to diffusion flames. A five-step mechanism for lean and hydrogen-rich combustion has also been constructed based on a detailed mechanism including thermal NO. This mechanism is accurate for a wide range of the equivalence ratio and for pressures as high as 40 bar. For both fuels, the CSP algorithm automatically pointed to the same steady-state species as those identified by laborious analysis or intuition in the literature and the global reactions were similar to well established previous methane-reduced mechanisms. This implies that the method is very well suited for the study of complex mechanisms for heavy hydrocarbon combustion.

  1. Resilience Thinking as a Framing Mechanism to Facilitate Collective Community Response to Various Implications of Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Yamagata, Y.; Sharifi, A.

    2014-12-01

    The Future Earth initiative highlights single-disciplinary focus as a serious problem on the way of full utilization of the large body of existing knowledge and calls for "co-design", "co-production", and "co-dissemination" of knowledge. Resilience thinking is an approach to stewardship of social-ecological systems that seeks to bring the (often) fragmented diverse efforts and practices under an integrated framework. The notion of resilience is rapidly gaining ground in the sustainability literature. As a concept with broad scope and increasing popularity, resilience can be utilized to frame various problems related to different climate- and non-climate-induced disruptions in urban areas. Acknowledging that resilience thinking can provide a platform for communication between different parties operating in diverse research areas related to cities, this presentation describes the meaning of resilience in human communities. It emphasizes the essential role of social capital in mobilizing residents for collective action and facilitating collaboration between various groups and organizations that exist in an urban setting. It is argues that diffusion and implementation of such a collective and bottom-up approach to address the consequences of global environmental change warrants a governance shift from the conventional "persuasive communication processes" to "emergent dialogue" mechanisms that acknowledge the existence of complexities and uncertainties and advocate adopting a participatory process to create desired future communities that are capable of coping with the adverse consequences of global environmental change.

  2. 3D tract-specific local and global analysis of white matter integrity in Alzheimer's disease.

    PubMed

    Jin, Yan; Huang, Chao; Daianu, Madelaine; Zhan, Liang; Dennis, Emily L; Reid, Robert I; Jack, Clifford R; Zhu, Hongtu; Thompson, Paul M

    2017-03-01

    Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive decline in memory and other aspects of cognitive function. Diffusion-weighted imaging (DWI) offers a non-invasive approach to delineate the effects of AD on white matter (WM) integrity. Previous studies calculated either some summary statistics over regions of interest (ROI analysis) or some statistics along mean skeleton lines (Tract Based Spatial Statistic [TBSS]), so they cannot quantify subtle local WM alterations along major tracts. Here, a comprehensive WM analysis framework to map disease effects on 3D tracts both locally and globally, based on a study of 200 subjects: 49 healthy elderly normal controls, 110 with mild cognitive impairment, and 41 AD patients has been presented. 18 major WM tracts were extracted with our automated clustering algorithm-autoMATE (automated Multi-Atlas Tract Extraction); we then extracted multiple DWI-derived parameters of WM integrity along the WM tracts across all subjects. A novel statistical functional analysis method-FADTTS (Functional Analysis for Diffusion Tensor Tract Statistics) was applied to quantify degenerative patterns along WM tracts across different stages of AD. Gradually increasing WM alterations were found in all tracts in successive stages of AD. Among all 18 WM tracts, the fornix was most adversely affected. Among all the parameters, mean diffusivity (MD) was the most sensitive to WM alterations in AD. This study provides a systematic workflow to examine WM integrity across automatically computed 3D tracts in AD and may be useful in studying other neurological and psychiatric disorders. Hum Brain Mapp 38:1191-1207, 2017. © 2016 Wiley Periodicals, Inc.

  3. 3D tract‐specific local and global analysis of white matter integrity in Alzheimer's disease

    PubMed Central

    Jin, Yan; Huang, Chao; Daianu, Madelaine; Zhan, Liang; Dennis, Emily L.; Reid, Robert I.; Jack, Clifford R.; Zhu, Hongtu

    2016-01-01

    Abstract Alzheimer's disease (AD) is a chronic neurodegenerative disease characterized by progressive decline in memory and other aspects of cognitive function. Diffusion‐weighted imaging (DWI) offers a non‐invasive approach to delineate the effects of AD on white matter (WM) integrity. Previous studies calculated either some summary statistics over regions of interest (ROI analysis) or some statistics along mean skeleton lines (Tract Based Spatial Statistic [TBSS]), so they cannot quantify subtle local WM alterations along major tracts. Here, a comprehensive WM analysis framework to map disease effects on 3D tracts both locally and globally, based on a study of 200 subjects: 49 healthy elderly normal controls, 110 with mild cognitive impairment, and 41 AD patients has been presented. 18 major WM tracts were extracted with our automated clustering algorithm—autoMATE (automated Multi‐Atlas Tract Extraction); we then extracted multiple DWI‐derived parameters of WM integrity along the WM tracts across all subjects. A novel statistical functional analysis method—FADTTS (Functional Analysis for Diffusion Tensor Tract Statistics) was applied to quantify degenerative patterns along WM tracts across different stages of AD. Gradually increasing WM alterations were found in all tracts in successive stages of AD. Among all 18 WM tracts, the fornix was most adversely affected. Among all the parameters, mean diffusivity (MD) was the most sensitive to WM alterations in AD. This study provides a systematic workflow to examine WM integrity across automatically computed 3D tracts in AD and may be useful in studying other neurological and psychiatric disorders. Hum Brain Mapp 38:1191–1207, 2017. © 2016 Wiley Periodicals, Inc. PMID:27883250

  4. The global burden of periodontal disease: towards integration with chronic disease prevention and control.

    PubMed

    Petersen, Poul E; Ogawa, Hiroshi

    2012-10-01

    Chronic diseases are accelerating globally, advancing across all regions and pervading all socioeconomic classes. Unhealthy diet and poor nutrition, physical inactivity, tobacco use, excessive use of alcohol and psychosocial stress are the most important risk factors. Periodontal disease is a component of the global burden of chronic disease, and chronic disease and periodontal disease have the same essential risk factors. In addition, severe periodontal disease is related to poor oral hygiene and to poor general health (e.g. the presence of diabetes mellitus and other systemic diseases). The present report highlights the global burden of periodontal disease: the ultimate burden of periodontal disease (tooth loss), as well as signs of periodontal disease, are described from World Health Organization (WHO) epidemiological data. High prevalence rates of complete tooth loss are found in upper middle-income countries, whereas the tooth-loss rates, at the time of writing, are modest for low-income countries. In high-income countries somewhat lower rates for edentulism are found when compared with upper middle-income countries. Around the world, social inequality in tooth loss is profound within countries. The Community Periodontal Index was introduced by the WHO in 1987 for countries to produce periodontal health profiles and to assist countries in the planning and evaluation of intervention programs. Globally, gingival bleeding is the most prevalent sign of disease, whereas the presence of deep periodontal pockets (≥6 mm) varies from 10% to 15% in adult populations. Intercountry and intracountry variations are found in the prevalence of periodontal disease, and these variations relate to socio-environmental conditions, behavioral risk factors, general health status of people (e.g. diabetes and HIV status) and oral health systems. National public health initiatives for the control and prevention of periodontal disease should include oral health promotion and

  5. Integrating abundance and functional traits reveals new global hotspots of fish diversity.

    PubMed

    Stuart-Smith, Rick D; Bates, Amanda E; Lefcheck, Jonathan S; Duffy, J Emmett; Baker, Susan C; Thomson, Russell J; Stuart-Smith, Jemina F; Hill, Nicole A; Kininmonth, Stuart J; Airoldi, Laura; Becerro, Mikel A; Campbell, Stuart J; Dawson, Terence P; Navarrete, Sergio A; Soler, German A; Strain, Elisabeth M A; Willis, Trevor J; Edgar, Graham J

    2013-09-26

    Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of

  6. E-cadherin-mediated force transduction signals regulate global cell mechanics

    PubMed Central

    Muhamed, Ismaeel; Wu, Jun; Sehgal, Poonam; Kong, Xinyu; Tajik, Arash; Wang, Ning

    2016-01-01

    ABSTRACT This report elucidates an E-cadherin-based force-transduction pathway that triggers changes in cell mechanics through a mechanism requiring epidermal growth factor receptor (EGFR), phosphoinositide 3-kinase (PI3K), and the downstream formation of new integrin adhesions. This mechanism operates in addition to local cytoskeletal remodeling triggered by conformational changes in the E-cadherin-associated protein α-catenin, at sites of mechanical perturbation. Studies using magnetic twisting cytometry (MTC), together with traction force microscopy (TFM) and confocal imaging identified force-activated E-cadherin-specific signals that integrate cadherin force transduction, integrin activation and cell contractility. EGFR is required for the downstream activation of PI3K and myosin-II-dependent cell stiffening. Our findings also demonstrated that α-catenin-dependent cytoskeletal remodeling at perturbed E-cadherin adhesions does not require cell stiffening. These results broaden the repertoire of E-cadherin-based force transduction mechanisms, and define the force-sensitive signaling network underlying the mechano-chemical integration of spatially segregated adhesion receptors. PMID:26966187

  7. Self-Organizing Global Gene Expression Regulated through Criticality: Mechanism of the Cell-Fate Change

    PubMed Central

    Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi

    2016-01-01

    Background A fundamental issue in bioscience is to understand the mechanism that underlies the dynamic control of genome-wide expression through the complex temporal-spatial self-organization of the genome to regulate the change in cell fate. We address this issue by elucidating a physically motivated mechanism of self-organization. Principal Findings Building upon transcriptome experimental data for seven distinct cell fates, including early embryonic development, we demonstrate that self-organized criticality (SOC) plays an essential role in the dynamic control of global gene expression regulation at both the population and single-cell levels. The novel findings are as follows: i) Mechanism of cell-fate changes: A sandpile-type critical transition self-organizes overall expression into a few transcription response domains (critical states). A cell-fate change occurs by means of a dissipative pulse-like global perturbation in self-organization through the erasure of initial-state critical behaviors (criticality). Most notably, the reprogramming of early embryo cells destroys the zygote SOC control to initiate self-organization in the new embryonal genome, which passes through a stochastic overall expression pattern. ii) Mechanism of perturbation of SOC controls: Global perturbations in self-organization involve the temporal regulation of critical states. Quantitative evaluation of this perturbation in terminal cell fates reveals that dynamic interactions between critical states determine the critical-state coherent regulation. The occurrence of a temporal change in criticality perturbs this between-states interaction, which directly affects the entire genomic system. Surprisingly, a sub-critical state, corresponding to an ensemble of genes that shows only marginal changes in expression and consequently are considered to be devoid of any interest, plays an essential role in generating a global perturbation in self-organization directed toward the cell-fate change

  8. Retroviral integration: Site matters: Mechanisms and consequences of retroviral integration site selection.

    PubMed

    Demeulemeester, Jonas; De Rijck, Jan; Gijsbers, Rik; Debyser, Zeger

    2015-11-01

    Here, we review genomic target site selection during retroviral integration as a multistep process in which specific biases are introduced at each level. The first asymmetries are introduced when the virus takes a specific route into the nucleus. Next, by co-opting distinct host cofactors, the integration machinery is guided to particular chromatin contexts. As the viral integrase captures a local target nucleosome, specific contacts introduce fine-grained biases in the integration site distribution. In vivo, the established population of proviruses is subject to both positive and negative selection, thereby continuously reshaping the integration site distribution. By affecting stochastic proviral expression as well as the mutagenic potential of the virus, integration site choice may be an inherent part of the evolutionary strategies used by different retroviruses to maximise reproductive success. © 2015 The Authors. Bioessays published by WILEY Periodicals, Inc.

  9. Mechanisms controlling the spatial structure of midlatitude storm tracks and their variation under global warming

    NASA Astrophysics Data System (ADS)

    Kaspi, Y.; Tamarin, T.

    2016-12-01

    The Atlantic and Pacific storm tracks in the northern hemisphere are characterized by a downstream poleward deflection, which has important consequences for the distribution of heat, wind and precipitation in the midlatitudes. In this study, the spatial structure of the storm tracks is examined by tracking transient cyclonic eddies in an idealized GCM with a localized ocean heat flux. The localized atmospheric response is decomposed in terms of a time-zonal mean background flow, a stationary wave and a transient eddy field. The Lagrangian tracks are used to construct cyclone composites and perform a spatially varying PV budget. Three distinct mechanisms that contribute to the poleward tilt emerge: transient nonlinear advection, latent heat release and stationary advection. The downstream evolution of the PV composites shows the different role played by the stationary wave in each region. Our results imply that in the region where the tilt is maximized, all three mechanisms contribute to the poleward propagation of the low level PV anomaly associated with cyclones. Upstream of that region, the stationary wave is opposing the former two and the poleward tendency is therefore reduced. Through repeated experiments with enhanced strength of the heating source, it is shown that the poleward deflection of the storms enhances when the amplitude of the stationary wave increases. For a global warming scenario, we find that poleward deflection due to transient nonlinear advection and latent heating will strengthen, meaning that the poleward motion of individual cyclones increases with increasing global mean temperatures. Our results imply that for a 4 K rise in the global mean surface temperature, the averaged poleward drift of cyclones will increase by approximately 1 degree of latitude. This will have significant impact on midlatitude climate, and implies that localized storm tracks, such as the Atlantic and Pacific storm tracks, will exhibit a more poleward deflected shape

  10. From mechanisms to function: an integrated framework of animal innovation

    PubMed Central

    Tebbich, Sabine; Griffin, Andrea S.; Peschl, Markus F.; Sterelny, Kim

    2016-01-01

    Animal innovations range from the discovery of novel food types to the invention of completely novel behaviours. Innovations can give access to new opportunities, and thus enable innovating agents to invade and create novel niches. This in turn can pave the way for morphological adaptation and adaptive radiation. The mechanisms that make innovations possible are probably as diverse as the innovations themselves. So too are their evolutionary consequences. Perhaps because of this diversity, we lack a unifying framework that links mechanism to function. We propose a framework for animal innovation that describes the interactions between mechanism, fitness benefit and evolutionary significance, and which suggests an expanded range of experimental approaches. In doing so, we split innovation into factors (components and phases) that can be manipulated systematically, and which can be investigated both experimentally and with correlational studies. We apply this framework to a selection of cases, showing how it helps us ask more precise questions and design more revealing experiments. PMID:26926285

  11. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling.

    PubMed

    Kim, Sooah; Kim, Jungyeon; Song, Ju Hwan; Jung, Young Hoon; Choi, Il-Sup; Choi, Wonja; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2016-09-01

    Ethanol, the major fermentation product of yeast, is a stress factor in yeast. We previously constructed an ethanol-tolerant mutant yeast iETS3 by using the global transcriptional machinery engineering. However, the ethanol-tolerance mechanism has not been systematically investigated. In this study, global metabolite profiling was carried out, mainly by gas chromatography/time-of-flight mass spectrometry (GC/TOF MS), to investigate the mechanisms of ethanol tolerance in iETS3. A total of 108 intracellular metabolites were identified by GC/TOF MS and high performance liquid chromatography, and these metabolites were mostly intermediates of the central carbon metabolism. The metabolite profiles of iETS3 and BY4741, cultured with or without ethanol, were significantly different based on principal component and hierarchical clustering analyses. Our metabolomic analyses identified the compositional changes in cell membranes and the activation of glutamate metabolism and the trehalose synthetic pathway as the possible mechanisms for the ethanol tolerance. These metabolic traits can be considered possible targets for further improvement of ethanol tolerance in the mutant. For example, the KGD1 deletion mutant, with up-regulated glutamate metabolism, showed increased tolerance to ethanol. This study has demonstrated that metabolomics can be a useful tool for strain improvement and phenotypic analysis of microorganisms under stress. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Integration of kinetic isotope effect analyses to elucidate ribonuclease mechanism.

    PubMed

    Harris, Michael E; Piccirilli, Joseph A; York, Darrin M

    2015-11-01

    The well-studied mechanism of ribonuclease A is believed to involve concerted general acid-base catalysis by two histidine residues, His12 and His119. The basic features of this mechanism are often cited to explain rate enhancement by both protein and RNA enzymes that catalyze RNA 2'-O-transphosphorylation. Recent kinetic isotope effect analyses and computational studies are providing a more chemically detailed description of the mechanism of RNase A and the rate limiting transition state. Overall, the results support an asynchronous mechanism for both solution and ribonuclease catalyzed reactions in which breakdown of a transient dianoinic phosphorane intermediate by 5'OP bond cleavage is rate limiting. Relative to non-enzymatic reactions catalyzed by specific base, a smaller KIE on the 5'O leaving group and a less negative βLG are observed for RNase A catalysis. Quantum mechanical calculations consistent with these data support a model in which electrostatic and H-bonding interactions with the non-bridging oxygens and proton transfer from His119 render departure of the 5'O less advanced and stabilize charge buildup in the transition state. Both experiment and computation indicate advanced 2'OP bond formation in the rate limiting transition state. However, this feature makes it difficult to resolve the chemical steps involved in 2'O activation. Thus, modeling the transition state for RNase A catalysis underscores those elements of its chemical mechanism that are well resolved, as well as highlighting those where ambiguity remains. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Published by Elsevier B.V.

  13. Process Improvement Through Tool Integration in Aero-Mechanical Design

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2010-01-01

    Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.

  14. Process Improvement Through Tool Integration in Aero-Mechanical Design

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2010-01-01

    Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.

  15. Country-level governance of global health initiatives: an evaluation of immunization coordination mechanisms in five countries of Asia.

    PubMed

    Grundy, John

    2010-05-01

    In recent years there have been innovations in immunization financing and new technologies, and the scaling up of investment by the Global Alliance for Vaccines and Immunization (GAVI) in the Asia region. The main mechanism for coordination of this global health initiative (GHI) investment is country-level 'Inter-Agency Coordination Committees' (ICCs). The aim of the evaluation was to determine the utility and future perspectives of stakeholders regarding the role of ICCs in improving immunization services in the Asian Region. A literature review, documentary analysis and semi-structured interviews (n = 65) were undertaken in five countries (India, Bangladesh, Nepal, Sri Lanka and Indonesia), with senior level members of Ministries of Health and the GAVI partnership. The evaluation has identified that there have been significant changes recently in the strategic environment for immunization, including developments in new vaccines, increasing GAVI investment, trends towards health system integration and decentralization, and institutional development of the non-government sector. This evaluation found that ICCs are functioning well in relation to information sharing and GAVI application processes. However, they are performing less well in the areas of evaluation, strategic gap analysis and coordination of immunization technical co-operation. There are high levels of institutional and contextual complexity at country level that require a more focused global response by GAVI to the governance challenges of institutions and partners implementing GHIs at the country level. ICCs should be maintained and strengthened in the more pluralistic context of an 'immunization coordination system' that is represented by the wider health sector, regulatory authorities, and civil society and private sector interests. Managing through systems, rather than being over-reliant on committees, will broaden participation in implementation and, in doing so, expand the reach of immunization

  16. Mechanisms of subantarctic mode water upwelling in a hybrid-coordinate global GCM

    NASA Astrophysics Data System (ADS)

    Zuo, Hao; Naveira Garabato, Alberto C.; New, Adrian L.; Oschlies, Andreas

    This article presents an investigation of the global circulation and upwelling of subantarctic mode water (SAMW), which is thought to be key in the supply of nutrients to support biological production over much of the world ocean excluding the North Pacific. The HYbrid isopycnic-cartesian Coordinate Ocean general circulation Model (HYCOM) is configured to simulate the global ocean circulation for time scales of up to centuries and a SAMW-tracking online tracer experiment is conducted. The tracer re-emergence fluxes across the mixed layer base effected by a range of physical mechanisms and by numerical mixing terms in HYCOM are diagnosed and discussed. For the global ocean north of 30°S, entrainment due to surface buoyancy loss and/or wind-induced mechanical stirring accounts for almost one third of the total tracer re-emergence. Ekman upwelling and shear-induced mixing are especially significant in the tropical oceans, and account for 19% and 18% of the total tracer re-emergence, respectively. There is substantial regional variation in the relative importance of the various upwelling mechanisms. Special attention is devoted to understanding the contrasting circulations of SAMW in the North Pacific and North Atlantic oceans. The modest penetration of SAMW into the North Pacific is found to arise from the comparatively light density level that the SAMW core resides at in the South Pacific Ocean, which results in its being captured by the Equatorial Undercurrent and prevents it from entering the western boundary current of the North Pacific. In the North Atlantic, a new conceptual model of SAMW circulation and re-emergence is proposed with application to nutrient supply to the regional upper ocean. The model formulates SAMW re-emergence as a sequence of distinct processes following the seasonal cycle of the thermocline as a water column circulates around the subtropical and subpolar gyres of the North Atlantic.

  17. Decarbonizing the Global Economy - An Integrated Assessment of Low Carbon Emission Scenarios proposed in Climate Policy

    NASA Astrophysics Data System (ADS)

    Hokamp, Sascha; Khabbazan, Mohammad Mohammadi

    2017-04-01

    In 2015, the Conference of the Parties (COP 21) reaffirmed to targeting the global mean temperature rise below 2 °C in 2100 while finding no consent on decarbonizing the global economy, and instead, the final agreement called for enhanced scientific investigation of low carbon emission scenarios (UNFCC, 2015). In addition, the Climate Action Network International (CAN) proposes Special Reports to address decarbonization and low carbon development including 1.5 °C scenarios (IPCC, 2016). In response to these developments, we investigate whether the carbon emission cuts, in accordance with the recent climate policy proposals, may reach the climate target. To tackle this research question, we employ the coupled climate-energy-economy integrated assessment Model of INvestment and endogenous technological Development (MIND, cf. Edenhofer et al., 2005, Neubersch et al. 2014). Extending MIND's climate module to the two-box version used in the Dynamic Integrated model of Climate and the Economy (DICE, cf. Nordhaus and Sztorc, 2013, Nordhaus 2014), we perform a cost-effectiveness analysis with constraints on anthropogenic carbon emissions. We show that a climate policy scenario with early decarbonization complies with the 2° C climate target, even without Carbon Capturing and Storage (CCS) or negative emissions (see van Vuuren et al., 2013, for negative emissions). However, using emission inertia of 3.7 percent annually, reflecting the inflexibility on transforming the energy sector, we find a climate policy with moderately low emissions from 2100 onwards at a cost in terms of Balanced Growth Equivalents (BGE, cf. Anthoff and Tol, 2009) of 0.764 % that requires an early (2035 vs. 2120) peak of investments in renewable energy production compared to a business-as-usual scenario. Hence, decarbonizing the global economy and achieving the 2 °C target might still be possible before 2100, but the window of opportunity is beginning to close. References: Anthoff, D., and Tol, R

  18. Globalism of commutation relation and mechanism of momentum transfer in the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Li, Chun-Fang

    1997-09-01

    After examining the domain of an operator that has classical analog, which is shown to be the whole spatial space, the concept of globalism of a commutation relation is introduced through analyzing the quantization of the kinetic angular momentum in the Aharonov-Bohm effect. Its applications are also given to explain in an elegant and precise way, the mechanism of momentum transfer in the Aharonov-Bohm scattering and to study the probability distribution of the momentum for a particle in a one-dimensional infinitely deep square potential well.

  19. Global/Regional Integrated Model System (GRIMs): Double Fourier Series (DFS) Dynamical Core

    NASA Astrophysics Data System (ADS)

    Koo, M.; Hong, S.

    2013-12-01

    A multi-scale atmospheric/oceanic model system with unified physics, the Global/Regional Integrated Model system (GRIMs) has been created for use in numerical weather prediction, seasonal simulations, and climate research projects, from global to regional scales. It includes not only the model code, but also the test cases and scripts. The model system is developed and practiced by taking advantage of both operational and research applications. We outlines the history of GRIMs, its current applications, and plans for future development, providing a summary useful to present and future users. In addition to the traditional spherical harmonics (SPH) dynamical core, a new spectral method with a double Fourier series (DFS) is available in the GRIMs (Table 1). The new DFS dynamical core with full physics is evaluated against the SPH dynamical core in terms of short-range forecast capability for a heavy rainfall event and seasonal simulation framework. Comparison of the two dynamical cores demonstrates that the new DFS dynamical core exhibits performance comparable to the SPH in terms of simulated climatology accuracy and the forecast of a heavy rainfall event. Most importantly, the DFS algorithm guarantees improved computational efficiency in the cluster computer as the model resolution increases, which is consistent with theoretical values computed from the dry primitive equation model framework of Cheong (Fig. 1). The current study shows that, at higher resolutions, the DFS approach can be a competitive dynamical core because the DFS algorithm provides the advantages of both the spectral method for high numerical accuracy and the grid-point method for high performance computing in the aspect of computational cost. GRIMs dynamical cores

  20. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  1. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy

    PubMed Central

    Kaya, Namik; Muiya, Nzioka P.; AlHarazi, Olfat; Shinwari, Zakia; Andres, Editha

    2016-01-01

    Aims The disease pathways leading to idiopathic dilated cardiomyopathy (DCM) are still elusive. The present study investigated integrated global transcriptional and translational changes in human DCM for disease biomarker discovery. Methods We used identical myocardial tissues from five DCM hearts compared to five non-failing (NF) donor hearts for both transcriptome profiling using the ABI high-density oligonucleotide microarrays and proteome expression with One-Dimensional Nano Acquity liquid chromatography coupled with tandem mass spectrometry on the Synapt G2 system. Results We identified 1262 differentially expressed genes (DEGs) and 269 proteins (DEPs) between DCM cases and healthy controls. Among the most significantly upregulated (>5-fold) proteins were GRK5, APOA2, IGHG3, ANXA6, HSP90AA1, and ATP5C1 (p< 0.01). On the other hand, the most significantly downregulated proteins were GSTM5, COX17, CAV1 and ANXA3. At least ten entities were concomitantly upregulated on the two analysis platforms: GOT1, ALDH4A1, PDHB, BDH1, SLC2A11, HSP90AA1, HSP90AB1, H2AFV, HSPA5 and NDUFV1. Gene ontology analyses of DEGs and DEPs revealed significant overlap with enrichment of genes/proteins related to metabolic process, biosynthetic process, cellular component organization, oxidative phosphorylation, alterations in glycolysis and ATP synthesis, Alzheimer’s disease, chemokine-mediated inflammation and cytokine signalling pathways. Conclusion The concomitant use of transcriptome and proteome expression to evaluate global changes in DCM has led to the identification of sixteen commonly altered entities as well as novel genes, proteins and pathways whose cardiac functions have yet to be deciphered. This data should contribute towards better management of the disease. PMID:27711126

  2. UC Irvine CHRS iRain - An Integrated System for Global Real-time Precipitation Observation

    NASA Astrophysics Data System (ADS)

    Tran, H.; Nguyen, P.; Huynh, P.; Palacios, T.; Braithwaite, D.; Hsu, K. L.; Sorooshian, S.

    2016-12-01

    CHRS iRain developed by the Center for Hydrometeorology and Remote Sensing (CHRS), University of California, Irvine is an integrated system for global real-time rainfall observation and visualization using multiple data sources from satellites, radars, gauges, and crowd sourcing. Its backbone is the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks - Cloud Classification System (PERSIANN-CCS, Hong et al. 2004). Apart from using traditional PERSIANN technique (Hsu et al. 1997), the PERSIANN-CCS also applies image processing and pattern recognition techniques, which significantly improve its accuracy as well as its temporal and spatial resolution (in hourly and 4 km x 4 km respectively). Although satellite-based precipitation products are developing fast, they are still relatively new compared with other precipitation observations by traditional measuring methods, such as radar or rain gauges. CHRS iRain also provides hourly precipitation information from NCEP Stage IV multi-sensor (radar + gauges) products and gauges with over 2000 NOAA River Forecast Center stations. On the website, users can retrieve data of the most recent 72 hour precipitation over different spatial regions regarding their own interests such as grid coordinate, rectangle, watershed, basin, political division, and country. CHRS iRain is a useful tool that provides important global rainfall information for water resources management and decision making for natural disasters such as flash floods, urban flooding, and river flooding. ACKNOWLEDGMENTSWe would like to acknowledge NASA, NOAA Office of Hydrologic Development (OHD) National Weather Service (NWS), Cooperative Institue for Climate and Satellites (CICS), Army Research Office (ARO), ICIWaRM, and UNESCO for supporting this research.

  3. Cerebral mechanisms of prosodic integration: evidence from connected speech.

    PubMed

    Hesling, Isabelle; Clément, Sylvain; Bordessoules, Martine; Allard, Michèle

    2005-02-15

    Using functional Magnetic Resonance Imaging (fMRI) and long connected speech stimuli, we addressed the question of neuronal networks involved in prosodic integration by comparing (1) differences in brain activity when hearing connected speech stimuli with high and low degrees of prosodic expression; (2) differences in brain activity in two different diotic listening conditions (normal speech delivery to both ears, i.e., NN; and low-pass-filtered speech delivery to both ears, i.e., FF); and (3) effects of high and low degrees of prosodic information in the NN and FF conditions. Twelve right-handed French men listened passively to the stimuli. Each stimulus induced a specific cerebral network, the flat one weakening activations, which were mainly reduced to the bilateral STG for both listening conditions. High degrees of prosodic information were found to trigger right specific activations in a wider neuronal network involved in speech integration (such as BA44, BA21-22 and BA39-40) than low degrees of prosodic information did. More precisely, the right BA44 was found to be specifically involved in the process of F(0) modulations, which are the main acoustic correlate of prosody. Not only do the results achieved in the present experiment using 30-s-long connected speech stimuli show the involvement of a bilateral neuronal network but they also strongly suggest that high degrees of prosodic information elicit activations in a wider neuronal network involved in speech perception than low degrees of prosodic information do.

  4. Simulation and experimental investigation of active lightweight compliant mechanisms with integrated piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Modler, Niels; Winkler, Anja; Filippatos, Angelos; Lovasz, Erwin-Christian; Mărgineanu, Dan

    2016-08-01

    Compliant mechanisms with integrated actuators can enable new function-integrative structures through the elastic deformation of elements without the use of classical links and joints. For such designs, the mechanical behaviour of the mechanism has to be well known, because external loads, the utilised materials and the geometry of the structural parts influence the deformation performance significantly. In order to speed up the development process of such mechanisms, a tool for the dynamic analysis of compliant movements is necessary before any further FEM simulation and manufacturing. Therefore, the paper presents a simulating procedure for active compliant mechanisms obtained through the integration of piezoceramic actuators into fibre-reinforced composite structures using a double layer model. A new mechanism was designed, simulated, constructed and tested. The comparison between simulation and experimental results confirm the effectiveness of the presented procedure in regard to the design phase of new active compliant structures.

  5. An integrated proteomics reveals pathological mechanism of honeybee (Apis cerena) sacbrood disease.

    PubMed

    Han, Bin; Zhang, Lan; Feng, Mao; Fang, Yu; Li, Jianke

    2013-04-05

    Viral diseases of honeybees are a major challenge for the global beekeeping industry. Chinese indigenous honeybee (Apis cerana cerana, Acc) is one of the major Asian honeybee species and has a dominant population with more than 3 million colonies. However, Acc is frequently threatened by a viral disease caused by Chinese sacbrood virus (CSBV), which leads to fatal infections and eventually loss of the entire colony. Nevertheless, knowledge on the pathological mechanism of this deadly disease is still unknown. Here, an integrated gel-based and label-free liquid chromatography-mass spectrometry (LC-MS) based proteomic strategy was employed to unravel the molecular event that triggers this disease, by analysis of proteomics and phosphoproteomics alterations between healthy and CSBV infected worker larvae. There were 180 proteins and 19 phosphoproteins which altered their expressions after the viral infection, of which 142 proteins and 12 phosphoproteins were down-regulated in the sick larvae, while only 38 proteins and 7 phosphoproteins were up-regulated. The infected worker larvae were significantly affected by the pathways of carbohydrate and energy metabolism, development, protein metabolism, cytoskeleton, and protein folding, which were important for supporting organ generation and tissue development. Because of abnormal metabolism of these pathways, the sick larvae fail to pupate and eventually death occurs. Our data, for the first time, comprehensively decipher the molecular underpinnings of the viral infection of the Acc and are potentially helpful for sacbrood disease diagnosis and medicinal development for the prevention of this deadly viral disease.

  6. "Integrated knowledge translation" for globally oriented public health practitioners and scientists: Framing together a sustainable transfrontier knowledge translation vision.

    PubMed

    Lapaige, Véronique

    2010-06-01

    The development of a dynamic leadership coalition between practitioners and researchers/scientists - which is known in Canada as integrated knowledge translation (KT) - can play a major role in bridging the know-do gap in the health care and public health sectors. In public health, and especially in globally oriented public health, integrated KT is a dynamic, interactive (collaborative), and nonlinear phenomenon that goes beyond a reductionist vision of knowledge translation, to attain inter-, multi-, and even transdisciplinary status. Intimately embedded in its socioenvironmental context and closely connected with the complex interventions of multiple actors, the nonlinear process of integrated KT is based on a double principle: (1) the principle of transcendence of frontiers (sectorial, disciplinary, geographic, cultural, and cognitive), and (2) the principle of integration of knowledge beyond these frontiers. However, even though many authors agree on the overriding importance of integrated KT, there is as yet little understanding of the causal framework of integrated KT. Here, one can ask two general questions. Firstly, what "determines" integrated KT? Secondly, even if one wanted to apply a "transfrontier knowledge translation" vision, how should one go about doing so? For example, what would be the nature and qualities of a representative research program that applied a "transfrontier collaboration" approach? This paper focuses on the determinants of integrated KT within the burgeoning field of knowledge translation research (KT research). The paper is based on the results of a concurrent mixed method design which dealt with the complexity of building and sustaining effective coalitions and partnerships in the health care and public health sectors. The aims of this paper are: (1) to present an "integrated KT" conceptual framework which is global-context-sensitive, and (2) to promote the incorporation of a new "transfrontier knowledge translation" approach

  7. On the mechanical integrity of retrieved dental implants.

    PubMed

    Shemtov-Yona, K; Rittel, D

    2015-09-01

    The objective of this work is to investigate the potential state of mechanical damage in used, albeit mechanically intact, dental implants, after their retrieval from the oral cavity because of progressive bone loss (peri-implantitis). 100 retrieved dental implants were characterized with no medical record made available prior to the analysis. The implants' composition, dimensions, and surface treatments were characterized using energy dispersive X-ray analysis and scanning electron microscopy (SEM-EDX). Each implant was thoroughly examined for signs of mechanical defects and damage. The implants represent a random combination of two materials, titanium alloy (Ti-6Al-4V) and commercially pure titanium (CP-Ti), surface treatments and geometries. Two kinds of surface defects were identified: crack-like defects and full cracks that were arbitrarily divided according to their length and appearance. We found that over 60% of the implants contained both crack-like defects and full cracks. In the retrieved sample, we observed that the CP-Ti implants contained more defects and cracks than the Ti-6Al-4V ones. For the various surface roughening treatments, a general correlation with the presence of defects was observed, but without a clear differentiation between the treatments. The high incidence of embedded particles among the observed defect further strengthens the role played by the particles upon defects generation, some of which later evolve into full cracks. It was also found that the dimensions of the implant (width and length) were not correlated with the observed defects, for this specific sample. Our observations indicate that early retrieval of biologically failed implants, many of which contain early signs of mechanical failure as shown here, does actually hinder the later occurrence of implant fracture. It seems that once biological complications will be successfully overcome, such defects might grow later into full cracks as a result of cyclic mastication

  8. Caecilian jaw-closing mechanics: integrating two muscle systems.

    PubMed

    Kleinteich, Thomas; Haas, Alexander; Summers, Adam P

    2008-12-06

    Caecilians (Lissamphibia: Gymnophiona) are unique among vertebrates in having two sets of jaw-closing muscles, one on either side of the jaw joint. Using data from high-resolution X-ray radiation computed tomography scans, we modelled the effect of these two muscle groups (mm. levatores mandibulae and m. interhyoideus posterior) on bite force over a range of gape angles, employing a simplified lever arm mechanism that takes into account muscle cross-sectional area and fibre angle. Measurements of lever arm lengths, muscle fibre orientations and physiological cross-sectional area of cranial muscles were available from three caecilian species: Ichthyophis cf. kohtaoensis; Siphonops annulatus; and Typhlonectes natans. The maximal gape of caecilians is restricted by a critical gape angle above which the mm. levatores mandibulae will open the jaw and destabilize the mandibular joint. The presence of destabilizing forces in the caecilian jaw mechanism may be compensated for by a mandibular joint in that the fossa is wrapped around the condyle to resist dislocation. The caecilian skull is streptostylic; the quadrate-squamosal complex moves with respect to the rest of the skull. This increases the leverage of the jaw-closing muscles. We also demonstrate that the unusual jaw joint requires streptostyly because there is a dorsolateral movement of the quadrate-squamosal complex when the jaw closes. The combination of the two jaw-closing systems results in high bite forces over a wide range of gape angles, an important advantage for generalist feeders such as caecilians. The relative sizes and leverage mechanics of the two closing systems allow one to exert more force when the other has a poor mechanical advantage. This effect is seen in all three species we examined. In the aquatic T. natans, with its less well-roofed skull, there is a larger contribution of the mm. levatores mandibulae to total bite force than in the terrestrial I. cf. kohtaoensis and S. annulatus.

  9. Global alignment optimization strategies, procedures, and tools for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Astrophysics Data System (ADS)

    Bos, Brent J.; Howard, Joseph M.; Young, Philip J.; Gracey, Renee; Seals, Lenward T.; Ohl, Raymond G.

    2012-09-01

    During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. Thermal, finite element and optical modeling will then be used to predict the on-orbit optical performance of the observatory. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. If this becomes necessary, ISIM has a variety of adjustments that can be made. The lengths of the six kinematic mount struts that attach the ISIM to the OTE can be modified and five science instrument focus positions and two pupil positions can be individually adjusted as well. In order to understand how to manipulate the ISIM’s degrees of freedom properly and to prepare for the ISIM flight model testing, we have completed a series of optical-mechanical analyses to develop and identify the best approaches for bringing a non-compliant ISIM Element back into compliance. During this work several unknown misalignment scenarios were produced and the simulated optical performance metrics were input into various mathematical modeling and optimization tools to determine how the ISIM degrees of freedom should be adjusted to provide the best overall optical performance.

  10. From mechanisms to function: an integrated framework of animal innovation.

    PubMed

    Tebbich, Sabine; Griffin, Andrea S; Peschl, Markus F; Sterelny, Kim

    2016-03-19

    Animal innovations range from the discovery of novel food types to the invention of completely novel behaviours. Innovations can give access to new opportunities, and thus enable innovating agents to invade and create novel niches. This in turn can pave the way for morphological adaptation and adaptive radiation. The mechanisms that make innovations possible are probably as diverse as the innovations themselves. So too are their evolutionary consequences. Perhaps because of this diversity, we lack a unifying framework that links mechanism to function. We propose a framework for animal innovation that describes the interactions between mechanism, fitness benefit and evolutionary significance, and which suggests an expanded range of experimental approaches. In doing so, we split innovation into factors (components and phases) that can be manipulated systematically, and which can be investigated both experimentally and with correlational studies. We apply this framework to a selection of cases, showing how it helps us ask more precise questions and design more revealing experiments. © 2016 The Author(s).

  11. Mechanisms driving change: altered species interactions and ecosystem function through global warming.

    PubMed

    Traill, Lochran W; Lim, Matthew L M; Sodhi, Navjot S; Bradshaw, Corey J A

    2010-09-01

    1. We review the mechanisms behind ecosystem functions, the processes that facilitate energy transfer along food webs, and the major processes that allow the cycling of carbon, oxygen and nitrogen, and use case studies to show how these have already been, and will continue to be, altered by global warming. 2. Increased temperatures will affect the interactions between heterotrophs and autotrophs (e.g. pollination and seed dispersal), and between heterotrophs (e.g. predators-prey, parasites/pathogens-hosts), with generally negative ramifications for important ecosystem services (functions that provide direct benefit to human society such as pollination) and potential for heightened species co-extinction rates. 3. Mitigation of likely impacts of warming will require, in particular, the maintenance of species diversity as insurance for the provision of basic ecosystem services. Key to this will be long-term monitoring and focused research that seek to maintain ecosystem resilience in the face of global warming. 4. We provide guidelines for pursuing research that quantifies the nexus between ecosystem function and global warming. These include documentation of key functional species groups within systems, and understanding the principal outcomes arising from direct and indirect effects of a rapidly warming environment. Localized and targeted research and monitoring, complemented with laboratory work, will determine outcomes for resilience and guide adaptive conservation responses and long-term planning.

  12. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model.

    PubMed

    Hughes, Barry B; Kuhn, Randall; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-07-01

    To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate-health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements.

  13. Projections of global health outcomes from 2005 to 2060 using the International Futures integrated forecasting model

    PubMed Central

    Hughes, Barry B; Peterson, Cecilia M; Rothman, Dale S; Solórzano, José R; Mathers, Colin D; Dickson, Janet R

    2011-01-01

    Abstract Objective To develop an integrated health forecasting model as part of the International Futures (IFs) modelling system. Methods The IFs model begins with the historical relationships between economic and social development and cause-specific mortality used by the Global Burden of Disease project but builds forecasts from endogenous projections of these drivers by incorporating forward linkages from health outcomes back to inputs like population and economic growth. The hybrid IFs system adds alternative structural formulations for causes not well served by regression models and accounts for changes in proximate health risk factors. Forecasts are made to 2100 but findings are reported to 2060. Findings The base model projects that deaths from communicable diseases (CDs) will decline by 50%, whereas deaths from both non-communicable diseases (NCDs) and injuries will more than double. Considerable cross-national convergence in life expectancy will occur. Climate-induced fluctuations in agricultural yield will cause little excess childhood mortality from CDs, although other climate−health pathways were not explored. An optimistic scenario will produce 39 million fewer deaths in 2060 than a pessimistic one. Our forward linkage model suggests that an optimistic scenario would result in a 20% per cent increase in gross domestic product (GDP) per capita, despite one billion additional people. Southern Asia would experience the greatest relative mortality reduction and the largest resulting benefit in per capita GDP. Conclusion Long-term, integrated health forecasting helps us understand the links between health and other markers of human progress and offers powerful insight into key points of leverage for future improvements. PMID:21734761

  14. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks

    PubMed Central

    Reiss, David J; Baliga, Nitin S; Bonneau, Richard

    2006-01-01

    Background The learning of global genetic regulatory networks from expression data is a severely under-constrained problem that is aided by reducing the dimensionality of the search space by means of clustering genes into putatively co-regulated groups, as opposed to those that are simply co-expressed. Be cause genes may be co-regulated only across a subset of all observed experimental conditions, biclustering (clustering of genes and conditions) is more appropriate than standard clustering. Co-regulated genes are also often functionally (physically, spatially, genetically, and/or evolutionarily) associated, and such a priori known or pre-computed associations can provide support for appropriately grouping genes. One important association is the presence of one or more common cis-regulatory motifs. In organisms where these motifs are not known, their de novo detection, integrated into the clustering algorithm, can help to guide the process towards more biologically parsimonious solutions. Results We have developed an algorithm, cMonkey, that detects putative co-regulated gene groupings by integrating the biclustering of gene expression data and various functional associations with the de novo detection of sequence motifs. Conclusion We have applied this procedure to the archaeon Halobacterium NRC-1, as part of our efforts to decipher its regulatory network. In addition, we used cMonkey on public data for three organisms in the other two domains of life: Helicobacter pylori, Saccharomyces cerevisiae, and Escherichia coli. The biclusters detected by cMonkey both recapitulated known biology and enabled novel predictions (some for Halobacterium were subsequently confirmed in the laboratory). For example, it identified the bacteriorhodopsin regulon, assigned additional genes to this regulon with apparently unrelated function, and detected its known promoter motif. We have performed a thorough comparison of cMonkey results against other clustering methods, and find that

  15. Global Economic Integration and Local Community Resilience: Road Paving and Rural Demographic Change in the Southwestern Amazon

    ERIC Educational Resources Information Center

    Perz, Stephen G.; Cabrera, Liliana; Carvalho, Lucas Araujo; Castillo, Jorge; Barnes, Grenville

    2010-01-01

    Recent years have witnessed an expansion in international investment in large-scale infrastructure projects with the goal of achieving global economic integration. We focus on one such project, the Inter-Oceanic Highway in the "MAP" region, a trinational frontier where Bolivia, Brazil, and Peru meet in the southwestern Amazon. We adopt a…

  16. Global Economic Integration and Local Community Resilience: Road Paving and Rural Demographic Change in the Southwestern Amazon

    ERIC Educational Resources Information Center

    Perz, Stephen G.; Cabrera, Liliana; Carvalho, Lucas Araujo; Castillo, Jorge; Barnes, Grenville

    2010-01-01

    Recent years have witnessed an expansion in international investment in large-scale infrastructure projects with the goal of achieving global economic integration. We focus on one such project, the Inter-Oceanic Highway in the "MAP" region, a trinational frontier where Bolivia, Brazil, and Peru meet in the southwestern Amazon. We adopt a…

  17. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  18. Positional Accuracy of Airborne Integrated Global Positioning and Inertial Navigation Systems for Mapping in Glen Canyon, Arizona

    USGS Publications Warehouse

    Sanchez, Richard D.; Hothem, Larry D.

    2002-01-01

    High-resolution airborne and satellite image sensor systems integrated with onboard data collection based on the Global Positioning System (GPS) and inertial navigation systems (INS) may offer a quick and cost-effective way to gather accurate topographic map information without ground control or aerial triangulation. The Applanix Corporation?s Position and Orientation Solutions for Direct Georeferencing of aerial photography was used in this project to examine the positional accuracy of integrated GPS/INS for terrain mapping in Glen Canyon, Arizona. The research application in this study yielded important information on the usefulness and limits of airborne integrated GPS/INS data-capture systems for mapping.

  19. Medical image integrity control and forensics based on watermarking--approximating local modifications and identifying global image alterations.

    PubMed

    Huang, H; Coatrieux, G; Shu, H Z; Luo, L M; Roux, Ch

    2011-01-01

    In this paper we present a medical image integrity verification system that not only allows detecting and approximating malevolent local image alterations (e.g. removal or addition of findings) but is also capable to identify the nature of global image processing applied to the image (e.g. lossy compression, filtering …). For that purpose, we propose an image signature derived from the geometric moments of pixel blocks. Such a signature is computed over regions of interest of the image and then watermarked in regions of non interest. Image integrity analysis is conducted by comparing embedded and recomputed signatures. If any, local modifications are approximated through the determination of the parameters of the nearest generalized 2D Gaussian. Image moments are taken as image features and serve as inputs to one classifier we learned to discriminate the type of global image processing. Experimental results with both local and global modifications illustrate the overall performances of our approach.

  20. Framework programmable platform for the advanced software development workstation. Integration mechanism design document

    NASA Technical Reports Server (NTRS)

    Mayer, Richard J.; Blinn, Thomas M.; Mayer, Paula S. D.; Reddy, Uday; Ackley, Keith; Futrell, Mike

    1991-01-01

    The Framework Programmable Software Development Platform (FPP) is a project aimed at combining effective tool and data integration mechanisms with a model of the software development process in an intelligent integrated software development environment. Guided by this model, this system development framework will take advantage of an integrated operating environment to automate effectively the management of the software development process so that costly mistakes during the development phase can be eliminated.

  1. Mechanical coupling of smooth muscle cells using local and global stimulations

    NASA Astrophysics Data System (ADS)

    Copeland, Craig; Chen, Christopher; Reich, Daniel

    2012-02-01

    Mechanical stresses can directly alter many cellular processes, including signal transduction, growth, differentiation, and survival. These stresses, generated primarily by myosin activity within the cytoskeleton, regulate both cell-substrate and cell-cell interactions. We report studies of mechanical cell-cell and cell-substrate interactions using patterned arrays of flexible poly(dimethylsiloxane) (PDMS) microposts combined with application of global stretch or local chemical stimulation. Bovine pulmonary artery smooth muscle cells are patterned onto micropost arrays to create multicellular structures to probe intercellular coupling. Global stimulation is applied by building the micropost arrays on a flexible membrane that can be stretched while allowing simultaneous observation of cell traction forces. Results for triangle wave stretches of single cells show increasing traction forces with increasing strain, and immediate weakening of traction forces as strain is decreased. ``Spritzing,'' a laminar flow technique, is used to expose a single cell within a construct to a drug treatment while cell traction forces are recorded via the microposts. Results will be described showing the response of cells to external stimulation both directly and through intercellular coupling.

  2. Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium

    PubMed Central

    Snow, Joseph T.; Polyviou, Despo; Skipp, Paul; Chrismas, Nathan A. M.; Hitchcock, Andrew; Geider, Richard; Moore, C. Mark; Bibby, Thomas S.

    2015-01-01

    Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual ‘new’ nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55–60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean. PMID:26562022

  3. Integrating psychology within the globalizing world: a requiem to the post-modernist experiment with Wissenschaft.

    PubMed

    Valsiner, Jaan

    2009-03-01

    Since the new beginning in 2007 of Integrative Psychological & Behavioral Science we have brought out to the open both the reasons why the ever-widening research enterprise in psychology has largely failed to produce general knowledge, and to point to promising new directions in the field. The post-modernist turn in psychology is now over, and it is an interesting task to return to creating a universal science of psychology that is context-sensitive, and culture-inclusive. The latter goal entails a renewed focus upon qualitative analyses of time-based processes, close attention to the phenomena under study, and systematic (single-system-based-usually labeled idiographic) focus in empirical investigations. Through these three pathways centrality of human experiencing of culturally constructed worlds is restored as the core of psychological science. Universal principles are evident in each and every single case. Transcending post-modernist deconstruction of science happens through active international participation and a renewed focus on creating general theories. Contemporary psychology is global in ways that no longer can any country's socio-political world view dominate the field. Such international equality of contributions grants innovation of the core of the discipline, and safeguards it against assuming any single cultural myth-story as the axiomatic basis for the discipline.

  4. A simple integrated assessment approach to global change simulation and evaluation

    NASA Astrophysics Data System (ADS)

    Ogutu, Keroboto; D'Andrea, Fabio; Ghil, Michael

    2016-04-01

    We formulate and study the Coupled Climate-Economy-Biosphere (CoCEB) model, which constitutes the basis of our idealized integrated assessment approach to simulating and evaluating global change. CoCEB is composed of a physical climate module, based on Earth's energy balance, and an economy module that uses endogenous economic growth with physical and human capital accumulation. A biosphere model is likewise under study and will be coupled to the existing two modules. We concentrate on the interactions between the two subsystems: the effect of climate on the economy, via damage functions, and the effect of the economy on climate, via a control of the greenhouse gas emissions. Simple functional forms of the relation between the two subsystems permit simple interpretations of the coupled effects. The CoCEB model is used to make hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement, in particular by investing in low carbon technology, in deforestation reduction or in carbon capture and storage (CCS). The CoCEB model is very flexible and transparent, and it allows one to easily formulate and compare different functional representations of climate change mitigation policies. Using different mitigation measures and their cost estimates, as found in the literature, one is able to compare these measures in a coherent way.

  5. From terrestrial to aquatic fluxes: Integrating stream dynamics within a dynamic global vegetation modeling framework

    NASA Astrophysics Data System (ADS)

    Hoy, Jerad; Poulter, Benjamin; Emmett, Kristen; Cross, Molly; Al-Chokhachy, Robert; Maneta, Marco

    2016-04-01

    Integrated terrestrial ecosystem models simulate the dynamics and feedbacks between climate, vegetation, disturbance, and hydrology and are used to better understand biogeography and biogeochemical cycles. Extending dynamic vegetation models to the aquatic interface requires coupling surface and sub-surface runoff to catchment routing schemes and has the potential to enhance how researchers and managers investigate how changes in the environment might impact the availability of water resources for human and natural systems. In an effort towards creating such a coupled model, we developed catchment-based hydrologic routing and stream temperature model to pair with LPJ-GUESS, a dynamic global vegetation model. LPJ-GUESS simulates detailed stand-level vegetation dynamics such as growth, carbon allocation, and mortality, as well as various physical and hydrologic processes such as canopy interception and through-fall, and can be applied at small spatial scales, i.e., 1 km. We demonstrate how the coupled model can be used to investigate the effects of transient vegetation dynamics and CO2 on seasonal and annual stream discharge and temperature regimes. As a direct management application, we extend the modeling framework to predict habitat suitability for fish habitat within the Greater Yellowstone Ecosystem, a 200,000 km2 region that provides critical habitat for a range of aquatic species. The model is used to evaluate, quantitatively, the effects of management practices aimed to enhance hydrologic resilience to climate change, and benefits for water storage and fish habitat in the coming century.

  6. SoilTrEC: a global initiative on critical zone research and integration.

    PubMed

    Menon, Manoj; Rousseva, Svetla; Nikolaidis, Nikolaos P; van Gaans, Pauline; Panagos, Panos; de Souza, Danielle Maia; Ragnarsdottir, Kristin Vala; Lair, Georg J; Weng, Liping; Bloem, Jaap; Kram, Pavel; Novak, Martin; Davidsdottir, Brynhildur; Gisladottir, Gudrun; Robinson, David A; Reynolds, Brian; White, Tim; Lundin, Lars; Zhang, Bin; Duffy, Christopher; Bernasconi, Stefano M; de Ruiter, Peter; Blum, Winfried E H; Banwart, Steven A

    2014-02-01

    Soil is a complex natural resource that is considered non-renewable in policy frameworks, and it plays a key role in maintaining a variety of ecosystem services (ES) and life-sustaining material cycles within the Earth's Critical Zone (CZ). However, currently, the ability of soil to deliver these services is being drastically reduced in many locations, and global loss of soil ecosystem services is estimated to increase each year as a result of many different threats, such as erosion and soil carbon loss. The European Union Thematic Strategy for Soil Protection alerts policy makers of the need to protect soil and proposes measures to mitigate soil degradation. In this context, the European Commission-funded research project on Soil Transformations in European Catchments (SoilTrEC) aims to quantify the processes that deliver soil ecosystem services in the Earth's Critical Zone and to quantify the impacts of environmental change on key soil functions. This is achieved by integrating the research results into decision-support tools and applying methods of economic valuation to soil ecosystem services. In this paper, we provide an overview of the SoilTrEC project, its organization, partnerships and implementation.

  7. Integrative medical therapy: examination of meditation's therapeutic and global medicinal outcomes via nitric oxide (review).

    PubMed

    Stefano, George B; Esch, Tobias

    2005-10-01

    Relaxation techniques are part of the integrative medicine movement that is of growing importance for mainstream medicine. Complementary medical therapies have the potential to affect many physiological systems. Repeatedly studies show the benefits of the placebo response and relaxation techniques in the treatment of hypertension, cardiac arrhythmias, chronic pain, insomnia, anxiety and mild and moderate depression, premenstrual syndrome, and infertility. In itself, relaxation is characterized by a decreased metabolism, heart rate, blood pressure, and rate of breathing as well as an increase in skin temperature. Relaxation approaches, such as progressive muscle relaxation, autogenic training, meditation and biofeedback, are effective in lowering systolic and diastolic blood pressure in hypertensive patients by a significant margin. Given this association with changes in vascular tone, we have hypothesized that nitric oxide, a demonstrated vasodilator substance, contribute to physiological activity of relaxation approaches. We examined the scientific literature concerning the disorders noted earlier for their nitric oxide involvement in an attempt to provide a molecular rationale for the positive effects of relaxation approaches, which are physiological and cognitive process. We conclude that constitutive nitric oxide may crucially contribute to potentially beneficial outcomes and effects in diverse pathologies, exerting a global healing effect.

  8. Integrating women's human rights into global health research: an action framework.

    PubMed

    Baptiste, Donna; Kapungu, Chisina; Khare, Manorama H; Lewis, Yvonne; Barlow-Mosha, Linda

    2010-11-01

    This article uses Scale of Change theory as a framework to guide global health researchers to synergistically target women's health outcomes in the context of improving their right to freedom, equity, and equality of opportunities. We hypothesize that health researchers can do so through six action strategies. These strategies include (1) becoming fully informed of women's human rights directives to integrate them into research, (2) mainstreaming gender in the research, (3) using the expertise of grass roots women's organizations in the setting, (4) showcasing women's equity and equality in the organizational infrastructure, (5) disseminating research findings to policymakers in the study locale to influence health priorities, and (6) publicizing the social conditions that are linked to women's diseases. We explore conceptual and logistical dilemmas in transforming a study using these principles and also provide a case study of obstetric fistula reduction in Nigeria to illustrate how these strategies can be operationalized. Our intent is to offer a feasible approach to health researchers who, conceptually, may link women's health to social and cultural conditions but are looking for practical implementation strategies to examine a women's health issue through the lens of their human rights.

  9. Phenology as an Integrative Science for Assessment of Global Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Weltzin, J.; Losleben, M. V.

    2007-12-01

    Phenology is the study of periodic plant and animal life cycle events and how these are influenced by seasonal and interannual variations in climate. Examples include the timing of leafing and flowering, agricultural crop stages, insect emergence, and animal migration. All of these events are sensitive measures of climatic variation and change, are relatively simple to record and understand, and are vital to both the scientific and public interest. Integration of spatially-extensive phenological data and models with both short and long-term climatic forecasts offer a powerful agent for human adaptation to ongoing and future climate change. However, a new data resource of national scale is needed to capture the valuable information potential of phenological responses to climate change; to study its nature, pace and the effects of ecosystem function; and to understand connectivity and synchrony among species. The USA National Phenology Network (USA-NPN) is being designed and organized to engage federal agencies, environmental networks and field stations, educational institutions, and mass participation by citizen scientists to create this data resource, and develop phenology research potential. This presentation illustrates the variety of source, scale, and use of phenology in assessing current and future global climate change impacts.

  10. Integrating Women's Human Rights into Global Health Research: An Action Framework

    PubMed Central

    Kapungu, Chisina; Khare, Manorama H.; Lewis, Yvonne; Barlow-Mosha, Linda

    2010-01-01

    Abstract This article uses Scale of Change theory as a framework to guide global health researchers to synergistically target women's health outcomes in the context of improving their right to freedom, equity, and equality of opportunities. We hypothesize that health researchers can do so through six action strategies. These strategies include (1) becoming fully informed of women's human rights directives to integrate them into research, (2) mainstreaming gender in the research, (3) using the expertise of grass roots women's organizations in the setting, (4) showcasing women's equity and equality in the organizational infrastructure, (5) disseminating research findings to policymakers in the study locale to influence health priorities, and (6) publicizing the social conditions that are linked to women's diseases. We explore conceptual and logistical dilemmas in transforming a study using these principles and also provide a case study of obstetric fistula reduction in Nigeria to illustrate how these strategies can be operationalized. Our intent is to offer a feasible approach to health researchers who, conceptually, may link women's health to social and cultural conditions but are looking for practical implementation strategies to examine a women's health issue through the lens of their human rights. PMID:20973667

  11. Targeting the SAVA (Substance Abuse, Violence and AIDS) Syndemic among Women and Girls: A Global Review of Epidemiology and Integrated Interventions

    PubMed Central

    Gilbert, Louisa; Raj, Anita; Hien, Denise; Stockman, Jamila; Terlikbayeva, Assel; Wyatt, Gail

    2016-01-01

    Objectives Multiple pathways link gender-based violence (GBV) to HIV and other sexually transmitted infections (STIs) among women and girls who use or inject drugs. The aim of this paper is to synthesize global literature that examines associations among the synergistic epidemics of substance abuse, violence and HIV/AIDS, known as the SAVA syndemic. It also aims to identify a continuum of multi-level integrated interventions that target key SAVA syndemic mechanisms. Methods We conducted a selective search strategy, prioritizing use of meta-analytic epidemiological and intervention studies that address different aspects of the SAVA syndemic among women and girls who use drugs worldwide from 2000–2015 using PubMed, MEDLINE, and Google Scholar. Results Robust evidence from different countries suggests that GBV significantly increases the risk of HIV and other STIs among women and girls who use drugs. Multiple structural, biological and behavioral mechanisms link GBV and HIV among women and girls. Emerging research has identified a continuum of brief and extended multi-level GBV prevention and treatment interventions that may be integrated into a continuum of HIV prevention, testing, and treatment interventions to target key SAVA syndemic mechanisms among women and girls who use drugs. Conclusion There remain significant methodological and geographical gaps in epidemiological and intervention research on the SAVA syndemic, particularly in low and middle-income countries. This global review underscores the need to advance a continuum of multi-level integrated interventions that target salient mechanisms of the SAVA syndemic, especially for adolescent girls, young women and transgender women who use drugs. PMID:25978478

  12. Technologies for water resources management: an integrated approach to manage global and regional water resources

    SciTech Connect

    Tao, W. C., LLNL

    1998-03-23

    regional water resources; As an evaluation tool for selecting appropriate remediation technologies for reclaiming water; and As an assessment tool for determining the effectiveness of implementing the remediation technologies. We have included a discussion on the appropriate strategy for LLNL to integrate its technical tools into the global business, geopolitical, and academic communities, whereby LLNL can form partnerships with technology proponents in the commercial, industrial, and public sectors.

  13. An integrated mechanism of cardiomyocyte nuclear Ca(2+) signaling.

    PubMed

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A; Uhlén, Per; Hill, Joseph A; Lavandero, Sergio

    2014-10-01

    In cardiomyocytes, Ca(2+) plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca(2+) within subcellular microdomains: transcription is regulated by Ca(2+) release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca(2+). Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca(2+) signals. However, signaling pathways coupling surface receptor activation to nuclear Ca(2+) release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca(2+) signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca(2+) release from perinuclear Ca(2+) stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca(2+) release. In this review, we discuss mechanisms for the selective control of nuclear Ca(2+) signals with special focus on emerging models of agonist receptor activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Making software get along: integrating optical and mechanical design programs

    NASA Astrophysics Data System (ADS)

    Shackelford, Christie J.; Chinnock, Randal B.

    2001-03-01

    As modern optomechanical engineers, we have the good fortune of having very sophisticated software programs available to us. The current optical design, mechanical design, industrial design, and CAM programs are very powerful tools with some very desirable features. However, no one program can do everything necessary to complete an entire optomechanical system design. Each program has a unique set of features and benefits, and typically two or mo re will be used during the product development process. At a minimum, an optical design program and a mechanical CAD package will be employed. As we strive for efficient, cost-effective, and rapid progress in our development projects, we must use these programs to their full advantage, while keeping redundant tasks to a minimum. Together, these programs offer the promise of a `seamless' flow of data from concept all the way to the download of part designs directly to the machine shop for fabrication. In reality, transferring data from one software package to the next is often frustrating. Overcoming these problems takes some know-how, a bit of creativity, and a lot of persistence. This paper describes a complex optomechanical development effort in which a variety of software tools were used from the concept stage to prototyping. It will describe what software was used for each major design task, how we learned to use them together to best advantage, and how we overcame the frustrations of software that didn't get along.

  15. An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling

    PubMed Central

    Ibarra, Cristián; Vicencio, Jose Miguel; Varas-Godoy, Manuel; Jaimovich, Enrique; Rothermel, Beverly A.; Uhlén, Per; Hill, Joseph A.; Lavandero, Sergio

    2015-01-01

    In cardiomyocytes, Ca2+ plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca2+ within subcellular microdomains: transcription is regulated by Ca2+ release within nuclear microdomains, and excitation–contraction coupling is regulated by cytosolic Ca2+. Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca2+ signals. However, signaling pathways coupling surface receptor activation to nuclear Ca2+ release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca2+ signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at the nuclear envelope. There, they mediate Ca2+ release from perinuclear Ca2+ stores upon binding of inositol trisphosphate generated in the cytosol, which diffuses into the nucleus. More recently, identification of such receptors at nuclear membranes or perinuclear sarcolemmal invaginations has uncovered novel mechanisms whereby agonists control nuclear Ca2+ release. In this review, we discuss mechanisms for the selective control of nuclear Ca2+ signals with special focus on emerging models of agonist receptor activation. PMID:24997440

  16. Managing two cultural identities: the malleability of bicultural identity integration as a function of induced global or local processing.

    PubMed

    Mok, Aurelia; Morris, Michael W

    2012-02-01

    Increasingly, individuals identify with two or more cultures. Prior research has found the degree to which individuals chronically integrate these identities (bicultural identity integration; BII) moderates responses to cultural cues: High BII individuals assimilate (adopting biases that are congruent with norms of the cued culture), whereas low BII individuals contrast (adopting biases that are incongruent with these norms). The authors propose BII can also be a psychological state and modulated by shifts in processing styles. In four experiments, the authors induced a global or local processing style using physical posture (Experiment 1) and cognitive manipulations (Experiments 2-4) and found that BII is enhanced in contexts facilitating a more global processing style (i.e., smiling, high-level construal, and similarity focus). The authors also found that contrastive responses to cultural cues are diminished when BII is situationally enhanced. Implications for research on processing style, identity integration, and performance in culture-based situations are discussed.

  17. Investigation of failure mechanisms in integrated vacuum circuits

    NASA Technical Reports Server (NTRS)

    Rosengreen, A.

    1972-01-01

    The fabrication techniques of integrated vacuum circuits are described in detail. Data obtained from a specially designed test circuit are presented. The data show that the emission observed in reverse biased devices is due to cross-talk between the devices and can be eliminated by electrostatic shielding. The lifetime of the cathodes has been improved by proper activation techniques. None of the cathodes on life test has shown any sign of failure after more than 3500 hours. Life tests of triodes show a decline of anode current by a factor of two to three after a few days. The current recovers when the large positive anode voltage (100 V) has been removed for a few hours. It is suggested that this is due to trapped charges in the sapphire substrate. Evidence of the presence of such charges is given, and a model of the charge distribution is presented consistent with the measurements. Solution of the problem associated with the decay of triode current may require proper treatment of the sapphire surface and/or changes in the deposition technique of the thin metal films.

  18. A System of Systems Approach to Integrating Global Sea Level Change Application Programs

    NASA Astrophysics Data System (ADS)

    Bambachus, M. J.; Foster, R. S.; Powell, C.; Cole, M.

    2005-12-01

    The global sea level change application community has numerous disparate models used to make predications over various regional and temporal scales. These models have typically been focused on limited sets of data and optimized for specific areas or questions of interest. Increasingly, decision makers at the national, international, and local/regional levels require access to these application data models and want to be able to integrate large disparate data sets, with new ubiquitous sensor data, and use these data across models from multiple sources. These requirements will force the Global Sea Level Change application community to take a new system-of-systems approach to their programs. We present a new technical architecture approach to the global sea level change program that provides external access to the vast stores of global sea level change data, provides a collaboration forum for the discussion and visualization of data, and provides a simulation environment to evaluate decisions. This architectural approach will provide the tools to support multi-disciplinary decision making. A conceptual system of systems approach is needed to address questions around the multiple approaches to tracking and predicting Sea Level Change. A systems of systems approach would include (1) a forum of data providers, modelers, and users, (2) a service oriented architecture including interoperable web services with a backbone of Grid computing capability, and (3) discovery and access functionality to the information developed through this structure. Each of these three areas would be clearly designed to maximize communication, data use for decision making and flexibility and extensibility for evolution of technology and requirements. In contemplating a system-of-systems approach, it is important to highlight common understanding and coordination as foundational to success across the multiple systems. The workflow of science in different applications is often conceptually similar

  19. Protein synthesis as an integral quality control mechanism during ageing.

    PubMed

    Charmpilas, Nikolaos; Daskalaki, Ioanna; Papandreou, Margarita Elena; Tavernarakis, Nektarios

    2015-09-01

    Ageing is manifested as functional and structural deterioration that affects cell and tissue physiology. mRNA translation is a central cellular process, supplying cells with newly synthesized proteins. Accumulating evidence suggests that alterations in protein synthesis are not merely a corollary but rather a critical factor for the progression of ageing. Here, we survey protein synthesis regulatory mechanisms and focus on the pre-translational regulation of the process exerted by non-coding RNA species, RNA binding proteins and alterations of intrinsic RNA properties. In addition, we discuss the tight relationship between mRNA translation and two central pathways that modulate ageing, namely the insulin/IGF-1 and TOR signalling cascades. A thorough understanding of the complex interplay between protein synthesis regulation and ageing will provide critical insights into the pathogenesis of age-related disorders, associated with impaired proteostasis and protein quality control.

  20. Mechanical integration of actin and adhesion dynamics in cell migration.

    PubMed

    Gardel, Margaret L; Schneider, Ian C; Aratyn-Schaus, Yvonne; Waterman, Clare M

    2010-01-01

    Directed cell migration is a physical process that requires dramatic changes in cell shape and adhesion to the extracellular matrix. For efficient movement, these processes must be spatiotemporally coordinated. To a large degree, the morphological changes and physical forces that occur during migration are generated by a dynamic filamentous actin (F-actin) cytoskeleton. Adhesion is regulated by dynamic assemblies of structural and signaling proteins that couple the F-actin cytoskeleton to the extracellular matrix. Here, we review current knowledge of the dynamic organization of the F-actin cytoskeleton in cell migration and the regulation of focal adhesion assembly and disassembly with an emphasis on how mechanical and biochemical signaling between these two systems regulate the coordination of physical processes in cell migration.

  1. Mechanisms of the global electric circuit and lightning variability on the ENSO time scale

    NASA Astrophysics Data System (ADS)

    Mareev, Evgeny; Volodin, Evgeny; Slyunyaev, Nikolay

    2017-04-01

    Many studies of lightning activity on the El Niño-Southern Oscillation (ENSO) time scale show increased activity over tropical land areas during the warm El Niño phase (e.g., Satori et al., 2009; Price, 2009). The mechanisms of this variability—particularly in terms of its role in the global electric circuit (GEC)—are still under debate (e.g., Williams and Mareev, 2014). In this study a general circulation model of the atmosphere and ocean INMCM4.0 (Institute of Numerical Mathematics Coupled Model) is used for modelling the GEC variability on the ENSO time scale. The ionospheric potential (IP) and the lightning flash rate are calculated to study regional peculiarities and possible mechanisms of lightning variation. The IP parameterisation is used (Mareev and Volodin, 2014) which takes into account quasi-stationary currents of electrified clouds (including thunderstorms) as principal contributors into the DC global circuit. The account of conductivity variation in the IP parameterisation is suggested based on the approach realised in (Slyunyaev et al., 2014). Comparison of simulation results with the observational data on lightning activity on the ENSO time scale is discussed. Numerical simulations suggest that the inter-annual IP variability is low and does not exceed 1% of the mean value, being tightly correlated with the mean sea surface temperature (SST) in the Pacific Ocean (180W-100W, 5S-5N—El Niño area). The IP maximum corresponds to the SST minimum. This result can be explained taking into account that during El Niño (positive temperature anomaly) precipitations in the equatorial part of the Pacific increase while in other tropic zones including the land areas they decrease. Comparison of simulation results with the observational data on lightning activity on the ENSO time scale is discussed. During the El Niño period in the model, the mean aerosol content in the atmosphere decrease, which is caused by the weakening of the winds over Sahara and

  2. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    PubMed

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and

  3. The Impact of Globalization on a Country's Quality of Life: Toward an Integrated Model

    ERIC Educational Resources Information Center

    Sirgy, M. Joseph; Lee, Dong-Jin; Miller, Chad; Littlefield, James E.

    2004-01-01

    The purpose of the paper is to develop a set of theoretical propositions to explain the impact of globalization on a country's quality of life (QOL). In this paper, we describe how globalization impacts the quality of life of residents of a country by first articulating the globalization construct (in terms of inflows and outflows of goods,…

  4. The Impact of Globalization on a Country's Quality of Life: Toward an Integrated Model

    ERIC Educational Resources Information Center

    Sirgy, M. Joseph; Lee, Dong-Jin; Miller, Chad; Littlefield, James E.

    2004-01-01

    The purpose of the paper is to develop a set of theoretical propositions to explain the impact of globalization on a country's quality of life (QOL). In this paper, we describe how globalization impacts the quality of life of residents of a country by first articulating the globalization construct (in terms of inflows and outflows of goods,…

  5. Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions.

    PubMed

    Moen, Birgitte; Oust, Astrid; Langsrud, Øyvind; Dorrell, Nick; Marsden, Gemma L; Hinds, Jason; Kohler, Achim; Wren, Brendan W; Rudi, Knut

    2005-04-01

    Explorative approaches such as DNA microarray experiments are becoming increasingly important in microbial research. Despite these major technical advancements, approaches to study multifactor experiments are still lacking. We have addressed this problem by using rotation testing and a novel multivariate analysis of variance (MANOVA) approach (50-50 MANOVA) to investigate interacting experimental factors in a complex experimental design. Furthermore, a new rotation testing based method was introduced to calculate false-discovery rates for each response. This novel analytical concept was used to investigate global survival mechanisms in the environment of the major food-borne pathogen C. jejuni. We simulated nongrowth environmental conditions by investigating combinations of the factors temperature (5 and 25 degrees C) and oxygen tension (anaerobic, microaerobic, and aerobic). Data were generated with DNA microarrays for information about gene expression patterns and Fourier transform infrared (FT-IR) spectroscopy to study global macromolecular changes in the cell. Microarray analyses showed that most genes were either unchanged or down regulated compared to the reference (day 0) for the conditions tested and that the 25 degrees C anaerobic condition gave the most distinct expression pattern with the fewest genes expressed. The few up-regulated genes were generally stress related and/or related to the cell envelope. We found, using FT-IR spectroscopy, that the amount of polysaccharides and oligosaccharides increased under the nongrowth survival conditions. Potential mechanisms for survival could be to down regulate most functions to save energy and to produce polysaccharides and oligosaccharides for protection against harsh environments. Basic knowledge about the survival mechanisms is of fundamental importance in preventing transmission of this bacterium through the food chain.

  6. A review of OSHA PSM citations relating to mechanical integrity of process piping

    SciTech Connect

    Casada, M.L.; Remson, A.C.; Yerger, C.M.

    1996-07-01

    OSHA`s process safety management (PSM) regulation has been in effect for more than three years. The regulation poses challenges for facilities in documenting the integrity of process piping systems. This paper summarizes the results of a project sponsored by the Materials Technology Institute (MTI) to compile PSM enforcement information relating to mechanical integrity W and process safety information (PSI) relating to equipment. This paper provides an analysis of how OSHA is citing violations of the PSM regulation as it relates to process piping. This information should be helpful to engineers and maintenance personnel who need guidance on how to ``OSHA-proof`` their mechanical integrity compliance for process piping systems.

  7. Assessing Low Frequency Climate Signals in Global Circulation Models using an Integrated Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Niswonger, R. G.; Huntington, J. L.

    2010-12-01

    Climate signals with periodicities of approximately one decade are pervasive in long-term streamflow records for streams in the western United States that receive significant baseflow. The driver of these signals is unknown but hypotheses have been presented, such as variations in solar input to the Earth, or harmonics of internal (i.e., processes in the ocean and troposphere) forcings like the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO). Climate signals of about 1 decade are important for several reasons, including their relation to climate extremes (i.e., droughts and floods), and because the drivers of these climate signals are clearly important for projecting future climate conditions. Furthermore, identifying the drivers of these climate signals is important for separating the relative impacts of human production of greenhouse gases on global warming verses external drivers of climate change, such as sunspot cycles. Studies using Global Circulation Models (GCMs) that do not incorporate solar forcings associated with sun spots have identified oscillations of about a decade long in certain model output. However, these oscillations can be difficult to identify in simulated precipitation data due to high frequency variations (less than 1 year) that obscure low frequency (decade) signals. We have found that simulations using an integrated hydrologic model (IHM) called GSFLOW reproduce decade-long oscillations in streamflow when driven by measured precipitation records, and that these oscillations are also present in simulated streamflow when driven by temperature and precipitation data projected by GCMs. Because the IHM acts as a low-pass filter that reveals low frequency signals (i.e. decadal oscillations), they can be used to assess GCMs in terms of their ability to reproduce important low-frequency climate oscillations. We will present results from GSFLOW applied to three basins in the eastern Sierra Nevada driven by 100 years of

  8. The MIT Integrated Global System Model: A facility for Assessing and Communicating Climate Change Uncertainty (Invited)

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2013-12-01

    The world is facing major challenges that create tensions between human development and environmental sustenance. In facing these challenges, computer models are invaluable tools for addressing the need for probabilistic approaches to forecasting. To illustrate this, I use the MIT Integrated Global System Model framework (IGSM; http://globalchange.mit.edu ). The IGSM consists of a set of coupled sub-models of global economic and technological development and resultant emissions, and physical, dynamical and chemical processes in the atmosphere, land, ocean and ecosystems (natural and managed). Some of the sub-models have both complex and simplified versions available, with the choice of which version to use being guided by the questions being addressed. Some sub-models (e.g.urban air pollution) are reduced forms of complex ones created by probabilistic collocation with polynomial chaos bases. Given the significant uncertainties in the model components, it is highly desirable that forecasts be probabilistic. We achieve this by running 400-member ensembles (Latin hypercube sampling) with different choices for key uncertain variables and processes within the human and natural system model components (pdfs of inputs estimated by model-observation comparisons, literature surveys, or expert elicitation). The IGSM has recently been used for probabilistic forecasts of climate, each using 400-member ensembles: one ensemble assumes no explicit climate mitigation policy and others assume increasingly stringent policies involving stabilization of greenhouse gases at various levels. These forecasts indicate clearly that the greatest effect of these policies is to lower the probability of extreme changes. The value of such probability analyses for policy decision-making lies in their ability to compare relative (not just absolute) risks of various policies, which are less affected by the earth system model uncertainties. Given the uncertainties in forecasts, it is also clear that

  9. Crack Turning and Arrest Mechanisms for Integral Structure

    NASA Technical Reports Server (NTRS)

    Pettit, Richard; Ingraffea, Anthony

    1999-01-01

    In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate

  10. Centrosome-intrinsic mechanisms modulate centrosome integrity during fever.

    PubMed

    Vertii, Anastassiia; Zimmerman, Wendy; Ivshina, Maria; Doxsey, Stephen

    2015-10-01

    The centrosome is critical for cell division, ciliogenesis, membrane trafficking, and immunological synapse function. The immunological synapse is part of the immune response, which is often accompanied by fever/heat stress (HS). Here we provide evidence that HS causes deconstruction of all centrosome substructures primarily through degradation by centrosome-associated proteasomes. This renders the centrosome nonfunctional. Heat-activated degradation is centrosome selective, as other nonmembranous organelles (midbody, kinetochore) and membrane-bounded organelles (mitochondria) remain largely intact. Heat-induced centrosome inactivation was rescued by targeting Hsp70 to the centrosome. In contrast, Hsp70 excluded from the centrosome via targeting to membranes failed to rescue, as did chaperone inactivation. This indicates that there is a balance between degradation and chaperone rescue at the centrosome after HS. This novel mechanism of centrosome regulation during fever contributes to immunological synapse formation. Heat-induced centrosome inactivation is a physiologically relevant event, as centrosomes in leukocytes of febrile patients are disrupted. © 2015 Vertii et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. The computational structural mechanics testbed architecture. Volume 4: The global-database manager GAL-DBM

    NASA Technical Reports Server (NTRS)

    Wright, Mary A.; Regelbrugge, Marc E.; Felippa, Carlos A.

    1989-01-01

    This is the fourth of a set of five volumes which describe the software architecture for the Computational Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed Palo Alto Research Laboratory, the architecture is composed of the command language CLAMP, the command language interpreter CLIP, and the data manager GAL. Volumes 1, 2, and 3 (NASA CR's 178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. Volumes 4 and 5 (NASA CR's 178387 and 178388, respectively) describe GAL and its low-level I/O. CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control the flow of execution of processors written for NICE. Volume 4 describes the nominal-record data management component of the NICE software. It is intended for all users.

  12. Path integrals, supersymmetric quantum mechanics, and the Atiyah-Singer index theorem for twisted Dirac

    NASA Astrophysics Data System (ADS)

    Fine, Dana S.; Sawin, Stephen

    2017-01-01

    Feynman's time-slicing construction approximates the path integral by a product, determined by a partition of a finite time interval, of approximate propagators. This paper formulates general conditions to impose on a short-time approximation to the propagator in a general class of imaginary-time quantum mechanics on a Riemannian manifold which ensure that these products converge. The limit defines a path integral which agrees pointwise with the heat kernel for a generalized Laplacian. The result is a rigorous construction of the propagator for supersymmetric quantum mechanics, with potential, as a path integral. Further, the class of Laplacians includes the square of the twisted Dirac operator, which corresponds to an extension of N = 1/2 supersymmetric quantum mechanics. General results on the rate of convergence of the approximate path integrals suffice in this case to derive the local version of the Atiyah-Singer index theorem.

  13. Simulated effect on the compressive and shear mechanical properties of bionic integrated honeycomb plates.

    PubMed

    He, Chenglin; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Zu, Qiao; Lu, Yun

    2015-05-01

    Honeycomb plates can be applied in many fields, including furniture manufacturing, mechanical engineering, civil engineering, transportation and aerospace. In the present study, we discuss the simulated effect on the mechanical properties of bionic integrated honeycomb plates by investigating the compressive and shear failure modes and the mechanical properties of trabeculae reinforced by long or short fibers. The results indicate that the simulated effect represents approximately 80% and 70% of the compressive and shear strengths, respectively. Compared with existing bionic samples, the mass-specific strength was significantly improved. Therefore, this integrated honeycomb technology remains the most effective method for the trial manufacturing of bionic integrated honeycomb plates. The simulated effect of the compressive rigidity is approximately 85%. The short-fiber trabeculae have an advantage over the long-fiber trabeculae in terms of shear rigidity, which provides new evidence for the application of integrated bionic honeycomb plates. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. All Health Is Global Health, All Medicine Is Social Medicine: Integrating the Social Sciences Into the Preclinical Curriculum.

    PubMed

    Kasper, Jennifer; Greene, Jeremy A; Farmer, Paul E; Jones, David S

    2016-05-01

    As physicians work to achieve optimal health outcomes for their patients, they often struggle to address the issues that arise outside the clinic. Social, economic, and political factors influence patients' burden of disease, access to treatment, and health outcomes. This challenge has motivated recent calls for increased attention to the social determinants of health. At the same time, advocates have called for increased attention to global health. Each year, more U.S. medical students participate in global health experiences. Yet, the global health training that is available varies widely. The discipline of social medicine, which attends to the social determinants of disease, social meanings of disease, and social responses to disease, offers a solution to both challenges. The analyses and techniques of social medicine provide an invaluable toolkit for providing health care in the United States and abroad.In 2007, Harvard Medical School implemented a new course, required for all first-year students, that teaches social medicine in a way that integrates global health. In this article, the authors argue for the importance of including social medicine and global health in the preclinical curriculum; describe Harvard Medical School's innovative, integrated approach to teaching these disciplines, which can be used at other medical schools; and explore the barriers that educators may face in implementing such a curriculum, including resistance from students. Such a course can equip medical students with the knowledge and tools that they will need to address complex health problems in the United States and abroad.

  15. Modeling for planetary boundaries: a network analysis of representations of complex human-environmental interactions in integrated global models

    NASA Astrophysics Data System (ADS)

    Friedrich, Johannes; Fetzer, Ingo; Cornell, Sarah

    2016-04-01

    The planetary boundaries framework is an approach to global sustainability that emphasises non-linear threshold behavior in anthropogenically perturbed Earth system processes. However, knowledge about the characteristics and positions of thresholds, and the scope for management of the boundaries is not well established. Global integrated models can help to improve this understanding, by reflecting the complex feedbacks between human and environmental systems. This study analyses the current state of integrated models with regard to the main processes identified as 'critical Earth system processes' in the planetary boundaries framework, and identifies gaps and suggests priorities for future improvements. Our approach involves creating a common ontology of model descriptions, and performing a network analysis on the state of system integration in models. The distinct clusters of specific biophysical and social-economic systems obviously has enabled progress in those specific areas of global change, but it now constrains analysis of important human-driven Earth system dynamics. The modeling process therefore has to be improved through technical integration, scientific gap-filling, and also changes in scientific institutional dynamics. Combined, this can advance model potentials that may help us to find sustainable pathways within planetary boundaries.

  16. Integrated Metabolomics and Genomics: Systems Approaches to Biomarkers and Mechanisms of Cardiovascular Disease

    PubMed Central

    Shah, Svati H.; Newgard, Christopher B.

    2015-01-01

    The genetic architecture underlying the heritability of cardiovascular disease (CVD) is incompletely understood. Metabolomics is an emerging technology platform that has shown early success in identifying biomarkers and mechanisms of common, chronic diseases. Integration of metabolomics, genetics and other ‘omics’ platforms in a systems biology approach holds potential for elucidating novel genetic markers and mechanisms for CVD. We review important studies that have utilized metabolomic profiling in cardiometabolic diseases, approaches for integrating metabolomics with genetics and other molecular profiling platforms, and key studies showing the potential for such studies in deciphering CVD genetics, biomarkers and mechanisms. PMID:25901039

  17. A review of path-independent integrals in elastic-plastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Kim, Kwang S.; Orange, Thomas W.

    1988-01-01

    The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  18. A review of path-independent integrals in elastic-plastic fracture mechanics, task 4

    NASA Technical Reports Server (NTRS)

    Kim, K. S.

    1985-01-01

    The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  19. A review of path-independent integrals in elastic-plastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Kim, Kwang S.; Orange, Thomas W.

    1988-01-01

    The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  20. A Study on Partnering Mechanism in B to B EC Server for Global Supply Chain Management

    NASA Astrophysics Data System (ADS)

    Kaihara, Toshiya

    B to B Electronic Commerce (EC) technology is now in progress and regarded as an information infrastructure for global business. As the number and diversity of EC participants grows at the agile environment, the complexity of purchasing from a vast and dynamic array of goods and services needs to be hidden from the end user. Putting the complexity into the EC system instead means providing flexible auction server for enabling commerce within different business units. Market mechanism could solve the product distribution problem in the auction server by allocating the scheduled resources according to market prices. In this paper, we propose a partnering mechanism for B to B EC with market-oriented programming that mediates amongst unspecified various companies in the trade, and demonstrate the applicability of the economic analysis to this framework after constructing a primitive EC server. The proposed mechanism facilitates sophisticated B to B EC, which conducts a Pareto optimal solution for all the participating business units in the coming agile era.

  1. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record

    NASA Astrophysics Data System (ADS)

    Masarie, Kenneth A.; Tans, Pieter P.

    1995-06-01

    Atmospheric transport models are used to constrain sources and sinks of carbon dioxide by requiring that the modeled spatial and temporal concentration patterns are consistent with the observations. Serious obstacles to this approach are the sparsity of sampling sites and the lack of temporal continuity among observations at different locations. A procedure is presented that attempts to extend the knowledge gained during a limited period of measurements beyond the period itself resulting in records containing measurement data and extrapolated and interpolated values. From limited measurements we can define trace gas climatologies that describe average seasonal cycles, trends, and changes in trends at individual sampling sites. A comparison of the site climatologies with a reference defined over a much longer period of time constitutes the framework used in the development of the data extension procedure. Two extension methods are described. The benchmark trend method uses a deseasonalized long-term trend from a single site as a reference to individual site climatologies. The latitude reference method utilizes measurements from many sites in constructing a reference to the climatologies. Both methods are evaluated and the advantages and limitations of each are discussed. Data extension is not based on any atmospheric models but entirely on the data themselves. The methods described here are relatively straightforward and reproducible and result in extended records that are model independent. The cooperative air sampling network maintained by the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory in Boulder, Colorado, provides a test bed for the development of the data extension method; we intend to integrate and extend CO2 measurement records from other laboratories providing a globally consistent atmospheric CO2 database to the modeling community.

  2. Improving the Projections of Vegetation Biogeography by Integrating Climate Envelope Models and Dynamic Global Vegetation Models

    NASA Astrophysics Data System (ADS)

    Case, M. J.; Kim, J. B.

    2015-12-01

    Assessing changes in vegetation is increasingly important for conservation planning in the face of climate change. Dynamic global vegetation models (DGVMs) are important tools for assessing such changes. DGVMs have been applied at regional scales to create projections of range expansions and contractions of plant functional types. Many DGVMs use a number of algorithms to determine the biogeography of plant functional types. One such DGVM, MC2, uses a series of decision trees based on bioclimatic thresholds while others, such as LPJ, use constraining emergent properties with a limited set of bioclimatic threshold-based rules. Although both approaches have been used widely, we demonstrate that these biogeography outputs perform poorly at continental scales when compared to existing potential vegetation maps. Specifically, we found that with MC2, the algorithm for determining leaf physiognomy is too simplistic to capture arid and semi-arid vegetation in much of the western U.S., as well as is the algorithm for determining the broadleaf and needleleaf mix in the Southeast. With LPJ, we found that the bioclimatic thresholds used to allow seedling establishment are too broad and fail to capture regional-scale biogeography of the plant functional types. In response, we demonstrate a new approach to determining the biogeography of plant functional types by integrating the climatic thresholds produced for individual tree species by a series of climate envelope models with the biogeography algorithms of MC2 and LPJ. Using this approach, we find that MC2 and LPJ perform considerably better when compared to potential vegetation maps.

  3. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms

    PubMed Central

    Allen, Mary Ann; Andrysik, Zdenek; Dengler, Veronica L; Mellert, Hestia S; Guarnieri, Anna; Freeman, Justin A; Sullivan, Kelly D; Galbraith, Matthew D; Luo, Xin; Kraus, W Lee; Dowell, Robin D; Espinosa, Joaquin M

    2014-01-01

    The p53 transcription factor is a potent suppressor of tumor growth. We report here an analysis of its direct transcriptional program using Global Run-On sequencing (GRO-seq). Shortly after MDM2 inhibition by Nutlin-3, low levels of p53 rapidly activate ∼200 genes, most of them not previously established as direct targets. This immediate response involves all canonical p53 effector pathways, including apoptosis. Comparative global analysis of RNA synthesis vs steady state levels revealed that microarray profiling fails to identify low abundance transcripts directly activated by p53. Interestingly, p53 represses a subset of its activation targets before MDM2 inhibition. GRO-seq uncovered a plethora of gene-specific regulatory features affecting key survival and apoptotic genes within the p53 network. p53 regulates hundreds of enhancer-derived RNAs. Strikingly, direct p53 targets harbor pre-activated enhancers highly transcribed in p53 null cells. Altogether, these results enable the study of many uncharacterized p53 target genes and unexpected regulatory mechanisms. DOI: http://dx.doi.org/10.7554/eLife.02200.001 PMID:24867637

  4. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming.

    PubMed

    Svensen, Henrik; Planke, Sverre; Malthe-Sørenssen, Anders; Jamtveit, Bjørn; Myklebust, Reidun; Rasmussen Eidem, Torfinn; Rey, Sebastian S

    2004-06-03

    A 200,000-yr interval of extreme global warming marked the start of the Eocene epoch about 55 million years ago. Negative carbon- and oxygen-isotope excursions in marine and terrestrial sediments show that this event was linked to a massive and rapid (approximately 10,000 yr) input of isotopically depleted carbon. It has been suggested previously that extensive melting of gas hydrates buried in marine sediments may represent the carbon source and has caused the global climate change. Large-scale hydrate melting, however, requires a hitherto unknown triggering mechanism. Here we present evidence for the presence of thousands of hydrothermal vent complexes identified on seismic reflection profiles from the Vøring and Møre basins in the Norwegian Sea. We propose that intrusion of voluminous mantle-derived melts in carbon-rich sedimentary strata in the northeast Atlantic may have caused an explosive release of methane--transported to the ocean or atmosphere through the vent complexes--close to the Palaeocene/Eocene boundary. Similar volcanic and metamorphic processes may explain climate events associated with other large igneous provinces such as the Siberian Traps (approximately 250 million years ago) and the Karoo Igneous Province (approximately 183 million years ago).

  5. A Mechanism for the Loading-Unloading Substorm Cycle Missing in MHD Global Magnetospheric Simulation Models

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.

    2005-01-01

    Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.

  6. Global DNA hypomethylation: a potential mechanism in King pigeon nerve tissue damage induced by avermectin.

    PubMed

    Cao, Ye; Chen, Li-Jie; Zhang, Zi-wei; Yao, Hai-dong; Liu, Ci; Li, Shu; Xu, Shi-wen

    2014-08-05

    As an effective insecticidal and nematicidal agent, avermectin (AVM) has been widely used in agricultural production and stock farming areas. Subsequently, the residues of AVM or its active metabolites in animal manure pose a toxic threat to non-target organisms in the environment. As the most characteristic epigenetic phenomena, DNA methylation status is a useful biological signal for the toxicity assessment of environmental chemical toxicants. In this study, analyses of the overall level of genomic DNA methylation were performed, and the expression levels of DNA methyltransferases (DNMTs), as well as demethylase methyl-CpG-binding domain protein 2 (MBD2), in pigeon brain tissues after subchronic exposure (with a AVM concentration of 20 mg/kg, 40 mg/kg and 60 mg/kg, respectively) to AVM for 30, 60 and 90 days were investigated. Global DNA hypomethylation and down-regulation of DNMT mRNA expression occurred in a dose-time-dependent manner in pigeon brains. The expression level of MBD2, which functions as a demethylase, was significantly enhanced in a dose-dependent but not time-dependent manner. In addition, the elevated expression level of MBD2 had a more robust effect on genomic DNA hypomethylation compared to changes in DNMT expression. Taken together, these results suggested that subchronic dose exposures of AVM could affect the global DNA methylation status, and this mechanism is closely related to changes in the expression levels of DNMTs and MBD2.

  7. The global threat of Zika virus to pregnancy: epidemiology, clinical perspectives, mechanisms, and impact.

    PubMed

    Boeuf, Phillipe; Drummer, Heidi E; Richards, Jack S; Scoullar, Michelle J L; Beeson, James G

    2016-08-03

    Zika virus (ZIKV) is a mosquito-borne flavivirus that has newly emerged as a significant global threat, especially to pregnancy. Recent major outbreaks in the Pacific and in Central and South America have been associated with an increased incidence of microcephaly and other abnormalities of the central nervous system in neonates. The causal link between ZIKV infection during pregnancy and microcephaly is now strongly supported. Over 2 billion people live in regions conducive to ZIKV transmission, with ~4 million infections in the Americas predicted for 2016. Given the scale of the current pandemic and the serious and long-term consequences of infection during pregnancy, the impact of ZIKV on health services and affected communities could be enormous. This further highlights the need for a rapid global public health and research response to ZIKV to limit and prevent its impact through the development of therapeutics, vaccines, and improved diagnostics. Here we review the epidemiology of ZIKV; the threat to pregnancy; the clinical consequences and broader impact of ZIKV infections; and the virus biology underpinning new interventions, diagnostics, and insights into the mechanisms of disease.

  8. An alternative mechanism for international health aid: evaluating a Global Social Protection Fund.

    PubMed

    Basu, Sanjay; Stuckler, David; McKee, Martin

    2014-01-01

    Several public health groups have called for the creation of a global fund for 'social protection'-a fund that produces the international equivalent of domestic tax collection and safety net systems to finance care for the ill and disabled and related health costs. All participating countries would pay into a global fund based on a metric of their ability to pay and withdraw from the common pool based on a metric of their need for funds. We assessed how alternative strategies and metrics by which to operate such a fund would affect its size and impact on health system financing. Using a mathematical model, we found that common targets for health funding in low-income countries require higher levels of aid expenditures than presently distributed. Some mechanisms exist that may incentivize reduction of domestic health inequalities, and direct most funds towards the poorest populations. Payments from high-income countries are also likely to decrease over time as middle-income countries' economies grow.

  9. Global analysis of fungal morphology exposes mechanisms of host cell escape.

    PubMed

    O'Meara, Teresa R; Veri, Amanda O; Ketela, Troy; Jiang, Bo; Roemer, Terry; Cowen, Leah E

    2015-03-31

    Developmental transitions between single-cell yeast and multicellular filaments underpin virulence of diverse fungal pathogens. For the leading human fungal pathogen Candida albicans, filamentation is thought to be required for immune cell escape via induction of an inflammatory programmed cell death. Here we perform a genome-scale analysis of C. albicans morphogenesis and identify 102 negative morphogenetic regulators and 872 positive regulators, highlighting key roles for ergosterol biosynthesis and N-linked glycosylation. We demonstrate that C. albicans filamentation is not required for escape from host immune cells; instead, macrophage pyroptosis is driven by fungal cell-wall remodelling and exposure of glycosylated proteins in response to the macrophage phagosome. The capacity of killed, previously phagocytized cells to drive macrophage lysis is also observed with the distantly related fungal pathogen Cryptococcus neoformans. This study provides a global view of morphogenetic circuitry governing a key virulence trait, and illuminates a new mechanism by which fungi trigger host cell death.

  10. ADApT: A rapid integrated assessment and decision support tool to respond to global change in coastal regions

    NASA Astrophysics Data System (ADS)

    Cooley, S.; Bundy, A.; Chuenpagdee, R.; Isaacs, M.; Badjeck, M.; Defeo, O.; Glaeser, B.; Guillotreau, P.; Makino, M.; Perry, R. I.

    2012-12-01

    Ecosystem change is happening at a rate faster than predicted, impacting the livelihoods of coastal peoples globally and precipitating the need for timely and effective response to global change. While knowledge about best practices in coping and adaptation are evolving, countries still struggle with ways to enhance coastal peoples' capacity to respond to change and reduce their vulnerability. The complexity of coastal marine ecosystems, and the multitude of challenges faced, make it difficult to know what natural and social attributes contribute to, or limit the success of adaptations to global change. We are developing a rapid integrated assessment decision support tool (ADApT: Assessment from Description, Appraisal, and Typology) based on a global database of coastal and marine case studies. The tool focuses on 1) description of the ecological and social impacts of ecosystem stresses, and responses to those stresses; 2) appraisal of how successful those responses are in mitigating impacts, as well as what risks and uncertainties are involved; and 3) development of a typology that will enable an efficient assessment of impacts and the appropriate response. ADApT will enable decision makers and local actors to triage and improve their responses to global change, to make decisions efficiently for transitions towards coastal sustainability, and to evaluate where to most effectively invest funds to reduce vulnerability and enhance resilience of coastal peoples to global change.

  11. Conservation laws and path-independent integrals in mechanical-diffusion-electrochemical reaction coupling system

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Wang, Hailong; Chen, Jianyong; Shen, Shengping

    2017-07-01

    In this study, the conservation laws οf dissipative mechanical-diffusion-electrochemical reaction system are systematically obtained based on Noether's theorem. According to linear, irreversible thermodynamics, dissipative phenomena can be described by an irreversible force and an irreversible flow. Additionally, the Lagrange function, L and the generalized Hamilton least-action principle are proposed to be used to obtain the conservation integrals. A group of these integrals, including the J-, M-, and L-integrals, can be then obtained using the classical Noether approach for dissipative processes. The relation between the J-integral and the energy release rate is illustrated. The path-independence of the J-integral is then proven. The J-integral, derived based on Noether's theorem, is a line integral, contrary to the propositions of existing published works that describe it both as a line and an area integral. Herein, we prove that the outcomes are identical, and identify the physical meaning of the area integral, a concept that was not explained previously. To show that the J-integral can dominate the distribution of the corresponding field quantities, an example of a partial, stress-diffusion coupling process is disscussed.

  12. Advanced Integration in Multi-Scale Mechanics and Welding Process Simulation in Weld Integrity Assessment

    SciTech Connect

    Vitek, J.M.; Wilkowski, G.M.; Brust, F.W.; Babu, S.

    2008-01-30

    In this project, mathematical models that predict the microstructure in pipeline steel welds were to be developed. These models were to be integrated with thermal models that describe the time-temperature history in the weld as a function of location in order to derive the spatial variation of microstructure in the weld. The microstructure predictions were also to be combined with microstructure-hardness relations, based on the additivity principle, to determine the spatial variation of hardness in the weld. EMC2 also developed microstructural models based on empirical relationships. ORNL was to pursue the development of more fundamental, theoretically based models. ORNL applied a previously developed model for inclusion formation to predict the extent and nature of inclusions that form during weld cooling from the liquid. This inclusion model was directly integrated with computational thermodynamics capability. A convenient user interface was developed for both the inclusion model and the thermodynamic phase-stability calculations. The microstructure model was based on the simultaneous transformation theory analysis as applied to the transformation of austenite to various ferrite constituents during weld cooling. The model available on the Materials Algorithm Project web site was used. Extensive modification of this model was required to correct problems with compilation and calculations as a function of the computational platform (Unix, Linux, Windows, etc.) that was used. The user interface for the inclusion model and thermodynamic phase-stability calculations was delivered to EMC2 along with the modified and correct microstructure model. Evaluation of the theoretically based model will be carried out and the predictions will be compared with experimental results as well as predictions based on the empirical models developed by EMC2.

  13. Feasibility of integrating other federal information systems into the Global Network of Environment and Technology, GNET{reg_sign}

    SciTech Connect

    1998-05-01

    The Global Environment and Technology Enterprise (GETE) of the Global Environment and Technology Foundation (GETF) has been tasked by the US Department of Energy`s (DOE), Federal Energy Technology Center (FETC) to assist in reducing DOE`s cost for the Global Network of Environment and Technology (GNET{reg_sign}). As part of this task, GETE is seeking federal partners to invest in GNET{reg_sign}. The authors are also seeking FETC`s commitment to serve as GNET`s federal agency champion promoting the system to potential agency partners. This report assesses the benefits of partnering with GNET{reg_sign} and provides recommendations for identifying and integrating other federally funded (non-DOE) environmental information management systems into GNET{reg_sign}.

  14. Integration of Department of Defense and State Department Efforts to Continue the Global Pursuit of Violent Extremist Organizations

    DTIC Science & Technology

    2012-12-14

    State Department for diplomatic approval in a timely manner to conduct a military operation to accomplish the US objectives ( Opall - Rome 2012). “The...influence potential 32 adversaries and destroy known enemies ( Opall -Rome 2012). Such global integration would, at a minimum, seek to standardize SOF...will have the ability to accomplish goals within the policy objectives of the State Department ( Opall -Rome 2012), but there is currently no plan to

  15. Climate Dynamics and Experimental Prediction (CDEP) and Regional Integrated Science Assessments (RISA) Programs at NOAA Office of Global Programs

    NASA Astrophysics Data System (ADS)

    Bamzai, A.

    2003-04-01

    This talk will highlight science and application activities of the CDEP and RISA programs at NOAA OGP. CDEP, through a set of Applied Research Centers (ARCs), supports NOAA's program of quantitative assessments and predictions of global climate variability and its regional implications on time scales of seasons to centuries. The RISA program consolidates results from ongoing disciplinary process research under an integrative framework. Examples of joint CDEP-RISA activities will be presented. Future directions and programmatic challenges will also be discussed.

  16. Teaching Children about the Global Economy: Integrating Inquiry with Human Rights

    ERIC Educational Resources Information Center

    McCall, Ava L.

    2017-01-01

    Although children are already part of the global economy, they often have little understanding of its influence without explicit instruction. The article focuses on recommendations for teaching elementary students in grades three through five about the global economy utilizing the pedagogical recommendations from the National Council for the…

  17. Co-benefits of Global Greenhouse Gas Mitigation for Future Air Quality and Human Health via Two Mechanisms

    NASA Astrophysics Data System (ADS)

    West, J.; Smith, S. J.; Silva, R.; Naik, V.; Adelman, Z.; Fry, M. M.; Anenberg, S.; Zhang, Y.; Horowitz, L. W.; Lamarque, J.; Emmons, L. K.

    2012-12-01

    Global actions to reduce greenhouse gas (GHG) emissions will also reduce co-emitted air pollutants, with immediate air quality benefits. Climate change itself affects air quality (e.g., via meteorology and biogenic emissions); therefore, actions to reduce GHG emissions will also influence air quality by slowing global climate change. These two mechanisms of air quality co-benefits - reducing co-emitted air pollutants and slowing climate change - have not previously been quantified in a self-consistent way. Here we simulate the co-benefits of global GHG emission reductions on air quality and human health via these two mechanisms in scenarios to 2100. Future emissions scenarios were developed by the GCAM global energy-economics model as part of the Representative Concentration Pathways (RCP) process. We simulate global air quality for a reference case scenario and a scenario with aggressive GHG controls internationally (RCP4.5). Future meteorology is from the Geophysical Fluid Dynamics Laboratory general circulation model (AM3) simulations of the RCP8.5 and RCP4.5 scenarios. Using the global chemical transport model MOZART-4, we simulate global changes in surface concentrations of ozone and fine particulate matter (PM2.5) for RCP4.5 relative to the reference case. The two co-benefit mechanisms are isolated by simulating reference case emissions with meteorology from RCP4.5 and RCP8.5. Co-benefits for future human mortality will be assessed using epidemiological concentration-response functions, and projections of future population and baseline mortality rates. Preliminary results indicate that the co-benefits of global GHG mitigation for ozone and PM2.5 are substantial globally and regionally, and that the direct co-benefits from reductions in emissions of co-emitted air pollutants exceed the co-benefits via slowing climate change. We aim to monetize the avoided mortalities as a basis for comparison with the costs of GHG mitigation.

  18. Micro-mechanical modelling of mechanical and electrical properties in homogeneous piezoelectric ceramic by using boundary integral formulations

    NASA Astrophysics Data System (ADS)

    Biglar, M.; Stachowicz, F.; Trzepiecinski, T.; Gromada, M.

    2017-02-01

    Recent experiments on polycrystalline materials show that microcrystalline materials have a strong dependency ona grain size. In this study, mechanical and electrical properties of polycrystalline materials in micro level were studied by using averaging theorems. To completely understand the size-dependency of polycrystalline materials, an integral non-local approach that can predict the stress-strain relations for these materials was presented. In microcrystalline materials, crystalline and grain-boundary were considered as two separate phases. Mechanical properties of the crystalline phase were modelled using crystalline brittle material and is composed of randomly distributed and orientated single crystal anisotropic elastic grains. For microcrystalline materials, the surface-to-volume ratio of the grain boundaries is low enough to ignore its contribution to the elastic deformation. Therefore, the grain boundary phase was not considered in microcrystalline materials and mechanical properties of the crystalline phase were modelled using appropriate integral non-local approach. Finally, the constitutive equations for polycrystalline materials were implemented into a boundary integral equation and the results and some examples are provided for piezoelectric ceramic.

  19. Scaling up integrated prevention campaigns for global health: costs and cost-effectiveness in 70 countries.

    PubMed

    Marseille, Elliot; Jiwani, Aliya; Raut, Abhishek; Verguet, Stéphane; Walson, Judd; Kahn, James G

    2014-06-26

    This study estimated the health impact, cost and cost-effectiveness of an integrated prevention campaign (IPC) focused on diarrhoea, malaria and HIV in 70 countries ranked by per capita disability-adjusted life-year (DALY) burden for the three diseases. We constructed a deterministic cost-effectiveness model portraying an IPC combining counselling and testing, cotrimoxazole prophylaxis, referral to treatment and condom distribution for HIV prevention; bed nets for malaria prevention; and provision of household water filters for diarrhoea prevention. We developed a mix of empirical and modelled cost and health impact estimates applied to all 70 countries. One-way, multiway and scenario sensitivity analyses were conducted to document the strength of our findings. We used a healthcare payer's perspective, discounted costs and DALYs at 3% per year and denominated cost in 2012 US dollars. The primary outcome was cost-effectiveness expressed as net cost per DALY averted. Other outcomes included cost of the IPC; net IPC costs adjusted for averted and additional medical costs and DALYs averted. Implementation of the IPC in the 10 most cost-effective countries at 15% population coverage would cost US$583 million over 3 years (adjusted costs of US$398 million), averting 8.0 million DALYs. Extending IPC programmes to all 70 of the identified high-burden countries at 15% coverage would cost an adjusted US$51.3 billion and avert 78.7 million DALYs. Incremental cost-effectiveness ranged from US$49 per DALY averted for the 10 countries with the most favourable cost-effectiveness to US$119, US$181, US$335, US$1692 and US$8340 per DALY averted as each successive group of 10 countries is added ordered by decreasing cost-effectiveness. IPC appears cost-effective in many settings, and has the potential to substantially reduce the burden of disease in resource-poor countries. This study increases confidence that IPC can be an important new approach for enhancing global health

  20. Scaling up integrated prevention campaigns for global health: costs and cost-effectiveness in 70 countries

    PubMed Central

    Marseille, Elliot; Jiwani, Aliya; Raut, Abhishek; Verguet, Stéphane; Walson, Judd; Kahn, James G

    2014-01-01

    Objective This study estimated the health impact, cost and cost-effectiveness of an integrated prevention campaign (IPC) focused on diarrhoea, malaria and HIV in 70 countries ranked by per capita disability-adjusted life-year (DALY) burden for the three diseases. Methods We constructed a deterministic cost-effectiveness model portraying an IPC combining counselling and testing, cotrimoxazole prophylaxis, referral to treatment and condom distribution for HIV prevention; bed nets for malaria prevention; and provision of household water filters for diarrhoea prevention. We developed a mix of empirical and modelled cost and health impact estimates applied to all 70 countries. One-way, multiway and scenario sensitivity analyses were conducted to document the strength of our findings. We used a healthcare payer's perspective, discounted costs and DALYs at 3% per year and denominated cost in 2012 US dollars. Primary and secondary outcomes The primary outcome was cost-effectiveness expressed as net cost per DALY averted. Other outcomes included cost of the IPC; net IPC costs adjusted for averted and additional medical costs and DALYs averted. Results Implementation of the IPC in the 10 most cost-effective countries at 15% population coverage would cost US$583 million over 3 years (adjusted costs of US$398 million), averting 8.0 million DALYs. Extending IPC programmes to all 70 of the identified high-burden countries at 15% coverage would cost an adjusted US$51.3 billion and avert 78.7 million DALYs. Incremental cost-effectiveness ranged from US$49 per DALY averted for the 10 countries with the most favourable cost-effectiveness to US$119, US$181, US$335, US$1692 and US$8340 per DALY averted as each successive group of 10 countries is added ordered by decreasing cost-effectiveness. Conclusions IPC appears cost-effective in many settings, and has the potential to substantially reduce the burden of disease in resource-poor countries. This study increases confidence that IPC

  1. Building and exploring an integrated human kinase network: global organization and medical entry points.

    PubMed

    Colinge, Jacques; César-Razquin, Adrián; Huber, Kilian; Breitwieser, Florian P; Májek, Peter; Superti-Furga, Giulio

    2014-07-31

    Biological matter is organized in functional networks of different natures among which kinase-substrate and protein-protein interactions play an important role. Large public data collections allowed us to compile an important corpus of interaction data around human protein kinases. One of the most interesting observations analyzing this network is that coherence in kinase functional activity relies on kinase substrate interactions primarily and not on which protein complexes are formed around them. Further dissecting the two types of interactions at the level of kinase groups (CMGCs, Tyrosine kinases, etc.) we show a prevalence of intra-group interconnectivity, which we can naturally relate to current scenarios of evolution of biological networks. Tracking publication dates we observe high correlation of kinase interaction research focus with general kinase research. We find a similar bias in the targets of kinase inhibitors that feature high redundancy. Finally, intersecting kinase inhibitor specificity with sets of kinases located at specific positions in the kinase network, we propose alternative options for future therapeutic strategies using these compounds. Despite its importance for cellular regulation and the fact that protein kinases feature prominent targets of modern therapeutic approaches, the structure and logic of the global, integrated protein phosphorylation network have not been investigated intensively. To focus on the regulatory skeleton of the phosphorylation network, we contemplated a network consisting of kinases, their substrates, and publicly available physical protein interactions. Analysis of this network at multiple levels allowed establishing a series of interesting properties such as prevalence of kinase substrate interactions as opposed to general protein-protein interactions for establishing a holistic control over kinases activities. Kinases controlling many or a few only other kinases, in addition to non-kinases, were distributed in

  2. Increasing pipeline mechanical integrity through the management of mechanical and toughness data

    SciTech Connect

    Biagiotti, S.F. Jr.; Battisti, J.A.

    1996-07-01

    On October 22, 1991, prompted by two brittle fractures that initiated after pipe movement events, the Office of Pipeline Safety (OPS) issued an Alert Notice requiring pipeline owners and operators of gas or hazardous liquid pipeline facilities to conduct analyses before moving pipelines, whether or not the pipelines are pressurized at the time of movement. Since most operators have not typically maintained detailed information on the material characteristics of all steel pipelines in operation (i.e. fracture toughness properties), the OPS recommended that samples of new pipe, stock pipe, and pipe removed from service should be tested and the results accumulated into a database. To this end, Marathon Pipe Line (MPL) Company developed an in-house database system to manage mechanical, toughness, and weldability properties of pipeline materials. Marathon`s approach to the management of pipeline toughness and mechanical data is presented herein. During the design phase of a planned pipe movement, such as a line lowering, engineers consult the database for mechanical and toughness information related to the grade, size, and line section of interest. Based on the mechanical and toughness historical data, a safe line lowering condition is recommended. Over the last two years, more than 1,200 sets of data on more than 200 line sections have been entered into the database.

  3. Mechanical stimulation enhances integration in an in vitro model of cartilage repair.

    PubMed

    Theodoropoulos, John S; DeCroos, Amritha J N; Petrera, Massimo; Park, Sam; Kandel, Rita A

    2016-06-01

    (1) To characterize the effects of mechanical stimulation on the integration of a tissue-engineered construct in terms of histology, biochemistry and biomechanical properties; (2) to identify whether cells of the implant or host tissue were critical to implant integration; and (3) to study cells believed to be involved in lateral integration of tissue-engineered cartilage to host cartilage. We hypothesized that mechanical stimulation would enhance the integration of the repair implant with host cartilage in an in vitro integration model. Articular cartilage was harvested from 6- to 9-month-old bovine metacarpal-phalangeal joints. Constructs composed of tissue-engineered cartilage implanted into host cartilage were placed in spinner bioreactors and maintained on a magnetic stir plate at either 0 (static control) or 90 (experimental) rotations per minute (RPM). The constructs from both the static and spinner bioreactors were harvested after either 2 or 4 weeks of culture and evaluated histologically, biochemically, biomechanically and for gene expression. The extent and strength of integration between tissue-engineered cartilage and native cartilage improved significantly with both time and mechanical stimulation. Integration did not occur if the implant was not viable. The presence of stimulation led to a significant increase in collagen content in the integration zone between host and implant at 2 weeks. The gene profile of cells in the integration zone differs from host cartilage demonstrating an increase in the expression of membrane type 1 matrix metalloproteinase (MT1-MMP), aggrecan and type II collagen. This study shows that the integration of in vitro tissue-engineered implants with host tissue improves with mechanical stimulation. The findings of this study suggests that consideration should be given to implementing early loading (mechanical stimulation) into future in vivo studies investigating the long-term viability and integration of tissue

  4. Optical tweezers and multiphoton microscopies integrated photonic tool for mechanical and biochemical cell processes studies

    NASA Astrophysics Data System (ADS)

    de Thomaz, A. A.; Faustino, W. M.; Fontes, A.; Fernandes, H. P.; Barjas-Castro, M. d. L.; Metze, K.; Giorgio, S.; Barbosa, L. C.; Cesar, C. L.

    2007-09-01

    The research in biomedical photonics is clearly evolving in the direction of the understanding of biological processes at the cell level. The spatial resolution to accomplish this task practically requires photonics tools. However, an integration of different photonic tools and a multimodal and functional approach will be necessary to access the mechanical and biochemical cell processes. This way we can observe mechanicaly triggered biochemical events or biochemicaly triggered mechanical events, or even observe simultaneously mechanical and biochemical events triggered by other means, e.g. electricaly. One great advantage of the photonic tools is its easiness for integration. Therefore, we developed such integrated tool by incorporating single and double Optical Tweezers with Confocal Single and Multiphoton Microscopies. This system can perform 2-photon excited fluorescence and Second Harmonic Generation microscopies together with optical manipulations. It also can acquire Fluorescence and SHG spectra of specific spots. Force, elasticity and viscosity measurements of stretched membranes can be followed by real time confocal microscopies. Also opticaly trapped living protozoas, such as leishmania amazonensis. Integration with CARS microscopy is under way. We will show several examples of the use of such integrated instrument and its potential to observe mechanical and biochemical processes at cell level.

  5. Unilateral brain hypothermia as a method to examine efficacy and mechanisms of neuroprotection against global ischemia.

    PubMed

    Silasi, Gergely; Colbourne, Frederick

    2011-01-01

    Hypothermia, especially applied during ischemia, is the gold-standard neuroprotectant. When delayed, cooling must often be maintained for a day or more to achieve robust, permanent protection. Most animal and clinical studies use whole-body cooling-an arduous technique that can cause systemic complications. Brain-selective cooling may avoid such problems. Thus, in this rat study, we used a method that cools one hemisphere without affecting the contralateral side or the body. Localized brain hypothermia was achieved by flushing cold water through a metal tube attached to the rats' skull. First, in anesthetized rats we measured temperature in the cooled and contralateral hemisphere to demonstrate selective unilateral cooling. Subsequent telemetry recordings in awake rats confirmed that brain cooling did not cause systemic hypothermia during prolonged treatment. Additionally, we subjected rats to transient global ischemia and after recovering from anesthesia they remained at normothermia or had their right hemisphere cooled for 2 days (∼32°C-33°C). Hypothermia significantly lessened CA1 injury and microglia activation on the right side at 1 and 4 week survival times. Near-complete injury and a strong microglia response occurred in the left (normothermic) hippocampus as occurred in both hippocampi of the untreated group. Thus, this focal cooling method is suitable for evaluating the efficacy and mechanisms of hypothermic neuroprotection in global ischemia models. This method also has advantages over many current systemic cooling protocols in rodents, namely: (1) lower cost, (2) simplicity, (3) safety and suitability for long-term cooling, and (4) an internal control-the normothermic hemisphere.

  6. Mechanical and Statistical Evidence of Human-Caused Earthquakes - A Global Data Analysis

    NASA Astrophysics Data System (ADS)

    Klose, C. D.

    2012-12-01

    The causality of large-scale geoengineering activities and the occurrence of earthquakes with magnitudes of up to M=8 is discussed and mechanical and statistical evidence is provided. The earthquakes were caused by artificial water reservoir impoundments, underground and open-pit mining, coastal management, hydrocarbon production and fluid injections/extractions. The presented global earthquake catalog has been recently published in the Journal of Seismology and is available for the public at www.cdklose.com. The data show evidence that geomechanical relationships exist with statistical significance between a) seismic moment magnitudes of observed earthquakes, b) anthropogenic mass shifts on the Earth's crust, and c) lateral distances of the earthquake hypocenters to the locations of the mass shifts. Research findings depend on uncertainties, in particular, of source parameter estimations of seismic events before instrumental recoding. First analyses, however, indicate that that small- to medium size earthquakes (M6) tend to be triggered. The rupture propagation of triggered events might be dominated by pre-existing tectonic stress conditions. Besides event specific evidence, large earthquakes such as China's 2008 M7.9 Wenchuan earthquake fall into a global pattern and can not be considered as outliers or simply seen as an act of god. Observations also indicate that every second seismic event tends to occur after a decade, while pore pressure diffusion seems to only play a role when injecting fluids deep underground. The chance of an earthquake to nucleate after two or 20 years near an area with a significant mass shift is 25% or 75% respectively. Moreover, causative effects of seismic activities highly depend on the tectonic stress regime in the Earth's crust in which geoengineering takes place.

  7. Canceling effect: a natural mechanism to reduce the effects of global warming

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Blagodatskaya, Evgenia; kuzyakov, Yakov

    2016-04-01

    The temperature sensitivity of enzymes responsible for organic matter decomposition in soil is crucial for predicting the effects of global warming on the carbon cycle and sequestration. We tested the hypothesis that differences in temperature sensitivity of enzyme kinetic parameters Vmax and Km will lead to a canceling effect: strong reduction of temperature response of catalytic reactions. Short-term temperature response of Vmax and Km of three hydrolytic enzymes responsible for decomposition of cellulose (β-glucosidase, cellobiohydrolase) and hemicelluloses (xylanase) were analyzed in situ from 0 to 40 °C. The apparent activation energy varied between enzymes from 20.7 to 35.2 kJ mol-1 corresponding to the Q10 values of the enzyme activities of 1.4-1.9 (with Vmax-Q10 1.0-2.5 and Km-Q10 0.94-2.3). Temperature response of all tested enzymes fitted well to the Arrhenius equation. Despite that,the fitting of Arrhenius model revealed the non-linear increase of two cellulolytic enzymes activities with two distinct thresholds at 10-15 °C and 25-30 °C, which were less pronounced for xylanase. The nonlinearity between 10 and 15 °C was explained by 30-80% increase in Vmax. At 25-30 °C, however, the abrupt decrease of enzyme-substrate affinity was responsible for non-linear increase of enzyme activities. Our study is the first demonstrating nonlinear response of Vmax and Km to temperature causing canceling effect, which was most strongly pronounced at low substrate concentrations and at temperatures above 15 °C. Under cold climate, however, the regulation of hydrolytic activity by canceling in response to warming is negligible because canceling was never observed below 10 °C. The canceling, therefore, can be considered as natural mechanism reducing the effects of global warming on decomposition of soil organics at moderate temperatures. The non-linearity of enzyme responses to warming and the respective thresholds should therefore be investigated for other enzymes

  8. Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models.

    PubMed

    Gregg, Watson W; Rousseaux, Cécile S

    2014-09-01

    Quantifying change in ocean biology using satellites is a major scientific objective. We document trends globally for the period 1998-2012 by integrating three diverse methodologies: ocean color data from multiple satellites, bias correction methods based on in situ data, and data assimilation to provide a consistent and complete global representation free of sampling biases. The results indicated no significant trend in global pelagic ocean chlorophyll over the 15 year data record. These results were consistent with previous findings that were based on the first 6 years and first 10 years of the SeaWiFS mission. However, all of the Northern Hemisphere basins (north of 10° latitude), as well as the Equatorial Indian basin, exhibited significant declines in chlorophyll. Trend maps showed the local trends and their change in percent per year. These trend maps were compared with several other previous efforts using only a single sensor (SeaWiFS) and more limited time series, showing remarkable consistency. These results suggested the present effort provides a path forward to quantifying global ocean trends using multiple satellite missions, which is essential if we are to understand the state, variability, and possible changes in the global oceans over longer time scales.

  9. Decadal trends in global pelagic ocean chlorophyll: A new assessment integrating multiple satellites, in situ data, and models

    PubMed Central

    Gregg, Watson W; Rousseaux, Cécile S

    2014-01-01

    Quantifying change in ocean biology using satellites is a major scientific objective. We document trends globally for the period 1998–2012 by integrating three diverse methodologies: ocean color data from multiple satellites, bias correction methods based on in situ data, and data assimilation to provide a consistent and complete global representation free of sampling biases. The results indicated no significant trend in global pelagic ocean chlorophyll over the 15 year data record. These results were consistent with previous findings that were based on the first 6 years and first 10 years of the SeaWiFS mission. However, all of the Northern Hemisphere basins (north of 10° latitude), as well as the Equatorial Indian basin, exhibited significant declines in chlorophyll. Trend maps showed the local trends and their change in percent per year. These trend maps were compared with several other previous efforts using only a single sensor (SeaWiFS) and more limited time series, showing remarkable consistency. These results suggested the present effort provides a path forward to quantifying global ocean trends using multiple satellite missions, which is essential if we are to understand the state, variability, and possible changes in the global oceans over longer time scales. PMID:26213675

  10. IMaX opto-mechanical integration: the AIV process for a magnetograph

    NASA Astrophysics Data System (ADS)

    Ramos Zapata, Gonzalo; González Fernandez, Luis Miguel; Sánchez Rodríguez, Antonio; Pastor Santos, Carmen; Álvarez-Herrero, Alberto

    2008-07-01

    IMaX current status is reported on. IMaX, the Imaging Magnetograph eXperiment developed for a Spanish consortium for the SUNRISE Mission, is a payload that will work simultaneously as a high sensitivity polarimeter, a high resolving spectral power, and a near diffraction limited imager. Once every mechanical element has been purchased, the assembly, integration, alignment and verification processes (AIV process) has been carried out successfully. After a brief description of the IMaX opto-mechanical elements that have been received, the integration sequence as well as the main results obtained during the AIV process are presented. Basically, AIV process consists on the opto-mechanical components assembly on the Optical Bench (OB), the optical elements assembly on the previously integrated optomechanics, the alignment and orientation of the opto-mechanical components, and the two-channels quality evaluation that allows to leave the opto-mechanical components ready for the cameras integration and IMaX performance tests characterization. Actually, the most relevant results related to the AIV process as well as the IMaX performance firsts tests are presented.

  11. Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata

    PubMed Central

    Singh-Babak, Sheena D.; Babak, Tomas; Diezmann, Stephanie; Hill, Jessica A.; Xie, Jinglin Lucy; Chen, Ying-Lien; Poutanen, Susan M.; Rennie, Robert P.; Heitman, Joseph; Cowen, Leah E.

    2012-01-01

    The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the

  12. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata.

    PubMed

    Singh-Babak, Sheena D; Babak, Tomas; Diezmann, Stephanie; Hill, Jessica A; Xie, Jinglin Lucy; Chen, Ying-Lien; Poutanen, Susan M; Rennie, Robert P; Heitman, Joseph; Cowen, Leah E

    2012-01-01

    The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the

  13. An integrated model for the assessment of global water resources Part 1: Model description and input meteorological forcing

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K.

    2008-07-01

    To assess global water availability and use at a subannual timescale, an integrated global water resources model was developed consisting of six modules: land surface hydrology, river routing, crop growth, reservoir operation, environmental flow requirement estimation, and anthropogenic water withdrawal. The model simulates both natural and anthropogenic water flow globally (excluding Antarctica) on a daily basis at a spatial resolution of 1°×1° (longitude and latitude). This first part of the two-feature report describes the six modules and the input meteorological forcing. The input meteorological forcing was provided by the second Global Soil Wetness Project (GSWP2), an international land surface modeling project. Several reported shortcomings of the forcing component were improved. The land surface hydrology module was developed based on a bucket type model that simulates energy and water balance on land surfaces. The crop growth module is a relatively simple model based on concepts of heat unit theory, potential biomass, and a harvest index. In the reservoir operation module, 452 major reservoirs with >1 km3 each of storage capacity store and release water according to their own rules of operation. Operating rules were determined for each reservoir by an algorithm that used currently available global data such as reservoir storage capacity, intended purposes, simulated inflow, and water demand in the lower reaches. The environmental flow requirement module was newly developed based on case studies from around the world. Simulated runoff was compared and validated with observation-based global runoff data sets and observed streamflow records at 32 major river gauging stations around the world. Mean annual runoff agreed well with earlier studies at global and continental scales, and in individual basins, the mean bias was less than ±20% in 14 of the 32 river basins and less than ±50% in 24 basins. The error in the peak was less than ±1 mo in 19 of the 27

  14. Identifying Biomarkers and Mechanisms of Toxic Metal Stress with Global Proteomics

    SciTech Connect

    Miller, Susan M.

    2012-04-16

    Hg is a wide-spread contaminant in the environment and is toxic in all of its various forms. Data suggest that RHg+ and Hg2+ are toxic in two ways. At low levels, Hg species appear to disrupt membrane-bound respiration causing a burst of reactive oxygen species (ROS) that further damage the cell. At higher Hg concentrations, RHg+ and Hg2+ may form adducts with cysteine- and selenocysteine-containing proteins in all cellular compartments resulting in their inactivation. Although these mechansims for toxicity are generally accepted, the most sensitive targets associated with these mechanisms are not well understood. In this collaborative project involving three laboratories at three institutions, the overall goal was to develop of a mass spectrometry-based global proteomics methodology that could be used to identify Hg-adducted (and ideally, ROS-damaged) proteins in order to address these types of questions. The two objectives of this overall collaborative project were (1) to identify, quantify, and compare ROS- and Hg-damaged proteins in cells treated with various Hg species and concentrations to test this model for two mechanisms of Hg toxicity, and (2) to define the cellular roles of the ubiquitous bacterial mercury resistance (mer) locus with regards to how the proteins of this pathway interact to protect other cell proteins from Hg damage. The specific objectives and accomplishments of the Miller lab in this project included: (1) Development of algorithms for analysis of the Hg-proteomic mass spectrometry data to identify mercury adducted peptides and other trends in the data. (2) Investigation of the role of mer operon proteins in scavenging Hg(II) from other mer pathway proteins as a means of protecting cellular proteins from damage.

  15. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

    PubMed Central

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-01-01

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. PMID:27558664

  16. Global stabilization of singularly perturbed mechanical system "inverted pendulum on a cart"

    NASA Astrophysics Data System (ADS)

    Mazov, B.

    The nonlinear controlled model system "inverted pendulum on a cart" is one of intensively studied last time. The results of investigation of this system are applicable at analysis of a number of concrete problems of stability for such systems as satellites and underwater vehicles with internal rotors etc. In present work, it is performed a detailed analysis of the behavior of the controlled mechanical system "inverted pendulum on a cart" with discontinious relay-type control on the basis of the method of investigation of the global asymptotic stability of nonlinear dynamical systems with using of two Lyapunov functions [1]. This method permits to perform the stability analysis, in particular, for the case of mechanical systems with dry friction (see, [1]). As a control object it is considered a two-mass system "inverted pendulum on a cart". The control goal is the reducing in asymptotics of controlled "cart" to given state (position) and attached to it "pendulum" to vertical state from any initial state in presence of unmeasured uniformly bounded action of function D(t) [2]. The goal is the finding of control law as a piece-wise function with discontinuity along some surface in a state space. At such analysis the solution of nonlinear system is considered in the sense of Gelig et al.(see, [1]). The numerical simulation of behavior of nonlinear system "inverted pendulum on a cart" with a relay-type control under continuously acting unmeasured perturbation is performed [3]. The comparison with results of recent study of this system on the basis of controlled Lagrangians with Lie group symmetry when control is considered as sum of dissipative and concervative pieces is performed. 1. V.A.Brusin and B.L.Mazov, Differential Equations, v.35, 626-33, 1999 2. B.L.Mazov, in: Proc.of European Control Conference (SF), Porto, Portugal, pp.17-20, 2001 3. B.L.Mazov, math.DS/0312495 (2003) (preprint)

  17. ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT

    SciTech Connect

    Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

    2008-06-30

    -driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. • From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

  18. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget

    NASA Astrophysics Data System (ADS)

    Horowitz, Hannah M.; Jacob, Daniel J.; Zhang, Yanxu; Dibble, Theodore S.; Slemr, Franz; Amos, Helen M.; Schmidt, Johan A.; Corbitt, Elizabeth S.; Marais, Eloïse A.; Sunderland, Elsie M.

    2017-05-01

    Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII plays a major role in Hg deposition to ecosystems. Here, we implement a new mechanism for atmospheric Hg0 / HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere-ocean Hg0 / HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting chemical lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ˜ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0 + HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII-organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because Southern Hemisphere Hg mainly originates from oceanic emissions rather than transport from the Northern Hemisphere. The model reproduces the observed seasonal TGM variation at northern midlatitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but it does not reproduce the lack of seasonality observed at southern hemispheric marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM-ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak

  19. Two cortical mechanisms support the integration of visual and auditory speech: a hypothesis and preliminary data.

    PubMed

    Okada, Kayoko; Hickok, Gregory

    2009-03-20

    Visual speech (lip-reading) influences the perception of heard speech. The literature suggests at least two possible mechanisms for this influence: "direct" sensory-sensory interaction, whereby sensory signals from auditory and visual modalities are integrated directly, likely in the superior temporal sulcus, and "indirect" sensory-motor interaction, whereby visual speech is first mapped onto motor-speech representations in the frontal lobe, which in turn influences sensory perception via sensory-motor integration networks. We hypothesize that both mechanisms exist, and further that previous demonstrations of lip-reading functional activations in Broca's region and the posterior planum temporale reflect the sensory-motor mechanism. We tested one prediction of this hypothesis using fMRI. We assessed whether viewing visual speech (contrasted with facial gestures) activates the same network as a speech sensory-motor integration task (listen to and then silently rehearse speech). Both tasks activated locations within Broca's area, dorsal premotor cortex, and the posterior planum temporal (Spt), and focal regions of the STS, all of which have previously been implicated in sensory-motor integration for speech. This finding is consistent with the view that visual speech influences heard speech via sensory-motor networks. Lip-reading also activated a much wider network in the superior temporal lobe than the sensory-motor task, possibly reflecting a more direct cross-sensory integration network.

  20. Integrating multiple omics to unravel mechanisms of Cyclosporin A induced hepatotoxicity in vitro.

    PubMed

    Van den Hof, Wim F P M; Ruiz-Aracama, Ainhoa; Van Summeren, Anke; Jennen, Danyel G J; Gaj, Stan; Coonen, Maarten L J; Brauers, Karen; Wodzig, Will K W H; van Delft, Joost H M; Kleinjans, Jos C S

    2015-04-01

    In order to improve attrition rates of candidate-drugs there is a need for a better understanding of the mechanisms underlying drug-induced hepatotoxicity. We aim to further unravel the toxicological response of hepatocytes to a prototypical cholestatic compound by integrating transcriptomic and metabonomic profiling of HepG2 cells exposed to Cyclosporin A. Cyclosporin A exposure induced intracellular cholesterol accumulation and diminished intracellular bile acid levels. Performing pathway analyses of significant mRNAs and metabolites separately and integrated, resulted in more relevant pathways for the latter. Integrated analyses showed pathways involved in cell cycle and cellular metabolism to be significantly changed. Moreover, pathways involved in protein processing of the endoplasmic reticulum, bile acid biosynthesis and cholesterol metabolism were significantly affected. Our findings indicate that an integrated approach combining metabonomics and transcriptomics data derived from representative in vitro models, with bioinformatics can improve our understanding of the mechanisms of action underlying drug-induced hepatotoxicity. Furthermore, we showed that integrating multiple omics and thereby analyzing genes, microRNAs and metabolites of the opposed model for drug-induced cholestasis can give valuable information about mechanisms of drug-induced cholestasis in vitro and therefore could be used in toxicity screening of new drug candidates at an early stage of drug discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Insight into the molecular mechanisms of protein stabilizing osmolytes from global force-field variations.

    PubMed

    Schneck, Emanuel; Horinek, Dominik; Netz, Roland R

    2013-07-18

    A prominent class of osmolytes that are able to stabilize proteins in their native fold consist of small highly water-soluble molecules with a large dipole moment and hydrophobic groups attached to the positively charged end of the molecule, for which we coin the term dipolar/hydrophobic osmolytes. For TMAO, which is a prime member of this class, we perform large-scale water-explicit MD simulations and determine the bulk solution activity coefficient as well as the affinity to a stretched polyglycine chain for varying TMAO dipolar strength and hydrophobicity. Double optimization with respect to experimental values for the activity coefficient and the polyglycine transfer free energy is achieved. The resulting optimal TMAO force field shows excellent transferability to different concentrations and also reproduces transfer free energies of various amino acids, including the tryptophan anomaly, for which TMAO acts as a denaturant. By globally analyzing the thermodynamic and structural properties of suboptimal TMAO force fields, we identify the frustration between dipolar and hydrophobic interactions as the working mechanism and the design principle of dipolar/hydrophobic osmolytes.

  2. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change.

    PubMed

    Galbraith, David; Levy, Peter E; Sitch, Stephen; Huntingford, Chris; Cox, Peter; Williams, Mathew; Meir, Patrick

    2010-08-01

    *The large-scale loss of Amazonian rainforest under some future climate scenarios has generally been considered to be driven by increased drying over Amazonia predicted by some general circulation models (GCMs). However, the importance of rainfall relative to other drivers has never been formally examined. *Here, we conducted factorial simulations to ascertain the contributions of four environmental drivers (precipitation, temperature, humidity and CO(2)) to simulated changes in Amazonian vegetation carbon (C(veg)), in three dynamic global vegetation models (DGVMs) forced with climate data based on HadCM3 for four SRES scenarios. *Increased temperature was found to be more important than precipitation reduction in causing losses of Amazonian C(veg) in two DGVMs (Hyland and TRIFFID), and as important as precipitation reduction in a third DGVM (LPJ). Increases in plant respiration, direct declines in photosynthesis and increases in vapour pressure deficit (VPD) all contributed to reduce C(veg) under high temperature, but the contribution of each mechanism varied greatly across models. Rising CO(2) mitigated much of the climate-driven biomass losses in the models. *Additional work is required to constrain model behaviour with experimental data under conditions of high temperature and drought. Current models may be overly sensitive to long-term elevated temperatures as they do not account for physiological acclimation.

  3. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    ERIC Educational Resources Information Center

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  4. The plant cell wall integrity maintenance mechanism-concepts for organization and mode of action.

    PubMed

    Hamann, Thorsten

    2015-02-01

    One of the main differences between plant and animal cells are the walls surrounding plant cells providing structural support during development and protection like an adaptive armor against biotic and abiotic stress. During recent years it has become widely accepted that plant cells use a dedicated system to monitor and maintain the functional integrity of their walls. Maintenance of integrity is achieved by modifying the cell wall and cellular metabolism in order to permit tightly controlled changes in wall composition and structure. While a substantial amount of evidence supporting the existence of the mechanism has been reported, knowledge regarding its precise mode of action is still limited. The currently available evidence suggests similarities of the plant mechanism with respect to both design principles and molecular components involved to the very well characterized system active in the model organism Saccharomyces cerevisiae. There the system has been implicated in cell morphogenesis as well as response to abiotic stresses such as osmotic challenges. Here the currently available knowledge on the yeast system will be reviewed initially to provide a framework for the subsequent discussion of the plant cell wall integrity maintenance mechanism. The review will then end with a discussion on possible design principles for the cell wall integrity maintenance mechanism and the function of the plant turgor pressure in this context. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    ERIC Educational Resources Information Center

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  6. Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bley, Gonzalo A.; Thomas, Lawrence E.

    2017-01-01

    We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.

  7. Locating Damage Using Integrated Global-Local Approach with Wireless Sensing System and Single-Chip Impedance Measurement Device

    PubMed Central

    Hung, Shih-Lin

    2014-01-01

    This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building. PMID:24672359

  8. Global trends and variability in integrated water vapour from ground-based GPS data and atmospheric models

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Parracho, Ana; Bastin, Sophie; Hourdin, Frededic; Mellul, Lidia

    2016-04-01

    A high-quality, consistent, global, long-term dataset of integrated water vapour (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) intercomparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and are analysed in coherence with precipitation and surface temperature data (from observations and ERA-Interim reanalysis). These data are also used to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are intercompared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.

  9. Integrated random-aligned carbon nanotube layers: deformation mechanism under compression

    NASA Astrophysics Data System (ADS)

    Zeng, Zhiping; Gui, Xuchun; Gan, Qiming; Lin, Zhiqiang; Zhu, Yuan; Zhang, Wenhui; Xiang, Rong; Cao, Anyuan; Tang, Zikang

    2014-01-01

    Carbon nanotubes have the potential to construct highly compressible and elastic macroscopic structures such as films, aerogels and sponges. The structure-related deformation mechanism determines the mechanical behavior of those structures and niche applications. Here, we show a novel strategy to integrate aligned and random nanotube layers and reveal their deformation mechanism under uniaxial compression with a large range of strain and cyclic testing. Integrated nanotube layers deform sequentially with different mechanisms due to the distinct morphology of each layer. While the aligned layer forms buckles under compression, nanotubes in the random layer tend to be parallel and form bundles, resulting in the integration of quite different properties (strength and stiffness) and correspondingly distinct plateau regions in the stress-strain curves. Our results indicate a great promise of constructing hierarchical carbon nanotube structures with tailored energy absorption properties, for applications such as cushioning and buffering layers in microelectromechanical systems.Carbon nanotubes have the potential to construct highly compressible and elastic macroscopic structures such as films, aerogels and sponges. The structure-related deformation mechanism determines the mechanical behavior of those structures and niche applications. Here, we show a novel strategy to integrate aligned and random nanotube layers and reveal their deformation mechanism under uniaxial compression with a large range of strain and cyclic testing. Integrated nanotube layers deform sequentially with different mechanisms due to the distinct morphology of each layer. While the aligned layer forms buckles under compression, nanotubes in the random layer tend to be parallel and form bundles, resulting in the integration of quite different properties (strength and stiffness) and correspondingly distinct plateau regions in the stress-strain curves. Our results indicate a great promise of

  10. Ocean Acidification Monitoring Data Collaborations, Integration and Dissemination: The US Pacific NW Regional IOOS Experience with Local to Global Efforts

    NASA Astrophysics Data System (ADS)

    Mayorga, E.; Newton, J.; Tanner, T.

    2016-02-01

    Over the last several years, the impact of ocean acidification (OA) on coastal ecosystems and resources has become an increasingly important issue in the US Pacific Northwest (NW), leading to multi-faceted efforts that include basic scientific research; targeted partnerships between researchers, industry, and resource managers; increased monitoring of water conditions; and collaborations ranging from local efforts to West Coast, national and global coordination. The Northwest Association of Networked Ocean Observing Systems (NANOOS), the Pacific NW Regional Association of the United States Integrated Ocean Observing System (IOOS), has played an important role in these initiatives and collaborations.NANOOS' mission focuses on the generation, integration and timely delivery of marine data to serve the needs and decisions of its region in a nationally coordinated fashion. NANOOS collaboratively leverages limited resources to address multiple thematic areas of emphasis. It aggregates and serves meteorological and oceanographic data derived from observation platforms such as buoys, tide gauges, weather stations, gliders, cruises, high-frequency radar and satellites, as well as model forecast information and geospatial map data. These data originate from a wide range of providers including federal, state, tribal and municipal entities, and the private and academic sectors.The NANOOS data management and user products group has actively supported activities that serve OA information access needs locally and regionally. Early efforts have also led to a leading role in wider regional iniatives spanning the West Coast and the NE Pacific, particularly through the IOOS Pacific Region Ocean Acidification (IPACOA) collaboration and data integration application and collaboration with the West Coast Governors Alliance on Ocean Health (WCGA). We have also participated in helping define national and global data integration efforts. We will describe our activities, tools and

  11. Use of satellite remote sensing to evaluate an integrated global land surface hydrology - routing - water resources management model

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Huang, M.; Li, H.; Leung, L.

    2013-12-01

    An integrated model has been developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional and global scales. The integrated model consists of a land surface hydrology model (LSM) with crop and irrigation modules, a routing model and a water resources management model (WM). The modeling system has shown reasonable performance at the regional and subregional scales over the Columbia River Basin and Upper Midwest in the USA. The overall and individual components of integrated system were validated by evaluating both regulated and natural flows, reservoir storage and water supply with respect to observations. In this presentation, the first application of this system at the global scale is discussed. The overall system is evaluated with respect to GRDC observed regulated flow. The terrestrial hydrologic simulations are evaluated against GRACE and MODIS products, and data-model or observed naturalized flow where available. In addition, the reservoir model is evaluated with respect to satellite altimetry data from the US Department of Agriculture and French Space Agency (Centre National D'Etudes Spatial CNES). Although the reservoir model is not tuned specifically for each observed regulated flow, we investigate potential bias and discuss on the cascade of errors from the atmospheric model forcing, into the LSM down to WM over major reservoirs throughout the world for different hydro-climatic conditions and reservoir characteristics.

  12. The role of country-to-region assignments in global integrated modeling of energy, agriculture, land use, and climate

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Patel, P.; Calvin, K. V.

    2014-12-01

    Global integrated assessment models used for understanding the linkages between the future energy, agriculture, and climate systems typically represent between 8 and 30 geopolitical macro-regions, balancing the benefits of geographic resolution with the costs of additional data collection, processing, analysis, and computing resources. As these models are continually being improved and updated in order to address new questions for the research and policy communities, it is worth examining the consequences of the country-to-region mapping schemes used for model results. This study presents an application of a data processing system built for the GCAM integrated assessment model that allows any country-to-region assignments, with a minimum of four geopolitical regions and a maximum of 185. We test ten different mapping schemes, including the specific mappings used in existing major integrated assessment models. We also explore the impacts of clustering nations into regions according to the similarity of the structure of each nation's energy and agricultural sectors, as indicated by multivariate analysis. Scenarios examined include a reference scenario, a low-emissions scenario, and scenarios with agricultural and buildings sector climate change impacts. We find that at the global level, the major output variables (primary energy, agricultural land use) are surprisingly similar regardless of regional assignments, but at finer geographic scales, differences are pronounced. We suggest that enhancing geographic resolution is advantageous for analysis of climate impacts on the buildings and agricultural sectors, due to the spatial heterogeneity of these drivers.

  13. First Annual IMACS Report: A global International Society for Heart and Lung Transplantation Registry for Mechanical Circulatory Support.

    PubMed

    Kirklin, James K; Cantor, Ryan; Mohacsi, Paul; Gummert, Jan; De By, Theo; Hannan, Margaret M; Kormos, Robert L; Schueler, Stephan; Lund, Lars H; Nakatani, Takeshi; Taylor, Rhiannon; Lannon, Jenny

    2016-04-01

    The first annual report of the International Society for Heart and Lung Transplantation (ISHLT) Mechanically Assisted Circulatory Support (IMACS) registry provides global data on 5,942 patients from 31 countries. This initial report focuses on patient demographics, survival, device types, adverse events, competing outcomes, and a risk factor analysis.

  14. Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry.

    PubMed

    Piras, Paolo; Maiorino, Leonardo; Teresi, Luciano; Meloro, Carlo; Lucci, Federico; Kotsakis, Tassos; Raia, Pasquale

    2013-11-01

    Cat-like carnivorous mammals represent a relatively homogeneous group of species whose morphology appears constrained by exclusive adaptations for meat eating. We present the most comprehensive data set of extant and extinct cat-like species to test for evolutionary transformations in size, shape and mechanical performance, that is, von Mises stress and surface traction, of the mandible. Size and shape were both quantified by means of geometric morphometrics, whereas mechanical performance was assessed applying finite element models to 2D geometry of the mandible. Additionally, we present the first almost complete composite phylogeny of cat-like carnivorans for which well-preserved mandibles are known, including representatives of 35 extant and 59 extinct species of Felidae, Nimravidae, and Barbourofelidae. This phylogeny was used to test morphological differentiation, allometry, and covariation of mandible parts within and among clades. After taking phylogeny into account, we found that both allometry and mechanical variables exhibit a significant impact on mandible shape. We also tested whether mechanical performance was linked to morphological integration. Mechanical stress at the coronoid process is higher in sabertoothed cats than in any other clade. This is strongly related to the high degree of covariation within modules of sabertooths mandibles. We found significant correlation between integration at the clade level and per-clade averaged stress values, on both original data and by partialling out interclade allometry from shapes when calculating integration. This suggests a strong interaction between natural selection and the evolution of developmental and functional modules at the clade level.

  15. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-02-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status.

  16. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries.

    PubMed

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-02-25

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium-ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status.

  17. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    PubMed Central

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status. PMID:26911922

  18. Integrating GIS with Distributed Applications Using Dynamic Data-Sharing Mechanisms

    SciTech Connect

    Burnett, Robert A. ); Tzemos, Spyridon ); Stoops, LaMar R. )

    2002-08-21

    Effective integration of a stand-alone GIS (e.g., ArcView 3.x) into a complex distributed software application requires an efficient, reliable mechanism for passing data and function requests to and from the GIS component. This paper describes the use of dynamic data-sharing and inter-process communication mechanisms to integrate GIS capability into a multi-jurisdictional distributed emergency management information system. These mechanisms include dynamic layer updates from spatial and attribute information shared via a distributed relational database across multiple sites; storage of private and shared ViewMarks to facilitate consistent GIS views; and asynchronous inter-process communication using function queuing and a data sharing library.

  19. Local–global overlap in diversity informs mechanisms of bacterial biogeography

    PubMed Central

    Livermore, Joshua A; Jones, Stuart E

    2015-01-01

    Spatial variation in environmental conditions and barriers to organism movement are thought to be important factors for generating endemic species, thus enhancing global diversity. Recent microbial ecology research suggested that the entire diversity of bacteria in the global oceans could be recovered at a single site, thus inferring a lack of bacterial endemism. We argue this is not the case in the global ocean, but might be in other bacterial ecosystems with higher dispersal rates and lower global diversity, like the human gut. We quantified the degree to which local and global bacterial diversity overlap in a diverse set of ecosystems. Upon comparison of observed local–global diversity overlap with predictions from a neutral biogeography model, human-associated microbiomes (gut, skin, mouth) behaved much closer to neutral expectations whereas soil, lake and marine communities deviated strongly from the neutral expectations. This is likely a result of differences in dispersal rate among ‘patches', global diversity of these systems, and local densities of bacterial cells. It appears that overlap of local and global bacterial diversity is surprisingly large (but likely not one-hundred percent), and most importantly this overlap appears to be predictable based upon traditional biogeographic parameters like community size, global diversity, inter-patch environmental heterogeneity and patch connectivity. PMID:25848869

  20. Tracking Global Fund HIV/AIDS resources used for sexual and reproductive health service integration: case study from Ethiopia.

    PubMed

    Mookherji, Sangeeta; Ski, Samantha; Huntington, Dale

    2015-05-27

    The Global Fund to Fight AIDS, Tuberculosis & Malaria (GF) strives for high value for money, encouraging countries to integrate synergistic services and systems strengthening to maximize investments. The GF needs to show how, and how much, its grants support more than just HIV/AIDS, TB and malaria. Sexual and Reproductive Health (SRH) has been part of HIV/AIDS grants since 2007. Previous studies showed the GF PBF system does not allow resource tracking for SRH integration within HIV/AIDS grants. We present findings from a resource tracking case study using primary data collected at country level. Ethiopia was the study site. We reviewed data from four HIV/AIDS grants from January 2009-June 2011 and categorized SDAs and activities as directly, indirectly, or not related to SRH integration. Data included: GF PBF data; financial, performance, in-depth interview and facility observation data from Ethiopia. All HIV/AIDS grants in Ethiopia support SRH integration activities (12-100%). Using activities within SDAs, expenditures directly supporting SRH integration increased from 25% to 66% for the largest HIV/AIDS grant, and from 21% to 34% for the smaller PMTCT-focused grant. Using SDAs to categorize expenditures underestimated direct investments in SRH integration; activity-based categorization is more accurate. The important finding is that primary data collection could not resolve the limitations in using GF GPR data for resource tracking. The remedy is to require existing activity-based budgets and expenditure reports as part of PBF reporting requirements, and make them available in the grant portfolio database. The GF should do this quickly, as it is a serious shortfall in the GF guiding principle of transparency. Showing high value for money is important for maximizing impact and replenishments. The Global Fund should routinely track HIV/AIDs grant expenditures to disease control, service integration, and overall health systems strengthening. The current PBF system

  1. Quantifying Risks in the Global Water-Food-Climate Nexus in the Coming Decades: An Integrated Modeling Approach

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Strzepek, K.; Arndt, C.; Gueneau, A.; Cai, Y.; Gao, X.; Robinson, S.; Sokolov, A. P.; Thurlow, J.

    2011-12-01

    The growing need for risk-based assessments of impacts and adaptation to regional climate change calls for the quantification of the likelihood of regional outcomes and the representation of their uncertainty. Moreover, our global water resources include energy, agricultural and environmental systems, which are linked together as well as to climate. With the prospect of potential climate change and associated shifts in hydrologic variation and extremes, the MIT Integrated Global Systems Model (IGSM) framework, in collaboration with UNU-WIDER, has enhanced its capabilities to model impacts (or effects) on the managed water-resource systems. We first present a hybrid approach that extends the MIT Integrated Global System Model (IGSM) framework to provide probabilistic projections of regional climate changes. This procedure constructs meta-ensembles of the regional hydro-climate, combining projections from the MIT IGSM that represent global-scale uncertainties with regionally resolved patterns from archived climate-model projections. From these, a river routing and water-resource management module allocates water among irrigation, hydropower, urban/industrial, and in-stream uses and investigate how society might adapt water resources due to shifts in hydro-climate variations and extremes. These results are then incorporated into economic models allowing us to consider the implications of climate for growth, land use, and development prospects. In this model-based investigation, we consider how changes in the regional hydro-climate over major river basins in southern Africa, Vietnam, as well as the United States impact agricultural productivity and water-management systems, and whether adaptive strategies can cope with the more severe climate-related threats to growth and development. All this is cast under a probabilistic description of regional climate changes encompassed by the IGSM framework.

  2. Impacts Of Global/Regional Climate Changes On Environment And Health: Need For Integrated Research And Education Collaboration (Invited)

    NASA Astrophysics Data System (ADS)

    Tuluri, F.

    2013-12-01

    The realization of long term changes in climate in research community has to go beyond the comfort zone through climate literacy in academics. Higher education on climate change is the platform to bring together the otherwise disconnected factors such as effective discovery, decision making, innovation, interdisciplinary collaboration, Climate change is a complex process that may be due to natural internal processes within the climate system, or to variations in natural or anthropogenic (human-driven) external forcing. Global climate change indicates a change in either the mean state of the climate or in its variability, persisting for several decades or longer. This includes changes in average weather conditions on Earth, such as a change in average global temperature, as well as changes in how frequently regions experience heat waves, droughts, floods, storms, and other extreme weather. It is important to examine the effects of climate variations on human health and disorders in order to take preventive measures. Similarly, the influence of climate changes on animal management practices, pests and pest management systems, and high value crops such as citrus and vegetables is also equally important for investigation. New genetic agricultural varieties must be explored, and pilot studies should examine biotechnology transfer. Recent climate model improvements have resulted in an enhanced ability to simulate many aspects of climate variability and extremes. However, they are still characterized by systematic errors and limitations in accurately simulating more precisely regional climate conditions. The present situations warrant developing climate literacy on the synergistic impacts of environmental change, and improve development, testing and validation of integrated stress impacts through computer modeling. In the present study we present a detailed study of the current status on the impacts of global/regional climate changes on environment and health with a view

  3. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    PubMed Central

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-01-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185

  4. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor