Science.gov

Sample records for global n-acetyl aspartate

  1. N-acetyl aspartate in autism spectrum disorders: Regional effects and relationship to FMRI activation

    PubMed Central

    Kleinhans, Natalia M.; Schweinsburg, Brian C.; Cohen, David N.; Müller, Ralph-Axel; Courchesne, Eric

    2009-01-01

    Rapid progress in our understanding of macrostructural abnormalities in autism spectrum disorders (ASD) has occurred in recent years. However, the relationship between the integrity of neural tissue and neural function has not been previously investigated. Single-voxel proton magnetic resonance spectroscopy and functional magnetic resonance imaging of an executive functioning task was obtained in 13 high functioning adolescents and adults with ASD and 13 age-matched controls. The ASD group showed significant reductions in N-acetyl aspartate (NAA) in all brain regions combined and a specific reduction in left frontal cortex compared to controls. Regression analyses revealed a significant group interaction effect between frontal and cerebellar NAA. In addition, a significant positive semi-partial correlation between left frontal lobe NAA and frontal lobe functional activation was found in the ASD group. These findings suggest that widespread neuronal dysfunction is present in high functioning individuals with ASD. Hypothesized developmental links between frontal and cerebellar vermis neural abnormalities were supported, in that impaired neuronal functioning in the vermis was associated with impaired neuronal functioning in the frontal lobes in the ASD group. Furthermore, this study provided the first direct evidence of the relationship between abnormal functional activation in prefrontal cortex and neuronal dysfunction in ASD. PMID:17612510

  2. Hippocampus Glutamate and N-Acetyl Aspartate Markers of Excitotoxic Neuronal Compromise in Posttraumatic Stress Disorder.

    PubMed

    Rosso, Isabelle M; Crowley, David J; Silveri, Marisa M; Rauch, Scott L; Jensen, J Eric

    2017-03-08

    Hippocampus atrophy is implicated in posttraumatic stress disorder (PTSD), and may partly reflect stress-induced glutamate excitotoxicity that culminates in neuron injury and manifests as re-experiencing symptoms and other memory abnormalities. This study used high-field proton magnetic resonance spectroscopy (MRS) to determine whether PTSD is associated with lower hippocampus levels of the neuron marker N-acetyl aspartate (NAA), along with higher levels of glutamate (Glu) and Glu/NAA. We also predicted that metabolite levels would correlate with re-experiencing symptoms and lifetime trauma load. Twenty-four adult PTSD patients and 23 trauma-exposed normal controls (TENC) underwent 4T MRS of the left and right hippocampus. Participants received psychiatric interviews, and completed the Traumatic Life Events Questionnaire to define lifetime trauma load. Relative to TENC participants, PTSD patients exhibited significantly lower NAA in right and left hippocampi, and significantly higher Glu and Glu/NAA in the right hippocampus. Re-experiencing symptoms were negatively correlated with left and right NAA, and positively correlated with right Glu and right Glu/NAA. Trauma load was positively correlated with right Glu/NAA in PTSD patients. When re-experiencing symptoms and trauma load were examined together in relation to right Glu/NAA, only re-experiencing symptoms remained a significant correlate. This represents the first report that PTSD is associated with MRS markers of hippocampus Glu excess, together with indices of compromised neuron integrity. Their robust associations with re-experiencing symptoms affirm that MRS indices of hippocampus neuron integrity and glutamate metabolism may reflect biomarkers of clinically significant disease variation in PTSD.Neuropsychopharmacology advance online publication, 8 March 2017; doi:10.1038/npp.2017.32.

  3. Phospho-N-Acetyl-Muramyl-Pentapeptide Translocase from Escherichia coli: Catalytic Role of Conserved Aspartic Acid Residues

    PubMed Central

    Lloyd, Adrian J.; Brandish, Philip E.; Gilbey, Andrea M.; Bugg, Timothy D. H.

    2004-01-01

    Phospho-N-acetyl-muramyl-pentapeptide translocase (translocase 1) catalyzes the first of a sequence of lipid-linked steps that ultimately assemble the peptidoglycan layer of the bacterial cell wall. This essential enzyme is the target of several natural product antibiotics and has recently been the focus of antimicrobial drug discovery programs. The catalytic mechanism of translocase 1 is believed to proceed via a covalent intermediate formed between phospho-N-acetyl-muramyl-pentapeptide and a nucleophilic amino acid residue. Amino acid sequence alignments of the translocase 1 family and members of the related transmembrane phosphosugar transferase superfamily revealed only three conserved residues that possess nucleophilic side chains: the aspartic acid residues D115, D116, and D267. Here we report the expression and partial purification of Escherichia coli translocase 1 as a C-terminal hexahistidine (C-His6) fusion protein. Three enzymes with the site-directed mutations D115N, D116N, and D267N were constructed, expressed, and purified as C-His6 fusions. Enzymatic analysis established that all three mutations eliminated translocase 1 activity, and this finding verified the essential role of these residues. By analogy with the structural environment of the double aspartate motif found in prenyl transferases, we propose a model whereby D115 and D116 chelate a magnesium ion that coordinates with the pyrophosphate bridge of the UDP-N-acetyl-muramyl-pentapeptide substrate and in which D267 therefore fulfills the role of the translocase 1 active-site nucleophile. PMID:14996806

  4. Suppressing N-Acetyl-l-Aspartate Synthesis Prevents Loss of Neurons in a Murine Model of Canavan Leukodystrophy.

    PubMed

    Sohn, Jiho; Bannerman, Peter; Guo, Fuzheng; Burns, Travis; Miers, Laird; Croteau, Christopher; Singhal, Naveen K; McDonough, Jennifer A; Pleasure, David

    2017-01-11

    Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in Aspa(Nur7/Nur7) mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like.

  5. The relationship between Gulf war illness, brain N-acetyl aspartate and post-traumatic stress disorder

    PubMed Central

    Weiner, Michael W.; Meyerhoff, Dieter J.; Neylan, Thomas C.; Hlavin, Jennifer; Ramage, Erin R.; McCoy, Daniel; Studholme, Colin; Cardenas, Valerie; Marmar, Charles; Truran, Diana; Chu, Philip W.; Kornak, John; Furlong, Clement E.; McCarthy, Charles

    2012-01-01

    A previous study (1) suggested that individuals with Gulf War Illness (GWI) had reduced quantities of the neuronal marker N-acetyl aspartate (NAA) in the basal ganglia and pons. This study aimed to determine whether NAA is reduced in these regions and to investigate correlations with other possible causes of GWI, such as psychological response to stress in a large cohort of Gulf war veterans. Individuals underwent tests to determine their physical and psychological health and to identify veterans with (n=81) and without (n=97) GWI. When concentrations of NAA and ratios of NAA to creatine- and choline-containing metabolites were measured in the basal ganglia and pons, no significant differences were found between veterans with or without GWI, suggesting that GWI is not associated with reduced NAA in these regions. Veterans with GWI had significantly higher rates of Post Traumatic Stress Disorder (PTSD), supporting the idea that GWI symptoms are stress-related. PMID:21882779

  6. Lower "N"-Acetyl-Aspartate Levels in Prefrontal Cortices in Pediatric Bipolar Disorder: A (Superscript 1]H Magnetic Resonance Spectroscopy Study

    ERIC Educational Resources Information Center

    Caetano, Sheila C.; Olvera, Rene L.; Hatch, John P.; Sanches, Marsal; Chen, Hua Hsuan; Nicoletti, Mark; Stanley, Jeffrey A.; Fonseca, Manoela; Hunter, Kristina; Lafer, Beny; Pliszka, Steven R.; Soares, Jair C.

    2011-01-01

    Objective: The few studies applying single-voxel [superscript 1]H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low "N"-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol/phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study…

  7. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate.

    PubMed

    Janik, Rafal; Thomason, Lynsie A M; Stanisz, Andrew M; Forsythe, Paul; Bienenstock, John; Stanisz, Greg J

    2016-01-15

    The gut microbiome has been shown to regulate the development and functions of the enteric and central nervous systems. Its involvement in the regulation of behavior has attracted particular attention because of its potential translational importance in clinical disorders, however little is known about the pathways involved. We previously have demonstrated that administration of Lactobacillus rhamnosus (JB-1) to healthy male BALB/c mice, promotes consistent changes in GABA-A and -B receptor sub-types in specific brain regions, accompanied by reductions in anxiety and depression-related behaviors. In the present study, using magnetic resonance spectroscopy (MRS), we quantitatively assessed two clinically validated biomarkers of brain activity and function, glutamate+glutamine (Glx) and total N-acetyl aspartate+N-acetyl aspartyl glutamic acid (tNAA), as well as GABA, the chief brain inhibitory neurotransmitter. Mice received 1×10(9) cfu of JB-1 per day for 4weeks and were subjected to MRS weekly and again 4weeks after cessation of treatment to ascertain temporal changes in these neurometabolites. Baseline concentrations for Glx, tNAA and GABA were equal to 10.4±0.3mM, 8.7±0.1mM, and 1.2±0.1mM, respectively. Delayed increases were first seen for Glx (~10%) and NAA (~37%) at 2weeks which persisted only to the end of treatment. However, Glx was still elevated 4weeks after treatment had ceased. Significantly elevated GABA (~25%) was only seen at 4weeks. These results suggest specific metabolic pathways in our pursuit of mechanisms of action of psychoactive bacteria. They also offer through application of standard clinical neurodiagnostic techniques, translational opportunities to assess biomarkers accompanying behavioral changes induced by alterations in the gut microbiome.

  8. Higher visceral fat is associated with lower cerebral N-acetyl-aspartate ratios in middle-aged adults.

    PubMed

    Kaur, Sonya; Birdsill, Alex C; Steward, Kayla; Pasha, Evan; Kruzliak, Peter; Tanaka, Hirofumi; Haley, Andreana P

    2017-01-31

    Excessive adipose tissue, particularly with a central distribution, consists of visceral fat, which is metabolically active and could impinge upon central nervous system functioning. The aim of the current study was to examine levels of visceral adiposity in relation to key cerebral metabolite ratios localized in the occipitoparietal grey matter. Seventy-three adults, aged between 40 and 60 years, underwent structural magnetic resonance imaging and single voxel (1)H Magnetic Resonance Spectroscopy ((1)H MRS). Visceral fat was assessed using Dual Energy X Ray Absorptiometry (DXA). Individuals with higher visceral fat mass and volume had significantly lower ratios of N-acetyl-aspartate to total creatine (phosphocreatine + creatine, PCr + Cr) (NAA/PCr + Cr) (β = -0.29, p = 0.03, β = -0.28, p = 0.04). They also had significantly higher ratios of myo-inositol to total creatine (mI/PCr + Cr ) (β = 0.36, p = 0.01, β = 0.36, p = 0.01). Visceral fat mass and volume were not significantly related to ratios of glutamate to total creatine (Glu/PCr + Cr). While future studies are necessary, these results indicate central adiposity is associated with metabolic changes that could impinge upon the central nervous system in middle age.

  9. The ratio of N-acetyl aspartate to glutamate correlates with disease duration of amyotrophic lateral sclerosis.

    PubMed

    Sako, Wataru; Abe, Takashi; Izumi, Yuishin; Harada, Masafumi; Kaji, Ryuji

    2016-05-01

    Glutamate (Glu)-induced excitotoxicity has been implicated in the neuronal loss of amyotrophic lateral sclerosis. To test the hypothesis that Glu in the primary motor cortex contributes to disease severity and/or duration, the Glu level was investigated using MR spectroscopy. Seventeen patients with amyotrophic lateral sclerosis were diagnosed according to the El Escorial criteria for suspected, possible, probable or definite amyotrophic lateral sclerosis, and enrolled in this cross-sectional study. We measured metabolite concentrations, including N-acetyl aspartate (NAA), creatine, choline, inositol, Glu and glutamine, and performed partial correlation between each metabolite concentration or NAA/Glu ratio and disease severity or duration using age as a covariate. Considering our hypothesis that Glu is associated with neuronal cell death in amyotrophic lateral sclerosis, we investigated the ratio of NAA to Glu, and found a significant correlation between NAA/Glu and disease duration (r=-0.574, p=0.02). The "suspected" amyotrophic lateral sclerosis patients showed the same tendency as possible, probable and definite amyotrophic lateral sclerosis patients in regard to correlation of NAA/Glu ratio with disease duration. The other metabolites showed no significant correlation. Our findings suggested that glutamatergic neurons are less vulnerable compared to other neurons and this may be because inhibitory receptors are mainly located presynaptically, which supports the notion of Glu-induced excitotoxicity.

  10. Early increase in marker of neuronal integrity with antidepressant treatment of major depression: 1H-magnetic resonance spectroscopy of N-acetyl-aspartate

    PubMed Central

    Taylor, Matthew J.; Godlewska, Beata R.; Norbury, Ray; Selvaraj, Sudhakar; Near, Jamie; Cowen, Philip J.

    2012-01-01

    Increasing interest surrounds potential neuroprotective or neurotrophic actions of antidepressants. While growing evidence points to important early clinical and neuropsychological effects of antidepressants, the time-course of any effect on neuronal integrity is unclear. This study used magnetic resonance spectroscopy to assess effects of short-term treatment with escitalopram on N-acetyl-aspartate (NAA), a marker of neuronal integrity. Thirty-nine participants with major depression were randomly assigned to receive either 10 mg escitalopram or placebo daily in a double-blind, parallel group design. On the seventh day of treatment, PRESS data were obtained from a 30×30×20 mm voxel placed in medial frontal cortex. Age and gender-matched healthy controls who received no treatment were also scanned. Levels of NAA were significantly higher in patients treated with escitalopram than in either placebo-treated patients (p<0.01) or healthy controls (p<0.01). Our findings are consistent with the proposition that antidepressant treatment in depressed patients can produce early changes in neuronal integrity. PMID:22449253

  11. Early increase in marker of neuronal integrity with antidepressant treatment of major depression: 1H-magnetic resonance spectroscopy of N-acetyl-aspartate.

    PubMed

    Taylor, Matthew J; Godlewska, Beata R; Norbury, Ray; Selvaraj, Sudhakar; Near, Jamie; Cowen, Philip J

    2012-11-01

    Increasing interest surrounds potential neuroprotective or neurotrophic actions of antidepressants. While growing evidence points to important early clinical and neuropsychological effects of antidepressants, the time-course of any effect on neuronal integrity is unclear. This study used magnetic resonance spectroscopy to assess effects of short-term treatment with escitalopram on N-acetyl-aspartate (NAA), a marker of neuronal integrity. Thirty-nine participants with major depression were randomly assigned to receive either 10 mg escitalopram or placebo daily in a double-blind, parallel group design. On the seventh day of treatment, PRESS data were obtained from a 30×30×20 mm voxel placed in medial frontal cortex. Age and gender-matched healthy controls who received no treatment were also scanned. Levels of NAA were significantly higher in patients treated with escitalopram than in either placebo-treated patients (p<0.01) or healthy controls (p<0.01). Our findings are consistent with the proposition that antidepressant treatment in depressed patients can produce early changes in neuronal integrity.

  12. A multi-matrix HILIC-MS/MS method for the quantitation of endogenous small molecule neurological biomarker N-acetyl aspartic acid (NAA).

    PubMed

    Sangaraju, Dewakar; Shahidi-Latham, Sheerin K; Burgess, Braydon L; Dean, Brian; Ding, Xiao

    2017-03-14

    A multi-matrix hydrophilic interaction liquid chromatography tandem mass spectrometric method (HILIC-MS/MS) was developed for the quantitation of N-Acetyl Aspartic acid (NAA) using stable isotope labeled internal standard, D3-NAA in various biological matrices such as human plasma, human CSF, mouse plasma, brain and spinal cord. A high throughput 96-well plate format supported liquid extraction (SLE) procedure was developed and used for sample preparation. Mass spectrometric analysis of NAA was performed using selected reaction monitoring transitions in positive electrospray ionization mode. As NAA is endogenously present, a surrogate matrix approach was used for quantitation of NAA and the method was qualified over linear calibration curve range of 0.01-10μg/mL. Intra and inter assay precision indicated by percent relative standard deviation (%RSD) was less than 7.1% for low, medium, medium high and high QCs. The accuracy of the method ranged from 92.6-107.0% of nominal concentration for within-run and between-run for the same QCs. Extraction recovery of NAA and D3-NAA was greater than 76%. Stability of NAA was established in the above biological matrices under bench top (RT, 5h), freeze thaw (-20±10°C, 3 cycles) and moues/human plasma sample collection (Wet ice, RT) conditions. HILIC-MS/MS method was then used to quantify and compare the NAA levels in human plasma and CSF of ALS patients versus control human subjects. NAA CSF levels in control human subjects (73.3±31.0ng/mL,N=10) were found to be slightly higher than ALS patients (46.1±22.6ng/mL, N=10) (P=0.04). No differences were observed in NAA plasma levels in human control subjects (49.7±13.8ng/mL,N=9) as compared to ALS patients (49.6±8.1ng/mL, N=10) (P=0.983). NAA endogenous concentrations in mouse plasma, brain and spinal cord were found to be 243.8±56.8ng/mL (N=6), 1029.8±115.2μg/g tissue weight (N=5) and 487.6±178.4μg/g tissue weight (N=5) respectively.

  13. Structure of the O-polysaccharide of Providencia stuartii O4 containing 4-(N-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose.

    PubMed

    Kocharova, Nina A; Torzewska, Agnieszka; Zatonsky, George V; Błaszczyk, Aleksandra; Bystrova, Olga V; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2004-01-22

    The O-polysaccharide of Providencia stuartii O4 was obtained by mild acid degradation of the lipopolysaccharide, and the following structure of the pentasaccharide repeating unit was established: [structure: see text] where D-Qui4N(L-AspAc) is 4-(N-acetyl-L-aspart-4-yl)amino-4,6-dideoxy-D-glucose, which has not been hitherto found in bacterial polysaccharides. Structural studies were performed using sugar and methylation analyses, Smith degradation and NMR spectroscopy, including conventional 2D 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments as well as COSY and NOESY experiments run in an H(2)O-D(2)O mixture to reveal correlations for NH protons.

  14. N-acetyl-L-aspartic acid-N'-methylamide with side-chain orientation capable of external hydrogen bonding . Backbone and side-chain folding, studied at the DFT level of quantum theory

    NASA Astrophysics Data System (ADS)

    Koo, J. C. P.; Chass, G. A.; Perczel, A.; Farkas, Ö.; Varro, A.; Torday, L. L.; Papp, J. Gy.; Csizmadia, I. G.

    2002-09-01

    In this study, we generated and analyzed the side-chain conformational potential energy hypersurfaces for each of the nine possible backbone conformers for N-acetyl-L-aspartic acid-N' methylamide. We found a total of 27 out of the 81 possible conformers optimized at the B3LYP/6-31G(d) level of theory. The relative energies, as well as the stabilization energies exerted by the side-chain on the backbone, have been calculated for each of the 27 optimized conformers at this level of theory. Various backbone-backbone (N H{\\cdot}{\\cdot}{\\cdot}O=C) and backbone-side-chain (N H{\\cdot}{\\cdot}{\\cdot}O=C; N H{\\cdot}{\\cdot}{\\cdot}OH) hydrogen bonds were analyzed. The appearance of the notoriously absent \\varepsilon_L backbone conformer may be attributed to such side-chain-backbone (SC/BB) and backbone-backbone (BB/BB) hydrogen bonds.

  15. Evaluation of the Lactate-to-N-Acetyl-aspartate Ratio Defined With Magnetic Resonance Spectroscopic Imaging Before Radiation Therapy as a New Predictive Marker of the Site of Relapse in Patients With Glioblastoma Multiforme

    SciTech Connect

    Deviers, Alexandra; Ken, Soléakhéna; Filleron, Thomas; Rowland, Benjamin; Laruelo, Andrea; Catalaa, Isabelle; Lubrano, Vincent; Celsis, Pierre; and others

    2014-10-01

    Purpose: Because lactate accumulation is considered a surrogate for hypoxia and tumor radiation resistance, we studied the spatial distribution of the lactate-to-N-acetyl-aspartate ratio (LNR) before radiation therapy (RT) with 3D proton magnetic resonance spectroscopic imaging (3D-{sup 1}H-MRSI) and assessed its impact on local tumor control in glioblastoma (GBM). Methods and Materials: Fourteen patients with newly diagnosed GBM included in a phase 2 chemoradiation therapy trial constituted our database. Magnetic resonance imaging (MRI) and MRSI data before RT were evaluated and correlated to MRI data at relapse. The optimal threshold for tumor-associated LNR was determined with receiver-operating-characteristic (ROC) curve analysis of the pre-RT LNR values and MRI characteristics of the tumor. This threshold was used to segment pre-RT normalized LNR maps. Two spatial analyses were performed: (1) a pre-RT volumetric comparison of abnormal LNR areas with regions of MRI-defined lesions and a choline (Cho)-to- N-acetyl-aspartate (NAA) ratio ≥2 (CNR2); and (2) a voxel-by-voxel spatial analysis of 4,186,185 voxels with the intention of evaluating whether pre-RT abnormal LNR areas were predictive of the site of local recurrence. Results: A LNR of ≥0.4 (LNR-0.4) discriminated between tumor-associated and normal LNR values with 88.8% sensitivity and 97.6% specificity. LNR-0.4 voxels were spatially different from those of MRI-defined lesions, representing 44% of contrast enhancement, 64% of central necrosis, and 26% of fluid-attenuated inversion recovery (FLAIR) abnormality volumes before RT. They extended beyond the overlap with CNR2 for most patients (median: 20 cm{sup 3}; range: 6-49 cm{sup 3}). LNR-0.4 voxels were significantly predictive of local recurrence, regarded as contrast enhancement at relapse: 71% of voxels with a LNR-0.4 before RT were contrast enhanced at relapse versus 10% of voxels with a normal LNR (P<.01). Conclusions: Pre-RT LNR-0.4 in GBM

  16. Structure of the O-polysaccharide and serological cross-reactivity of the Providencia stuartii O33 lipopolysaccharide containing 4-(N-acetyl-D-aspart-4-yl)amino-4,6-dideoxy-D-glucose.

    PubMed

    Torzewska, Agnieszka; Kocharova, Nina A; Zatonsky, George V; Blaszczyk, Aleksandra; Bystrova, Olga V; Shashkov, Alexander S; Knirel, Yuriy A; Rozalski, Antoni

    2004-06-01

    The O-polysaccharide of Providencia stuartii O33 was obtained by mild acid degradation of the lipopolysaccharide and the following structure of the tetrasaccharide repeating unit was established: -->6)-alpha-D-GlcpNAc-(1-->4)-alpha-D-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4N(Ac-D-Asp)-(1-->, where d-Qui4N(Ac-D-Asp) is 4-(N-acetyl-D-aspart-4-yl)amino-4,6-dideoxy-D-glucose. Structural studies were performed using sugar and methylation analyses and NMR spectroscopy, including conventional 2D 1H, 1H COSY, TOCSY, NOESY and 1H, 13C HSQC experiments as well as COSY and NOESY experiments in an H2O-D2O mixture to reveal correlations for NH protons. The O-polysaccharide of P. stuartii O33 shares an alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4N(Ac-D-Asp) epitope with that of Proteus mirabilis O38, which seems to be responsible for a marked serological cross-reactivity of anti-P. stuartii O33 serum with the lipopolysaccharide of the latter bacterium. P. stuartii O33 is serologically related also to P. stuartii O4, whose O-polysaccharide contains a lateral beta-D-Qui4N(Ac-L-Asp) residue.

  17. N-ACETYL GROUPS IN VITELLENIN,

    DTIC Science & Technology

    The presence of acetyl groups in vitellenin was confirmed by hydrazinolysis according to the DNP method of Phillips. After hydrazinolysis of 10-30...hydrazinolysis at room temperature for 1 hour, vitellenin contains N- acetyl , but no Oacetyl, groups. (Author)

  18. Comparative analysis of pharmacological treatments with N-acetyl-DL-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only.

  19. N-ACETYL-β-GLUCOSAMINIDASE ACTIVITY IN SERUM DURING PREGNANCY

    PubMed Central

    Walker, P. G.; Woollen, Mary E.; Pugh, Doreen

    1960-01-01

    A spectrophotometric method for the estimation of N-acetyl-β-glucosaminidase in serum has been devised. Sera from normal adult males and females showed similar levels of activity. The activity in serum rose progressively during pregnancy and fell rapidly after parturition to normal levels. This change resembled closely that which occurs in serum β-glucuronidase. Placenta showed a moderate and chorion a high level of N-acetyl-β-glucosaminidase. High N-acetyl-β-glucosaminidase activity was demonstrated histochemically in decidual cells. The functions of N-acetyl-β-glucosaminidase and β-glucuronidase and factors influencing their activity are discussed. Images PMID:13782743

  20. The structure- and metal-dependent activity of Escherichia coli PgaB provides insight into the partial de-N-acetylation of poly-β-1,6-N-acetyl-D-glucosamine.

    PubMed

    Little, Dustin J; Poloczek, Joanna; Whitney, John C; Robinson, Howard; Nitz, Mark; Howell, P Lynne

    2012-09-07

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In Escherichia coli, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-D-glucosamine (PNAG) by the periplasmic protein PgaB is required for polysaccharide intercellular adhesin-dependent biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of PgaB in complex with Ni(2+) and Fe(3+) have been determined to 1.9 and 2.1 Å resolution, respectively, and its activity on β-1,6-GlcNAc oligomers has been characterized. The structure of PgaB reveals two (β/α)(x) barrel domains: a metal-binding de-N-acetylase that is a member of the family 4 carbohydrate esterases (CE4s) and a domain structurally similar to glycoside hydrolases. PgaB displays de-N-acetylase activity on β-1,6-GlcNAc oligomers but not on the β-1,4-(GlcNAc)(4) oligomer chitotetraose and is the first CE4 member to exhibit this substrate specificity. De-N-acetylation occurs in a length-dependent manor, and specificity is observed for the position of de-N-acetylation. A key aspartic acid involved in de-N-acetylation, normally seen in other CE4s, is missing in PgaB, suggesting that the activity of PgaB is attenuated to maintain the low levels of de-N-acetylation of PNAG observed in vivo. The metal dependence of PgaB is different from most CE4s, because PgaB shows increased rates of de-N-acetylation with Co(2+) and Ni(2+) under aerobic conditions, and Co(2+), Ni(2+) and Fe(2+) under anaerobic conditions, but decreased activity with Zn(2+). The work presented herein will guide inhibitor design to combat biofilm formation by E. coli and potentially a wide range of medically relevant bacteria producing polysaccharide intercellular adhesin-dependent biofilms.

  1. In vivo N-acetyl cysteine reduce hepatocyte death by induced acetaminophen

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Ju; Li, Feng-Chieh; Wang, Sheng-Shun; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2011-07-01

    Acetaminophen (APAP) is the famous drug in global, and taking overdose Acetaminophen will intake hepatic cell injure. Desptie substantial progress in our understanding of the mechanism of hepatocellular injury during the last 40 years, many aspects of the pathophysiology are still unknown or controversial.1 In this study, mice are injected APAP overdose to damage hepatocyte. APAP deplete glutathione and ATP of cell, N-Acetyl Cysteine (NAC) plays an important role to protect hepatocytes be injury. N-Acetyl Cysteine provides mitochondrial to produce glutathione to release drug effect hepatocyte. By 6-carboxyfluorescein diacetate (6-CFDA) metabolism in vivo, glutathione keep depleting to observe the hepatocyte morphology in time. Without NAC, cell necrosis increase to plasma membrane damage to release 6-CFDA, that's rupture. After 6-CFDA injection, fluorescence will be retained in hepatocyte. For cell retain with NAC and without NAC are almost the same. With NAC, the number of cell rupture decreases about 75%.

  2. Chitosan Molecular Structure as a Function of N-Acetylation

    SciTech Connect

    Franca, Eduardo F.; Freitas, Luiz C.; Lins, Roberto D.

    2011-07-01

    Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with f and w values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3- HO3(n) ... O5(n+ 1) hydrogen bond, which in turn controls particle aggregation.

  3. N-Acetylation of Glucosamine-6-Phosphate in Leuconostoc mesenteroides

    PubMed Central

    DeMoss, R. D.; Moser, K.

    1969-01-01

    A partially purified enzyme (120-fold) from Leuconostoc mesenteroides catalyzed the reversible N-acetylation of d-glucosamine-6-phosphate. Coenzyme A was not required and inhibited the reaction rate. Neither d-glucosamine nor N-acetyl-d-glucosamine served as a substrate for the reversible reaction. The enzyme preparation retained 50% of its original activity after 5 min at 100 C. The Km for acetate was 7.7 × 10−2m in the presence of 2 × 10−2md-glucosamine-6-phosphate. The Km for d-glucosamine-6-phosphate was 5.0 × 10−3m in the presence of 0.64 m acetate. The product of the reaction was characterized by comparison with N-acetyl-d-glucosamine-6-phosphate prepared by enzymatic phosphorylation of N-acetyl-d-glusamine. The characterization tests were: chromatographic migration, acid hydrolysis, enzymatic dephosphorylation, sodium borohydride reduction, and periodate oxidation. The equilibrium constant for the reaction was about 7.5 m for the expression K = (d-glucosamine-6-phosphate)(acetate)/N-acetyl-d-glucosamine-6-phosphate. The standard free energy of the reaction was approximately 1,200 cal per mole. PMID:5781575

  4. Quantification of N-Acetyl Aspartyl Glutamate in Human Brain using Proton Magnetic Resonance Spectroscopy at 7 T

    NASA Astrophysics Data System (ADS)

    Elywa, M.

    2015-07-01

    The separation of N-acetyl aspartyl glutamate (NAAG) from N-acetyl aspartate (NAA) and other metabolites, such as glutamate, by in vivo proton magnetic resonance spectroscopy at 7 T is described. This method is based on the stimulated echo acquisition mode (STEAM), with short and long echo time (TE) and allows quantitative measurements of NAAG in the parietal and pregenual anterior cingulate cortex (pgACC) of human brain. Two basesets for the LCModel have been established using nuclear magnetic resonance simulator software (NMR-SIM). Six healthy volunteers (age 25-35 years) have been examined at 7 T. It has been established that NAAG can be separated and quantified in the parietal location and does not get quantified in the pgACC location when using a short echo time, TE = 20 ms. On the other hand, by using a long echo time, TE = 74 ms, NAAG can be quantified in pgACC structures.

  5. Getting a Knack for NAC: N-Acetyl-Cysteine.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2011-01-01

    N-acetyl-cysteine, N-acetylcysteine, N-acetyl cysteine, and N-acetyl-L-cysteine are all designations for the same compound, which is abbreviated as NAC. NAC is a precursor to the amino acid cysteine, which ultimately plays two key metabolic roles. Through its metabolic contribution to glutathione production, cysteine participates in the general antioxidant activities of the body. Through its role as a modulator of the glutamatergic system, cysteine influences the reward-reinforcement pathway. Because of these functions, NAC may exert a therapeutic effect on psychiatric disorders allegedly related to oxidative stress (e.g., schizophrenia, bipolar disorder) as well as psychiatric syndromes characterized by impulsive/compulsive symptoms (e.g., trichotillomania, pathological nail biting, gambling, substance misuse). While the dosages, pharmacological strategies (monotherapy versus augmentation), and long-term risks are not fully evident, NAC appears to be a promising, relatively low-risk intervention. If so, NAC might be an ideal treatment strategy for a variety of psychiatric conditions in both psychiatric and primary care settings.

  6. N-Acetyl-4-aminophenol (paracetamol), N-acetyl-2-aminophenol and acetanilide in urine samples from the general population, individuals exposed to aniline and paracetamol users.

    PubMed

    Dierkes, Georg; Weiss, Tobias; Modick, Hendrik; Käfferlein, Heiko Udo; Brüning, Thomas; Koch, Holger M

    2014-01-01

    Epidemiological studies suggest associations between the use of N-acetyl-4-aminophenol (paracetamol) during pregnancy and increased risks of reproductive disorders in the male offspring. Previously we have reported a ubiquitous urinary excretion of N-acetyl-4-aminophenol in the general population. Possible sources are (1) direct intake of paracetamol through medication, (2) paracetamol residues in the food chain and (3) environmental exposure to aniline or related substances that are metabolized into N-acetyl-4-aminophenol. In order to elucidate the origins of the excretion of N-acetyl-4-aminophenol in urine and to contribute to the understanding of paracetamol and aniline metabolism in humans we developed a rapid, turbulent-flow HPLC-MS/MS method with isotope dilution for the simultaneous quantification of N-acetyl-4-aminophenol and two other aniline related metabolites, N-acetyl-2-aminophenol and acetanilide. We applied this method to three sets of urine samples: (1) individuals with no known exposure to aniline and also no recent paracetamol medication; (2) individuals after occupational exposure to aniline but no paracetamol medication and (3) paracetamol users. We confirmed the omnipresent excretion of N-acetyl-4-aminophenol. Additionally we revealed an omnipresent excretion of N-acetyl-2-aminophenol. In contrast, acetanilide was only found after occupational exposure to aniline, not in the general population or after paracetamol use. The results lead to four preliminary conclusions: (1) other sources than aniline seem to be responsible for the major part of urinary N-acetyl-4-aminophenol in the general population; (2) acetanilide is a metabolite of aniline in man and a valuable biomarker for aniline in occupational settings; (3) aniline baseline levels in the general population measured after chemical hydrolysis do not seem to originate from acetanilide and hence not from a direct exposure to aniline itself and (4) N-acetyl-2-aminophenol does not seem to be

  7. [Metabolism of N-acetyl-L-aspartate: its diagnostic and prognostic value].

    PubMed

    Martinez, Manuel A; Florenzano, Néstor V; Macchia, Esteban A

    2016-04-16

    Objetivos. Analizar la implicacion clinica del aminoacido N-acetil-L-aspartato (NAA) y el peptido N-acetil-aspartil-glutamato (NAAG) en relacion con su valoracion diagnostica y pronostica mediante espectroscopia de resonancia magnetica. Realizar una revision del metabolismo del NAA y del NAAG, considerando su estructura quimica y fisiologia, en relacion con las variaciones de su concentracion y en correlacion con la clinica. Desarrollo. La revision se divide en dos partes: en una se comprobo que el unico sitio de sintesis del NAA es la mitocondria neuronal, y del NAAG, el citoplasma neuronal; la segunda parte aborda las tecnicas de resonancia magnetica y, particularmente, la espectroscopia. Se analizan diversas patologias en busca de criterios que posibiliten obtener pautas diagnosticas y pronosticas. Conclusiones. El estudio del aminoacido mas abundante del sistema nervioso central (NAA) junto con un producto de su metabolismo, el NAAG, permite en patologias de diversos origenes su diagnostico y seguimiento y facilita la obtencion de datos de densidad de la poblacion celular y vitalidad de esta, de manera que se accede, ademas, al estado funcional de las sinapsis.

  8. Inhibition of N-acetylneuraminate lyase by N-acetyl-4-oxo-D-neuraminic acid.

    PubMed

    Gross, H J; Brossmer, R

    1988-05-09

    We show that the 4-oxo analogue of N-acetyl-D-neuraminic acid strongly inhibits N-acetylneuraminate lyase (NeuAc aldolase, EC 4.1.3.3) from Clostridum perfringens (Ki = 0.025 mM) and Escherichia coli (Ki = 0.15 mM). In each case the inhibition was competitive. N-Acetyl-D-neuraminic acid; N-Acetylneuraminate lyase; N-Acetyl-D-neuraminic acid analog; 5-Acetamido-3,5-dideoxy-beta-D-manno-non-2,4-diulosonic acid; 2-Deoxy-2,3-didehydro-N-acetyl-4-oxo-neuraminic acid; Competitive inhibitor.

  9. Regulation of extracellular N-acetyl-D-glucosaminidase production in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Bidochka, M J; Khachatourians, G G

    1993-01-01

    The entomopathogenic fungus Beauveria bassiana produces two extracellular N-acetylglucosaminidases (NAGase) in liquid medium containing colloidal chitin as the sole source of carbon and nitrogen. To study the regulation of NAGase synthesis, N-acetyl-D-glucosamine (GlcNAc), glucose NH4NO3, or amino acids were added to the colloidal chitin medium and NAGase activity was measured. NAGase synthesis was (i) induced with GlcNAc, and no repression was observed with GlcNAc provided at 2% (w/v); (ii) repressed in the presence of glucose plus NH4NO3; (iii) partially repressed when glucose or NH4NO3 was provided; and (iv) repressed to levels that were < 40% of the control levels when glutamic acid, tyrosine, arginine, proline, valine, and histidine were provided to the colloidal chitin medium. Total NAGase activity levels were > 60% of the control activity when alanine, glycine, isoleucine, aspartic acid, and leucine were tested. It appears that synthesis of NAGase is sensitive to cell energy and the carbon and nitrogen requirements.

  10. A Review on Various Uses of N-Acetyl Cysteine

    PubMed Central

    Mokhtari, Vida; Afsharian, Parvaneh; Shahhoseini, Maryam; Kalantar, Seyed Mehdi; Moini, Ashraf

    2017-01-01

    N-acetyl cysteine (NAC), as a nutritional supplement, is a greatly applied antioxidant in vivo and in vitro. NAC is a precursor of L-cysteine that results in glutathione elevation biosynthesis. It acts directly as a scavenger of free radicals, especially oxygen radicals. NAC is a powerful antioxidant. It is also recommended as a potential treatment option for different disorders resulted from generation of free oxygen radicals. Additionally, it is a protected and endured mucolytic drug that mellows tenacious mucous discharges. It has been used for treatment of various diseases in a direct action or in a combination with some other medications. This paper presents a review on various applications of NAC in treatment of several diseases. PMID:28367412

  11. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  12. Identification of structurally diverse methanofuran coenzymes in methanococcales that are both N-formylated and N-acetylated.

    PubMed

    Allen, Kylie D; White, Robert H

    2014-10-07

    Methanofuran (MF) is a coenzyme necessary for the first step of methanogenesis from CO2. The well-characterized MF core structure is 4-[N-(γ-l-glutamyl-γ-l-glutamyl)-p-(β-aminoethyl)phenoxymethyl]-2-(aminomethyl)furan (APMF-γ-Glu2). Three different MF structures that differ on the basis of the composition of their side chains have been determined previously. Here, we use liquid chromatography coupled with high-resolution mass spectrometry and a variety of biochemical methods to deduce the unique structures of MFs present in four different methanogens in the order Methanococcales. This is the first detailed characterization of the MF occurring in methanogens of this order. MF in each of these organisms contains the expected APMF-γ-Glu2; however, the composition of the side chain is different from that of the previously described MF structures. In Methanocaldococcus jannaschii, additional γ-linked glutamates that range from 7 to 12 residues are present. The MF coenzymes in Methanococcus maripaludis, Methanococcus vannielii, and Methanothermococcus okinawensis also have additional glutamate residues but interestingly also contain a completely different chemical moiety in the middle of the side chain that we have identified as N-(3-carboxy-2- or 3-hydroxy-1-oxopropyl)-l-aspartic acid. This addition results in the terminal γ-linked glutamates being incorporated in the opposite orientation. In addition to these nonacylated MF coenzymes, we also identified the corresponding N-formyl-MF and, surprisingly, N-acetyl-MF derivatives. N-Acetyl-MF has never been observed or implied to be functioning in nature and may represent a new route for acetate formation in methanogens.

  13. Determination of DNA damage in experimental liver intoxication and role of N-acetyl cysteine.

    PubMed

    Aksit, Hasan; Bildik, Aysegül

    2014-11-01

    The present study aimed at detecting DNA damage and fragmentation as well as histone acetylation depending on oxidative stress caused by CCl4 intoxication. Also, the protective role of N-acetyl cysteine, a precursor for GSH, in DNA damage is investigated. Sixty rats were used in this study. In order to induce liver toxicity, CCl4 in was dissolved in olive oil (1/1) and injected intraperitoneally as a single dose (2 ml/kg). N-acetyl cysteine application (intraperitoneal, 50 mg/kg/day) was started 3 days prior to CCl4 injection and continued during the experimental period. Control groups were given olive oil and N-acetyl cysteine. After 6 and 72 h of CCl4 injection, blood and liver tissue were taken under ether anesthesia. Nuclear extracts were prepared from liver. Changes in serum AST and ALT activities as well as MDA, TAS, and TOS levels showed that CCl4 caused lipid peroxidation and liver damage. However, lipid peroxidation and liver damage were reduced in the N-acetyl cysteine group. Increased levels in 8-hydroxy-2-deoxy guanosine and histone acetyltransferase activities, decreased histone deacetylase activities, and DNA breakage detected in nuclear extracts showed that CCl4 intoxication induces oxidative stress and apoptosis in rat liver. The results of the present study indicate that N-acetyl cysteine has a protective effect on CCl4-induced DNA damage.

  14. Patterns of N-acetyl-beta-glucosaminidase isoenzymes in the epidermis and hepatopancreas and induction of N-acetyl-beta-glucosaminidase activity by 20-hydroxyecdysone in the fiddler crab, Uca pugilator.

    PubMed

    Zou, E; Fingerman, M

    1999-11-01

    A new staining method for detection of N-acetyl-beta-glucosaminidase on denaturing SDS polyacrylamide gels was developed. The isoenzyme pattern of N-acetyl-beta-glucosaminidase in the epidermis of the fiddler crab, Uca pugilator, is different from that in the hepatopancreas. Two isoforms of N-acetyl-beta-glucosaminidase, with molecular weights of 89 and 45.6 kDa, are present in the hepatopancreas while there is only one form of N-acetyl-beta-glucosaminidase, 89 kDa, in the epidermis. No sexual dimorphism was found in these patterns of N-acetyl-beta-glucosaminidase isoenzymes. The characteristic isoenzyme patterns in the epidermis and hepatopancreas occurred consistently throughout the molting cycle. Injections of the molting hormone, 20-hydroxyecdysone, at 25 microg/g live weight, into crabs in premolt substage D1, significantly increased N-acetyl-beta-glucosaminidase activity in the epidermis by 86%. Since only one form of N-acetyl-beta-glucosaminidase, 89 kDa, is present in the epidermis, the elevation in epidermal enzymatic activity after 20-hydroxyecdysone administration is entirely accounted for by this N-acetyl-beta-glucosaminidase isoenzyme. The results reported herein are the first direct evidence that in a crustacean N-acetyl-beta-glucosaminidase activity is regulated by the steroid molting hormone.

  15. Conformational studies of bacterial peptidoglycan: structure and stereochemistry of N-acetyl-β- D-glucosamine and N-acetyl-β- D-muramic acid

    NASA Astrophysics Data System (ADS)

    Yadav, P. N. S.; Rai, D. K.; Yadav, J. S.

    1989-03-01

    The energies of various conformations of N-acetyl-β- D-glucosamine (NAG) and its 3-O- D-lactic acid derivative N-acetyl-β- D-muramic acid (NAM) have been calculated by geometry optimization using the molecular mechanics program MM2. The geometries of these systems have been analyzed in the light of ring torsion, bond lengths, bond angles and conformational states of side groups of the pyranosyl ring and compared with available experimental data of similar pyranose derivatives. The present study indicates the presence of hydrogen bonds to stabilize the side group conformations. Discrepancies with experimental data that are seen in a few cases are ascribed to the nature of the side groups and their geometry.

  16. Structural basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-D-glucosamine in Gram-positive bacteria.

    PubMed

    Little, Dustin J; Bamford, Natalie C; Pokrovskaya, Varvara; Robinson, Howard; Nitz, Mark; Howell, P Lynne

    2014-12-26

    Exopolysaccharides are required for the development and integrity of biofilms produced by a wide variety of bacteria. In staphylococci, partial de-N-acetylation of the exopolysaccharide poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by the extracellular protein IcaB is required for biofilm formation. To understand the molecular basis for PNAG de-N-acetylation, the structure of IcaB from Ammonifex degensii (IcaBAd) has been determined to 1.7 Å resolution. The structure of IcaBAd reveals a (β/α)7 barrel common to the family four carbohydrate esterases (CE4s) with the canonical motifs circularly permuted. The metal dependence of IcaBAd is similar to most CE4s showing the maximum rates of de-N-acetylation with Ni(2+), Co(2+), and Zn(2+). From docking studies with β-1,6-GlcNAc oligomers and structural comparison to PgaB from Escherichia coli, the Gram-negative homologue of IcaB, we identify Arg-45, Tyr-67, and Trp-180 as key residues for PNAG binding during catalysis. The absence of these residues in PgaB provides a rationale for the requirement of a C-terminal domain for efficient deacetylation of PNAG in Gram-negative species. Mutational analysis of conserved active site residues suggests that IcaB uses an altered catalytic mechanism in comparison to other characterized CE4 members. Furthermore, we identified a conserved surface-exposed hydrophobic loop found only in Gram-positive homologues of IcaB. Our data suggest that this loop is required for membrane association and likely anchors IcaB to the membrane during polysaccharide biosynthesis. The work presented herein will help guide the design of IcaB inhibitors to combat biofilm formation by staphylococci.

  17. Catalytic Depolymerization of Chitin with Retention of N-Acetyl Group.

    PubMed

    Yabushita, Mizuho; Kobayashi, Hirokazu; Kuroki, Kyoichi; Ito, Shogo; Fukuoka, Atsushi

    2015-11-01

    Chitin, a polymer of N-acetylglucosamine units with β-1,4-glycosidic linkages, is the most abundant marine biomass. Chitin monomers containing N-acetyl groups are useful precursors to various fine chemicals and medicines. However, the selective conversion of robust chitin to N-acetylated monomers currently requires a large excess of acid or a long reaction time, which limits its application. We demonstrate a fast catalytic transformation of chitin to monomers with retention of N-acetyl groups by combining mechanochemistry and homogeneous catalysis. Mechanical-force-assisted depolymerization of chitin with a catalytic amount of H2SO4 gave soluble short-chain oligomers. Subsequent hydrolysis of the ball-milled sample provided N-acetylglucosamine in 53% yield, and methanolysis afforded 1-O-methyl-N-acetylglucosamine in yields of up to 70%. Our process can greatly reduce the use of acid compared to the conventional process.

  18. Micronutrients, N-Acetyl Cysteine, Probiotics and Prebiotics, a Review of Effectiveness in Reducing HIV Progression

    PubMed Central

    Hummelen, Ruben; Hemsworth, Jaimie; Reid, Gregor

    2010-01-01

    Low serum concentrations of micronutrients, intestinal abnormalities, and an inflammatory state have been associated with HIV progression. These may be ameliorated by micronutrients, N-acetyl cysteine, probiotics, and prebiotics. This review aims to integrate the evidence from clinical trials of these interventions on the progression of HIV. Vitamin B, C, E, and folic acid have been shown to delay the progression of HIV. Supplementation with selenium, N-acetyl cysteine, probiotics, and prebiotics has considerable potential, but the evidence needs to be further substantiated. Vitamin A, iron, and zinc have been associated with adverse effects and caution is warranted for their use. PMID:22254046

  19. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro

    SciTech Connect

    O'Brien, Timothy M. Oliveira, Paulo J.; Wallace, Kendall B.

    2008-03-01

    N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP{sup +}) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 {mu}M N-EtFOSAA, 40 {mu}M FOSAA, and the positive control 8 {mu}M oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.

  20. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4.

    PubMed

    Hagmann, W; Denzlinger, C; Rapp, S; Weckbecker, G; Keppler, D

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of [3H]LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  1. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4

    SciTech Connect

    Hagmann, W.; Denzlinger, C.; Rapp, S.; Weckbecker, G.; Keppler, D.

    1986-02-01

    Mercapturic acid formation, an established pathway in the detoxication of xenobiotics, is demonstrated for cysteinyl leukotrienes generated in rats in vivo after endotoxin treatment. The mercapturate N-acetyl-leukotriene E4 (N-acetyl-LTE4) represented a major metabolite eliminated into bile after injection of (/sup 3/H)LTC4 as shown by cochromatography with synthetic N-acetyl-LTE4 in four different HPLC solvent systems. The identity of endogenous N-acetyl-LTE4 elicited by endotoxin in vivo was additionally verified by enzymatic deacetylation followed by chemical N-acetylation. The deacetylation was catalyzed by penicillin amidase. Endogenous cysteinyl leukotrienes were quantified by radioimmunoassay after HPLC separation. A N-acetyl-LTE4 concentration of 80 nmol/l was determined in bile collected between 30 and 60 min after endotoxin injection. Under this condition, other cysteinyl leukotrienes detected in bile by radioimmunoassay amounted to less than 5% of N-acetyl-LTE4. The mercapturic acid pathway, leading from the glutathione conjugate LTC4 to N-acetyl-LTE4, thus plays an important role in the deactivation and elimination of these potent endogenous mediators.

  2. N-acetylation of three aromatic amine hair dye precursor molecules eliminates their genotoxic potential.

    PubMed

    Zeller, Andreas; Pfuhler, Stefan

    2014-01-01

    N-acetylation has been described as a detoxification reaction for aromatic amines; however, there is only limited data available showing that this metabolic conversion step changes their genotoxicity potential. To extend this database, three aromatic amines, all widely used as precursors in oxidative hair dye formulations, were chosen for this study: p-phenylenediamine (PPD), 2,5-diaminotoluene (DAT) and 4-amino-2-hydroxytoluene (AHT). Aiming at a deeper mechanistic understanding of the interplay between activation and detoxification for this chemical class, we compared the genotoxicity profiles of the parent compounds with those of their N-acetylated metabolites. While PPD, DAT and AHT all show genotoxic potential in vitro, their N-acetylated metabolites completely lack genotoxic potential as shown in the Salmonella typhimurium reversion assay, micronucleus test with cultured human lymphocytes (AHT), chromosome aberration assay with V79 cells (DAT) and Comet assay performed with V79 cells. For the bifunctional aromatic amines studied (PPD and DAT), monoacetylation was sufficient to completely abolish their genotoxic potential. Detoxification through N-acetylation was further confirmed by comparing PPD, DAT and AHT in the Comet assay using standard V79 cells (N-acetyltransferase (NAT) deficient) and two NAT-proficient cell lines,V79NAT1*4 and HaCaT (human keratinocytes). Here we observed a clear shift of dose-response curves towards decreased genotoxicity of the parent aromatic amines in the NAT-proficient cells. These findings suggest that genotoxic effects will only be found at concentrations where the N-acetylation (detoxifying) capacity of the cells is overwhelmed, indicating that a 'first-pass' effect in skin could be taken into account for risk assessment of these topically applied aromatic amines. The findings also indicate that the use of liver S-9 preparations, which generally underestimate Phase II reactions, contributes to the generation of irrelevant

  3. Vaccines containing de-N-acetyl sialic acid elicit antibodies protective against Neisseria meningitidis group B and C1

    PubMed Central

    Moe, Gregory R.; Bhandari, Tamara S.; Flitter, Becca A.

    2009-01-01

    Murine monoclonal antibodies (mAbs) that were produced by immunization with a vaccine containing the N-propionyl derivative of Neisseria meningitidis group B (MenB) capsular polysaccharide (NPr MBPS) mediate protective responses against MenB but were not reactive with unmodified MBPS or chemically identical human polysialic acid (PSA). Recently, we showed that some of the mAbs were reactive with MBPS derivatives that contain de-N-acetyl sialic acid residues (Moe et al. 2005, Infect Immun 73:2123–2128). In this study we evaluated the immunogenicity of de-N-acetyl sialic acid-containing derivatives of PSA (de-N-acetyl PSA) in mice. Four de-N-acetyl PSA antigens were prepared and conjugated to tetanus toxoid, including completely de-N-acetylated PSA. All of the vaccines elicited anti-de-N-acetyl PSA responses (titers ≥1:10,000) but only vaccines enriched for non-reducing end de-N-acetyl residues by treatment with exoneuraminidase or complete de-N-acetylation elicited high titers against the homologous antigen. Also, non-reducing end de-N-acetyl residue-enriched vaccines elicited IgM and IgG antibodies of all subclasses that could bind to MenB. The results suggest that the zwitterionic characteristic of neuraminic acid, particularly at the non-reducing end may be important for processing and presentation mechanisms that stimulate T cells. Antibodies elicited by all four vaccines were able to activate deposition of human complement proteins and passively protect against challenge by MenB in the infant rat model of meningococcal bacteremia. Some vaccine antisera mediated bactericidal activity against a MenC strain with human complement. Thus, de-N-acetyl PSA antigens are immunogenic and elicit antibodies that can be protective against MenB and C strains. PMID:19414816

  4. Lifespan extension and increased resistance to environmental stressors by N-Acetyl-L-Cysteine in Caenorhabditis elegans

    PubMed Central

    Oh, Seung-Il; Park, Jin-Kook; Park, Sang-Kyu

    2015-01-01

    OBJECTIVE: This study was performed to determine the effect of N-acetyl-L-cysteine, a modified sulfur-containing amino acid that acts as a strong cellular antioxidant, on the response to environmental stressors and on aging in C. elegans. METHOD: The survival of worms under oxidative stress conditions induced by paraquat was evaluated with and without in vivo N-acetyl-L-cysteine treatment. The effect of N-acetyl-L-cysteine on the response to other environmental stressors, including heat stress and ultraviolet irradiation (UV), was also monitored. To investigate the effect on aging, we examined changes in lifespan, fertility, and expression of age-related biomarkers in C. elegans after N-acetyl-L-cysteine treatment. RESULTS: Dietary N-acetyl-L-cysteine supplementation significantly increased resistance to oxidative stress, heat stress, and UV irradiation in C. elegans. In addition, N-acetyl-L-cysteine supplementation significantly extended both the mean and maximum lifespan of C. elegans. The mean lifespan was extended by up to 30.5% with 5 mM N-acetyl-L-cysteine treatment, and the maximum lifespan was increased by 8 days. N-acetyl-L-cysteine supplementation also increased the total number of progeny produced and extended the gravid period of C. elegans. The green fluorescent protein reporter assay revealed that expression of the stress-responsive genes, sod-3 and hsp-16.2, increased significantly following N-acetyl-L-cysteine treatment. CONCLUSION: N-acetyl-L-cysteine supplementation confers a longevity phenotype in C. elegans, possibly through increased resistance to environmental stressors. PMID:26039957

  5. Production of N-Acetyl-d-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-d-glucosaminidase.

    PubMed

    Zhu, Weixing; Wang, Di; Liu, Tian; Yang, Qing

    2016-09-07

    N-Acetyl-d-glucosamine (GlcNAc) has great potential to be used as a food additive and medicine. The enzymatic degradation of chitin-containing biomass for producing GlcNAc is an eco-friendly approach but suffers from a high cost. The economical efficiency can be improved by both optimizing the member and ratio of the chitinolytic enzymes and using new inexpensive substrates. To address this, a novel combination of bacterial and insect chitinolytic enzymes was developed in this study to efficiently produce GlcNAc from the mycelia of Asperillus niger, a fermentation waste. This enzyme combination contained three bacterial chitinases (chitinase A from Serratia marcescens (SmChiA), SmChiB, SmChiC) and one insect N-acetyl-d-glucosaminidase from Ostrinia furnacalis (OfHex1) in a ratio of 39.1% of SmChiA, 26.7% of SmChiB, 32.9% of SmChiC, and 1.3% of OfHex1. A yield of 6.3 mM (1.4 mg/mL) GlcNAc with a purity of 95% can be obtained from 10 mg/mL mycelial powder in 24 h. The enzyme combination reported here exhibited 5.8-fold higher hydrolytic activity over the commercial chitinase preparation derived from Streptomyces griseus.

  6. A rapid test for chitinase activity that uses 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide.

    PubMed Central

    O'Brien, M; Colwell, R R

    1987-01-01

    A total of 101 strains of bacteria from environmental and clinical sources, most of which were gram negative, were tested for chitobiase activity by using a filter paper spot test with 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide as the substrate. The results were compared with those obtained by a conventional plate method for chitinase activity by using colloidal chitin as the substrate. There was excellent agreement in the results for both methods. The filter paper spot test with 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide has the advantages of being rapid, simple to perform, and inexpensive. This method should be adaptable to a wider range of microorganisms, particularly those with unusual growth requirements. PMID:3662513

  7. Carfilzomib-related acute kidney injury may be prevented by N-acetyl-L-cysteine.

    PubMed

    Wanchoo, Rimda; Khan, Seyyar; Kolitz, Jonathan E; Jhaveri, Kenar D

    2015-08-01

    Carfilzomib is a second-generation epoxyketone proteasome inhibitor that is approved for treatment of relapsed and refractory multiple myeloma. Phase 2 trials have reported that 25% of treated patients have renal adverse effects. Pre-renal/vasoconstriction-related insult from this chemotherapy agent has been documented. We describe a case of a 78-year-old man with refractory multiple myeloma with acute kidney injury associated with carfilzomib treatment. We show that use of N-acetyl-l-cysteine in our patient partially mitigated the renal injury upon re-challenge. This case report hypothesizes that acute renal injury from carfilzomib is caused by vasoconstriction of the renal vessels, which may be prevented by N-acetyl-l-cysteine.

  8. Conformations of N-acetyl-L-prolinamide by two-dimensional infrared spectroscopy.

    PubMed

    Sul, Soohwan; Karaiskaj, Denis; Jiang, Ying; Ge, Nien-Hui

    2006-10-12

    Femtosecond two-dimensional infrared (2D IR) spectroscopy has been applied to study the conformations of a model dipeptide, N-acetyl-L-prolinamide (AcProNH2) in deuterated chloroform (CDCl3). Spectral features in the amide-I and -II regions are obtained by rephasing (R), nonrephasing (NR), and reverse photon echo (RPE) pulse sequences with two polarization conditions. The 2D spectra obtained by the RPE and NR sequences with (0, 0, 0, 0) polarization reveal new spectral features associated with the multiple conformers of AcProNH2 that are difficult to discern using R sequence and linear-IR spectroscopy. The high resolving power of the RPE sequence comes from destructive interference between the positive and negative peaks of nearby vibrators, similar to the NR sequence. The RPE response functions that are useful for 2D spectral simulations are evaluated, including the effects of vibrational frequency correlations. The 2D spectra obtained with (45, -45, 90, 0) polarization exhibit clear cross-peak patterns in the off-diagonal region for the R and RPE sequences but in the diagonal region for the NR sequence. These patterns, free from strong diagonal contributions, are crucial for structure determination. DFT calculations, normal-mode analysis, Hessian matrix reconstruction, and vibrational exciton Hamiltonian diagonalization yield molecular parameters needed for quantitative simulations of 2D spectra: angles between transition dipoles, coupling constants, and off-diagonal anharmonicities of the amide-I and -II modes are obtained for solvated trans-C7 and cis structures and for gas-phase trans conformers in the region of phi = -120 degrees to 0 degrees and psi = -100 degrees to 180 degrees in the Ramachandran space. Systematic simulations based on a 4:1 population ratio of the solvated trans-C7 and cis structures reproduce well the 2D spectral features obtained at both polarization conditions. However, better agreement between the experimental and simulated cross

  9. N-acetyl-L-leucine accelerates vestibular compensation after unilateral labyrinthectomy by action in the cerebellum and thalamus.

    PubMed

    Günther, Lisa; Beck, Roswitha; Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by

  10. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    PubMed Central

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-μPET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-μPET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of μPET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by

  11. Protective Roles of N-acetyl Cysteine and/or Taurine against Sumatriptan-Induced Hepatotoxicity

    PubMed Central

    Khalili Fard, Javad; Hamzeiy, Hossein; Sattari, Mohammadreza; Eghbal, Mohammad Ali

    2016-01-01

    Purpose: Triptans are the drug category mostly prescribed for abortive treatment of migraine. Most recent cases of liver toxicity induced by triptans have been described, but the mechanisms of liver toxicity of these medications have not been clear. Methods: In the present study, we obtained LC50 using dose-response curve and investigated cell viability, free radical generation, lipid peroxide production, mitochondrial injury, lysosomal membrane damage and the cellular glutathione level as toxicity markers as well as the beneficial effects of taurine and/or N-acetyl cysteine in the sumatriptan-treated rat parenchymal hepatocytes using accelerated method of cytotoxicity mechanism screening. Results: It was revealed that liver toxicity induced by sumatriptan in in freshly isolated parenchymal hepatocytes is dose-dependent. Sumatriptan caused significant free radical generation followed by lipid peroxide formation, mitochondrial injury as well as lysosomal damage. Moreover, sumatriptan reduced cellular glutathione content. Taurine and N-acetyl cysteine were able to protect hepatocytes against sumatriptan-induced harmful effects. Conclusion: It is concluded that sumatriptan causes oxidative stress in hepatocytes and the decreased hepatocytes glutathione has a key role in the sumatriptan-induced harmful effects. Also, N-acetyl cysteine and/or taurine could be used as treatments in sumatriptan-induced side effects. PMID:28101470

  12. N-acetyl Glucosamine Distribution and Mitochondrial Activity of Tumor Cell Exposed to Photodynamic Therapy.

    PubMed

    Pinto, G P; Lopes, K A R; Salles, N G; Pacheco-Soares, C

    2016-11-01

    The use of lectins can play an important role for tracking modification on cell surface components, since lectins can be easily complexed with radioisotopes, biotin or fluorescein, facilitating the evaluation of carbohydrates distribution in the cell and mitochondrial activity. The aim of this study was to evaluate photodynamic therapy effects on indirect distribution of N-acetyl-glucosamine terminal glycoproteins, in human laryngeal carcinoma HEp-2 cell line surface, using lectin wheat germ agglutinin (WGA) and on mitochondrial activity, for the same cell line, using MitoTracker. The photosensitizer Aluminum Phthalocyanine Tetrasulfonate (AlPcS4) was administrated at 10 μM/mL, followed by an incubation period for its accumulation in the tumor cells, which were irradiated with laser diode λ = 685 nm and energy density of 4.5 J/cm(2). Our results indicated that, after Photodynamic Therapy (PDT), it was observed N-acetyl glucosamine terminal glycoprotein expression and mitochondrial O2 production, compared to the control group. Based on these results, we suggest that PDT influences the O2 mitochondrial production and the presence of surface glycoproteins N-acetyl glucosamine terminals.

  13. Inhibition of mucin glycosylation by aryl-N-acetyl-alpha-galactosaminides in human colon cancer cells

    SciTech Connect

    Kuan, S.F.; Byrd, J.C.; Basbaum, C.; Kim, Y.S. )

    1989-11-15

    Specific inhibitors of the glycosylation of O-glycosidically linked glycoproteins have not previously been described. When tested for their effects on mucin glycosylation in a mucin-producing colon cancer cell line, LS174T, benzyl-, phenyl-, and p-nitrophenyl-N-acetyl-alpha-galactosaminide inhibited the formation of fully glycosylated mucin in a dose-dependent manner. Free aryl-oligosaccharides were found in the medium of treated cells labeled with ({sup 3}H)glucosamine, ({sup 3}H)galactose, ({sup 3}H)fucose, ({sup 3}H)mannosamine, or phenyl-alpha-(6-{sup 3}H) N-acetylgalactosamine. UDP-Gal:GalNAc-beta 1,3-galactosyltransferase was inhibited by aryl-N-acetyl-alpha-galactosaminides but not by a number of other aryl-glycosides. Treatment with these inhibitors also causes reversible morphologic changes including formation of intercellular cysts. Aryl-N-acetyl-alpha-galactosaminides can be useful for the structural and functional studies of mucin macromolecules and other O-linked glycoproteins.

  14. Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid.

    PubMed

    Einbu, Aslak; Vårum, Kjell M

    2007-01-01

    The monosaccharide 2-amino-2-deoxy-D-glucose (glucosamine, GlcN) has recently drawn much attention in relation to its use to treat or prevent osteoarthritis in humans. Glucosamine is prepared from chitin, a process that is performed in concentrated acid, such as hydrochloric acid. This process involves two acid-catalyzed processes, that is, the hydrolysis of the glycosidic linkages (depolymerization) and of the N-acetyl linkages (de-N-acetylation). The depolymerization reaction has previously been found to be much faster compared to the deacetylation, with the consequence that the chitin chain will first be hydrolyzed to the monomer 2-acetamido-2-deoxy-D-glucose (N-acetylglucosamine, GlcNAc) which is subsequently deacetylated. We have found that the chitin disaccharide GlcNAc(1-->4)GlcNAc could be completely hydrolyzed to the monosaccharide GlcNAc with negligible concomitant de-N-acetylation, and the chitin disaccharide and monosaccharide were further used to study the depolymerization reaction and the de-N-acetylation reaction, respectively. The reactions were performed in hydrochloric acid as a function of acid concentration (3-12 M) and temperature (20-35 degrees C), and 1H-NMR spectroscopy was used to monitor the reaction rates. The 1H NMR spectrum of GlcNAc in concentrated (12 M) and deuterated hydrochloric acid at 25 degrees C was assigned. The glucofuranosyl oxazolinium (3) ion was found to exist in equilibrium with the alpha- and beta-anomers of the pyranose form of GlcNAc, where 3 was present in half the total molar concentrations of the two anomeric forms of GlcNAc. At lower acid concentration (3-6 M), only trace concentrations of 3 could be detected. The rate of de-N-acetylation of GlcNAc was determined as a function of hydrochloric acid concentration, showing a maximum at 6 M and decreasing by a factor of 2 upon decreasing or increasing the acid concentration to 3 or 12 M. The activation energy for hydrolysis of the N-acetyl linkage of GlcNAc was

  15. Interactions between N-acetyl-L-cysteine protected CdTe quantum dots and doxorubicin through spectroscopic method

    SciTech Connect

    Yang, Xiupei; Lin, Jia; Liao, Xiulin; Zong, Yingying; Gao, Huanhuan

    2015-06-15

    Highlights: • CdTe quantum dots with the diameter of 3–5 nm were synthesized in aqueous solution. • The modified CdTe quantum dots showed well fluorescence properties. • The interaction between the CdTe quantum dots and doxorubicin (DR) was investigated. - Abstract: N-acetyl-L-cysteine protected cadmium telluride quantum dots with a diameter of 3–5 nm were synthesized in aqueous solution. The interaction between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin was investigated by ultraviolet–visible absorption and fluorescence spectroscopy at physiological conditions (pH 7.2, 37 °C). The results indicate that electron transfer has occurred between N-acetyl-L-cysteine/cadmium telluride quantum dots and doxorubicin under light illumination. The quantum dots react readily with doxorubicin to form a N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex via electrostatic attraction between the −NH{sub 3}{sup +} moiety of doxorubicin and the −COO{sup −} moiety of N-acetyl-L-cysteine/cadmium telluride quantum dots. The interaction of N-acetyl-L-cysteine/cadmium telluride-quantum dots/doxorubicin complex with bovine serum albumin was studied as well, showing that the complex might induce the conformation change of bovine serum due to changes in microenvironment of bovine serum.

  16. Biologic properties and vaccine potential of the staphylococcal poly-N-acetyl glucosamine surface polysaccharide.

    PubMed

    Maira-Litran, Tomas; Kropec, Andrea; Goldmann, Donald; Pier, Gerald B

    2004-02-17

    Staphylococci have become the most common causes of nosocomial bacterial infections, and this fact, along with increasing problems associated with antimicrobial resistance, spurs the need for finding immunotherapeutic alternatives to prevent and possibly treat these infections. Most virulent, clinical isolates of both coagulase-negative staphylococci (CoNS) and Staphylococcus aureus carry the ica locus which encodes proteins that synthesize a polymer of beta-1-6 linked N-acetyl glucosamine residues (PNAG). Animal studies have shown purified PNAG can elicit protective immunity against both CoNS and S. aureus, suggesting its potential as a broadly protective vaccine for many clinically important strains of staphylococci.

  17. Interactions of egg yolk phosphatidylcholine with cholesteryl polyethoxy neoglycolipids containing N-acetyl- D-glucosamine

    NASA Astrophysics Data System (ADS)

    Kemoun, Rachida; Gelhausen, Micaèle; Besson, Françoise; Lafont, Dominique; Buchet, René; Boullanger, Paul; Roux, Bernard

    1999-03-01

    Series of neoglycolipids containing cholesteryl and N-acetyl- D-glucosaminyl groups were synthesized with various ethoxy linkers. Their self aggregations and intermolecular interactions, without and with egg yolk phosphatidylcholine (EYPC), were characterized in dry and hydrated states, by using infrared spectroscopy. The neoglycolipids in the dry state formed intermolecular hydrogen bonds between the CO and N-H or O-H groups of N-acetyl- D-glucosamine (GlcNAc). In the presence of EYPC, these intermolecular interactions were broken and new hydrogen bonds, involving the phosphate group of EYPC and N-H or O-H groups of GlcNAc of neoglycolipid, were formed. The presence of water molecules altered these intermolecular hydrogen bonds. The CO groups of EYPC were not affected by the presence of neoglycolipids, either in hydrated or in dry states, indicating that the GlcNAc polar groups interacted mostly with EYPC phosphate residues. The phase transition-temperature of mixtures of EYPC containing either cholesterol or neoglycolipid were similar, indicating that the cholesteryl group of the neoglycolipid interacted in the same manner as cholesterol with hydrocarbon chains of EYPC. Some structural models of molecular interactions of neoglycolipids were discussed in relation with the molecular recognition of wheat germ agglutinin.

  18. CORRELATION BETWEEN THE OPTICAL AND MAGNETIC PROPERTIES OF FERRIC N-ACETYLATED HEME OCTAPEPTIDE COMPLEXES

    SciTech Connect

    Yang, E.K.; Sauer, K.

    1980-05-01

    The room temperature magnetic susceptibility of the complexes of the ferric N-acetylated heme octapeptide (N-H8PT) from horse heart cytochrome c is known to be generally consistent with the absorption and magnetic circular dichroism (MCD) spectra of these complexes. However, the N-acetylated methionine complex of the N-H8PT, which has axial coordination identical to that of the parent molecule, is found to exhibit a thermal mixture of high spin (S=5/2) and low spin (S=1/2) states. The temperature dependence of the magnetic susceptibility of the N-acetylmethionine complex yields {Delta}H{sup 0} = -7.6kca1/mole and {Delta}S° = -25.9 e.u. for a high to low spin transition. The electron spin resonance (ESR) spectrum of the N-acetylmethionine complex indicates a low spin ground state, with g values at 1.51, 2.31, and 2.91, which are distinct from those of cytochrome c. The axial ({Delta}) and rhombic (V) distortion parameters of the {sup 2}T{sub 2g} state correspond to 2.96{lambda} and 1.94{lambda}, respectively, where {lambda} is the spin-orbit coupling constant. A model is proposed to account for the uniqueness of the N-acetylmethionine complex: a change in the Fe-S distance may play a role in regulating the redox properties of cytochrome c.

  19. Urinary mutagenicity and N-acetylation phenotype in textile industry workers exposed to arylamines

    SciTech Connect

    Sinues, B.; Perez, J.; Bernal, M.L.; Saenz, M.A.; Lanuza, J.; Bartolome, M. )

    1992-09-15

    Primary aromatic amines have been identified epidemiologically as human carcinogens. It has been suggested that the target organ affected by aromatic amines is dependent on the rate of metabolic activation. Epidemiological studies have shown an association between low acetyl transferase activity and bladder cancer risk. On this basis, our working hypothesis was that the slow acetylators could follow in a higher extent the metabolic pathway independent of N-acetylation, leading to the excretion of conjugates of electrophyles with glucuronic acid. The instability of these glucuronides could be responsible for the association between arylamine-induced bladder cancer and slow acetylator phenotype. A total of 153 individuals were included in this study: 70 exposed to arylamines (working in textile industry) and 83 nonexposed. The following parameters were determined in urine: mutagenic index in the absence of metabolic activation, S9; mutagenic index in the presence of S9; and the mutagenic index after incubation of the urine with beta-glucuronidase. All individuals were phenotyped according to their capacity of N-acetylation by using isoniazid as drug test. The results show that the mutagenic index after incubation of the urine with beta-glucuronidase is statistically higher in exposed subjects when compared with nonexposed individuals (P less than 0.001), this parameter being statistically higher among exposed subjects who were slow acetylators than among rapid metabolizers, independent of the fact that they were smokers or nonsmokers. There were no significant differences between groups for the mutagenicity in urine not incubated with beta-glucuronidase.

  20. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents.

    PubMed

    Kubota, N; Tatsumoto, N; Sano, T; Toya, K

    2000-03-10

    A simple and improved method of preparing highly soluble chitosan (half N-acetylated chitosan) was developed using a series of chitosan samples of low molecular weights, and the solubility of the half N-acetylated chitosan in water and organic solvents was investigated in detail. To reduce the molecular weight, chitosan was treated with NaBO3 under the condition that chitosan was homogeneously dissolved in aqueous acetic acid. Weight-average molecular weights of the obtained chitosan samples were determined using a size-exclusion chromatography system equipped with a low-angle laser light-scattering photometer. Each chitosan sample was then N-acetylated with acetic anhydride under the condition that chitosan was homogeneously dissolved in aqueous acetic acid again. The water solubility of the half N-acetylated chitosan thus prepared increased with decreasing molecular weight. From 1H NMR spectroscopy, it was suggested that the sequence of N-acetylglucosamine and glucosamine residues was random. The solubility of the half N-acetylated chitosan of low molecular weight was rather high even in aqueous dimethylacetamide and dimethylsulfoxide.

  1. P-selectin upregulation in bleomycin induced lung injury in rats: effect of N-acetyl-L-cysteine

    PubMed Central

    Serrano-Mollar, A; Closa, D; Cortijo, J; Morcillo, E; Prats, N; Gironella, M; Panes, J; Rosello-Catafau, J; Bulbena, O

    2002-01-01

    Background: A number of adhesion molecules are involved in the process of neutrophil infiltration into the lung. P-selectin is one of these neutrophil-endothelial cell adhesion molecules. A study was undertaken to examine the involvement of P-selectin in the development of bleomycin induced inflammation and the ability of N-acetyl-L-cysteine to reduce the potential expression of this selectin in rats. Methods: N-acetyl-L-cysteine (3 mmol/kg po) was administered daily for seven days prior to bleomycin administration (2.5 U/kg). The kinetics of P-selectin expression and the effect of N-acetyl-L-cysteine after bleomycin treatment were measured using radiolabelled antibodies. P-selectin localisation was evaluated by immunohistochemistry and neutrophil infiltration was assessed by myeloperoxidase activity. Results: Bleomycin administration resulted in an upregulation of P-selectin at 1 hour, returning to baseline at 3 hours. Myeloperoxidase activity showed a significant increase at 6 hours after bleomycin administration that lasted for 3 days. N-acetyl-L-cysteine treatment completely prevented these increases. Conclusion: Upregulation of P-selectin in the lung is associated with neutrophil recruitment in response to bleomycin. The beneficial effect of N-acetyl-L-cysteine on bleomycin induced lung injury may be explained in part by the prevention of neutrophil recruitment in the inflammatory stage of the disease. PMID:12096208

  2. Chitinase but N-acetyl-β-D-glucosaminidase production correlates to the biomass decline in Penicillium and Aspergillus species.

    PubMed

    Pusztahelyi, Tünde; Pócsi, István

    2014-06-01

    Hydrolytic enzyme production is typical of the autolysis in filamentous fungi; however, less attention has been given to the physiological role of the enzymes. Here, the aim was to investigate the possible relation of the chitinolytic enzymes to the changes in the biomass in some filamentous fungi of high importance for pharmaceutical or food industry. In Penicillium and Aspergillus filamentous fungi, which showed different characteristics in submerged cultures, the growth and biomass decline rates were calculated and correlated to the chitinase and N-acetyl-β-D-glucosaminidase enzyme productions. Correlation was found between the biomass decrease rate and the chitinase level at the stationary growth phase; while chitinase production covariates negatively with N-acetyl-β-D-glucosaminidase activities. The chitinase production and the intensive autolysis hindered the production of N-acetyl-β-D-glucosaminidase and, therefore, could hinder the cell death in the cultures.

  3. N-Acetyl-L-Cysteine Prevents Stress-Induced Desmin Aggregation in Cellular Models of Desminopathy

    PubMed Central

    Bailleux, Virginie; Simon, Stéphanie; Leccia, Emilie; Gausseres, Blandine; Briki, Fatma; Vicart, Patrick; Batonnet-Pichon, Sabrina

    2013-01-01

    Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation), DesD399Y (central rod domain; high aggregation), and DesS460I (tail domain; moderate aggregation). Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models—thermal (heat shock), redox-associated (H2O2 and cadmium chloride), and mechanical (stretching) stresses—after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins), fisetin or N-acetyl-L-cysteine (antioxidants) before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been described

  4. Inhibitory effect of carnosine and N-acetyl carnosine on LPS-induced microglial oxidative stress and inflammation.

    PubMed

    Fleisher-Berkovich, Sigal; Abramovitch-Dahan, Chen; Ben-Shabat, Shimon; Apte, Ron; Beit-Yannai, Elie

    2009-07-01

    Chronic inflammation and oxidative stress have been implicated in the pathogenesis of neurodegenerative diseases. A growing body of research focuses on the role of microglia, the primary immune cells in the brain, in modulating brain inflammation and oxidative stress. One of the most abundant antioxidants in the brain, particularly in glia, is the dipeptide carnosine, beta-alanyl-L-histidine. Carnosine is believed to be involved in cellular defense such as free radical detoxification and inhibition of protein cross-linking. The more stable N-acetyl derivative of carnosine has also been identified in the brain. The aim of the present study was to examine the role of carnosine and N-acetyl carnosine in the regulation of lipopolysaccharide (LPS)-induced microglial inflammation and oxidative damage. In this study, BV2 microglial cells were stimulated with bacterial LPS, a potent inflammatory stimulus. The data shows that both carnosine and N-acetyl carnosine significantly attenuated the LPS-induced nitric oxide synthesis and the expression of inducible nitric oxide synthase by 60% and 70%, respectively. By competitive spectrophotometric measurement and electrospray mass spectrometry analysis, we demonstrated a direct interaction of N-acetyl carnosine with nitric oxide. LPS-induced TNFalpha secretion and carbonyl formation were also significantly attenuated by both compounds. N-acetyl carnosine was more potent than carnosine in inhibiting the release of the inflammatory and oxidative stress mediators. These observations suggest the presence of a novel regulatory pathway through which carnosine and N-acetyl carnosine inhibit the synthesis of microglial inflammatory and oxidative stress mediators, and thus may prove to play a role in brain inflammation.

  5. Concurrent esterification and N-acetylation of amino acids with orthoesters: A useful reaction with interesting mechanistic implications

    PubMed Central

    Gibson, Sarah; Romero, Dickie; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2010-01-01

    The concurrent esterification and N-acetylation of amino acids has been studied with triethyl orthoacetate (TEOA) and triethyl orthoformate (TEOF). In a surprising finding, only one equivalent of TEOA in refluxing toluene was necessary to convert L-proline and L-phenylalanine to the corresponding N-acetyl ethyl esters in good yield. The same transformation using TEOF was not effective. Stereochemical outcome and stoichiometric studies as well as structural variation of the amino acids in this reaction provided unexpected mechanistic insight. PMID:21286246

  6. Glucosamine and N-acetyl glucosamine as new CEST MRI agents for molecular imaging of tumors

    PubMed Central

    Rivlin, Michal; Navon, Gil

    2016-01-01

    The efficacy of glucosamine (GlcN) and N-acetyl glucosamine (GlcNAc) as agents for chemical exchange saturation transfer (CEST) magnetic resonance molecular imaging of tumors is demonstrated. Both agents reflect the metabolic activity and malignancy of the tumors. The method was tested in two types of tumors implanted orthotopically in mice: 4T1 (mouse mammary cancer cells) and MCF7 (human mammary cancer cells). 4T1 is a more aggressive type of tumor than MCF7 and exhibited a larger CEST effect. Two methods of administration of the agents, intravenous (IV) and oral (PO), gave similar results. The CEST MRI observation of lung metastasis was confirmed by histology. The potential of the clinical application of CEST MRI with these agents for cancer diagnosis is strengthened by their lack of toxicity as can be indicated from their wide use as food supplements. PMID:27600054

  7. Metabolomic Analysis of Blood Plasma after Oral Administration of N-acetyl-d-Glucosamine in Dogs

    PubMed Central

    Osaki, Tomohiro; Kurozumi, Seiji; Sato, Kimihiko; Terashi, Taro; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Minami, Saburo; Okamoto, Yoshiharu

    2015-01-01

    N-acetyl-d-glucosamine (GlcNAc) is a monosaccharide that polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin. GlcNAc is a basic component of hyaluronic acid and keratin sulfate found on the cell surface. The aim of this study was to examine amino acid metabolism after oral GlcNAc administration in dogs. Results showed that plasma levels of ectoine were significantly higher after oral administration of GlcNAc than prior to administration (p < 0.001). To our knowledge, there have been no reports of increased ectoine concentrations in the plasma. The mechanism by which GlcNAc administration leads to increased ectoine plasma concentration remains unclear; future studies are required to clarify this mechanism. PMID:26262626

  8. Mechanisms of N-acetyl cysteine-mediated protection from 2-hydroxyethyl methacrylate-induced apoptosis.

    PubMed

    Paranjpe, Avina; Cacalano, Nicholas A; Hume, Wyatt R; Jewett, Anahid

    2008-10-01

    Resin-based materials are now commonly used in dentistry in restorative materials as well as in endodontic sealers. These materials have been shown to be cytotoxic. The mechanisms by which resin-based materials mediate their adverse effects have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes and immune cells through the intrinsic cell death pathway. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. In addition, HEMA induced a decrease in mitochondrial membrane potential, and an increase in cleaved caspases was potently inhibited in the presence of NAC treatment. Overall, the results reported in this article indicate that NAC is an effective chemoprotectant that can safely be used to protect the pulp and the surrounding tissues from adverse effects of dental restorative and endodontic materials.

  9. Quantification of Lysosomal Membrane Permeabilization by Cytosolic Cathepsin and β-N-Acetyl-Glucosaminidase Activity Measurements.

    PubMed

    Jäättelä, Marja; Nylandsted, Jesper

    2015-11-02

    Programmed cell death involving lysosomal membrane permeabilization (LMP) is an alternative cell death pathway induced under various cellular conditions and by numerous cytotoxic stimuli. The method presented here to quantify LMP takes advantage of the detergent digitonin, which creates pores in cellular membranes by replacing cholesterol. The difference in cholesterol content between the plasma membrane (high) and lysosomal membrane (low) allows titration of digitonin to a concentration that permeabilizes the plasma membrane but leaves lysosomal membranes intact. The extent of LMP is determined by measuring the cytosolic activity of lysosomal hydrolases (e.g., cysteine cathepsins) and/or β-N-acetyl-glucosaminidase in the digitonin-extracted cytoplasm and comparing it to the total cellular enzyme activity. Digitonin extraction of the cytosol can be combined with precipitation of protein and/or western blot analysis for detection of lysosomal proteins (e.g., cathepsins).

  10. Analysis of urinary N-acetyl-beta-glucosaminidase by capillary zone electrophoresis.

    PubMed

    Friedberg, M; Shihabi, Z K

    1997-07-18

    N-Acetyl-beta-glucosaminidase (NAG), a glycosidase enzyme, present in serum, urine and the renal lysosomes is utilized clinically as an early marker for renal damage preceding the elevation of both blood urea nitrogen and creatinine. NAG is analyzed by CE after incubation of urine samples with the synthetic substrate methylumbelliferyl-beta-D-glucosaminide. The reaction mixture is introduced directly into the instrument without further treatment. The released reaction product, 4-methyl-umbelliferone, is separated at 13.2 kV in a 400 mM borate buffer, pH 8.1. Detection was achieved with either ultraviolet absorption or with fluorescence. The fluorescence detection was more sensitive and gave cleaner electropherograms. The CZE method correlated well with an automated kinetic fluorescent assay. 4-Methyl-umbelliferone conjugated to different substrates is used in the analysis of many enzymes involved in the inborn errors of metabolism.

  11. Expanding the phenotype of hawkinsinuria: new insights from response to N-acetyl-L-cysteine.

    PubMed

    Gomez-Ospina, Natalia; Scott, Anna I; Oh, Gia J; Potter, Donald; Goel, Veena V; Destino, Lauren; Baugh, Nancy; Enns, Gregory M; Niemi, Anna-Kaisa; Cowan, Tina M

    2016-11-01

    Hawkinsinuria is a rare disorder of tyrosine metabolism that can manifest with metabolic acidosis and growth arrest around the time of weaning off breast milk, typically followed by spontaneous resolution of symptoms around 1 year of age. The urinary metabolites hawkinsin, quinolacetic acid, and pyroglutamic acid can aid in identifying this condition, although their relationship to the clinical manifestations is not known. Herein we describe clinical and laboratory findings in two fraternal twins with hawkinsinuria who presented with failure to thrive and metabolic acidosis. Close clinical follow-up and laboratory testing revealed previously unrecognized hypoglycemia, hypophosphatemia, combined hyperlipidemia, and anemia, along with the characteristic urinary metabolites, including massive pyroglutamic aciduria. Treatment with N-acetyl-L-cysteine (NAC) restored normal growth and normalized or improved most biochemical parameters. The dramatic response to NAC therapy supports the idea that glutathione depletion plays a key role in the pathogenesis of hawkinsinuria.

  12. Neuroprotection in rabbit retina with N-acetyl-aspartylglutamate and 2-phosphonyl-methyl pentanedioic acid

    NASA Astrophysics Data System (ADS)

    Hacker, Henry D.; Yourick, Debra L.; Koenig, Michael K.; Slusher, Barbara S.; Meyerhoff, James L.

    1999-06-01

    Retinal tissue is subject to ischemia from diabetic retinopathy and other conditions that affect the retinal vasculature such as lupus erythematosus and temporal arteritis. There is evidence in animal models of reversible ischemia that a therapeutic window exists during early recovery when agents that reduce glutamate activity at its receptor sites can rescue neurons from injury. To model ischemia, we used sodium cyanide (NaCN), to inhibit oxidative metabolism, and 2-deoxyglucose (2-DG) to inhibit glycolysis. Dissociated rabbit retina cells were studied to evaluate the potential neuroprotective effects of N-acetyl-aspartyl-glutamate (MAAG), which competes with glutamate as a low-potency agonist at the NMDA receptor complex. N-acetylated α-linked acidic dipeptidase (NAALADase; the NAAG-hydrolyzing enzyme) is responsible for the hydrolysis of NAAG into glutamate, a neurotransmitter and potent excitotoxin, and N-acetylaspartate. 2-Phosphonyl-methyl pentanedioic acid (PMPA) and β-linked NAAG (β-NAAG), inhibitors of NAALADase, were also tested, since inhibition of NAALADase could reduce synaptic glutamate and increase the concentration of NAAG. We found that metabolic inhibition with NaCN/2-DG for 1 hour caused 50% toxicity as assessed with the MTT assay. Co-treatment with NAAG resulted in dose-dependent protection of up to 55% (p<0.005). When the non-hydrolyzable, NAALADase inhibitor β-NAAG was employed dose-dependent protection of up to 37% was observed (p<0.001). PMPA also showed 48% protection (p<.05-.001) against these insults. These data suggest that NAAG may antagonize the effect of glutamate at the NMDA receptor complex in retina. Inhibition of NAALADase by PMPA and β-NAAG may increase the activity of endogenous NAAG.

  13. Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia.

    PubMed

    Min, Jiangyong; Senut, Marie-Claude; Rajanikant, Krishnamurthy; Greenberg, Eric; Bandagi, Ram; Zemke, Daniel; Mousa, Ahmad; Kassab, Mounzer; Farooq, Muhammad U; Gupta, Rishi; Majid, Arshad

    2008-10-01

    Carnosine (beta-alanyl-L-histidine) has been shown to exhibit neuroprotection in rodent models of cerebral ischemia. In the present study, we further characterized the effects of carnosine treatment in a mouse model of permanent focal cerebral ischemia and compared them with its related peptides anserine and N-acetylated carnosine. We also evaluated the efficacy of bestatin, a carnosinase inhibitor, in ameliorating ischemic brain damage. Permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery (pMCAO). Mice were subsequently randomly assigned to receive an intraperitoneal injection of vehicle (0.9% saline), carnosine, N-acetyl carnosine, anserine, bestatin alone, or bestatin with carnosine. Infarct size was examined using 2,3,5-triphenyltetrazolium chloride staining 1, 3, and 7 days following pMCAO, and neurological function was evaluated using an 18-point-based scale. Brain levels of carnosine were measured in treated mice using high-performance liquid chromatography 1 day following pMCAO. We demonstrated that treatment with carnosine, but not its analogues, was able to significantly reduce infarct volume and improve neurological function compared with those in vehicle-treated mice. These beneficial effects were maintained for 7 days post-pMCAO. In contrast, compared with the vehicle-treated group, bestatin-treated mice displayed an increase in the severity of ischemic lesion, which was prevented by the addition of carnosine. These new data further characterize the neuroprotective effects of carnosine and suggest that carnosine may be an attractive candidate for testing as a stroke therapy.

  14. Differential Neuroprotective Effects of Carnosine, Anserine, and N-Acetyl Carnosine against Permanent Focal Ischemia

    PubMed Central

    Min, Jiangyong; Senut, Marie-Claude; Rajanikant, Krishnamurthy; Greenberg, Eric; Bandagi, Ram; Zemke, Daniel; Mousa, Ahmad; Kassab, Mounzer; Farooq, Muhammad U.; Gupta, Rishi; Majid, Arshad

    2009-01-01

    Carnosine (β-alanyl-L-histidine) has been shown to exhibit neuroprotection in rodent models of cerebral ischemia. In the present study, we further characterized the effects of carnosine treatment in a mouse model of permanent focal cerebral ischemia and compared them with its related peptides anserine and N-acetylated carnosine. We also evaluated the efficacy of bestatin, a carnosinase inhibitor, in ameliorating ischemic brain damage. Permanent focal cerebral ischemia was induced by occlusion of the middle cerebral artery (pMCAO). Mice were subsequently randomly assigned to receive an intraperitoneal injection of vehicle (0.9% saline), carnosine, N-acetyl carnosine, anserine, bestatin alone, or bestatin with carnosine. Infarct size was examined using 2,3,5-triphenyltetrazolium chloride staining 1, 3, and 7 days following pMCAO, and neurological function was evaluated using an 18-point-based scale. Brain levels of carnosine were measured in treated mice using high-performance liquid chromatography 1 day following pMCAO. We demonstrated that treatment with carnosine, but not its analogues, was able to significantly reduce infarct volume and improve neurological function compared with those in vehicle-treated mice. These beneficial effects were maintained for 7 days post-pMCAO. In contrast, compared with the vehicle-treated group, bestatin-treated mice displayed an increase in the severity of ischemic lesion, which was prevented by the addition of carnosine. These new data further characterize the neuroprotective effects of carnosine and suggest that carnosine may be an attractive candidate for testing as a stroke therapy. PMID:18543335

  15. Pharmacokinetics and N-acetylation metabolism of S-methyl-l-cysteine and trans-S-1-propenyl-l-cysteine in rats and dogs.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-11-01

    1. Pharmacokinetics and N-acetylation metabolism of S-methyl-L-cysteine (SMC) and trans-S-1-propenyl-L-cysteine (S1PC) were examined in rats and dogs. SMC and S1PC (2-5 mg/kg) were well absorbed in both species with high bioavailability (88-100%). 2. SMC and S1PC were excreted only to a small extent in the urine of rats and dogs. The small renal clearance values (<0.03 l/h/kg) indicated the extensive renal reabsorption of SMC and S1PC, which potentially contributed to their long elimination half-lives (>5 h) in dogs. 3. S1PC, but not SMC, underwent N-acetylation extensively in vivo, which can be explained by the relative activities of N-acetylation of S1PC/SMC and deacetylation of their N-acetylated forms, N-acetyl-S1PC/N-acetyl-SMC, in the liver and kidney in vitro. The activities for S1PC N-acetylation were similar to or higher than those for N-acetyl-S1PC deacetylation in liver S9 fractions of rat and dog, whereas liver and kidney S9 fractions of rat and dog had little activity for SMC N-acetylation or considerably higher activities for N-acetyl-SMC deacetylation. 4. Our study demonstrated that the pharmacokinetics of SMC and S1PC in rats and dogs was characterized by high bioavailability and extensive renal reabsorption; however, the extent of undergoing the N-acetylation metabolism was extremely different between SMC and S1PC.

  16. Computational Study of Environmental Effects on Torsional Free Energy Surface of N-Acetyl-N'-methyl-L-alanylamide Dipeptide

    ERIC Educational Resources Information Center

    Carlotto, Silvia; Zerbetto, Mirco

    2014-01-01

    We propose an articulated computational experiment in which both quantum mechanics (QM) and molecular mechanics (MM) methods are employed to investigate environment effects on the free energy surface for the backbone dihedral angles rotation of the small dipeptide N-Acetyl-N'-methyl-L-alanylamide. This computation exercise is appropriate for an…

  17. N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine, a new urinary metabolite of acrylonitrile and oxiranecarbonitrile.

    PubMed

    Linhart, I; Smejkal, J; Novák, J

    1988-01-01

    Two mercapturic acids, i.e., N-acetyl-S-(1-cyano-2-hydroxyethyl)-L-cysteine (CHEMA) and N-acetyl-S-(2-hydroxyethyl)-L-cysteine (HEMA), were isolated from the urine of rats dosed with four successive doses of oxiranecarbonitrile (glycidonitrile, GN), 5 mg/kg, a reactive metabolic intermediate of acrylonitrile (AN). GC-MS analysis of methylated urine extracts from both AN- and GN-dosed rats showed another mercapturate which was identified as N-acetyl-S-(1-cyanoethenyl)-L-cysteine (1-CEMA) methyl ester using an authentic reference sample. The mass spectrum of this compound was very similar to that of a methylated metabolite of AN tentatively identified by Langvardt et al. (1980) as N-acetyl-3-carboxy-5-cyanothiazane (ACCT). In contrast, no ACCT was found in rats dosed with either GN or AN. Hence, there is no evidence for the formation of ACCT or its isomers in rats dosed with AN or GN. The methyl ester of 1-CEMA is formed artificially by dehydration of CHEMA methyl ester in the injector of the gas chromatograph.

  18. Combined inhibitory effects of low temperature and N-acetyl-l-cysteine on the postovulatory aging of mouse oocytes.

    PubMed

    Li, Qian; Cui, Long-Bo

    2016-04-01

    The postovulatory aging of oocytes eventually affects the development of oocytes and embryos. Oxidative stress is known to accelerate the onset of apoptosis in oocytes and influence their capacity for fertilisation. This study aimed to reveal the roles of temperature and the antioxidant N-acetyl-l-cysteine in preventing the aging of postovulatory mouse oocytes. First, newly ovulated mouse oocytes were cultured at various temperature and time combinations in HCZB medium with varying concentrations of N-acetyl-l-cysteine to assess signs of aging and developmental potential. When cultured in HCZB with 300 μM N-acetyl-l-cysteine at different temperature and incubation time combinations (namely 25°C for 12 h, 15°C for 24 h and 5°C for 12 h), the increase in the susceptibility of oocytes to activating stimuli was efficiently prevented, and the developmental potential was maintained following Sr2+ activation or in vitro fertilisation. After incubation at either 15°C for 36 h or 5°C for 24 h, oocytes that had decreased blastocyst rates displayed unrecoverable abnormal cortical granule distribution together with decreased BCL2 levels, total glutathione concentrations and glutathione/glutathione disulphide (GSH/GSSG) ratios. In conclusion, postovulatory oocyte aging could be effectively inhibited by appropriate N-acetyl-l-cysteine addition at low temperatures. In addition, a simple method for the temporary culture of mature oocytes was established.

  19. A nanoparticle delivery vehicle for S-nitroso-N-acetyl cysteine: Sustained vascular response

    PubMed Central

    Nacharaju, Parimala; Tuckman-Vernon, Chaim; Maier, Keith E.; Chouake, Jason; Friedman, Adam; Cabrales, Pedro; Friedman, Joel M.

    2014-01-01

    Interest in the development of nitric oxide (NO) based therapeutics has grown exponentially owing to its well elucidated and established biological functions. In line with this surge, S-nitroso thiol (RSNO) therapeutics are also receiving more attention in recent years both as potential stable sources of NO as well as for their ability to serve as S-nitrosating agents; S-nitrosation of protein thiols is implicated in many physiological processes. We describe two hydrogel based RSNO containing nanoparticle platforms. In one platform the SNO groups are covalently attached to the particles (SNO-np) and the other contains S-nitroso-N-acetyl cysteine encapsulated within the particles (NAC-SNO-np). Both platforms function as vehicles for sustained activity as trans-S-nitrosating agents. NAC-SNO-np exhibited higher efficiency for generating GSNO from GSH and maintained higher levels of GSNO concentration for longer time (24 h) as compared to SNO-np as well as a previously characterized nitric oxide releasing platform, NO-np (nitric oxide releasing nanoparticles). In vivo, intravenous infusion of the NAC-SNO-np and NO-np resulted in sustained decreases in mean arterial pressure, though NAC-SNO-np induced longer vasodilatory effects as compared to the NO-np. Serum chemistries following infusion demonstrated no toxicity in both treatment groups. Together, these data suggest that the NAC-SNO-np represents a novel means to both study the biologic effects of nitrosothiols and effectively capitalize on its therapeutic potential. PMID:22705913

  20. The Role of Poly N Acetyl Glucosamine Nanofibers in Cutaneous Wound Healing

    NASA Astrophysics Data System (ADS)

    Buff-Lindner, Amanda Haley

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increases in wound closure, antibacterial activities and innate immune responses. Treatment with nanofibers results in increased defensin, small antimicrobial peptides, expression both in vitro and in vivo. Induction of defensin expression results in bacterial clearance in a cutaneous wound model. Our data show that Akt1 plays a central role in the regulation of these activities. Interestingly, pGlcNAc treatment of cutaneous wounds in mice results in decreased scar sizes. Additionally, treatment of cutaneous wounds with pGlcNAc results in increased elasticity and a rescue of tensile strength. Masson Trichrome staining suggests that pGlcNAc treated wounds exhibit decreased collagen content as well as increased collagen alignment with collagen fibers oriented similarly to unwounded tissue. Utilizing a fibrin gel assay to analyze the effect of pGlcNAc nanofiber treatment on fibroblast alignment in vitro, pGlcNAc stimulation of embedded fibroblasts results in fibroblasts alignment as compared to untreated controls, by a process that is Akt1 dependent. Our data show that in Akt1 null animals pGlcNAc treatment does not increase tensile strength or elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in wound closure, the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing.

  1. Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.

    PubMed

    Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie

    2015-09-15

    N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards.

  2. N-acetyl-cysteine attenuates neuropathic pain by suppressing matrix metalloproteinases.

    PubMed

    Li, Jiajie; Xu, Lujie; Deng, Xueting; Jiang, Chunyi; Pan, Cailong; Chen, Lu; Han, Yuan; Dai, Wenling; Hu, Liang; Zhang, Guangqin; Cheng, Zhixiang; Liu, Wentao

    2016-08-01

    The treatment of neuropathic pain remains a clinical challenge because of its unclear mechanisms and broad clinical morbidity. Matrix metalloproteinase (MMP)-9 and MMP-2 have previously been described as key components in neuropathic pain because of their facilitation of inflammatory cytokine maturation and induction of neural inflammation. Therefore, the inhibition of MMPs may represent a novel therapeutic approach to the treatment of neuropathic pain. In this study, we report that N-acetyl-cysteine (NAC), which is a broadly used respiratory drug, significantly attenuates neuropathic pain through a unique mechanism of MMP inhibition. Both the in vitro (0.1 mM) and in vivo application of NAC significantly suppressed the activity of MMP-9/2. Orally administered NAC (50, 100, and 200 mg/kg) not only postponed the occurrence but also inhibited the maintenance of chronic constrictive injury (CCI)-induced neuropathic pain in rats. The administration of NAC blocked the maturation of interleukin-1β, which is a critical substrate of MMPs, and markedly suppressed the neuronal activation induced by CCI, including inhibiting the phosphorylation of protein kinase Cγ, NMDAR1, and mitogen-activated protein kinases. Finally, NAC significantly inhibited CCI-induced microglia activation but elicited no notable effects on astrocytes. These results demonstrate an effective and safe approach that has been used clinically to alleviate neuropathic pain through the powerful inhibition of the activation of MMPs.

  3. Antioxidant role of N-acetyl cysteine isomers following high dose irradiation.

    PubMed

    Neal, Rachel; Matthews, Richard H; Lutz, Paula; Ercal, Nuran

    2003-03-15

    High dose, acute radiation exposure, as in radiation accidents, induces three clinical syndromes that reflect consequences of oxidative protein, lipid, and DNA damage to tissues such as intestine, lung, and liver. In the present study, we irradiated C57BL/6 mice with 18 Gy whole-body radiation (XRT) and evaluated N-acetyl cysteine (NAC) isomers LNAC and DNAC as potential radioprotectors under conditions that would model the gastrointestinal syndrome. We focused on tissues thought not immediately involved in the gastrointestinal syndrome. Both LNAC and DNAC protected the lung and red blood cells (RBC) from glutathione (GSH) depletion following radiation exposure. However, only LNAC also supplemented the spleen GSH levels following XRT. Protection from increased malondialdehyde (MDA) levels (lung) and increased 8-hydroxy-deoxyguanosine (8-oxo-dG) presence (liver) following XRT was observed with treatment by either isomer of NAC. These results imply that either NAC isomer can act as a radioprotectant against many aspects of oxidative damage; chirality is only important for certain aspects. This pattern would be consistent with direct action of NAC in many radioprotection and repair processes, with a delimited role for NAC in GSH synthesis in some aspects of the problem.

  4. An Additive Effect of Oral N-Acetyl Cysteine on Eradication of Helicobacter pylori

    PubMed Central

    Hamidian, Seyed Mohammad-Taghi; Aletaha, Najmeh-sadat; Taslimi, Reza; Montazeri, Mohammad

    2015-01-01

    Background. Helicobacter pylori is highly adapted to the gastric environment where it lives within or beneath the gastric mucous layer. The aim of this study was to evaluate whether the addition of N-acetyl cysteine to the treatment regimen of H. pylori infection would affect eradication rates of the disease. Methods. A total of 79 H. pylori positive patients were randomized to two therapeutic groups. Both groups received a 14-day course of three-drug regimen including amoxicillin/clarithromycin/omeprazole. Experimental group (38 subjects) received NAC, and control group (41 subjects) received placebo, besides three-drug regimen. H. pylori eradication was evaluated by urea breath test at least 4 weeks after the cessation of therapy. Results. The rate of H. pylori eradication was 72.9% and 60.9% in experimental and control groups, respectively (P = 0.005). By logistic regression modeling, female gender (OR 3.68, 95% CI: 1.06–5.79; P = 0.040) and treatment including NAC (OR 1.88, 95% CI: 0.68–3.15; P = 0.021) were independent factors associated with H. pylori eradication. Conclusion. The results of the present study show that NAC has an additive effect on the eradication rates of H. pylori obtained with three-drug regimen and appears to be a promising means of eradicating H. pylori infection. PMID:26421191

  5. Synthesis, characterization, antibacterial activity and quantum chemical studies of N'-Acetyl propane sulfonic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Alyar, Hamit; Ozdemir, Ummuhan Ozmen; Sahin, Omer; Kaya, Kerem; Ozbek, Neslihan; Gunduzalp, Ayla Balaban

    2015-08-01

    A new N'-Acetyl propane sulfonic acid hydrazide, C3H7sbnd SO2sbnd NHsbnd NHsbnd COCH3 (Apsh, an sulfon amide compound) has been synthesized for the first time. The structure of Apsh was investigated using elemental analysis, spectral (IR, 1H/13C NMR) measurements. In addition, molecular structure of the Apsh was determined by single crystal X-ray diffraction technique and found that the compound crystallizes in monoclinic, space group P 21/c. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The structure of Apsh is optimized using Density Functional Theory (DFT) method. The vibrational band assignments were performed at B3LYP/6-311++G(d,p) theory level combined with scaled quantum mechanics force field (SQMFF) methodology. The theoretical IR frequencies are found to be in good agreement with the experimental IR frequencies. Nonlinear optical (NLO) behaviour of Apsh is also examined by the theoretically predicted values of dipole moment (μ), polarizability (α0) and first hyperpolarizability (βtot). The antibacterial activities of synthesized compound were studied against Gram positive bacteria: Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212, Staphylococcus epidermidis ATCC 34384, Gram negative bacteria: Eschericha coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 70063 by using microdilution method (as MICs) and disc diffusion method.

  6. The effect of N-acetyl-L-cysteine on the viscosity of ileal neobladder mucus.

    PubMed

    Schrier, B P; Lichtendonk, W J; Witjes, J A

    2002-05-01

    N-acetyl-L-cysteine (NAC) proved to be an effective mucolytic in pulmonary secretions. Our goal was to investigate the in vitro effect of NAC on viscosity of ileal neobladder mucus. The urine of a patient with an ileal neobladder was collected during the first 7 days postoperatively and stored in a refrigerator. After precipitation, the urine was decanted. The residue was stirred to a homogeneous suspension. To samples of 4.5 ml mucus, 0.5 ml NAC 10% was added. To the control sample, 0.5 ml water was added. The samples were incubated in a water bath at 37 degrees C for 5, 30 and 60 min. Viscosity was measured in the Bohlin VOR Rheometer. The viscosity of the ileal neobladder mucus decreased quickly after incubating with NAC 10%. Viscosity increased slightly after I h of incubation. The viscosity in the control sample was higher than in the other incubated samples. NAC was found to decrease the viscosity of ileal neobladder mucus, supporting the in vivo experience that NAC can be useful in patients with an ileal neobladder to facilitate the evacuation of mucus by decreasing viscosity.

  7. N-Acetyl-L-cysteine Effects on Multi-species Oral Biofilm Formation and Bacterial Ecology

    PubMed Central

    Rasmussen, Karin; Nikrad, Julia; Reilly, Cavan; Li, Yuping; Jones, Robert S.

    2015-01-01

    Future therapies for the treatment of dental decay have to consider the importance of preserving bacterial ecology while reducing biofilm adherence to teeth. A multi-species plaque derived (MSPD) biofilm model was used to assess how concentrations of N-acetyl-L-cysteine (0, 0.1%, 1%, 10%) affected the growth of complex oral biofilms. Biofilms were grown (n=96) for 24 hours on hydroxyapatite disks in BMM media with 0.5% sucrose. Bacterial viability and biomass formation was examined on each disk using a microtiter plate reader. In addition, fluorescence microscopy and Scanning Electron Microscopy was used to qualitatively examine the effect of NAC on bacterial biofilm aggregation, extracellular components, and bacterial morphology. The total biomass was significantly decreased after exposure of both 1% (from 0.48, with a 95% confidence interval of (0.44, 0.57) to 0.35, with confidence interval (0.31, 0.38)) and 10% NAC (0.14 with confidence interval (0.11, 0.17)). 16S rRNA amplicon sequencing analysis indicated that 1% NAC reduced biofilm adherence while preserving biofilm ecology. PMID:26518358

  8. N-acetyl cysteine directed detoxification of 2-hydroxyethyl methacrylate by adduct formation.

    PubMed

    Nocca, Giuseppina; D'Antò, Vincenzo; Desiderio, Claudia; Rossetti, Diana Valeria; Valletta, Rosa; Baquala, Adriana Marquez; Schweikl, Helmut; Lupi, Alessandro; Rengo, Sandro; Spagnuolo, Gianrico

    2010-03-01

    Cytotoxicity of the dental resin monomer 2-hydroxyethyl methacrylate (HEMA) and the protective effects of N-acetyl cysteine (NAC) on monomer-induced cell damage are well demonstrated. The aim of our study was to analyze the hypothesis that the protection of NAC from HEMA cytotoxicity might be due to direct NAC adduct formation. To this end, using HPLC we first measured the actual intracellular HEMA concentrations able to cause toxic effects on 3T3-fibroblasts and then determined the decrease in intracellular and extracellular HEMA levels in the presence of NAC. In addition, by capillary electrophoresis coupled with mass spectrometry analysis (CE-MS), we evaluated NAC-HEMA adduct formation. HEMA reduced 3T3 cell vitality in a dose- and time-dependent manner. The concentration of HEMA inside the cells was 15-20 times lower than that added to the culture medium for cell treatment (0-8 mmol/L). In the presence of 10 mmol/L NAC, both intracellular and extracellular HEMA concentrations greatly decreased in conjunction with cytotoxicity. NAC-HEMA adducts were detected both in the presence and absence of cells. Our findings suggest that the in vitro detoxification ability of NAC against HEMA-induced cell damage occurs through NAC adduct formation. Moreover, we provide evidence that the actual intracellular concentration of HEMA able to cause cytotoxic effects is at least one magnitude lower than that applied extracellularly.

  9. N-Acetyl Cysteine (NAC)-Directed Detoxification of Methacryloxylethyl Cetyl Ammonium Chloride (DMAE-CB).

    PubMed

    Jiao, Yang; Ma, Sai; Li, Jing; Shan, Lequn; Wang, Yingjie; Tian, Min; Yang, Yanwei; Sun, Jinlong; Ban, Jinghao; Chen, Jihua

    2015-01-01

    Methacryloxylethyl cetyl ammonium chloride (DMAE-CB) is a polymerizable antibacterial monomer and has been proved as an effective strategy to achieve bioactive bonding with reliable bacterial inhibitory effects. However, the toxicity of DMAE-CB may hamper its wide application in clinical situations. Thus, this study was designed to investigate the toxicity of DMAE-CB and explore the possible protective effects of N-acetyl cysteine (NAC). High performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analysis showed that chemical binding of NAC and DMAE-CB occurred in a time dependent manner. Pre-incubation of fourty-eight hours is required for adequate reaction between DMAE-CB and NAC. DMAE-CB reduced human dental pulp cells (hDPCs) viability in a dose-dependent manner. The toxic effects of DMAE-CB were accompanied by increased reactive oxygen species (ROS) level and reduced glutathione (GSH) content. NAC alleviated DMAE-CB-induced oxidative stress. Annexin V/ Propidium Iodide (PI) staining and Hoechst 33342 staining indicated that DMAE-CB induced apoptosis. Collapsed mitochondrial membrane potential (MMP) and activation of caspase-3 were also observed after DMAE-CB treatment. NAC rescued hDPCs from DMAE-CB-induced apoptosis, accompanied by lower level of MMP loss and caspase-3 activity. This study assists to elucidate the mechanism underlying the cytotoxic effects of DMAE-CB and provides theoretical supports for the searching of effective strategies to reduce toxicity of quaternary ammonium dental monomers.

  10. Isolation of a novel N-acetyl-D-lactosamine specific lectin from Alocasia cucullata (Schott.).

    PubMed

    Kaur, Amandeep; Kamboj, Sukhdev Singh; Singh, Jatinder; Saxena, A K; Dhuna, Vikram

    2005-11-01

    An N-acetyl-D: -lactosamine (LacNAc) specific lectin from tubers of Alocasia cucullata was purified by affinity chromatography on asialofetuin-linked amino activated silica. The pure lectin showed a single band in SDS-PAGE at pH 8.8 and was a homotetramer with a subunit molecular mass of 13.5 kDa and native molecular mass of 53 kDa. It was heat stable up to 55 degrees C for 15 min and showed optimum hemagglutination activity from pH 2 to 11. The lectin was affected by denaturing agents such as urea (2 M: ), thiourea (2 M: ) and guanidine-HCl (0.5 M: ) and did not require Ca2+ and Mn2+ for its activity. It was a potent mitogen at 10 microg/ml towards human peripheral blood mononuclear cells with 50% growth inhibitory potential towards SiHa (human cervix ) cancer cell line at 100 microg/ml.

  11. N-acetyl-L-histidine, a Prominent Biomolecule in Brain and Eye of Poikilothermic Vertebrates.

    PubMed

    Baslow, Morris H; Guilfoyle, David N

    2015-04-24

    N-acetyl-L-histidine (NAH) is a prominent biomolecule in brain, retina and lens of poikilothermic vertebrates. In fish lens, NAH exhibits an unusual compartmentalized metabolism. It is synthesized from L-histidine (His) and acetyl Co-enzyme A. However, NAH cannot be catabolized by lens cells. For its hydrolysis, NAH is exported to ocular fluid where a specific acylase cleaves His which is then actively taken up by lens and re-synthesized into NAH. This energy-dependent cycling suggested a pump mechanism operating at the lens/ocular fluid interface. Additional studies led to the hypothesis that NAH functioned as a molecular water pump (MWP) to maintain a highly dehydrated lens and avoid cataract formation. In this process, each NAH molecule released to ocular fluid down its gradient carries with it 33 molecules of bound water, effectively transporting the water against a water gradient. In ocular fluid the bound water is released for removal from the eye by the action of NAH acylase. In this paper, we demonstrate for the first time the identification of NAH in fish brain using proton magnetic resonance spectroscopy (MRS) and describe recent evidence supporting the NAH MWP hypothesis. Using MRS, we also document a phylogenetic transition in brain metabolism between poikilothermic and homeothermic vertebrates.

  12. N-acetyl cysteine in clomiphene citrate resistant polycystic ovary syndrome: A review of reported outcomes.

    PubMed

    Saha, Lekha; Kaur, Sharonjeet; Saha, Pradip Kumar

    2013-07-01

    Clomiphene citrate (CC) has been the gold-standard drug for ovulation induction in polycystic ovary syndrome (PCOS), but still CC resistance is seen in approximately 15-40% in women with PCOS. N-acetyl cysteine (NAC), a safe and cheap drug available in the market many years ago as mucolytic agent, was found to have a role in infertility management. Recently, some reports discussed the possible beneficial effects of NAC on ovulation. The biological properties of the NAC make this drug a potential candidate for its use in the infertility treatment, especially in the PCOS in inducing or augmenting ovulation. An updated electronic search was performed through PUBMED, MEDLINE, and COCHRANE and focused on peer-reviewed, full text, randomized controlled trials, and observational cohort or case-control studies for role of NAC in CC-resistant PCOS. Thorough search through all the clinical studies showed mixed results. Studies with positive results showed improvement in induction of ovulation as compared to negative studies showing contrary results. More randomized clinical trials are still needed to establish its definitive role in CC-resistant PCOS.

  13. Effect of N-acetyl-l-cysteine on Saccharomyces cerevisiae irradiated with gamma-rays.

    PubMed

    Kim, Jin Kyu; Park, Jiyoung; Ryu, Tae Ho; Nili, Mohammad

    2013-07-01

    Ionizing radiation (IR) induces DNA strand breaks (DSBs), base damage, inhibition of protein activity, apoptosis by reactive oxygen species (ROS). Detoxification or removal of generated ROS can reduce oxidative damage. Antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase are immediately triggered for ROS scavenging. N-acetyl-l-cysteine (NAC) having a thiol, a precursor for reduced glutathione (GSH), is known as one of the antioxidants. In this study, the effect of NAC as an antioxidant and a radioprotector was investigated on survival rate, transcriptional level of antioxidant enzymes gene, and protein level including SOD activity and intracellular GSH in yeast Saccharomyces cerevisiae W303-1A strain mutated YBP1 gene irradiated with gamma-rays. NAC did not protect the gamma-ray-induced cell death. The gene expression of antioxidant enzymes including SOD1, SOD2, GPX1, and GPX2 was induced by gamma-rays. In contrast, the pretreatment of NAC reduced the expression of these genes. NAC reduced SOD activity and intracellular GSH level in yeast. These data suggest that NAC is able to reduce radiation-induced ROS levels in vivo but does not protect yeast cells against radiation-induced death.

  14. N-Acetyl Cysteine in the Treatment of Obsessive Compulsive and Related Disorders: A Systematic Review

    PubMed Central

    Oliver, Georgina; Dean, Olivia; Camfield, David; Blair-West, Scott; Ng, Chee; Berk, Michael; Sarris, Jerome

    2015-01-01

    Objective Obsessive compulsive and related disorders are a collection of debilitating psychiatric disorders in which the role of glutamate dysfunction in the underpinning neurobiology is becoming well established. N-acetyl cysteine (NAC) is a glutamate modulator with promising therapeutic effect. This paper presents a systematic review of clinical trials and case reports exploring the use of NAC for these disorders. A further objective was to detail the methodology of current clinical trials being conducted in the area. Methods PubMed, Web of Science and Cochrane Library Database were searched for human clinical trials or case reports investigating NAC in the treatment of obsessive compulsive disorder (OCD) or obsessive compulsive related disorders. Researchers with known involvement in NAC studies were contacted for any unpublished data. Results Four clinical trials and five case reports/series were identified. Study durations were commonly 12-weeks, using 2,400–3,000 mg/day of NAC. Overall, NAC demonstrates activity in reducing the severity of symptoms, with a good tolerability profile and minimal adverse effects. Currently there are three ongoing randomized controlled trials using NAC for OCD (two adults and one pediatric), and one for excoriation. Conclusion Encouraging results have been demonstrated from the few pilot studies that have been conducted. These results are detailed, in addition to a discussion of future potential research. PMID:25912534

  15. Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds.

    PubMed

    Miles, Kevin Barrett; Ball, Rebecca Lee; Matthew, Howard William Trevor

    2016-03-30

    To improve the mechanical properties of chitosan (Ct) materials without the use of cytotoxic crosslinkers, disulfide cross-linkable Ct was synthesized by grafting N-acetyl-cysteine (NAC) to Ct using carbodiimide chemistry. Cast films of NAC-Ct conjugates were prepared with degrees of substitution (DS) of 0%, 6%, 15%, and 20%, and the disulfide bond formation was induced by increasing the reaction media pH to 11. The tensile strength, breaking strain, elastic moduli and toughness of disulfide cross-linked polymers were analyzed by monotonic tensile testing of hydrated NAC-Ct films. Crystallinity was determined via XRD. Results demonstrated that NAC incorporation and crosslinking in chitosan produced tougher polymer films with 4-fold higher tensile strength (10 MPa) and 6-fold greater elongation (365%), but reduced crystallinity, compared to unmodified chitosan. The resilience of NAC-Ct films was evaluated by cyclic testing, and results demonstrate that increasing NAC content produced a more resilient material that dissipated less energy when deformed. These improved mechanical properties broaden chitosan's applicability towards the construction of mechanically robust implantable scaffolds for tissue regeneration.

  16. Biochemical and molecular mechanisms of N-acetyl cysteine and silymarin-mediated protection against maneb- and paraquat-induced hepatotoxicity in rats.

    PubMed

    Ahmad, Israr; Shukla, Smriti; Kumar, Ashutosh; Singh, Brajesh Kumar; Kumar, Vinod; Chauhan, Amit Kumar; Singh, Dhirendra; Pandey, Haushila Prasad; Singh, Chetna

    2013-01-25

    Oxidative stress is one of the major players in the pathogenesis of maneb (MB) and paraquat (PQ)-induced disorders. N-acetyl cysteine (NAC), a glutathione (GSH) precursor and silymarin (SIL), a naturally occurring antioxidant, encounter oxidative stress-mediated cellular damage. The present study was aimed to investigate the effects of NAC and SIL against MB and/or PQ-induced hepatotoxicity in rats. The levels of hepatotoxicity markers - alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and total bilirubin, histological changes, oxidative stress indices, phase I and phase II xenobiotic metabolizing enzymes - cytochrome P450 (CYP) and glutathione S-transferase (GST) and pro-inflammatory molecules - inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured in animals treated with MB and/or PQ in the presence or absence of NAC and SIL. MB and/or PQ augmented ALT, AST, total bilirubin, lipid peroxidation and nitrite contents and catalytic activities of superoxide dismutase and glutathione peroxidase however, the GSH content was attenuated. NAC and SIL restored the above-mentioned alterations towards basal levels but the restorations were more pronounced in SIL treated groups. Similarly, MB and/or PQ-mediated histopathological symptoms and changes in the catalytic activities/expressions of CYP1A2, CYP2E1, iNOS, TNF-α, and IL-1β were alleviated by NAC and SIL. Conversely, MB and/or PQ-induced GSTA4-4 expression/activity was further increased by NAC/SIL and glutathione reductase activity was also increased. The results obtained thus suggest that NAC and SIL protect MB and/or PQ-induced hepatotoxicity by reducing oxidative stress, inflammation and by modulating xenobitic metabolizing machinery and SIL seems to be more effective.

  17. Formation of three N-acetyl-L-cysteine monoadducts and one diadduct by the reaction of S-(1,2-dichlorovinyl)-L-cysteine sulfoxide with N-acetyl-L-cysteine at physiological conditions: chemical mechanisms and toxicological implications.

    PubMed

    Barshteyn, Nella; Elfarra, Adnan A

    2007-10-01

    Previously, our laboratory has shown that S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS), a Michael acceptor produced by a flavin-containing monooxygenase 3 (FMO3)-mediated oxidation of S-(1,2-dichlorovinyl)-L-cysteine (DCVC), is a more potent nephrotoxicant than DCVC. In the present study, we characterized reactions of DCVCS with nucleophilic amino acids. DCVCS incubations with N-acetyl-L-cysteine (NAC) at pH 7.4 and 37 degrees C for 1 h resulted in the formation of three monoadducts and one diadduct characterized by LC/MS, 1H NMR, and 1H-detected heteronuclear single quantum correlation. The formation of all adducts (with relative ratios of 29, 31, 24, and 12%, respectively) was rapid and time-dependent; the half-lives of the two DCVCS diastereomers in the presence of NAC were 13.8 (diastereomer I) and 9.4 min (diastereomer II). Adducts 1 and 2 were determined to be diastereomers of S-[1-chloro-2-(N-acetyl-L-cystein- S-yl)vinyl]-L-cysteine sulfoxide formed by Michael addition of NAC to the terminal vinylic carbon of DCVCS followed by loss of HCl. Adduct 4 was determined to be S-[2-chloro-2-(N-acetyl-L-cystein- S-yl)vinyl]-L-cysteine sulfoxide formed from the initial Michael addition product followed by a less favorable loss of HCl and/or by a rearrangement of adduct 2 through the formation of a cyclic chloronium ion. The addition of another molecule of NAC to monoadducts 1, 2, or 4 resulted in the formation of the novel diadduct, S-[2,2-( N-acetyl-L-cystein-S-yl)vinyl]-L-cysteine sulfoxide (adduct 3), whose detection in relatively large amount suggests that DCVCS could act as a cross-linking agent. DCVCS was not reactive with N-acetyl-L-lysine or L-valinamide at similar incubation conditions. Collectively, the results suggest selective reactivity of DCVCS toward protein sulfhydryl groups. Furthermore, the cross-linking properties of DCVCS may in part explain its high nephrotoxic potency.

  18. Treatment with N-acetyl-seryl-aspartyl-lysyl-proline prevents experimental autoimmune myocarditis in rats

    PubMed Central

    Nakagawa, Pablo; Liu, Yunhe; Liao, Tang-Dong; Chen, Xiaojuan; González, Germán E.; Bobbitt, Kevin R.; Smolarek, Derek; Peterson, Ed L.; Kedl, Ross; Yang, Xiao-Ping; Rhaleb, Nour-Eddine

    2012-01-01

    Myocarditis is commonly associated with cardiotropic infections and has been linked to development of autoimmunity. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetrapeptide that prevents inflammation and fibrosis in hypertension and other cardiovascular diseases; however, its effect on autoimmune-mediated cardiac diseases remains unknown. We studied the effects of Ac-SDKP in experimental autoimmune myocarditis (EAM), a model of T cell-mediated autoimmune disease. This study was conducted to test the hypothesis that Ac-SDKP prevents autoimmune myocardial injury by modulating the immune responses. Lewis rats were immunized with porcine cardiac myosin and treated with Ac-SDKP or vehicle. In EAM, Ac-SDKP prevented both systolic and diastolic cardiac dysfunction, remodeling as shown by hypertrophy and fibrosis, and cell-mediated immune responses without affecting myosin-specific autoantibodies or antigen-specific T cell responses. In addition, Ac-SDKP reduced cardiac infiltration by macrophages, dendritic cells, and T cells, pro-inflammatory cytokines [interleukin (IL)-1α, tumor necrosis factor-α, IL-2, IL-17] and chemokines (cytokine-induced neutrophil chemoattractant-1, interferon-γ-induced protein 10), cell adhesion molecules (intercellular adhesion molecule-1, L-selectin), and matrix metalloproteinases (MMP). Ac-SDKP prevents autoimmune cardiac dysfunction and remodeling without reducing the production of autoantibodies or T cell responses to cardiac myosin. The protective effects of Ac-SDKP in autoimmune myocardial injury are most likely mediated by inhibition of 1) innate and adaptive immune cell infiltration and 2) expression of proinflammatory mediators such as cytokines, chemokines, adhesion molecules, and MMPs. PMID:22923621

  19. N-Acetyl Cysteine in the Management of Rodenticide Consumption — Life Saving?

    PubMed Central

    Kenchetty, Kumar P.

    2015-01-01

    Background and Aim of Study: Rodenticide is a commonly ingested poison in India. Many rodenticides contain hepatotoxic agents and can cause acute liver failure (ALF). There is no antidote for rodenticide poison, and consumption is often fatal. The Role of N acetyl cysteine (NAC) in acetaminophen induced ALF is well established. Additionally some studies have shown that it may be useful in non-acetaminophen induced ALF also. Cases with ALF secondary to suicidal rodenticide consumption have been reported, and some reports show that NAC is beneficial in these cases. Our study was a retrospective analysis of patients admitted with rodenticide consumption, comparing outcomes in those receiving standard of care management and those who were treated with NAC also. Materials and Methods: Case sheets of all inpatients of a tertiary medical college hospital between January 2010 and December 2012 admitted with an alleged history of rodenticide consumption were surveyed and data was extracted and analysed. Statistical Analysis: Patients were analysed with respect to age, sex, mode of presentation, interval between consumption of rodenticide and starting NAC; the outcome in patients treated with acetylcysteine was compared to outcomes in those not treated with acetylcysteine Results: A total of 100 patients were studied out of which 18 died. Sixteen of the deaths were in patients who had not been treated with NAC. We found that patients who had received NAC had lower mortality, lower peak values of AST/ALT, and shorter hospital stay. Conclusion: NAC may have a role in the management of ALF associated with rodenticide consumption. PMID:25738016

  20. N-Acetyl-L-cysteine inhibits sulfur mustard-induced and TRPA1-dependent calcium influx.

    PubMed

    Stenger, Bernhard; Popp, Tanja; John, Harald; Siegert, Markus; Tsoutsoulopoulos, Amelie; Schmidt, Annette; Mückter, Harald; Gudermann, Thomas; Thiermann, Horst; Steinritz, Dirk

    2016-10-13

    Transient receptor potential family channels (TRPs) have been identified as relevant targets in many pharmacological as well as toxicological studies. TRP channels are ubiquitously expressed in different tissues and act among others as sensors for different external stimuli, such as mechanical stress or noxious impacts. Recent studies suggest that one member of this family, the transient receptor potential ankyrin 1 cation channel (TRPA1), is involved in pain, itch, and various diseases, suggesting TRPA1 as a potential therapeutic target. As a nociceptor, TRPA1 is mainly activated by noxious or electrophilic compounds, including alkylating substances. Previous studies already revealed an impact of 2-chloroethyl-ethyl sulfide on the ion channel TRPA1. In this study, we demonstrate that sulfur mustard (bis-(2-chloroethyl) sulfide, SM) activates the human TRPA1 (hTRPA1) in a dose-dependent manner measured by the increase in intracellular Ca(2+) concentration ([Ca(2+)]i). Besides that, SM-induced toxicity was attenuated by antioxidants. However, very little is known about the underlying mechanisms. Here, we demonstrate that N-acetyl-L-cysteine (NAC) prevents SM-induced hTRPA1-activation. HEK293-A1-E cells, overexpressing hTRPA1, show a distinct increase in [Ca(2+)]i immediately after SM exposure, whereas this increase is reduced in cells pretreated with NAC in a dose-dependent manner. Interestingly, glutathione, although being highly related to NAC, did not show an effect on hTRPA1 channel activity. Taken together, our results provide evidence that SM-dependent activation of hTRPA1 can be diminished by NAC treatment, suggesting a direct interaction of NAC and the hTRPA1 cation channel. Our previous studies already showed a correlation of hTRPA1-activation with cell damage after exposure to alkylating agents. Therefore, NAC might be a feasible approach mitigating hTRPA1-related dysregulations after exposure to SM.

  1. Can N-acetyl-L-cysteine affect zinc metabolism when used as a paracetamol antidote?

    PubMed

    Brumas, V; Hacht, B; Filella, M; Berthon, G

    1992-07-01

    N-Acetyl-L-cysteine (NAC) has long been used in the treatment of chronic lung diseases. Inhalation and oral administration of the drug are both effective in reducing mucus viscosity. In addition, NAC oral therapy allows to restore normal mucoprotein secretion in the long term. Although displaying heavy metal-complexing potential, NAC exerts no detectable influence on the metabolism of essential trace metals when used in the above context (i.e. at doses near 600 mg day-1). However, this may no longer be the case when NAC is used as an oxygen radical scavenger, like in the treatment of paracetamol poisoning. In the latter case, intravenous doses as high as 20 g day-1 are administered, which may induce excessive zinc urinary excretion. In order to allow a better appreciation of the risk of zinc depletion during NAC therapy, the present work addresses the role of this drug towards zinc metabolism at the molecular level. First, formation constants for zinc-NAC complexes have been determined under physiological conditions. Then, computer simulations for blood plasma and gastrointestinal fluid have been run to assess the influence of NAC and its metabolites (e.g. cysteine and glutathione) on zinc excretion and absorption. Blood plasma simulations reveal that NAC can effectively mobilise an important fraction of zinc into urinary excretable complexes as from concentrations of 10(-3) mol dm-3 (which corresponds to a dose of about 800 mg). This effect can still be enhanced by the action of NAC metabolites, among which cysteine is the most powerful zinc sequestering agent. In contrast, simulations relative to gastrointestinal conditions suggest that NAC should tend to increase zinc absorption, regardless of its dose.

  2. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors.

    PubMed

    Halasi, Marianna; Wang, Ming; Chavan, Tanmay S; Gaponenko, Vadim; Hay, Nissim; Gartel, Andrei L

    2013-09-01

    NAC (N-acetyl-L-cysteine) is commonly used to identify and test ROS (reactive oxygen species) inducers, and to inhibit ROS. In the present study, we identified inhibition of proteasome inhibitors as a novel activity of NAC. Both NAC and catalase, another known scavenger of ROS, similarly inhibited ROS levels and apoptosis associated with H₂O₂. However, only NAC, and not catalase or another ROS scavenger Trolox, was able to prevent effects linked to proteasome inhibition, such as protein stabilization, apoptosis and accumulation of ubiquitin conjugates. These observations suggest that NAC has a dual activity as an inhibitor of ROS and proteasome inhibitors. Recently, NAC was used as a ROS inhibitor to functionally characterize a novel anticancer compound, piperlongumine, leading to its description as a ROS inducer. In contrast, our own experiments showed that this compound depicts features of proteasome inhibitors including suppression of FOXM1 (Forkhead box protein M1), stabilization of cellular proteins, induction of ROS-independent apoptosis and enhanced accumulation of ubiquitin conjugates. In addition, NAC, but not catalase or Trolox, interfered with the activity of piperlongumine, further supporting that piperlongumine is a proteasome inhibitor. Most importantly, we showed that NAC, but not other ROS scavengers, directly binds to proteasome inhibitors. To our knowledge, NAC is the first known compound that directly interacts with and antagonizes the activity of proteasome inhibitors. Taken together, the findings of the present study suggest that, as a result of the dual nature of NAC, data interpretation might not be straightforward when NAC is utilized as an antioxidant to demonstrate ROS involvement in drug-induced apoptosis.

  3. Nanostructured Lipid Carrier for Topical Application of N-Acetyl Glucosamine

    PubMed Central

    Aliasgharlou, Lavin; Ghanbarzadeh, Saeed; Azimi, Hamideh; Zarrintan, Mohammad Hossein; Hamishehkar, Hamed

    2016-01-01

    Purpose: Hyperpigmentation occurs when melanin is overproduced in certain spots on the skin and is one of the most challenging skin conditions to treat. Although it is usually harmless, for cosmetic reasons, it is dreadfully bothersome to those who undergo it. It was reported that N-acetyl-glucosamine (NAGA) prevents melanin synthesis and alters the expression of numerous genes related to pigmentation. In spite of these advantages, NAGA cannot be employed in topical formulations due to its extremely polar characteristics. Nanoparticles, especially lipid-based ones, have been introduced as an efficient carrier for dermal drug delivery. Methods: The aim of the present study was to load adequate hydrophilic NAGA to the lipophilic nanostructured lipid carriers (NLCs) for potential dermal application. Methods: NAGA-loaded NLCs were formulated, using hot homogenization technique, and the characteristics of the optimized formulation were analyzed by laser light scattering, X-ray diffraction, and scanning electron microscopy methods. Loading capacity percentage and in vitro release study were carried out by applying a validated HPLC method. The optimum formulation was utilized for the in vivo skin lightening evaluations in healthy volunteers. Results: NAGA-loaded NLCs demonstrated promising results (the size of 190 nm, narrow size distribution, loading capacity of 9%, and appropriate NAGA release profile) suitable for dermal delivery. XRD results exhibited a dramatic reduction in the crystalline structure of encapsulated NAGA. Dermoscopy images indicated a considerable decline in melanin distribution pattern in the majority of the cases treated with NAGA-loaded NLCs. Conclusion: Thus, this study has opened new horizons for the potential use of lipid based nanoparticles in the managing of hyperpigmentation. PMID:28101465

  4. Urinary excretion of N-acetyl-beta-D-glucosaminidase in children with type I diabetes mellitus.

    PubMed

    Ellis, E N; Brouhard, B H; Lagrone, L; Travis, L B

    1983-01-01

    N-acetyl-beta-D-glucosaminidase (NAG), a lysosomal enzyme, has been shown to be increased in the urine of patients with various glomerulonephritides, tubulointerestitial diseases, renal allograft rejection, toxic renal injury, and diabetes mellitus. Although it has been suggested that urinary NAG may reflect blood glucose control, no studies have correlated this with other measures of metabolic control. Thirty-four children from a diabetic summer camp were found to have urinary NAG to creatinine ratios significantly above those of normal controls of similar age (5.22 +/- 1.19 versus 1.51 +/- 0.17 U). Urinary NAG was found to positively correlate with an arbitrary control index (r = 0.82; P less than 0.05) and in seven patients with hemoglobin A1c (r = 0.70; P less than 0.001). In a closely followed group of 40 clinic patients, urinary NAG to creatinine ratio was again found to be significantly increased over normal controls (7.55 +/- 0.70 versus 1.51 +/- 0.17 U; P less than 0.05). Again, urinary NAG was positively correlated with HbA1c (r = 0.62; P less than 0.001) and urinary albumin to creatinine ratio (r = 0.47; P less than 0.01). In neither group was there a correlation with UNAG:UCr and duration of disease. Thus, these data suggest that urinary NAG to creatinine ratio appears to be a reflection of blood sugar control.

  5. N-acetyl cysteine (NAC) treatment reduces mercury-induced neurotoxicity in the developing rat hippocampus

    PubMed Central

    Falluel-Morel, Anthony; Lin, Lulu; Sokolowski, Katie; McCandlish, Elizabeth; Buckley, Brian; DiCicco-Bloom, Emanuel

    2011-01-01

    Mercury is an environmental toxicant that can disrupt brain development. However, while progress has been made in defining its neurotoxic effects, we know far less about available therapies that can effectively protect brain in exposed individuals. We previously developed an animal model in which we defined the sequence of events underlying neurotoxicity: Methylmercury (MeHg) injection in postnatal rat acutely induced inhibition of mitosis and stimulated apoptosis in the hippocampus, that later resulted in intermediate term deficits in structure size and cell number. NAC is the N-acetyl derivative of L-cysteine used clinically for treatment of drug intoxication. Here, based on its known efficacy in promoting MeHg urinary excretion, we evaluated NAC for protective effects in the developing brain. In immature neurons and precursors MeHg (3µM) induced a >50% decrease in DNA synthesis at 24hr, an effect that was completely blocked by NAC co-incubation. In vivo, injection of MeHg (5µg/gbw) into 7 day-old rats induced a 22% decrease in DNA synthesis in whole hippocampus and a 4-fold increase in activated caspase-3 immunoreactive cells at 24hr, and reduced total cell numbers by 13% at 3 weeks. Treatment of MeHg exposed rats with repeated injections of NAC abolished MeHg toxicity. NAC prevented the reduction in DNA synthesis and the marked increase in caspase-3 immunoreactivity. Moreover, the intermediate term decrease in hippocampal cell number provoked by MeHg was fully blocked by NAC. Altogether, these results suggest that MeHg toxicity in the perinatal brain can be ameliorated by using NAC, opening potential avenues for therapeutic intervention. PMID:22420031

  6. A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy

    PubMed Central

    Barekat, Foroogh; Tavalaee, Marziyeh; Deemeh, Mohammad Reza; Bahreinian, Mahsa; Azadi, Leila; Abbasi, Homayoun; Rozbahani, Shahla; Nasr-Esfahani, Mohammad Hossein

    2016-01-01

    Background Surgery is considered the primary treatment for male infertility from clinical varicocele. One of the main events associated with varicocele is excessive production of reactive oxygen species (ROS). N-acetyl-L-cysteine (NAC), an antioxidant that scavenges free radicals, is considered a supplement to alleviate glutathione (GSH) depletion during oxidative stress. Despite beneficial effects of NAC in other pathological events, there is no report on the effect of NAC in individuals with varicocele. Therefore, the aim of this study is to evaluate the outcome of NAC on semen quality, protamine content, DNA damage, oxidative stress and fertility following varicocelectomy. Materials and Methods This prospective clinical trial included 35 infertile men with varicocele randomly divided into control (n=20) and NAC (n=15) groups. We assessed semen parameters, protamine content [chromomycin A3 (CMA3)], DNA integrity [terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL)] and oxidative stress [2', 7'-dichlorodihydrofluorescein-diacetate (DCFH-DA)] before and three months after varicocelectomy. Results Percentage of abnormal semen parameters, protamine deficiency, DNA fragmentation and oxidative stress were significantly decreased in both groups compared to before surgery. We calculated the percentage of improvement in these parameters compared to before surgery for each group, then compared the results between the groups. Only percentage of protamine deficiency and DNA fragmentation significantly differed between the NAC and control groups. Conclusion The results of this study, for the first time, revealed that NAC improved chromatin integrity and pregnancy rate when administered as adjunct therapy post-varico- celectomy (Registeration Number: IRCT201508177223N5). PMID:27123209

  7. Electrospun Microfiber Scaffolds with Anti-Inflammatory Tributanoylated N-Acetyl-d-Glucosamine Promote Cartilage Regeneration.

    PubMed

    Kim, Chaekyu; Shores, Lucas; Guo, Qiongyu; Aly, Ahmed; Jeon, Ok Hee; Kim, Do Hun; Bernstein, Nicholas; Bhattacharya, Rahul; Chae, Jemin Jeremy; Yarema, Kevin J; Elisseeff, Jennifer H

    2016-04-01

    Tissue-engineering strategies offer promising tools for repairing cartilage damage; however, these strategies suffer from limitations under pathological conditions. As a model disease for these types of nonideal systems, the inflammatory environment in an osteoarthritic (OA) joint limits the efficacy of engineered therapeutics by disrupting joint homeostasis and reducing its capacity for regeneration. In this work, we investigated a sugar-based drug candidate, a tributanoylated N-acetyl-d-glucosamine analogue, called 3,4,6-O-Bu3GlcNAc, that is known to reduce nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling in osteoarthritis. 3,4,6-O-Bu3GlcNAc not only inhibited NFκB signaling but also exerted chondrogenic and anti-inflammatory effects on chondrocytes isolated from patients with osteoarthritis. 3,4,6-O-Bu3GlcNAc also increased the expression of extracellular matrix proteins and induced cartilage tissue production in three-dimensional in vitro hydrogel culture systems. To translate these chondrogenic and anti-inflammatory properties to tissue regeneration in osteoarthritis, we implanted 3,4,6-O-Bu3GlcNAc-loaded poly(lactic-co-glycolic acid) microfiber scaffolds into rats. The drug-laden scaffolds were biocompatible, and when seeded with human OA chondrocytes, similarly promoted cartilage tissue formation. 3,4,6-O-Bu3GlcNAc combined with the appropriate structural environment could be a promising therapeutic approach for osteoarthritis.

  8. N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

    PubMed Central

    Hasan, Md. Ashraful; Ahn, Won-Gyun

    2016-01-01

    N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though Ca2+ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ([Ca2+]i) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on [Ca2+]i in human neutrophils. We observed that NAC (1 µM ~ 1 mM) and cysteine (10 µM ~ 1 mM) increased [Ca2+]i in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in [Ca2+]i in human neutrophils was observed. In Ca2+-free buffer, NAC- and cysteine-induced [Ca2+]i increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in [Ca2+]i in human neutrophils occur through Ca2+ influx. NAC- and cysteine-induced [Ca2+]i increase was effectively inhibited by calcium channel inhibitors SKF96365 (10 µM) and ruthenium red (20 µM). In Na+-free HEPES, both NAC and cysteine induced a marked increase in [Ca2+]i in human neutrophils, arguing against the possibility that Na+-dependent intracellular uptake of NAC and cysteine is necessary for their [Ca2+]i increasing activity. Our results show that NAC and cysteine induce [Ca2+]i increase through Ca2+ influx in human neutrophils via SKF96365- and ruthenium red-dependent way. PMID:27610031

  9. Supramolecular architectures of N-acetyl-L-proline monohydrate and N-benzyl-L-proline.

    PubMed

    Rajalakshmi, P; Srinivasan, N; Krishnakumar, R V; Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim

    2013-11-01

    The title compounds, N-acetyl-L-proline monohydrate, C7H11NO3·H2O, (I), and N-benzyl-L-proline, C12H15NO2, (II), crystallize in the monoclinic space group P21 with Z' = 1 and Z' = 2, respectively. The conformation of C(γ) with respect to the carboxylic acid group in (I) is C(γ)-exo or UP pucker, with the pyrrolidine ring twisted, while in (II), it is C(γ)-endo or DOWN, with the pyrrolidine ring assuming an envelope conformation. The crystal packing interactions in (I) are composed of two substructures, one characterized by an R6(6)(24) motif through O-H...O hydrogen bonds and the other by an R4(4)(23) ring through C-H...O interactions. In (II), the crystal packing interactions consist of N-H...O and C-H...O hydrogen bonds. Proline (Pro) exists in its neutral form in (I) and is zwitterionic in (II). This difference in the ionization states of Pro is manifested through the absence of N-H...O and presence of O-H...O interactions in (I), and the presence of N-H...O and absence of O-H...O hydrogen bonds in (II). While C-H...O interactions are present in both (I) and (II), the geometry of the synthons formed by them and their mode of participation in intermolecular interactions is different. Though the title compounds differ significantly in terms of modifications in the Pro skeleton, the differences in their supramolecular structures may also be viewed as a result of the molecular recognition facilitated by the presence of a solvent water molecule in (I) and the zwitterionic state of the amino acid in (II).

  10. Hydration and N-acetyl-l-cysteine alter the microstructure of human nail and bovine hoof: implications for drug delivery.

    PubMed

    Nogueiras-Nieto, L; Gómez-Amoza, J L; Delgado-Charro, M B; Otero-Espinar, F J

    2011-12-20

    This work aimed to (a) characterize the microstructure and porosity of human nail and bovine hoof by mercury intrusion porosimetry and SEM image analysis, (b) study the effects of hydration and of N-acetyl-l-cysteine treatment on the microstructure of both membranes, and (c) determine whether the microstructural modifications were associated with changes in drug penetration measured by standard diffusion studies. Bovine hoof surface is more porous than nail surface although there were no differences between the mean surface pore sizes. Hydration and N-acetyl-l-cysteine increased the roughness and apparent surface porosity, and the porosity determined by mercury intrusion porosimetry of both membranes. Pore-Cor™ was used to generate tridimensional structures having percolation characteristics comparable to nail and hooves. The modeled structures were horizontally banded having an inner less-porous area which disappeared upon treatment. Treatment increased the predicted permeability of the simulated structures. Triamcinolone permeation increased significantly for hooves treated N-acetyl-l-cysteine, i.e., the membranes for which microstructural and permeability changes were the largest. Thus, microstructural changes determined via mercury intrusion porosimetry and subsequently modeled by Pore-Cor™ were related to drug diffusion. Further refinement of the technique will allow fast screening of penetration enhancers to be used in ungual drug delivery.

  11. Structure and Reactivity of the N-Acetyl-Cysteine Radical Cation and Anion: Does Radical Migration Occur?

    NASA Astrophysics Data System (ADS)

    Osburn, Sandra; Berden, Giel; Oomens, Jos; O'Hair, Richard A. J.; Ryzhov, Victor

    2011-10-01

    The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S-NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol-1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011, 17, 873-879) and the study by Sinha et al. for cysteine radical cation ( Phys. Chem. Chem. Phys. 2010, 12, 9794-9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M - 2H) •- . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol-1) position, and does not rearrange.

  12. Structural differences between two lectins from Cytisus scoparius, both specific for D-galactose and N-acetyl-D-galactosamine.

    PubMed

    Young, N M; Watson, D C; Williams, R E

    1984-08-15

    Three lectin fractions were obtained from seeds of the leguminous plant Cytisus scoparius (Scotch broom) by means of affinity chromatography on a N-acetyl-D-galactosamine medium. The first fraction, termed CSIa, was equally well inhibited in haemagglutination experiments by D-galactose and by N-acetyl-D-galactosamine and consisted of a group of isolectins formed from closely related polypeptide chains of approx. Mr 30000. The second fraction, CSIb, was closely related to CSIa in specificity, c.d. and other properties. The third fraction contained a homogeneous lectin, CSII, formed from subunits again of approx. Mr 30000. CSII was 100 times more readily inhibited by N-acetyl-D-galactosamine than by D-galactose. Despite the similarity in specificity, comparative studies of their amino acid composition, c.d. and N-terminal amino acid sequence showed that the CSIa and CSII lectins diverged considerably in structure. The lectin from Cytisus sessilifolius, specific for chitobiose, was also examined and resembled CSIa in composition and c.d. properties.

  13. Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin.

    PubMed

    Letra-Vilela, Ricardo; Sánchez-Sánchez, Ana María; Rocha, Ana Maia; Martin, Vanesa; Branco-Santos, Joana; Puente-Moncada, Noelia; Santa-Marta, Mariana; Outeiro, Tiago Fleming; Antolín, Isaac; Rodriguez, Carmen; Herrera, Federico

    2016-10-15

    Melatonin (N-acetyl-5-methoxytryptamine) is a highly pleiotropic hormone with antioxidant, antiproliferative, oncolytic and neuroprotective properties. Here, we present evidence that the N-acetyl side chain plays a key role in melatonin's antiproliferative effect in HT22 and sw-1353 cells, but it does so at the expense of antioxidant and neuroprotective properties. Removal of the N-acetyl group enhances the antioxidant and neuroprotective properties of the indole, but it can lead to toxic methamphetamine-like effects in several cell lines. Inhibition of NFkB mimicked melatonin's antiproliferative and antioxidant effects, but not neuroprotection. Our results strongly suggest that neuroprotective and antiproliferative effects of melatonin rely on different parts of the molecule and are likely mediated by different mechanisms. We also predict that melatonin metabolism by target cells could determine whether melatonin inhibits cell proliferation, prevents toxicity or induces cell death (e.g. apoptosis or autophagy). These observations could have important implications for the rational use of melatonin in personalized medicine.

  14. Treatment of traumatic brain injury in rats with N-acetyl-seryl-aspartyl-lysyl-proline.

    PubMed

    Zhang, Yanlu; Zhang, Zheng Gang; Chopp, Michael; Meng, Yuling; Zhang, Li; Mahmood, Asim; Xiong, Ye

    2017-03-01

    OBJECTIVE The authors' previous studies have suggested that thymosin beta 4 (Tβ4), a major actin-sequestering protein, improves functional recovery after neural injury. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an active peptide fragment of Tβ4. Its effect as a treatment of traumatic brain injury (TBI) has not been investigated. Thus, this study was designed to determine whether AcSDKP treatment improves functional recovery in rats after TBI. METHODS Young adult male Wistar rats were randomly divided into the following groups: 1) sham group (no injury); 2) TBI + vehicle group (0.01 N acetic acid); and 3) TBI + AcSDKP (0.8 mg/kg/day). TBI was induced by controlled cortical impact over the left parietal cortex. AcSDKP or vehicle was administered subcutaneously starting 1 hour postinjury and continuously for 3 days using an osmotic minipump. Sensorimotor function and spatial learning were assessed using a modified Neurological Severity Score and Morris water maze tests, respectively. Some of the animals were euthanized 1 day after injury, and their brains were processed for measurement of fibrin accumulation and neuroinflammation signaling pathways. The remaining animals were euthanized 35 days after injury, and brain sections were processed for measurement of lesion volume, hippocampal cell loss, angiogenesis, neurogenesis, and dendritic spine remodeling. RESULTS Compared with vehicle treatment, AcSDKP treatment initiated 1 hour postinjury significantly improved sensorimotor functional recovery (Days 7-35, p < 0.05) and spatial learning (Days 33-35, p < 0.05), reduced cortical lesion volume, and hippocampal neuronal cell loss, reduced fibrin accumulation and activation of microglia/macrophages, enhanced angiogenesis and neurogenesis, and increased the number of dendritic spines in the injured brain (p < 0.05). AcSDKP treatment also significantly inhibited the transforming growth factor-β1/nuclear factor-κB signaling pathway. CONCLUSIONS AcSDKP treatment

  15. N-Acetyl-β-D-glucosaminidase activity in feral Carcinus maenas exposed to cadmium.

    PubMed

    Mesquita, Sofia Raquel; Ergen, Şeyda Fikirdeşici; Rodrigues, Aurélie Pinto; Oliva-Teles, M Teresa; Delerue-Matos, Cristina; Guimarães, Laura

    2015-02-01

    Cadmium is a priority hazardous substance, persistent in the aquatic environment, with the capacity to interfere with crustacean moulting. Moulting is a vital process dictating crustacean growth, reproduction and metamorphosis. However, for many organisms, moult disruption is difficult to evaluate in the short term, what limits its inclusion in monitoring programmes. N-acetyl-β-D-glucosaminidase (NAGase) is an enzyme acting in the final steps of the endocrine-regulated moulting cascade, allowing for the cast off of the old exoskeleton, with potential interest as a biomarker of moult disruption. This study investigated responses to waterborne cadmium of NAGase activity of Carcinus maenas originating from estuaries with different histories of anthropogenic contamination: a low impacted and a moderately polluted one. Crabs from both sites were individually exposed for seven days to cadmium concentrations ranging from 1.3 to 2000 μg/L. At the end of the assays, NAGase activity was assessed in the epidermis and digestive gland. Detoxification, antioxidant, energy production, and oxidative stress biomarkers implicated in cadmium metabolism and tolerance were also assessed to better understand differential NAGase responses: activity of glutathione S-transferases (GST), glutathione peroxidase (GPx) glutathione reductase (GR), levels of total glutathiones (TG), lipid peroxidation (LPO), lactate dehydrogenase (LDH), and NADP(+)-dependent isocitrate dehydrogenase (IDH). Animals from the moderately polluted estuary had lower NAGase activity both in the epidermis and digestive gland than in the low impacted site. NAGase activity in the epidermis and digestive gland of C. maenas from both estuaries was sensitive to cadmium exposure suggesting its usefulness for inclusion in monitoring programmes. However, in the digestive gland NAGase inhibition was found in crabs from the less impacted site but not in those from the moderately contaminated one. Altered glutathione levels were

  16. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis.

    PubMed

    Garrido, Daniel; Ruiz-Moyano, Santiago; Mills, David A

    2012-08-01

    Human milk contains high amounts of complex oligosaccharides, which can be utilized especially by Bifidobacterium species in the infant gut as a carbon and energy source. N-acetyl-D-glucosamine is a building block of these oligosaccharides, and molecular details on the release and utilization of this monosaccharide are not fully understood. In this work we have studied some of the enzymatic properties of three N-acetyl-β-D-hexosaminidases encoded by the genome of the intestinal isolate Bifidobacterium longum subsp. infantis ATCC 15697 and the gene expression of the corresponding genes during bacterial growth on human milk oligosaccharides. These enzymes belong to the glycosyl hydrolase family 20, with several homologs in bifidobacteria. Their optimum pH was 5.0 and optimum temperature was 37 °C. The three enzymes were active on the GlcNAcβ1-3 linkage found in lacto-N-tetraose, the most abundant human milk oligosaccharide. Blon_0459 and Blon_0732, but not Blon_2355, cleaved branched GlcNAcβ1-6 linkages found in lacto-N-hexaose, another oligosaccharide abundant in breast milk. Bifidobacterium infantis N-acetyl-β-D-hexosaminidases were induced during early growth in vitro on human milk oligosaccharides, and also during growth on lacto-N-tetraose or lacto-N-neotetraose. The up-regulation of enzymes that convert this monosaccharide into UDP-N-acetylglucosamine by human milk oligosaccharides suggested that this activated sugar is used in peptidoglycan biosynthesis. These results emphasize the complexity of human milk oligosaccharide consumption by this infant intestinal isolate, and provide new clues into this process.

  17. Crystal structure of product-bound complex of UDP-N-acetyl-D-mannosamine dehydrogenase from Pyrococcus horikoshii OT3

    SciTech Connect

    Pampa, K.J.; Lokanath, N.K.; Girish, T.U.; Kunishima, N.; Rai, V.R.

    2014-10-24

    Highlights: • Determined the structure of UDP-D-ManNAcADH to a resolution of 1.55 Å. • First complex structure of PhUDP-D-ManNAcADH with UDP-D-ManMAcA. • The monomeric structure consists of three distinct domains. • Cys258 acting as catalytic nucleophilic and Lys204 acts as acid/base catalyst. • Oligomeric state plays an important role for the catalytic function. - Abstract: UDP-N-acetyl-D-mannosamine dehydrogenase (UDP-D-ManNAcDH) belongs to UDP-glucose/GDP-mannose dehydrogenase family and catalyzes Uridine-diphospho-N-acetyl-D-mannosamine (UDP-D-ManNAc) to Uridine-diphospho-N-acetyl-D-mannosaminuronic acid (UDP-D-ManNAcA) through twofold oxidation of NAD{sup +}. In order to reveal the structural features of the Pyrococcus horikoshii UDP-D-ManNAcADH, we have determined the crystal structure of the product-bound enzyme by X-ray diffraction to resolution of 1.55 Å. The protomer folds into three distinct domains; nucleotide binding domain (NBD), substrate binding domain (SBD) and oligomerization domain (OD, involved in the dimerization). The clear electron density of the UDP-D-ManNAcA is observed and the residues binding are identified for the first time. Crystal structures reveal a tight dimeric polymer chains with product-bound in all the structures. The catalytic residues Cys258 and Lys204 are conserved. The Cys258 acts as catalytic nucleophile and Lys204 as acid/base catalyst. The product is directly interacts with residues Arg211, Thr249, Arg244, Gly255, Arg289, Lys319 and Arg398. In addition, the structural parameters responsible for thermostability and oligomerization of the three dimensional structure are analyzed.

  18. Recognition of chitooligosaccharides and their N-acetyl groups by putative subsites of chitin deacetylase from a deuteromycete, Colletotrichum lindemuthianum.

    PubMed

    Tokuyasu, K; Mitsutomi, M; Yamaguchi, I; Hayashi, K; Mori, Y

    2000-08-01

    The reaction pattern of an extracellular chitin deacetylase from a Deuteromycete, Colletotrichum lindemuthianum ATCC 56676, was investigated by use of chitooligosaccharides [(GlcNAc)(n)(), n = 3-6] and partially N-deacetylated chitooligosaccharides as substrates. When 0.5% of (GlcNAc)(n)() was deacetylated, the corresponding monodeacetylated products were initially detected without any processivity, suggesting the involvement of a multiple-chain mechanism for the deacetylation reaction. The structural analysis of these first-step products indicated that the chitin deacetylase strongly recognizes a sequence of four N-acetyl-D-glucosamine (GlcNAc) residues of the substrate (the subsites for the four GlcNAc residues are defined as -2, -1, 0, and +1, respectively, from the nonreducing end to the reducing end), and the N-acetyl group in the GlcNAc residue positioned at subsite 0 is exclusively deacetylated. When substrates of a low concentration (100 microM) were deacetylated, the initial deacetylation rate for (GlcNAc)(4) was comparable to that of (GlcNAc)(5), while deacetylation of (GlcNAc)(3) could not be detected. Reaction rate analyses of partially N-deacetylated chitooligosaccharides suggested that subsite -2 strongly recognizes the N-acetyl group of the GlcNAc residue of the substrate, while the deacetylation rate was not affected when either subsite -1 or +1 was occupied with a D-glucosamine residue instead of GlcNAc residue. Thus, the reaction pattern of the chitin deacetylase is completely distinct from that of a Zygomycete, Mucor rouxii, which produces a chitin deacetylase for accumulation of chitosan in its cell wall.

  19. Effects of bucillamine and N-acetyl-l-cysteine on cytokine production and collagen-induced arthritis (CIA)

    PubMed Central

    Tsuji, F; Miyake, Y; Aono, H; Kawashima, Y; Mita, S

    1999-01-01

    We investigated the effects of bucillamine and N-acetyl-l-cysteine (NAC) on cytokine production and CIA. Bucillamine and NAC inhibited NF-κB activation and tumour necrosis factor-alpha (TNF-α) mRNA expression in human monocytic leukaemia cell line THP-1, and cytokine production from monocyte cell lines at concentrations >10−3 m. They also inhibited cytokine production and CIA in mice at a dose of 500 mg/kg. These results suggest that NF-κB inhibitors such as bucillamine and NAC may inhibit cytokine-related diseases, including arthritis. PMID:9933417

  20. Qualitative Differences in the N-Acetyl-D-galactosaminyltransferases Produced by Human A1 and A2 Genes

    PubMed Central

    Schachter, H.; Michaels, M. A.; Tilley, Christine A.; Crookston, Marie C.; Crookston, J. H.

    1973-01-01

    This study describes the kinetic properties of N-acetyl-D-galactosaminyltransferase in serum from subjects with blood groups A1 and A2. When the A1 and A2 enzymes were compared, with lacto-N-fucopentaose I and 2′-fucosyllactose as acceptors, the enzymes differed in their cation requirements, pH optima, and Km values. The two acceptors competed for the same transferase. Mixing experiments showed that the lower activity of the A2 enzyme could not be attributed to a modifier or inhibitor in serum. It was concluded that the A1 and A2 enzymes differ qualitatively. PMID:4509655

  1. Impact of 30-Day Oral Dosing With N-Acetyl-L-Cysteine on Sprague-Dawley Rat Physiology

    DTIC Science & Technology

    2004-07-01

    A number of studies have demonstrated a protective effect associated with N- acetyl -L- cysteine ( NAC ) against toxic chemical exposure. However, the...impact of long-term oral dosing on tssue pathology has not been determined. In this study, we assessed the impact of long-term oral NAC administration on...SD rats (10 male, 10 female), 8 weeks of age, were dosed daily by oral gavage with deionized H2O (negative controls) or NAC solution at a rate of 600

  2. Simultaneous measurement of N-Acetyl-S-(2-cyanoethyl)-cysteine and N-acetyl-S-(2-hydroxyethyl)-cysteine in human urine by liquid chromatography-tandem mass spectrometry.

    PubMed

    Xiaotao, Zhang; Hongwei, Hou; Wei, Xiong; Qingyuan, Hu

    2014-08-01

    Acrylonitrile, possibly carcinogenic to humans, is mainly present in tobacco smoke and undergoes metabolism to form N-acetyl-S-(2-cyanoethyl)-cysteine (CEMA) and N-acetyl-S-(2-hydroxyethyl)-cysteine (HEMA). A method based on the direct dilution to simultaneously identify and quantify CEMA and HEMA in human urine by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry (RRLC-MS-MS) was validated for assessing smoking-related acrylonitrile exposure. The recovery rates of the whole analytical procedure were 98.2-106.0% and 97.1-112.7% for HEMA and CEMA, respectively. The linear range of standard solutions was 0.5-100.0 ng/mL for CEMA and was 0.2-40.0 ng/mL for HEMA. RRLC using a small particle size column was combined with a tandem mass spectrometry system, which lowered the detection limit of analytes, reduced the ion suppression of mass and shortened the analysis time. The proposed method was successfully applied for the analysis of 126 urine samples from smokers and nonsmokers.

  3. Identification of an extended N-acetylated sequence adjacent to the protein-linkage region of fibroblast heparan sulphate.

    PubMed Central

    Lyon, M; Steward, W P; Hampson, I N; Gallagher, J T

    1987-01-01

    The distribution of N-sulphate groups within fibroblast heparan sulphate chains was investigated. The detergent-extractable heparan sulphate proteoglycan from adult human skin fibroblasts, radiolabelled with [3H]glucosamine and [35S]sulphate, was coupled to CNBr-activated Sepharose 4B. After partial depolymerization of the heparan sulphate with nitrous acid, the remaining Sepharose-bound fragments were removed by treatment with alkali. These fragments, of various sizes, but all containing an intact reducing xylose residue, were fractionated on Sephacryl S-300 and the distribution of the 3H and 35S radiolabels was analysed. A decreased degree of sulphation was observed towards the reducing termini of the chains. After complete nitrous acid hydrolysis of the Sepharose-bound proteoglycan, analysis of the proximity of N-sulphation to the reducing end revealed the existence of an extended N-acetylated sequence directly adjacent to the protein-linkage sequence. The size of this N-acetylated domain was estimated by gel filtration to be approximately eight disaccharide units. This domain appears to be highly conserved, being present in virtually all the chains derived from this proteoglycan, implying the existence of a mechanism capable of generating such a non-random sequence during the post-polymeric modification of heparan sulphate. Comparison with the corresponding situation in heparin suggests that different mechanisms regulate polymer N-sulphation in the vicinity of the protein-linkage region of these chemically related glycosaminoglycans. PMID:2954540

  4. Modulatory effects of curcumin and green tea extract against experimentally induced pulmonary fibrosis: a comparison with N-acetyl cysteine.

    PubMed

    Hamdy, Mohammed Ahmed; El-Maraghy, Shohda A; Kortam, Mona Abd El Aziz

    2012-11-01

    The study was aimed to investigate the protective effect of green tea extract (GTE), curcumin, and N-acetyl cysteine (NAC) on experimentally induced pulmonary fibrosis. Curcumin (200 mg/kg b.w), GTE (150 mg/kg b.w), and NAC (490 mg/kg b.w) were administered orally for 14 days with concomitant administration of cyclophosphamide (CP). Lung fibrosis was assessed by measuring hydroxyproline and elastin levels and confirmed by histopathological examination. Oxidative stress was also observed in the CP group. Lung myeloperoxidase activity was significantly decreased in animals of the CP group. N-acetyl-β-d-glucosaminidase, leukotriene C₄, and protein were increased in bronchoalveolar lavage fluid (BALF). Transforming growth factor-β, interleukin -1β, and histamine were increased in both serum and BALF. All modulators markedly attenuated the altered biochemical parameters as compared to CP-treated rats. These results suggest the possibility of using these treatments as protective agents with chemotherapy and as protective agents for lung fibrosis.

  5. Improved expression, purification and crystallization of a putative N-acetyl-γ-glutamyl-phosphate reductase from rice (Oryza sativa)

    SciTech Connect

    Miura-Ohnuma, Jun; Nonaka, Tsuyoshi; Katoh, Shizue; Murata, Katsuyoshi; Kita, Akiko; Miki, Kunio

    2005-12-01

    Crystals of OsAGPR were obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å. N-Acetyl-γ-glutamyl-phosphate reductase (AGPR) catalyzes the third step in an eight-step arginine-biosynthetic pathway that starts with glutamate. This enzyme converts N-acetyl-γ-glutamyl phosphate to N-acetylglutamate-γ-semialdehyde by an NADPH-dependent reductive dephosphorylation. AGPR from Oryza sativa (OsAGPR) was expressed in Escherichia coli at 291 K as a soluble fusion protein with an upstream thioredoxin-hexahistidine [Trx-(His){sub 6}] extension. OsAGPR(Ala50–Pro366) was purified and crystals were obtained using the sitting-drop vapour-diffusion method at 293 K and diffract X-rays to at least 1.8 Å resolution. They belong to the hexagonal space group P6{sub 1}, with unit-cell parameters a = 86.11, c = 316.3 Å.

  6. Affinity Separation of Lectins Using Porous Membranes Immobilized with Glycopolymer Brushes Containing Mannose or N-Acetyl-d-Glucosamine

    PubMed Central

    Ogata, Yutaro; Seto, Hirokazu; Murakami, Tatsuya; Hoshino, Yu; Miura, Yoshiko

    2013-01-01

    Porous membranes with glycopolymer brushes were prepared as biomaterials for affinity separation. Glycopolymer brushes contained acrylic acid and D-mannose or N-acetyl-D-glucosamine, and were formed on substrates by surface-initiated atom transfer radical polymerization. The presence of glycopolymer brush was confirmed by X-ray photoelectron spectroscopy, contact angle, and ellipsometry measurements. The interaction between lectin and the glycopolymer immobilized on glass slides was confirmed using fluorescent-labeled proteins. Glycopolymer-immobilized surfaces exhibited specific adsorption of the corresponding lectin, compared with bovine serum albumin. Lectins were continuously rejected by the glycopolymer-immobilized membranes. When the protein solution was permeated through the glycopolymer-immobilized membrane, bovine serum albumin was not adsorbed on the membrane surface. In contrast, concanavalin A and wheat germ agglutinin were rejected by membranes incorporating D-mannose or N-acetyl-D-glucosamine, respectively. The amounts of adsorbed concanavalin A and wheat germ agglutinin was increased five- and two-fold that of adsorbed bovine serum albumin, respectively. PMID:24956944

  7. Identifying dominant conformations of N-acetyl-L-cysteine methyl ester and N-acetyl-L-cysteine in water: VCD signatures of the amide I and the Cdbnd O stretching bands

    NASA Astrophysics Data System (ADS)

    Poopari, Mohammad Reza; Dezhahang, Zahra; Xu, Yunjie

    2015-02-01

    Infrared (IR) and vibrational circular dichroism (VCD) spectra of N-Acetyl-L-Cysteine Methyl Ester (NALCME) and N-Acetyl-L-Cysteine (NALC) in D2O under different pHs were measured. We focus on the VCD signatures of the amide I and the Cdbnd O stretching spectral signatures of the neutral NALCME and NALC species and the related ones of the deprotonated NALC species in the region of 1800-1500 cm-1. A sign inversion is observed for the amide I VCD band going from the neutral NALCME and NALC to the deprotonated NALC species. Density functional theory (DFT) calculations were carried out to search for the possible conformations of these three species and to simulate their IR and VCD spectra at the B3LYP/aug-cc-pVTZ level in the gas phase and with the polarization continuum model of water solvent. The most stable conformations found for neutral NALCME and NALC exhibit drastically difference VCD patterns, whereas those of deprotonated NALC show similar patterns. We establish an empirical structural-spectral relationship where the aforementioned VCD signatures can be used as spectral markers to identify dominant conformations of these two amino acid derivatives under different pHs. It is recognized that the dominant conformers identified using the VCD spectral markers differ from those based on the relative DFT energies for neutral NALCME and NALC. The influence of solvent on both the conformational geometries and their relative stabilities is discussed. The aforementioned discrepancy can be attributed to the explicit solute-solvent hydrogen-bonding interactions which are not accounted for in the calculations. The empirical structural-spectral relationship identified can potentially be applied to large, related amino acids and polypeptides in water.

  8. Identifying dominant conformations of N-acetyl-L-cysteine methyl ester and N-acetyl-L-cysteine in water: VCD signatures of the amide I and the C=O stretching bands.

    PubMed

    Poopari, Mohammad Reza; Dezhahang, Zahra; Xu, Yunjie

    2015-02-05

    Infrared (IR) and vibrational circular dichroism (VCD) spectra of N-Acetyl-L-Cysteine Methyl Ester (NALCME) and N-Acetyl-L-Cysteine (NALC) in D2O under different pHs were measured. We focus on the VCD signatures of the amide I and the C=O stretching spectral signatures of the neutral NALCME and NALC species and the related ones of the deprotonated NALC species in the region of 1800-1500 cm(-1). A sign inversion is observed for the amide I VCD band going from the neutral NALCME and NALC to the deprotonated NALC species. Density functional theory (DFT) calculations were carried out to search for the possible conformations of these three species and to simulate their IR and VCD spectra at the B3LYP/aug-cc-pVTZ level in the gas phase and with the polarization continuum model of water solvent. The most stable conformations found for neutral NALCME and NALC exhibit drastically difference VCD patterns, whereas those of deprotonated NALC show similar patterns. We establish an empirical structural-spectral relationship where the aforementioned VCD signatures can be used as spectral markers to identify dominant conformations of these two amino acid derivatives under different pHs. It is recognized that the dominant conformers identified using the VCD spectral markers differ from those based on the relative DFT energies for neutral NALCME and NALC. The influence of solvent on both the conformational geometries and their relative stabilities is discussed. The aforementioned discrepancy can be attributed to the explicit solute-solvent hydrogen-bonding interactions which are not accounted for in the calculations. The empirical structural-spectral relationship identified can potentially be applied to large, related amino acids and polypeptides in water.

  9. Structures of the N-acetyltransferase domain of Xylella fastidiosa N-acetyl-L-glutamate synthase/kinase with and without a His tag bound to N-acetyl-L-glutamate.

    PubMed

    Zhao, Gengxiang; Jin, Zhongmin; Allewell, Norma M; Tuchman, Mendel; Shi, Dashuang

    2015-01-01

    Structures of the catalytic N-acetyltransferase (NAT) domain of the bifunctional N-acetyl-L-glutamate synthase/kinase (NAGS/K) from Xylella fastidiosa bound to N-acetyl-L-glutamate (NAG) with and without an N-terminal His tag have been solved and refined at 1.7 and 1.4 Å resolution, respectively. The NAT domain with an N-terminal His tag crystallized in space group P4(1)2(1)2, with unit-cell parameters a=b=51.72, c=242.31 Å. Two subunits form a molecular dimer in the asymmetric unit, which contains ∼41% solvent. The NAT domain without an N-terminal His tag crystallized in space group P21, with unit-cell parameters a=63.48, b=122.34, c=75.88 Å, β=107.6°. Eight subunits, which form four molecular dimers, were identified in the asymmetric unit, which contains ∼38% solvent. The structures with and without the N-terminal His tag provide an opportunity to evaluate how the His tag affects structure and function. Furthermore, multiple subunits in different packing environments allow an assessment of the plasticity of the NAG binding site, which might be relevant to substrate binding and product release. The dimeric structure of the X. fastidiosa N-acetytransferase (xfNAT) domain is very similar to that of human N-acetyltransferase (hNAT), reinforcing the notion that mammalian NAGS is evolutionally derived from bifunctional bacterial NAGS/K.

  10. Amodiaquine-induced toxicity in isolated rat hepatocytes and the cytoprotective effects of taurine and/or N-acetyl cysteine

    PubMed Central

    Heidari, R.; Babaei, H.; Eghbal, M.A.

    2014-01-01

    Amodiaquine is an antimalarial drug used in the prophylaxis and treatment of this disease. However, hepatotoxicity as a life-threatening adverse effect is associated with its clinical use. We evaluated amodiaquine-induced toxicity in isolated rat hepatocytes as an in vitro model for studying drug-induced hepatotoxicity. This study attempts to investigate the protective effects of taurine and N-acetyl cysteine against the cytotoxicity induced by amodiaquine. Hepatocytes were prepared by the method of collagenase enzyme perfusion via portal vein. This technique is based on liver perfusion with collagenase after removal of calcium ion (Ca2+) with a chelator (ethylene glycol tetraacetic acid (EGTA) 0.5 mM). Cells were treated with different concentrations of amodiaquine, taurine and N-acetyl cysteine. Cell death, protein carbonylation, reactive oxygen species formation, lipid peroxidation, and mitochondrial depolarization were assessed as toxicity markers. Amodiaquine cytotoxic mechanism involved protein carbonylation as well as reactive oxygen species formation and lipid peroxidation. In addition, mitochondria seem to be a target for amodiaquine to induce cellular damage. Administration of taurine (200 μM) and/or N-acetyl cysteine (200 μM) reduced oxidative stress, lipid peroxidation and protein carbonylation caused by amodiaquine. Furthermore, amodiaquine-induced mitochondrial injury was significantly mitigated by taurine and/or N-acetyl cysteine. In glutathione-depleted cells, only N-acetyl cysteine protected hepatocytes against amodiaquine, and taurine showed no protective properties in this situation. Taurine and N-acetyl cysteine protect hepatocytes against amodiaquine probably via their antioxidant properties and counteracting oxidative stress. PMID:25657778

  11. Effect of N-acetyl-cysteine on liposomal and muscle model oxidation induced by reactive oxygen, nitrogen, and sulfur.

    PubMed

    Brannan, Robert G

    2011-08-01

    N-acetyl-cysteine (NAC), a naturally occurring thiol, is found in some fruits and vegetables, sometimes in concentrations higher than glutathione. The objective of this research was to determine the antioxidative effect of NAC in liposomal and muscle models challenged by different oxidizing systems, three that produce reactive oxygen species, two that produce reactive nitrogen species, and two that produce reactive sulfur. The antioxidative effect of cysteine and NAC was compared in the liposomes and NAC and BHT were compared in the muscle homogenates. Lipid hydroperoxides (LOOH), TBARS, and sulfydryls (protein and non-protein) were analyzed. Results indicated that NAC is a more effective inhibitor of lipid oxidation in systems induced by free radicals and reactive nitrogen than those that are induced by peroxides. NAC appears to be at least mildly antioxidative in both liposomal and muscle models, although it did not completely inhibit oxidation in liposomes and generally was not as effective as BHT in the muscle models.

  12. N-Acetyl-L-Cystein downregulates beta-amyloid precursor protein gene transcription in human neuroblastoma cells.

    PubMed

    Studer, R; Baysang, G; Brack, C

    2001-01-01

    The causes for the sporadic form of Alzheimer's disease (AD) are still poorly understood, except from the fact that age is an important risk factor. The main component of the characteristic amyloid plaques in brains of AD patients are Abeta peptides, derivatives of the amyloid precursor protein APP. Oxidative stress may contribute to the aetiology of AD by dysregulation of APP metabolism. Overexpression of the APP gene could result in an increased secretion of neurotoxic Abeta peptides, while preventing the overexpression might be protective. We here report that the antioxidant N-Acetyl-L-Cystein (NAC) downregulates APP gene transcription in human neuroblastoma cells. The effect is reversible when cells are returned to NAC free medium. These results open up new possibilities for the development of therapeutic agents that intervene at the transcriptional level.

  13. Effects of N-acetyl-aspartyl glutamic acid and sodium cromoglycate on leukotriene B4 secretion by human leukocytes.

    PubMed

    Goldschmidt, P L; Vulliez-Le Normand, B; Briquet, I; Dray, F

    1990-07-01

    Peripheral leukocytes from allergic subjects were treated for 30 min with sodium cromoglycate (SCG) or with N-acetyl-aspartyl glutamic acid (NAAGA) and challenged for leukotriene B4 (LTB4) production with calcium ionophore A 23187. NAAGA significantly inhibits LTB4 release at concentrations of 10(-2) M (-86%), 5 x 10(-3) M (-49%) and 10(-3) M (-34%), while SCG was not able to block LTB4 production within the range of 10(-2)-10(-4) M. In spite of the fact that SCG and NAAGA are chemically unrelated and that both show antiallergic properties, only NAAGA is able in this model to block production of LTB4, a chemical mediator strongly involved in inflammatory and hypersensitivity reactions.

  14. [Effect of carnosine and its N-acetyl derivative on the stability of erythrocytes in patients with alcoholism during abstinence].

    PubMed

    Prokop'eva, V D; Bohan, N A; Johnson, P; Boldyrev, A A

    1998-01-01

    The effects of carnosine, a natural dipeptide, and its derivative, N- acetyl-carnosine (Ac-carnosine), on the stability and shape of red blood cells obtained from abstinent alcoholics was studied. In the presence of both carnosine and Ac-carnosine, the erythrocytes of abstinent alcoholics show a statistically significant increase in their ability to resist acidic hemolysis. Investigations of microscope pictures also show that carnosine and Ac-carnosine have beneficial effects on the pathological state of abstinent alcoholic erythrocytes. The addition of carnosine and Ac-carnosine resulted in the normalization of cell morphology (in 12 and 17 out of 30 cases, respectively). These results may be due to the stabilizing and regenerating ability of these compounds on alcoholic erythrocytes.

  15. Protective effect of N-acetyl-L-cysteine against disulfiram-induced oxidative stress and apoptosis in V79 cells

    SciTech Connect

    Grosicka-Maciag, Emilia; Kurpios-Piec, Dagmara; Grzela, Tomasz; Czeczot, Hanna; Skrzycki, Michal; Szumilo, Maria; Rahden-Staron, Iwonna

    2010-11-01

    This work investigated the effect of N-acetyl-L-cysteine (NAC) on disulfiram (DSF) induced oxidative stress in Chinese hamster fibroblast cells (V79). An increase in oxidative stress induced by DSF was observed up to a 200 {mu}M concentration. It was evidenced by a statistically significant increase of both GSH{sub t} and GSSG levels, as well as elevated protein carbonyl (PC) content. There was no increase in lipid peroxidation (measured as TBARS). DSF increased CAT activity, but did not change SOD1 and SOD2 activities. Analysis of GSH related enzymes showed that DSF significantly increased GR activity, did not change Se-dependent GPx, but statistically significantly decreased non-Se-dependent GPx activity. DSF showed also pro-apoptotic activity. NAC alone did not produce any significant changes, besides an increase of GSH{sub t} level, in any of the variables measured. However, pre-treatment of cells with NAC ameliorated DSF-induced changes. NAC pre-treatment restored the viability of DSF-treated cells evaluated by Trypan blue exclusion assay and MTT test, GSSG level, and protein carbonyl content to the control values as well as it reduced pro-apoptotic activity of DSF. The increase of CAT and GR activity was not reversed. Activity of both GPx was significantly increased compared to their values after DSF treatment. In conclusion, oxidative properties are at least partially attributable to the cellular effects of disulfiram and mechanisms induced by NAC pre-treatment may lower or even abolish the observed effects. These observations illustrate the importance of the initial cellular redox state in terms of cell response to disulfiram exposure. -- Research Highlights: {yields}This report explores biological properties of disulfiram under a condition of modulated intra-cellular GSH level. It shows a protective role of N-acetyl-L-cysteine in V79 cells exposed to disulfiram (in GSH metabolism as well as in changes of antioxidant enzyme activity).

  16. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells

    SciTech Connect

    Manzi, A.E.; Sjoberg, E.R.; Diaz, S.; Varki, A.

    1990-08-05

    We and others previously described the melanoma-associated oncofetal glycosphingolipid antigen 9-O-acetyl-GD3, a disialoganglioside O-acetylated at the 9-position of the outer sialic acid residue. We have now developed methods to examine the biosynthesis and turnover of disialogangliosides in cultured melanoma cells and in Golgi-enriched vesicles from these cells. O-Acetylation was selectively expressed on di- and trisialogangliosides, but not on monosialogangliosides, nor on glycoprotein-bound sialic acids. Double-labeling of cells with (3H)acetate and (14C)glucosamine introduced easily detectable labels into each of the components of the ganglioside molecules. Pulse-chase studies of such doubly labeled molecules indicated that the O-acetyl groups turn over faster than the parent molecule. When Golgi-enriched vesicles from these cells were incubated with (acetyl-3H)acetyl-coenzyme A, the major labeled products were disialogangliosides. (Acetyl-3H)O-acetyl groups were found at both the 7- and the 9-positions, indicating that both 7-O-acetyl GD3 and 9-O-acetyl GD3 were synthesized by the action of O-acetyltransferase(s) on endogenous GD3. Analysis of the metabolically labeled molecules confirmed the existence of both 7- and 9-O-acetylated GD3 in the intact cells. Surprisingly, the major 3H-labeled product of the in vitro labeling reaction was not O-acetyl-GD3, but GD3, with the label exclusively in the sialic acid residues. Fragmentation of the labeled sialic acids by enzymatic and chemical methods showed that the 3H-label was exclusively in (3H)N-acetyl groups. Analyses of the double-labeled sialic acids from intact cells also showed that the 3H-label from (3H)acetate was exclusively in the form of (3H)N-acetyl groups, whereas the 14C-label was at the 4-position.

  17. N-Acetyl-Cysteine as Effective and Safe Chelating Agent in Metal-on-Metal Hip-Implanted Patients: Two Cases

    PubMed Central

    Lonati, Davide; Ragghianti, Benedetta; Ronchi, Anna; Vecchio, Sarah; Locatelli, Carlo Alessandro

    2016-01-01

    Systemic toxicity associated with cobalt (Co) and chromium (Cr) containing metal hip alloy may result in neuropathy, cardiomyopathy, and hypothyroidism. However clinical management concerning chelating therapy is still debated in literature. Here are described two metal-on-metal hip-implanted patients in which N-acetyl-cysteine decreased elevated blood metal levels. A 67-year-old male who underwent Co/Cr hip implant in September 2009 referred to our Poison Control Centre for persisting elevated Co/Cr blood levels (from March 2012 to November 2014). After receiving oral high-dose N-acetyl-cysteine, Co/Cr blood concentrations dropped by 86% and 87% of the prechelation levels, respectively, and persisted at these latter concentrations during the following 6 months of follow-up. An 81-year-old female who underwent Co/Cr hip implant in January 2007 referred to our Centre for detection of high Co and Cr blood levels in June 2012. No hip revision was indicated. After a therapy with oral high-dose N-acetyl-cysteine Co/Cr blood concentrations decreased of 45% and 24% of the prechelation levels. Chelating agents reported in hip-implanted patients (EDTA, DMPS, and BAL) are described in few cases. N-acetyl-cysteine may provide chelating sites for metals and in our cases reduced Co and Cr blood levels and resulted well tolerable. PMID:27148463

  18. Formation of the thioester, N-acetyl, S-lactoylcysteine, by reaction of N-acetylcysteine with pyruvaldehyde in aqueous solution. [in prebiotic evolution

    NASA Technical Reports Server (NTRS)

    Weber, A. L.

    1982-01-01

    N-acetylcysteine reacts efficiently with pyruvaldehyde (methylglyoxal) in aqueous solution (pH 7.0) in the presence of a weak base, like imidazole or phosphate, to give the thioester, N-acetyl, S-lactoylcysteine. Reactions of 100 mM N-acetylcysteine with 14 mM, 24 mM and 41 mM pyruvaldehyde yield, respectively, 86%, 76% and 59% N-acetyl, S-lactoylcysteine based on pyruvaldehyde. The decrease in the percent yield at higher pyruvaldehyde concentrations suggests that during its formation the thioester is not only consumed by hydrolysis, but also by reaction with some substance in the pyruvaldehyde preparation. Indeed, purified N-acetyl, S-lactoylcysteine disappears much more rapidly in the presence of pyruvaldehyde than in its absence. Presumably, N-acetyl, S-lactoylcysteine synthesis occurs by rearrangement of the hemithioacetal of N-acetylcysteine and pyruvaldehyde. The significance of this pathway of thioester formation to molecular evolution is discussed.

  19. Fluorescent sensor for selective determination of copper ion based on N-acetyl-L-cysteine capped CdHgSe quantum dots.

    PubMed

    Wang, Qingqing; Yu, Xiangyang; Zhan, Guoqing; Li, Chunya

    2014-04-15

    Using N-acetyl-L-cysteine as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared N-acetyl-L-cysteine capped CdHgSe quantum dots were thoroughly characterized by transmission electron microscopy, X-ray diffraction spectroscopy and FTIR. A fluorescent sensor for selective determination of copper ions was developed using N-acetyl-L-cysteine capped CdHgSe quantum dots as fluorescent probe. The fluorescence intensity of N-acetyl-L-cysteine capped CdHgSe quantum dots decreased when interacted with copper ions due to the formation of coordination complex and aggregates. The method possesses high selectivity and is not influenced by some potential interferences such as Ag(+), Zn(2+), Co(2+) and Ni(2+). Under the optimal conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of copper ions in the range of 1.0×10(-9)-4.0×10(-7) mol L(-1), with a detection limit as low as 2.0×10(-10) mol L(-1) (S/N=3). The developed method had been successfully employed to determine Cu(2+) in shrimp and South-lake water samples, and the results were verified by atomic absorption spectroscopy. The fluorescent sensor was demonstrated to be selective, sensitive and simple for copper ion determination, and promise for practical applications.

  20. Structural Investigation of a Novel N-Acetyl Glucosamine Binding Chi-Lectin Which Reveals Evolutionary Relationship with Class III Chitinases

    PubMed Central

    Patil, Dipak N.; Datta, Manali; Dev, Aditya; Dhindwal, Sonali; Singh, Nirpendra; Dasauni, Pushpanjali; Kundu, Suman; Sharma, Ashwani K.; Tomar, Shailly; Kumar, Pravindra

    2013-01-01

    The glycosyl hydrolase 18 (GH18) family consists of active chitinases as well as chitinase like lectins/proteins (CLPs). The CLPs share significant sequence and structural similarities with active chitinases, however, do not display chitinase activity. Some of these proteins are reported to have specific functions and carbohydrate binding property. In the present study, we report a novel chitinase like lectin (TCLL) from Tamarindus indica. The crystal structures of native TCLL and its complex with N-acetyl glucosamine were determined. Similar to the other CLPs of the GH18 members, TCLL lacks chitinase activity due to mutations of key active site residues. Comparison of TCLL with chitinases and other chitin binding CLPs shows that TCLL has substitution of some chitin binding site residues and more open binding cleft due to major differences in the loop region. Interestingly, the biochemical studies suggest that TCLL is an N-acetyl glucosamine specific chi-lectin, which is further confirmed by the complex structure of TCLL with N-acetyl glucosamine complex. TCLL has two distinct N-acetyl glucosamine binding sites S1 and S2 that contain similar polar residues, although interaction pattern with N-acetyl glucosamine varies extensively among them. Moreover, TCLL structure depicts that how plants utilize existing structural scaffolds ingenuously to attain new functions. To date, this is the first structural investigation of a chi-lectin from plants that explore novel carbohydrate binding sites other than chitin binding groove observed in GH18 family members. Consequently, TCLL structure confers evidence for evolutionary link of lectins with chitinases. PMID:23717482

  1. sup. alpha. N-acetyl derivatives of. beta. -endorphin-(1-31) and -(1-27) regulate the supraspinal antinociceptive activity of different opioids in mice

    SciTech Connect

    Garzon, J.; Sanchez-Blazquez, P. )

    1991-01-01

    {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) injected icv to mice antagonized the analgesic activity of {beta}-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of {sup {alpha}}N-acetyl human {beta}-endorphin(1-31) was partially retained by the shorter peptide {sup {alpha}}N-acetyl human {beta}-endorphin-(1-27) and to a lesser extent by {beta}-endorphin-(1-27), {beta}-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated {beta}-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM ({sup 125}I)-Tyr{sup 27} human {beta}-endorphin-(1-31) specific binding, the first step was abolished with an apparent IC{sub 50} of 0.35 nM, and the rest with an IC{sub 50} of 200 nM. It is suggested that {sup {alpha}}N-acetyl {beta}-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins G{sub i}/G{sub 0}.

  2. Enzymatic characterizations and activity regulations of N-acetyl-β-D-glucosaminidase from the spermary of Nile tilapia (Oreochromis niloticus).

    PubMed

    Zhang, Wei-Ni; Bai, Ding-Ping; Huang, Yi-Fan; Hu, Chong-Wei; Chen, Qing-Xi; Huang, Xiao-Hong

    2014-02-01

    N-Acetyl-β-D-glucosaminidase (NAGase) is proved to be correlated with reproduction of male animals. In this study, enzymatic characterizations of NAGase from spermary of Nile tilapia (Oreochromis niloticus) were investigated in order to further study its reproductive function in fish. Tilapia NAGase was purified to be PAGE homogeneous by the following techniques: (NH4)2SO4 fractionation (40-55%), DEAE-cellulose (DE-32) ion exchange chromatography, Sephadex G-200 gel filtration and DEAE-Sephadex (A-50). The specific activity of the purified enzyme was 4100 U/mg. The enzyme molecular weight was estimated as 118.0 kD. Kinetic studies showed that the hydrolysis of p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-NAG) by the enzyme followed Michaelis-Menten kinetics. The Michaelis-Menten constant (Km) and maximum velocity (Vm) were determined to be 0.67 mM and 23.26 μM/min, respectively. The optimum pH and optimum temperature of the enzyme for hydrolysis of pNP-NAG was to be at pH 5.7 and 55°C, respectively. The enzyme was stable in a pH range from 3.3 to 8.1 at 37°C, and inactive at temperature above 45°C. The enzyme activity was regulated by the following ions in decreasing order: Hg(2+) > Zn(2+) > Cu(2+) > Pb(2+) > Mn(2+). The IC50 of Cu(2+), Zn(2+) and Hg(2+) was 1.23, 0.28, and 0.0027 mM, respectively. However, the ions Li(+), Na(+), K(+), Mg(2+) and Ca(2+) had almost no influence on enzyme activity. In conclusion, the enzymatic characterizations of NAGase from tilapia were special to the other animals, which were correlated with its living habit; besides, CuSO4 and ZnSO4 should used very carefully as insecticides in tilapia cultivation since they both had strong regulations on the enzyme.

  3. Spectrophotometric determination of N-acetyl-L-cysteine and N-(2-mercaptopropionyl)-glycine in pharmaceutical preparations.

    PubMed

    Kukoc-Modun, Lea; Radić, Njegomir

    2011-01-01

    A simple spectrophotometric method for the determination of N-acetyl-L-cysteine (NAC) and N-(2-mercaptopropionyl)glycine (MPG) in pharmaceutical preparations was developed, validated, and used. The proposed equilibrium method is based on a coupled two-step redox and complexation reaction. In the first step, Fe(III) is reduced to Fe(II) by NAC or MPG. Subsequently, Fe(II) is complexed with 2,4,6-tripyridyl-s-triazine (TPTZ). Several analytical parameters of the method were optimized for NAC and MPG analysis in the concentration range from 1.0 μM to 100.0 μM. Regression analysis of the calibration data showed a good correlation coefficient (0.9999). The detection limit of the method was 0.14 μM for NAC and 0.13 μM for MPG. The method was successfully applied to quantify NAC and MPG in pharmaceutical preparations. No interferences were observed from common pharmaceutical excipients.

  4. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  5. Effect of a new de-N-acetyl-lysoglycosphingolipid on chemically-induced inflammatory bowel disease: possible mechanism of action.

    PubMed

    Tubaro, E; Santiangeli, C; Cavallo, G; Belogi, L; Guida, G; Croce, C; Modesti, A

    1993-12-01

    A new, orally active de-N-acetylated lysoglycosphingolipid (WILD20) was evaluated as antiinflammatory agent using a model of chemically-induced inflammatory bowel disease (IBD) in the rat to mimic human ulcerative colitis and Chron's disease. IBD was induced by hapten trinitrobenzenesulphonic acid (TNB). WILD20, orally administered as preventive or curative, was demonstrated to be efficacious at daily dosages of 0.1-1 mg/kg for 4-5 days. Damage scores, body weight, spleen weight, colonic tissular levels of LTB4, myeloperoxidase (MPO) and malondialdehyde (MDA) are influenced and brought into parameters of normality. Histological observation demonstrated quicker healing, better repair, reduced inflammation, and poor eosinophil degranulation. The mechanisms underlying WILD20 antiinflammatory effects were investigated: whereas WILD20 fails to show a direct effect on PKC, it reduces PKC translocation to the membrane; cellular PLA2 was consequently greatly reduced through this mechanism and thought to be responsible for WILD20 efficacy towards chemically-induced IBD.

  6. Spectroscopic investigations on the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots on catalase

    NASA Astrophysics Data System (ADS)

    Sun, Haoyu; Yang, Bingjun; Cui, Erqian; Liu, Rutao

    2014-11-01

    Quantum dots (QDs) are recognized as some of the most promising semiconductor nanocrystals in biomedical applications. However, the potential toxicity of QDs has aroused wide public concern. Catalase (CAT) is a common enzyme in animal and plant tissues. For the potential application of QDs in vivo, it is important to investigate the interaction of QDs with CAT. In this work, the effect of N-Acetyl-L-cysteine-Capped CdTe Quantum Dots with fluorescence emission peak at 612 nm (QDs-612) on CAT was investigated by fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible (UV-vis) absorption and circular dichroism (CD) techniques. Binding of QDs-612 to CAT caused static quenching of the fluorescence, the change of the secondary structure of CAT and the alteration of the microenvironment of tryptophan residues. The association constants K were determined to be K288K = 7.98 × 105 L mol-1 and K298K = 7.21 × 105 L mol-1. The interaction between QDs-612 and CAT was spontaneous with 1:1 stoichiometry approximately. The CAT activity was also inhibited for the bound QDs-612. This work provides direct evidence about enzyme toxicity of QDs-612 to CAT in vitro and establishes a new strategy to investigate the interaction between enzyme and QDs at a molecular level, which is helpful for clarifying the bioactivities of QDs in vivo.

  7. Effects of N-acetyl-L-cysteine on fish hepatoma cells treated with mercury chloride and ionizing radiation.

    PubMed

    Kim, Jin Kyu; Han, Min; Nili, Mohammad

    2011-11-01

    Organisms are exposed to natural radiations from cosmic or terrestrial origins. Furthermore the combined action of radiation with various chemicals is an inevitable feature of modern life. Radiation is known to cause cell death, mainly due to its ability to produce reactive oxygen species in cells. N-acetyl-L-cysteine (NAC) is a well-known sulfhydryl-containing antioxidant whose role in radioprotection has been reported. Synergistic effects of radiation and mercury chloride on human cells was previously reported by the authors. Based on the previous report, this study was designed to assess the synergistic effects of radiation and mercury chloride on fish hepatoma cells, as well as to investigate the protective effects of NAC on the cells. The cytotoxicity of radiation was enhanced in the presence of mercury chloride. NAC in lower concentrations prevented cells from death after irradiation with lower doses (<300 Gy) while it did not prevent cells from radiation-induced death after irradiation with higher doses (300, 500 Gy). The intracellular glutathione (GSH) levels significantly decreased after irradiation while the combined treatment of NAC and radiation alleviated the decrease in the GSH levels. The investigations give a clue for the action mechanism of synergistic or protective effects of NAC on the cells. Due to their high resistance to ionizing radiation, the PLHC-1 cells can be effectively used as a screening tool for assessing the combined effects of radiation with toxic chemicals.

  8. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children.

    PubMed

    Evans, W E; Relling, M V; Petros, W P; Meyer, W H; Mirro, J; Crom, W R

    1989-05-01

    The feasibility and reliability of simultaneously determining debrisoquin oxidation and N-acetylation phenotypes was assessed in children with use of two innocuous substrate probes given by mouth, 30 mg dextromethorphan (Pertussin ES) and 25 to 46 mg caffeine (Coca-Cola beverage). Twenty-six children and adolescents (aged 3 to 21 years) were studied three times, once with each substrate given alone and once with the two substrates given together. Urine was collected for 4 hours, and the molar urinary metabolic ratios for dextromethorphan:dextrorphan and for two caffeine metabolites (AFMU:1X) were determined by HPLC ultraviolet assays. The urinary metabolic ratios for both substrates were not significantly different when the substrates were given alone compared with when they were given together. There also was no difference in either the oxidation or acetylation phenotype assignments when the two substrates were given alone and when they were given together. No adverse effects were observed. We conclude that dextromethorphan and caffeine can be given together to simultaneously determine oxidation and acetylation phenotypes and can thereby provide an innocuous, noninvasive method for the assessment of polymorphic drug metabolism in various pediatric populations.

  9. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery.

    PubMed

    Li, Zhiyuan; Zhang, Liu; Li, Quanshun

    2015-11-01

    Herein, N-acetyl-L-leucine-modified polyethylenimine was successfully constructed through the EDC/NHS-mediated coupling reaction and employed as vectors to accomplish p53 gene delivery using HeLa (p53wt) and PC-3 cells (p53null) as models. Compared with PEI25K, the derivatives exhibited lower cytotoxicity, protein adsorption and hemolytic activity, together with satisfactory pDNA condensation capability and gene transfection efficiency. After p53 transfection, MTT analysis confirmed that the cell proliferation was inhibited. Flow cytometric analysis showed that the derivative-mediated p53 delivery could induce stronger early apoptosis than PEI25K and Lipofectamine(2000). Further, PC-3 cells showed higher sensitivity to the exogenous p53 transfection than HeLa cells. The mechanism for inducing apoptosis was determined to be up-regulation of p53 expression at both mRNA and protein levels using RT-PCR and western blotting analysis. Expression level and activity analysis of caspase-3, -8 and -9, and mitochondrial membrane potential measurement revealed that p53 transfection mediated by these derivatives facilitated early apoptosis of tumor cells via a mitochondria-dependent apoptosis pathway. Thus, the derivatives showed potential as biocompatible carriers for realizing effective tumor gene therapy.

  10. Community shifts of actively growing lake bacteria after N-acetyl-glucosamine addition: improving the BrdU-FACS method.

    PubMed

    Tada, Yuya; Grossart, Hans-Peter

    2014-02-01

    In aquatic environments, community dynamics of bacteria, especially actively growing bacteria (AGB), are tightly linked with dissolved organic matter (DOM) quantity and quality. We analyzed the community dynamics of DNA-synthesizing and accordingly AGB by linking an improved bromodeoxyuridine immunocytochemistry approach with fluorescence-activated cell sorting (BrdU-FACS). FACS-sorted cells of even oligotrophic ecosystems in winter were characterized by 16S rRNA gene analysis. In incubation experiments, we examined community shifts of AGB in response to the addition of N-acetyl-glucosamine (NAG), one of the most abundant aminosugars in aquatic systems. Our improved BrdU-FACS analysis revealed that AGB winter communities of oligotrophic Lake Stechlin (northeastern Germany) substantially differ from those of total bacteria and consist of Alpha-, Beta-, Gamma-, Deltaproteobacteria, Actinobacteria, Candidatus OP10 and Chloroflexi. AGB populations with different BrdU-fluorescence intensities and cell sizes represented different phylotypes suggesting that single-cell growth potential varies at the taxon level. NAG incubation experiments demonstrated that a variety of widespread taxa related to Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Planctomycetes, Spirochaetes, Verrucomicrobia and Chloroflexi actively grow in the presence of NAG. The BrdU-FACS approach enables detailed phylogenetic studies of AGB and, thus, to identify those phylotypes which are potential key players in aquatic DOM cycling.

  11. N-acetyl-cysteine attenuates remifentanil-induced postoperative hyperalgesia via inhibiting matrix metalloproteinase-9 in dorsal root ganglia.

    PubMed

    Liu, Yue; Ni, Yuan; Zhang, Wei; Sun, Yu-E; Ma, Zhengliang; Gu, Xiaoping

    2017-02-09

    Treatment of remifentanil-induced postoperative hyperalgesia (RIH) remains a clinical challenge because the mechanisms are not fully understood. Matrix metalloproteinase-9 (MMP-9) is a key component in neuroinflammation because of its facilitation of pro-inflammatory cytokine maturation. Therefore, inhibition of MMP-9 may represent a novel therapeutic approach to the treatment of RIH. Sprague-Dawley rats were randomly divided into three groups: Control, Incision and Remifentanil. A right plantar surgical incision was performed in Group Incision, and intraoperative remifentanil (0.04 mg/kg, 0.4 ml) was infused subcutaneously for 30 min in Group Remifentanil. The results indicated that intraoperative remifentanil induced an up-regulation and activation of MMP-9 in DRGs but not spinal cords. MMP-9 was expressed primarily in DRG neurons co-expressing mu opioid receptors (MOR), and elicited interleukin-1β (IL-1β) cleavage in DRG neurons and satellite glial cells (SGCs). Intraperitoneal injection of N-acetyl-cysteine (NAC), a broadly used safe drug, significantly attenuated RIH via suppressing the activation of MMP-9 in DRGs. NAC inhibited the cleavage of IL-1β in DRGs, which is a critical substrate of MMP-9, and markedly suppressed glial activation and neuron excitability in spinal dorsal horn induced by remifentanil. These results demonstrated that NAC can effectively alleviate RIH via powerfully inhibiting MMP-9 activation in DRGs.

  12. Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers.

    PubMed

    Lu, Shih-Chin; Lin, Sung-Chyr

    2012-01-05

    Overexpression of recombinant N-acetyl-D-glucosamine 2-epimerase, one of the key enzymes for the synthesis of N-acetylneuraminic acid, in E. coli led to the formation of protein inclusion bodies. In this study we report the recovery of active epimerase from inclusion bodies by direct solubilization with Tris buffer. At pH 7.0, 25% of the inclusion bodies were solubilized with Tris buffer. The specific activity of the solubilized proteins, 2.08±0.02 U/mg, was similar to that of the native protein, 2.13±0.01 U/mg. The result of circular dichroism spectroscopy analysis indicated that the structure of the solubilized epimerase obtained with pH 7.0 Tris buffer was similar to that of the native epimerase purified from the clarified cell lysate. As expected, the extent of deviation in CD spectra increased with buffer pH. The total enzyme activity recovered by solubilization from inclusion bodies, 170.41±10.06 U/l, was more than 2.5 times higher than that from the clarified cell lysate, 67.32±5.53 U/l. The results reported in this study confirm the hypothesis that the aggregation of proteins into inclusion bodies is reversible and suggest that direct solubilization with non-denaturing buffers is a promising approach for the recovery of active proteins from inclusion bodies, especially for aggregation-prone multisubunit proteins.

  13. Chronic treatment with N-acetyl-cystein delays cellular senescence in endothelial cells isolated from a subgroup of atherosclerotic patients.

    PubMed

    Voghel, Guillaume; Thorin-Trescases, Nathalie; Farhat, Nada; Mamarbachi, Aida M; Villeneuve, Louis; Fortier, Annik; Perrault, Louis P; Carrier, Michel; Thorin, Eric

    2008-05-01

    Endothelial senescence may contribute to the pathogenesis of age-related vascular disorders. Furthermore, chronic exposure to risk factors for cardiovascular disease (CVD) accelerates the effects of chronological aging by generating stress-dependent damages, including oxidative stress, therefore promoting stress-induced premature senescence. Our objective was to determine whether a chronic treatment with an antioxidant (N-acetyl-cystein, NAC) could delay senescence of endothelial cells (EC) isolated and cultured from arterial segments of patients with severe coronary artery disease. If EC were considered as one population (n=26), chronic NAC treatment slightly shortened telomere attrition rate associated with senescence but did not significantly delay the onset of endothelial senescence. However, in a subgroup of NAC-treated EC (n=15) cellular senescence was significantly delayed, NAC decreased lipid peroxidation (HNE), activated the catalytic subunit of telomerase (hTERT) and inhibited telomere attrition. In contrast, in another subgroup of EC (n=11) characterized by initial short telomeres, no effect of NAC on HNE and high levels of DNA damages, the antioxidant was not beneficial on senescence, suggesting an irreversible stress-dependent damage. In conclusion, chronic exposure to NAC can delay senescence of diseased EC via hTERT activation and transient telomere stabilization, unless oxidative stress-associated cell damage has become irreversible.

  14. Urinary N-acetyl-beta-D-glucosaminidase and malondialdehyde as a markers of renal damage in burned patients.

    PubMed Central

    Kang, H. K.; Kim, D. K.; Lee, B. H.; Om, A. S.; Hong, J. H.; Koh, H. C.; Lee, C. H.; Shin, I. C.; Kang, J. S.

    2001-01-01

    This study was aimed to evaluate renal dysfunction during three weeks after the burn injuries in 12 patients admitted to the Hallym University Hankang Medical Center with flame burn injuries (total body surface area, 20-40%). Parameters assessed included 24-hr urine volume, blood urea nitrogen, serum creatinine, creatinine clearance, total urinary protein, urinary microalbumin, 24-hr urinary N-acetyl-beta-D-glucosaminidase (NAG) activity, and urinary malondialdehyde (MDA). Statistical analysis was performed using repeated measures ANOVA test. The 24-hr urine volume, creatinine clearance, and urinary protein significantly increased on day 3 post-burn and fell thereafter. The urine microalbumin excretion showed two peak levels on day 0 post-burn and day 3. The 24-hr urinary NAG activity significantly increased to its maximal level on day 7 post-burn and gradually fell thereafter. The urinary MDA progressively increased during 3 weeks after the burn injury. Despite recovery of general renal function through an intensive care of burn injury, renal tubular damage and lipid peroxidation of the renal tissue suggested to persist during three weeks after the burn. Therefore, a close monitoring and intensive management of renal dysfunction is necessary to prevent burn-induced acute renal failure as well as to lower mortality in patients with major burns. PMID:11641529

  15. N-acetyl-cysteine inhibits liver oxidative stress markers in BALB/c mice infected with Leishmania amazonensis

    PubMed Central

    Gasparotto, Juciano; Kunzler, Alice; Senger, Mario Roberto; de Souza, Celeste da Silva Freitas; de Simone, Salvatore Giovanni; Bortolin, Rafael Calixto; Somensi, Nauana; Dal-Pizzol, Felipe; Moreira, José Claudio Fonseca; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva; Silva, Floriano Paes; Gelain, Daniel Pens

    2017-01-01

    BACKGROUND Leishmaniasis is a parasitosis caused by several species of the genus Leishmania. These parasites present high resistance against oxidative stress generated by inflammatory cells. OBJECTIVES To investigate oxidative stress and molecular inflammatory markers in BALB/c mice infected with L. amazonensis and the effect of antioxidant treatment on these parameters. METHODS Four months after infection, oxidative and inflammatory parameters of liver, kidneys, spleen, heart and lungs from BALB/c mice were assessed. FINDINGS In liver, L. amazonensis caused thiol oxidation and nitrotyrosine formation; SOD activity and SOD2 protein content were increased while SOD1 protein content decreased. The content of the cytokines IL-1β, IL-6, TNF-α, and the receptor of advanced glycation endproducts (RAGE) increased in liver. Treatment with the antioxidant N-acetyl-cysteine (20 mg/kg b.w) for five days inhibited oxidative stress parameters. MAIN CONCLUSIONS L. amazonensis induces significant alterations in the redox status of liver but not in other organs. Acute antioxidant treatment alleviates oxidative stress in liver, but it had no effect on pro-inflammatory markers. These results indicate that the pathobiology of leishmaniasis is not restricted to the cutaneous manifestations and open perspectives for the development of new therapeutic approaches to the disease, especially for liver function. PMID:28177049

  16. Facile synthesis of N-acetyl-L-cysteine capped CdHgSe quantum dots and selective determination of hemoglobin.

    PubMed

    Wang, Qingqing; Zhan, Guoqing; Li, Chunya

    2014-01-03

    Using N-acetyl-L-cysteine (NAC) as a stabilizer, well water-dispersed, high-quality and stable CdHgSe quantum dots were facilely synthesized via a simple aqueous phase method. The as-prepared NAC capped CdHgSe quantum dots were thoroughly characterized by fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and transmission electron microscopy. A novel method for the selective determination of hemoglobin (Hb) was developed based on fluorescence quenching of the NAC capped CdHgSe quantum dots. A number of key factors including pH value of phosphate buffer solution, quantum dots concentration, the adding sequence of reagents and reaction time that influence the analytical performance of the NAC capped CdHgSe quantum dots in Hb determination were investigated. Under the optimal experimental conditions, the change of fluorescence intensity (ΔI) was linearly proportional to the concentration of Hb in the range of 4.0×10(-9)-4.4×10(-7) mol L(-1) with a detection limit of 2.0×10(-9) mol L(-1). The developed method has been successfully employed to determine Hb in human urine samples.

  17. N-Acetyl-Serotonin Protects HepG2 Cells from Oxidative Stress Injury Induced by Hydrogen Peroxide

    PubMed Central

    Jiang, Jiying; Yu, Shuna; Jiang, Zhengchen; Liang, Cuihong; Yu, Wenbo; Li, Jin; Du, Xiaodong; Wang, Hailiang; Gao, Xianghong; Wang, Xin

    2014-01-01

    Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity. PMID:25013541

  18. Vibrational Spectroscopy and Gas-Phase Thermochemistry of the Model Dipeptide N-Acetyl Glycine Methyl Amide

    NASA Astrophysics Data System (ADS)

    Leavitt, Christopher; Raston, Paul; Moody, Grant; Shirley, Caitlyne; Douberly, Gary

    2014-06-01

    The structure-function relationship in proteins is widely recognized, motivating numerous investigations of isolated neutral and ionic polypeptides that generally employ conformation specific, multidimensional UV and IR spectroscopies. This data taken in conjunction with computed harmonic frequencies has provided a snapshot of the underlying molecular physics at play in many polypeptides, but few experiments have been able to probe the energetics of these systems. In this study, we use vibrational spectroscopy to measure the gas-phase enthalpy change for isomerization between two conformations of the dipeptide N-acetyl glycine methyl amide (NAGMA). A two-stage oven source is implemented producing a gas-phase equilibrium distribution of NAGMA molecules that is flash frozen upon pickup by He nanodroplets. Using polarization spectroscopy, the IR spectrum is assigned to a mixture of two conformers having intramolecular hydrogen bonds made up of either five- or seven-membered rings, C5 and C7, respectively. The interconversion enthalpy, obtained from the van't Hoff relation, is 4.52{±}0.12 kJ/mol for isomerization from the C7 to the C5-conformer. This experimental measurement is compared to computations employing a broad range of theoretical methods.

  19. Stimulatory effect of N-acetyl Muramyl dipeptide in vivo: proliferation of bone marrow progenitor cells in mice.

    PubMed Central

    Wuest, B; Wachsmuth, E D

    1982-01-01

    The effects of single and multiple injections of N-acetyl muramyl dipeptide (MDP) on peripheral leukocytes, colony-forming cells (i.e., bone marrow granulocyte-macrophage progenitor cells), and the humoral immune response (to bovine serum albumin) were investigated in mice. Whereas low doses of MDP (0.1 to 1 mg/kg) provoked lymphocytosis, larger doses (10 mg/kg upward) resulted in lymphocytopenia and an increase in the number of young stab neutrophils and monocytes. MDP induced a dose-dependent increase in the number of bone-marrow macrophage progenitor cells, the maximum being reached by a dose around 10 mg/kg. A 50% increase in the maximum effect was produced by a dose around 0.1 mg/kg. The higher the dose, the longer the increase in these progenitor cells persisted. MDP mediated a dose-dependent antibody response to small amounts of bovine serum albumin, correlating with the proliferation of progenitor cells. PMID:7118246

  20. Effect of N-acetyl-l-cysteine on insulin resistance caused by prolonged free fatty acid elevation.

    PubMed

    Pereira, Sandra; Shah, Anu; George Fantus, I; Joseph, Jamie W; Giacca, Adria

    2015-04-01

    Circulating free fatty acids (FFAs) are elevated in obesity and cause insulin resistance. The objective of the current study was to determine whether the antioxidant N-acetyl-l-cysteine (NAC) prevented hepatic and peripheral insulin resistance caused by prolonged elevation of plasma FFAs. Chronically cannulated Wistar rats received saline (SAL), Intralipid plus heparin (IH), IH plus NAC, or NAC i.v. infusion for 48 h. Insulin sensitivity was determined using the hyperinsulinemic-euglycemic clamp with tritiated glucose tracer. IH induced hepatic and peripheral insulin resistance (P<0.05). NAC co-infusion did not prevent insulin resistance in the liver, although it was able to prevent peripheral insulin resistance. Prolonged IH infusion did not appear to induce oxidative stress in the liver because hepatic content of protein carbonyl, malondialdehyde, and reduced to oxidized glutathione ratio did not differ across treatment groups. In alignment with our insulin sensitivity results, IH augmented skeletal muscle protein carbonyl content and this was prevented by NAC co-infusion. Taken together, our results indicate that oxidative stress mediates peripheral, but not hepatic, insulin resistance resulting from prolonged plasma FFA elevation. Thus, in states of chronic plasma FFA elevation, such as obesity, antioxidants may protect against peripheral but not hepatic insulin resistance.

  1. N-acetyl-cysteine protects against DNA damage associated with lead toxicity in HepG2 cells.

    PubMed

    Yedjou, Clement G; Tchounwou, Christine K; Haile, Samuel; Edwards, Falicia; Tchounwou, Paul B

    2010-01-01

    Lead toxicity has been associated with its ability to interact and damage DNA. However, its molecular mechanisms of action are not fully understood. In vitro studies in our laboratory indicated that lead nitrate (PbNO3) induces cytotoxicity and oxidative stress to human liver carcinoma (HepG2) cells in a dose-dependent manner. In this research, we hypothesized that n-acetyl-cysteine (NAC), a known antioxidant compound, affords protection against lead-induced cell death associated with genotoxic damage. To test this hypothesis, HepG2 cells were treated either with a physiologic dose of NAC, NAC plus PbNO3, or PbNO3 alone, followed by incubation in humidified 5% CO2 incubator at 37 degrees C for 48 hr. The cell viability was determined by trypan blue exclusion test. The degree of DNA damage was detected by micro gel electrophoresis (comet) assay. Our results showed that lead exposure induces a substantial cytotoxicity as well as a significant genotoxicity to HepG2 cells. However, co-treatment with a physiologic dose (500 microM) of NAC slightly increases cell viability, and significantly reduced (P < .05) the degree of DNA damage. Hence, NAC treatment may be a promising therapeutic candidate for chemoprevention against lead toxicity, based on its ability to scavenge free radicals.

  2. Influence of the substituent on amide nitrogen atom of N-acetyl tyrosine on interactions with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Mrozek, Justyna; Banecki, Bogdan; Sikorska, Emilia; Skwierawska, Agnieszka; Karolczak, Jerzy; Wiczk, Wiesław

    2008-12-01

    The influence of substituent on amide nitrogen atom on the interactions of N-acetyl tyrosine amides with β-cyclodextrin was studied by means of steady-state and time-resolved fluorescence spectroscopy, 2D 1H NMR, and microcalorimetry. In comparison with AcTyr-OH a primary amide group only in a small degree modified the binding constant with β-CD, regardless of the structure (linear or branched) and the length of n-alkyl substituent which for primary amides (methyl, ethyl, n-propyl, iso-propyl, n-butyl, and sec-butyl), as determined from the microcalorimetric titrations, is in the range from 122 M -1 to 190 M -1, except for t-butyl substituent for which the highest binding constant (over 500 M -1) was determined. Moreover, for a branched substituent binding constants are a little higher in comparison with n-alkyl ones. For secondary amides (di-methyl, di-ethyl, di- n-propyl, di- iso-propyl, and di- iso-butyl) the binding constants are higher (in the range from 270 M -1 to 410 M -1).

  3. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces.

    PubMed

    Olofsson, Ann-Cathrin; Hermansson, Malte; Elwing, Hans

    2003-08-01

    N-Acetyl-L-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.

  4. Protein oxidation under extremely low frequency electric field in guinea pigs. Effect of N-acetyl-L-cysteine treatment.

    PubMed

    Güler, Göknur; Türközer, Zerrin; Ozgur, Elcin; Tomruk, Arin; Seyhan, Nesrin; Karasu, Cimen

    2009-03-01

    Modern age exposes humans to an increasing level of electromagnetic activity in their environment due to overhead power lines and transformers around residential areas. Studies have shown that treatment with antioxidants can suppress the oxidative damage induced by electromagnetic fields in various frequencies of the non-ionizing radiation band. In this study, we detected protein carbonyl content (PCO), advanced oxidation protein products (AOPP) in liver and 3-nitrotyrosine (3-NT) levels in plasma of guinea pigs in order to investigate the effects of N-acetyl-L-cysteine (NAC) administration on oxidative protein damage induced by power frequency electric (E) field (50 Hz, 12 kV/m, 7 days/8 h/day). We also analyzed hepatic hydroxyproline level to study protein synthesis. According to the findings of the present study, no statistically significant changes occurred in PCO, AOPP and 3-NT levels of the guinea pigs that were exposed to the E field with respect to the control group. However, liver hydroxyproline level was significantly diminished in the E field exposure group compared to the control and PCO, hydroxyproline and 3-NT levels changed significantly in the NAC-administrated groups.

  5. Mild to severe lithium-induced nephropathy models and urine N-acetyl-beta-D-glucosaminidase in rats.

    PubMed

    Ida, S; Yokota, M; Ueoka, M; Kiyoi, K; Takiguchi, Y

    2001-10-01

    Long-term treatment with lithium induces functional and/or structural disturbances in the kidneys. However, no procedure has been established for the early diagnosis of lithium intoxication. In this study, we prepared mild to severe lithium-induced nephropathy rat models and examined the usefulness of urine N-acetyl-beta-D-glucosaminidase (NAG) for the early diagnosis of lithium-induced renal insufficiency. Lithium was administered by repeated intraperitoneal injection (1, 2 and 4 mEq/kg/day for 10 days). We also measured the plasma creatinine and paraaminohippuric acid (PAH) clearance, and observed renal histological changes. Lithium pretreatment elevated the plasma creatinine level and decreased PAH clearance in a dose-dependent manner. The NAG level in the lithium 4 mEq/kg group was very high. The levels in the lithium 1 mEq/kg and 2 mEq/kg groups were almost the same and were higher than the control group. A histological examination of the kidney revealed glomerular congestion and/or atrophy and tubular expansion in all of the groups except the control group. These histological changes were dose-dependent. In conclusion, urine NAG may be useful in the early diagnosis of renal side effects caused by lithium therapy. When the urine NAG level becomes high in a patient taking lithium for bipolar disorder, the physician may need to consider lithium-induced renal insufficiency.

  6. Inhibition of sulfur mustard-increased protease activity by niacinamide, N-acetyl-L-cysteine or dexamethasone

    SciTech Connect

    Cowan, F.M.; Broomfield, C.A.; Smith, W.J.

    1991-03-11

    The pathologic mechanism of sulfur mustard-induced skin vesication is as yet undefined. Papirmeister et al. have postulated a biochemical mechanism for sulfur mustard-induced cutaneous injury involving sequelae of DNA alkylation, metabolic disruption resulting in NAD+ depletion and activation of protease. The authors have utilized a chromogenic peptide substrate assay to establish that human peripheral blood lymphocytes exposed 24 hr previously to sulfur mustard exhibited an increase in proteolytic activity. Doses of compounds known to alter the biochemical events associated with sulfur mustard exposure or reduce protease activity were tested in this system for their ability to block the sulfur mustard-induced protease activity. Treatment with niacinamide 1 hr after or with N-acetyl-L-cysteine or dexamethasone 24 hr prior to sulfur mustard exposure resulted in a decrease of 39%, 33% and 42% respectively of sulfur mustard-increased protease activity. These data suggest that therapeutic intervention into the biochemical pathways that culminate in protease activation might serve as an approach to treatment of sulfur mustard-induced pathology.

  7. In vitro effects of N-acetyl cysteine alone and in combination with antibiotics on Prevotella intermedia.

    PubMed

    Moon, Ji-Hoi; Jang, Eun-Young; Shim, Kyu Sang; Lee, Jin-Yong

    2015-05-01

    N-acetyl cysteine (NAC) is an antioxidant that possesses anti-inflammatory activities in tissues. In the field of dentistry, NAC was demonstrated to prevent the expression of LPS-induced inflammatory mediators in phagocytic cells and gingival fibroblasts during the inflammatory process, but the effect of NAC on oral pathogens has been rarely studied. Here, we examined the effect of NAC against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. NAC showed antibacterial activity against the planktonic P. intermedia with MIC value of 3 mg/ml and significantly decreased biofilm formation by the bacterium even at sub MIC. NAC did not affect the antibiotic susceptibility of planktonic P. intermedia, showing indifference (fractional inhibitory concentration index of 0.5-4) results against the bacterium in combination with ampicillin, ciprofloxacin, tetracycline or metronidazole. On the other hand, viability of the pre-established bacterial biofilm exposed to the antibiotics except metronidazole was increased in the presence of NAC. Collectively, NAC may be used for prevention of the biofilm formation by P. intermedia rather than eradication of the pre-established bacterial biofilm. Further studies are required to explore antibacterial and anti-biofilm activity of NAC against mixed population of oral bacteria and its modulatory effect on antibiotics used for oral infectious diseases.

  8. Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin

    PubMed Central

    Khan, Shafaat Y.; Awad, Ezzat M.; Oszwald, Andre; Mayr, Manuel; Yin, Xiaoke; Waltenberger, Birgit; Stuppner, Hermann; Lipovac, Markus; Uhrin, Pavel; Breuss, Johannes M.

    2017-01-01

    Cellular senescence is characterized by a permanent cell-cycle arrest and a pro-inflammatory secretory phenotype, and can be induced by a variety of stimuli, including ionizing radiation, oxidative stress, and inflammation. In endothelial cells, this phenomenon might contribute to vascular disease. Plasma levels of the inflammatory cytokine tumor necrosis factor alpha (TNFα) are increased in age-related and chronic conditions such as atherosclerosis, rheumatoid arthritis, psoriasis, and Crohn’s disease. Although TNFα is a known activator of the central inflammatory mediator NF-κB, and can induce the intracellular generation of reactive oxygen species (ROS), the question whether TNFα can induce senescence has not been answered conclusively. Here, we investigated the effect of prolonged TNFα exposure on the fate of endothelial cells and found that such treatment induced premature senescence. Induction of endothelial senescence was prevented by the anti-oxidant N-acetyl cysteine, as well as by plumericin and PHA-408, inhibitors of the NF-κB pathway. Our results indicated that prolonged TNFα exposure could have detrimental consequences to endothelial cells by causing senescence and, therefore, chronically increased TNFα levels might possibly contribute to the pathology of chronic inflammatory diseases by driving premature endothelial senescence. PMID:28045034

  9. N-Acetylated Proline-Glycine-Proline Accelerates Cutaneous Wound Healing and Neovascularization by Human Endothelial Progenitor Cells

    PubMed Central

    Kwon, Yang Woo; Heo, Soon Chul; Lee, Tae Wook; Park, Gyu Tae; Yoon, Jung Won; Jang, Il Ho; Kim, Seung-Chul; Ko, Hyun-Chang; Ryu, Youngjae; Kang, Hyeona; Ha, Chang Man; Lee, Sang Chul; Kim, Jae Ho

    2017-01-01

    Human endothelial progenitor cells (hEPCs) are promising therapeutic resources for wound repair through stimulating neovascularization. However, the hEPCs-based cell therapy has been hampered by poor engraftment of transplanted cells. In this study, we explored the effects of N-acetylated Proline-Glycine-Proline (Ac-PGP), a degradation product of collagen, on hEPC-mediated cutaneous wound healing and neovascularization. Treatment of hEPCs with Ac-PGP increased migration, proliferation, and tube-forming activity of hEPCs in vitro. Knockdown of CXCR2 expression in hEPCs abrogated the stimulatory effects of Ac-PGP on migration and tube formation. In a cutaneous wound healing model of rats and mice, topical application of Ac-PGP accelerated cutaneous wound healing with promotion of neovascularization. The positive effects of Ac-PGP on wound healing and neovascularization were blocked in CXCR2 knockout mice. In nude mice, the individual application of Ac-PGP treatment or hEPC injection accelerated wound healing by increasing neovascularization. Moreover, the combination of Ac-PGP treatment and hEPC injection further stimulated wound healing and neovascularization. Topical administration of Ac-PGP onto wound bed stimulated migration and engraftment of transplanted hEPCs into cutaneous dermal wounds. Therefore, these results suggest novel applications of Ac-PGP in promoting wound healing and augmenting the therapeutic efficacy of hEPCs. PMID:28230162

  10. Attenuation of rotenone toxicity in SY5Y cells by taurine and N-acetyl cysteine alone or in combination.

    PubMed

    Alkholifi, Faisal K; Albers, David S

    2015-10-05

    There is accumulating evidence that supports the involvement of reactive oxygen species (ROS), mitochondrial dysfunction and inflammation in the pathogenesis of neurodegenerative diseases. Thus, it is plausible that a multi-targeted therapeutic approach may be a more effective strategy to retard or even potentially halt the progression of the disease. Taurine is an organic acid that has a role in the regulation of oxidative stress and promoting mitochondrial normal functions, and N-Acetyl cysteine (NAC) is a well-known anti-oxidant and glutathione precursor. The main purpose of this study was to examine the cytoprotective effects of taurine alone or in combination with NAC against rotenone-induced toxicity in the SH-SY5Y neuroblastoma cell line. Taurine treatment produced a concentration-dependent reduction in rotenone-induced cell death. From this, we tested sub-effective concentrations of taurine in combination with low, sub-effective concentrations of NAC against rotenone toxicity, and found the combined treatment afforded greater cytoprotection than either treatment alone. The combined taurine/NAC treatment also attenuated rotenone-induced reductions in aconitase activity suggesting the cytoprotection afforded by the combined treatment may be associated with anti-oxidative mechanisms. Together, our data suggest that a multi-targeted approach may yield new avenues of research exploring the utility of combining therapeutic agents with different mechanisms of actions at concentrations lower than previously tested and shown to be cytoprotective.

  11. N-acetyl-heparin attenuates acute lung injury caused by acid aspiration mainly by antagonizing histones in mice.

    PubMed

    Zhang, Yanlin; Zhao, Zanmei; Guan, Li; Mao, Lijun; Li, Shuqiang; Guan, Xiaoxu; Chen, Ming; Guo, Lixia; Ding, Lihua; Cong, Cuicui; Wen, Tao; Zhao, Jinyuan

    2014-01-01

    Acute lung injury (ALI) is the leading cause of death in intensive care units. Extracellular histones have recently been recognized to be pivotal inflammatory mediators. Heparin and its derivatives can bind histones through electrostatic interaction. The purpose of this study was to investigate 1) the role of extracellular histones in the pathogenesis of ALI caused by acid aspiration and 2) whether N-acetyl-heparin (NAH) provides more protection than heparin against histones at the high dose. ALI was induced in mice via intratracheal instillation of hydrochloric acid (HCl). Lethality rate, blood gas, myeloperoxidase (MPO) activity, lung edema and pathological changes were used to evaluate the degree of ALI. Heparin/NAH was administered intraperitoneally, twice a day, for 3 days or until death. Acid aspiration caused an obvious increase in extracellular histones. A significant correlation existed between the concentration of HCl aspirated and the circulating histones. Heparin/NAH (10 mg/kg) improved the lethality rate, blood gas, MPO activity, lung edema and pathological score. At a dose of 20 mg/kg, NAH still provided protection, however heparin tended to aggravate the injury due to hemorrhagic complications. The specific interaction between heparin and histones was verified by the binding assay. In summary, high levels of extracellular histones can be pathogenic in ALI caused by acid aspiration. By neutralizing extracellular histones, heparin/NAH can offer similar protection at the moderate doses. At the high dose, NAH provides better protection than heparin.

  12. A 4-deoxy analogue of N-acetyl-D-glucosamine inhibits heparan sulphate expression and growth factor binding in vitro

    SciTech Connect

    Wijk, Xander M.R. van; Oosterhof, Arie; Broek, Sebastiaan A.M.W. van den; Griffioen, Arjan W.; Dam, Gerdy B. ten; Rutjes, Floris P.J.T.; Delft, Floris L. van; Kuppevelt, Toin H. van

    2010-09-10

    Heparan sulphate (HS) is a long, linear polysaccharide, which has a basic backbone of -{beta}1-4GlcA-{alpha}1-4GlcNAc- units. The involvement of HS in many steps of tumourigenesis, including growth and angiogenesis, makes it an appealing target for cancer therapy. To target the biosynthesis of HS by interfering with its chain elongation, a 4-deoxy analogue of N-acetyl-D-glucosamine (4-deoxy-GlcNAc) was synthesized. Using immunocytochemistry and agarose gel electrophoresis it was shown that incubation with the 4-deoxysugar resulted in a dose dependent reduction of HS expression of MV3 melanoma cells, 1 mM resulting in an almost nullified HS expression. The parent sugar GlcNAc had no effect. 4-deoxysugar treated cells were viable and proliferated at the same rate as control cells. Other glycan structures appeared to be only mildly affected, as staining by various lectins was generally not or only modestly inhibited. At 1 mM of the 4-deoxysugar, the capacity of cells to bind the HS-dependent pro-angiogenic growth factors FGF-2 and VEGF was greatly compromised. Using an in vitro angiogenesis assay, 4-deoxysugar treated endothelial cells showed a sharp reduction of FGF-2-induced sprout formation. Combined, these data indicate that an inexpensive, easily synthesized, water-soluble monosaccharide analogue can interfere with HS expression and pro-angiogenic growth factor binding.

  13. Is Aspartate an Excitatory Neurotransmitter?

    PubMed Central

    Herring, Bruce E.; Silm, Katlin

    2015-01-01

    Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission. SIGNIFICANCE STATEMENT It has been proposed that the amino acid aspartate serves as a neurotransmitter. Although aspartate is a selective agonist for NMDA receptors, we find that glutamate alone fully accounts for neurotransmission at excitatory synapses in the hippocampus, excluding a role for aspartate. PMID:26180193

  14. Differential effects of N-acetyl-aspartyl-glutamate on synaptic and extrasynaptic NMDA receptors are subunit- and pH-dependent in the CA1 region of the mouse hippocampus.

    PubMed

    Khacho, Pamela; Wang, Boyang; Ahlskog, Nina; Hristova, Elitza; Bergeron, Richard

    2015-10-01

    Ischemic strokes cause excessive release of glutamate, leading to overactivation of N-methyl-d-aspartate receptors (NMDARs) and excitotoxicity-induced neuronal death. For this reason, inhibition of NMDARs has been a central focus in identifying mechanisms to avert this extensive neuronal damage. N-acetyl-aspartyl-glutamate (NAAG), the most abundant neuropeptide in the brain, is neuroprotective in ischemic conditions in vivo. Despite this evidence, the exact mechanism underlying its neuroprotection, and more specifically its effect on NMDARs, is currently unknown due to conflicting results in the literature. Here, we uncover a pH-dependent subunit-specific action of NAAG on NMDARs. Using whole-cell electrophysiological recordings on acute hippocampal slices from adult mice and on HEK293 cells, we found that NAAG increases synaptic GluN2A-containing NMDAR EPSCs, while effectively decreasing extrasynaptic GluN2B-containing NMDAR EPSCs in physiological pH. Intriguingly, the results of our study further show that in low pH, which is a physiological occurrence during ischemia, NAAG depresses GluN2A-containing NMDAR EPSCs and amplifies its inhibitory effect on GluN2B-containing NMDAR EPSCs, as well as upregulates the surface expression of the GluN2A subunit. Altogether, our data demonstrate that NAAG has differential effects on NMDAR function based on subunit composition and pH. These findings suggest that the role of NAAG as a neuroprotective agent during an ischemic stroke is likely mediated by its ability to reduce NMDAR excitation. The inhibitory effect of NAAG on NMDARs and its enhanced function in acidic conditions make NAAG a prime therapeutic agent for the treatment of ischemic events.

  15. Genetically Epilepsy-Prone Rats Have Increased Brain Regional Activity of an Enzyme Which Liberates Glutamate from N-acetyl-aspartyl-glutamate

    DTIC Science & Technology

    1992-01-01

    genetically epilepsy -prone iats "was 11-26% greater than control in brain regions, including the amygdala, hippocarrpus and cerebellum, as well as the...9 -0 3 Genetically epilepsy -prone rats have increased brain regional activity of an enzyme which liberates glutamate from N-acetyl-aspartyl...in genctically epilepsy -prone rats was 11-~261; greater than control in brain regions. including the amygdala. hippocampus and cerebellum, as well as

  16. Vibrational Signatures of Isomeric Lithiated N-acetyl-D-hexosamines by Gas-Phase Infrared Multiple-Photon Dissociation (IRMPD) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Yanglan; Zhao, Ning; Liu, Jinfeng; Li, Pengfei; Stedwell, Corey N.; Yu, Long; Polfer, Nicolas C.

    2017-03-01

    Three lithiated N-acetyl-D-hexosamine (HexNAc) isomers, N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GalNAc), and N-acetyl-D-mannosamine (ManNAc) are investigated as model monosaccharide derivatives by gas-phase infrared multiple-photon dissociation (IRMPD) spectroscopy. The hydrogen stretching region, which is attributed to OH and NH stretching modes, reveals some distinguishing spectral features of the lithium-adducted complexes that are useful in terms of differentiating these isomers. In order to understand the effect of lithium coordination on saccharide structure, and therefore anomericity, chair configuration, and hydrogen bonding networks, the conformational preferences of lithiated GlcNAc, GalNAc, and ManNAc are studied by comparing the experimental measurements with density functional theory (DFT) calculations. The experimental results of lithiated GlcNAc and GalNAc show a good match to the theoretical spectra of low-energy structures adopting a 4 C 1 chair conformation, consistent with this motif being the dominant conformation in condensed-phase monosaccharides. The epimerization effect upon going to lithiated ManNAc is significant, as in this case the 1 C 4 chair conformers give a more compelling match with the experimental results, consistent with their lower calculated energies. A contrasting computational study of these monosaccharides in their neutral form suggests that the lithium cation coordination with Lewis base oxygens can play a key role in favoring particular structural motifs (e.g., a 4 C 1 versus 1 C 4 ) and disrupting hydrogen bond networks, thus exhibiting specific IR spectral features between these closely related lithium-chelated complexes.

  17. Role of N-acetyl-seryl-aspartyl-lysyl-proline in the antifibrotic and anti-inflammatory effects of the angiotensin-converting enzyme inhibitor captopril in hypertension.

    PubMed

    Peng, Hongmei; Carretero, Oscar A; Liao, Tang-Dong; Peterson, Edward L; Rhaleb, Nour-Eddine

    2007-03-01

    Angiotensin-converting enzyme inhibitors (ACEis) are known to have antifibrotic effects on the heart and kidney in both animal models and humans. N-acetyl-seryl-aspartyl-lysyl-proline is a natural inhibitor of proliferation of hematopoietic stem cells and a natural substrate of ACEi that was reported to prevent cardiac and renal fibrosis in vivo. However, it is not clear whether N-acetyl-seryl-aspartyl-lysyl-proline participates in the antifibrotic effects of ACEi. To clarify this issue, we used a model of aldosterone-salt-induced hypertension in rats treated with the ACEi captopril either alone or combined with an anti-N-acetyl-seryl-aspartyl-lysyl-proline monoclonal antibody. These hypertensive rats had the following: (1) left ventricular and renal hypertrophy, as well as increased collagen deposition in the left ventricular and the kidney; (2) glomerular matrix expansion; and (3) increased ED1-positive cells and enhanced phosphorylated-p42/44 mitogen-activated protein kinase in the left ventricle and kidney. The ACEi alone significantly lowered systolic blood pressure (P=0.008) with no effect on organ hypertrophy; it significantly lowered left ventricular collagen content, and this effect was blocked by the monoclonal antibody as confirmed by the histological data. As expected, the ACEi significantly decreased renal collagen deposition and glomerular matrix expansion, and these effects were attenuated by the monoclonal antibody. Likewise, the ACEi significantly decreased ED1-positive cells and inhibited p42/44 mitogen-activated protein kinase phosphorylation in the left ventricle and kidney, and these effects were blocked by the monoclonal antibody. We concluded that in aldosterone-salt-induced hypertension, the antifibrotic effect of ACEi on the heart and kidney, is partially mediated by N-acetyl-seryl-aspartyl-lysyl-proline, resulting in decreased inflammatory cell infiltration and p42/44 mitogen-activated protein kinase activation.

  18. Vibrational Signatures of Isomeric Lithiated N-acetyl-D-hexosamines by Gas-Phase Infrared Multiple-Photon Dissociation (IRMPD) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Yanglan; Zhao, Ning; Liu, Jinfeng; Li, Pengfei; Stedwell, Corey N.; Yu, Long; Polfer, Nicolas C.

    2017-01-01

    Three lithiated N-acetyl-D-hexosamine (HexNAc) isomers, N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GalNAc), and N-acetyl-D-mannosamine (ManNAc) are investigated as model monosaccharide derivatives by gas-phase infrared multiple-photon dissociation (IRMPD) spectroscopy. The hydrogen stretching region, which is attributed to OH and NH stretching modes, reveals some distinguishing spectral features of the lithium-adducted complexes that are useful in terms of differentiating these isomers. In order to understand the effect of lithium coordination on saccharide structure, and therefore anomericity, chair configuration, and hydrogen bonding networks, the conformational preferences of lithiated GlcNAc, GalNAc, and ManNAc are studied by comparing the experimental measurements with density functional theory (DFT) calculations. The experimental results of lithiated GlcNAc and GalNAc show a good match to the theoretical spectra of low-energy structures adopting a 4 C 1 chair conformation, consistent with this motif being the dominant conformation in condensed-phase monosaccharides. The epimerization effect upon going to lithiated ManNAc is significant, as in this case the 1 C 4 chair conformers give a more compelling match with the experimental results, consistent with their lower calculated energies. A contrasting computational study of these monosaccharides in their neutral form suggests that the lithium cation coordination with Lewis base oxygens can play a key role in favoring particular structural motifs (e.g., a 4 C 1 versus 1 C 4 ) and disrupting hydrogen bond networks, thus exhibiting specific IR spectral features between these closely related lithium-chelated complexes.

  19. Tissue damage in rat ovaries subjected to torsion and detorsion: effects of L-carnitine and N-acetyl cysteine.

    PubMed

    Usta, Ufuk; Inan, Mustafa; Erbas, Hakan; Aydogdu, Nurettin; Oz Puyan, Fulya; Altaner, Semsi

    2008-05-01

    We aimed to evaluate histopathological changes, to detect HIF-1alpha staining intensities and to determine MDA levels in rat ovaries, which were subjected to torsion and detorsion and treated with L -carnitine or N-acetyl cysteine (NAC). Forty-eight prepubertal female Sprague-Dawley rats were divided into five groups (n = 8): 1, control; 2, ischemia; 3, reperfusion; 4, L -carnitine; and 5, NAC groups. In groups 3, 4 and 5, an ischemic period of 3 h was followed by reperfusion for 24 h. In groups 4 and 5, ischemia was performed and either L -carnitine or NAC was infused intraperitoneally 30 min before reperfusion. Ovarian tissues were examined histopathologically; tissue MDA levels and serum IL-6 levels were determined biochemically. HIF-1alpha was applied to all ovaries immunohistochemically. Total tissue damage scores, tissue MDA levels and HIF-1alpha scores, were significantly higher in group 2 (all P < 0.001) than group 4, and group 3 than group 4 (P < 0.001, P = 0.05 and P < 0.001, respectively). They were also significantly higher in group 2 (all P < 0.001) than group 5. When group 3 is compared to group 5, total tissue damage scores and tissue MDA levels were significantly higher in the former (P < 0.01 and P < 0.001, respectively). Serum IL-6 levels were significantly higher in group 2 when compared to groups 1, 4 and 5 (all P < 0.01). The degree of tissue damage of the torsioned ovaries decreased after a reperfusion period of 24 h in the torsioned ovaries. However, ovaries of both L -carnitine and NAC groups showed better recovery than the reperfusion group.

  20. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice

    PubMed Central

    Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G.

    2014-01-01

    Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736

  1. Infrared-induced conformational isomerization and vibrational relaxation dynamics in melatonin and 5-methoxy-N-acetyl tryptophan methyl amide

    NASA Astrophysics Data System (ADS)

    Dian, Brian C.; Florio, Gina M.; Clarkson, Jasper R.; Longarte, Asier; Zwier, Timothy S.

    2004-05-01

    are compared with those for N-acetyl tryptophan methyl amide.

  2. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida#

    PubMed Central

    Huynh, Nhung; Aye, Aye; Li, Yanhong; Yu, Hai; Cao, Hongzhi; Tiwari, Vinod Kumar; Shin, Don-Wook; Chen, Xi; Fisher, Andrew J.

    2013-01-01

    N -Acetylneuraminate lyases (NALs) or sialic acid aldolases catalyze the reversible aldol cleavage of N-acetylneuraminic acid (Neu5Ac, the most common form of sialic acid) to form pyruvate and N-acetyl-D-mannosamine (ManNAc). Although equilibrium favors sialic acid cleavage, these enzymes can be used for high-yield chemoenzymatic synthesis of structurally diverse sialic acids in the presence of excess pyruvate. Engineering these enzymes to synthesize structurally modified natural sialic acids and their non-natural derivatives holds promise in creating novel therapeutic agents. Atomic resolution structures of these enzymes will greatly assist in guiding mutagenic and modeling studies to engineer enzymes with altered substrate specificity. We report here the crystal structures of wild-type Pasteurella multocida N-acetylneuraminate lyase and its K164A mutant. Like other bacterial lyases, it assembles into a homotetramer with each monomer folding into a classic (β/α)8 TIM barrel. Two wild-type structures were determined; in the absence of substrates, and trapped in a Schiff base intermediate between Lys164 and pyruvate, respectively. Three structures of the K164A variant were determined: one in the absence of substrates and two binary complexes with N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), respectively. Both sialic acids bind to the active site in the open-chain ketone form of the monosaccharide. The structures reveal that every hydroxyl group of the linear sugars makes hydrogen bond interactions with the enzyme and the residues that determine specificity were identified. Additionally, the structures lend some clues in explaining the natural discrimination of sialic acid substrates between the P. multocida and E. coli NALs. PMID:24152047

  3. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response.

    PubMed Central

    Mattia, E; Carruba, G; Angiolella, L; Cassone, A

    1982-01-01

    A number of strains of Candida albicans were tested for germ tube formation after induction by N-acetyl-D-glucosamine (GlcNAc) and other simple (proline, glucose plus glutamine) or complex (serum) compounds. A proportion of strains (high responders) were induced to form germ tubes evolving to true hyphae by GlcNAc alone or by proline or glucose plus glutamine mixture. The majority of strains were low responders because they could be induced only by serum or GlcNAc-serum medium. Two strains were found to be nonresponders: they grew as pseudohyphae in serum. Despite minor quantitative differences, all strains efficiently utilized GlcNAc for growth under the yeast form at 28 degrees C. They also had comparable active, inducible, and constitutive uptake systems for GlcNAc. During germ tube formation in GlcNAc, the inducible uptake system was modulated, as expected from induction and decay of GlcNAc kinase. Uranyl acetate, at a concentration of 0.01 mM, inhibited both GlcNAc uptake and germ tube formation and was reversed by phosphates. Germinating and nongerminating cells differed in the rapidity and extent of GlcNAc incorporation into acid-insoluble and alkali-acid-insoluble cell fractions. During germ tube formation induced by proline, GlcNAc was almost totally incorporated into the acid-insoluble fraction after 60 min. Moreover, hyphal development on induction by either GlcNAc or proline was characterized by an apparent "uncoupling" between protein and polysaccharide metabolism, the ratio between the two main cellular constituents falling from more than 1 to less than 0.5 after 270 min of development. The data suggest that utilization of the inducer for wall synthesis is a determinant of germ tube formation C. albicans but that the nature and extent of inducer uptake is not a key event for this phenomenon to occur. PMID:6752114

  4. Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine.

    PubMed

    Matano, Christian; Uhde, Andreas; Youn, Jung-Won; Maeda, Tomoya; Clermont, Lina; Marin, Kay; Krämer, Reinhard; Wendisch, Volker F; Seibold, Gerd M

    2014-06-01

    Sustainable supply of feedstock has become a key issue in process development in microbial biotechnology. The workhorse of industrial amino acid production Corynebacterium glutamicum has been engineered towards utilization of alternative carbon sources. Utilization of the chitin-derived aminosugar N-acetyl-glucosamine (GlcNAc) for both cultivation and production with C. glutamicum has hitherto not been investigated. Albeit this organism harbors the enzymes N-acetylglucosamine-6-phosphatedeacetylase and glucosamine-6P deaminase of GlcNAc metabolism (encoded by nagA and nagB, respectively) growth of C. glutamicum with GlcNAc as substrate was not observed. This was attributed to the lack of a functional system for GlcNAc uptake. Of the 17 type strains of the genus Corynebacterium tested here for their ability to grow with GlcNAc, only Corynebacterium glycinophilum DSM45794 was able to utilize this substrate. Complementation studies with a GlcNAc-uptake deficient Escherichia coli strain revealed that C. glycinophilum possesses a nagE-encoded EII permease for GlcNAc uptake. Heterologous expression of the C. glycinophilum nagE in C. glutamicum indeed enabled uptake of GlcNAc. For efficient GlcNac utilization in C. glutamicum, improved expression of nagE with concurrent overexpression of the endogenous nagA and nagB genes was found to be necessary. Based on this strategy, C. glutamicum strains for the efficient production of the amino acid L-lysine as well as the carotenoid lycopene from GlcNAc as sole substrate were constructed.

  5. Neuroprotective effects of N-acetyl-cysteine and acetyl-L-carnitine after spinal cord injury in adult rats.

    PubMed

    Karalija, Amar; Novikova, Liudmila N; Kingham, Paul J; Wiberg, Mikael; Novikov, Lev N

    2012-01-01

    Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the

  6. N-Acetyl-L-cysteine enhances apoptosis through inhibition of nuclear factor-kappaB in hypoxic murine embryonic fibroblasts.

    PubMed

    Qanungo, Suparna; Wang, Mi; Nieminen, Anna-Liisa

    2004-11-26

    In this study, we investigated the role of reduced glutathione (GSH) and nuclear factor-kappaB (NFkappaB) in hypoxia-induced apoptosis. Hypoxia caused p53-dependent apoptosis in murine embryonic fibroblasts transfected with Ras and E1A. N-Acetyl-l-cysteine (NAC) but not other antioxidants, such as the vitamin E analog trolox and epigallocatechin-3-gallate, enhanced hypoxia-induced caspase-3 activation and apoptosis. NAC also enhanced hypoxia-induced apoptosis in two human cancer cell lines, MIA PaCa-2 pancreatic cancer cells and A549 lung carcinoma cells. In murine embryonic fibroblasts, all three antioxidants blocked hypoxia-induced reactive oxygen species formation. NAC did not enhance hypoxia-induced cytochrome c release but did enhance poly-(ADP ribose) polymerase cleavage, indicating that NAC acted at a post-mitochondrial level. NAC-mediated enhancement of apoptosis was mimicked by incubating cells with GSH monoester, which increased intracellular GSH similarly to NAC. Hypoxia promoted degradation of an inhibitor of kappaB(IkappaBalpha), NFkappaB-p65 translocation into the nucleus, NFkappaB binding to DNA, and subsequent transactivation of NFkappaB, which increased X chromosome-linked inhibitor of apoptosis protein levels. NAC failed to block degradation by IkappaBalpha and sequestration of the p65 subunit of NFkappaB to the nucleus. However, NAC did abrogate hypoxia-induced NFkappaB binding to DNA, NFkappaB-dependent gene expression, and induction of X chromosome-linked inhibitor of apoptosis protein. In conclusion, NAC enhanced hypoxic apoptosis by a mechanism apparently involving GSH-dependent suppression of NFkappaB transactivation.

  7. MRI characterization of cobalt dichloride-N-acetyl cysteine (C4) contrast agent marker for prostate brachytherapy

    NASA Astrophysics Data System (ADS)

    Lim, Tze Yee; Stafford, R. Jason; Kudchadker, Rajat J.; Sankaranarayanapillai, Madhuri; Ibbott, Geoffrey; Rao, Arvind; Martirosyan, Karen S.; Frank, Steven J.

    2014-05-01

    Brachytherapy, a radiotherapy technique for treating prostate cancer, involves the implantation of numerous radioactive seeds into the prostate. While the implanted seeds can be easily identified on a computed tomography image, distinguishing the prostate and surrounding soft tissues is not as straightforward. Magnetic resonance imaging (MRI) offers superior anatomical delineation, but the seeds appear as dark voids and are difficult to identify, thus creating a conundrum. Cobalt dichloride-N-acetyl-cysteine (C4) has previously been shown to be promising as an encapsulated contrast agent marker. We performed spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) measurements of C4 solutions with varying cobalt dichloride concentrations to determine the corresponding relaxivities, r1 and r2. These relaxation parameters were investigated at different field strengths, temperatures and orientations. T1 measurements obtained at 1.5 and 3.0 T, as well as at room and body temperature, showed that r1 is field-independent and temperature-independent. Conversely, the T2 values at 3.0 T were shorter than at 1.5 T, while the T2 values at body temperature were slightly higher than at room temperature. By examining the relaxivities with the C4 vials aligned in three different planes, we found no orientation-dependence. With these relaxation characteristics, we aim to develop pulse sequences that will enhance the C4 signal against prostatic stroma. Ultimately, the use of C4 as a positive contrast agent marker will encourage the use of MRI to obtain an accurate representation of the radiation dose delivered to the prostate and surrounding normal anatomical structures.

  8. N-acetyl-cysteine and prostaglandin. Comparable protection against experimental ethanol injury in the stomach independent of mucus thickness.

    PubMed

    Henagan, J M; Smith, G S; Schmidt, K L; Miller, T A

    1986-12-01

    The role of barrier mucus in mediating the protective effects of 16,16 dimethyl PGE2 (dm PGE2) against ethanol-induced gastric injury, with and without concomitant treatment with N-acetyl-cysteine (NAC), a potent mucolytic agent, was evaluated. Fasted rats were orally administered either saline, 10 micrograms/kg dm PGE2, 20% NAC, or 10 micrograms/kg dm PGE2 plus 20% NAC. In the first study, the rats were killed 15 minutes later and their stomachs were removed and assayed for barrier mucus adherent to the gastric wall using the Alcian blue technique. In the second study, the rats were orally given 2 mL of absolute ethanol (EtOH) after receiving one of these pretreatment regimens, and 5 minutes later they were killed and their stomachs were evaluated histologically by light microscopy for the magnitude of EtOH injury. Although NAC significantly reduced the thickness of barrier mucus by 76% when compared with control animals, it did not adversely affect the ability of dm PGE2 to spare the deep epithelium from injury by EtOH. In fact, NAC was as effective a protective agent as dm PGE2. Neither agent prevented damage to the surface epithelium by EtOH, verifying previous studies regarding the protective effects of prostaglandins. These results indicate that both dm PGE2 and NAC prevent EtOH-induced damage to the deeper layers of the gastric mucosa independent of mucus gel layer thickness, suggesting that other mechanisms than mucus are involved in mediating this protection.

  9. N-Acetyl-L-Cysteine inhibits the development of glucose intolerance and hepatic steatosis in diabetes-prone mice

    PubMed Central

    Falach-Malik, Alona; Rozenfeld, Hava; Chetboun, Moria; Rozenberg, Konstantin; Elyasiyan, Uriel; Sampson, Sanford R; Rosenzweig, Tovit

    2016-01-01

    Oxidative stress is associated with different pathological conditions, including glucose intolerance and type 2 diabetes (T2D), however studies had failed to prove the benefits of antioxidants in T2D. Aim: On the assumption that the failure to demonstrate such anti-diabetic effects is a result of sub-optimal or excessive antioxidant dosage, we aimed to clarify the dose-response effect of the antioxidant N-Acetyl-L-Cysteine (NAC) on the progression of T2D in-vivo. Methods: Experiments were conducted on KK-Ay mice and HFD-fed mice given NAC at different concentrations (200-1800 and 60-600 mg/kg/day, respectively). Glucose and insulin tolerance tests were performed and plasma insulin and lipid peroxidation were measured. Insulin signaling pathway was followed in muscle and liver. Hepatic TG accumulation and mRNA expression of genes involved in glucose metabolism were measured. Results: While 600-1800 mg/kg/day NAC all improved glucose tolerance in KK-Ay mice, only the 1200 mg/kg/day treatment increased insulin sensitivity. Hepatic function was not affected, however; microsteatosis rather than macrosteatosis was observed in NAC-treated mice compared to control. Glucose tolerance was improved in NAC-treated HFD-fed mice as well; the best results obtained with a dose of 400 mg NAC/kg/day. This was followed by lower weight gain and hepatic TG. Plasma lipid peroxidation was not correlated with the glucose-lowering effects of NAC in either model. Conclusion: Identification of the optimal dose of NAC and the population that would benefit the most from such intervention is essential in order to apply preventive and/or therapeutic use of NAC and similar agents in the future. PMID:27725855

  10. Electrochemical sensing of mesalazine and its N-acetylated metabolite in biological samples using functionalized carbon nanotubes.

    PubMed

    Nigović, Biljana; Sadiković, Mirela; Jurić, Sandra

    2016-01-15

    A rapid analytical method without the time-consuming separation step was developed to simultaneously determine mesalazine and its N-acetylated metabolite. A simply designed electrochemical sensor with functionalized carbon nanotubes in a Nafion matrix was constructed for this purpose. The presence of the nanocomposite modifier on the electrode surface significantly affects the voltammetric response of target analytes. The morphology of the modified surface was investigated by scanning electron microscopy. The effect of modifier amount on the sensor performance was investigated in order to obtain the most favorable response of mesalazine since it was found in lower concentration limits in real samples then its metabolite due to the rapid drug elimination and the slightly slower renal metabolite excretion. Under optimal conditions, the anodic peak currents measured by square-wave voltammetry increased linearly after short accumulation of 30s in the range of 5.0×10(-8)-2.5×10(-6)M and 1.0×10(-7)-5.0×10(-6)M for drug and metabolite, respectively. In addition to stable response, the sensor has excellent performance associated with high sensitivity (2.33×10(7) and 8.37×10(6)µAM(-1) for drug and metabolite, respectively). The synergistic effect of the carbon nanotubes and Nafion polymer film yielded detection limit of 1.2×10(-8)M for mesalazine and 2.6×10(-8)M for its metabolite that is comparable to known chromatographic methods. Due to the easy preparation and regeneration, the proposed sensor opens new opportunity for fast, simple and sensitive analysis of drug and its metabolite in human serum samples as well as direct quantification of mesalazine in delayed-release formulations.

  11. Surface modifications in the platelets of a patient with alpha-N-acetyl-D-galactosamine residues, the Tn-syndrome.

    PubMed Central

    Nurden, A T; Dupuis, D; Pidard, D; Kieffer, N; Kunicki, T J; Cartron, J P

    1982-01-01

    The Tn-syndrome is an acquired disorder characterized by the polyagglutination of blood cells and the pathological exposure of alpha-N-acetyl-D-galactosamine residues (Tn-antigen) at the cell surface. We now report studies on the platelet of a patient (Ba.) of which 81% reacted positively with a fluorescein conjugate of Helix pomatia agglutinin (HPA). The surface proteins of Ba. platelets were labeled with 125I by the lactoperoxidase-catalyzed procedure; single and two-dimensional electrophoresis on sodium dodecyl sulfate (SDS)-polyacrylamide gels was followed by autoradiography that revealed normal 125I-labeling of the major membrane glycoproteins (GP) but that GP Ib had a faster than normal migration. the abnormal GP Ib of Ba. platelets was strongly labeled when platelet suspensions were treated sequentially with neuraminidase, galactose oxidase, and sodium [3H]borohydride. Unlike the GP Ib of normal human platelets, it was also strongly labeled when Ba. platelets were treated with galactose oxidase and sodium [3H]borohydride alone. Both the alloantigen, PlA1, and quinidine-dependent antibody receptor activity were normally expressed by Ba. platelets, which also bound a monoclonal antibody (AN51) to GP Ib. Analysis of Ba. platelets by crossed immunoelectrophoresis using a rabbit anti-human platelet antibody preparation revealed the presence of an immunoprecipitate in the GP Ib position that had an abnormal appearance and migration in the second dimension. An altered position of the precipitate given by Factor VIIIR:Ag was also noted. Incorporation of HPA into the agarose gel during the first dimension electrophoresis resulted in the specific precipitation of the abnormal GP Ib of Ba. platelets. Our studies show that circulating Tn-platelets contain GP Ib with a modified oligosaccharide chain structure responsible for the platelet expression of Tn-antigen activity. Images PMID:7174794

  12. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  13. The effect of substitution of the N-acetyl groups of N-acetylgalactosamine residues in chondroitin sulfate on its degradation by chondroitinase ABC.

    PubMed

    Madhunapantula, Subbarao V; Achur, Rajeshwara N; Bhavanandan, Veer P; Gowda, D Channe

    2007-11-01

    Chondroitinase ABC is a lyase that degrades chondroitin sulfate, dermatan sulfate and hyaluronic acid into disaccharides. The purpose of this study was to determine the ability of chondroitinase ABC to degrade chondroitin sulfate in which the N-acetyl groups are substituted with different acyl groups. The bovine tracheal chondroitin sulfate A (bCSA) was N-deacetylated by hydrazinolysis, and the free amino groups derivatized into N-formyl, N-propionyl, N-butyryl, N-hexanoyl or N-benzoyl amides. Treatment of the N-acyl or N-benzoyl derivatives of bCSA with chondroitinase ABC and analysis of the products showed that the N-formyl, N-hexanoyl and N-benzoyl derivatives are completely resistant to the enzyme. In contrast, the N-propionyl or N-butyryl derivatives were degraded into disaccharides with slower kinetics compared to that of unmodified bCSA. The rate of degradation of bCSA derivatives by the enzyme was found to be in the order of N-acetyl>N-propionyl>N-butyryl bCSA. These results have important implications for understanding the interaction of N-acetyl groups of glycosaminoglycans with chondroitinase ABC.

  14. Evaluation of efficacy of vitamin E and N-acetyl cysteine in gentamicin-induced nephrotoxicity in rats.

    PubMed

    Patel Manali, Bhalchandra; Deshpande, Shrikalp; Shah, Gaurang

    2011-01-01

    Gentamicin (GM), an aminoglycoside, is widely employed in clinical practice for the treatment of serious gram-negative infections. The clinical utility of GM is limited by the frequent incidence of acute renal failure. This study was designed to investigate treatment and posttreatment renoprotective potential of vitamin E and N-acetyl cysteine (NAC) against GM-induced oxidative stress and renal dysfunction. Male Sprague-Dawley rats were divided into six groups: first group is the control group that received olive oil (0.1 mL/100 g B.W.), second is the one that was treated with GM (80 mg/kg/i.p./8 days), third is the one that was treated with GM (80 mg/kg/i.p./8 days) and vitamin E (50 mg/kg/i.p./8 days), fourth is the one that was treated with GM (80 mg/kg/i.p./8 days) and NAC (50 mg/kg/i.p./8 days), fifth is the one that was treated with GM (80 mg/kg/i.p./8 days), vitamin E (50 mg/kg/i.p./8 days), and NAC (50 mg/kg/i.p./8 days), and sixth is the one that was treated with GM initially for 8 days (at 80 mg/kg/i.p.) after which vitamin E (at 50 mg/kg/i.p.) and NAC (at 50 mg/kg/i.p.) were administered for 8 days. Serum creatinine, blood urea nitrogen, serum glucose, renal malondialdehyde, renal reduced glutathione, urine sodium, fractional excretion of sodium, and histopathological examination of kidney were performed after treatment. Gentamicin treatment caused nephrotoxicity as evidenced by marked elevation in serum creatinine, blood urea nitrogen, renal malondialdehyde, urine sodium, and fractional excretion of sodium. Study of renal morphology showed marked loss of epithelium in proximal convoluted tubule, inflammatory infiltrate in the form of lymphocytes, mainly in interstitium. Treatment and posttreatment with vitamin E and NAC significantly restored renal functions, reduced lipid peroxidation, enhanced reduced glutathione level, and restored the biochemical parameters. The results of this study demonstrate the therapeutic potential of vitamin E and NAC in

  15. Aloe-emodin inhibited N-acetylation and DNA adduct of 2-aminofluorene and arylamine N-acetyltransferase gene expression in mouse leukemia L 1210 cells.

    PubMed

    Chung, Jing-Gung; Li, Yu-Ching; Lee, Yi-Min; Lin, Jing-Pin; Cheng, Kwork-Chui; Chang, Weng-Cheng

    2003-09-01

    N-Acetyltransferases (NATs) plays an important role in the first step of arylamine compounds metabolism. Polymorphic NAT is coded for rapid or slow acetylatoion phenotypes, which are recognized to affect cancer risk related to environmental exposure. Aloe-emodin has been shown to exit anticancer activity. The purpose of this study is to examine whether or not aloe-emodin could affect arylamine N-acetyltransferase (NAT) activity and gene expression (NAT mRNA) and DNA-2-aminofluorene (DNA-AF) adduct formation in mouse leukemia cells (L 1210). By using high performance liquid chromatography, N-acetylation and non-N-acetylation of AF were determined and quantitated. By using reverse transcriptase-polymerase chain reaction (RT-PCR) and PCR, NAT mRNA was determined and quantitated. Aloe-emodin displayed a dose-dependent inhibition to cytosolic NAT activity and intact mice leukemia cells. Time-course experiments indicated that N-acetylation of AF measured from intact mice leukemia cells were inhibited by aloe-emodin for up to 24h. Using standard steady-state kinetic analysis, it was demonstrated that aloe-emodin was a possible uncompetitive inhibitor to NAT activity in cytosols. The DNA-AF adduct formation in mouse leukemia cells were inhibited by aloe-emodin. The NAT1 mRNA in mouse leukemia cells were also inhibited by aloe-emodin. This report is the first demonstration which showed aloe-emodin affect mice leukemia cells NAT activity, gene expression (NAT1 mRNA) and DNA-AF on adduct formation.

  16. A GC/MS method for the quantitation of N-nitrosoproline and N-acetyl-S-allylcysteine in human urine

    PubMed Central

    Cope, Keary; Seifried, Harold; Seifried, Rebecca; Milner, John; Kris-Etherton, Penny; Harrison, Earl H.

    2009-01-01

    Biomarkers in urine can provide useful information about the bioactivation of chemical carcinogens and can be used to investigate the chemoprotective properties of dietary nutrients. N-nitrosoproline (NPRO) excretion has been used as an index for endogenous nitrosation. In vitro and animal studies have reported that compounds in garlic may suppress nitrosation and inhibit carcinogenesis. We present a new method for extraction and sensitive detection of both NPRO and N-acetyl-S-allylcysteine from urine. The latter is a major metabolite of S-allyl cysteine which is abundant in garlic. Urine was acidified and the organic acids extracted by reversed phase extraction (RP-SPE) and use of a polymeric weak anion exchange (WAX-SPE) resin. NPRO was quantified by isotope dilution gas chromatography-mass spectrometry using 13C5NPRO and N-nitrosopipecolic acid (NPIC) as internal standards. This method was used to analyze urine samples from a study that was designed to test whether garlic supplementation inhibits NPRO synthesis. Using this method, 2.4 to 46 ng of NPRO per mL urine was detected. The method is straightforward, reliable and can be performed with readily available GC/MS instruments. N-acetyl-S-allylcysteine was quantified in the same fraction and detectable at levels of 4.1 to 176.4 ng per mL of urine. The results suggest that 3 to 5 grams of garlic supplements inhibited NPRO synthesis to an extent similar to a 0.5 g dose of ascorbic acid or a commercial supplement of aged garlic extract. Urinary NPRO concentration was inversely associated with the N-acetyl-S-allylcysteine concentration. It is possible that allyl sulfur compounds found in garlic may inhibit nitrosation in humans. . PMID:19643074

  17. Weak hydrogen bonds formed by thiol groups in N-acetyl-(L)-cysteine and their response to the crystal structure distortion on increasing pressure.

    PubMed

    Minkov, Vasily S; Boldyreva, Elena V

    2013-11-21

    The effect of hydrostatic pressure on single crystals of N-acetyl-l-cysteine was followed at multiple pressure points from 10(-4) to 6.2 GPa with a pressure step of 0.2-0.3 GPa by Raman spectroscopy and X-ray diffraction. Since in the crystals of N-acetyl-l-cysteine the thiol group is involved in intermolecular hydrogen bonds not as a donor only (bonds S-H···O) but also as an acceptor (bonds N-H···S), increasing the pressure does not result in phase transitions. This makes a contrast with the polymorphs of l- and dl-cysteine, in which multiple phase transitions are observed already at relatively low hydrostatic pressures and are related to the changes in the conformation of the thiol side chains only weakly bound to the neighboring molecules in the structure and thus easily switching over the weak S-H···O and S-H···S hydrogen bonds. No phase transitions occur in N-acetyl-l-cysteine with increasing pressure, and changes in cell parameters and volume vs pressure do not reveal any peculiar features. Nevertheless, a more detailed analysis of the changes in intermolecular distances, in particular, of the geometric parameters of the hydrogen bonds based on X-ray single crystal diffraction analysis, complemented by an equally detailed study of the positions of all the significant bands in Raman spectra, allowed us to study the fine details of subtle changes in the hydrogen bond network. Thus, as pressure increases, a continuous shift of the hydrogen atom of the thiol group from one acceptor (a carboxyl group) to another acceptor (a carbonyl group) is observed. Precise single-crystal X-ray diffraction and polarized Raman spectroscopy structural data reveal the formation of a bifurcated S-H···O hydrogen bond with increasing pressure starting with ∼1.5 GPa. The analysis of the vibrational bands in Raman spectra has shown that different donor and acceptor groups start "feeling" the formation of the bifurcated S-H···O hydrogen bond in different pressure

  18. A molecular biomarker for disruption of crustacean molting: the N-acetyl-beta-glucosaminidase mRNA in the epidermis of the fiddler crab.

    PubMed

    Meng, Yanling; Zou, Enmin

    2009-05-01

    Several environmentally persistent chemicals have been found to be capable of disrupting crustacean molting. Considering the importance of molting in the life of crustaceans, there is a need to develop a molecular biomarker that can reflect the disrupting effects of contaminants on ecdysteroid signaling in crustaceans. N-acetyl-beta-glucosaminidase (NAG) is a chitinolytic enzyme found in crustacean epidermis. The results of the present investigation show that the transcription of NAG gene in the epidermis of the fiddler crab, Uca pugilator, is inducible by the molting hormone 20-hydroxyecdysone, which validates the use of NAG mRNA as a biomarker for molt-disrupting effects of xenobiotics.

  19. Urinary N-acetyl-beta-D-glucosaminidase and beta-aminoisobutyric acid in workers occupationally exposed to metals such as chromium, nickel, and iron.

    PubMed

    Tomokuni, K; Ichiba, M; Hirai, Y

    1993-01-01

    To examine the relationships between the urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG) and beta-aminoisobutyric acid (AIBA) as a metabolite of thymine, and exposure to chromium, nickel, and iron, we determined these parameters in 58 workers engaged in the cutting and grinding of stainless steel or iron-steel plates. A significant increase in urinary NAG activity or urinary AIBA excretion was found in some of these workers. However, we could not find a significant positive correlation between the urinary excretion of NAG or AIBA and the urinary concentration of chromium, nickel, or iron as an indicator of internal dose.

  20. Quantitative determination of sulfisoxazole and its three N-acetylated metabolites using HPLC-MS/MS, and the saturable pharmacokinetics of sulfisoxazole in mice.

    PubMed

    Oh, Kyungsoo; Baek, Moon-Chang; Kang, Wonku

    2016-09-10

    Sulfisoxazole (SFX) is still used in combination with trimethoprim in cattle despite adverse drug reactions (e.g., urolithiasis). Recently, SFX is known to be a promising repositioned drug candidate for pulmonary hypertension and cancer. We developed a simultaneous determination method of SFX and its N-acetylated metabolites (N(1)-acetyl SFX, N1AS; N(4)-acetyl SFX, N4AS; diacetyl SFX, DAS) using HPLC-MS/MS for the first time, and examined the pharmacokinetics of SFX in mice. N1AS and DAS were converted rapidly to SFX and N4AS, respectively, in mouse plasma. The time courses of plasma SFX and N4AS concentrations were well-characterised following the oral administration of SFX to mice. The absorption, metabolism, and/or excretion of SFX given at >700mg/kg may be saturable, and in contrast to humans and rats, the extent of systemic exposure of mice to N4AS was much greater than that of SFX. Interestingly, the acetyl groups at both N1- and N4-positions were degraded during the ionisation required to generate precursor ions. In additional experiments the carboxyl group of N-acetyl-5-aminosalicylic acid (NA5AS) was lost instead of the acetyl group during the ionisation, and acetaminophen (AAP) appeared. As the acetyl and carboxyl groups of some substances can be degraded during ionisation in the mass spectrometer, caution is appropriate when it is sought to simultaneously quantify similar structures containing these moieties; chromatographic separation is essential.

  1. Antifibrotic medication using a combination of N-acetyl-L-cystein (NAC) and ACE inhibitors can prevent the recurrence of Dupuytren's disease.

    PubMed

    Knobloch, Karsten; Redeker, Joern; Vogt, Peter M

    2009-11-01

    Dupuytren's disease is a progress fibromatosis of unknown origin first described in 1831. Nonoperative treatment options have been suggested involving radiation therapy, vitamin E, local injection therapy suing calcium channel blockers, interferon, corticosteroids or collagenase. Transforming growth factor-beta1 (TGF-beta1) and its downstream Smad signalling system is well established as a key player during fibrogenesis. A number of in vitro experiments have been assessed the blockade of TGF-beta1 and TGF-beta 2. Clinically, a number of antifibrotic agents are available such as N-acetyl-L-cysteins (NAC) as well as angiotensin-converting enzyme (ACE) inhibitors or AT II antagonists. However, to date none of the well known substances has been tested clinically in fibromatosis such as Dupuytren's disease especially to prevent recurrences after surgical release. Antifibrotic medication using a combination of N-acetyl-L-cystein (NAC) and ACE inhibitor can prevent the recurrence of Dupyutren's disease. Given the fact that recurrence rate in Dupuytren's disease is high and unpredictable after surgical release, an antifibrotic intervention might be worthwhile to consider in the clinical setting. Antifibrotic agents inhibit TGF-beta1, which play a key role in fibromatosis. Thus, antifibrotic medication might reduce the recurrence rate in fibromatosis such as Dupuytren's disease in a clinical significant way.

  2. Development of a N-acetyl-β-D-glucosaminidase (NAG) assay on a centrifugal lab-on-a-compact-disc (Lab-CD) platform.

    PubMed

    Tanaka, Yoshihide; Okuda, Seira; Sawai, Ayumi; Suzuki, Shigeo

    2012-01-01

    A centrifugal microfluidic platform, which is also known as lab-on-a-compact-disc (Lab-CD), was developed for use as a urinary N-acetyl-β-D-glucosaminidase (NAG) activity assay. In this work, Lab-CD design, centrifugal operations and analytical procedures were established. Automated liquid handling on Lab-CD processes, such as fluid transport, sample metering, mixing, and fluorescence detection are accomplished using a portable Lab-CD system. The linearity of the NAG assay using 4-methylumbelliferyl-N-acetyl-β-D-glucosaminide (4-MU-GlcNAc) was found to be acceptable in the range of 2.5 to 20 U L(-1); the relative standard deviations for the fluorescence intensity of eight samples (7.5 U L(-1)) was 6.4%. Clinical diagnostics is one of the most promising applications for Lab-CD technologies. All the benefits of miniaturization, such as reduced sample requirement, reduced reagent consumption and automation, are realized in this investigation.

  3. Amino acid sequence and carbohydrate-binding analysis of the N-acetyl-D-galactosamine-specific C-type lectin, CEL-I, from the Holothuroidea, Cucumaria echinata.

    PubMed

    Hatakeyama, Tomomitsu; Matsuo, Noriaki; Shiba, Kouhei; Nishinohara, Shoichi; Yamasaki, Nobuyuki; Sugawara, Hajime; Aoyagi, Haruhiko

    2002-01-01

    CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment.

  4. Fe3O4 magnetic core coated by silver and functionalized with N-acetyl cysteine as novel nanoparticles in ferritin adsorption

    NASA Astrophysics Data System (ADS)

    Akduman, Begüm; Uygun, Murat; Uygun, Deniz Aktaş; Antalík, Marián

    2013-04-01

    A novel metal-chelate affinity matrix utilizing N-acetyl cysteine as a metal chelating agent was synthesized. For this, magnetic Fe3O4 core was coated with silver by chemical reduction. Then, these magnetic silver nanoparticles were covered with N-acetyl cysteine, and Fe3+ was chelated to this modified magnetic silver nanoparticle. These magnetic nanoparticles were characterized by SEM, AFM, EDX, and ESR analysis. Synthesized nanoparticles were spherical and average size is found to be 69 nm. Fe3+ chelated magnetic silver nanoparticles were used for the adsorption of ferritin from its aqueous solution. Optimum conditions for the ferritin adsorption experiments were performed at pH 6.0 phosphate buffer and 25 °C of medium temperature and the maximum ferritin adsorption capacity is found to be 89.57 mg/g nanoparticle. Ferritin adsorption onto magnetic silver nanoparticles was increased with increasing ferritin concentration while adsorption capacity was decreased with increasing ionic strength. Affinity of the magnetic silver nanoparticles to the ferritin molecule was shown with SPR analysis. It was also observed that the adsorption capacity of the magnetic silver nanoparticles was not significantly changed after the five adsorption/desorption cycles.

  5. Molecular characterization of the cysJIH promoters of Salmonella typhimurium and Escherichia coli: regulation by cysB protein and N-acetyl-L-serine.

    PubMed Central

    Ostrowski, J; Kredich, N M

    1989-01-01

    The cysJIH promoter regions from Salmonella typhimurium LT7 and Escherichia coli B were cloned and sequenced. Primer extension analyses showed that the major in vivo transcription initiation site in S. typhimurium is located 171 nucleotides upstream of the cysJ start codon. Minor start sites were found 8 and 9 nucleotides downstream of the major site. In vivo transcription initiation in E. coli was found to occur at a single site 66 nucleotides upstream of the cysJ start codon. Primer extension studies also indicated that chromosomal cysJIH transcription is stimulated by sulfur limitation and repressed by growth on L-cystine. Paradoxically, in strains carrying plasmids containing the S. typhimurium cysJIH region, the highest levels of primer extension products were found with RNA from cells grown on L-cystine, even though levels of the proteins encoded by cysJ and cysI were normally repressed. In vitro transcription runoff studies with DNA template from the S. typhimurium cysJIH promoter region showed synthesis of a product originating at the major in vivo start site, which was dependent on the presence of purified cysB protein and either O-acetyl-L-serine or N-acetyl-L-serine. N-Acetyl-L-serine was 10- to 30-fold more active than O-acetyl-L-serine as an in vitro inducer of cysJIH transcription. Images PMID:2701932

  6. N-acetyl ornithine deacetylase is a moonlighting protein and is involved in the adaptation of Entamoeba histolytica to nitrosative stress

    PubMed Central

    Shahi, Preeti; Trebicz-Geffen, Meirav; Nagaraja, Shruti; Hertz, Rivka; Alterzon-Baumel, Sharon; Methling, Karen; Lalk, Michael; Mazumder, Mohit; Samudrala, Gourinath; Ankri, Serge

    2016-01-01

    Adaptation of the Entamoeba histolytica parasite to toxic levels of nitric oxide (NO) that are produced by phagocytes may be essential for the establishment of chronic amebiasis and the parasite’s survival in its host. In order to obtain insight into the mechanism of E. histolytica’s adaptation to NO, E. histolytica trophozoites were progressively adapted to increasing concentrations of the NO donor drug, S-nitrosoglutathione (GSNO) up to a concentration of 110 μM. The transcriptome of NO adapted trophozoites (NAT) was investigated by RNA sequencing (RNA-seq). N-acetyl ornithine deacetylase (NAOD) was among the 208 genes that were upregulated in NAT. NAOD catalyzes the deacetylation of N-acetyl-L-ornithine to yield ornithine and acetate. Here, we report that NAOD contributes to the better adaptation of the parasite to nitrosative stress (NS) and that this function does not depend on NAOD catalytic activity. We also demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detrimental to E. histolytica exposed to NS and that this detrimental effect is neutralized by NAOD or by a catalytically inactive NAOD (mNAOD). These results establish NAOD as a moonlighting protein, and highlight the unexpected role of this metabolic enzyme in the adaptation of the parasite to NS. PMID:27808157

  7. Heterodisaccharide 4-O-(N-acetyl-beta-D-glucosaminyl)-D-glucosamine is a specific inducer of chitinolytic enzyme production in Vibrios harboring chitin oligosaccharide deacetylase genes.

    PubMed

    Hirano, Takako; Kadokura, Kazunari; Ikegami, Takanori; Shigeta, Yuko; Kumaki, Yasuko; Hakamata, Wataru; Oku, Tadatake; Nishio, Toshiyuki

    2009-09-01

    Vibrio parahaemolyticus KN1699 produces 4-O-(N-acetyl-beta-d-glucosaminyl)-d-glucosamine (GlcNAc-GlcN) as a major end product from chitin using two extracellular hydrolases: glycoside hydrolase family 18 chitinase, which produces (GlcNAc)(2) from chitin, and carbohydrate esterase (CE) family 4 chitin oligosaccharide deacetylase (COD), which hydrolyzes the N-acetyl group at the reducing-end GlcNAc residue of (GlcNAc)(2). In this study, we clarified that this heterodisaccharide functions as an inducer of the production of the two above-mentioned chitinolytic enzymes, particularly chitinase. Similar results for chitinase production were obtained with other chitin-decomposing Vibrio strains harboring the CE family 4 COD gene; however, such an increase in chitinase production was not observed in chitinolytic Vibrio strains that did not harbor the COD gene. These results suggest that GlcNAc-GlcN is a unique inducer of chitinase production in Vibrio bacteria that have the COD-producing ability and that the COD involved in the synthesis of this signal compound is one of the key enzymes in the chitin catabolic cascade of these bacteria.

  8. Acetylated α-Tubulin Regulated by N-Acetyl-Seryl-Aspartyl-Lysyl-Proline(Ac-SDKP) Exerts the Anti-fibrotic Effect in Rat Lung Fibrosis Induced by Silica

    PubMed Central

    Xiaojun, Wang; Yan, Liu; Hong, Xu; Xianghong, Zhang; Shifeng, Li; Dingjie, Xu; Xuemin, Gao; Lijuan, Zhang; Bonan, Zhang; Zhongqiu, Wei; Ruimin, Wang; Brann, Darrell; Fang, Yang

    2016-01-01

    Silicosis is the most serious occupational disease in China. The objective of this study was to screen various proteins related to mechanisms of the pathogenesis of silicosis underlying the anti-fibrotic effect of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) using proteomic profile analysis. We also aimed to explore a potential mechanism of acetylated α-tubulin (α-Ac-Tub) regulation by Ac-SDKP. Two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to assess the different protein expression profiles between control and silicosis rats treated with or without Ac-SDKP. Twenty-nine proteins were identified to be potentially involved in the progression of silicosis and the anti-fibrotic effect of Ac-SDKP. Our current study finds that 1) the lost expression of Ac-Tub-α may be a new mechanism in rat silicosis; 2) treatment of silicotic rats with N-acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) inhibits myofibroblast differentiation and collagen deposition accompanied by stabilizing the expression of α-Ac-Tub in vivo and in vitro, which is related with deacetylase family member 6 (HDAC6) and α-tubulin acetyl transferase (α-TAT1). Our data suggest that α-Ac-Tub regulation by Ac-SDKP may potentially be a new anti-fibrosis mechanism. PMID:27577858

  9. A Ribbon-like Structure in the Ejective Organelle of the Green Microalga Pyramimonas parkeae (Prasinophyceae) Consists of Core Histones and Polymers Containing N-acetyl-glucosamine.

    PubMed

    Yamagishi, Takahiro; Kurihara, Akira; Kawai, Hiroshi

    2015-11-01

    The green microalga, Pyramimonas parkeae (Prasinophyceae) has an ejective organelle containing a coiled ribbon structure resembling the ejectisome in Cryptophyta. This structure is discharged from the cell by a stimulus and extends to form a tube-like structure, but the molecular components of the structure have not been identified. Tricine-SDS-PAGE analysis indicated that the ribbon-like structure of P. parkeae contains some proteins and low molecular acidic polymers. Edman degradation, LC/MS/MS analyses and immunological studies demonstrated that their proteins are core histones (H3, H2A, H2B and H4). In addition, monosaccharide composition analysis of the ribbon-like structures and degradation by lysozyme strongly indicated that the ribbon-like structure consist of β (1-4) linked polymers containing N-acetyl-glucosamine. Purified polymers and recombinant histones formed glob-like or filamentous structures. Therefore we conclude that the ribbon-like structure of P. parkeae mainly consists of a complex of core histones (H3, H2A, H2B and H4) and polymers containing N-acetyl-glucosamine, and suggest to name the ejective organelle in P. parkeae the "histrosome" to distinguish it from the ejectisome in Cryptophyta.

  10. N-acetyl ornithine deacetylase is a moonlighting protein and is involved in the adaptation of Entamoeba histolytica to nitrosative stress.

    PubMed

    Shahi, Preeti; Trebicz-Geffen, Meirav; Nagaraja, Shruti; Hertz, Rivka; Alterzon-Baumel, Sharon; Methling, Karen; Lalk, Michael; Mazumder, Mohit; Samudrala, Gourinath; Ankri, Serge

    2016-11-03

    Adaptation of the Entamoeba histolytica parasite to toxic levels of nitric oxide (NO) that are produced by phagocytes may be essential for the establishment of chronic amebiasis and the parasite's survival in its host. In order to obtain insight into the mechanism of E. histolytica's adaptation to NO, E. histolytica trophozoites were progressively adapted to increasing concentrations of the NO donor drug, S-nitrosoglutathione (GSNO) up to a concentration of 110 μM. The transcriptome of NO adapted trophozoites (NAT) was investigated by RNA sequencing (RNA-seq). N-acetyl ornithine deacetylase (NAOD) was among the 208 genes that were upregulated in NAT. NAOD catalyzes the deacetylation of N-acetyl-L-ornithine to yield ornithine and acetate. Here, we report that NAOD contributes to the better adaptation of the parasite to nitrosative stress (NS) and that this function does not depend on NAOD catalytic activity. We also demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is detrimental to E. histolytica exposed to NS and that this detrimental effect is neutralized by NAOD or by a catalytically inactive NAOD (mNAOD). These results establish NAOD as a moonlighting protein, and highlight the unexpected role of this metabolic enzyme in the adaptation of the parasite to NS.

  11. N-acetyl-L-glutamine, a liquid-stable source of glutamine, partially prevents changes in body weight and on intestinal immunity induced by protein energy malnutrition in pigs.

    PubMed

    López-Pedrosa, José M; Manzano, Manuel; Baxter, Jeffrey H; Rueda, Ricardo

    2007-03-01

    The goal of this study was to evaluate the preventive effect of free glutamine versus N-acetyl-L-glutamine, a liquid-stable source of glutamine, on gut damage induced by protein energy malnutrition in pigs. Healthy pigs (n = 6) were fed a liquid formula for 30 days. Three subgroups of malnourished pigs (n = 6) received daily 20% of the food intake recorded in control group, supplemented with calcium caseinate, glutamine, or N-acetyl-L-glutamine. Body weight was recorded, and small intestinal samples were evaluated for biochemical and immunologic parameters. Suppression in body weight gain was significantly lower in pigs fed with N-acetyl-L-glutamine than in the rest of malnourished pigs. Total number of lymphocytes, CD21+ B cells and CD4+ T cells in ileal Peyer patches were not significantly different in malnourished pigs fed with N-acetyl-L-glutamine and in healthy pigs. In conclusion, N-acetyl-L-glutamine has a moderate protective effect, partially preventing changes induced by protein energy malnutrition.

  12. Insulin Aspart (rDNA Origin) Injection

    MedlinePlus

    ... unless it is used in an external insulin pump. In patients with type 2 diabetes, insulin aspart ... also can be used with an external insulin pump. Before using insulin aspart in a pump system, ...

  13. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  14. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  15. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  16. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  17. 21 CFR 582.5017 - Aspartic acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aspartic acid. 582.5017 Section 582.5017 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5017 Aspartic acid. (a) Product. Aspartic acid (L- and DL-forms). (b) Conditions of...

  18. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    SciTech Connect

    Li, Meng-Li; Song, Hui-Hua

    2013-10-15

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers ([Zn(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}1, ([Co(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}2, ([Cd(acty){sub 2}(bipy)H{sub 2}O]·H{sub 2}O){sub n}3, and ([Cd(acty)(bpe){sub 2}(Ac)]·6H{sub 2}O){sub n}4 (bipy=4,4′-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated. - Graphical abstract: Four new homochiral coordination polymers were prepared and structurally characterized, which investigate the influence of the ancillary ligands and metal ions on the design and synthesis of coordination polymers. Display Omitted - Highlights: • It is rarely reported that the chiral coordination polymers prepared with N-acetyl-L-tyrosine ligands. • The alkalescent acetyl oxygen atom is difficult to participate in coordination but it is happened in the N-acetyl-L-tyrosine ligands. • The ancillary ligands (4,4′-bipy and bpe) are present in an unusual coordination modes, monodentate decorating ligands in 1, 2 and 4. • Structure comparative analyses results indicate that the

  19. Microbial production of N-acetyl cis-4-hydroxy-L-proline by coexpression of the Rhizobium L-proline cis-4-hydroxylase and the yeast N-acetyltransferase Mpr1.

    PubMed

    Bach, Thi Mai Hoa; Hara, Ryotaro; Kino, Kuniki; Ohtsu, Iwao; Yoshida, Nobuyuki; Takagi, Hiroshi

    2013-01-01

    The proline analogue cis-4-hydroxy-L-proline (CHOP), which inhibits the biosynthesis of collagen, has been clinically evaluated as an anticancer drug, but its water solubility and low molecular weight limits its therapeutic potential since it is rapidly excreted. In addition, CHOP is too toxic to be practical as an anticancer drug, due primarily to its systematic effects on noncollagen proteins. To promote CHOP's retention in blood and/or to decrease its toxicity, N-acetylation of CHOP might be a novel approach as a prodrug. The present study was designed to achieve the microbial production of N-acetyl CHOP from L-proline by coexpression of L-proline cis-4-hydroxylases converting L-proline into CHOP (SmP4H) from the Rhizobium Sinorhizobium meliloti and N-acetyltransferase converting CHOP into N-acetyl CHOP (Mpr1) from the yeast Saccharomyces cerevisiae. We constructed a coexpression plasmid harboring both the SmP4H and Mpr1 genes and introduced it into Escherichia coli BL21(DE3) or its L-proline oxidase gene-disrupted (ΔputA) strain. M9 medium containing L-proline produced more N-acetyl CHOP than LB medium containing L-proline. E. coli ΔputA cells accumulated L-proline (by approximately 2-fold) compared to that in wild-type cells, but there was no significant difference in CHOP production between wild-type and ΔputA cells. The addition of NaCl and L-ascorbate resulted in a 2-fold increase in N-acetyl CHOP production in the L-proline-containing M9 medium. The highest yield of N-acetyl CHOP was achieved at 42 h cultivation in the optimized medium. Five unknown compounds were detected in the total protein reaction, probably due to the degradation of N-acetyl CHOP. Our results suggest that weakening of the degradation or deacetylation pathway improves the productivity of N-acetyl CHOP.

  20. Structure of the N-acetyl-L-rhamnosamine-containing O-polysaccharide of Proteus vulgaris TG 155 from a new Proteus serogroup, O55.

    PubMed

    Kondakova, Anna N; Kolodziejska, Katarzyna; Zych, Krystyna; Senchenkova, Sof'ya N; Shashkov, Alexander S; Knirel, Yuriy A; Sidorczyk, Zygmunt

    2003-09-10

    The O-polysaccharide of the lipopolysaccharide (LPS) of Proteus vulgaris TG 155 was found to contain 2-acetamido-2,6-dideoxy-L-mannose (N-acetyl-L-rhamnosamine, L-RhaNAc), a monosaccharide that occurs rarely in Nature. The following structure of the O-polysaccharide was established by NMR spectroscopy, including 2D COSY, TOCSY, ROESY and 1H,13C HSQC experiments, along with chemical methods: [carbohydrate structure in text] Rabbit polyclonal O-antiserum against P. vulgaris TG 155 reacted with both core and O-polysaccharide moieties of the homologous LPS but showed no cross-reactivity with other LPS from the complete set of serologically different Proteus strains. Based on the unique O-polysaccharide structure and the serological data, we propose classifying P. vulgaris TG 155 into a new, separate Proteus O-serogroup, O55.

  1. Fourier transform infrared spectra and molecular structure of 5-methoxytryptamine, N-acetyl-5-methoxytryptamine and N-phenylsulfonamide-5-methoxytryptamine

    NASA Astrophysics Data System (ADS)

    Bayari, S.; Ide, S.

    2003-04-01

    5-Methoxytryptamine (5-MT) is a potent antioxidant and has radioprotective action. N-acetyl-5-methoxytryptamine (melatonin, NA-5-MT) is a free radical scavenger and antioxidant, which protects against oxidative damage due to a variety of toxicants. The infrared spectra of 5-MT, NA-5-MT and new synthesized N-phenylsulfonamide-5-methoxytryptamine (PS-5-MT) were investigated in the region between 4000 and 400 cm -1. Vibrational assignments of the molecules have been made for fundamental modes on the basis of the group vibrational concept, infrared intensity and comparison with the assignments for related molecules. X-ray powder diffraction patterns of molecules were also recorded. In order to optimize the geometries of the molecules, molecular mechanic calculations (MM3) were performed. Conformational analysis of 5-MT, NA-5-MT and PS-5-MT was also established by the using PM3 method.

  2. The Interaction of a Carbohydrate-Binding Module from a Clostridium perfringens N-Acetyl-beta-hexosaminidase with its Carbohydrate Receptor

    SciTech Connect

    Ficko-Blean,E.; Boraston, A.

    2006-01-01

    Clostridium perfringens is a notable colonizer of the human gastrointestinal tract. This bacterium is quite remarkable for a human pathogen by the number of glycoside hydrolases found in its genome. The modularity of these enzymes is striking as is the frequent occurrence of modules having amino acid sequence identity with family 32 carbohydrate-binding modules (CBMs), often referred to as F5/8 domains. Here we report the properties of family 32 CBMs from a C. perfringens N-acetyl-{beta}-hexosaminidase. Macroarray, UV difference, and isothermal titration calorimetry binding studies indicate a preference for the disaccharide LacNAc ({beta}-d-galactosyl-1,4-{beta}-d-N-acetylglucosamine). The molecular details of the interaction of this CBM with galactose, LacNAc, and the type II blood group H-trisaccharide are revealed by x-ray crystallographic studies at resolutions of 1.49, 2.4, and 2.3 Angstroms, respectively.

  3. EPR investigation of gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine

    NASA Astrophysics Data System (ADS)

    Osmanoğlu, Y. Emre; Sütçü, Kerem; Başkan, M. Halim

    2017-02-01

    The spectroscopic parameters of the paramagnetic species produced in gamma-irradiated L-citrulline, α-methyl-DL-serine, 3-fluoro-DL-valine and N-acetyl-L-cysteine were investigated at room temperature at a dose of 20 kGy by using EPR technique. The paramagnetic species were attributed to NH2CONH(CH2)3ĊNH2COOH, HOCH2ĊCH3COOH and HOĊHCCH3NH2COOH, CH3CH3ĊCHNH2COOH and SHCH2ĊNHCOCH3COOH radicals, respectively. EPR data of the unpaired electron with the environmental protons and 14N nucleus were used to characterize the contributing radicals produced in gamma irradiated compounds. In this paper, the stability of these compounds at room temperature after irradiation was also studied.

  4. Insight into hydrolytic reaction of N-acetylated L-histidylglycine dipeptide with novel mechlorethamine platinum(II) complex. NMR and DFT study of the hydrolytic reaction.

    PubMed

    Petrović, Zorica D; Petrović, Vladimir P; Simijonović, Dušica; Marković, Svetlana

    2011-09-28

    The reaction of K(2)PtCl(4) with the alkylating agent mechlorethamine hydrochloride, at a molar ratio of 1:2, results in the formation of 2-chloro-N-(2-chloroethyl)-N-methylethylammonium-tetrachloridoplatinate(II) complex. The hydrolytic activity of the novel Pt(II) complex was tested in the reaction with N-acetylated L-histidylglycine dipeptide at a molar ratio 1:1. It was shown that the hydrolytic reaction, performed at 60 °C in acidic medium, leads to the regioselective cleavage of the amide bond involving the carboxylic group of histidine. Density functional theory was used to explore the structures of the proposed participants in the hydrolytic reaction.

  5. Purification and characterization of an endo-N-acetyl-beta-D-glucosaminidase from the culture medium of Stigmatella aurantiaca DW4.

    PubMed Central

    Bourgerie, S; Karamanos, Y; Grard, T; Julien, R

    1994-01-01

    A novel endo-N-acetyl-beta-D-glucosaminidase (ENGase), acting on the di-N-acetylchitobiosyl part of N-linked glycans, was characterized in the culture medium of Stigmatella aurantiaca DW4. Purified to homogeneity by ammonium sulfate precipitation, gel filtration, and chromatofocusing, this ENGase presents, upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a molecular mass near 27 kDa. Optimal pH and pI were 4.0 and 6.8, respectively. The enzyme, named ENGase St, exhibits high activity on oligomannoside-type glycoasparagines and glycoproteins and could also hydrolyze hybrid- and complex-type glycoasparagines but does not acts as a murein hydrolase. Images PMID:7928985

  6. The SPASIBA force field for chondroitin sulfate: vibrational analysis of D-glucuronic and N-acetyl-D-galactosamine 4-sulfate sodium salts.

    PubMed

    Meziane-Tani, M; Lagant, P; Semmoud, A; Vergoten, G

    2006-10-05

    Normal-mode analyses were carried out on the two components of the chondroitin 4-sulfate linear glycosaminoglycan, a copolymer implying alternate D-glucuronate beta-(1-->3) and N-acetyl-D-galactosamine 4-sulfate beta-(1-->4) (hereafter named D-galactosamine 4-sulfate) residues. Scaled quantum mechanical calculations (SQM) using the density functional theory approach at different levels of theory (B3LYP/6-31G** and B3LYP/6-31++G**) were performed to obtain correct vibrational assignments. The SPASIBA empirical force field parameters were then obtained from both theoretical predictions and observed IR and Raman data. It is shown that calculations including diffuse functions at the B3LP/6-31++G** level and the introduction of the Na+ counterion are necessary to give correct assignments of the CO2- symmetric (nu(s)) and antisymmetric (nu(a)) stretching modes for the glucuronic carboxylate residue.

  7. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene.

    PubMed

    Irving, Roy M; Pinkerton, Marie E; Elfarra, Adnan A

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague-Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S(2)-S(3) segments) while DCVCS primarily affected the outer cortical proximal tubules (S(1)-S(2) segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37°C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity.

  8. TNF-alpha increases the carbohydrate sulfation of CD44: induction of 6-sulfo N-acetyl lactosamine on N- and O-linked glycans.

    PubMed

    Delcommenne, Marc; Kannagi, Reiji; Johnson, Pauline

    2002-10-01

    CD44 and sulfation have both been implicated in leukocyte adhesion. In monocytes, the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) stimulates CD44 sulfation, and this correlates with the induction of CD44-mediated adhesion events. However, little is known about the sulfation of CD44 or its induction by inflammatory cytokines. We determined that TNF-alpha induces the carbohydrate sulfation of CD44. CD44 was established as a major sulfated cell surface protein on myeloid cells. In the SR91 myeloid cell line, the majority of CD44 sulfation was attributed to the glycosaminoglycan chondroitin sulfate. However, TNF-alpha stimulation increased CD44 sulfation two- to threefold, largely attributed to the increased sulfation of N- and O-linked glycans on CD44. Therefore, TNF-alpha induced a decrease in the percentage of CD44 sulfation due to chondroitin sulfate and an increase due to N- and O-linked sulfation. Furthermore, TNF-alpha induced the expression of 6-sulfo N-acetyl lactosamine (LacNAc)/Lewis x on these cells, which was detected by a monoclonal antibody after neuraminidase treatment. This 6-sulfo LacNAc/Lewis x epitope was induced on N-linked and (to a lesser extent) on O-linked glycans present on CD44. This demonstrates that CD44 is modified by sulfated carbohydrates in myeloid cells and that TNF-alpha modifies both the type and amount of carbohydrate sulfation occurring on CD44. In addition, it demonstrates that TNF-alpha can induce the expression of 6-sulfo N-acetyl glucosamine on both N- and O-linked glycans of CD44 in myeloid cells.

  9. Role of mitochondria and NADPH oxidase derived reactive oxygen species in hyperoxaluria induced nephrolithiasis: therapeutic intervention with combinatorial therapy of N-acetyl cysteine and Apocynin.

    PubMed

    Sharma, Minu; Kaur, Tanzeer; Singla, S K

    2016-03-01

    The interactions between the main cellular sources of ROS, such as mitochondria and NADPH oxidase, are known to play an imperative role in the pathogenesis of hyperoxaluria-induced nephrolithiasis. The present study was designed to investigate the protective effect of a combinatorial therapy based on the attenuation of oxidative stress with antioxidant (N-acetyl cysteine), and NADPH oxidase inhibitor (apocynin), that might be required to effectively eliminate hyperoxaluric manifestations. Hyperoxaluria was induced in male Wistar rats by administering 0.4% ethylene glycol with 1% ammonium chloride in drinking water for 9 days. Hyperoxaluria accentuated renal oxidative stress in terms of increased ROS production and lipid peroxidation. Mitochondrial dysfunction, a central deleterious event in renal stone crystallization, was evident by decreased activities of electron transport chain complex I, II and IV, augmented mitochondrial ROS, reduced GSH/GSSG ratio, which resulted in the mitochondrial permeability transition pore (mPTP) opening as indicated by increased mitochondrial swelling in hyperoxaluric rats. Furthermore, NADPH oxidase activity was significantly increased, with raised expression of NOX1, NOX2, NOX4, p38MAPK and MnSOD, in the renal tissue of hyperoxaluric rats compared to control. However, combinatorial therapy with N-acetyl cysteine (50mg/kg/day) and apocynin (200mg/kg/day), intraperitoneally, significantly improved renal functions in hyperoxaluric rats and considerably ameliorated mitochondrial dysfunction. NAC with apocynin was also found to be effective in reducing the redundant activity of NADPH oxidase in renal tissue of hyperoxaluric rats. Hence, our investigation provides novel mechanistic insights that combinatorial approaches using targeted modulators of ROS offer therapeutic benefits in hyperoxaluria-induced nephrolithiasis.

  10. Catalysis by N-Acetyl-d-glucosaminylphosphatidylinositol De-N-acetylase (PIG-L) from Entamoeba histolytica

    PubMed Central

    Ashraf, Mohammad; Sreejith, Perinthottathil; Yadav, Usha; Komath, Sneha Sudha

    2013-01-01

    We showed previously that Entamoeba histolytica PIG-L exhibits a novel metal-independent albeit metal-stimulated activity. Using mutational and biochemical analysis, here we identify Asp-46 and His-140 of the enzyme as being important for catalysis. We show that these mutations neither affect the global conformational of the enzyme nor alter its metal binding affinity. The defect in catalysis, due to the mutations, is specifically due to an effect on Vmax and not due to altered substrate affinity (or Km). We propose a general acid-base pair mechanism to explain our results. PMID:23341455

  11. O-GlcNAc-selective-N-acetyl-beta-D-glucosaminidase activity and mRNA expression in muscle is related to glucosamine-induced insulin resistance.

    PubMed

    Durán-Reyes, Genoveva; Pascoe-Lira, Dalila; García-Macedo, Rebeca; Medina-Navarro, Rafael; Rosales-Torres, Ana María; Vergara-Onofre, Marcela; Foyo-Niembro, Enrique; Gutiérrez-Rodríguez, Margarita Eugenia; García-Gutiérrez, María Trinidad Adriana; Valladares-Salgado, Adán; Kumate, Jesús; Cruz, Miguel

    2010-01-01

    Glucosamine (GlcN)-induced insulin resistance is associated with an increase in O-linked-N-acetylglucosaminylated modified proteins (O-GlcNAcylated proteins). The role played by O-GlcNAc-selective-N-acetyl-beta-D-glucosaminidase (O-GlcNAcase), which removes O-N-acetyl-glucosamine residues from O-GlcNAcylated proteins, has not yet been demonstrated. We investigated whether GlcN-induced whole-body insulin resistance is related to tissue O-GlcNAcase activity and mRNA expression. GlcN (30 mumol/kg/min) or physiological saline (control) was intravenously infused into Sprague-Dawley rats for 2 h. After GlcN treatment, rats were subjected to the following: intravenous glucose tolerance test, insulin tolerance test or removal of the liver, muscle and pancreas. GlcN was found to provoke hyperglycemia compared to control (8.6 +/- 0.41 vs. 4.82 +/- 0.17 mM, p < 0.001). The insulin resistance index (HOMA-IR) increased (15.76 +/- 1.47 vs. 10.14 +/- 1.41, p < 0.001) and the beta-cell function index (HOMA-beta) diminished (182.69 +/- 22.37 vs. 592.01 +/- 103, p < 0.001). Liver glucose concentration was higher in the GlcN group than in the control group (0.37 +/- 0.04 vs. 0.24 +/- 0.038 mmol/g dry weight, p < 0.001). Insulin release index (insulin/glucose) was less in the GlcN group than in the control (2.2 +/- 0.1 vs. 8 +/- 0.8 at 120 min, p < 0.001). In the GlcN group, muscle O-GlcNAcase activity diminished (0.28 +/- 0.019 vs. 0.36 +/- 0.018 nmol of p-nitrophenyl/mg protein/min, p < 0.001), and K(m) increased (1.51 +/- 0.11 vs. 1.12 +/- 0.1 mM, p < 0.001) compared to the control. In the GlcN group, O-GlcNAcase activity/mRNA expression was altered (0.6 +/- 0.07 vs. 1 +/- 0.09 of control, p < 0.05). In conclusion, O-GlcNAcase activity is posttranslationally inhibited during GlcN-induced insulin resistance.

  12. Characterization of the chemical reactivity and nephrotoxicity of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide, a potential reactive metabolite of trichloroethylene

    SciTech Connect

    Irving, Roy M.; Pinkerton, Marie E.; Elfarra, Adnan A.

    2013-02-15

    N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NA-DCVC) has been detected in the urine of humans exposed to trichloroethylene and its related sulfoxide, N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (NA-DCVCS), has been detected as hemoglobin adducts in blood of rats dosed with S-(1,2-dichlorovinyl)-L-cysteine (DCVC) or S-(1,2-dichlorovinyl)-L-cysteine sulfoxide (DCVCS). Because the in vivo nephrotoxicity of NA-DCVCS was unknown, in this study, male Sprague–Dawley rats were dosed (i.p.) with 230 μmol/kg b.w. NA-DCVCS or its potential precursors, DCVCS or NA-DCVC. At 24 h post treatment, rats given NA-DCVC or NA-DCVCS exhibited kidney lesions and effects on renal function distinct from those caused by DCVCS. NA-DCVC and NA-DCVCS primarily affected the cortico-medullary proximal tubules (S{sub 2}–S{sub 3} segments) while DCVCS primarily affected the outer cortical proximal tubules (S{sub 1}–S{sub 2} segments). When NA-DCVCS or DCVCS was incubated with GSH in phosphate buffer pH 7.4 at 37 °C, the corresponding glutathione conjugates were detected, but NA-DCVC was not reactive with GSH. Because NA-DCVCS exhibited a longer half-life than DCVCS and addition of rat liver cytosol enhanced GSH conjugate formation, catalysis of GSH conjugate formation by the liver could explain the lower toxicity of NA-DCVCS in comparison with DCVCS. Collectively, these results provide clear evidence that NA-DCVCS formation could play a significant role in DCVC, NA-DCVC, and trichloroethylene nephrotoxicity. They also suggest a role for hepatic metabolism in the mechanism of NA-DCVC nephrotoxicity. - Highlights: ► NA-DCVCS and NA-DCVC toxicity are distinct from DCVCS toxicity. ► NA-DCVCS readily reacts with GSH to form mono- and di-GSH conjugates. ► Liver glutathione S-transferases enhance NA-DCVCS GSH conjugate formation. ► Renal localization of lesions suggests a role for NA-DCVCS in TCE nephrotoxicity.

  13. Oxyhalogen-sulfur chemistry: kinetics and mechanism of oxidation of N-acetyl homocysteine thiolactone by acidified bromate and aqueous bromine.

    PubMed

    Mbiya, Wilbes; Choi, Boyoung; Martincigh, Bice S; Morakinyo, Moshood K; Simoyi, Reuben H

    2013-12-12

    N-acetyl homocysteine thiolactone (NAHT), medically known as citiolone, can be used as a mucolytic agent and for the treatment of certain hepatic disorders. We have studied the kinetics and mechanisms of its oxidation by acidic bromate and aqueous bromine. In acidic bromate conditions the reaction is characterized by a very short induction period followed by a sudden and rapid formation of bromine and N-acetyl homocysteine sulfonic acid. The stoichiometry of the bromate-NAHT reaction was deduced to be: BrO3(-) + H2O + CH3CONHCHCH2CH2SCO → CH3CONHCHCH2CH2(SO3H)COOH + Br(-) (S1) while in excess bromate it was deduced to be: 6BrO3(-) + 5CH3CONHCHCH2CH2SCO + 6H(+) → 3Br2 + 5CH3CONHCHCH2CH2(SO3H)COOH + 2H2O (S2). For the reaction of NAHT with bromine, a 3:1 stoichiometric ratio of bromine to NAHT was obtained: 3Br2 + CH3CONHCHCH2CH2SCO + 4H2O → 6Br(-) + CH3CONHCHCH2CH2(SO3H)COOH + 6H(+) (S3). Oxidation occurred only on the sulfur center where it was oxidized to the sulfonic acid. No sulfate formation was observed. The mechanism involved an initial oxidation to a relatively stable sulfoxide without ring-opening. Further oxidation of the sulfoxide involved two pathways: one which involved intermediate formation of an unstable sulfone and the other involves ring-opening coupled with oxidation through to the sulfonic acid. There was oligooscillatory production of aqueous bromine. Bromide produced in S1 reacts with excess bromate to produce aqueous bromine. The special stability associated with the sulfoxide allowed it to coexist with aqueous bromine since its further oxidation to the sulfone was not as facile. The direct reaction of aqueous bromine with NAHT was fast with an estimated lower limit bimolecular rate constant of 2.94 ± 0.03 × 10(2) M(-1) s(-1).

  14. Aspartate release from rat hippocampal synaptosomes.

    PubMed

    Bradford, S E; Nadler, J V

    2004-01-01

    Certain excitatory pathways in the rat hippocampus can release aspartate along with glutamate. This study utilized rat hippocampal synaptosomes to characterize the mechanism of aspartate release and to compare it with glutamate release. Releases of aspartate and glutamate from the same tissue samples were quantitated simultaneously. Both amino acids were released by 25 mM K(+), 300 microM 4-aminopyridine (4-AP) and 0.5 and 1 microM ionomycin in a predominantly Ca(2+)-dependent manner. For a roughly equivalent quantity of glutamate released, aspartate release was significantly greater during exposure to elevated [K(+)] than to 4-AP and during exposure to 0.5 than to 1 microM ionomycin. Aspartate release was inefficiently coupled to P/Q-type voltage-dependent Ca(2+) channels and was reduced by KB-R7943, an inhibitor of reversed Na(+)/Ca(2+) exchange. In contrast, glutamate release depended primarily on Ca(2+) influx through P/Q-type channels and was not significantly affected by KB-R7943. Pretreatment of the synaptosomes with tetanus toxin and botulinum neurotoxins C and F reduced glutamate release, but not aspartate release. Aspartate release was also resistant to bafilomycin A(1), an inhibitor of vacuolar H(+)-ATPase, whereas glutamate release was markedly reduced. (+/-) -Threo-3-methylglutamate, a non-transportable competitive inhibitor of excitatory amino acid transport, did not reduce aspartate release. Niflumic acid, a blocker of Ca(2+)-dependent anion channels, did not alter the release of either amino acid. Exogenous aspartate and aspartate recently synthesized from glutamate accessed the releasable pool of aspartate as readily as exogenous glutamate and glutamate recently synthesized from aspartate accessed the releasable glutamate pool. These results are compatible with release of aspartate from either a vesicular pool by a "non-classical" form of exocytosis or directly from the cytoplasm by an as-yet-undescribed Ca(2+)-dependent mechanism. In either case

  15. Effects of the monoamine oxidase inhibitor, tranylcypromine, on induction of HL60 cell differentiation by hexamethylene bisacetamide and N-acetyl-1,6-diaminohexane.

    PubMed

    Snyder, S W; Egorin, M J; Zuhowski, E G; Schimpff, E C; Callery, P S

    1990-01-01

    Hexamethylene bisacetamide (HMBA) is converted by successive deacetylation and oxidation reactions to four major metabolites; in vitro, the initial deacetylated metabolite, N-acetyl-1,6-diaminohexane (NAD-AH), is more potent than HMBA (Synder, S.W.; Egorin, M.J.; Geelhaar, L.A.; Hamburger, A.W.; Callery, P.S. Cancer Res. 48:3613-3616; 1988). We propose that monoamine oxidase (MAO) catalyzed metabolism of NADAH to 6-acetamidohexanoic acid (AcHA) is an inactivation pathway and, therefore, investigated whether blocking such metabolism with the MAO inhibitor, tranylcypromine, would potentiate induction of cell differentiation by HMBA and NADAH. Tranylcypromine, at concentrations up to 30 micrograms/mL, did not inhibit HL60 cell growth and did not induce differentiation of HL60 cells. Tranylcypromine did, however, produce concentration-dependent enhancement of HMBA- and NADAH-induced differentiation. In contrast, 30 micrograms/mL of tranylcypromine did not effect the ability of dimethylsulfoxide, at concentrations between 0.25% and 1.25%, to induce differentiation of HL60 cells. Tranylcypromine, at 30 micrograms/mL, did not change cellular concentrations of HMBA or NADAH but did reduce intracellular concentrations of AcHA, consistent with inhibition of MAO catalyzed conversion of NADAH to AcHA. These results support the hypothesis that MAO catalyzed metabolism of NADH to AcHA is an inactivation pathway and may provide the basis for a clinical trail in which HMBA metabolism is modulated with concurrent tranylcypromine therapy.

  16. L-cysteine, N-acetyl-L-cysteine, and glutathione protect Xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo teratogenesis assay.

    PubMed

    Rayburn, James R; Friedman, Mendel

    2010-10-27

    Dietary acrylamide is largely derived from heat-induced reactions between the amino group of the free amino acid asparagine and carbonyl groups of glucose and fructose during heat processing (baking, frying) of plant-derived foods such as potato fries and cereals. After consumption, acrylamide is absorbed into the circulation and is then distributed to various organs, where it can react with DNA, neurons, hemoglobin, and essential enzymes. In the present study, we explored the potential of L-cysteine (CySH), N-acetyl-L-cysteine (NAC), reduced glutathione (GSH), and the amino acid glycine (Gly) to protect frog embryos against acrylamide-induced developmental toxicity in the frog embryo teratogenesis assay - Xenopus (FETAX). To test the antiteratogenic potential, based on concentration-response study ranging from 0.07 to 4.22 mM acrylamide in FETAX solution (pH 8.1), we selected concentrations of acrylamide that induced 100% malformations and mortality. At the end of 96 h, we counted survivors and malformed embryos and measured embryo length. The data show that CySH, NAC, and GSH protected the embryos against acrylamide induced malformations and mortality to different degrees. CySH and GSH protected the embryos against both malformations and mortality, whereas NAC protected only against mortality. Gly had no protective effect. Possible mechanisms of the protective effects and the dietary significance of the results of this and related studies for food safety and human health are discussed.

  17. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice

    PubMed Central

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R.

    2016-01-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the γ-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwgmice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC. PMID:26977590

  18. Molecular cloning and characterization of a cDNA encoding the N-acetyl-beta-D-glucosaminidase homologue of Paracoccidioides brasiliensis.

    PubMed

    Santos, Mônica O; Pereira, Maristela; Felipe, Maria Sueli S; Jesuino, Rosalia Santos A; Ulhoa, Cirano J; Soares, Renata de Bastos A; Soares, Celia Maria de A

    2004-06-01

    A cDNA encoding the N-acetyl-beta-D-glucosaminidase (NAG) protein of Paracoccidioides brasiliensis, Pb NAG1, was cloned and characterized. The 2663-nucleotide sequence of the cDNA consisted of a single open reading frame encoding a protein with a predicted molecular mass of 64.73 kDa and an isoeletric point of 6.35. The predicted protein includes a putative 30-amino-acid signal peptide. The protein as a whole shares considerable sequence similarity with 'classic' NAG. The primary sequence of Pb NAG1 was used to infer phylogenetic relationships. The amino acid sequence of Pb NAG1 has 45, 31 and 30% identity, respectively, with homologous sequences from Trichoderma harzianum, Aspergillus nidulans and Candida albicans. In particular, striking homology was observed with the active site regions of the glycosyl hydrolase group of proteins (family 20). The expected active site consensus motif G X D E and catalytic Asp and Glu residues at positions 373 and 374 were found, reinforcing that Pb NAG1 belongs to glycosyl hydrolase family 20. The nucleotide sequence of Pb nag1 and its flanking regions have been deposited, along with the amino acid sequence of the deduced protein, in GenBank under accession number AF419158.

  19. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2)

    SciTech Connect

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul; Newman, Debra; Bondar, Galyna; Zhu Quansheng; Dekant, Wolfgang; Faull, Kym; Kurtz, Ira

    2010-04-15

    N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mouse proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.

  20. Reengineering of the feedback-inhibition enzyme N-acetyl-L-glutamate kinase to enhance L-arginine production in Corynebacterium crenatum.

    PubMed

    Zhang, Jingjing; Xu, Meijuan; Ge, Xiaoxun; Zhang, Xian; Yang, Taowei; Xu, Zhenghong; Rao, Zhiming

    2017-02-01

    N-acetyl-L-glutamate kinase (NAGK) catalyzes the second step of L-arginine biosynthesis and is inhibited by L-arginine in Corynebacterium crenatum. To ascertain the basis for the arginine sensitivity of CcNAGK, residue E19 which located at the entrance of the Arginine-ring was subjected to site-saturated mutagenesis and we successfully illustrated the inhibition-resistant mechanism. Typically, the E19Y mutant displayed the greatest deregulation of L-arginine feedback inhibition. An equally important strategy is to improve the catalytic activity and thermostability of CcNAGK. For further strain improvement, we used site-directed mutagenesis to identify mutations that improve CcNAGK. Results identified variants I74V, F91H and K234T display higher specific activity and thermostability. The L-arginine yield and productivity of the recombinant strain C. crenatum SYPA-EH3 (which possesses a combination of all four mutant sites, E19Y/I74V/F91H/K234T) reached 61.2 and 0.638 g/L/h, respectively, after 96 h in 5 L bioreactor fermentation, an increase of approximately 41.8% compared with the initial strain.

  1. Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen

    PubMed Central

    Nitta, Kyoko; Shi, Sen; Nagai, Takako; Kanasaki, Megumi; Kitada, Munehiro; Srivastava, Swayam Prakash; Haneda, Masakazu; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    Kidney fibrosis is the final common pathway of progressive kidney diseases including diabetic nephropathy. Here, we report that the endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of angiotensin-converting enzyme (ACE), is an orally available peptide drug used to cure kidney fibrosis in diabetic mice. We utilized two mouse models of diabetic nephropathy, streptozotocin- (STZ-) induced type 1 diabetic CD-1 mice and type 2 diabetic nephropathy model db/db mice. Intervention with the ACE inhibitor imidapril, oral AcSDKP, or imidapril + oral AcSDKP combination therapy increased urine AcSDKP levels. AcSDKP levels were significantly higher in the combination group compared to those of the other groups. AcSDKP oral administration, either AcSDKP alone or in addition to imidapril, ameliorated glomerulosclerosis and tubulointerstitial fibrosis. Plasma cystatin C levels were higher in both models, at euthanasia, and were restored by all the treatment groups. The levels of antifibrotic miRs, such as miR-29 or let-7, were suppressed in the kidneys of both models; all treatments, especially the combination of imidapril + oral AcSDKP, restored the antifibrotic miR levels to a normal value or even higher. AcSDKP may be an oral antifibrotic peptide drug that would be relevant to combating fibroproliferative kidney diseases such as diabetic nephropathy. PMID:27088094

  2. Investigation of the association behaviors between bovine serum albumin and 2-(4-methylphenyl)-3-(N-acetyl)-5-(2,4-dichlorophenoxymethyl)-1,3,4-oxodiazoline.

    PubMed

    Huang, Zhenzhong; Wang, Ruiling; Han, Erwei; Xu, Lifan; Song, Yonghai

    2013-07-01

    The study was designed to examine the interaction between 2-(4-methylphenyl)-3-(N-acetyl)-5-(2,4-dichlorophenoxymethyl)-1,3,4-oxodiazoline (MPNDO) and bovine serum albumin (BSA) under physiological conditions by using fluorescence spectroscopy, ultraviolet absorption spectroscopy, FT-IR spectroscopy and circular dichroism spectroscopy and atomic force microscope. Spectroscopic analysis of the fluorescence emission quenching and ultraviolet absorption revealed that the quenching mechanism of bovine serum albumin by MPNDO was static quenching procedure. The binding constant and binding sites number at different temperatures were measured. The average binding distances between donor (BSA) and acceptor (MPNDO) was estimated to be 1.46 nm (301 K), based on the Föster non-radioactive energy transfer theory. An average size of 3.1 nm had a high proportion and these dots might be ascribed to BSA, some other dots with an average size of 6.6 nm might result from BSA-MPNDO bioconjugates while the average diameter of MPNDO was 1.6 nm, which was reasonable to conclude that one BSA-MPNDO bioconjugates consisted of one BSA and one MPNDO. The thermodynamic parameters, enthalpy change (ΔH), entropy change (ΔS) and free energy change (ΔG) were calculated, which indicated that the action force was mainly van der Waals forces. The data collected through synchronous fluorescence, FT-IR spectroscopy and circular dichroism spectroscopy demonstrated that the conformation of BSA was not affected obviously in the presence of MPNDO.

  3. S-Nitroso-N-acetyl-D-penicillamine covalently linked to polydimethylsiloxane (SNAP-PDMS) for use as a controlled photoinitiated nitric oxide release polymer

    NASA Astrophysics Data System (ADS)

    Gierke, Genevieve E.; Nielsen, Matthew; Frost, Megan C.

    2011-10-01

    Nitric oxide (NO) plays a critical role in the regulation of a wide variety of physiological processes. It is a potent inhibitor of platelet adhesion and aggregation, inhibits bacterial adhesion and proliferation, is implicated in mediating the inflammatory response toward implanted devices, plays a role in tumor growth and proliferation, and is a neurotransmitter. Herein, we describe the synthesis and NO-release properties of a modified polydimethylsiloxane that contains S-nitroso-N-acetyl-D-penicillamine covalently attached to the cross-linking agent (SNAP-DMS). Light from a C503B-BAN-CY0C0461 light-emitting diode (470 nm) was used as an external trigger to allow precise control over level and duration of NO release ranging from a surface flux of zero to approximately 3.5×10-10 mol cm-2 min-1. SNAP-PDMS films stored in the dark released NO after 297 days, indicating the long-term stability of SNAP-PDMS.

  4. N-acetyl cysteine restores brain glutathione loss in combined 2-cyclohexene-1-one and d-amphetamine-treated rats: relevance to schizophrenia and bipolar disorder.

    PubMed

    Dean, Olivia M; van den Buuse, Maarten; Berk, Michael; Copolov, David L; Mavros, Christine; Bush, Ashley I

    2011-07-25

    Oxidative stress and reduced brain levels of glutathione have been implicated in schizophrenia and bipolar disorder. N-acetyl cysteine (NAC) is a precursor of glutathione and has additional effects on glutamate neurotransmission, neurogenesis and inflammation. While NAC treatment has shown benefits in both schizophrenia and bipolar disorder, the mechanisms of action are largely unknown. Similarly, the interaction between oxidative stress and altered dopaminergic activities in psychiatric illness is not yet characterized. This study investigated the capacity of NAC in restoring brain glutathione depletion in rats that received 2-cyclohexene-1-one (CHX, 75 mg/kg), d-amphetamine (2.5mg/kg) or both. CHX, but not amphetamine, induced significant depletion of glutathione levels in the striatum and frontal cortex. Glutathione depletion was reversed by NAC (1000 mg/kg) in saline-treated and amphetamine-treated (frontal cortex only) rats. While NAC was shown to be beneficial in this model, the lack of additional glutathione depletion by amphetamine in combination with CHX does not support a summative interaction between oxidative stress and altered dopamine transmission.

  5. Binding Structures of tri-N-acetyl-β-glucosamine in Hen Egg White Lysozyme using Molecular Dynamics with a Polarizable Force Field

    PubMed Central

    Zhong, Yang; Patel, Sandeep

    2014-01-01

    Lysozyme is a well-studied enzyme that hydrolyzes the β-(1,4)-glycosidic linkage of N-acetyl-β-glucosamine (NAG)n oligomers. The active site of hen egg-white lysozyme (HEWL) is believed to consist of six subsites, A-F that can accommodate six sugar residues. We present studies exploring the use of polarizable force fields in conjunction with all-atom molecular dynamics simulations to analyze binding structures of complexes of lysozyme and NAG trisaccharide, (NAG)3. Molecular dynamics trajectories are applied to analyze structures and conformation of the complex as well as protein-ligand interactions, including the hydrogen-bonding network in the binding pocket. Two binding modes (ABC and BCD) of (NAG)3 are investigated independently based on a fixed-charge model and a polarizable model. We also apply MM-GBSA methods based on molecular dynamics using both non-polarizable and polarizable force fields in order to compute binding free energies. We also study the correlation between RMSD and binding free energies of the wildtype and W62Y mutant; we find that for this prototypical system, approaches using the MD trajectories coupled with implicit solvent models are equivalent for polarizable and fixed-charge models. PMID:23109228

  6. N-Acetyl-seryl-aspartyl-lysyl-proline inhibits DNA synthesis in human mesangial cells via up-regulation of cell cycle modulators

    SciTech Connect

    Kanasaki, Keizo; Haneda, Masakazu; Sugimoto, Toshiro . E-mail: toshiro@belle.shiga-med.ac.jp; Shibuya, Kazuyuki; Isono, Motohide; Isshiki, Keiji; Araki, Shin-ichi; Uzu, Takashi; Kashiwagi, Atsunori; Koya, Daisuke

    2006-04-14

    N-Acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) was originally reported as a natural inhibitor of the proliferation of stem cells. To elucidate whether Ac-SDKP inhibits the proliferation of human mesangial cells, we examined the effect of Ac-SDKP on fetal calf serum (FCS)- or platelet-derived growth factor (PDGF)-BB-induced DNA synthesis and a cell proliferation. Ac-SDKP inhibited PDGF-BB- or FCS-induced DNA synthesis without cellular toxicity. The protein expression of p53 and p27{sup kip1} was significantly increased by Ac-SDKP. Ac-SDKP also up-regulated the PDGF-BB-stimulated expression of p21{sup cip1} and suppressed PDGF-BB-induced cyclin D{sub 1} expression. In p53 knock-out human mesangial cells made with small interference RNA, the protein expression of p21{sup cip1} and p27{sup kip1} was also decreased and the inhibitory effect of Ac-SDKP on mesangial proliferation was completely abolished. Ac-SDKP increased the stability of p53 protein as demonstrated by pulse-chase experiment. These results suggest that p53 is the key mediator of Ac-SDKP-induced inhibition of DNA synthesis through the up-regulation of cell cycle modulators, highlighting a potential effect of Ac-SDKP on various progressive renal diseases.

  7. A histological and immunohistochemical study of the effects of N-acetyl cysteine on retinopathy of prematurity by modifying insulin-like growth factor-1.

    PubMed

    El-Hadidy, A R; El-Mohandes, E M; Asker, S A; Ghonaim, F M

    2016-08-01

    Retinopathy of prematurity (ROP) is a vasoproliferative disorder that occurs in premature infants and may lead to permanent visual impairment. We investigated both the possible protective role of N-acetyl cysteine (NAC) for preventing ROP and the role of IGF-1 in the disorder. Forty-five newborn rats were divided into three groups. Group 1 was raised in room air as controls. Group 2 was exposed to 60% oxygen for 14 days after birth, then transferred to room air. Group 3 was exposed to the same conditions as group 2, but received intraperitoneal injections of NAC on postnatal days 7-17. After 35 days, both eyes of all rats were processed for histology. Some sections were stained with hematoxylin and eosin to assess structural changes and other sections were immunostained to determine the location of IGF-1. Frozen sections also were prepared and stained for adenosine triphosphatase to detect retinal blood vessels. Compared to the controls, more blood vessels, many of which were abnormal, and increased IGF-1 expression were observed in group 2. In group 3, abnormal blood vessels and IGF-1 expression were less evident. NAC appeared to be an effective vascular-protective agent for ROP by decreasing IGF-1 expression.

  8. Effects of N-acetyl-L-cysteine-capped CdTe quantum dots on bovine serum albumin and bovine hemoglobin: isothermal titration calorimetry and spectroscopic investigations.

    PubMed

    Sun, Haoyu; Cui, Erqian; Tan, Zhigang; Liu, Rutao

    2014-12-01

    The interactions of N-acetyl-L-cysteine-capped CdTe quantum dots (QDs) with bovine serum albumin (BSA) and bovine hemoglobin (BHb) were investigated by isothermal titration calorimetry (ITC), fluorescence, synchronous fluorescence, fluorescence lifetime, ultraviolet-visible absorption, and circular dichroism techniques. Fluorescence data of BSA-QDs and BHb-QDs revealed that the quenching was static in every system. While CdTe QDs changed the microenvironment of tryptophan in BHb, the microenvironment of BSA kept unchanged. Adding CdTe QDs affected the skeleton and secondary structure of the protein (BSA and BHb). The ITC results indicated that the interaction between the protein (BSA and BHb) and QDs-612 was spontaneous and the predominant force was hydrophobic interaction. In addition, the binding constants were determined to be 1.19 × 10(5) L mol(-1) (BSA-QDs) and 2.19 × 10(5) L mol(-1) (BHb-QDs) at 298 K. From these results, we conclude that CdTe QDs have a larger impact on the structure of BHb than BSA.

  9. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2).

    PubMed

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul; Newman, Debra; Scholz, Karoline; Bondar, Galyna; Zhu, Quansheng; Avliyakulov, Nuraly K; Dekant, Wolfgang; Faull, Kym; Kurtz, Ira; Pushkin, Alexander

    2010-04-15

    N-acetyl-S-(1,2-dichlorovinyl)-l-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-l-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study, we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mouse proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC.

  10. Transport of N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine, a metabolite of trichloroethylene, by mouse multidrug resistance associated protein 2 (Mrp2)

    PubMed Central

    Tsirulnikov, Kirill; Abuladze, Natalia; Koag, Myong-Chul; Newman, Debra; Scholz, Karoline; Bondar, Galyna; Zhu, Quansheng; Avliyakulov, Nuraly K.; Dekant, Wolfgang; Faull, Kym; Kurtz, Ira; Pushkin, Alexander

    2010-01-01

    N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (Ac-DCVC) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) are the glutathione conjugation pathway metabolites of a common industrial contaminant and potent nephrotoxicant trichloroethylene (TCE). Ac-DCVC and DCVC are accumulated in the renal proximal tubule where they may be secreted into the urine by an unknown apical transporter(s). In this study we explored the hypothesis that the apical transport of Ac-DCVC and/or DCVC may be mediated by the multidrug resistance associated protein 2 (Mrp2, ABCC2), which is known to mediate proximal tubular apical ATP-dependent transport of glutathione and numerous xenobiotics and endogenous substances conjugated with glutathione. Transport experiments using membrane vesicles prepared from mouse proximal tubule derived cells expressing mouse Mrp2 utilizing ATPase assay and direct measurements of Ac-DCVC/DCVC using liquid chromatography/tandem mass-spectrometry (LC/MS/MS) demonstrated that mouse Mrp2 mediates ATP-dependent transport of Ac-DCVC. Expression of mouse Mrp2 antisense mRNA significantly inhibited the vectorial basolateral to apical transport of Ac-DCVC but not DCVC in mouse proximal tubule derived cells endogenously expressing mouse Mrp2. The results suggest that Mrp2 may be involved in the renal secretion of Ac-DCVC. PMID:20060011

  11. Enhancing effect of N-acetyl-l-cysteine or 2-mercaptoethanol on the in vitro permeation of 5-fluorouracil or tolnaftate through the human nail plate.

    PubMed

    Kobayashi, Y; Miyamoto, M; Sugibayashi, K; Morimoto, Y

    1998-11-01

    The enhancing effects of various vehicles on the in vitro permeation of a hydrophilic model drug, 5-fluorouracil (5-FU), or a lipophilic model drug, tolnaftate (TN), through human nail plates were investigated using a modified side-by-side diffusion cell. Tip pieces from the 5th finger-nail, clipped from healthy volunteers, were used in this permeation study. The swelling and softening properties of the nail pieces were also measured in each vehicle. The weights and stresses of the nail pieces were dramatically changed after immersion in aqueous solvents containing N-acetyl-L-cysteine (AC) or 2-mercaptoethanol (ME). However, no significant change in the physicochemical properties of the nail pieces was found in the lipophilic vehicles. Thus, the water content in the nail plates absorbed from vehicles may relate to their physicochemical properties. Although keratin-softening agents and new skin permeation enhancers did not significantly promote 5-FU permeation compared with water alone, the flux from solvent systems containing AC or ME was substantially higher. In addition, TN permeation from solvents containing AC or ME could be measured, whereas that from other solvents was undetectable. When the AC concentration was increased, the 5-FU permeation and the nail weight increased and the stress of each nail piece decreased. It is concluded from these experimental results that AC and ME may be useful as enhancers for increasing drug permeation through the human nail plate.

  12. Comparison of the effects of N-acetyl-cysteine and ginseng in prevention of noise induced hearing loss in male textile workers.

    PubMed

    Doosti, Afsaneh; Lotfi, Yones; Moossavi, Abdollah; Bakhshi, Enayatollah; Talasaz, Azita Hajhossein; Hoorzad, Ahmad

    2014-01-01

    Previous studies revealed the role of antioxidant agents in prevention of noise induced hearing loss (NIHL). The aim of this study was to compare the protective effect of N-acetyl-cysteine (NAC) and ginseng on protection of NIHL in textile workers exposed to continuous noise in daily working. In this study, 48 participants were randomly allocated to three groups; Group I received NAC 1200 mg/day, Group II received ginseng 200 mg/day, and Group III (control group) received no supplement. Pure tone audiometry and high frequency audiometry were performed preshift before and after 14 days (on day 15). Linear regression analysis results showed reduced noise-induced temporary threshold shift (TTS) for NAC and ginseng groups at 4, 6 and 16 kHz (P < 0.001) in both ears. Furthermore, the protective effects were more prominent in NAC than ginseng. Our results show that NAC and ginseng can reduce noise induced TTS in workers exposed to occupational noise. Further studies are needed to prove antioxidants benefits in hearing conservation programs.

  13. The effects of N-acetyl-L-cysteine supplementation on in vitro porcine oocyte maturation and subsequent fertilisation and embryonic development.

    PubMed

    Whitaker, B D; Casey, S J; Taupier, R

    2012-01-01

    The effects of supplementation with 1.5 mM n-acetyl-l-cysteine (NAC) during in vitro oocyte maturation were studied. Oocytes were supplemented with 1.5 mM NAC during maturation for 0 to 24 h, 24 to 48 h, or 0 to 48 h then subjected to IVF and embryo development. Oocytes were evaluated after maturation for intracellular glutathione concentration, superoxide dismutase and glutathione peroxidase activities and DNA fragmentation. Fertilisation and embryonic development success were also evaluated. There was no effect of treatment on intracellular glutathione concentrations, enzyme activities or fertilisation success rates. Supplementing NAC during maturation significantly decreased (P < 0.05) the percentage of oocytes with fragmented DNA compared with no NAC supplementation. Supplementing NAC from 24 to 48 h or 0 to 48 h resulted in a significantly higher (P < 0.05) percentage of oocytes with male pronuclei than for oocytes from the other treatment groups. There was no difference in the percentage of embryos cleaved by 48 h after IVF between treatment groups. Supplementing NAC from 24 to 48 h or 0 to 48 h resulted in a significantly higher (P < 0.05) percentage of embryos reaching the blastocyst stage by 144 h after IVF compared with the other treatment groups. These results indicate that supplementation of the oocyte maturation medium with 1.5 mM NAC, specifically during the last 24 h, improves male pronucleus formation and blastocyst development in pigs.

  14. N-acetyl-cysteine prevents age-related hearing loss and the progressive loss of inner hair cells in γ-glutamyl transferase 1 deficient mice.

    PubMed

    Ding, Dalian; Jiang, Haiyan; Chen, Guang-Di; Longo-Guess, Chantal; Muthaiah, Vijaya Prakash Krishnan; Tian, Cong; Sheppard, Adam; Salvi, Richard; Johnson, Kenneth R

    2016-04-01

    Genetic factors combined with oxidative stress are major determinants of age-related hearing loss (ARHL), one of the most prevalent disorders of the elderly. Dwarf grey mice, Ggt1dwg/dwg, are homozygous for a loss of function mutation of the g-glutamyl transferase 1 gene, which encodes an important antioxidant enzyme critical for the resynthesis of glutathione (GSH). Since GSH reduces oxidative damage, we hypothesized that Ggt1dwg/dwg mice would be susceptible to ARHL. Surprisingly, otoacoustic emissions and cochlear microphonic potentials, which reflect cochlear outer hair cell (OHC) function, were largely unaffected in mutant mice, whereas auditory brainstem responses and the compound action potential were grossly abnormal. These functional deficits were associated with an unusual and selective loss of inner hair cells (IHC), but retention of OHC and auditory nerve fibers. Remarkably, hearing deficits and IHC loss were completely prevented by N-acetyl-L-cysteine, which induces de novo synthesis of GSH; however, hearing deficits and IHC loss reappeared when treatment was discontinued. Ggt1dwg/dwg mice represent an important new model for investigating ARHL, therapeutic interventions, and understanding the perceptual and electrophysiological consequences of sensory deprivation caused by the loss of sensory input exclusively from IHC.

  15. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    PubMed Central

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Ding, Wen-Xing; Jaeschke, Hartmut

    2015-01-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adducts formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves formation of mitochondrial protein adducts and mitochondrial dysfunction. PMID:26431796

  16. N-acetyl-L-cysteine pre-treatment protects cryopreserved bovine spermatozoa from reactive oxygen species without compromising the in vitro developmental potential of intracytoplasmic sperm injection embryos.

    PubMed

    Pérez, L; Arias, M E; Sánchez, R; Felmer, R

    2015-12-01

    Excess of reactive oxygen species (ROS) on in vitro embryo production systems negatively affects the quality and developmental potential of embryos, as result of a decreased sperm quality and increased DNA fragmentation. This issue is of major importance in assisted fertilisation procedures such as intracytoplasmic sperm injection (ICSI), because this technique does not allow the natural selection of competent spermatozoa, and therefore, DNA-damaged spermatozoa might be used to fertilise an egg. The aim of this study was to investigate a new strategy to prevent the potential deleterious effect of ROS on cryopreserved bovine spermatozoa. We evaluated the effect of a sperm pre-treatment with different concentrations of N-acetyl-L-cysteine (NAC) on ROS production, viability and DNA fragmentation and assessed the effect of this treatment on the in vitro developmental potential and quality of embryos generated by ICSI. The results show a strong scavenging effect of 1 and 10 mm NAC after exposure of spermatozoa to a ROS inducer, without compromising the viability and DNA integrity. Importantly, in vitro developmental potential and quality of embryos generated by ICSI with spermatozoa treated with NAC were not affected, confirming the feasibility of using this treatment before an ICSI cycle.

  17. Effects of N-acetyl-L-cysteine on redox status and markers of renal function in mice inoculated with Bothrops jararaca and Crotalus durissus terrificus venoms.

    PubMed

    Barone, Juliana Marton; Frezzatti, Rodrigo; Silveira, Paulo Flavio

    2014-03-01

    Renal dysfunction is an important aggravating factor in accidents caused by Crotalus durissus terrificus (Cdt) and Bothrops jararaca (Bj) bites. N-acetyl-l-cysteine (NAC) is well known as a nephroprotective antioxidant with low toxicity. The present study investigated the effects of NAC on redox status and markers of renal function in mice that received vehicle (controls) or venoms (v) of Cdt and Bj. In controls NAC promoted hypercreatinemia, hypouremia, hyperosmolality with decreased urea in urine, hyperproteinuria, decreased protein and increased dipeptidyl peptidase IV (DPPIV) in membrane-bound fraction (MF) from renal cortex (RC) and medulla (RM). NAC ameliorated or normalized altered creatinuria, proteinemia and aminopeptidase (AP) acid in MF, AP basic (APB) in soluble fraction (SF), and neutral AP in SF and MF from RC and RM in vBj envenomation. NAC ameliorated or normalized altered neutral AP in SF from RC and RM, and DPPIV and protein in MF from RC in vCdt envenomation. NAC ameliorated or restored renal redox status respectively in vCdt and vBj, and normalized uricemia in both envenomations. These data are promising perspectives that recommend the clinical evaluation of NAC as potential coadjuvant in the anti venom serotherapy for accidents with these snake's genera.

  18. Potential of N-acetylated-para-aminosalicylic Acid to Accelerate Manganese Enhancement Decline for Long-term MEMRI in Rodent Brain

    PubMed Central

    Bade, Aditya N; Zhou, Biyun; McMillan, JoEllyn; Narayanasamy, Prabagaran; Veerubhotla, Ram; Gendelman, Howard E; Boska, Michael D; Liu, Yutong

    2015-01-01

    Background Manganese (Mn2+)-enhanced MRI (MEMRI) is a valuable imaging tool to study brain structure and function in normal and diseased small animals. The brain retention of Mn2+ is relatively long with a half-life (t1/2) of 51 to 74 days causing a slow decline of MRI signal enhancement following Mn2+ administration. Such slow decline limits using repeated MEMRI to follow the central nervous system longitudinally in weeks or months. This is because residual Mn2+ from preceding administrations can confound the interpretation of imaging results. We investigated whether the Mn2+ enhancement decline could be accelerated thus enabling repeated MEMRI, and as a consequence broadens the utility of MEMRI tests. New Methods We investigated whether N-acetyl-para-aminosalicylic acid (AcPAS), a chelator of Mn2+, could affect the decline of Mn2+ induced MRI enhancement in brain. Results and Conclusion Two-week treatment with AcPAS (200 mg/kg/dose × 3 daily) accelerated the decline of Mn2+ induced enhancement in MRI. In the whole brain on average the enhancement declined from 100% to 17% in AcPAS treated mice, while in PBS controls the decline is from 100% to 27%. We posit that AcPAS could enhance MEMRI utility for evaluating brain biology in small animals. Comparison with Existing Methods To the best of our knowledge, no method exists to accelerate the decline of the Mn2+ induced MRI enhancement for repeated MEMRI tests. PMID:26004847

  19. Restoring the impaired cardiac calcium homeostasis and cardiac function in iron overload rats by the combined deferiprone and N-acetyl cysteine

    PubMed Central

    Wongjaikam, Suwakon; Kumfu, Sirinart; Khamseekaew, Juthamas; Chattipakorn, Siriporn C.; Chattipakorn, Nipon

    2017-01-01

    Intracellular calcium [Ca2+]i dysregulation plays an important role in the pathophysiology of iron overload cardiomyopathy. Although either iron chelators or antioxidants provide cardioprotection, a comparison of the efficacy of deferoxamine (DFO), deferiprone (DFP), deferasirox (DFX), N-acetyl cysteine (NAC) or a combination of DFP plus NAC on cardiac [Ca2+]i homeostasis in chronic iron overload has never been investigated. Male Wistar rats were fed with either a normal diet or a high iron (HFe) diet for 4 months. At 2 months, HFe rats were divided into 6 groups and treated with either a vehicle, DFO (25 mg/kg/day), DFP (75 mg/kg/day), DFX (20 mg/kg/day), NAC (100 mg/kg/day), or combined DFP plus NAC. At 4 months, the number of cardiac T-type calcium channels was increased, whereas cardiac sarcoplasmic-endoplasmic reticulum Ca2+ ATPase (SERCA) was decreased, leading to cardiac iron overload and impaired cardiac [Ca2+]i homeostasis. All pharmacological interventions restored SERCA levels. Although DFO, DFP, DFX or NAC alone shared similar efficacy in improving cardiac [Ca2+]i homeostasis, only DFP + NAC restored cardiac [Ca2+]i homeostasis, leading to restoring left ventricular function in the HFe-fed rats. Thus, the combined DFP + NAC was more effective than any monotherapy in restoring cardiac [Ca2+]i homeostasis, leading to restored myocardial contractility in iron-overloaded rats. PMID:28287621

  20. Phosphorescence detection of L-ascorbic acid with surface-attached N-acetyl-L-cysteine and L-cysteine Mn doped ZnS quantum dots.

    PubMed

    Bian, Wei; Ma, Jing; Guo, Wenrong; Lu, Dongtao; Fan, Meng; Wei, Yanli; Li, Yingfu; Shuang, Shaomin; Choi, Martin M F

    2013-11-15

    N-Acetyl-L-cysteine (NAC) and L-cysteine (Cys) capped Mn doped ZnS quantum dots (NAC-Mn/ZnS QDs and Cys-Mn/ZnS QDs) are firstly prepared by hydrothermal methods. These QDs display strong phosphorescence emission peaks at 583 and 580 nm upon excitation at 315 and 306 nm, respectively. Since their room-temperature phosphorescence is efficiently quenched by L-ascorbic acid (AA), they have been employed as phosphorescence probes for detecting AA. The linear working ranges are 2.5-37.5 and 2.5-47.5 µM and the limits of detection are 0.72 and 1.38 µM for NAC-Mn/ZnS QDs and Cys-Mn/ZnS QDs, respectively. The possible quenching mechanisms have been discussed in detail. The QDs probes are highly selective to AA over other common ions, amino acids, glucose and bovine serum album. Finally, they have been applied successfully for detection of AA in human urine samples with satisfactory results. The recoveries are 98-104%. Our work provides a simple and convenient phosphorescence method to determine AA in real samples.

  1. Oxidative stress mediated cytotoxicity of cyanide in LLC-MK2 cells and its attenuation by alpha-ketoglutarate and N-acetyl cysteine.

    PubMed

    Hariharakrishnan, J; Satpute, R M; Prasad, G B K S; Bhattacharya, R

    2009-03-10

    Cyanide is a rapidly acting mitochondrial poison that inhibits cellular respiration and energy metabolism leading to histotoxic hypoxia followed by cell death. Cyanide is predominantly a neurotoxin but its toxic manifestations in non-neuronal cells are also documented. This study addresses the oxidative stress mediated cytotoxicity of cyanide in Rhesus monkey kidney epithelial cells (LLC-MK2). Cells were treated with various concentrations of potassium cyanide (KCN) for different time intervals and cytotoxicity was evidenced by increased leakage of intracellular lactate dehydrogenase, mitochondrial dysfunction (MTT assay) and depleted energy status of cells (ATP assay). Cytotoxicity was accompanied by lipid peroxidation indicated by elevated levels of malondialdehyde (MDA), reactive oxygen species (ROS) and reactive nitrogen species (RNS) (DCF-DA staining), diminished cellular antioxidant status (reduced glutathione (GSH), glutathione peroxidase, superoxide dismutase and catalase). These cascading events triggered an apoptotic kind of cell death characterized by oligonucleosomal DNA fragmentation and nuclear fragmentation (Hoechst 33342 staining). Apoptosis was further confirmed by increased caspase-3 activity. Cyanide-induced cytotoxicity, oxidative stress, and DNA fragmentation were prevented by alpha-ketoglutarate (A-KG) and N-acetyl cysteine (NAC). A-KG is a potential cyanide antidote that confers protection by interacting with cyanide to form cyanohydrin complex while NAC is a free radical scavenger and enhances the cellular GSH levels. The study reveals cytotoxicity of cyanide in cells of renal origin and the protective efficacy of A-KG and NAC.

  2. Disruption of intermolecular disulfide bonds in PDGF-BB dimers by N-acetyl-L-cysteine does not prevent PDGF signaling in cultured hepatic stellate cells

    SciTech Connect

    Borkham-Kamphorst, Erawan; Meurer, Steffen K.; Gressner, Axel M.; Weiskirchen, Ralf . E-mail: rweiskirchen@ukaachen.de

    2005-12-30

    Oxidative stress is important in the pathogenesis of liver fibrosis through its induction of hepatic stellate cell (HSC) proliferation and enhancement of collagen synthesis. Reactive oxygen species have been found to be essential second messengers in the signaling of both major fibrotic growth factors, platelet-derived growth factor (PDGF) and transforming growth factor-{beta} (TGF-{beta}), in cultured HSC and liver fibrosis. The non-toxic aminothiol N-acetyl-L-cysteine (NAC) inhibits cellular activation and attenuates experimental fibrosis in liver. Prior reports show that NAC is capable of reducing the effects of TGF-{beta} in biological systems, in cultured endothelial cells, and HSC through its direct reducing activity upon TGF-{beta} molecules. We here analyzed the effects of NAC on PDGF integrity, receptor binding, and downstream signaling in culture-activated HSC. We found that NAC dose-dependently induces disintegration of PDGF in vitro. However, even high doses (>20 mM) were not sufficient to prevent the phosphorylation of the PDGF receptor type {beta}, extracellular signal-regulated kinase, or protein kinase B (PKB/Akt). Therefore, we conclude that the PDGF monomer is still active. The described antifibrotic effects are therefore mainly attributable to the structural impairment of TGF-{beta} signaling components reported previously.

  3. Alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 can support immune responses toward tumors overexpressing ganglioside D3 in mice.

    PubMed

    Eby, Jonathan M; Barse, Levi; Henning, Steven W; Rabelink, Martijn J W E; Klarquist, Jared; Gilbert, Emily R; Hammer, Adam M; Fernandez, Manuel F; Yung, Nathan; Khan, Safia; Miller, Hannah G; Kessler, Edward R; Garrett-Mayer, Elizabeth; Dilling, Daniel F; Hoeben, Rob C; Le Poole, I Caroline

    2017-01-01

    An immunotherapeutic strategy is discussed supporting anti-tumor activity toward malignancies overexpressing ganglioside D3. GD3 can be targeted by NKT cells when derived moieties are presented in the context of CD1d. NKT cells can support anti-tumor responses by secreting inflammatory cytokines and through cytotoxicity toward CD1d(+)GD3(+) tumors. To overexpress GD3, we generated expression vector DNA and an adenoviral vector encoding the enzyme responsible for generating GD3 from its ubiquitous precursor GM3. We show that DNA encoding α-N-acetyl-neuraminide α-2,8-sialyltransferase 1 (SIAT8) introduced by gene gun vaccination in vivo leads to overexpression of GD3 and delays tumor growth. Delayed tumor growth is dependent on CD1d expression by host immune cells, as shown in experiments engaging CD1d knockout mice. A trend toward greater NKT cell populations among tumor-infiltrating lymphocytes is associated with SIAT8 vaccination. A single adenoviral vaccination introduces anti-tumor activity similarly to repeated vaccination with naked DNA. Here, greater NKT tumor infiltrates were accompanied by marked overexpression of IL-17 in the tumor, later switching to IL-4. Our results suggest that a single intramuscular adenoviral vaccination introduces overexpression of GD3 by antigen-presenting cells at the injection site, recruiting NKT cells that provide an inflammatory anti-tumor environment. We propose adenoviral SIAT8 (AdV-SIAT8) can slow the growth of GD3 expressing tumors in patients.

  4. Synthesis and Characterization of the Novel Nitric Oxide (NO) Donating Compound, S-nitroso-N-acetyl-D-penicillamine Derivatized Cyclam (SNAP-Cyclam).

    PubMed

    McCarthy, Connor W; Goldman, Jeremy; Frost, Megan C

    2016-03-09

    Nitric oxide (NO) has been heavily studied over the past two decades due to its multitude of physiological functions and its potential therapeutic promise. Of major interest is the desire to fabricate or coat implanted devices with an NO releasing material that will impart the appropriate dose and duration of NO release to positively mediate the biological response to the medical device, thereby improving its safety and efficacy. To date, this goal has not yet been achieved, despite very promising early research. Herein, we describe the synthesis and NO release properties of a novel NO donor which covalently links the S-nitrosothiol, S-nitroso-N-acetyl-D-penicillamine (SNAP), to the macrocycle, cyclam (SNAP-cyclam). This compound can then be blended into a wide variety of polymer matrices, imparting NO release to the polymer system. This release can be initiated and controlled by transition metal catalysis, thermal degradation or photolytic release of NO from the composite NO-releasing material. SNAP-cyclam is capable of releasing physiologically relevant levels of NO for up to 3 months in vitro when blended into poly(l-lactic acid) thin films.

  5. Simultaneous determination of N-acetyl-p-aminophenol and p-aminophenol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode.

    PubMed

    Mehretie, Solomon; Admassie, Shimelis; Hunde, Tadele; Tessema, Merid; Solomon, Theodros

    2011-09-15

    A sensitive and selective method was developed for the determination of N-acetyl-p-aminophenol (APAP) and p-aminophenol (PAP) using poly(3,4-ethylenedioxythiophene) (PEDOT)-modified glassy carbon electrode (GCE). Cyclic voltammetry and differential pulse voltammetry were used to investigate the electrochemical reaction of APAP and PAP at the modified electrode. Both APAP and PAP showed quasireversible redox reactions with formal potentials of 367 mV and 101 mV (vs. Ag/AgCl), respectively, in phosphate buffer solution of pH 7.0. The significant peak potential difference (266 mV) between APAP and PAP enabled the simultaneous determination both species based on differential pulse voltammetry. The voltammetric responses gave linear ranges of 1.0×10(-6)-1.0×10(-4) mol L(-1) and 4.0×10(-6)-3.2×10(-4) mol L(-1), with detection limits of 4.0×10(-7) mol L(-1) and 1.2×10(-6) mol L(-1) for APAP and PAP, respectively. The method was successfully applied for the determination of APAP and PAP in pharmaceutical formulations and biological samples.

  6. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1

    PubMed Central

    Kondratov, Roman V.; Vykhovanets, Olena; Kondratova, Anna A.; Antoch, Marina P.

    2009-01-01

    Deficiency of the circadian clock protein BMAL1 leads to premature aging and increased levels of reactivate oxygen species in several tissues of mice. In order to investigate the role of oxidative stress in accelerated aging and development of age-related pathologies, we continuously administered the antioxidant N-acetyl-L-cysteine toBmal1-deficient mice through their entire lifespan by supplementing drinking water. We found that the life long treatment with antioxidant significantly increased average and maximal lifespan and reduced the rate of age-dependent weight loss and development of cataracts. At the same time, it had no effect on time of onset and severity of other age-related pathologies characteristic of Bmal1-/- mice, such as joint ossification, reduced hair regrowth and sarcopenia. We conclude that chronic oxidative stress affects longevity and contributes to the development of at least some age-associated pathology, although ROS-independent mechanisms may also play a role. Our bioinformatics analysis identified the presence of a conservative E box element in the promoter regions of several genes encoding major antioxidant enzymes. We speculate that BMAL1 controls antioxidant defense by regulating the expression of major antioxidant enzymes. PMID:20157581

  7. Serum and urine N-acetyl-beta-D-glucosaminidase in diabetics on diagnosis and subsequent treatment, and stable insulin dependent diabetics.

    PubMed

    Whiting, P H; Ross, I S; Borthwick, L

    1979-03-15

    N-Acetyl-beta-D-glucosaminidase (NAG) activity has been measured in the serum and urine of diabetics. Results have shown significantly higher levels of serum NAG in newly diagnosed diabetics (945 +/- 372 units/ml) compared to non-diabetic controll (668 +/- 225, p less than 0.005) and the levels were reduced by treatment (778 +/- 218, p less than 0.05). Changes occurred in the same direction when urinary NAG was measured falling from a mean of 572 +/- 298 units/mg urinary creatinine, on diagnosis to 291 +/- 176 after treatment (p less than 0.005), as compared with 177 +/- 86 in non-diabetic controls. Established insulin-treated diabetics had a urinary NAG activity of 461 +/- 440 and a serum NAG activity of 790 +/- 245. No correlation was found between urine NAG activity and urine glucose (r = 0.315), or serum NAG and serum glucose (r = 0.273). An assessment of this enzyme is made in relation to early microangiopathy.

  8. MicroRNA-214 Suppresses Growth and Invasiveness of Cervical Cancer Cells by Targeting UDP-N-acetyl-α-d-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase 7*

    PubMed Central

    Peng, Rui-Qing; Wan, Hai-Ying; Li, Hai-Fang; Liu, Min; Li, Xin; Tang, Hua

    2012-01-01

    MicroRNAs are a class of small noncoding RNAs that function as key regulators of gene expression at the post-transcriptional level. In this study, we demonstrate that miR-214 is frequently down-regulated in cervical cancer, and its expression reduces the proliferation, migration, and invasiveness of cervical cancer cells, whereas inhibiting its expression results in enhanced proliferation, migration, and invasion. miR-214 binds to the 3′-UTR of UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GALNT7), thereby repressing GALNT7 expression. Furthermore, we are the first to show, using quantitative real-time PCR, that GALNT7 is frequently up-regulated in cervical cancer. The knockdown of GALNT7 markedly inhibits cervical cancer cell proliferation, migration, and invasion, whereas ectopic expression of GALNT7 significantly enhances these properties, indicating that GALNT7 might function as an oncogene in cervical cancer. The restoration of GALNT7 expression can counteract the effect of miR-214 on cell proliferation, migration, and invasiveness of cervical cancer cells. Together, these results indicate that miR-214 is a new regulator of GALNT7, and both miR-214 and GALNT7 play important roles in the pathogenesis of cervical cancer. PMID:22399294

  9. Fabrication of nonwoven fabrics consisting of gelatin nanofibers cross-linked by glutaraldehyde or N-acetyl-d-glucosamine by aqueous method.

    PubMed

    Furuike, Tetsuya; Chaochai, Thitirat; Okubo, Tsubasa; Mori, Takahiro; Tamura, Hiroshi

    2016-12-01

    Since gelatin (Gel) undergoes a sol-gel transition, a novel dry-spinning procedure for Gel was used. Here, nonwoven fabrics of Gel were electrospun by applying the principles of dry spinning. The diameter of the fibers and the viscosity and flow rate of the solution were directly dependent on the concentration of Gel. Nonwoven fabrics spun with a 25% (w/w) Gel concentration only exhibited a nanoscale fiber diameter. In order to improve the properties of the nonwoven fabrics, they were cross-linked with glutaraldehyde (GTA) vapor after spinning or by the addition of N-acetyl-d-glucosamine (GlcNAc) to the Gel solution prior to spinning followed by heating these fibers. The developed nonwoven fibers were characterized using SEM, rheometry, FTIR, TGA, and mechanical tensile testing. The nonwoven fabrics cross-linked by the GTA vapor exhibited improved mechanical properties compared to those without cross-linking or with GlcNAc cross-linking. The swelling and water uptake ability resulted in no morphological changes in the fibers with GTA cross-linking. The TGA thermogram confirmed no phase change in the composite structure. Further, in vitro cytocompatibility studies using human mesenchymal stem cells showed the compatible nature of the developed nonwoven fibers. Our studies showed that these nonwoven fibers could be useful in medical care.

  10. Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen.

    PubMed

    Nitta, Kyoko; Shi, Sen; Nagai, Takako; Kanasaki, Megumi; Kitada, Munehiro; Srivastava, Swayam Prakash; Haneda, Masakazu; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    Kidney fibrosis is the final common pathway of progressive kidney diseases including diabetic nephropathy. Here, we report that the endogenous antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP), the substrate of angiotensin-converting enzyme (ACE), is an orally available peptide drug used to cure kidney fibrosis in diabetic mice. We utilized two mouse models of diabetic nephropathy, streptozotocin- (STZ-) induced type 1 diabetic CD-1 mice and type 2 diabetic nephropathy model db/db mice. Intervention with the ACE inhibitor imidapril, oral AcSDKP, or imidapril + oral AcSDKP combination therapy increased urine AcSDKP levels. AcSDKP levels were significantly higher in the combination group compared to those of the other groups. AcSDKP oral administration, either AcSDKP alone or in addition to imidapril, ameliorated glomerulosclerosis and tubulointerstitial fibrosis. Plasma cystatin C levels were higher in both models, at euthanasia, and were restored by all the treatment groups. The levels of antifibrotic miRs, such as miR-29 or let-7, were suppressed in the kidneys of both models; all treatments, especially the combination of imidapril + oral AcSDKP, restored the antifibrotic miR levels to a normal value or even higher. AcSDKP may be an oral antifibrotic peptide drug that would be relevant to combating fibroproliferative kidney diseases such as diabetic nephropathy.

  11. The acetaminophen metabolite N-acetyl-p-benzoquinone imine (NAPQI) inhibits glutathione synthetase in vitro; a clue to the mechanism of 5-oxoprolinuric acidosis?

    PubMed

    Walker, Valerie; Mills, Graham A; Anderson, Mary E; Ingle, Brandall L; Jackson, John M; Moss, Charlotte L; Sharrod-Cole, Hayley; Skipp, Paul J

    2017-02-01

    1. Metabolic acidosis due to accumulation of l-5-oxoproline is a rare, poorly understood, disorder associated with acetaminophen treatment in malnourished patients with chronic morbidity. l-5-Oxoprolinuria signals abnormal functioning of the γ-glutamyl cycle, which recycles and synthesises glutathione. Inhibition of glutathione synthetase (GS) by N-acetyl-p-benzoquinone imine (NAPQI) could contribute to 5-oxoprolinuric acidosis in such patients. We investigated the interaction of NAPQI with GS in vitro. 2. Peptide mapping of co-incubated NAPQI and GS using mass spectrometry demonstrated binding of NAPQI with cysteine-422 of GS, which is known to be essential for GS activity. Computational docking shows that NAPQI is properly positioned for covalent bonding with cysteine-422 via Michael addition and hence supports adduct formation. 3. Co-incubation of 0.77 μM of GS with NAPQI (25-400 μM) decreased enzyme activity by 16-89%. Inhibition correlated strongly with the concentration of NAPQI and was irreversible. 4. NAPQI binds covalently to GS causing irreversible enzyme inhibition in vitro. This is an important novel biochemical observation. It is the first indication that NAPQI may inhibit glutathione synthesis, which is pivotal in NAPQI detoxification. Further studies are required to investigate its biological significance and its role in 5-oxoprolinuric acidosis.

  12. Overview of pepsin-like aspartic peptidases.

    PubMed

    Dunn, B M

    2001-11-01

    The aspartic peptidase family of enzymes has been implicated in a variety of disease states, from stomach ulcers, to breast cancer, and even Alzheimer's Disease. This unit describes the major characteristics of the aspartic peptidases, including mechanism of action, subcellular and tissue localization, and biological substrate specificity.

  13. An improved sample preparation for an LC method used in the age estimation based on aspartic acid racemization from human dentin.

    PubMed

    Yekkala, Raja; Meers, Carine; Hoogmartens, Jos; Lambrichts, Ivo; Willems, Guy; Van Schepdael, Ann

    2007-01-01

    The determination of age on the basis of aspartic acid (Asp) racemization in teeth is one of the most reliable and accurate methods to date. In this paper, the usefulness of HPLC coupled with fluorescence detection for determination of Asp racemization was evaluated. A modified sample preparation is proposed for better stability of o-phthaldialdehyde-N-acetyl-L-cysteine derivatives of D/L-Asp (due to the instability below pH 7). To ensure the accuracy of the method, the validation parameters' specificity, precision, linearity, and LOD were determined. Three dentin samples of premolar teeth, extracted from living individuals (bucco-lingual longitudinal sections of 1 mm thickness), were analyzed and quantitative results are discussed.

  14. Thermoactive β-N-acetylhexosaminidase production by a soil isolate of Penicillium monoverticillium CFR 2 under solid state fermentation: parameter optimization and application for N-acetyl chitooligosaccharides preparation from chitin.

    PubMed

    Suresh, P V; Anil Kumar, P K; Sachindra, N M

    2011-06-01

    Two fungal strains were evaluated for β-N-acetylhexosaminidase production by solid state fermentation using different agro-industrial residues such as commercial wheat bran (CWB) and shrimp shell chitin waste (SSCW), of which Penicillium monoverticillium CFR 2 a local soil isolate showed significantly (P ≤ 0.001) higher β-N-acetylhexosaminidase activity on CWB medium as compared with the activity of Fusarium oxysporum CFR 8. Fermentation parameters such as incubation temperature, incubation time, initial moisture content and inoculum concentration were optimized by statistically designed experiments, using 3**(4-1) fractional factorial design of Response Surface Methodology. The high R(2) (0.9512) observed during validation experiment showed the usefulness of the model. Highest level of enzyme activity (311.84 U/g IDS) was predicted at 75% (w/w) initial moisture content, 26 °C incubation temperature, 168 h incubation time and initial inoculum, at the highest concentration tested (2.95 ml spore suspension/5 g substrate). Statistical optimization yielded a 4.5 fold increase in β-N-acetylhexosaminidase activity. The crude β-N-acetylhexosaminidase showed optimum temperature of 57 ± 1 °C and pH of 3.6 and retained 50% activity after 1 h of incubation at 57 ± 1 °C. SDS-PAGE zymogram revealed crude enzyme was a monomer with an apparent molecular weight ~110 kDa. The crude enzyme formed 6.81 ± 0.03 mM/l of N-acetyl chitooligosaccharides from colloidal chitin in 24 h of incubation. HPLC analysis revealed hydrolysate contained 37.57% N-acetyl chitotriose and 62.43% N-acetyl chitohexose, indicating its potential for specific N-acetyl chitooligosaccharides production.

  15. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin

    PubMed Central

    Liu, Yun-He; D'Ambrosio, Martin; Liao, Tang-dong; Peng, Hongmei; Rhaleb, Nour-Eddine; Sharma, Umesh; André, Sabine; Gabius, Hans-J.; Carretero, Oscar A.

    2009-01-01

    Galectin-3 (Gal-3) is secreted by activated macrophages. In hypertension, Gal-3 is a marker for hypertrophic hearts prone to develop heart failure. Gal-3 infused in pericardial sac leads to cardiac inflammation, remodeling, and dysfunction. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), a naturally occurring tetrapeptide, prevents and reverses inflammation and collagen deposition in the heart in hypertension and heart failure postmyocardial infarction. In the present study, we hypothesize that Ac-SDKP prevents Gal-3-induced cardiac inflammation, remodeling, and dysfunction, and these effects are mediated by the transforming growth factor (TGF)-β/Smad3 signaling pathway. Adult male rats were divided into four groups and received the following intrapericardial infusion for 4 wk: 1) vehicle (saline, n = 8); 2) Ac-SDKP (800 μg·kg−1·day−1, n = 8); 3) Gal-3 (12 μg/day, n = 7); and 4) Ac-SDKP + Gal-3 (n = 7). Left ventricular ejection fraction, cardiac output, and transmitral velocity were measured by echocardiography; inflammatory cell infiltration, cardiomyocyte hypertrophy, and collagen deposition in the heart by histological and immunohistochemical staining; and TGF-β expression and Smad3 phosphorylation by Western blot. We found that, in the left ventricle, Gal-3 1) enhanced macrophage and mast cell infiltration, increased cardiac interstitial and perivascular fibrosis, and causes cardiac hypertrophy; 2) increased TGF-β expression and Smad3 phosphorylation; and 3) decreased negative change in pressure over time response to isoproterenol challenge, ratio of early left ventricular filling phase to atrial contraction phase, and left ventricular ejection fraction. Ac-SDKP partially or completely prevented these effects. We conclude that Ac-SDKP prevents Gal-3-induced cardiac inflammation, fibrosis, hypertrophy, and dysfunction, possibly via inhibition of the TGF-β/Smad3 signaling pathway. PMID:19098114

  16. Antioxidant N-acetyl-L-cysteine (NAC) supplementation reduces reactive oxygen species (ROS)-mediated hepatocellular tumor promotion of indole-3-carbinol (I3C) in rats.

    PubMed

    Shimamoto, Keisuke; Hayashi, Hitomi; Taniai, Eriko; Morita, Reiko; Imaoka, Masako; Ishii, Yuji; Suzuki, Kazuhiko; Shibutani, Makoto; Mitsumori, Kunitoshi

    2011-01-01

    Indole-3-carbinol (I3C) has a liver tumor promoting activity in rats, and is also known as a cytochrome p450 1A (CYP1A) inducer. The generation of reactive oxygen species (ROS) resulting from CYP1A induction due to I3C, is probably involved in the tumor promotion. To clarify whether ROS generation contributes to I3C's induction of hepatocellular altered foci, partially hepatectomized rats were fed a diet containing 0.5% of I3C for 8 weeks with or without 0.3% N-acetyl-L-cysteine (NAC), an antioxidant, in their drinking water after N-diethylnitrosamine (DEN) initiation. Immunohistochemical analysis showed that the glutathione-S-transferase placental form (GST-P) positive foci promoted by I3C were suppressed by the administration of NAC. The mRNAs of members of the phase II nuclear factor, erythroid derived 2, like 2 (Nrf2) gene batteries, whose promoter region is called as antioxidant response element (ARE), were down-regulated in the DEN-I3C-NAC group compared to the DEN-I3C group, but Cyp1a1 was not suppressed in the DEN-I3C-NAC group compared to the DEN-I3C group. There was no marked difference in production of microsomal ROS and genomic 8-hydroxy-2'-deoxygunosine (8-OHdG) as an oxidative DNA marker between the DEN-I3C-NAC and DEN-I3C groups, while mapkapk3 and Myc were decreased by the NAC treatment. These results indicate that oxidative stress plays an important role for I3C's tumor promotion, and NAC suppresses induction of hepatocellular altered foci with suppressed cytoplasmic oxidative stress.

  17. Atorvastatin acts synergistically with N-acetyl cysteine to provide therapeutic advantage against Fas-activated erythrocyte apoptosis during chronic arsenic exposure in rats

    SciTech Connect

    Biswas, Debabrata; Sen, Gargi; Sarkar, Avik; Biswas, Tuli

    2011-01-01

    Arsenic is an environmental toxicant that reduces the lifespan of circulating erythrocytes during chronic exposure. Our previous studies had indicated involvement of hypercholesterolemia and reactive oxygen species (ROS) in arsenic-induced apoptotic death of erythrocytes. In this study, we have shown an effective recovery from arsenic-induced death signaling in erythrocytes in response to treatment with atorvastatin (ATV) and N-acetyl cysteine (NAC) in rats. Our results emphasized on the importance of cholesterol in the promotion of ROS-mediated Fas signaling in red cells. Arsenic-induced activation of caspase 3 was associated with phosphatidylserine exposure on the cell surface and microvesiculation of erythrocyte membrane. Administration of NAC in combination with ATV, proved to be more effective than either of the drugs alone towards the rectification of arsenic-mediated disorganization of membrane structural integrity, and this could be linked with decreased ROS accumulation through reduced glutathione (GSH) repletion along with cholesterol depletion. Moreover, activation of caspase 3 was capable of promoting aggregation of band 3 with subsequent binding of autologous IgG and opsonization by C3b that led to phagocytosis of the exposed cells by the macrophages. NAC-ATV treatment successfully amended these events and restored lifespan of erythrocytes from the exposed animals almost to the control level. This work helped us to identify intracellular membrane cholesterol enrichment and GSH depletion as the key regulatory points in arsenic-mediated erythrocyte destruction and suggested a therapeutic strategy against Fas-activated cell death related to enhanced cholesterol and accumulation of ROS.

  18. N-acetyl-seryl-aspartyl-lysyl-proline attenuates renal injury and dysfunction in hypertensive rats with reduced renal mass: council for high blood pressure research.

    PubMed

    Liao, Tang-Dong; Yang, Xiao-Ping; D'Ambrosio, Martin; Zhang, Yanlu; Rhaleb, Nour-Eddine; Carretero, Oscar A

    2010-02-01

    N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring peptide of which the plasma concentration is increased 4- to 5-fold by angiotensin-converting enzyme inhibitors. We reported previously that, in models of both hypertension and postmyocardial infarction, Ac-SDKP reduces cardiac inflammation and fibrosis. However, it is unknown whether Ac-SDKP can prevent or reverse renal injury and dysfunction in hypertension. In the present study, we tested the hypothesis that, in rats with 5/6 nephrectomy (5/6Nx)-induced hypertension, Ac-SDKP reduces renal damage, albuminuria, and dysfunction by decreasing inflammatory cell infiltration and renal fibrosis and by increasing nephrin protein. Ac-SDKP (800 microg/kg per day, SC via osmotic minipump) or vehicle was either started 7 days before 5/6Nx (prevention) and continued for 3 weeks or started 3 weeks after 5/6Nx (reversal) and continued for another 3 weeks. Rats with 5/6Nx developed high blood pressure, left ventricular hypertrophy, albuminuria, decreased glomerular filtration rate, and increased macrophage infiltration (inflammation) and renal collagen content (fibrosis). Ac-SDKP did not affect blood pressure or left ventricular hypertrophy in either group; however, it significantly reduced albuminuria, renal inflammation, and fibrosis and improved glomerular filtration rate in both prevention and reversal groups. Moreover, slit diaphragm nephrin protein expression in the glomerular filtration barrier was significantly decreased in hypertensive rats. This effect was partially prevented or reversed by Ac-SDKP. We concluded that Ac-SDKP greatly attenuates albuminuria and renal fibrosis and improves renal function in rats with 5/6Nx. These effects may be related to decreased inflammation (macrophages) and increased nephrin protein.

  19. N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis.

    PubMed

    Giorgi, Vanessa S I; Da Broi, Michele G; Paz, Claudia C P; Ferriani, Rui A; Navarro, Paula A

    2016-03-01

    This study evaluated the potential protective effect of the antioxidants, l-carnitine (LC) and N-acetyl-cysteine (NAC), in preventing meiotic oocyte damage induced by follicular fluid (FF) from infertile women with mild endometriosis (ME). We performed an experimental study. The FF samples were obtained from 22 infertile women undergoing stimulated cycles for intracytoplasmic sperm injection (11 with ME and 11 without endometriosis). Immature bovine oocytes were submitted to in vitro maturation (IVM) divided into 9 groups: no-FF (No-FF); with FF from control (CFF) or ME (EFF) groups; and with LC (C + LC and E + LC), NAC (C + NAC and E + NAC), or both antioxidants (C + 2Ao and E + 2Ao). After IVM, oocytes were immunostained for visualization of microtubules and chromatin by confocal microscopy. The percentage of meiotically normal metaphase II (MII) oocytes was significantly lower in the EFF group (51.35%) compared to No-FF (86.36%) and CFF (83.52%) groups. The E + NAC (62.22%), E + LC (80.61%), and E + 2Ao (61.40%) groups showed higher percentage of normal MII than EFF group. The E + LC group showed higher percentage of normal MII than E + NAC and E + 2Ao groups and a similar percentage to No-FF and CFF groups. Therefore, FF from infertile women with ME causes meiotic abnormalities in bovine oocytes, and, for the first time, we demonstrated that the use of NAC and LC prevents these damages. Our findings elucidate part of the pathogenic mechanisms involved in infertility associated with ME and open perspectives for further studies investigating whether the use of LC could improve the natural fertility and/or the results of in vitro fertilization of women with ME.

  20. The effects of N-acetyl-cysteine and acetyl-L-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury.

    PubMed

    Karalija, A; Novikova, L N; Kingham, P J; Wiberg, M; Novikov, L N

    2014-06-06

    Traumatic spinal cord injury induces a long-standing inflammatory response in the spinal cord tissue, leading to a progressive apoptotic death of spinal cord neurons and glial cells. We have recently demonstrated that immediate treatment with the antioxidants N-acetyl-cysteine (NAC) and acetyl-l-carnitine (ALC) attenuates neuroinflammation, induces axonal sprouting, and reduces the death of motoneurons in the vicinity of the trauma zone 4weeks after initial trauma. The objective of the current study was to investigate the effects of long-term antioxidant treatment on the survival of descending rubrospinal neurons after spinal cord injury in rats. It also examines the short- and long-term effects of treatment on apoptosis, inflammation, and regeneration in the spinal cord trauma zone. Spinal cord hemisection performed at the level C3 induced a significant loss of rubrospinal neurons 8 weeks after injury. At 2 weeks, an increase in the expression of the apoptosis-associated markers BCL-2-associated X protein (BAX) and caspase 3, as well as the microglial cell markers OX42 and ectodermal dysplasia 1 (ED1), was seen in the trauma zone. After 8 weeks, an increase in immunostaining for OX42 and the serotonin marker 5HT was detected in the same area. Antioxidant therapy reduced the loss of rubrospinal neurons by approximately 50%. Treatment also decreased the expression of BAX, caspase 3, OX42 and ED1 after 2 weeks. After 8 weeks, treatment decreased immunoreactivity for OX42, whereas it was increased for 5HT. In conclusion, this study provides further insight in the effects of treatment with NAC and ALC on descending pathways, as well as short- and long-term effects on the spinal cord trauma zone.

  1. Correlation between glomerular filtration rate and urinary N acetyl-beta-D glucosaminidase in children with persistent proteinuria in chronic glomerular disease

    PubMed Central

    Hong, Jeong Deok

    2012-01-01

    Purpose Urinary excretion of N acetyl-beta-D glucosaminidase (NAG) and β2-microglobulin (β2-M) was increased in the presence of proximal tubular damage. Based on these urinary materials, we investigated the ability of expecting renal function in chronic glomerular diseases. In this study, we evaluated the relationship between glomerular filtration rate (GFR) urinary NAG, and urinary β2-M. Methods We evaluated 52 children with chronic kidney disease at the Chung-Ang University Hospital between January 2003 and August 2009. We investigated the 24-hour urinalysis and hematologic values in all 52 patients. Serum creatinine, creatinine clearance (Ccr), serum cystatin C, urinary β2-M and urinary NAG were measured. Results Out of 52 patients, there were 13 children with minimal change in disease, 3 children with focal segmental glomerulosclerosis, 17 children with immunoglobulin A nephropathy, 15 children with Henoch-Schönlein purpua nephritis, 3 children with poststreptococcal glomerulonephritis, and 1 child with thin glomerular basement membrane disease. In these patients, there were significant correlation between the Ccr and urinary NAG (r=-0.817; P<0.01), and between the GFR (as determined by Schwartz method) and urinary NAG (r=-0.821; P<0.01). In addition, there was a significant correlation between the GFR (as determined by Bokencamp method) and urinary NAG (r=-0.858; P<0.01). Conclusion In our study, there was a significant correlation between the GFR and urinary NAG, but there was no correlation between the GFR and urinary β2-M, suggesting that the GFR can be predicted by urinary NAG in patients with chronic glomerular disease. PMID:22574074

  2. Metallothionein 1A polymorphisms may influence urine uric acid and N-acetyl-beta-D-glucosaminidase (NAG) excretion in chronic lead-exposed workers.

    PubMed

    Yang, Chen-Cheng; Chen, Hsin-I; Chiu, Yu-Wen; Tsai, Chih-Hung; Chuang, Hung-Yi

    2013-04-05

    Lead is a renal toxin, and susceptibility to lead varies between individuals. Metallothionein (MT) is known for its metal scavenging role. The aim of the study was to investigate the association of blood lead levels, urinary uric acid (UA) and N-acetyl-beta-d-glucosaminidase (NAG) in chronic occupational lead-exposed workers, and to study whether the association was influenced by MT1A gene polymorphisms. In this cross-sectional study, 412 lead-exposed workers participated. Their annual health examination data and renal function markers were collected after the Institutional Review Broad of Kaohsiung Medical University Hospital approved the study and consent letters were obtained. From the blood samples, DNA was extracted and used for real-time PCR typing of 2 MT1A single nucleotide polymorphisms (SNPs): rs11640851 and rs8052394 on exons 2 and 3. Descriptive analysis, one-way ANOVA, and multiple linear regressions were performed. There was a significant inverted relationship of creatinine-adjusted urine UA concentrations and the time-weighted index of cumulative blood lead levels (TWICL) that may be significantly influenced by the AC genotypes of rs11640851 in exon 2 and rs8052394 in exon 3. After controlling for potential confounding factors, the creatinine-adjusted urine NAG concentrations were shown to be influenced by the GG genotype of rs8052394 in exon 3, and were weakly increased with TWICL. Therefore, we concluded that the variations of MT1A SNPs may influence urine UA and NAG excretion in chronic lead-exposed workers, and urine creatinine-adjusted urine UA as a biomarker of lead toxicity should be considered.

  3. [Pharmacological effects of N-acetyl-L-cysteine on the respiratory tract. (I). Quantitative and qualitative changes in respiratory tract fluid and sputum (author's transl)].

    PubMed

    Kogi, K; Saito, T; Kasé, Y; Hitoshi, T

    1981-06-01

    The following three experiments were performed to determine the effects of N-acetyl-L-cysteine (NAC) on the quantity and quality of respiratory tract fluid (RTF) and sputum. All drugs used were administered into the stomach through a gastric tube. 1) Indirect measurement of bronchial secretion in rats, which was expressed by the amounts of dye excreted into the respiratory tract, was carried out according the the Sakuno's method, with some modification. Some expectorants of the secretomotor type, such as bromhexine and pilocarpine, significantly increased the secretion, even at low doses. On the other hand, mucolytic agents such as NAC augmented the secretion only in doses of 500 to 1500 mg/kg. 2)As a direct method of measurements, Kasé's modification of Perry and Boyd's method was used to collect RTF, quantitatively, from rabbits. The RTF of healthy rabbits was colorless and watery. The administration of NAC in doses of 500 to 1500 mg/kg augmented the output volume and RTF became slightly turbid, probably due to an increase in the viscous mucus. 3) Rabbits with subacute bronchitis were prepared by long-term exposure to air contaminated with SO2 gas and sputa were collected before and after administration of NAC, respectively, according to the Kase's method. The sputa were opalescent and viscous gel included nodular masses. The administration of NAC, 1000 and 1500 mg/kg resulted in a dose dependent decrease in the relative viscosity. The percent-decreased in viscosity with NAC was statistically correlated with that in amounts of dry matter, those in protein and polysaccharide in the sputa. From the results described above, it was concluded that NAC given into the stomach can liquefy sputum by splitting mucoprotein disulphide linkages, that is, altering the rheological characteristics of sputum to facilitate expectoration.

  4. RNA therapeutics directed to the non coding regions of APP mRNA, in vivo anti-amyloid efficacy of paroxetine, erythromycin, and N-acetyl cysteine.

    PubMed

    Tucker, Stephanie; Ahl, Michelle; Cho, Hyun-Hee; Bandyopadhyay, Sanghamitra; Cuny, Gregory D; Bush, Ashley I; Goldstein, Lee E; Westaway, David; Huang, Xudong; Rogers, Jack T

    2006-07-01

    Lead compounds directed to the 5' leader of the Amyloid Precursor Protein transcript (i.e., paroxetine (SSRI), N-acetyl cysteine (antioxidant), and erythromycin (macrolide antibiotic)) were employed in a pilot study to evaluate their anti-amyloid efficacy in the TgCRND8 transgenic mouse model for Alzheimer's Disease (AD). The relative levels of Abeta peptide were reduced after exposure of mice to paroxetine (N=5), NAC (N=7), and erythromycin (N=7) relative to matched placebo counterparts. Paroxetine limited the levels of APP holoprotein and total Abeta peptide levels (measurements of Abeta were performed at two separate sites by quantitative western blotting and ELISA assay). The paroxetine data provided proof-of-concept for our strategy for further screening the APP 5'UTR target to identify novel drugs that exhibit anti-amyloid efficacy in vivo. Erythromycin and azithromycin were macrolide antibiotics that markedly changed the cleavage of the APP C-Terminal Fragment (CTF) in SH-SY5Y cells. Erythromycin provided orally to TgCRND8 mice consistently (100%) reduced brain Abeta(1-42) levels. These data demonstrated a highly statistically significant anti-amyloid trend for paroxetine, NAC and erythromycin. The potential for conducting further studies with these compounds using larger cohorts of TgCRND8 mice is discussed, particularly since erythromycin has recently been exposed to mice for a further 6 months (N=6). It will be possible to employ the chemical structures of paroxetine and erythromycin as starting points for drug design and development for AD therapeutics.

  5. N-Acetyl-D-Glucosamine Kinase Interacts with Dynein-Lis1-NudE1 Complex and Regulates Cell Division

    PubMed Central

    Sharif, Syeda Ridita; Islam, Ariful; Moon, Il Soo

    2016-01-01

    N-acetyl-D-glucosamine kinase (GlcNAc kinase or NAGK) primarily catalyzes phosphoryl transfer to GlcNAc during amino sugar metabolism. Recently, it was shown NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and upregulates axo-dendritic growth, which is an enzyme activity-independent, non-canonical structural role. The authors examined the distributions of NAGK and NAGK-dynein complexes during the cell cycle in HEK293T cells. NAGK was expressed throughout different stages of cell division and immunocytochemistry (ICC) showed NAGK was localized at nuclear envelope, spindle microtubules (MTs), and kinetochores (KTs). A proximity ligation assay (PLA) for NAGK and DYNLRB1 revealed NAGK-dynein complex on nuclear envelopes in prophase cells and on chromosomes in metaphase cells. NAGK-DYNLRB1 PLA followed by Lis1/NudE1 immunostaining showed NAGK-dynein complexes were colocalized with Lis1 and NudE1 signals, and PLA for NAGK-Lis1 showed similar signal patterns, suggesting a functional link between NAGK and dynein-Lis1 complex. Subsequently, NAGK-dynein complexes were found in KTs and on nuclear membranes where KTs were marked with CENP-B ICC and nuclear membrane with lamin ICC. Furthermore, knockdown of NAGK by small hairpin (sh) RNA was found to delay cell division. These results indicate that the NAGK-dynein interaction with the involvements of Lis1 and NudE1 plays an important role in prophase nuclear envelope breakdown (NEB) and metaphase MT-KT attachment during eukaryotic cell division. PMID:27646688

  6. Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis

    PubMed Central

    Srivastava, Swayam Prakash; Shi, Sen; Kanasaki, Megumi; Nagai, Takako; Kitada, Munehiro; He, Jianhua; Nakamura, Yuka; Ishigaki, Yasuhito; Kanasaki, Keizo; Koya, Daisuke

    2016-01-01

    N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous antifibrotic peptide. We found that suppression of AcSDKP and induction of dipeptidyl peptidase-4 (DPP-4), which is associated with insufficient levels of antifibrotic microRNA (miR)s in kidneys, were imperative to understand the mechanisms of fibrosis in the diabetic kidneys. Analyzing streptozotocin (STZ)-induced diabetic mouse strains, diabetic CD-1 mice with fibrotic kidneys could be differentiated from less-fibrotic diabetic 129Sv mice by suppressing AcSDKP and antifibrotic miRs (miR-29s and miR-let-7s), as well as by the prominent induction of DPP-4 protein expression/activity and endothelial to mesenchymal transition. In diabetic CD-1 mice, these alterations were all reversed by AcSDKP treatment. Transfection studies in culture endothelial cells demonstrated crosstalk regulation of miR-29s and miR-let-7s against mesenchymal activation program; such bidirectional regulation could play an essential role in maintaining the antifibrotic program of AcSDKP. Finally, we observed that AcSDKP suppression in fibrotic mice was associated with induction of both interferon-γ and transforming growth factor-β signaling, crucial molecular pathways that disrupt antifibrotic miRs crosstalk. The present study provides insight into the physiologically relevant antifibrotic actions of AcSDKP via antifibrotic miRs; restoring such antifibrotic programs could demonstrate potential utility in combating kidney fibrosis in diabetes. PMID:27425816

  7. Arsenic Metabolites, Including N-Acetyl-4-hydroxy-m-arsanilic Acid, in Chicken Litter from a Roxarsone-Feeding Study Involving 1600 Chickens.

    PubMed

    Yang, Zonglin; Peng, Hanyong; Lu, Xiufen; Liu, Qingqing; Huang, Rongfu; Hu, Bin; Kachanoski, Gary; Zuidhof, Martin J; Le, X Chris

    2016-07-05

    The poultry industry has used organoarsenicals, such as 3-nitro-4-hydroxyphenylarsonic acid (Roxarsone, ROX), to prevent disease and to promote growth. Although previous studies have analyzed arsenic species in chicken litter after composting or after application to agricultural lands, it is not clear what arsenic species were excreted by chickens before biotransformation of arsenic species during composting. We describe here the identification and quantitation of arsenic species in chicken litter repeatedly collected on days 14, 24, 28, 30, and 35 of a Roxarsone-feeding study involving 1600 chickens of two strains. High performance liquid chromatography separation with simultaneous detection by both inductively coupled plasma mass spectrometry and electrospray ionization tandem mass spectrometry provided complementary information necessary for the identification and quantitation of arsenic species. A new metabolite, N-acetyl-4-hydroxy-m-arsanilic acid (N-AHAA), was identified, and it accounted for 3-12% of total arsenic. Speciation analyses of litter samples collected from ROX-fed chickens on days 14, 24, 28, 30, and 35 showed the presence of N-AHAA, 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA), inorganic arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)), dimethylarsinic acid (DMA(V)), and ROX. 3-AHPAA accounted for 3-19% of the total arsenic. Inorganic arsenicals (the sum of As(III) and As(V)) comprised 2-6% (mean 3.5%) of total arsenic. Our results on the detection of inorganic arsenicals, methylarsenicals, 3-AHPAA, and N-AHAA in the chicken litter support recent findings that ROX is actually metabolized by the chicken or its gut microbiome. The presence of the toxic metabolites in chicken litter is environmentally relevant as chicken litter is commonly used as fertilizer.

  8. Sensitive Electrochemiluminescence Immunosensor for Detection of N-Acetyl-β-d-glucosaminidase Based on a "Light-Switch" Molecule Combined with DNA Dendrimer.

    PubMed

    Wang, Haijun; Yuan, Yali; Zhuo, Ying; Chai, Yaqin; Yuan, Ruo

    2016-06-07

    Here, a novel "light-switch" molecule of Ru (II) complex ([Ru(dcbpy)2dppz](2+)-DPEA) with self-enhanced electrochemiluminescence (ECL) property is proposed, which is almost nonemissive in aqueous solution but is brightly luminescent when it intercalates into DNA duplex. Owing to less energy loss and shorter electron-transfer distance, the intramolecular ECL reaction between the luminescent [Ru(dcbpy)2dppz](2+) and coreactive tertiary amine group in N,N-diisopropylethylenediamine (DPEA) makes the obtained "light-switch" molecule possess much higher light-switch efficiency compared with the traditional "light-switch" molecule. For increasing the loading amount and further enhancing the luminous efficiency of the "light-switch" molecule, biotin labeled DNA dendrimer (the fourth generation, G4) is prepared from Y-shape DNA by a step-by-step assembly strategy, which provides abundant intercalated sites for [Ru(dcbpy)2dppz](2+)-DPEA. Meanwhile, the obtained nanocomposite (G4-[Ru(dcbpy)2dppz](2+)-DPEA) could well bind with streptavidin labeled detection antibody (SA-Ab2) due to the existence of abundant biotin. Through sandwiched immunoreaction, an ECL immunosensor was fabricated for sensitive determination of N-acetyl-β-d-glucosaminidase (NAG), a typical biomarker for diabetic nephropathy (DN). The detemination linear range was 0.1 pg mL(-1) to 1 ng mL(-1), and the detection limit was 0.028 pg mL(-1). The developed strategy combining the ECL self-enhanced "light-switch" molecular and DNA nanotechnology offers an effective signal amplification mean and provides ample potential for further bioanalysis and clinical study.

  9. N-Acetyl-S-(n-Propyl)-L-Cysteine in Urine from Workers Exposed to 1-Bromopropane in Foam Cushion Spray Adhesives

    PubMed Central

    Hanley, Kevin W.; Petersen, Martin R.; Cheever, Kenneth L.; Luo, Lian

    2009-01-01

    1-Bromopropane (1-BP) has been marketed as an alternative for ozone depleting and other solvents; it is used in aerosol products, adhesives, metal, precision, and electronics cleaning solvents. Mechanisms of toxicity of 1-BP are not fully understood, but it may be a neurological and reproductive toxicant. Sparse exposure information prompted this study using 1-BP air sampling and urinary metabolites. Mercapturic acid conjugates are excreted in urine from 1-BP metabolism involving debromination. Research objectives were to evaluate the utility of urinary N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) for assessing exposure to 1-BP and compare it to urinary bromide [Br(−)] previously reported for these workers. Forty-eight-hour urine specimens were obtained from 30 workers at two factories where 1-BP spray adhesives were used to construct polyurethane foam seat cushions. Urine specimens were also obtained from 21 unexposed control subjects. All the workers' urine was collected into composite samples representing three time intervals: at work, after work but before bedtime, and upon awakening. Time-weighted average (TWA) geometric mean breathing zone concentrations were 92.4 and 10.5 p.p.m. for spraying and non-spraying jobs, respectively. Urinary AcPrCys showed the same trend as TWA exposures to 1-BP: higher levels were observed for sprayers. Associations of AcPrCys concentrations, adjusted for creatinine, with 1-BP TWA exposure were statistically significant for both sprayers (P < 0.05) and non-sprayers (P < 0.01). Spearman correlation coefficients for AcPrCys and Br(−) analyses determined from the same urine specimens were highly correlated (P < 0.0001). This study confirms that urinary AcPrCys is an important 1-BP metabolite and an effective biomarker for highly exposed foam cushion workers. PMID:19706636

  10. The Protein BpsB Is a Poly-β-1,6-N-acetyl-d-glucosamine Deacetylase Required for Biofilm Formation in Bordetella bronchiseptica*

    PubMed Central

    Little, Dustin J.; Milek, Sonja; Bamford, Natalie C.; Ganguly, Tridib; DiFrancesco, Benjamin R.; Nitz, Mark; Deora, Rajendar; Howell, P. Lynne

    2015-01-01

    Bordetella pertussis and Bordetella bronchiseptica are the causative agents of whooping cough in humans and a variety of respiratory diseases in animals, respectively. Bordetella species produce an exopolysaccharide, known as the Bordetella polysaccharide (Bps), which is encoded by the bpsABCD operon. Bps is required for Bordetella biofilm formation, colonization of the respiratory tract, and confers protection from complement-mediated killing. In this report, we have investigated the role of BpsB in the biosynthesis of Bps and biofilm formation by B. bronchiseptica. BpsB is a two-domain protein that localizes to the periplasm and outer membrane. BpsB displays metal- and length-dependent deacetylation on poly-β-1,6-N-acetyl-d-glucosamine (PNAG) oligomers, supporting previous immunogenic data that suggests Bps is a PNAG polymer. BpsB can use a variety of divalent metal cations for deacetylase activity and showed highest activity in the presence of Ni2+ and Co2+. The structure of the BpsB deacetylase domain is similar to the PNAG deacetylases PgaB and IcaB and contains the same circularly permuted family four carbohydrate esterase motifs. Unlike PgaB from Escherichia coli, BpsB is not required for polymer export and has unique structural differences that allow the N-terminal deacetylase domain to be active when purified in isolation from the C-terminal domain. Our enzymatic characterizations highlight the importance of conserved active site residues in PNAG deacetylation and demonstrate that the C-terminal domain is required for maximal deacetylation of longer PNAG oligomers. Furthermore, we show that BpsB is critical for the formation and complex architecture of B. bronchiseptica biofilms. PMID:26203190

  11. Developmental cell death in the liver and newborn lethality of Ku86 deficient mice suppressed by antioxidant N-acetyl-cysteine.

    PubMed

    Reliene, Ramune; Goad, Marry E P; Schiestl, Robert H

    2006-11-08

    Repair of DNA double-strand breaks (DSBs) is essential for genome integrity and cell survival. Ku86 is involved in the repair of DNA DSBs by non-homologous end joining (NHEJ). Mice deficient in Ku86 show growth retardation, dwarfism, premature aging, and immunodeficiency. In this study, we observed severely compromised survival of Ku86(-/-) mice, such that most Ku86(-/-) mice died within the first postnatal weeks and only 1.5% of the expected 25% from heterozygous crosses survived for 1 month. Since post-mortem analysis was not possible due to parental cannibalism, histopathological examination was performed on Ku86(-/-) fetuses to assess possible causes of newborn death. Eighty percent and 75% of Ku86(-/-) fetuses exhibited apoptosis and necrosis in the liver, while only 20% and 10% of Ku86(+/+) littermates had apoptosis and necrosis, respectively. In addition, the severity of liver damage was significantly higher in Ku86(-/-) fetuses. Developmental liver damage may have led to postnatal lethality because the fetal liver with pre-existing injury may not be able to undergo transformation from a lymphohematopoietic to an indispensable metabolic organ. Free radicals can cause chromosomal breaks and lead to cell death. We postulated that endogenous oxidative stress might be involved in the resulting liver damage and animal lethality in Ku86(-/-) mice deficient in DNA DSB repair. This hypothesis was tested by treating Ku86(-/-) mice with the well known free radical scavenger, thiol antioxidant N-acetyl-cysteine (NAC), during embryonic development. We found that a significantly higher percentage, 7.7% of NAC treated Ku86(-/-) offspring versus 1.5% untreated Ku86(-/-) mice were alive at 1 month of age. In addition, the incidence of liver necrosis decreased by 21% and the severity of necrosis significantly reduced. Thus, Ku86 deficiency results in severe developmental liver damage and newborn lethality associated with oxidative stress.

  12. The protein BpsB is a poly-β-1,6-N-acetyl-D-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica.

    PubMed

    Little, Dustin J; Milek, Sonja; Bamford, Natalie C; Ganguly, Tridib; DiFrancesco, Benjamin R; Nitz, Mark; Deora, Rajendar; Howell, P Lynne

    2015-09-11

    Bordetella pertussis and Bordetella bronchiseptica are the causative agents of whooping cough in humans and a variety of respiratory diseases in animals, respectively. Bordetella species produce an exopolysaccharide, known as the Bordetella polysaccharide (Bps), which is encoded by the bpsABCD operon. Bps is required for Bordetella biofilm formation, colonization of the respiratory tract, and confers protection from complement-mediated killing. In this report, we have investigated the role of BpsB in the biosynthesis of Bps and biofilm formation by B. bronchiseptica. BpsB is a two-domain protein that localizes to the periplasm and outer membrane. BpsB displays metal- and length-dependent deacetylation on poly-β-1,6-N-acetyl-d-glucosamine (PNAG) oligomers, supporting previous immunogenic data that suggests Bps is a PNAG polymer. BpsB can use a variety of divalent metal cations for deacetylase activity and showed highest activity in the presence of Ni(2+) and Co(2+). The structure of the BpsB deacetylase domain is similar to the PNAG deacetylases PgaB and IcaB and contains the same circularly permuted family four carbohydrate esterase motifs. Unlike PgaB from Escherichia coli, BpsB is not required for polymer export and has unique structural differences that allow the N-terminal deacetylase domain to be active when purified in isolation from the C-terminal domain. Our enzymatic characterizations highlight the importance of conserved active site residues in PNAG deacetylation and demonstrate that the C-terminal domain is required for maximal deacetylation of longer PNAG oligomers. Furthermore, we show that BpsB is critical for the formation and complex architecture of B. bronchiseptica biofilms.

  13. Efficacy of intravenous administration of hyaluronan, sodium chondroitin sulfate, and N-acetyl-d-glucosamine for prevention or treatment of osteoarthritis in horses.

    PubMed

    Frisbie, David D; McIlwraith, C Wayne; Kawcak, Christopher E; Werpy, Natasha M

    2016-10-01

    OBJECTIVE To evaluate the efficacy of IV administration of a product containing hyaluronan, sodium chondroitin sulfate, and N-acetyl-d-glucosamine for prevention or treatment of osteoarthritis in horses. ANIMALS 32 healthy 2- to 5-year-old horses. PROCEDURES The study involved 2 portions. To evaluate prophylactic efficacy of the test product, horses received 5 mL of the product (n = 8) or saline (0.9% NaCl) solution (8; placebo) IV every fifth day, starting on day 0 (when osteoarthritis was induced in the middle carpal joint of 1 forelimb) and ending on day 70. To evaluate treatment efficacy, horses received either the product or placebo (n = 8/treatment) on days 16, 23, 30, 37, and 44 after osteoarthritis induction. Clinical, diagnostic imaging, synovial fluid, gross anatomic, and histologic evaluations and other tests were performed. Results of each study portion were compared between treatment groups. RESULTS Limb flexion and radiographic findings were significantly worse for horses that received the test product in the prophylactic efficacy portion than for placebo-treated horses or product-treated horses in the treatment efficacy portion. In the prophylactic efficacy portion, significantly less articular cartilage erosion was identified in product-treated versus placebo-treated horses. In the treatment efficacy portion, joints of product-treated horses had a greater degree of bone edema identified via MRI than did joints of placebo-treated horses but fewer microscopic articular cartilage abnormalities. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that caution should be used when administering the evaluated product IV to horses, particularly when administering it prophylactically, as it may have no benefit or may even cause harm.

  14. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2017-03-01

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  15. N-acetyl-S-(n-propyl)-l-cysteine in urine from workers exposed to 1-bromopropane in foam cushion spray adhesives.

    PubMed

    Hanley, Kevin W; Petersen, Martin R; Cheever, Kenneth L; Luo, Lian

    2009-10-01

    1-Bromopropane (1-BP) has been marketed as an alternative for ozone depleting and other solvents; it is used in aerosol products, adhesives, metal, precision, and electronics cleaning solvents. Mechanisms of toxicity of 1-BP are not fully understood, but it may be a neurological and reproductive toxicant. Sparse exposure information prompted this study using 1-BP air sampling and urinary metabolites. Mercapturic acid conjugates are excreted in urine from 1-BP metabolism involving debromination. Research objectives were to evaluate the utility of urinary N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) for assessing exposure to 1-BP and compare it to urinary bromide [Br((-))] previously reported for these workers. Forty-eight-hour urine specimens were obtained from 30 workers at two factories where 1-BP spray adhesives were used to construct polyurethane foam seat cushions. Urine specimens were also obtained from 21 unexposed control subjects. All the workers' urine was collected into composite samples representing three time intervals: at work, after work but before bedtime, and upon awakening. Time-weighted average (TWA) geometric mean breathing zone concentrations were 92.4 and 10.5 p.p.m. for spraying and non-spraying jobs, respectively. Urinary AcPrCys showed the same trend as TWA exposures to 1-BP: higher levels were observed for sprayers. Associations of AcPrCys concentrations, adjusted for creatinine, with 1-BP TWA exposure were statistically significant for both sprayers (P < 0.05) and non-sprayers (P < 0.01). Spearman correlation coefficients for AcPrCys and Br((-)) analyses determined from the same urine specimens were highly correlated (P < 0.0001). This study confirms that urinary AcPrCys is an important 1-BP metabolite and an effective biomarker for highly exposed foam cushion workers.

  16. The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine.

    PubMed

    Richards, Shane A; Muter, Joanne; Ritchie, Pamela; Lattanzi, Giovanna; Hutchison, Christopher J

    2011-10-15

    Fibroblasts from patients with the severe laminopathy diseases, restrictive dermopathy (RD) and Hutchinson Gilford progeria syndrome (HGPS), are characterized by poor growth in culture, the presence of abnormally shaped nuclei and the accumulation of DNA double-strand breaks (DSB). Here we show that the accumulation of DSB and poor growth of the fibroblasts but not the presence of abnormally shaped nuclei are caused by elevated levels of reactive oxygen species (ROS) and greater sensitivity to oxidative stress. Basal levels of ROS and sensitivity to H(2)O(2) were compared in fibroblasts from normal, RD and HGPS individuals using fluorescence activated cell sorting-based assays. Basal levels of ROS and stimulated levels of ROS were both 5-fold higher in the progeria fibroblasts. Elevated levels of ROS were correlated with lower proliferation indices but not with the presence of abnormally shaped nuclei. DSB induced by etoposide were repaired efficiently in normal, RD and HGPS fibroblasts. In contrast, DSB induced by ROS were repaired efficiently in normal fibroblasts, but in RD and HGPS fibroblasts many ROS-induced DSB were un-repairable. The accumulation of ROS-induced DSB appeared to cause the poor growth of RD and HGPS fibroblasts, since culture in the presence of the ROS scavenger N-acetyl cysteine (NAC) reduced the basal levels of DSB, eliminated un-repairable ROS-induced DSB and greatly improved population-doubling times. Our findings suggest that un-repaired ROS-induced DSB contribute significantly to the RD and HGPS phenotypes and that inclusion of NAC in a combinatorial therapy might prove beneficial to HGPS patients.

  17. N-acetyl-L-cysteine protects against cadmium-induced neuronal apoptosis by inhibiting ROS-dependent activation of Akt/mTOR pathway in mouse brain

    PubMed Central

    Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long

    2014-01-01

    Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490

  18. Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model.

    PubMed

    Tang, Junjia; Hu, Qin; Chen, Yujie; Liu, Fei; Zheng, Yun; Tang, Jiping; Zhang, Jianmin; Zhang, John H

    2015-06-01

    N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC), an N-acetyl serotonin derivative, selectively activates tropomyosin-related kinase receptor B (TrkB). This study is to investigate a potential role of HIOC on ameliorating early brain injury after experimental subarachnoid hemorrhage (SAH). One hundred and fifty-six adult male Sprague-Dawley rats were used. SAH model was induced by endovascular perforation. TrkB small interfering RNA (siRNA) or scramble siRNA was injected intracerebroventricularly 24h before SAH. HIOC was administrated intracerebroventricularly 3h after SAH and compared with brain-derived neurotrophic factor (BDNF). SAH grade and neurologic scores were evaluated for the outcome study. For the mechanism study, the expression of TrkB, phosphorylated TrkB (p-TrkB), phosphorylated extracellular signal regulated kinase (p-ERK), B-cell lymphoma 2 (Bcl-2) and cleaved caspase 3 (CC3) was detected by Western blots, and neuronal injury was determined by double immunofluorescence staining of neuronal nuclei and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling. Knocking down of TrkB decreased the expression of Bcl-2 and aggravated neurologic deficits 24h after SAH. HIOC activated TrkB/ERK pathway, decreased neuronal cell death, and improved neurobehavioral outcome, and these effects were abolished by TrkB siRNA. HIOC was more potent than BDNF in reduction of apoptosis 24h post-SAH. Thus, we conclude that administration of HIOC activated TrkB/ERK signaling cascade and attenuated early brain injury after SAH. HIOC may be a promising agent for further treatment for SAH and other stroke events.

  19. Effect of alpha-ketoglutarate and N-acetyl cysteine on cyanide-induced oxidative stress mediated cell death in PC12 cells.

    PubMed

    Satpute, R M; Hariharakrishnan, J; Bhattacharya, R

    2010-06-01

    Cyanide is a mitochondrial poison, which is ubiquitously present in the environment. Cyanide-induced oxidative stress is known to play a key role in mediating the neurotoxicity and cell death in rat pheochromocytoma (PC12) cells. PC12 cells are widely used as a model for neurotoxicity assays in vitro. In the present study, we investigated the protective effects of alpha-ketoglutarate (A-KG), a potential cyanide antidote, and N-acetyl cysteine (NAC), an antioxidant against toxicity of cyanide in PC12 cells. Cells were treated with various concentrations (0.625-1.25 mM) of potassium cyanide (KCN) for 4 hours, in the presence or absence of simultaneous treatment of A-KG (0.5 mM) and NAC (0.25 mM). Cyanide caused marked decrease in the levels of cellular antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). Lipid peroxidation indicated by elevated levels of malondialdehyde (MDA) was found to be accompanied by decreased levels of reduced glutathione (GSH) and total antioxidant status (TAS) of the cells. Cyanide-treated cells showed notable increase in caspase-3 activity and induction of apoptotic type of cell death after 24 hours. A-KG and NAC alone were very effective in restoring the levels of GSH and TAS, but together they significantly resolved the effects of cyanide on antioxidant enzymes, MDA levels, and caspase-3 activity. The present study reveals that combination of A-KG and NAC has critical role in abbrogating the oxidative stress-mediated toxicity of cyanide in PC12 cells. The results suggest potential role of A-KG and NAC in cyanide antagonism.

  20. N-acetyl cysteine mediates protection from 2-hydroxyethyl methacrylate induced apoptosis via nuclear factor kappa B-dependent and independent pathways: potential involvement of JNK.

    PubMed

    Paranjpe, Avina; Cacalano, Nicholas A; Hume, Wyatt R; Jewett, Anahid

    2009-04-01

    The mechanisms by which resin based materials induce adverse effects in patients have not been completely elucidated. Here we show that 2-hydroxyethyl methacrylate (HEMA) induces apoptotic cell death in oral keratinocytes. Functional loss and cell death induced by HEMA was significantly inhibited in the presence of N-acetyl cysteine (NAC) treatment. NAC also prevented HEMA mediated decrease in vascular endothelial growth factor secretion. The protective effect of NAC was partly related to its ability to induce NF-kappaB in the cells, since HEMA mediated inhibition of nuclear NF-kappaB expression and function was significantly blocked in the presence of NAC treatment. Moreover, blocking of nuclear translocation of NF-kappaB in oral keratinocytes sensitized these cells to HEMA mediated apoptosis. In addition, since NAC was capable of rescuing close to 50% of NF-kappaB knockdown cells from HEMA mediated cell death, there is, therefore, an NF-kappaB independent pathway of protection from HEMA mediated cell death by NAC. NAC mediated prevention of HEMA induced cell death in NF-kappaB knockdown cells was correlated with a decreased induction of c-Jun N-terminal kinase (JNK) activity since NAC inhibited HEMA mediated increase in JNK levels. Furthermore, the addition of a pharmacologic JNK inhibitor to HEMA treated cells prevented cell death and restored NF-kappaB knockdown cell function significantly. Therefore, NAC protects oral keratinocytes from the toxic effects of HEMA through NF-kappaB dependent and independent pathways. Moreover, our data suggest the potential involvement of JNK pathway in NAC mediated protection.

  1. Conformational distributions of N-acetyl-L-cysteine in aqueous solutions: a combined implicit and explicit solvation treatment of VA and VCD spectra.

    PubMed

    Poopari, Mohammad Reza; Dezhahang, Zahra; Yang, Guochun; Xu, Yunjie

    2012-06-18

    The conformational distributions of N-acetyl-L-cysteine (NALC) in aqueous solutions at several representative pH values are investigated using vibrational absorption (VA), UV/Vis, and vibrational circular dichroism (VCD) spectroscopy, together with DFT and molecular dynamics (MD) simulations. The experimental VA and UV/Vis spectra of NALC in water are obtained under strongly acid, neutral, and strongly basic conditions, as well as the VCD spectrum at pH 7 in D(2)O. Extensive searches are carried out to locate the most stable conformers of the protonated, neutral, deprotonated, and doubly deprotonated NALC species at the B3LYP/6-311++G(d,p) level. The inclusion of the polarizable continuum model (PCM) modifies the geometries and the relative stabilities of the conformers noticeably. The simulated PCM VA spectra show significantly better agreement with the experimental data than the gas-phase ones, thus allowing assignment of the conformational distributions and dominant species under each experimental condition. To further properly account for the discrepancies noted between the experimental and simulated VCD spectra, PCM and the explicit solvent model are utilized. MD simulations are used to aid the modelling of the NALC-(water)(N) clusters. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities are computed for the NALC-(water)(3,4) clusters at the B3LYP/6-311++G(d,p) level without and with the PCM. The inclusion of both explicit and implicit solvation models at the same time provides a decisively better agreement between theory and experiment and therefore conclusive information about the conformational distributions of NALC in water and hydrogen-bonding interactions between NALC and water molecules.

  2. Temperature study of indole, tryptophan and N-acetyl-L-tryptophanamide (NATA) triplet-state quenching by iodide in aqueous solution.

    PubMed

    Kowalska-Baron, Agnieszka; Gałęcki, Krystian; Wysocki, Stanisław

    2013-07-01

    In this study, the temperature dependence of the measured phosphorescence lifetimes of aqueous indole, tryptophan and N-acetyl-L-tryptophanamide (NATA) between 6 and 55 °C in the absence and in the presence of iodide, a suitable intersystem crossing enhancer, has been determined. The obtained results suggest the existence of one process for the temperature-dependent, non-radiative deactivation of triplet states of the aqueous indoles in the absence of iodide. This process may be associated with the high sensitivity of indole triplet state lifetime to the subtle changes in the local viscosity of the surrounding aqueous environment or may be attributed to diffusional quenching by solvent molecules and/or by possible impurities present in water. However, the steep decrease in the measured phosphorescence lifetimes of indole and tryptophan with temperature suggests that diffusion-mediated quenching processes are not prevailing. Upon increasing concentration of iodide (up to 0.1 M), the obtained Arrhenius plots for the deactivation rate (1/τph) of the triplet states of the studied indoles were linear, which provided strong support for the hypothesis of the existence of one temperature dependent non-radiative process for the de-excitation of indoles triplet state. Our results showed that this process is attributed to the diffusion-controlled solute-quenching by iodide and, most probably, proceeds via reversibly formed exciplex. At concentration of iodide higher than 0.1M highly curved Arrhenius plots were obtained, which may indicate a change in the rate determining step with a change in temperature. This change most probably is associated with a transition from diffusion-controlled exciplex formation followed by rate-determining exciplex deactivation at high temperature.

  3. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus.

    PubMed

    Xie, Shiwei; Zhou, Weiwen; Tian, Lixia; Niu, Jin; Liu, Yongjian

    2016-08-01

    An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Four practical diets were formulated, control, control +0.2% NAC, control +0.5% glycine, control +0.2% NAC +0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 9.5 g). The weight gain and specific growth rate were significantly increased with the supplementation of NAC and glycine. While they had no effect on feed efficiency feed intake and survival. Glutathion peroxidase (GPx) was increased by NAC and γ-glutamine cysteine synthase (γ-GCS) in plasma were increased by glycine. After the feeding trail, fish were challenged by Streptococcus iniae, fish fed the diet supplemented with NAC obtained significantly higher survival rate after 72 h challenge test. NAC also decreased malonaldehyde (MDA) in liver, increased glutathione S-transferase (GST) activity in plasma, up-regulated mRNA expression of Superoxide dismutase (SOD) and GPx in liver and headkidney. Dietary supplementation of glycine increased the anti-oxidative ability of tilapia through increase anti-oxidative enzyme activity (SOD, glutathione reductase, myeloperoxidase) and up-regulate anti-oxidative gene expression (SOD). Immune ability only enhanced by the supplementation of NAC through increased interleukin-1β (IL-1β) mRNA expression. These results clearly indicated that the supplementation of NAC and glycine can significantly improve the growth performance of tilapia, and NAC also enhance the anti-oxidative and immune capacity of tilapia, glycine could only enhance the anti-oxidative ability.

  4. Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery.

    PubMed

    Lautner, Gergely; Meyerhoff, Mark E; Schwendeman, Steven P

    2016-03-10

    Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) μmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission.

  5. Characterization of cell death induced by ethacrynic acid in a human colon cancer cell line DLD-1 and suppression by N-acetyl-L-cysteine.

    PubMed

    Aizawa, Shu; Ookawa, Keizou; Kudo, Toshihiro; Asano, Junpei; Hayakari, Makoto; Tsuchida, Shigeki

    2003-10-01

    Since ethacrynic acid (EA), an SH modifier as well as glutathione S-transferase (GST) inhibitor, has been suggested to induce apoptosis in some cell lines, its effects on a human colon cancer cell line DLD-1 were examined. EA enhanced cell proliferation at 20-40 microM, while it caused cell death at 60-100 microM. Caspase inhibitors did not block cell death and DNA ladder formation was not detected. Poly(ADP-ribose) polymerase, however, was cleaved into an 82-kDa fragment, different from an 85-kDa fragment that is specific for apoptosisis. The 82-kDa fragment was not recognized by antibody against PARP fragment cleaved by caspase 3. N-Acetyl-L-cysteine (NAC) completely inhibited EA-induced cell death, but 3(2)-t-butyl-4-hydroxyanisole or pyrrolidinedithiocarbamate ammonium salt did not. Glutathione (GSH) levels were dose-dependently increased in cells treated with EA and this increase was hardly affected by NAC addition. Mitogen-activated protein kinase (MAPK) kinase (MEK) 1, extracellular signal-regulated kinase (ERK) 1 and GST P1-1 were increased in cells treated with 25-75 microM EA, while c-Jun N-terminal kinase (JNK) 1 and p38 MAPK were markedly decreased by 100 microM EA. NAC repressed EA-induced alterations in these MAPKs and GST P1-1. p38 MAPK inhibitors, SB203580 and FR167653, dose-dependently enhanced EA-induced cell death. An MEK inhibitor, U0126, did not affect EA-induced cell death. These studies revealed that EA induced cell death concomitantly with a novel PARP fragmentation, but without DNA fragmentation. p38 MAPK was suggested to play an inhibitory role in EA-induced cell death.

  6. Arylamine N-acetyl Transferase (NAT) in the blue secretion of Telescopium telescopium: xenobiotic metabolizing enzyme as a biomarker for detection of environmental pollution.

    PubMed

    Gorain, Bapi; Chakraborty, Sumon; Pal, Murari Mohan; Sarkar, Ratul; Samanta, Samir Kumar; Karmakar, Sanmoy; Sen, Tuhinadri

    2014-01-01

    Telescopium telescopium, a marine mollusc collected from Sundarban mangrove, belongs to the largest mollusca phylum in the world and exudes a blue secretion when stimulated mechanically. The blue secretion was found to metabolize (preferentially) para-amino benzoic acid, a substrate for N-acetyl transferase (NAT), thereby indicating acetyl transferase like activity of the secretion. Attempts were also made to characterise bioactive fraction of the blue secretion and to further use this as a biomarker for monitoring of marine pollution. NAT like enzyme from marine mollusc is a potential candidate for detoxification of different harmful chemicals. A partially purified extract of blue secretion was obtained by fractional precipitation with (NH4)2SO4. From different fractions obtained by precipitation, the 0-30% fraction (30S) displayed NAT like activity (using para amino benzoic acid as a substrate with para nitrophenyl phosphate or acetyl coenzyme A as acetyl group donors). Maximum NAT like enzyme activity was attained at 25°C and at a pH of 6. The enzyme activity was found to be inhibited by 5 mM phenyl methyl sulfonyl fluoride. The divalent metal ions reduced NAT like activity of 30S. Moreover, Cu(2+) and Zn(2+) (at concentration of 1 mM) completely inhibited NAT activity. The thermal stability and bench-top stability studies were performed and it was found that the enzyme was stable at room temperature for more than 24 hours. Results from the present study further indicate that heavy metal content in blue secretion gradually decreased from pre-monsoon to post-monsoon season, which also corresponded to the change in NAT like activity. Therefore, this article stresses the importance of biomarker research for monitoring pollution.

  7. N-acetyl-beta-D-glucopyranosylamine: a potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose.

    PubMed Central

    Oikonomakos, N. G.; Kontou, M.; Zographos, S. E.; Watson, K. A.; Johnson, L. N.; Bichard, C. J.; Fleet, G. W.; Acharya, K. R.

    1995-01-01

    Structure-based drug design has led to the discovery of a number of glucose analogue inhibitors of glycogen phosphorylase that have an increased affinity compared to alpha-D-glucose (Ki = 1.7 mM). The best inhibitor in the class of N-acyl derivatives of beta-D-glucopyranosylamine, N-acetyl-beta-D-glucopyranosylamine (1-GlcNAc), has been characterized by kinetic, ultracentrifugation, and crystallographic studies. 1-GlcNAc acts as a competitive inhibitor for both the b (Ki = 32 microM) and the a (Ki = 35 microM) forms of the enzyme with respect to glucose 1-phosphate and in synergism with caffeine, mimicking the binding of glucose. Sedimentation velocity experiments demonstrated that 1-GlcNAc was able to induce dissociation of tetrameric phosphorylase a and stabilization of the dimeric T-state conformation. Co-crystals of the phosphorylase b-1-GlcNAc-IMP complex were grown in space group P4(3)2(1)2, with native-like unit cell dimensions, and the complex structure has been refined to give a crystallographic R factor of 18.1%, for data between 8 and 2.3 A resolution. 1-GlcNAc binds tightly at the catalytic site of T-state phosphorylase b at approximately the same position as that of alpha-D-glucose. The ligand can be accommodated in the catalytic site with very little change in the protein structure and stabilizes the T-state conformation of the 280s loop by making several favorable contacts to Asn 284 of this loop. Structural comparisons show that the T-state phosphorylase b-1-GlcNAc-IMP complex structure is overall similar to the T-state phosphorylase b-alpha-D-glucose complex structure. The structure of the 1-GlcNAc complex provides a rational for the biochemical properties of the inhibitor. PMID:8580837

  8. Golgi UDP-GlcNAc:polypeptide O-α-N-Acetyl-d-glucosaminyltransferase 2 (TcOGNT2) regulates trypomastigote production and function in Trypanosoma cruzi.

    PubMed

    Koeller, Carolina M; van der Wel, Hanke; Feasley, Christa L; Abreu, Fernanda; da Rocha, Juliana Dutra Barbosa; Montalvão, Fabrício; Fampa, Patrícia; Dos Reis, Flávia C G; Atella, Georgia C; Souto-Padrón, Thaís; West, Christopher M; Heise, Norton

    2014-10-01

    All life cycle stages of the protozoan parasite Trypanosoma cruzi are enveloped by mucin-like glycoproteins which, despite major changes in their polypeptide cores, are extensively and similarly O-glycosylated. O-Glycan biosynthesis is initiated by the addition of αGlcNAc to Thr in a reaction catalyzed by Golgi UDP-GlcNAc:polypeptide O-α-N-acetyl-d-glucosaminyltransferases (ppαGlcNAcTs), which are encoded by TcOGNT1 and TcOGNT2. We now directly show that TcOGNT2 is associated with the Golgi apparatus of the epimastigote stage and is markedly downregulated in both differentiated metacyclic trypomastigotes (MCTs) and cell culture-derived trypomastigotes (TCTs). The significance of downregulation was examined by forced continued expression of TcOGNT2, which resulted in a substantial increase of TcOGNT2 protein levels but only modestly increased ppαGlcNAcT activity in extracts and altered cell surface glycosylation in TCTs. Constitutive TcOGNT2 overexpression had no discernible effect on proliferating epimastigotes but negatively affected production of both types of trypomastigotes. MCTs differentiated from epimastigotes at a low frequency, though they were apparently normal based on morphological and biochemical criteria. However, these MCTs exhibited an impaired ability to produce amastigotes and TCTs in cell culture monolayers, most likely due to a reduced infection frequency. Remarkably, inhibition of MCT production did not depend on TcOGNT2 catalytic activity, whereas TCT production was inhibited only by active TcOGNT2. These findings indicate that TcOGNT2 downregulation is important for proper differentiation of MCTs and functioning of TCTs and that TcOGNT2 regulates these functions by using both catalytic and noncatalytic mechanisms.

  9. Protection of rats against 3-butene-1,2-diol-induced hepatotoxicity and hypoglycemia by N-acetyl-L-cysteine

    SciTech Connect

    Sprague, Christopher L.; Elfarra, Adnan A. . E-mail: elfarra@svm.vetmed.wisc.edu

    2005-09-15

    3-Butene-1,2-diol (BDD), an allylic alcohol and major metabolite of 1,3-butadiene, has previously been shown to cause hepatotoxicity and hypoglycemia in male Sprague-Dawley rats, but the mechanisms of toxicity were unclear. In this study, rats were administered BDD (250 mg/kg) or saline, ip, and serum insulin levels, hepatic lactate levels, and hepatic cellular and mitochondrial GSH, GSSG, ATP, and ADP levels were measured 1 or 4 h after treatment. The results show that serum insulin levels were not causing the hypoglycemia and that the hypoglycemia was not caused by an enhancement of the metabolism of pyruvate to lactate because hepatic lactate levels were either similar (1 h) or lower (4 h) than controls. However, both hepatic cellular and mitochondrial GSH and GSSG levels were severely depleted 1 and 4 h after treatment and the mitochondrial ATP/ADP ratio was also lowered 4 h after treatment relative to controls. Because these results suggested a role for hepatic cellular and mitochondrial GSH in BDD toxicity, additional rats were administered N-acetyl-L-cysteine (NAC; 200 mg/kg) 15 min after BDD administration. NAC treatment partially prevented depletion of hepatic cellular and mitochondrial GSH and preserved the mitochondrial ATP/ADP ratio. NAC also prevented the severe depletion of serum glucose concentration and the elevation of serum alanine aminotransferase activity after BDD treatment without affecting the plasma concentration of BDD. Thus, depletion of hepatic cellular and mitochondrial GSH followed by the decrease in the mitochondrial ATP/ADP ratio was likely contributing to the mechanisms of hepatotoxicity and hypoglycemia in the rat.

  10. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    SciTech Connect

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A.

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  11. Rats with metabolic syndrome resist the protective effects of N-acetyl l-cystein against impaired spermatogenesis induced by high-phosphorus/zinc-free diet.

    PubMed

    Suzuki, Yuka; Ichihara, Gaku; Sahabudeen, Sheik Mohideen; Kato, Ai; Yamaguchi, Takanori; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Yamada, Yoshiji; Ichihara, Sahoko

    2013-11-01

    Consumption of relatively high amounts of processed food can result in abnormal nutritional status, such as zinc deficiency or phosphorus excess. Moreover, hyperphosphatemia and hypozincemia are found in some patients with diabetic nephropathy and metabolic syndrome. The present study investigated the effects of high-phosphorus/zinc-free diet on the reproductive function of spontaneously hypertensive rats/NDmcr-cp (SHR/cp), a model of the metabolic syndrome. We also investigated the effects of antioxidant, N-acetyl-l-cysteine (NAC), on testicular dysfunction under such conditions. Male SHR/cp and control rats (Wistar Kyoto rats, WKY) were divided into three groups; rats fed control diet (P 0.3%, w/w; Zn 0.2%, w/w), high-phosphorus and zinc-deficient diet (P 1.2%, w/w; Zn 0.0%, w/w) with vehicle, or high-phosphorus and zinc-deficient diet with NAC (1.5mg/g/day) for 12 weeks (n=6 or 8 rats/group). The weights of testis and epididymis were significantly reduced by high-phosphate/zinc-free diet in both SHR/cp and WKY. The same diet significantly reduced caudal epididymal sperm count and motility and induced histopathological changes in the testis in both strains. Treatment with NAC provided significant protection against the toxic effects of the diet on testicular function in WKY, but not in SHR/cp. The lack of the protective effects of NAC on impaired spermatogenesis in SHR/cp could be due to the more pronounced state of oxidative stress observed in these rats compared with WKY.

  12. Enhanced paracellular and transcellular paclitaxel permeation by chitosan-vitamin E succinate- N-acetyl- l-cysteine copolymer on Caco-2 cell monolayer

    NASA Astrophysics Data System (ADS)

    Lian, He; Zhang, Tianhong; Sun, Jin; Pu, Xiaohui; Tang, Yilin; Zhang, Youxi; He, Zhonggui

    2014-04-01

    The aim of this study was to evaluate the underlying mechanism of enhanced oral absorption of paclitaxel (PTX)-loaded chitosan-vitamin E succinate- N-acetyl- l-cysteine (CS-VES-NAC) nanomicelles from the cellular level. In aqueous solution, CS-VES-NAC copolymer self-assembled into the polymeric nanomicelles, with the size ranging from 190 to 240 nm and the drug loading content as high as 20.5 %. Cytotoxicity results showed that the PTX-loaded nanomicelles exhibited the similar effect to PTX solution (PTX-Sol) on Caco-2 cells, but no toxicity observed for blank CS-VES-NAC nanomicelles. The cellular uptake of PTX was significantly increased by CS-VES-NAC nanomicelles, compared with that of PTX-Sol, due to the possible escapement of P-glycoprotein (P-gp) efflux pumps by endocytosis pathway. Confocal laser scanning microscope (CLSM) images also confirmed CS-VES-NAC nanomicelles could be effectively internalized by Caco-2 cells. More importantly, P app value of PTX-loaded CS-VES-NAC nanomicelles was 2.3-fold higher than that of PTX-Sol, and the efflux ratio decreased by more than 10.8-fold for the nanomicelles. As a consequence of opening of tight junctions and P-gp inhibition induced by free CS-VES-NAC copolymer, the P app value of PTX was almost increased up to 19.5-fold. All the results indicate that CS-VES-NAC copolymer hold great promises as nanocarrier for antitumor drug oral delivery by improving paracellular and transcellular permeation.

  13. An exhaustive conformational analysis of N-acetyl-L-cysteine-N-methylamide. Identification of the complete set of interconversion pathways on the ab initio and DFT potential energy hypersurface.

    PubMed

    Bombasaro, J A; Zamora, M A; Baldoni, H A; Enriz, R D

    2005-02-10

    The full conformational space of N-acetyl-l-cysteine-N-methylamide was explored by ab initio (RHF/ 6-31G(d)) and DFT (B3LYP/6-31G(d)) computations. Multidimensional conformational analysis predicts 81 structures in N-acetyl-l-cysteine-N-methylamide, but only 47 relaxed structures were previously determined at the RHF/3-21G level of theory. These structures were now optimized using RHF/6-31G(d) and B3LYP/6-31G(d) approaches. Seven conformational migrations were observed when recalculated at higher level of theory. Besides these major changes, only smaller conformational shifts were operative for the remaining stationary points. The exploration of the whole conformational space of N-acetyl-l-cysteine-N-methylamide, including the transition-state structures allowing the conformational interconversion among the low-energy forms, was analyzed in this study. Our results offer new insights into the influence of polar side chains on the conformational preferences of peptide structures.

  14. N-Acetyl-S-(1-carbamoyl-2-hydroxy-ethyl)-L-cysteine (iso-GAMA) a further product of human metabolism of acrylamide: comparison with the simultaneously excreted other mercaptuic acids.

    PubMed

    Hartmann, Eva C; Boettcher, Melanie I; Bolt, Hermann M; Drexler, Hans; Angerer, Jürgen

    2009-07-01

    The N-acetyl-S-(1-carbamoyl-2-hydroxy-ethyl)-L: -cysteine (iso-GAMA) could be identified as a further human metabolite of acrylamide. In this study, we report the excretion of d(3)-iso-GAMA in human urine after single oral administration of deuterium labelled acrylamide (d(3)-AA). One healthy male volunteer ingested a dose of about 1 mg d(3)-AA which is equivalent to a dose of 13 microg/kg bodyweight. Over a period of 46 h the urine was collected and the d(3)-iso-GAMA levels analysed by LC-ESI-MS/MS. The excretion of iso-GAMA begins five hours after application. It rises to a maximum concentration (c (max)) of 43 microg/l which was quantified in the urine excreted after 22 h (t (max)). The excretion pattern is parallel to that of the major oxidative metabolite N-acetyl-S-(2-carbamoyl-2-hydroxy-ethyl)-L-cysteine (GAMA). Total recovery of iso-GAMA was about 1% of the applied dose. Together with N-acetyl-S-(2-carbamoylethyl)-L: -cysteine (AAMA) and GAMA, 57% of the applied dose is eliminated as mercapturic acids. The elimination kinetics of the three mercapturic acids of AA are compared. We show that dietary doses of acrylamide (AA) cause an overload of detoxification via AAMA and lead to the formation of carcinogenic glycidamide (GA) in the human body.

  15. Synthesis, evaluation, and mechanism of N,N,N-trimethyl-D-glucosamine-(1→4)-chitooligosaccharides as selective inhibitors of glycosyl hydrolase family 20 β-N-acetyl-D-hexosaminidases.

    PubMed

    Yang, You; Liu, Tian; Yang, Yongliang; Wu, Qingyue; Yang, Qing; Yu, Biao

    2011-02-11

    GH20 β-N-acetyl-D-hexosaminidases are enzymes involved in many vital processes. Inhibitors that specifically target GH20 enzymes in pests are of agricultural and economic importance. Structural comparison has revealed that the bacterial chitindegrading β-N-acetyl-D-hexosaminidases each have an extra +1 subsite in the active site; this structural difference could be exploited for the development of selective inhibitors. N,N,Ntrimethyl-D-glucosamine (TMG)-chitotriomycin, which contains three GlcNAc residues, is a natural selective inhibitor against bacterial and insect β-N-acetyl-D-hexosaminidases. However, our structural alignment analysis indicated that the two GlcNAc residues at the reducing end might be unnecessary. To prove this hypothesis, we designed and synthesized a series of TMG-chitotriomycin analogues containing one to four GlcNAc units. Inhibitory kinetics and molecular docking showed that TMG-(GlcNAc)(2), is as active as TMG-chitotriomycin [TMG-(GlcNAc)(3)]. The selective inhibition mechanism of TMG-chitotriomycin was also explained.

  16. [Search for chaperon-like anticataract drugs, the antiaggregants of lens crystallins. Communication. 1. Chaperon-like activity of N-acetyl carnosine dipeptide: in vitro study on a model of ultraviolet-induced aggregation of betaL-crystallin].

    PubMed

    Muranov, K O; Dizhevskaia, A K; Boldyrev, A A; Karpova, O E; Sheremet, N L; Polunin, G S; Avetisov, S E; Ostrovskiĭ, M A

    2008-01-01

    Aggregation ofcrystallins, the lens proteins, is one of the basic stages of cataract formation. Among the protein aggregation models used to study the molecular mechanisms of the initial stages of lenticular opacity, UV-induced aggregation of betaL-crystallin is most close to the in vivo conditions. The carnosine derivative N-acetyl carnosine has been shown to be effective in inhibiting the UV-induced aggregation of betaL-crystallin. Examination of the accumulation kinetics of carbonyl groups in betaL-crystallin under UV irradiation has indicated that neither carnosine nor N-acetyl carnosine fails to affect this parameter--an indicator of oxidative protein damage. By taking into account also the fact that N-acetyl carnosine is not an antioxidant, it can be believed that the molecular mechanism of action of this compound on UV-induced aggregation of betaL is unassociated with its antioxidative properties. The authors hypothesize that the molecular chaperon-like properties similar to those of alpha-crystallin underlie the mechanism of action of the acetyl derivative carnosine. The prospects for searching anticataract agents of a new chaperon-like class are discussed.

  17. Evaluation of the Effects of S-Allyl-L-cysteine, S-Methyl-L-cysteine, trans-S-1-Propenyl-L-cysteine, and Their N-Acetylated and S-Oxidized Metabolites on Human CYP Activities.

    PubMed

    Amano, Hirotaka; Kazamori, Daichi; Itoh, Kenji

    2016-01-01

    Three major organosulfur compounds of aged garlic extract, S-allyl-L-cysteine (SAC), S-methyl-L-cysteine (SMC), and trans-S-1-propenyl-L-cysteine (S1PC), were examined for their effects on the activities of five major isoforms of human CYP enzymes: CYP1A2, 2C9, 2C19, 2D6, and 3A4. The metabolite formation from probe substrates for the CYP isoforms was examined in human liver microsomes in the presence of organosulfur compounds at 0.01-1 mM by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Allicin, a major component of garlic, inhibited CYP1A2 and CYP3A4 activity by 21-45% at 0.03 mM. In contrast, a CYP2C9-catalyzed reaction was enhanced by up to 1.9 times in the presence of allicin at 0.003-0.3 mM. SAC, SMC, and S1PC had no effect on the activities of the five isoforms, except that S1PC inhibited CYP3A4-catalyzed midazolam 1'-hydroxylation by 31% at 1 mM. The N-acetylated metabolites of the three compounds inhibited the activities of several isoforms to a varying degree at 1 mM. N-Acetyl-S-allyl-L-cysteine and N-acetyl-S-methyl-L-cysteine inhibited the reactions catalyzed by CYP2D6 and CYP1A2, by 19 and 26%, respectively, whereas trans-N-acetyl-S-1-propenyl-L-cysteine showed weak to moderate inhibition (19-49%) of CYP1A2, 2C19, 2D6, and 3A4 activities. On the other hand, both the N-acetylated and S-oxidized metabolites of SAC, SMC, and S1PC had little effect on the reactions catalyzed by the five isoforms. These results indicated that SAC, SMC, and S1PC have little potential to cause drug-drug interaction due to CYP inhibition or activation in vivo, as judged by their minimal effects (IC50>1 mM) on the activities of five major isoforms of human CYP in vitro.

  18. Identification of a vesicular aspartate transporter

    PubMed Central

    Miyaji, Takaaki; Echigo, Noriko; Hiasa, Miki; Senoh, Shigenori; Omote, Hiroshi; Moriyama, Yoshinori

    2008-01-01

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H+/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects. PMID:18695252

  19. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi.

    PubMed

    Suresh, P V; Anil Kumar, P K

    2012-07-01

    Soil isolates of mesophilic Penicillium monoverticillium CFR 2, Aspergillus flavus CFR 10 and Fusarium oxysporum CFR 8 were cultivated in solid state fermentation (SSF) using wheat bran solid medium supplemented with α-chitin in order to produce chitinolytic enzyme. Under SSF cultivation, maximum enzymes (U/g IDS) production was 41.0 (endo-chitinase) and 195.4 (β-N-acetylhexosaminidase) by P. monoverticillium, 26.8 (endo-chitinase) and 222.1 (β-N-acetylhexosaminidase) by A. flavus and 13.3 (endo-chitinase) and 168.3 (β-N-acetylhexosaminidase) by F. oxysporum after 166 h of incubation. The crude endo-chitinase and β-N-acetylhexosaminidase derived from A. flavus and F. oxysporum revealed optimum temperature at 62 ± 1°C, but the enzymes from P. monoverticillium showed optimum temperature at 52 ± 1°C for maximum activity. Several fold increase in endo-chitinase and β-N-acetylhexosaminidase activities in the crude enzymes preparation was achieved after concentrating with polyethylene glycol. The concentrated crude chitinases from P. monoverticillium, A. flavus and F. oxysporum, respectively yielded 95.6, 96.6 and 96.1 mmol/l of N-acetyl-D: -glucosamine (GlcNAc) in 48 h of reaction from colloidal chitin. While, the crude enzyme preparations of P. monoverticillium, A. flavus and F. oxysporum produced 10.11, 6.85 and 10.7 mmol/l of GlcNAc respectively, in 48 h of reaction from crystalline α-chitin. HPLC analysis of colloidal chitin hydrolysates prepared with crude chitinases derived from P. monoverticillium, A. flavus and F. oxysporum revealed that the major reaction product was monomeric GlcNAc (~80%) and a small amount of (GlcNAc)(4) (~20%), indicating the potential of these enzymes for efficient production of GlcNAc from α-chitin.

  20. Kinetics of photoinduced electron transfer reactions of ruthenium(II) complexes and phenols, tyrosine, N-acetyl-tyrosine and tryptophan in aqueous solutions measured with modulated fluorescence spectroscopy.

    PubMed

    Nguyen, Truong X; Landgraf, Stephan; Grampp, Günter

    2017-01-01

    Photooxidation kinetics of phenol, 1-naphthol, 2-naphthol, tyrosine (TyrOH) and N-acetyl-tyrosine (AcTyrOH), tryptophan (TrpH) by ruthenium(II) polypyridyl complexes: [Ru(bpy)3]Cl2 (1), [Ru(phen)3]Cl2 (2), [Ru(bpy)(phen)(bpg)]Cl2 (3), and [Ru(dpq)2(bxbg)]Cl2 (4) where bpy is 2,2'-bipyridine, phen - 1,10-phenanthroline, bpg - bipyridine-glycoluril, dpq - dipyrido[3,2-d:2',3'-f]quinoxaline, and bxbg - bis(o-xylene)bipyridine-glycoluril are investigated. Rate constants have been measured by steady-state luminescence and phase-modulation fluorometry in aqueous solutions at different pH's. The rates for the oxidation of the phenols and phenolic aromatic amino acids spreads over a wide range from 4.2×10(6) to 6.8×10(9)M(-1)s(-1), depending on pH and the nature of solutes. At pH>pKa of the quenchers, the presence of reactive species (PhO(-)) in the alkaline solutions is accounted for the rapid ET rates. In the pH range between 4 and 10 (pH

  1. Urinary N-acetyl-β-d-glucosaminidase, an early marker of diabetic kidney disease, might reflect glucose excursion in patients with type 2 diabetes

    PubMed Central

    Kim, So Ra; Lee, Yong-ho; Lee, Sang-Guk; Kang, Eun Seok; Cha, Bong-Soo; Kim, Jeong-Ho; Lee, Byung-Wan

    2016-01-01

    Abstract Recently, several renal tubular damage markers have gained considerable attention because of their clinical implications as sensitive and specific biomarkers for early stage diabetic kidney disease. However, little is known about the demographic and glucometabolic factors affecting levels of urinary N-acetyl-β-d-glucosaminidase (NAG), a marker of proximal tubular damage, in type 2 diabetes mellitus (T2DM). The aim of this study was to investigate the clinical relevance of urinary NAG with regard to demographic and glucometabolic parameters, as well as nephropathic parameters, by comparing the glomerulopathic marker of albuminuria. In this retrospective cross-sectional study, we enrolled a total of 592 patients with either prediabetes (N = 29) or T2DM (N = 563). Glucometabolic parameters (glucose, hemoglobin A1c, glycated albumin [GA], insulin, C-peptide, homeostasis model assessment [HOMA] of insulin resistance, HOMA-β, postprandial C-peptide-to-glucose ratio [PCGR], and urinary glucose-to-creatinine ratio) and nephropathic parameters (urinary NAG, albumin-to-creatinine ratio [ACR], and estimated glomerular filtration rate) were measured. The levels of urinary NAG showed moderate positive correlation with the levels of urinary ACR in T2DM (r = 0.46). In correlation analysis, urinary NAG was more strongly correlated with body mass index (BMI) (r = −0.22; P < 0.001 vs. r = −0.02; P = 0.74), plasma stimulated glucose (r = 0.25; P < 0.001 vs. r = 0.08; P = 0.10), GA (r = 0.20; P < 0.001 vs. r = 0.13; P = 0.01), PCGR (r = −0.17; P = 0.001 vs. r = −0.09; P = 0.11), and HOMA-β (r = −0.10; P = 0.05 vs. r = −0.02; P = 0.79) than urinary ACR. In multiple regression analysis, age, lower BMI, stimulated glucose, GA, and urinary ACR predicted increased urinary NAG. In conclusion, increase in urinary NAG may be related to glycemic parameters reflecting glucose fluctuation and decreased insulin secretory capacity in patients with T2DM. Further

  2. [High-pressure liquid chromatography (HPLC) with UV developer for the analysis of N-acetyl-S-(N-methylcarbomoyl)cysteine (AMCC)].

    PubMed

    Negri, S; Alessio, A; Maestri, L; Sgroi, M; Ghittori, S; Imbriani, M

    2001-01-01

    N,N-dimethylformamide (DMF) is a solvent widely used to prepare synthetic fibers. Biomonitoring of DMF is usually performed by measuring urinary N-methylformamide, which allows us to estimate exposure during the working day. An alternative biomarker is the mercapturic acid N-acetyl-S-(N-methylcarbamoyl)cysteine (AMCC) whose excretion accounts for about 13% of the absorbed DMF dose. Owing to its slow excretion (mean half-life = 23 hours) the urinary levels of AMCC at the end of a workweek reflect the cumulative dose of DMF during the whole week. Methods given in literature for measuring AMCC need the derivatization of the molecule before analysis. The paper describes a method for the determination of urinary AMCC by high-performance liquid chromatography (HPLC) with direct UV detection. Samples were purified by solid phase extraction with C18 and ENV+ cartridges, then 10 microliters were directly injected onto an Aminex HPX-87H Ion Exclusion column maintained at a temperature of 37 degrees C. Analyses were performed by isocratic run with 1 mM sulphuric acid delivered at 0.85 mL/min. The detector was set at 196 nm. Under these conditions, AMCC eluted at 11.1 min., and the detection and quantification limits were 1.32 mg/L and 3.96 mg/L, respectively. The performance of the method was evaluated on samples containing 25 mg/L and 400 mg/L of AMCC: each sample was analysed three times. The mean recovery of the extraction procedure was 88.3%. The precision (CV%) and the accuracy (Error%) ranged from 0.8% to 2.9%, and from -1.2% to +3.2%. The calibration curve was linear up to a concentration of 1000 mg/L, the coefficient of correlation was r = 0.9997. AMCC was measured in urine samples from 30 exposed and 20 unexposed (smokers and nonsmokers) subjects. Measurable amounts of AMCC were found in all of the samples from workers exposed to DMF; on the contrary, none of the samples from unexposed subjects contained this metabolite. The proposed method is sufficiently sensitive

  3. Structural analysis of a type 1 ribosome inactivating protein reveals multiple L-asparagine-N-acetyl-D-glucosamine monosaccharide modifications: Implications for cytotoxicity

    PubMed Central

    HOGG, TANIS; MENDEL, JAMESON T.; LAVEZO, JONATHAN L.

    2015-01-01

    Pokeweed antiviral protein (PAP) belongs to the family of type I ribosome-inactivating proteins (RIPs): Ribotoxins, which function by depurinating the sarcin-ricin loop of ribosomal RNA. In addition to its antibacterial and antifungal properties, PAP has shown promise in antiviral and targeted tumor therapy owing to its ability to depurinate viral RNA and eukaryotic rRNA. Several PAP genes are differentially expressed across pokeweed tissues, with natively isolated seed forms of PAP exhibiting the greatest cytotoxicity. To help elucidate the molecular basis of increased cytotoxicity of PAP isoenzymes from seeds, the present study used protein sequencing, mass spectroscopy and X-ray crystallography to determine the complete covalent structure and 1.7 Å X-ray crystal structure of PAP-S1aci isolated from seeds of Asian pokeweed (Phytolacca acinosa). PAP-S1aci shares ~95% sequence identity with PAP-S1 from P. americana and contains the signature catalytic residues of the RIP superfamily, corresponding to Tyr72, Tyr122, Glu175 and Arg178 in PAP-S1aci. A rare proline substitution (Pro174) was identified in the active site of PAP-S1aci, which has no effect on catalytic Glu175 positioning or overall active-site topology, yet appears to come at the expense of strained main-chain geometry at the pre-proline residue Val173. Notably, a rare type of N-glycosylation was detected consisting of N-acetyl-D-glucosamine monosaccharide residues linked to Asn10, Asn44 and Asn255 of PAP-S1aci. Of note, our modeling studies suggested that the ribosome depurination activity of seed PAPs would be adversely affected by the N-glycosylation of Asn44 and Asn255 with larger and more typical oligosaccharide chains, as they would shield the rRNA-binding sites on the protein. These results, coupled with evidence gathered from the literature, suggest that this type of minimal N-glycosylation in seed PAPs and other type I seed RIPs may serve to enhance cytotoxicity by exploiting receptor

  4. Dual effects of N-acetyl-L-cysteine dependent on NQO1 activity: Suppressive or promotive of 9,10-phenanthrenequinone-induced toxicity

    SciTech Connect

    Toyooka, Tatsushi; Shinmen, Takuya; Aarts, Jac M.M.J.G.; Ibuki, Yuko

    2012-11-01

    A typical antioxidant, N-acetyl-L-cysteine (NAC) generally protects cells from oxidative damage induced by reactive oxygen species (ROS). 9,10-Phenanthrenequinone (9,10-PQ), a major quinone in diesel exhaust particles, produces ROS in redox cycling following two-electron reduction by NAD(P)H:quinone oxidoreductase 1 (NQO1), which has been considered as a cause of its cyto- and genotoxicity. In this study, we show that NAC unexpectedly augments the toxicity of 9,10-PQ in cells with low NQO1 activity. In four human skin cell lines, the expression and the activity of NQO1 were lower than in human adenocarcinoma cell lines, A549 and MCF7. In the skin cells, the cytotoxicity of 9,10-PQ was significantly enhanced by addition of NAC. The formation of DNA double strand breaks accompanying phosphorylation of histone H2AX, was also remarkably augmented. On the other hand, the cyto- and genotoxicity were suppressed by addition of NAC in the adenocarcinoma cells. Two contrasting experiments: overexpression of NQO1 in CHO-K1 cells which originally expressed low NQO1 levels, and knock‐down of NQO1 in the adenocarcinoma cell line A549 by transfection of RNAi, also showed that NAC suppressed 9,10-PQ-induced toxicity in cell lines expressing high NQO1 activity and enhanced it in cell lines with low NQO1 activity. The results suggested that dual effects of NAC on the cyto- and genotoxicity of 9,10-PQ were dependent on tissue-specific NQO1 activity. -- Highlights: ► NAC augmented the cytotoxicity of 9,10-PQ in skin cell lines. ► 9,10-PQ-induced DSBs accompanying γ-H2AX were also augmented by NAC. ► NAC suppressed the cyto- and genotoxicity of 9,10-PQ in adenocarcinoma cell lines. ► The dual effects of NAC on toxicity of 9,10-PQ were dependent on NQO1 activity.

  5. Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-D-penicillamine.

    PubMed

    Wo, Yaqi; Li, Zi; Brisbois, Elizabeth J; Colletta, Alessandro; Wu, Jianfeng; Major, Terry C; Xi, Chuanwu; Bartlett, Robert H; Matzger, Adam J; Meyerhoff, Mark E

    2015-10-14

    The prolonged and localized delivery of nitric oxide (NO), a potent antithrombotic and antimicrobial agent, has many potential biomedical applications. In this work, the origin of the long-term storage stability and sustained NO release mechanism of S-nitroso-N-acetyl-D-penicillamine (SNAP)-doped CarboSil 20 80A polymer, a biomedical thermoplastic silicone-polycarbonate-urethane, is explored. Long-term (22 days) localized NO release is achieved by utilizing a cross-linked silicone rubber as topcoats, which can greatly reduce the amount of SNAP, NAP, and NAP disulfide leaching from the SNAP-doped CarboSil films, as measured by LC-MS. Raman spectroscopy and powder X-ray diffraction characterization of SNAP-doped CarboSil films demonstrate that a polymer-crystal composite is formed during the solvent evaporation process when SNAP exceeds its solubility in CarboSil (ca. 3.4-4.0 wt %). Further, when exceeding this solubility threshold, SNAP exists in an orthorhombic crystal form within the bulk of the polymer. The proposed mechanism of sustained NO release in SNAP-doped CarboSil is that the solubilized SNAP in the polymer matrix decomposes and releases NO, primarily in the water-rich regions near the polymer/solution interface, and the dissolved SNAP in the bulk polymeric phase becomes unsaturated, resulting in the dissolution of crystalline SNAP within the bulk of the polymer. This is a very slow process that ultimately leads to NO release at the physiological flux levels for >3 weeks. The increased stability of SNAP within CarboSil is attributed to the intermolecular hydrogen bonds between the SNAP molecules that crystallize. This crystallization also plays a key role in maintaining RSNO stability within the CarboSil polymer for >8 months at 37 °C (88.5% remains). Further, intravascular catheters fabricated with this new material are demonstrated to significantly decrease the formation of Staphylococcus aureus biofilm (a leading cause of nosocomial bloodstream

  6. N-acetyl-S-(N,N-diethylcarbamoyl) cysteine in rat nucleus accumbens, medial prefrontal cortex, and in rat and human plasma after disulfiram administration.

    PubMed

    Winefield, Robert D; Heemskerk, Anthonius A M; Kaul, Swetha; Williams, Todd D; Caspers, Michael J; Prisinzano, Thomas E; McCance-Katz, Elinore F; Lunte, Craig E; Faiman, Morris D

    2015-03-25

    Disulfiram (DSF), a treatment for alcohol use disorders, has shown some clinical effectiveness in treating addiction to cocaine, nicotine, and pathological gambling. The mechanism of action of DSF for treating these addictions is unclear but it is unlikely to involve the inhibition of liver aldehyde dehydrogenase (ALDH2). DSF is a pro-drug and forms a number of metabolites, one of which is N-acetyl-S-(N,N-diethylcarbamoyl) cysteine (DETC-NAC). Here we describe a LCMS/MS method on a QQQ type instrument to quantify DETC-NAC in plasma and intracellular fluid from mammalian brain. An internal standard, the N,N-di-isopropylcarbamoyl homolog (MIM: 291>128) is easily separable from DETC-NAC (MIM: 263>100) on C18 RP media with a methanol gradient. The method's linear range is 0.5-500 nM from plasma and dialysate salt solution with all precisions better than 10% RSD. DETC-NAC and internal standards were recovered at better than 95% from all matrices, perchloric acid precipitation (plasma) or formic acid addition (salt) and is stable in plasma or salt at low pH for up to 24 h. Stability is observed through three freeze-thaw cycles per day for 7 days. No HPLC peak area matrix effect was greater than 10%. A human plasma sample from a prior analysis for S-(N,N-diethylcarbamoyl) glutathione (CARB) was found to have DETC NAC as well. In other human plasma samples from 62.5 mg/d and 250 mg/d dosing, CARB concentration peaks at 0.3 and 4 nM at 3 h followed by DETC-NAC peaks of 11 and 70 nM 2 h later. Employing microdialysis sampling, DETC-NAC levels in the nucleus accumbens (NAc), medial prefrontal cortex (mPFC), and plasma of rats treated with DSF reached 1.1, 2.5 and 80 nM at 6h. The correlation between the appearance and long duration of DETC-NAC concentration in rat brain and the persistence of DSF-induced changes in neurotransmitters observed by Faiman et al. (Neuropharmacology, 2013, 75C, 95-105) is discussed.

  7. Plasmid-mediated genomic recombination at the pilin gene locus enhances the N-acetyl-D-galactosamine-specific haemagglutination activity and the growth rate of Eikenella corrodens.

    PubMed

    Azakami, Hiroyuki; Akimichi, Hiromi; Noiri, Yuichiro; Ebisu, Shigeyuki; Kato, Akio

    2006-03-01

    Eikenella corrodens belongs to a group of periodontopathogenic bacteria and forms unique corroding colonies on solid medium due to twitching motility. It is believed that an N-acetyl-D-galactosamine (GalNAc)-specific lectin on the cell surface contributes significantly to its pathogenicity and can be estimated by its haemagglutination (HA) activity. Recently, a plasmid, pMU1, from strain 1073 has been found; this plasmid affects pilus formation and colony morphology. To identify the gene involved in these phenomena, ORF 4 and ORFs 5-6 on pMU1 were separately subcloned into a shuttle vector, and the resultant plasmids were introduced into E. corrodens 23834. Transformants with the ORF 4 gene, which is identified to be a homologous gene of the type IV pilin gene-specific recombinase, lost their pilus structure and formed non-corroding colonies on a solid medium, whereas transformants with ORFs 5-6 exhibited the same phenotype as the host strain 23834. Southern analysis showed that the introduction of the ORF 4 gene into strain 23834 resulted in genomic recombination at the type IV pilin gene locus. The hybridization pattern of these transformants was similar to that of strain 1073. These results suggest that ORF 4 on pMU1 encodes a site-specific recombinase and causes genomic recombination of the type IV pilin gene locus. Furthermore, the introduction of ORF 4 into strain 23834 increased GalNAc-specific HA activity to a level equivalent to that of strain 1073. Although the morphological colony changes and loss of pilus structure are also observed in phase variation, genomic recombination of the type IV pilin gene locus did not occur in these variants. Moreover, an increase was not observed in the GalNAc-specific HA activity of these variants. These results suggested that the loss of pilus structure, the morphological change in colonies and the increase in HA activity due to plasmid pMU1 might be caused by a mechanism that differs from phase variation, such as a

  8. Origin of Long-Term Storage Stability and Nitric Oxide Release Behavior of CarboSil Polymer Doped with S-Nitroso-N-acetyl-d-penicillamine

    PubMed Central

    2016-01-01

    The prolonged and localized delivery of nitric oxide (NO), a potent antithrombotic and antimicrobial agent, has many potential biomedical applications. In this work, the origin of the long-term storage stability and sustained NO release mechanism of S-nitroso-N-acetyl-d-penicillamine (SNAP)-doped CarboSil 20 80A polymer, a biomedical thermoplastic silicone-polycarbonate-urethane, is explored. Long-term (22 days) localized NO release is achieved by utilizing a cross-linked silicone rubber as topcoats, which can greatly reduce the amount of SNAP, NAP, and NAP disulfide leaching from the SNAP-doped CarboSil films, as measured by LC–MS. Raman spectroscopy and powder X-ray diffraction characterization of SNAP-doped CarboSil films demonstrate that a polymer–crystal composite is formed during the solvent evaporation process when SNAP exceeds its solubility in CarboSil (ca. 3.4–4.0 wt %). Further, when exceeding this solubility threshold, SNAP exists in an orthorhombic crystal form within the bulk of the polymer. The proposed mechanism of sustained NO release in SNAP-doped CarboSil is that the solubilized SNAP in the polymer matrix decomposes and releases NO, primarily in the water-rich regions near the polymer/solution interface, and the dissolved SNAP in the bulk polymeric phase becomes unsaturated, resulting in the dissolution of crystalline SNAP within the bulk of the polymer. This is a very slow process that ultimately leads to NO release at the physiological flux levels for >3 weeks. The increased stability of SNAP within CarboSil is attributed to the intermolecular hydrogen bonds between the SNAP molecules that crystallize. This crystallization also plays a key role in maintaining RSNO stability within the CarboSil polymer for >8 months at 37 °C (88.5% remains). Further, intravascular catheters fabricated with this new material are demonstrated to significantly decrease the formation of Staphylococcus aureus biofilm (a leading cause of nosocomial bloodstream

  9. Nephrotoxicity of 2-bromo-(cystein-S-yl) hydroquinone and 2-bromo-(N-acetyl-L-cystein-S-yl) hydroquinone thioethers.

    PubMed

    Monks, T J; Jones, T W; Hill, B A; Lau, S S

    1991-11-01

    The in vivo toxicity of isomeric cystein-S-yl and N-acetylcystein-S-yl conjugates of 2-bromohydroquinone was determined in male Sprague-Dawley rats. 2-Bromo-(dicystein-S-yl)hydroquinone [2-Br-(diCYS)HQ] and 2-bromo-(di-N-acetyl-L-cystein-S-yl)hydroquinone [2-Br-(diNAC)HQ] were considerably more nephrotoxic than their corresponding monosubstituted thioethers and 2-Br-(diCYS)HQ was more nephrotoxic than 2-Br-(diNAC)HQ. 2-Br-(diCYS)HQ caused elevations in blood urea nitrogen (BUN) concentrations and increases in the urinary excretion of glucose, lactate dehydrogenase (LDH), and gamma-glutamyl transpeptidase (gamma-GT) at a dose of 25 mumol/kg (iv). In contrast, 2-Br-(diNAC)HQ caused significant elevations in BUN at 100 mumol/kg and glucosuria and enzymuria at 50 mumol/kg. 2-Br-3-(CYS)HQ and 2-Br-5&6-(CYS)HQ caused increases in the biochemical indices of nephrotoxicity at doses between 50 and 150 mumol/kg whereas 2-Br-5-(NAC)HQ and 2-Br-6-(NAC)HQ required doses of 150-200 mumol/kg to cause smaller, though significant increases in urinary glucose, gamma-GT, and LDH excretion. The histological alterations caused by each thioether were qualitatively similar; only differences in the extent of the renal proximal tubular damage were observed. The initial lesion appears to involve the cells of the medullary ray and the S3M within the outer stripe of the outer medulla. The in vivo nephrotoxicity of 2-Br-(DiCYS)HQ, 2-Br-(diNAC)HQ, and the most potent monosubstituted thioethers, 2-Br-5&6-(CYS)HQ and 2-Br-6-(NAC)HQ, was investigated further. Pretreatment of animals with aminooxyacetic acid, an inhibitor of cysteine conjugate beta-lyase (beta-lyase), had no effect on the toxicity of 2-Br-(diCYS)HQ, partially inhibited the toxicity of 2-Br-5&6-(CYS)HQ, and almost completely protected against the toxicity of both 2-Br-6-(NAC)HQ and 2-Br-(diNAC)HQ. Thus, the nephrotoxicity of 2-Br-5&6-(CYS)HQ, 2-Br-6-(NAC)HQ, and 2-Br-(diNAC)HQ may be mediated, in part, via their processing by beta

  10. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus.

    PubMed Central

    Raibaud, A; Zalacain, M; Holt, T G; Tizard, R; Thompson, C J

    1991-01-01

    Nucleotide sequence analysis of a 5,000-bp region of the bialaphos antibiotic production (bap) gene cluster defined five open reading frames (ORFs) which predicted structural genes in the order bah, ORF1, ORF2, and ORF3 followed by the regulatory gene, brpA (H. Anzai, T. Murakami, S. Imai, A. Satoh, K. Nagaoka, and C.J. Thompson, J. Bacteriol. 169:3482-3488, 1987). The four structural genes were translationally coupled and apparently cotranscribed from an undefined promoter(s) under the positive control of the brpA gene product. S1 mapping experiments indicated that brpA was transcribed by two promoters (brpAp1 and brpAp2) which initiate transcription 150 and 157 bp upstream of brp A within an intergenic region and at least one promoter further upstream within the bap gene cluster (brpAp3). All three transcripts were present at low levels during exponential growth and increased just before the stationary phase. The levels of the brpAp3 band continued to increase at the onset of stationary phase, whereas brpAp1-and brpAp2-protected fragments showed no further change. BrpA contained a possible helix-turn-helix motif at its C terminus which was similar to the C-terminal regulatory motif found in the receiver component of a family of two-component transcriptional activator proteins. This motif was not associated with the N-terminal domain conserved in other members of the family. The structural gene cluster sequenced began with bah, encoding a bialaphos acetylhydrolase which removes the N-acetyl group from bialaphos as one of the final steps in the biosynthetic pathway. The observation that Bah was similar to a rat and to a bacterial (Acinetobacter calcoaceticus) lipase probably reflects the fact that the ester bonds of triglycerides and the amide bond linking acetate to phosphinothricin are similar and hydrolysis is catalyzed by structurally related enzymes. This was followed by two regions encoding ORF1 and ORF2 which were similar to each other (48% nucleotide

  11. Comparative Study of Renal Protective Effects of Allopurinol and N-Acetyl-Cysteine on Contrast Induced Nephropathy in Patients Undergoing Cardiac Catheterization

    PubMed Central

    Bhawani, Goru; Kumari, Neera; Murthy, Kasturi SN; Lalwani, Vinod; Raju, CH Narasimha

    2014-01-01

    Objectives : To evaluate the difference in the renal protective effects of allopurinol and n-acetyl cysteine along with saline hydration in patients of contrast induced nephropathy (CIN) post cardiac interventions. Background: CIN remains a common complication of cardiac procedures. Radio contrast agents can cause a reduction in renal function that may be related to oxidative stress underlining various patho- physiologies. Conflicting evidence suggests that administration of allopurinol, a xanthine oxidase inhibitor can prevent CIN. Materials and Methods: This is a study of 500 patients undergoing angiography and coronary revascularisation in patients showing significant coronary block. The angiography positive patients (275) were prospectively randomised to different treatment protocol to study for their reno-protective effect. The patients received either of the three drugs saline hydration (SH, 1ml/kg/hr), n-acetylcysteine (SH+NAC, 600 mg bd) or Allopurinol (SH+ALLP, 300 mg/day) 12 hours before and after administration of radio contrast agent. Levels of serum creatinine and blood urea of the 275 patients recorded at 24 hour interval were noted post angioplasty over a course of 5 days in patients receiving either omnipaque (125) or visipaque (150) contrast media. All the 500 patients were also assessed for development of any kind of adverse drug effects/reactions with the two contrast media. Results: CIN occurred in 56 of 500 the patients (10.6%) who underwent angiography and 49 of 275 patients (17.8%) who underwent angioplasty. In the omnipaque group CIN occurred in 16/40, 8/40, nil/45 in patients receiving SH, NAC plus SH and SH plus ALLP respectively. In the visipaque group CIN occurred in 15/50, 10/50, nil/50 in the three treatments groups respectively. Allopurinol maintained a consistent fall in the serum creatinine & blood urea levels from the baseline values from the end of the 1st day (p < .01 & .001) in both the category. Visipaque proved to be better

  12. Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-β-D-glucosaminidase for detecting dairy cows with intramammary infection.

    PubMed

    Nyman, A-K; Emanuelson, U; Waller, K Persson

    2016-02-01

    The main objective of this study was to investigate the diagnostic test performance of somatic cell count (SCC), lactate dehydrogenase (LDH), and N-acetyl-β-D-glucosaminidase (NAGase), analyzed in composite test milking samples, for detecting dairy cows with or without intramammary infection (IMI). A second objective was to investigate whether an adjustment of these udder health indicators according to their associations with different influential factors (i.e., parity, days in milk, and season) improved their test performance. Moreover, we wanted to investigate whether test performance of SCC improved if SCC results from previous adjacent test milkings were included in the model. Such test milking data were not available for LDH or NAGase. In this cross-sectional study, quarter milk samples for bacteriological examination were taken from almost 1,000 cows from 25 dairy herds during 3 consecutive days: the day before test milking, the day of test milking, and the day after test milking. From each cow, a composite test milking sample was analyzed for milk composition, SCC, LDH, and NAGase. Among the cows sampled, 485 were IMI negative and 256 were IMI positive in one or more udder quarters according to the definitions used. The remaining cows had inconclusive IMI status. To assess the test performance of SCC, LDH, and NAGase to identify IMI-negative and IMI-positive cows, univariable generalized estimating equation models were used with the udder health indicator of interest as outcome and IMI status as explanatory variable. From these models, receiver-operator characteristic curves were created and the area under cure (AUC) was calculated. From each model, a cut-off was chosen for calculations of the sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) for each udder health indicator. The AUC was similar for the adjusted SCC (0.84), nonadjusted SCC (0.83) and geometric mean SCC (0.80-0.81), but

  13. Roles of P-glycoprotein and multidrug resistance protein in transporting para-aminosalicylic acid and its N-acetylated metabolite in mice brain

    PubMed Central

    Hong, Lan; Xu, Cong; O'Neal, Stefanie; Bi, Hui-chang; Huang, Min; Zheng, Wei; Zeng, Su

    2014-01-01

    Aim: Para-aminosalicylic acid (PAS) is effective in the treatment of manganism-induced neurotoxicity (manganism). In this study we investigated the roles of P-glycoprotein (MDR1a) and multidrug resistance protein (MRP) in transporting PAS and its N-acetylated metabolite AcPAS through blood-brain barrier. Methods: MDR1a-null or wild-type mice were intravenously injected with PAS (200 mg/kg). Thirty minutes after the injection, blood samples and brains were collected, and the concentrations of PAS and AcPAS in brain capillaries and parenchyma were measured using HPLC. Both MDCK-MDR1 and MDCK-MRP1 cells that overexpressed P-gp and MRP1, respectively, were used in two-chamber Transwell transport studies in vitro. Results: After injection of PAS, the brain concentration of PAS was substantially higher in MDR1a-null mice than in wild-type mice, but the brain concentration of AcPAS had no significant difference between MDR1a-null mice and wild-type mice. Concomitant injection of PAS with the MRP-specific inhibitor MK-571 (50 mg/kg) further increased the brain concentration of PAS in MDR1a-null mice, and increased the brain concentration of AcPAS in both MDR1a-null mice and wild-type mice. Two-chamber Transwell studies with MDCK-MDR1 cells demonstrated that PAS was not only a substrate but also a competitive inhibitor of P-gp, while AcPAS was not a substrate of P-gp. Two-chamber Transwell studies with the MDCK-MRP1 cells showed that MRP1 had the ability to transport both PAS and AcPAS across the BBB. Conclusion: P-gp plays a major role in the efflux of PAS from brain parenchyma into blood in mice, while MRP1 is involved in both PAS and AcPAS transport in the brain. PMID:25418377

  14. A Biodistribution and Toxicity Study of Cobalt Dichloride-N-Acetyl Cysteine in an Implantable MRI Marker for Prostate Cancer Treatment

    SciTech Connect

    Frank, Steven J.; Johansen, Mary J.; Martirosyan, Karen S.; Gagea, Mihai; Van Pelt, Carolyn S.; Borne, Agatha; Carmazzi, Yudith; Madden, Timothy

    2013-03-15

    Purpose: C4, a cobalt dichloride-N-acetyl cysteine complex, is being developed as a positive-signal magnetic resonance imaging (MRI) marker to localize implanted radioactive seeds in prostate brachytherapy. We evaluated the toxicity and biodistribution of C4 in rats with the goal of simulating the systemic effects of potential leakage from C4 MRI markers within the prostate. Methods and Materials: 9-μL doses (equivalent to leakage from 120 markers in a human) of control solution (0.9% sodium chloride), 1% (proposed for clinical use), and 10% C4 solution were injected into the prostates of male Sprague-Dawley rats via laparotomy. Organ toxicity and cobalt disposition in plasma, tissues, feces, and urine were evaluated. Results: No C4-related morbidity or mortality was observed in the biodistribution arm (60 rats). Biodistribution was measurable after 10% C4 injection: cobalt was cleared rapidly from periprostatic tissue; mean concentrations in prostate were 163 μg/g and 268 μg/g at 5 and 30 minutes but were undetectable by 60 minutes. Expected dual renal-hepatic elimination was observed, with percentages of injected dose recovered in tissues of 39.0 ± 5.6% (liver), >11.8 ± 6.5% (prostate), and >5.3 ± 0.9% (kidney), with low plasma concentrations detected up to 1 hour (1.40 μg/mL at 5-60 minutes). Excretion in urine was 13.1 ± 4.6%, with 3.1 ± 0.54% recovered in feces by 24 hours. In the toxicity arm, 3 animals died in the control group and 1 each in the 1% and 10% groups from surgical or anesthesia-related complications; all others survived to scheduled termination at 14 days. No C4-related adverse clinical signs or organ toxicity were observed. Conclusion: C4-related toxicity was not observed at exposures at least 10-fold the exposure proposed for use in humans. These data demonstrating lack of systemic toxicity with dual routes of elimination in the event of in situ rupture suggest that C4 warrants further investigation as an MRI marker for prostate

  15. The hydrothermal reaction kinetics of aspartic acid

    NASA Astrophysics Data System (ADS)

    Cox, Jenny S.; Seward, Terry M.

    2007-02-01

    Experimental data on the hydrothermal reaction kinetics of aspartic acid were acquired using a custom-built spectrophotometric reaction cell which permits in situ observation under hydrothermal conditions. The results of this study indicate that the reaction kinetics of dilute aspartic acid solutions are significantly different depending on the presence or absence of catalytic surfaces such as standard metal alloys. The spectroscopic data presented here represent the first direct observations, in situ and in real time, of an amino acid reacting in a hydrothermal solution. Quantitative kinetic information, including rate constants, concentration versus time profiles, and calculations of the individual component spectra, was obtained from the data using a chemometric approach based on factor analysis/principle component analysis which treats the rate expressions simultaneously as a system of differential algebraic equations (DAE) of index 1. Identification of the products was confirmed where possible by high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction kinetics of aspartic acid under hydrothermal conditions was observed to be highly complex, in contrast to previous studies which indicated almost exclusively deamination. At lower temperatures (120-170 °C), several different reaction pathways were observed, including decarboxylation and polymerization, and the catalytic effects of reactor surfaces on the aspartic acid system were clearly demonstrated. At higher temperatures (above 170 °C), aspartic acid exhibited highly complex behaviour, with evidence indicating that it can simultaneously dimerize and cyclize, deaminate (by up to two pathways), and decarboxylate (by up to two pathways). These higher temperature kinetics were not fully resolvable in a quantitative manner due to the complexity of the system and the constraints of UV spectroscopy. The results of this study provide strong evidence that the reaction

  16. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application.

  17. Efficacy of holmium laser urethrotomy and intralesional injection of Santosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase and N-acetyl cysteine) on the outcome of urethral strictures

    PubMed Central

    Kishore, Lalit; Sharma, Aditya Prakash; Garg, Nitin; Singh, Shrawan Kumar

    2015-01-01

    Introduction To study the efficacy of holmium laser urethrotomy with intralesional injection of Santosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase and N-acetyl cysteine) in the treatment of urethral strictures. Material and methods A total of 50 patients with symptomatic urethral stricture were evaluated by clinical history, physical examination, uroflowmetry and retrograde urethrogram preoperatively. All patients were treated with holmium laser urethrotomy, followed by injection of tetra-inject at the urethrotomy site. Tetra-inject was prepared by diluting acombination of 40 mg Triamcinolone, 2 mg Mitomycin, 3000 UHyaluronidase and 600 mg N-acetyl cysteine in 5–10 ml of saline, according to the stricture length. An indwelling 18 Fr silicone catheter was left in place for 7–10 days.All patients were followed-up for 6-18 months postoperatively by history, uroflowmetry, and if required, retrograde urethrogram and micturating urethrogram every 3 months. Results 41 (82%) patients had asuccessful outcome,whereas 9 (18%) had recurrences during a follow-up ranging from 6–18 months. In <1 cm length strictures, the success rate was 100%, while in 1–3 cm and >3 cm lengthsthe success rates were 81.2% and 66.7% respectively. This modality, thus, has an encouraging success rate, especially in those with short segment urethral strictures (<3 cm). Conclusions Holmium laser urethrotomy with intralesional injection ofSantosh PGI tetra-inject (Triamcinolone, Mitomycin C, Hyaluronidase, N-acetyl cysteine) is a safe and effective minimally-invasive therapeutic modality for short segment urethral strictures. PMID:26855803

  18. Stereoselective addition of the titanium enolate of N-acetyl (4S)-isopropyl-1,3-thiazolidine-2-thione to five-membered N-acyl iminium ions.

    PubMed

    Barragán, Efraín; Olivo, Horacio F; Romero-Ortega, Moisés; Sarduy, Seth

    2005-05-13

    [reaction: see text] Addition of the chlorotitanium enolate of N-acetyl 4-isopropyl-1,3-thiazolidine-2-thione to five-membered, N-substituted N-acyl iminium ions furnished the corresponding Mannich-type addition products with good diastereoselectivity and in good yields. The synthetic utility of the addition product 8 was demonstrated in a chemospecific anti-aldol reaction with cinnamaldehyde. By using this strategy, we constructed three contiguous chiral centers with high stereocontrol employing the same chiral auxiliary. X-Ray crystallographic analysis of addition product 2 and aldol product 14 revealed their absolute stereochemistry.

  19. The activity of N-acetyl-β-hexosaminidase in boar seminal plasma is linked with semen quality and its suitability for cryopreservation.

    PubMed

    Wysocki, Paweł; Orzołek, Aleksandra; Strzeżek, Jerzy; Koziorowska-Gilun, Magdalena; Zasiadczyk, Łukasz; Kordan, Władysław

    2015-04-15

    The determination of sperm cryotolerance is an important step in the process of developing optimal techniques for the storage of boar semen. The objective of this study was to determine individual proteome variations in boar seminal plasma and spermatozoa and establish their influence on the cryotolerance of ejaculate. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the presence of protein with estimated molecular weight of 90 kDa in sperm extracts from ejaculates of selected boars. In all cases, dialysis performed at the initial stage of cryopreservation effectively removed the protein from sperm cells. The protein had an affinity for Zn(2+) ions. Mass spectrometry revealed similarities between the discussed protein and the β subunit of N-acetyl-β-hexosaminidase (β-HEX). Seminal plasma β-HEX was purified 252-fold with approximately 27% recovery and specific activity of 1800 U/mg of protein. Enzyme activity in fresh seminal plasma was correlated with superoxide dismutase activity (r = -0.42, P < 0.05), glutathione peroxidase activity (r = -0.42, P < 0.05), mitochondrial function (r = 0.31, P < 0.05), glutathione content (r = 0.34, P < 0.05), total protein content (r = 0.42, P < 0.05), and total oxidant status of seminal plasma (r = 0.37, P < 0.05). After thawing, β-HEX activity in seminal plasma was negatively correlated with the total motile sperm count (r = -0.33, P < 0.05), plasma membrane integrity (r = -0.31, P < 0.05), and lipid peroxidation (r = 0.33, P < 0.05). The observed correlations indicate that lower levels of β-HEX activity in boar seminal plasma are linked with higher quality of sperm after thawing. Based on those observations, the ejaculates were divided into two groups characterized by low (<20,000 U/L) and high (>20,000 U/L) levels of β-HEX activity in seminal plasma. In plasma with high β-HEX activity, spermatozoa were characterized by lower plasma membrane integrity (84.7%, P < 0.05). Higher glutathione levels (1250

  20. Comparative specificities of Calreticulin Transacetylase to O-acetyl, N-acetyl and S-acetyl derivative of 4-methylcoumarins and their inhibitory effect on AFB1-induced genotoxicity in vitro and in vivo.

    PubMed

    Kumar, Ajit; Ponnan, Prija; Raj, Hanumantharao G; Parmar, Virinder S; Saso, Luciano

    2013-02-01

    We have earlier conclusively established the Calreticulin Transacetylase (CRTAase) catalyzed modifications of functional proteins such as cytochrome-P450-linked mixed function oxidases (Cyt-P450-linked MFOs), NADPH cytochrome c reductase, and glutathione S-transferase by acetoxy derivatives of polyphenols. In this study, we have investigated the comparative specificities of CRTAase to N-acetyl derivative, 7-acetamido-4-methylcoumarin (7-N-AMC), O-acetyl derivative, 7-acetoxy-4-methylcoumarin (7-AMC), S-acetyl derivative, 7-thioacetyl-4-methycoumarin (7-S-AMC) and their parent compounds in the modulation of catalytic activities of aforesaid proteins. Special attention concentrated on the comparative inhibitory effect of aforesaid acetyl moiety on Cyt-P450-linked MFOs such as 7-ethoxyresorufin O-deethylase (EROD), pentoxyresorufin O-dealkylase (PROD) and aflatoxin B(1) (AFB(1))-induced genotoxicity in vitro and in vivo. The results clearly indicated that N-acetyl and O-acetyl derivatives were better substrates for CRTAase while the S-acetyl was found to be a poorer substrate. Our study involving atomic charge, charge density and molecular electrostatic potential (MEP) calculations indicated the pivotal role of electronegativity and charge distribution values of O, N and S atoms of the acetyl group at C-7 position of the 4-methylcoumarins in CRTAase activity. These facts reinforce our hypothesis that the CRTAase catalyzed modifications of the catalytic activities of aforesaid proteins by acetyl derivative of 4-methylcoumarins is probably due to acetylation of these proteins.

  1. Structure of N-acetyl-[beta]-D-glucosaminidase (GcnA) from the Endocarditis Pathogen Streptococcus gordonii and its Complex with the Mechanism-based Inhibitor NAG-thiazoline

    SciTech Connect

    Langley, David B.; Harty, Derek W.S.; Jacques, Nicholas A.; Hunter, Neil; Guss, J. Mitchell; Collyer, Charles A.

    2008-09-17

    The crystal structure of GcnA, an N-acetyl-{beta}-D-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal {alpha}-helical domain has not been observed previously and forms a large dimerization interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical ({beta}/{alpha}){sub 8} TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a family 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-{beta}-D-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.

  2. Similarities between cysteinesulphinate transaminase and aspartate aminotransferase.

    PubMed

    Recasens, M; Mandel, P

    1979-01-01

    A method for the purification of two cysteinesulphinate transaminases, A and B (EC 2.6.1), is described. These enzymes catalyse the conversion of cysteinesulphinic acid to beta-sulphinyl pyruvate. The final preparations are homogeneous by polyacrylamide gel electrophoresis, sodium dodecyl sulphate-polyacrylamide gel electrophoresis and isoelectrofocusing. The molecular weight of the subunits is 41 000 for cysteinesulphinate transaminase A and 43 400 for B. Both enzymes are unspecific, as L-asparate, L-glutamate and L-cysteic acid serve as substrates in addition to L-cysteinesulphinic acid. Cysteinesulphinate transaminase A has a Km of 9.8 mM for cysteinesulphinic acid and 0.25 mM for aspartic acid, whereas the B enzyme has a Km of 6.5 mM for cysteinesulphinic acid and 1.4 mM for aspartic acid. The Vmax values of the A and B enzymes are respectively 7.1 and 6.2 mmol h-1 mg-1 protein for aspartic acid and 45 and 9.3 mmol h-1 mg-1 protein for cysteinesulphinic acid. Both enzymes exhibit maximum activity at pH 8.6. A high specific activity is found in optimal conditions for these two transaminases, the pI values being 9.06 and 5.70 for cysteinesulphinate transaminase A and B respectively. These results have been compared with those already obtained for purified aspartate aminotransferase. Similarities in the pathways of taurine and gamma-aminobutyric acid (GABA) metabolism are discussed.

  3. Specificity of a wheat gluten aspartic proteinase.

    PubMed

    Bleukx, W; Brijs, K; Torrekens, S; Van Leuven, F; Delcour, J A

    1998-09-08

    The substrate and peptide bond specificities of a purified wheat gluten aspartic proteinase (GlAP) are studied. GlAP shows maximum gluten hydrolysing activity at pH 3.0. At this pH, especially the wheat high molecular weight glutenin subunits (HMW-GS) and to a lesser extent the low molecular weight glutenin subunits and gliadins are hydrolysed. GlAP has no obvious effect on albumins and globulins. In its action on oxidised insulin B-chain, GlAP forms eight peptides and has high specificity for peptide bonds located between amino acid residues with large hydrophobic side chains (Leu, Phe, Tyr) but the peptide bond Glu13-Ala14 is also hydrolysed. Although structurally quite similar to a barley aspartic proteinase, the peptide bond specificity of GlAP towards oxidised insulin B-chain resembles slightly more that of a cardoon aspartic proteinase, cardosin B. HMW-GS 7, purified from cultivar Galahad-77, is rapidly hydrolysed by GlAP. N-Terminal amino acid sequence data show that GlAP cleaves at least one Met-Ile peptide bond at the end of the N-terminal domain and two Val-Leu peptide bonds in the repetitive domain of HMW-GS 7.

  4. Synthesis of a chitosan tetramer derivative, beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->4)-D-Glc N through a partial N-acetylation reaction by chitin deacetylase.

    PubMed

    Tokuyasu, K; Ono, H; Mitsutomi, M; Hayashi, K; Mori, Y

    2000-04-20

    We have synthesized beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->4)-beta-D-GlcNAc-(1-->4)-D-GlcN (2) through a partial N-acetylation reaction of chitosan tetramer 1 by a chitin deacetylase from Colletotrichum lindemuthianum ATCC 56676. The compound was purified from the mixture of acetylation products of 1 using cation-exchange column chromatography and amine-adsorption column chromatography, and its structure was estimated by 1H NMR and FABMS analyses. The enzymatic reaction allows a regioselectivity that is hard to achieve by chemical N-acetylation.

  5. D-Alanylation of Teichoic Acids and Loss of Poly-N-Acetyl Glucosamine in Staphylococcus aureus during Exponential Growth Phase Enhance IL-12 Production in Murine Dendritic Cells.

    PubMed

    Lund, Lisbeth Drozd; Ingmer, Hanne; Frøkiær, Hanne

    2016-01-01

    Staphylococcus aureus is a major human pathogen that has evolved very efficient immune evading strategies leading to persistent colonization. During different stages of growth, S. aureus express various surface molecules, which may affect the immune stimulating properties, but very little is known about their role in immune stimulation and evasion. Depending on the growth phase, S. aureus may affect antigen presenting cells differently. Here, the impact of growth phases and the surface molecules lipoteichoic acid, peptidoglycan and poly-N-acetyl glucosamine on the induction of IL-12 imperative for an efficient clearance of S. aureus was studied in dendritic cells (DCs). Exponential phase (EP) S. aureus was superior to stationary phase (SP) bacteria in induction of IL-12, which required actin-mediated endocytosis and endosomal acidification. Moreover, addition of staphylococcal cell wall derived peptidoglycan to EP S. aureus stimulated cells increased bacterial uptake but abrogated IL-12 induction, while addition of lipoteichoic acid increased IL-12 production but had no effect on the bacterial uptake. Depletion of the capability to produce poly-N-acetyl glucosamine increased the IL-12 inducing activity of EP bacteria. Furthermore, the mutant dltA unable to produce D-alanylated teichoic acids failed to induce IL-12 but like peptidoglycan and the toll-like receptor (TLR) ligands LPS and Pam3CSK4 the mutant stimulated increased macropinocytosis. In conclusion, the IL-12 response by DCs against S. aureus is highly growth phase dependent, relies on cell wall D-alanylation, endocytosis and subsequent endosomal degradation, and is abrogated by receptor induced macropinocytosis.

  6. Effect of 16.16 dimethyl prostaglandin E2, N-acetyl-cysteine and the proton pump inhibitor BY 831-78 on hydrogen peroxide-induced mucosal damage in the rat stomach.

    PubMed

    Schürer-Maly, C C; Haussner, V; Halter, F

    1990-01-01

    Reactive oxygen species are noxious to gastrointestinal mucosa and contribute to a variety of gastrointestinal diseases. We examined whether 16.16 dimethyl prostaglandin E2 (PG) is protective against the oxidizing action of 6% H2O2 causing gross hemorrhagic lesions in rat gastric mucosa. Male Wistar rats were treated with PG, 0.005-5 micrograms/kg, either intragastrically (i.g.) or subcutaneously, 30 min prior to i.g. administration of 6% H2O2, 0.5 ml/100 g. Further animals received 25 mg of the mucus dissolvent N-acetyl-cystein (NAC) following oral PG treatment or 30 mumol/kg of the H+K(+)-ATPase inhibitor BY 831-78 (BY), 4 h before onset of the experiments. Volume, pH and beta-N-acetyl-glucosaminidase and lactate dehydrogenase as parameters of cell damage were determined in the gastric juice. i.g. PG treatment achieved 60 and 55% reduction of the mucosal lesions in doses between 5 and 0.05 micrograms/kg, respectively. i.p. PG administration was effective in all doses tested. Gastric juice volume was only slightly and enzymes were not significantly affected by PG treatment. NAC did not diminish PG efficacy or aggravate mucosal lesions. Gastric acid suppression did not increase PG-induced protection but was strongly protective by itself, reducing damage by 75%. Low-dose PG treatment achieves an effective protection against oxidative damage in gastric mucosa, which is not the result of dilution or enhanced mucus production.

  7. The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the β-galactosidase from Bacillus circulans in hydro-organic media.

    PubMed

    Bridiau, Nicolas; Issaoui, Neyssène; Maugard, Thierry

    2010-01-01

    The enzymatic synthesis of N-acetyl-lactosamine (LacNAc) by the transgalactosylation of N-acetyl-D-glucosamine (GlcNAc), catalyzed by the β-galactosidase from Bacillus circulans (BcβGal), was studied in hydro-organic media, starting from o-nitrophenyl-β-D-galactopyranoside (oNPG) as a galactosyl donor. Thermal stability and synthesis activity of BcβGal were shown to depend on the organic solvent polarity, characterized by its Log P value. BcβGal was thus most stable in 10% (v/v) t-BuOH, an organic solvent found to have a stabilizing and/or weakly denaturing property, which was confirmed for high t-BuOH concentrations. In the same manner, the optimal synthesis yield increased as the Log P value of the organic solvent increased. The best results were obtained for reactions carried out in 10% (v/v) pyridine or 2-methyl-2-butanol, which gave 47% GlcNAc transgalactosylation yield based on starting oNPG, of which 23% (11 mM; 4.3 g/L) consisted in LacNAc synthesis. Furthermore, it was also established that both the GlcNAc transgalactosylation yield and the enzyme regioselectivity depended on the percentage of organic solvent used, the optimal percentage varying from 10 to 40% (v/v), depending on the solvent. This phenomenon was found to correlate mainly with the thermodynamic activity of water (a(w)) in the aqueous organic solvent mixture, which was found to be optimal when close to 0.96, whatever the organic solvent used. Finally, this study highlighted the fact that the regioselectivity of BcβGal for 1-4 linkage formation could be advantageously managed by controlling the a(w) parameter.

  8. Catalysis by N-acetyl-D-glucosaminylphosphatidylinositol de-N-acetylase (PIG-L) from Entamoeba histolytica: new roles for conserved residues.

    PubMed

    Ashraf, Mohammad; Sreejith, Perinthottathil; Yadav, Usha; Komath, Sneha Sudha

    2013-03-15

    We showed previously that Entamoeba histolytica PIG-L exhibits a novel metal-independent albeit metal-stimulated activity. Using mutational and biochemical analysis, here we identify Asp-46 and His-140 of the enzyme as being important for catalysis. We show that these mutations neither affect the global conformational of the enzyme nor alter its metal binding affinity. The defect in catalysis, due to the mutations, is specifically due to an effect on V(max) and not due to altered substrate affinity (or K(m)). We propose a general acid-base pair mechanism to explain our results.

  9. Homoserine as an Aspartic Acid Precursor for Synthesis of Proteoglycan Glycopeptide Containing Aspartic Acid and a Sulfated Glycan Chain.

    PubMed

    Yang, Weizhun; Ramadan, Sherif; Yang, Bo; Yoshida, Keisuke; Huang, Xuefei

    2016-12-02

    Among many hurdles in synthesizing proteoglycan glycopeptides, one challenge is the incorporation of aspartic acid in the peptide backbone and acid sensitive O-sulfated glycan chains. To overcome this, a new strategy was developed utilizing homoserine as an aspartic acid precursor. The conversion of homoserine to aspartic acid in the glycopeptide was successfully accomplished by late stage oxidation using (2,2,6,6-tetramethyl-piperidin-1-yl)oxyl (TEMPO) and bis(acetoxy)iodobenzene (BAIB). This is the first time that a glycopeptide containing aspartic acid and an O-sulfated glycan was synthesized.

  10. [Conformation of aspartate aminotransferase in crystals].

    PubMed

    Borisov, V V; Borisova, S N; Sosfenov, N I; Dikson, Kh BF

    1983-01-01

    X-ray study of chicken cytosolic aspartate aminotransferase revealed conformational changes in the protein of two kinds: (1) a shift of the small domain adjacent to substrate-binding area due to interaction of the protein with two carboxyl groups of substrate and (2) a change in inclination of the coenzyme plane due to replacement of C = N bond of the coenzyme with Lys-258 by C = N bond with a substrate. An asymmetry in subunit behaviour is observed in both cases: the domain is shifted in one subunit and the coenzyme is rotated in other. Substrate-binding properties of each subunit are strictly dependent on the protein conformation in substrate-binding area.

  11. Inhibition of N-acetylated-alpha-Linked-Acidic Dipeptidase (NAALADase) by 2-PMPA Attenuates Cocaine-Induced Relapse in Rats: A NAAG-mGluR2/3-Mediated Mechanism

    PubMed Central

    Xi, Zheng-Xiong; Li, Xia; Peng, Xiao-Qing; Li, Jie; Chun, Lauren; Gardner, Eliot L.; Thomas, Ajit G.; Slusher, Barbara S.; Ashby, Charles R.

    2009-01-01

    Pharmacological activation of group II metabotropic glutamate receptors (mGluR2/3) inhibits cocaine self-administration and reinstatement of drug-seeking behavior, suggesting a possible use of mGluR2/3 agonists in the treatment of cocaine dependence. In the present study, we investigated whether elevation of the endogenous mGluR2/3 ligand N-acetyl-aspartatylglutamate (NAAG) levels with the N-acetylated-alpha-linked-acidic dipeptidase (NAALADase) inhibitor 2-PMPA attenuates cocaine self-administration and cocaine-induced reinstatement of drug seeking. NAALADase is a NAAG degradation enzyme that hydrolyzes NAAG to N-acetylaspartate and glutamate. Systemic administration of 2-PMPA (10–100 mg/kg, i.p.) inhibited intravenous self-administration maintained by low unit doses of cocaine and cocaine (but not sucrose)-induced reinstatement of drug-seeking behavior. Microinjections of 2-PMPA (3–5 μg/side) or NAAG (3–5 μg/side) into the nucleus accumbens (NAc), but not into the dorsal striatum, also inhibited cocaine-induced reinstatement, an effect that was blocked by intra-NAc injection of LY341495, a selective mGluR2/3 antagonist. In vivo microdialysis demonstrated that 2-PMPA (10–100 mg/kg, i.p.) produced a dose-dependent reduction in both extracellular DA and glutamate, an effect that was also blocked by LY341495. Finally, pretreatment with 2-PMPA partially attenuated cocaine-enhanced extracellular NAc DA, while completely blocking cocaine-enhanced extracellular NAc glutamate in rats during reinstatement testing. Intra-NAc perfusion of LY341495 blocked 2-PMPA-induced reductions in cocaine-enhanced extracellular NAc glutamate, but not DA. These findings suggest that 2-PMPA is effective in attenuating cocaine-induced reinstatement of drug-seeking behavior, likely by attenuating cocaine-induced increases in NAc DA and glutamate via presynaptic mGluR2/3s. PMID:19895667

  12. In-source formation of N-acetyl-p-benzoquinone imine (NAPQI), the putatively toxic acetaminophen (paracetamol) metabolite, after derivatization with pentafluorobenzyl bromide and GC-ECNICI-MS analysis.

    PubMed

    Tsikas, Dimitrios; Trettin, Arne; Zörner, Alexander A; Gutzki, Frank-Mathias

    2011-05-15

    Pentafluorobenzyl (PFB) bromide (PFB-Br) is a versatile derivatization reagent for numerous classes of compounds. Under electron-capture negative-ion chemical ionization (ECNICI) conditions PFB derivatives of acidic compounds readily and abundantly ionize to produce intense anions due to [M-PFB](-). In the present article we investigated the PFB-Br derivatization of unlabelled acetaminophen (N-acetyl-p-aminophenol, NAPAP-d(0); paracetamol; MW 151) and tetradeuterated acetaminophen (NAPAP-d(4); MW 155) in anhydrous acetonitrile and their GC-ECNICI-MS behavior using methane as the buffer gas. In addition to the expected anions [M-PFB](-) at m/z 150 from NAPAP-d(0) and m/z 154 from NAPAP-d(4), we observed highly reproducibly almost equally intense anions at m/z 149 and m/z 153, respectively. Selected ion monitoring of these ions is suitable for specific and sensitive quantification of acetaminophen in human plasma and urine. Detailed investigations suggest in-source formation of N-acetyl-p-benzoquinone imine (NAPQI; MW 149), the putatively toxic acetaminophen metabolite, from the PFB ether derivative of NAPAP. GC-ECNICI-MS of non-derivatized NAPAP did not produce NAPQI. The peak area ratio of m/z 149 to m/z 150 and of m/z 153 to m/z 154 decreased with increasing ion-source temperature in the range 100-250°C. Most likely, NAPQI formed in the ion-source captures secondary electrons to become negatively charged (i.e., [NAPQI](-)) and thus detectable. Formation of NAPQI was not observed under electron ionization (EI) conditions, i.e., by GC-EI-MS, from derivatized and non-derivatized NAPAP. NAPQI was not detectable in flow injection analysis LC-MS of native NAPAP in positive electrospray ionization (ESI) mode, whereas in negative ESI mode low extent NAPQI formation was observed (<5%). Our results suggest that oxidation of drug derivatives in the ion-sources of mass spectrometers may form intermediates that are produced from activated drugs in enzyme-catalyzed reactions.

  13. The sodium effect of Bacillus subtilis growth on aspartate.

    PubMed

    Whiteman, P; Marks, C; Freese, E

    1980-08-01

    aspH mutants of Bacillus subtilis have a constitutive aspartase activity and grow well on aspartate as sole carbon source. aspH aspT mutants, which are deficient in high affinity aspartate transport as a result of the aspT mutation, grow as well as aspH mutants in medium containing high concentrations of aspartate and Na+. This Na+ effect is not due to an enhancement of aspartate transport but is the result of increased cellular metabolism. The ability to grow rapidly in sodium aspartate is induced by prior growth in the presence of Na+. In potassium aspartate, the addition of arginine, citrulline, ornithine, delta 1-pyrroline-5-carboxylase or proline instead of Na+ also allows rapid growth; but in a mutant deficient in ornithine--oxo-acid aminotransferase, only pyrroline-carboxylate or proline can replace Na+. The amino acid pool of cells growing slowly in potassium aspartate contains proline at a low concentration which increases upon addition of proline (but not Na+) to the medium. Thus, Na+ addition does not increase the synthesis of proline, but proline or pyrroline-carboxylate acts similarly to Na+ either in preventing some inhibitory effect (by aspartate or the accumulating NH4+) or in overcoming some deficiency (e.g. in further proline metabolism.

  14. Some aspects of structural studies on aspartic proteinases.

    PubMed

    Andreeva, N S

    1992-01-01

    This paper gives a brief overview over the differences and similarities in the structure of aspartic proteinases presently available. Comparison of the three-dimentional structure of different aspartic proteinases by a common intramolecular coordinate system have been performed. The intramolecular movable subdomains have been localized and the role of motion in substrate binding and zymogen activation is discussed.

  15. Kinetic analysis of a general model of activation of aspartic proteinase zymogens.

    PubMed

    Varón, R; García-Moreno, M; Valera-Ruipérez, D; García-Molina, F; García-Cánovas, F; Ladrón-de Guevara, R G; Masiá-Pérez, J; Havsteen, B H

    2006-10-07

    Starting from a simple general reaction mechanism of activation of aspartic proteinase zymogens involving an uni- and a bimolecular simultaneous route, the time course equation of the concentration of the zymogen and of the activated enzyme have been derived. From these equations, an analysis quantifying the relative contribution to the global process of the two routes has been carried out for the first time. This analysis suggests a way to predict the time course of the relative contribution as well as the effect of the initial zymogen and activating enzyme concentrations, on the relative weight. An experimental design and kinetic data analysis is suggested to estimate the kinetic parameters involved in the reaction mechanism proposed. Finally, we apply some of our results to experimental data obtained by other authors in experimental studies of the activation of some aspartic proteinase zymogens.

  16. The combination of N-acetyl cysteine, alpha-lipoic acid, and bromelain shows high anti-inflammatory properties in novel in vivo and in vitro models of endometriosis.

    PubMed

    Agostinis, C; Zorzet, S; De Leo, R; Zauli, G; De Seta, F; Bulla, R

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-α and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-α prevents the upregulation of the expression of the inflammatory "marker" VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis.

  17. Potentiation of LPS-Induced Apoptotic Cell Death in Human Hepatoma HepG2 Cells by Aspirin via ROS and Mitochondrial Dysfunction: Protection by N-Acetyl Cysteine

    PubMed Central

    Raza, Haider; John, Annie; Shafarin, Jasmin

    2016-01-01

    Cytotoxicity and inflammation-associated toxic responses have been observed to be induced by bacterial lipopolysaccharides (LPS) in vitro and in vivo respectively. Use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, has been reported to be beneficial in inflammation-associated diseases like cancer, diabetes and cardiovascular disorders. Their precise molecular mechanisms, however, are not clearly understood. Our previous studies on aspirin treated HepG2 cells strongly suggest cell cycle arrest and induction of apoptosis associated with mitochondrial dysfunction. In the present study, we have further demonstrated that HepG2 cells treated with LPS alone or in combination with aspirin induces subcellular toxic responses which are accompanied by increase in reactive oxygen species (ROS) production, oxidative stress, mitochondrial respiratory dysfunction and apoptosis. The LPS/Aspirin induced toxicity was attenuated by pre-treatment of cells with N-acetyl cysteine (NAC). Alterations in oxidative stress and glutathione-dependent redox-homeostasis were more pronounced in mitochondria compared to extra- mitochondrial cellular compartments. Pre-treatment of HepG2 cells with NAC exhibited a selective protection in redox homeostasis and mitochondrial dysfunction. Our results suggest that the altered redox metabolism, oxidative stress and mitochondrial function in HepG2 cells play a critical role in LPS/aspirin-induced cytotoxicity. These results may help in better understanding the pharmacological, toxicological and therapeutic properties of NSAIDs in cancer cells exposed to bacterial endotoxins. PMID:27441638

  18. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    PubMed Central

    Lambros, Maria P.; Kondapalli, Lavanya; Parsa, Cyrus; Mulamalla, Hari Chandana; Orlando, Robert; Pon, Doreen; Huang, Ying; Chow, Moses S. S.

    2015-01-01

    Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors. PMID:25705238

  19. The Combination of N-Acetyl Cysteine, Alpha-Lipoic Acid, and Bromelain Shows High Anti-Inflammatory Properties in Novel In Vivo and In Vitro Models of Endometriosis

    PubMed Central

    Agostinis, C.; Zorzet, S.; De Leo, R.; Zauli, G.; De Seta, F.; Bulla, R.

    2015-01-01

    To evaluate the efficacy of an association of N-acetyl cystein, alpha-lipoic acid, and bromelain (NAC/LA/Br) in the treatment of endometriosis we set up a new in vivo murine model. We explored the anti-inflammatory and proapoptotic effect of this combination on human endometriotic endothelial cells (EECs) and on endothelial cells isolated from normal uterus (UtMECs). We implanted fragments of human endometriotic cysts intraperitoneally into SCID mice to evaluate the efficacy of NAC/LA/Br treatment. UtMECs and EECs, untreated or treated with NAC/LA/Br, were activated with the proinflammatory stimulus TNF-α and their response in terms of VCAM1 expression was evaluated. The proapoptotic effect of higher doses of NAC/LA/Br on UtMECs and EECs was measured with a fluorogenic substrate for activated caspases 3 and 7. The preincubation of EECs with NAC/LA/Br prior to cell stimulation with TNF-α prevents the upregulation of the expression of the inflammatory “marker” VCAM1. Furthermore NAC/LA/Br were able to induce EEC, but not UtMEC, apoptosis. Finally, the novel mouse model allowed us to demonstrate that mice treated with NAC/LA/Br presented a lower number of cysts, smaller in size, compared to untreated mice. Our findings suggest that these dietary supplements may have potential therapeutic uses in the treatment of chronic inflammatory diseases like endometriosis. PMID:25960622

  20. Synthetic N-acetyl-D-glucosamine based fully branched tetrasaccharide, a mimetic of the endogenous ligand for CD69, activates CD69+ killer lymphocytes upon dimerization via a hydrophilic flexible linker.

    PubMed

    Kovalová, Anna; Ledvina, Miroslav; Saman, David; Zyka, Daniel; Kubícková, Monika; Zídek, Lukás; Sklenár, Vladimír; Pompach, Petr; Kavan, Daniel; Bílý, Jan; Vanek, Ondrej; Kubínková, Zuzana; Libigerová, Martina; Ivanová, Ljubina; Antolíková, Mária; Mrázek, Hynek; Rozbeský, Daniel; Hofbauerová, Katerina; Kren, Vladimír; Bezouska, Karel

    2010-05-27

    On the basis of the highly branched ovomucoid-type undecasaccharide that had been shown previously to be an endogenous ligand for CD69 leukocyte receptor, a systematic investigation of smaller oligosaccharide mimetics was performed based on linear and branched N-acetyl-d-hexosamine homooligomers prepared synthetically using hitherto unexplored reaction schemes. The systematic structure-activity studies revealed the tetrasaccharide GlcNAcbeta1-3(GlcNAcbeta1-4)(GlcNAcbeta1-6)GlcNAc (compound 52) and its alpha-benzyl derivative 49 as the best ligand for CD69 with IC(50) as high as 10(-9) M. This compound thus approaches the affinity of the classical high-affinity neoglycoprotein ligand GlcNAc(23)BSA. Compound 68, GlcNAc tetrasaccharide 52 dimerized through a hydrophilic flexible linker, turned out to be effective in activating CD69(+) lymphocytes. It also proved efficient in enhancing natural killing in vitro, decreasing the growth of tumors in vivo, and activating the CD69(+) tumor infiltrating lymphocytes examined ex vivo. This compound is thus a candidate for carbohydrate-based immunomodulators with promising antitumor potential.

  1. The Cation-Responsive Protein NhaR of Escherichia coli Activates pgaABCD Transcription, Required for Production of the Biofilm Adhesin Poly-β-1,6-N-Acetyl-d-Glucosamine▿

    PubMed Central

    Goller, Carlos; Wang, Xin; Itoh, Yoshikane; Romeo, Tony

    2006-01-01

    The pgaABCD operon of Escherichia coli is required for production of the biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine (PGA). We establish here that NhaR, a DNA-binding protein of the LysR family of transcriptional regulators, activates transcription of this operon. Disruption of the nhaR gene decreased biofilm formation without affecting planktonic growth. PGA production was undetectable in an nhaR mutant strain. Expression of a pgaA′-′lacZ translational fusion was induced by NaCl and alkaline pH, but not by CaCl2 or sucrose, in an nhaR-dependent fashion. Primer extension and quantitative real-time reverse transcription-PCR analyses further revealed that NhaR affects the steady-state level of pga mRNA. A purified recombinant NhaR protein bound specifically and with high affinity within the pgaABCD promoter region; one apparent binding site overlaps the −35 element, and a second site lies immediately upstream of the first. This protein was necessary and sufficient for activation of in vitro transcription from the pgaA promoter. These results define a novel mechanism for regulation of biofilm formation in response to environmental conditions and suggest an expanded role for NhaR in promoting bacterial survival. PMID:16997959

  2. Synthesis and structural study of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide obtained using H6P2W18O62 as acidic solid catalyst

    NASA Astrophysics Data System (ADS)

    Bougheloum, Chafika; Barbey, Carole; Berredjem, Malika; Messalhi, Abdelrani; Dupont, Nathalie

    2013-06-01

    At room temperature and under acidic conditions, acylation of sulfamides derivatives in various solvents using diverse solid catalysts has been investigated. The best yields are obtained in acetonitrile with a Wells-Dawson type heteropolyacid H6P2W18O62 as acidic solid catalyst. Crystals of N-acetyl-1,2,3,4-tetrahydroisoquinoline-2-sulfonamide suitable for X-ray study have been obtained after recrystallization in toluene. The detailed analysis of molecular and crystal structure is presented in comparison with the structure of 1,2,3,4-tetrahydroisoquinoline-2-sulfonamide, before acylation, previously studied by our team. The role of both intra- and intermolecular weak interactions is discussed. The Hirshfeld surfaces analysis in form of dnorm representation and decomposed fingerprint plots were used to find out different weak but directional hydrogen bonds and π interactions. Both structures present similar sandwich structures with alternation of primary layers involving strong hydrogen bonds with secondary layers involving mostly weaker interactions.

  3. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cysteine.

    PubMed

    Kurashige, Tomomi; Shimamura, Mika; Nagayama, Yuji

    2016-06-01

    The biological effect of ionizing radiation (IR) on genomic DNA is thought to be either direct or indirect; the latter is mediated by IR induction of free radicals and reactive oxygen species (ROS). This study was designed to evaluate the effect of N-acetyl-L-cysteine (NAC), a well-known ROS-scavenging antioxidant, on IR induction of genotoxicity, cytotoxicity and ROS production in mammalian cells, and aimed to clarify the conflicting data in previous publications. Although we clearly demonstrate the beneficial effect of NAC on IR-induced genotoxicity and cytotoxicity (determined using the micronucleus assay and cell viability/clonogenic assays), the data on NAC's effect on DNA double-strand break (DSB) formation were inconsistent in different assays. Specifically, mitigation of IR-induced DSBs by NAC was readily detected by the neutral comet assay, but not by the γH2AX or 53BP1 focus assays. NAC is a glutathione precursor and exerts its effect after conversion to glutathione, and presumably it has its own biological activity. Assuming that the focus assay reflects the biological responses to DSBs (detection and repair), while the comet assay reflects the physical status of genomic DNA, our results indicate that the comet assay could readily detect the antioxidant effect of NAC on DSB formation. However, NAC's biological effect might affect the detection of DSB repair by the focus assays. Our data illustrate that multiple parameters should be carefully used to analyze DNA damage when studying potential candidates for radioprotective compounds.

  4. All-atom molecular dynamics study of a spherical micelle composed of N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) block copolymers: a potential carrier of drug delivery systems for cancer.

    PubMed

    Kuramochi, Hiroshi; Andoh, Yoshimichi; Yoshii, Noriyuki; Okazaki, Susumu

    2009-11-19

    An all-atom molecular dynamics simulation of a spherical micelle composed of amphiphilic N-acetylated poly(ethylene glycol)-poly(gamma-benzyl L-glutamate) (PEG-PBLG-Ac) block copolymers was performed in aqueous solution at 298.15 K and 1 atm. Such copolymers have received considerable attention as carriers in drug delivery systems. In this study, we used copolymers consisting of 11 EG units and 9 BLG units as models. Starting from the copolymers arranged spherically, the calculation predicted an equilibrium state consisting of a slightly elliptical micelle structure with a hydrophobic PBLG inner core and a hydrophilic PEG outer shell. The micelle structure was dynamically stable during the simulation, with the PEG blocks showing a compact helical conformation and the PBLG blocks an alpha-helix form. Multiple hydrogen bonds with solvent water molecules stabilized the helical conformation of the PEG blocks, leading to their hydration as shown by longer residence times of water molecules near the PEG ether oxygen atoms compared with that of bulk water. Some water molecules have also been found distributed within the hydrophobic core; they showed continuous exchange with bulk water during the simulation. Those molecules existed mostly as a cluster in spaces between the copolymers, forming hydrogen bonds among themselves as well as with the hydrophobic core through hydrophilic groups such as esters and amides. The water molecules forming hydrogen bonds with the micelle may play an important role in the stabilization of the micelle structure.

  5. Age estimation in forensic sciences: Application of combined aspartic acid racemization and radiocarbon analysis

    SciTech Connect

    Alkass, K; Buchholz, B A; Ohtani, S; Yamamoto, T; Druid, H; Spalding, S L

    2009-11-02

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster, since the age at death, birth date and year of death, as well as gender, can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization has shown reproducible and more precise results. In this paper we analyze teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that above-ground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ({sup 14}C) which have been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel and ten of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R2=0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 0.6 {+-} 04 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 {+-} 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  6. Age estimation in forensic sciences: application of combined aspartic acid racemization and radiocarbon analysis.

    PubMed

    Alkass, Kanar; Buchholz, Bruce A; Ohtani, Susumu; Yamamoto, Toshiharu; Druid, Henrik; Spalding, Kirsty L

    2010-05-01

    Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster because the age at death, birth date, and year of death as well as gender can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization, has shown reproducible and more precise results. In this study, we analyzed teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that aboveground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ((14)C), which has been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel, and 10 of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R(2) = 0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 1.0 +/- 0.6 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 +/- 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.

  7. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  8. Evaluation of the effect of N-acetyl-glucosamine administration on biomarkers for cartilage metabolism in healthy individuals without symptoms of arthritis: A randomized double-blind placebo-controlled clinical study

    PubMed Central

    Tomonaga, Akihito; Watanabe, Keita; Fukagawa, Mitsuhiko; Suzuki, Asahi; Kurokawa, Mihoko; Nagaoka, Isao

    2016-01-01

    The present study aimed to evaluate the effect of N-acetyl-glucosamine (GlcNAc) on the joint health of healthy individuals without arthritic symptoms. A randomized double-blind placebo-controlled clinical trial was performed to investigate the effect of oral administration of a GlcNAc-containing test supplement (low dose, 500 mg/day and high dose, 1,000 mg/day) on cartilage metabolism in healthy individuals with a mean age of 48.6±1.3 years (range, 23–64 years) by analyzing the ratio of type II collagen degradation to type II collagen synthesis using type II collagen degradation (C2C) and synthesis (PIICP) markers. The results indicated that the changes in C2C/PIICP ratios from the baseline were suppressed in the treated with low and high doses of GlcNAc, compared with the placebo group at week 16 during intervention. To further elucidate the effect of GlcNAc, subjects with impaired cartilage metabolism were evaluated. Notably, the changes in the C2C/PIICP ratios were markedly suppressed in the groups treated with low and high doses of GlcNAc at week 16. Finally, to exclude the effect of heavy body weight on joint loading, subjects weighing <70 kg with impaired cartilage metabolism were analyzed. Notably, the changes in the C2C/PIICP ratios were suppressed in the groups treated with low and high doses of GlcNAc at weeks 12 and 16. No test supplement-related adverse events were observed during or following the intervention. Together, these observations suggest that oral administration of GlcNAc at doses of 500 mg and 1,000 mg/day exhibits a chondroprotective effect on healthy individuals by reducing the C2C/PIICP ratio (relatively decreasing type II collagen degradation and increasing type II collagen synthesis) without any apparent adverse effects. PMID:27588069

  9. The matrikine N-acetylated proline-glycine-proline induces premature senescence of nucleus pulposus cells via CXCR1-dependent ROS accumulation and DNA damage and reinforces the destructive effect of these cells on homeostasis of intervertebral discs.

    PubMed

    Feng, Chencheng; Zhang, Yang; Yang, Minghui; Lan, Minghong; Liu, Huan; Wang, Jian; Zhou, Yue; Huang, Bo

    2017-01-01

    Intervertebral disc (IVD) cell senescence is a recognized mechanism of intervertebral disc degeneration (IDD). Elucidating the molecular mechanisms underlying disc cell senescence will contribute to understanding the pathogenesis of IDD. We previously reported that N-acetylated proline-glycine-proline (N-Ac-PGP), a matrikine, is involved in the process of IDD. However, its roles in IDD are not well understood. Here, using rat nucleus pulposus (NP) cells, we found that N-Ac-PGP induced premature senescence of NP cells by binding to CXCR1. N-Ac-PGP induced DNA damage and reactive oxygen species accumulation in NP cells, which resulted in activation of the p53-p21-Rb and p16-Rb pathways. Moreover, the RT(2) profiler PCR array showed that N-Ac-PGP down-regulates the expression of antioxidant genes in NP cells, suggesting a decline in the antioxidants of NP cells. On the other hand, N-Ac-PGP up-regulated the expression of matrix catabolic genes and inflammatory genes in NP cells. Concomitantly, N-Ac-PGP reinforced the destructive effects of senescent NP cells on the homeostasis of the IVDs in vivo. Our study suggests that N-Ac-PGP plays critical roles in the pathogenesis of IDD through the induction of premature senescence of disc cells and via the activation of catabolic and inflammatory cascades in disc cells. N-Ac-PGP also deteriorates the redox environment of disc cells. Hence, N-Ac-PGP is a new potential therapeutic target for IDD.

  10. Inhibitory vs. protective effects of N-acetyl-l-cysteine (NAC) on the electromechanical properties of the spontaneously beating atria of the frog (Rana ridibunda): an ex vivo study.

    PubMed

    Papaefthimiou, Chrisovalantis; Antonopoulou, Efthimia; Theophilidis, George

    2009-03-01

    The results of this study have shown that N-acetyl-l-cysteine (NAC), a compound used for protection of tissues or cell cultures against the deleterious effects of various environmental pollutants, has certain unusual effects on the contraction of the spontaneously beating atria of the frog isolated in saline (ex vivo): (1) NAC, 6.0 and 10.0mM, eliminated, in a concentration-dependent manner, the contractile properties of the atria (force and frequency) within minutes, without affecting its electrical properties; (2) the IC(50) of NAC for the force was 5.09+/-1.01 mM (n=6) [4.98-5.19 mM, 95% confidence interval (CI)], significantly lower than the IC(50) for the frequency, 6.15+/-1.01 mM, (6.02-6.29 mM, 95% CI), indicating that working atria cells are more sensitive to NAC than autorhythmic cells. The no-observed-effect concentration (NOEC) was 1-2mM; (3) the pattern of NAC-induced inhibition of electromechanical activity was similar to that of verapamil, an indication that NAC possibly affects L-type voltage-gated calcium channels; (4) NAC at 2mM protected against cadmium-induced inhibition of atria contraction. The IC(50) for cadmium was 17.9+/-1.1 microM (n=6) (16.9-19.0 microM, 95% CI), while in the presence of 2mM NAC, it became 123.3+/-1.0 microM (n=6) (114.8-132.4 microM, 95% CI). The same concentration of NAC failed to exert any protective effects against rotenone (5 microM)-induced inhibition of atria contraction. The protective effects of NAC are probably due to chelation of cadmium, rather than scavenging of oxidants.

  11. Collagen-Derived N-Acetylated Proline-Glycine-Proline in Intervertebral Discs Modulates CXCR1/2 Expression and Activation in Cartilage Endplate Stem Cells to Induce Migration and Differentiation Toward a Pro-Inflammatory Phenotype.

    PubMed

    Feng, Chencheng; Zhang, Yang; Yang, Minghui; Huang, Bo; Zhou, Yue

    2015-12-01

    The factors that regulate the migration and differentiation of cartilage endplate stem cells (CESCs) remain unknown. N-Acetylated proline-glycine-proline (N-Ac-PGP) is a chemokine that is involved in inflammatory diseases. The purpose of this study was to detect N-Ac-PGP in degenerative intervertebral discs (IVDs) and to determine its roles in the migration and differentiation of CESCs. Enzyme-linked immunosorbent assay (ELISA) and liquid chromatography-mass spectrometry results indicated that the levels of the proteases that generate N-Ac-PGP as well as N-Ac-PGP levels themselves increase with the progression of IVD degeneration. Immunohistochemistry and an N-Ac-PGP generation assay demonstrated that nucleus pulposus (NP) cells generate N-Ac-PGP from collagen. The effects of N-Ac-PGP on the migration and differentiation of CESCs were determined using migration assays, RT-PCR, immunoblot analysis, and ELISA. The results showed that the expression of N-Ac-PGP receptors (CXCR1 and CXCR2) in CESCs was upregulated by N-Ac-PGP. Additionally, N-Ac-PGP induced F-actin cytoskeletal rearrangement in CESCs and increased CESC chemotaxis. Furthermore, N-Ac-PGP recruited chondrocytes and spindle-shaped cells from the cartilage endplate (CEP) into the NP in vivo. These spindle-shaped cells expressed CD105 and Stro-1 (mesenchymal stem cell markers). N-Ac-PGP induced the differentiation of CESCs toward a pro-inflammatory phenotype with increased production of inflammatory cytokines rather than toward an NP-like phenotype. Our study indicated that, in the complex microenvironment of a degenerative disc, N-Ac-PGP is generated by NP cells and induces the migration of CESCs from the CEP into the NP. N-Ac-PGP induces a pro-inflammatory phenotype in CESCs, and these cells promote the inflammatory response in degenerative discs.

  12. Simultaneous determination of N-hydroxymethyl-N-methylformamide, N-methylformamide and N-acetyl-S-(N-methylcarbamoyl)cystein in urine samples from workers exposed to N,N-dimethylformamide by liquid chromatography-tandem mass spectrometry.

    PubMed

    Sohn, Jae Ho; Han, Min Jeong; Lee, Mi Young; Kang, Seong-Kyu; Yang, Jeong Sun

    2005-02-07

    N-Hydroxymethyl-N-methylformamide (HMMF) and N-methylformamide (NMF) in urine samples from workers exposed to N,N-dimethylformamide (DMF) cannot be distinguished by a gas chromatographic method because HMMF is converted to NMF at the injection port of gas chromatography (GC). Total NMF (HMMF+NMF) has been measured instead. Also, the determination of N-acetyl-S-(N-methylcarbamoyl)cystein (AMCC), which is supposed to be related to the toxicity of DMF, needs multiple treatments to convert to a volatile compound before GC analysis. There is no previous report of a simultaneous determination of three major metabolites of DMF in urine. The aim of this study is to develop a simple and selective method for the determination of DMF metabolite in urine. By using a liquid chromatography-tandem mass spectrometry, we can directly distinguish these three major metabolites of DMF in a single run. The diluted urine samples were analyzed on Capcell Pak MF SG80 column with the mobile phase of methanol in 2mM formic acid (10:90, v/v). The analytes were detected by an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. The standard curves were linear (r>0.999) over the concentration ranges of 0.004-8 microg/mL. The precision and accuracy of quality control samples for inter-batch (n=6) analyses were in the range of 1.3-9.8% and 94.7-116.8, respectively. The sum of each HMMF and NMF concentration determined by LC-MS/MS method shows high correlation (r=0.9927 with the slope of 1.0415, p<0.0001) with NMF included HMMF concentration determined by GC method for 13 urine samples taken from workers exposed to DMF. The excretion ratio of HMMF:NMF:AMCC is approximately 4:1:1 in molar concentration.

  13. Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, {beta} {sub 2}-microglobulin, and N-acetyl-{beta}-D-glucosaminidase in cadmium nonpolluted regions in Japan

    SciTech Connect

    Kobayashi, Etsuko . E-mail: ekoba@faculty.chiba-u.jp; Suwazono, Yasushi; Uetani, Mirei; Inaba, Takeya; Oishi, Mitsuhiro; Kido, Teruhiko; Nishijo, Muneko; Nakagawa, Hideaki; Nogawa, Koji

    2006-07-15

    Previously, we investigated the association between urinary cadmium (Cd) concentration and indicators of renal dysfunction, including total protein, {beta} {sub 2}-microglobulin ({beta} {sub 2}-MG), and N-acetyl-{beta}-D-glucosaminidase (NAG). In 2778 inhabitants {>=}50 years of age (1114 men, 1664 women) in three different Cd nonpolluted areas in Japan, we showed that a dose-response relationship existed between renal effects and Cd exposure in the general environment without any known Cd pollution. However, we could not estimate the threshold levels of urinary Cd at that time. In the present study, we estimated the threshold levels of urinary Cd as the benchmark dose low (BMDL) using the benchmark dose (BMD) approach. Urinary Cd excretion was divided into 10 categories, and an abnormality rate was calculated for each. Cut-off values for urinary substances were defined as corresponding to the 84% and 95% upper limit values of the target population who have not smoked. Then we calculated the BMD and BMDL using a log-logistic model. The values of BMD and BMDL for all urinary substances could be calculated. The BMDL for the 84% cut-off value of {beta} {sub 2}-MG, setting an abnormal value at 5%, was 2.4 {mu}g/g creatinine (cr) in men and 3.3 {mu}g/g cr in women. In conclusion, the present study demonstrated that the threshold level of urinary Cd could be estimated in people living in the general environment without any known Cd-pollution in Japan, and the value was inferred to be almost the same as that in Belgium, Sweden, and China.

  14. Novel cytochrome p450 bioactivation of a terminal phenyl acetylene group: formation of a one-carbon loss benzaldehyde and other oxidative products in the presence of N-acetyl cysteine or glutathione.

    PubMed

    Subramanian, Raju; Tam, Janet; Aidasani, Divesh; Reid, Darren L; Skiles, Gary L

    2011-05-16

    Compounds 1 (N1-(3-ethynylphenyl)-6-methyl-N5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl) isoquinoline-1,5-diamine) and 2 (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine; Erlotinib/Tarceva) are kinase inhibitors that contain a terminal phenyl acetylene moiety. When incubated in the presence of P450 and NADPH, the anticipated phenyl acetic acid metabolite was formed. When 10 mM of N-acetyl-l-cysteine was added to the incubation mixtures, the phenyl acetic acid product was reduced and at 25 mM or higher concentration of NAC, formation of the phenyl acetic acid was abolished. Instead, the phenyl acetylene moiety lost a carbon and formed a benzaldehyde product. Other oxidation products incorporating one or more equivalents of NAC were also observed. The identities of the metabolites were characterized by MS and NMR. Addition of deferoxamine or ascorbic acid diminished the formation of the NAC influenced products. Similar products were also observed when 1 or 2 were incubated in P450 reactions supplemented with GSH, in Fenton reactions supplemented with NAC or GSH, and in peroxidase reactions supplemented with NAC. We propose the thiols act as a pro-oxidant readily undergoing a one-electron oxidation to form thiyl radicals which in turn initiates the formation of other peroxy radicals that drive the reaction to the observed products. These in vitro findings suggest that one-electron oxidation of thiols may promote the cooxidation of xenobiotic substrates.

  15. Evaluation of intra-articular hyaluronan, sodium chondroitin sulfate and N-acetyl-D-glucosamine combination versus saline (0.9% NaCl) for osteoarthritis using an equine model.

    PubMed

    Frisbie, D D; McIlwraith, C W; Kawcak, C E; Werpy, N M

    2013-09-01

    A randomized blinded placebo controlled trial was conducted to assess the clinical, biochemical and histological effects of a hyaluronan, sodium chondroitin sulfate and N-acetyl-D-glucosamine combination (PG) administered through an intra-articular (IA) route for the treatment of osteoarthritis (OA) at the time of injury. OA was induced in one carpal joint of each of 16 horses. Horses were designated placebo or IA PG treated. All horses were treated with 125 mg amikacin sulfate IA and 5 mL physiological saline in the middle carpal joint bilaterally on study Days 0 (after induction of OA), 7, 14 and 28, except the OA affected joint of the IA PG horses, which received 5 mL PG plus 125 mg of amikacin sulfate on similar days. Evaluations included clinical and radiographic, synovial fluid analysis, gross and histological examinations, as well as histochemical and biochemical analyses. The model induced a significant pathology that resulted in clinical disease. No adverse treatment-related events were detected in any of the horses. Intra-articular treatment of OA-affected joints with PG resulted in a transient 16% improvement in clinical pain (lameness scores) and evidence of improvement trends in bone proliferation radiographically as well as in the degree of full thickness articular cartilage erosion seen grossly when compared to placebo treated OA affected joints, although the vast majority of outcome parameters were not significantly different than controls. The findings support some potential clinical sign or disease modifying action of this compound administered IA at the tested dose and frequency.

  16. Development of an HPLC-MS procedure for the quantification of N-acetyl-S-(n-propyl)-l-cysteine, the major urinary metabolite of 1-bromopropane in human urine.

    PubMed

    Cheever, K L; Marlow, K L; B'hymer, C; Hanley, K W; Lynch, D W

    2009-03-15

    An analytical procedure was developed for the detection and quantification of N-acetyl-S-(n-propyl)-l-cysteine (n-propylmercapturic acid, AcPrCys), a metabolite and biomarker for exposure to 1-bromopropane (1-BP). 1-BP is used as an industrial solvent and exposure is a health concern for industrial workers due to its toxicity. It has been associated with neurological disorders in both animals and humans. Urine sample preparation for the determination of AcPrCys consisted of solid phase extraction (SPE). Urine samples on preconditioned SPE (C18) columns were washed with 40% methanol/60% water solution prior to elution with acetone. Quantification was by means of a liquid chromatograph (LC) equipped with a mass spectrometer (MS) using an Aqua 3 microm C18 300A column and [d(7)]-AcPrCys was used as internal standard. Electrospray ionization (ESI) was used with the MS operated in the negative ion mode and selected ion monitoring (SIM) at m/z 204 for AcPrCys and m/z 211 for [d(7)]-AcPrCys. Demonstrated recovery of urine samples fortified at multiple levels (0.625-10 microg/ml) varied between 96 and 103% of theory with relative standard deviations (RSD) of 6.4% or less. The limit of detection (LOD) for the procedure was approximately 0.01 microg/ml AcPrCys in urine. These data will be discussed as well as other factors of the development of this test procedure.

  17. Thiol-redox antioxidants protect against lung vascular endothelial cytoskeletal alterations caused by pulmonary fibrosis inducer, bleomycin: comparison between classical thiol-protectant, N-acetyl-L-cysteine, and novel thiol antioxidant, N,N'-bis-2-mercaptoethyl isophthalamide.

    PubMed

    Patel, Rishi B; Kotha, Sainath R; Sauers, Lynn A; Malireddy, Smitha; Gurney, Travis O; Gupta, Niladri N; Elton, Terry S; Magalang, Ulysses J; Marsh, Clay B; Haley, Boyd E; Parinandi, Narasimham L

    2012-06-01

    Lung vascular alterations and pulmonary hypertension associated with oxidative stress have been reported to be involved in idiopathic lung fibrosis (ILF). Therefore, here, we hypothesize that the widely used lung fibrosis inducer, bleomycin, would cause cytoskeletal rearrangement through thiol-redox alterations in the cultured lung vascular endothelial cell (EC) monolayers. We exposed the monolayers of primary bovine pulmonary artery ECs to bleomycin (10 µg) and studied the cytotoxicity, cytoskeletal rearrangements, and the macromolecule (fluorescein isothiocyanate-dextran, 70,000 mol. wt.) paracellular transport in the absence and presence of two thiol-redox protectants, the classic water-soluble N-acetyl-L-cysteine (NAC) and the novel hydrophobic N,N'-bis-2-mercaptoethyl isophthalamide (NBMI). Our results revealed that bleomycin induced cytotoxicity (lactate dehydrogenase leak), morphological alterations (rounding of cells and filipodia formation), and cytoskeletal rearrangement (actin stress fiber formation and alterations of tight junction proteins, ZO-1 and occludin) in a dose-dependent fashion. Furthermore, our study demonstrated the formation of reactive oxygen species, loss of thiols (glutathione, GSH), EC barrier dysfunction (decrease of transendothelial electrical resistance), and enhanced paracellular transport (leak) of macromolecules. The observed bleomycin-induced EC alterations were attenuated by both NAC and NBMI, revealing that the novel hydrophobic thiol-protectant, NBMI, was more effective at µM concentrations as compared to the water-soluble NAC that was effective at mM concentrations in offering protection against the bleomycin-induced EC alterations. Overall, the results of the current study suggested the central role of thiol-redox in vascular EC dysfunction associated with ILF.

  18. Neuroprotective action of N-acetyl serotonin in oxidative stress-induced apoptosis through the activation of both TrkB/CREB/BDNF pathway and Akt/Nrf2/Antioxidant enzyme in neuronal cells.

    PubMed

    Yoo, Jae-Myung; Lee, Bo Dam; Sok, Dai-Eun; Ma, Jin Yuel; Kim, Mee Ree

    2017-04-01

    N-acetyl serotonin (NAS) as a melatonin precursor has neuroprotective actions. Nonetheless, it is not clarified how NAS protects neuronal cells against oxidative stress. Recently, we have reported that N-palmitoyl serotonins possessed properties of antioxidants and neuroprotection. Based on those, we hypothesized that NAS, a N-acyl serotonin, may have similar actions in oxidative stress-induced neuronal cells, and examined the effects of NAS based on in vitro and in vivo tests. NAS dose-dependently inhibited oxidative stress-induced cell death in HT-22 cells. Moreover, NAS suppressed glutamate-induced apoptosis by suppressing expression of AIF, Bax, calpain, cytochrome c and cleaved caspase-3, whereas it enhanced expression of Bcl-2. Additionally, NAS improved phosphorylation of tropomyosin-related kinase receptor B (TrkB) and cAMP response element-binding protein (CREB) as well as expression of brain-derived neurotrophic factor (BDNF), whereas the inclusion of each inhibitor of JNK, p38 or Akt neutralized the neuroprotective effect of NAS, but not that of ERK. Meanwhile, NAS dose-dependently reduced the level of reactive oxygen species, and enhanced the level of glutathione in glutamate-treated HT-22 cells. Moreover, NAS significantly increased expression of heme oxygenase-1, NAD(P)H quinine oxidoreductase-1 and glutamate-cysteine ligase catalytic subunit as well as nuclear translocation of NF-E2-related factor-2. Separately, NAS at 30mg/kg suppressed scopolamine-induced memory impairment and cell death in CA1 and CA3 regions in mice. In conclusion, NAS shows actions of antioxidant and anti-apoptosis by activating TrkB/CREB/BDNF pathway and expression of antioxidant enzymes in oxidative stress-induced neurotoxicity. Therefore, such effects of NAS may provide the information for the application of NAS against neurodegenerative diseases.

  19. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses.

    PubMed

    Kalamaki, Mary S; Alexandrou, Dimitris; Lazari, Diamanto; Merkouropoulos, Georgios; Fotopoulos, Vasileios; Pateraki, Irene; Aggelis, Alexandros; Carrillo-López, Armando; Rubio-Cabetas, Maria J; Kanellis, Angelos K

    2009-01-01

    A single copy of the N-acetyl-L-glutamate synthase gene (SlNAGS1) has been isolated from tomato. The deduced amino acid sequence consists of 604 amino acids and shows a high level of similarity to the predicted Arabidopsis NAGS1 and NAGS2 proteins. Furthermore, the N-terminus ArgB domain and the C-terminus ArgA domain found in SlNAGS1 are similar to the structural arrangements that have been reported for other predicted NAGS proteins. SlNAGS1 was expressed at high levels in all aerial organs, and at basic levels in seeds, whereas it was not detected at all in roots. SlNAGS1 transcript accumulation was noticed transiently in tomato fruit at the red-fruit stage. In addition, an increase of SlNAGS1 transcripts was detected in mature green tomato fruit within the first hour of exposure to low oxygen concentrations. Transgenic Arabidopsis plants have been generated expressing the SlNAGS1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Three homozygous transgenic lines expressing the transgene (lines 1-7, 3-8, and 6-5) were evaluated further. All three transgenic lines showed a significant accumulation of ornithine in the leaves with line 3-8 exhibiting the highest concentration. The same lines demonstrated higher germination ability compared to wild-type (WT) plants when subjected to 250 mM NaCl. Similarly, mature plants of all three transgenic lines displayed a higher tolerance to salt and drought stress compared to WT plants. Under most experimental conditions, transgenic line 3-8 performed best, while the responses obtained from lines 1-7 and 6-5 depended on the applied stimulus. To our knowledge, this is the first plant NAGS gene to be isolated, characterized, and genetically modified.

  20. Fragmentation reactions of deprotonated peptides containing aspartic acid

    NASA Astrophysics Data System (ADS)

    Harrison, Alex G.; Young, Alex B.

    2006-09-01

    The fragmentation reactions of deprotonated peptides containing aspartic acid have been elucidated using MS2 and MS3 experiments and accurate mass measurements where necessary. The disposition of labile (N and O bonded) hydrogens in the fragmentation products has been studied by exchanging the labile hydrogens for deuterium whereby the [MD]- ion is formed on electrospray ionization. [alpha]-Aspartyl and [beta]-aspartyl dipeptides give very similar fragment ion spectra on collisional activation, involving for both species primarily formation of the y1 ion and loss of H2O from [MH]- followed by further fragmentation, thus precluding the distinction of the isomeric species by negative ion tandem mass spectrometry. Dipeptides of sequence HXxxAspOH give characteristic spectra different from the [alpha]- and [beta]-isomers. For larger peptides containing aspartic acid a common fragmentation reaction involves nominal cleavage of the NC bond N-terminal to the aspartic acid residue to form a c ion (deprotonated amino acid amide (c1) or peptide amide (cn)) and the complimentary product involving elimination of a neutral amino acid amide or peptide amide. When aspartic acid is in the C-terminal position this fragmentation reaction occurs from the [MH]- ion while when the aspartic acid is not in the C-terminal position the fragmentation reaction occurs mainly from the [MHH2O]- ion. The products of this NC bond cleavage reaction serve to identify the position of the aspartic acid residue in the peptide.

  1. Differential regulation and impact of fucosyltransferase VII and core 2 β1,6-N-acetyl-glycosaminyltransferase for generation of E-selectin and P-selectin ligands in murine CD4+ T cells.

    PubMed

    Schroeter, Micha F; Ratsch, Boris A; Lehmann, Jeanette; Baumgrass, Ria; Hamann, Alf; Syrbe, Uta

    2012-12-01

    Ligands for E-selectin and P-selectin (E-lig and P-lig) are induced on CD4+ T cells upon differentiation into effector T cells. Glycosyltransferases, especially α 1,3-fucosyltransferase VII (FucT-VII) and core 2 β1,6-N-acetyl-glycosaminyltransferase I (C2GlcNAcT-I), are critical for their synthesis. We here analysed the signals that control the expression of E-lig, P-lig and mRNA coding for FucT-VII and C2GlcNAcT-I. In line with previous reports, we found that P-lig expression correlates with the regulation of C2GlcNAcT-I, whereas E-lig expression can occur at low levels of C2GlcNAcT-I mRNA but requires high FucT-VII mRNA expression. Interestingly, the two enzymes are regulated by different signals. Activation-induced C2GlcNAcT-I up-regulation under permissive (T helper type 1) conditions was strongly reduced by cyclosporin A (CsA), suggesting the involvement of T-cell receptor-dependent, calcineurin/NFAT-dependent signals in combination with interleukin-12 (IL-12) -mediated signals in the regulation of C2GlcNAcT-I. In contrast, expression of FucT-VII mRNA was not significantly inhibited by CsA. Interleukin-4 inhibited the expression of FucT-VII but IL-2 and IL-7 were found to support induction of FucT-VII and E-lig. E-selectin, P-selectin and their ligands initially appeared to have rather overlapping functions. These findings however, unravel striking differences in the regulation of E-lig and P-lig expression, dictated by the dominance of FucT-VII and C2GlcNAcT-I, respectively, and their dependency on signals from either promiscuous or homeostatic cytokines (FucT-VII) or a strong T-cell receptor signal in combination with inflammatory cytokines in case of C2GlcNAcT-I.

  2. Escherichia coli O157:H7 Strain EDL933 Harbors Multiple Functional Prophage-Associated Genes Necessary for the Utilization of 5-N-Acetyl-9-O-Acetyl Neuraminic Acid as a Growth Substrate

    PubMed Central

    Saile, Nadja; Voigt, Anja; Kessler, Sarah; Stressler, Timo; Fischer, Lutz

    2016-01-01

    ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain EDL933 harbors multiple prophage-associated open reading frames (ORFs) in its genome which are highly homologous to the chromosomal nanS gene. The latter is part of the nanCMS operon, which is present in most E. coli strains and encodes an esterase which is responsible for the monodeacetylation of 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac2). Whereas one prophage-borne ORF (z1466) has been characterized in previous studies, the functions of the other nanS-homologous ORFs are unknown. In the current study, the nanS-homologous ORFs of EDL933 were initially studied in silico. Due to their homology to the chromosomal nanS gene and their location in prophage genomes, we designated them nanS-p and numbered the different nanS-p alleles consecutively from 1 to 10. The two alleles nanS-p2 and nanS-p4 were selected for production of recombinant proteins, their enzymatic activities were investigated, and differences in their temperature optima were found. Furthermore, a function of these enzymes in substrate utilization could be demonstrated using an E. coli C600ΔnanS mutant in a growth medium with Neu5,9Ac2 as the carbon source and supplementation with the different recombinant NanS-p proteins. Moreover, generation of sequential deletions of all nanS-p alleles in strain EDL933 and subsequent growth experiments demonstrated a gene dose effect on the utilization of Neu5,9Ac2. Since Neu5,9Ac2 is an important component of human and animal gut mucus and since the nutrient availability in the large intestine is limited, we hypothesize that the presence of multiple Neu5,9Ac2 esterases provides them a nutrient supply under certain conditions in the large intestine, even if particular prophages are lost. IMPORTANCE In this study, a group of homologous prophage-borne nanS-p alleles and two of the corresponding enzymes of enterohemorrhagic E. coli (EHEC) O157:H7 strain EDL933 that may be important to provide

  3. Rapid detection and identification of N-acetyl-L-cysteine thioethers using constant neutral loss and theoretical multiple reaction monitoring combined with enhanced product-ion scans on a linear ion trap mass spectrometer.

    PubMed

    Scholz, Karoline; Dekant, Wolfgang; Völkel, Wolfgang; Pähler, Axel

    2005-12-01

    A sensitive and specific liquid chromatography-mass spectrometry (LC-MS) method based on the combination of constant neutral loss scans (CNL) with product ion scans was developed on a linear ion trap. The method is applicable for the detection and identification of analytes with identical chemical substructures (such as conjugates of xenobiotics formed in biological systems) which give common CNLs. A specific CNL was observed for thioethers of N-acetyl-L-cysteine (mercapturic acids, MA) by LC-MS/MS. MS and HPLC parameters were optimized with 16 MAs available as reference compounds. All of these provided a CNL of 129 Da in the negative-ion mode. To assess sensitivity, a multiple reaction monitoring (MRM) mode with 251 theoretical transitions using the CNL of 129 Da combined with a product ion scan (IDA thMRM) was compared with CNL combined with a product ion scan (IDA CNL). An information-dependent acquisition (IDA) uses a survey scan such as MRM (multiple reaction monitoring) to generate "informations" and starting a second acquisition experiment such as a product ion scan using these "informations." Th-MRM means calculated transitions and not transitions generated from an available standard in the tuning mode. The product ion spectra provide additional information on the chemical structure of the unknown analytes. All MA standards were spiked in low concentrations to rat urines and were detected with both methods with LODs ranging from 60 pmol/mL to 1.63 nmol/mL with IDA thMRM. The expected product ion spectra were observed in urine. Application of this screening method to biological samples indicated the presence of a number of MAs in urine of unexposed rats, and resulted in the identification of 1,4-dihydroxynonene mercapturic acid as one of these MAs by negative and positive product ion spectra. These results show that the developed methods have a high potential to serve as both a prescreen to detect unknown MAs and to identify these analytes in complex matrix.

  4. Aspartic proteinases from Mucor spp. in cheese manufacturing.

    PubMed

    Yegin, Sirma; Fernandez-Lahore, Marcelo; Jose Gama Salgado, Antonio; Guvenc, Ulgar; Goksungur, Yekta; Tari, Canan

    2011-02-01

    Filamentous fungi belonging to the order of Mucorales are well known as producers of aspartic proteinases depicting milk-clotting activity. The biosynthesis level, the biochemical characteristics, and the technological properties of the resulting proteinases are affected by the producer strain and the mode of cultivation. While the milk-clotting enzymes produced by the Rhizomucor spp. have been extensively studied in the past, much less is known on the properties and potential applications of the aspartic proteinases obtained for Mucor spp. Indeed, several Mucor spp. strains have been reported as a potential source of milk-clotting enzymes having unique technological properties. Both submerged fermentation and solid substrate cultivation are proven alternatives for the production of Mucor spp. aspartic proteinases. This review provides an overview on the bioprocessing routes to obtain large amounts of these enzymes, on their structural characteristics as related to their functional properties, and on their industrial applications with focus on cheese manufacturing.

  5. Pharmacokinetics, metabolism and excretion of [(14)C]-lanicemine (AZD6765), a novel low-trapping N-methyl-d-aspartic acid receptor channel blocker, in healthy subjects.

    PubMed

    Guo, Jian; Zhou, Diansong; Grimm, Scott W; Bui, Khanh H

    2015-03-01

    1.(1S)-1-phenyl-2-(pyridin-2-yl)ethanamine (lanicemine; AZD6765) is a low-trapping N-methyl-d-aspartate (NMDA) channel blocker that has been studied as an adjunctive treatment in major depressive disorder. The metabolism and disposition of lanicemine was determined in six healthy male subjects after a single intravenous infusion dose of 150 mg [(14)C]-lanicemine. 2.Blood, urine and feces were collected from all subjects. The ratios of Cmax and AUC(0-∞) of lanicemine to plasma total radioactivity were 84 and 66%, respectively, indicating that lanicemine was the major circulating component with T1/2 at 16 h. The plasma clearance of lanicemine was 8.3 L/h, revealing that lanicemine is a low-clearance compound. The mean recovery of radioactivity from urine was 93.8% of radioactive dose. 3.In urine samples, 10 metabolites of lanicemine were identified. Among which, an O-glucuronide conjugate (M1) was the most abundant metabolite (∼11% of the dose in excreta). In plasma, the circulatory metabolites were identified as a para-hydroxylated metabolite (M1), an O-glucuronide (M2), an N-carbamoyl glucuronide (M3) and an N-acetylated metabolite (M6). The average amount of each of metabolite was less than 4% of total radioactivity detected in plasma or urine. 4.In conclusion, lanicemine is a low-clearance compound. The unchanged drug and metabolites are predominantly eliminated via urinary excretion.

  6. Synthesis of 6-phosphofructose aspartic acid and some related Amadori compounds.

    PubMed

    Hansen, Alexandar L; Behrman, Edward J

    2016-08-05

    We describe the synthesis and characterization of 6-phosphofructose-aspartic acid, an intermediate in the metabolism of fructose-asparagine by Salmonella. We also report improved syntheses of fructose-asparagine itself and of fructose-aspartic acid.

  7. Crystal structure of Sulfolobus acidocaldarius aspartate carbamoyltransferase in complex with its allosteric activator CTP.

    PubMed

    De Vos, Dirk; Xu, Ying; Aerts, Tony; Van Petegem, Filip; Van Beeumen, Jozef J

    2008-07-18

    Aspartate carbamoyltransferase (ATCase) is a paradigm for allosteric regulation of enzyme activity. B-class ATCases display very similar homotropic allosteric behaviour, but differ extensively in their heterotropic patterns. The ATCase from the thermoacidophilic archaeon Sulfolobus acidocaldarius, for example, is strongly activated by its metabolic pathway's end product CTP, in contrast with Escherichia coli ATCase which is inhibited by CTP. To investigate the structural basis of this property, we have solved the crystal structure of the S. acidocaldarius enzyme in complex with CTP. Structure comparison reveals that effector binding does not induce similar large-scale conformational changes as observed for the E. coli ATCase. However, shifts in sedimentation coefficients upon binding of the bi-substrate analogue PALA show the existence of structurally distinct allosteric states. This suggests that the so-called "Nucleotide-Perturbation model" for explaining heterotropic allosteric behaviour, which is based on global conformational strain, is not a general mechanism of B-class ATCases.

  8. Bioproduction of L-Aspartic Acid and Cinnamic Acid by L-Aspartate Ammonia Lyase from Pseudomonas aeruginosa PAO1.

    PubMed

    Patel, Arti T; Akhani, Rekha C; Patel, Manisha J; Dedania, Samir R; Patel, Darshan H

    2016-12-17

    Aspartase (L-aspartate ammonia lyase, EC 4.3.1.1) catalyses the reversible amination and deamination of L-aspartic acid to fumaric acid which can be used to produce important biochemical. In this study, we have explored the characteristics of aspartase from Pseudomonas aeruginosa PAO1 (PA-AspA). To overproduce PA-AspA, the 1425-bp gene was introduced in Escherichia coli BL21 and purified. A 51.0-kDa protein was observed as a homogenous purified protein on SDS-PAGE. The enzyme was optimally active at pH 8.0 and 35 °C. PA-AspA has retained 56% activity after 7 days of incubation at 35 °C, which displays the hyperthermostablility characteristics of the enzyme. PA-AspA is activated in the presence of metal ions and Mg2+ is found to be most effective. Among the substrates tested for specificity of PA-AspA, L-phenylalanine (38.35 ± 2.68) showed the highest specific activity followed by L-aspartic acid (31.21 ± 3.31) and fumarate (5.42 ± 2.94). K m values for L-phenylalanine, L-aspartic acid and fumarate were 1.71 mM, 0.346 μM and 2 M, respectively. The catalytic efficiency (k cat/K m) for L-aspartic acid (14.18 s(-1) mM(-1)) was higher than that for L-phenylalanine (4.65 s(-1) mM(-1)). For bioconversion, from an initial concentration of 1000 mM of fumarate and 30 mM of L-phenylalanine, PA-AspA was found to convert 395.31 μM L-aspartic acid and 3.47 mM cinnamic acid, respectively.

  9. Microwave-assisted reaction of glycosylamine with aspartic acid.

    PubMed

    Real-Fernández, Feliciana; Nuti, Francesca; Bonache, M Angeles; Boccalini, Marco; Chimichi, Stefano; Chelli, Mario; Papini, Anna Maria

    2010-07-01

    The synthesis of N-protected glycosyl amino acids from amines has been investigated and it was found that, under microwave conditions, glycosylamines could be hydrolyzed leading to new products containing a glycosyl ester linkage. The efficiency of the microwave-induced glycosylation of aspartic acid was studied comparing the microwave activity between amide and ester bond formation. Different sugar moieties have been employed to demonstrate the simple and reproducible coupling methodology. New glycosyl ester compounds were further characterized by NMR spectroscopy.

  10. Explosive enantiospecific decomposition of aspartic acid on Cu surfaces.

    PubMed

    Mhatre, B S; Dutta, S; Reinicker, A; Karagoz, B; Gellman, A J

    2016-12-01

    Aspartic acid adsorbed on Cu surfaces is doubly deprotonated. On chiral Cu(643)(R&S) its enantiomers undergo enantiospecific decomposition via an autocatalytic explosion. Once initiated, the decomposition mechanism proceeds via sequential cleavage of the C3-C4 and C1-C2 bonds each yielding CO2, followed by conversion of the remaining species into N[triple bond, length as m-dash]CCH3.

  11. On the solvation of L-aspartic acid

    NASA Astrophysics Data System (ADS)

    Paxton, A. T.; Harper, J. B.

    2004-01-01

    We use molecular statics and dynamics to study the stability of L-aspartic acid both in vacuo and solvated by polar and non-polar molecules using density functional theory in the generalized gradient approximation. We find that structures stable in vacuo are unstable in aqueous solution and vice versa. From our simulations we are able to come to some conclusions about the mechanism of stabilisation of zwitterions by polar protic solvents, water and methanol.

  12. Microbial aspartic proteases: current and potential applications in industry.

    PubMed

    Theron, Louwrens W; Divol, Benoit

    2014-11-01

    Aspartic proteases are a relatively small group of proteolytic enzymes that are active in acidic environments and are found across all forms of life. Certain microorganisms secrete such proteases as virulence agents and/or in order to break down proteins thereby liberating assimilable sources of nitrogen. Some of the earlier applications of these proteolytic enzymes are found in the manufacturing of cheese where they are used as milk-clotting agents. Over the last decade, they have received tremendous research interest because of their involvement in human diseases. Furthermore, there has also been a growing interest on these enzymes for their applications in several other industries. Recent research suggests in particular that they could be used in the wine industry to prevent the formation of protein haze while preserving the wines' organoleptic properties. In this mini-review, the properties and mechanisms of action of aspartic proteases are summarized. Thereafter, a brief overview of the industrial applications of this specific class of proteases is provided. The use of aspartic proteases as alternatives to clarifying agents in various beverage industries is mentioned, and the potential applications in the wine industry are thoroughly discussed.

  13. Age estimation based on aspartic acid racemization in human sclera.

    PubMed

    Klumb, Karolin; Matzenauer, Christian; Reckert, Alexandra; Lehmann, Klaus; Ritz-Timme, Stefanie

    2016-01-01

    Age estimation based on racemization of aspartic acid residues (AAR) in permanent proteins has been established in forensic medicine for years. While dentine is the tissue of choice for this molecular method of age estimation, teeth are not always available which leads to the need to identify other suitable tissues. We examined the suitability of total tissue samples of human sclera for the estimation of age at death. Sixty-five samples of scleral tissue were analyzed. The samples were hydrolyzed and after derivatization, the extent of aspartic acid racemization was determined by gas chromatography. The degree of AAR increased with age. In samples from younger individuals, the correlation of age and D-aspartic acid content was closer than in samples from older individuals. The age-dependent racemization in total tissue samples proves that permanent or at least long-living proteins are present in scleral tissue. The correlation of AAR in human sclera and age at death is close enough to serve as basis for age estimation. However, the precision of age estimation by this method is lower than that of age estimation based on the analysis of dentine which is due to molecular inhomogeneities of total tissue samples of sclera. Nevertheless, the approach may serve as a valuable alternative or addition in exceptional cases.

  14. Kinetic analysis of a general model of activation of aspartic proteinase zymogens involving a reversible inhibitor. I. Kinetic analysis.

    PubMed

    Muñoz-López, A; Sotos-Lomas, A; Arribas, E; Masia-Perez, J; Garcia-Molina, F; García-Moreno, M; Varon, R

    2007-04-01

    Starting from a simple general reaction mechanism of activation of aspartic proteinases zymogens involving a uni- and a bimolecular simultaneous activation route and a reversible inhibition step, the time course equation of the zymogen, inhibitor and activated enzyme concentrations have been derived. Likewise, expressions for the time required for any reaction progress and the corresponding mean activation rates as well as the half-life of the global zymogen activation have been derived. An experimental design and kinetic data analysis is suggested to estimate the kinetic parameters involved in the reaction mechanism proposed.

  15. Origins of hydration differences in homochiral and racemic crystals of aspartic acid.

    PubMed

    Juliano, Thomas R; Korter, Timothy M

    2015-02-26

    The propensity for crystalline hydrates of organic molecules to form is related to the strength of the interactions between molecules, including the chiral composition of the molecular solids. Specifically, homochiral versus racemic crystalline samples can exhibit distinct differences in their ability to form energetically stable hydrates. The focus of the current study is a comparison of the crystal structures and intermolecular forces found in solid-state L-aspartic acid, DL-aspartic acid, and L-aspartic acid monohydrate. The absence of experimental evidence for the DL-aspartic acid monohydrate is considered here in terms of the enhanced thermodynamic stability of the DL-aspartic acid anhydrate crystal as compared to the L-aspartic acid anhydrate as revealed through solid-state density functional theory calculations and terahertz spectroscopic measurements. The results indicate that anhydrous DL-aspartic acid is the more stable solid, not due to intermolecular forces alone but also due to the improved conformations of the molecules within the racemic solid. Hemihydrated and monohydrated forms of DL-aspartic acid have been computationally evaluated, and in each case, the hydrates produce destabilized aspartic acid conformations that prevent DL-aspartic acid hydrate formation from occurring.

  16. Isolation and characterization of recombinant Drosophila Copia aspartic proteinase

    PubMed Central

    Athauda, Senarath B. P.; Yoshioka, Katsuji; Shiba, Tadayoshi; Takahashi, Kenji

    2006-01-01

    The wild type Copia Gag precursor protein of Drosophila melanogaster expressed in Escherichia coli was shown to be processed autocatalytically to generate two daughter proteins with molecular masses of 33 and 23 kDa on SDS/PAGE. The active-site motif of aspartic proteinases, Asp-Ser-Gly, was present in the 23 kDa protein corresponding to the C-terminal half of the precursor protein. The coding region of this daughter protein (152 residues) in the copia gag gene was expressed in E. coli to produce the recombinant enzyme protein as inclusion bodies, which was then purified and refolded to create the active enzyme. Using the peptide substrate His-Gly-Ile-Ala-Phe-Met-Val-Lys-Glu-Val-Asn (cleavage site: Phe–Met) designed on the basis of the sequence of the cleavage-site region of the precursor protein, the enzymatic properties of the proteinase were investigated. The optimum pH and temperature of the proteinase toward the synthetic peptide were 4.0 and 70 °C respectively. The proteolytic activity was increased with increasing NaCl concentration in the reaction mixture, the optimum concentration being 2 M. Pepstatin A strongly inhibited the enzyme, with a Ki value of 15 nM at pH 4.0. On the other hand, the active-site residue mutant, in which the putative catalytic aspartic acid residue was mutated to an alanine residue, had no activity. These results show that the Copia proteinase belongs to the family of aspartic proteinases including HIV proteinase. The B-chain of oxidized bovine insulin was hydrolysed at the Leu15−–Tyr16 bond fairly selectively. Thus the recombinant Copia proteinase partially resembles HIV proteinase, but is significantly different from it in certain aspects. PMID:16813567

  17. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  18. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    PubMed

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  19. The substituted aspartate analogue L-beta-threo-benzyl-aspartate preferentially inhibits the neuronal excitatory amino acid transporter EAAT3.

    PubMed

    Esslinger, C Sean; Agarwal, Shailesh; Gerdes, John; Wilson, Paul A; Davis, Erin S; Awes, Alicia N; O'Brien, Erin; Mavencamp, Teri; Koch, Hans P; Poulsen, David J; Rhoderick, Joseph F; Chamberlin, A Richard; Kavanaugh, Michael P; Bridges, Richard J

    2005-11-01

    The excitatory amino acid transporters (EAATs) play key roles in the regulation of CNS L-glutamate, especially related to synthesis, signal termination, synaptic spillover, and excitotoxic protection. Inhibitors available to delineate EAAT pharmacology and function are essentially limited to those that non-selectively block all EAATs or those that exhibit a substantial preference for EAAT2. Thus, it is difficult to selectively study the other subtypes, particularly EAAT1 and EAAT3. Structure activity studies on a series of beta-substituted aspartate analogues identify L-beta-benzyl-aspartate (L-beta-BA) as among the first blockers that potently and preferentially inhibits the neuronal EAAT3 subtype. Kinetic analysis of D-[(3)H]aspartate uptake into C17.2 cells expressing the hEAATs demonstrate that L-beta-threo-BA is the more potent diastereomer, acts competitively, and exhibits a 10-fold preference for EAAT3 compared to EAAT1 and EAAT2. Electrophysiological recordings of EAAT-mediated currents in Xenopus oocytes identify L-beta-BA as a non-substrate inhibitor. Analyzing L-beta-threo-BA within the context of a novel EAAT2 pharmacophore model suggests: (1) a highly conserved positioning of the electrostatic carboxyl and amino groups; (2) nearby regions that accommodate select structural modifications (cyclopropyl rings, methyl groups, oxygen atoms); and (3) a unique region L-beta-threo-BA occupied by the benzyl moieties of L-TBOA, L-beta-threo-BA and related analogues. It is plausible that the preference of L-beta-threo-BA and L-TBOA for EAAT3 and EAAT2, respectively, could reside in the latter two pharmacophore regions.

  20. Interaction Between Some Monosaccharides and Aspartic Acid in Dilute Aqueous Solutions

    PubMed Central

    Kulikova, Galina A.

    2008-01-01

    Interaction between aspartic acid and d-glucose, d-galactose, and d-fructose has been studied by isothermal titration calorimetry, calorimetry of dissolution, and densimetry. It has been found that d-glucose and d-fructose form thermodynamically stable associates with aspartic acid, in contrast to d-galactose. The selectivity in the interaction of aspartic acid with monosaccharides is affected by their stereochemical structures. PMID:19669542

  1. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  2. Neuronal death enhanced by N-methyl-d-aspartate antagonists

    PubMed Central

    Ikonomidou, Chrysanthy; Stefovska, Vanya; Turski, Lechoslaw

    2000-01-01

    Glutamate promotes neuronal survival during brain development and destroys neurons after injuries in the mature brain. Glutamate antagonists are in human clinical trials aiming to demonstrate limitation of neuronal injury after head trauma, which consists of both rapid and slowly progressing neurodegeneration. Furthermore, glutamate antagonists are considered for neuroprotection in chronic neurodegenerative disorders with slowly progressing cell death only. Therefore, humans suffering from Huntington's disease, characterized by slowly progressing neurodegeneration of the basal ganglia, are subjected to trials with glutamate antagonists. Here we demonstrate that progressive neurodegeneration in the basal ganglia induced by the mitochondrial toxin 3-nitropropionate or in the hippocampus by traumatic brain injury is enhanced by N-methyl-d-aspartate antagonists but ameliorated by α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonists. These observations reveal that N-methyl-d-aspartate antagonists may increase neurodestruction in mature brain undergoing slowly progressing neurodegeneration, whereas blockade of the action of glutamate at α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors may be neuroprotective. PMID:11058158

  3. Aspartic acid substitutions affect proton translocation by bacteriorhodopsin.

    PubMed Central

    Mogi, T; Stern, L J; Marti, T; Chao, B H; Khorana, H G

    1988-01-01

    We have substituted each of the aspartic acid residues in bacteriorhodopsin to determine their possible role in proton translocation by this protein. The aspartic acid residues were replaced by asparagines; in addition, Asp-85, -96, -115, and -112 were changed to glutamic acid and Asp-212 was also replaced by alanine. The mutant bacteriorhodopsin genes were expressed in Escherichia coli and the proteins were purified. The mutant proteins all regenerated bacteriorhodopsin-like chromophores when treated with a detergent-phospholipid mixture and retinal. However, the rates of regeneration of the chromophores and their lambda max varied widely. No support was obtained for the external point charge model for the opsin shift. The Asp-85----Asn mutant showed not detectable proton pumping, the Asp-96----Asn and Asp-212----Glu mutants showed less than 10% and the Asp-115----Glu mutant showed approximately equal to 30% of the normal proton pumping. The implications of these findings for possible mechanisms of proton translocation by bacteriorhodopsin are discussed. PMID:3288985

  4. Aspartate and glutamate mimetic structures in biologically active compounds.

    PubMed

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  5. Growth and characterization of KDP crystals doped with L-aspartic acid.

    PubMed

    Krishnamurthy, R; Rajasekaran, R; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal.

  6. Growth and characterization of KDP crystals doped with L-aspartic acid

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, R.; Rajasekaran, R.; Samuel, Bincy Susan

    2013-03-01

    Potassium Dihydrogen Phosphate (KDP) doped with L-aspartic acid has been grown by solvent slow evaporation technique from a mixture of aqueous solution of KDP and 0.7% of L-aspartic acid at room temperature. The grown crystals were characterized by powder X-ray diffraction, UV-visible, FTIR analysis. The doping of aspartic acid was confirmed by FTIR spectrum. The Nonlinear optical property (SHG) of L-aspartic acid doped KDP has been confirmed. Microhardness studies were carried out on the grown crystal.

  7. Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase.

    PubMed

    Kantrowitz, Evan R

    2012-03-15

    The allosteric enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli has been the subject of investigations for approximately 50 years. This enzyme controls the rate of pyrimidine nucleotide biosynthesis by feedback inhibition, and helps to balance the pyrimidine and purine pools by competitive allosteric activation by ATP. The catalytic and regulatory components of the dodecameric enzyme can be separated and studied independently. Many of the properties of the enzyme follow the Monod, Wyman Changeux model of allosteric control thus E. coli ATCase has become the textbook example. This review will highlight kinetic, biophysical, and structural studies which have provided a molecular level understanding of how the allosteric nature of this enzyme regulates pyrimidine nucleotide biosynthesis.

  8. Pleiotropic aspartate taxis and serine taxis mutants of Escherichia coli.

    PubMed

    Reader, R W; Tso, W W; Springer, M S; Goy, M F; Adler, J

    1979-04-01

    Mutants that at one time were thought to be specifically defective in taxis toward aspartate and related amino acids (tar mutants) or specifically defective in taxis toward serine and related amino acids (tar mutants) are now shown to be pleiotropic in their defects. The tar mutants also lack taxis toward maltose and away from Co2+ and Ni2+. The tsr mutants are altered in their response to a variety of repellents. Double mutants (tar tsr) fail in nearly all chemotactic responses. The tar and tsr mutants provide evidence for two complementary, converging pathways of information flow: certain chemoreceptors feed information into the tar pathway and others into the tsr pathway. The tar and tsr products have been shown to be two different sets of methylated proteins.

  9. A Potent, Versatile Disulfide-Reducing Agent from Aspartic Acid

    PubMed Central

    2013-01-01

    Dithiothreitol (DTT) is the standard reagent for reducing disulfide bonds between and within biological molecules. At neutral pH, however, >99% of DTT thiol groups are protonated and thus unreactive. Herein, we report on (2S)-2-amino-1,4-dimercaptobutane (dithiobutylamine or DTBA), a dithiol that can be synthesized from l-aspartic acid in a few high-yielding steps that are amenable to a large-scale process. DTBA has thiol pKa values that are ∼1 unit lower than those of DTT and forms a disulfide with a similar E°′ value. DTBA reduces disulfide bonds in both small molecules and proteins faster than does DTT. The amino group of DTBA enables its isolation by cation-exchange and facilitates its conjugation. These attributes indicate that DTBA is a superior reagent for reducing disulfide bonds in aqueous solution. PMID:22353145

  10. Analysis of the aspartic acid metabolic pathway using mutant genes.

    PubMed

    Azevedo, R A

    2002-01-01

    Amino acid metabolism is a fundamental process for plant growth and development. Although a considerable amount of information is available, little is known about the genetic control of enzymatic steps or regulation of several pathways. Much of the information about biochemical pathways has arisen from the use of mutants lacking key enzymes. Although mutants were largely used already in the 60's, by bacterial and fungal geneticists, it took plant research a long time to catch up. The advance in this area was rapid in the 80's, which was followed in the 90's by the development of techniques of plant transformation. In this review we present an overview of the aspartic acid metabolic pathway, the key regulatory enzymes and the mutants and transgenic plants produced for lysine and threonine metabolism. We also discuss and propose a new study of high-lysine mutants.

  11. AGC1/2, the mitochondrial aspartate-glutamate carriers.

    PubMed

    Amoedo, N D; Punzi, G; Obre, E; Lacombe, D; De Grassi, A; Pierri, C L; Rossignol, R

    2016-10-01

    In this review we discuss the structure and functions of the aspartate/glutamate carriers (AGC1-aralar and AGC2-citrin). Those proteins supply the aspartate synthesized within mitochondrial matrix to the cytosol in exchange for glutamate and a proton. A structure of an AGC carrier is not available yet but comparative 3D models were proposed. Moreover, transport assays performed by using the recombinant AGC1 and AGC2, reconstituted into liposome vesicles, allowed to explore the kinetics of those carriers and to reveal their specific transport properties. AGCs participate to a wide range of cellular functions, as the control of mitochondrial respiration, calcium signaling and antioxydant defenses. AGC1 might also play peculiar tissue-specific functions, as it was found to participate to cell-to-cell metabolic symbiosis in the retina. On the other hand, AGC1 is involved in the glutamate-mediated excitotoxicity in neurons and AGC gene or protein alterations were discovered in rare human diseases. Accordingly, a mice model of AGC1 gene knock-out presented with growth delay and generalized tremor, with myelinisation defects. More recently, AGC was proposed to play a crucial role in tumor metabolism as observed from metabolomic studies showing that the asparate exported from the mitochondrion by AGC1 is employed in the regeneration of cytosolic glutathione. Therefore, given the central role of AGCs in cell metabolism and human pathology, drug screening are now being developed to identify pharmacological modulators of those carriers. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.

  12. Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli.

    PubMed

    Shames, S L; Ash, D E; Wedler, F C; Villafranca, J J

    1984-12-25

    The five enzymes responsible for the conversion of L-aspartate to L-threonine in Escherichia coli were purified to homogeneity and subsequently reconstituted in vitro in ratios approximating those found in vivo. 31P NMR was used to conveniently monitor the rates of consumption of the substrates ATP and NADPH, the accumulation of the intermediates beta-aspartyl phosphate and homoserine phosphate, and the formation of the products ADP, NADP+, and Pi in a single experiment. By this method, the flux of aspartic acid through the enzymes of the pathway was monitored in the absence and in the presence of several alternative substrates and inhibitors. Several known antimetabolites were found to be alternative substrates that ultimately became inhibitors of pathway flux. L-threo-3-Hydroxyaspartic acid was converted to 3-hydroxyhomoserine phosphate by the first four enzymes of the pathway. The antimetabolite L-threo-3-hydroxyhomoserine was found to bind to and inhibit aspartokinase-homoserine dehydrogenase I in a cooperative fashion (I 0.5 = 3 mM, nH = 2.5), similar to the action of the allosteric end product inhibitor L-threonine (I 0.5 = 0.36 mM, nH = 2.4). In the presence of the remaining enzymes of the pathway, however, L-threo-3-hydroxyhomoserine was phosphorylated to the apparent ultimate antimetabolite L-threo-3-hydroxyhomoserine phosphate that was a potent inhibitor of threonine synthase and consequently of L-threonine biosynthesis. When aspartic acid alone was examined as a substrate of the enzymes of the pathway, no accumulation of the beta-aspartyl phosphate and homoserine phosphate intermediates was observed. However, in the presence of either 5 mM L-threo-3-hydroxyhomoserine or 5 mM L-threo-3-hydroxyhomoserine phosphate, homoserine phosphate was found to accumulate. In contrast to the homoserine phosphate and 3-hydroxyhomoserine phosphate intermediates, both of which were very stable, the acylphosphate intermediates beta-aspartyl phosphate and beta-3

  13. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  14. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria

    PubMed Central

    Palmieri, L.; Pardo, B.; Lasorsa, F.M.; del Arco, A.; Kobayashi, K.; Iijima, M.; Runswick, M.J.; Walker, J.E.; Saheki, T.; Satrústegui, J.; Palmieri, F.

    2001-01-01

    The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca2+-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H+. Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca2+ on the external side of the inner mitochondrial membrane, where the Ca2+-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca2+ through a mechanism independent of Ca2+ entry into mitochondria, and suggest a novel mechanism of Ca2+ regulation of the aspartate/malate shuttle. PMID:11566871

  15. L-aspartate-evoked inhibition of melatonin production in rat pineal glands.

    PubMed

    Yamada, H; Yamaguchi, A; Moriyama, Y

    1997-06-06

    Our previous studies in rat indicated that pinealocytes secrete L-glutamate through microvesicle-mediated exocytosis to regulate negatively melatonin production. Recently, we further found that pinealocytes secrete L-aspartate through microvesicle-mediated exocytosis. In the present study, we investigated the role of L-aspartate in the melatonin production in isolated rat pineal glands. It was found that L-aspartate inhibits norepinephrine-stimulated melatonin production as well as serotonin N-acetyltransferase activity reversibly and dose-dependently, the concentrations required for 50% inhibition being 150 and 175 microM, respectively. L-Asparagine and oxaloacetate, metabolites of L-aspartate, had no effect on the melatonin production. These results suggest that pinealocytes use L-aspartate, as well as L-glutamate, as a negative regulator for melatonin production.

  16. Photosynthetic metabolism of malate and aspartate in Flaveria trinervia a C/sub 4/ dicot

    SciTech Connect

    Moore, B.A.

    1986-01-01

    C/sub 4/ species are known to vary in their apparent relative use of malate and aspartate to mediate carbon flux through the C/sub 4/ cycle. These studies investigate some of the adjustments in photosynthetic carbon metabolism that occur during a dark to light transition and during expansion of leaves of Flaveria trinervia, a C/sub 4/ dicot. Enzyme localization studies with isolated leaf mesophyll and bundle sheath protoplasts, indicated that both C/sub 4/ acids are formed in the mesophyll chloroplast, and that aspartate is metabolized to malate in the bundle sheath chloroplast prior to decaroxylation there. During photosynthetic induction, the partitioning of /sup 14/CO/sub 2/ between malate and aspartate showed a single oscillation of increased aspartate labelling after 5 min of illumination. Turnover of (4-14C) (malate plus aspartate) was slow initially during illumination, prior to establishment of active pools of C/sub 4/ cycle metabolites.

  17. Fermentation of L-aspartate by a saccharolytic strain of Bacteroides melaninogenicus.

    PubMed Central

    Wong, J C; Dyer, J K; Tribble, J L

    1977-01-01

    Resting cells of Bacteroides melaninogenicus fermented L-[14C]aspartate as a single substrate. The 14C-labeled products included succinate, acetate, CO2, oxaloacetate, formate, malate, glycine, alanine, and fumarate in the relative percentages 68, 15, 9.9, 2.7, 1.8, 1.0, 0.7, 0.5, and 0.06, respectively, based on the total counts per minute of the L-[14C]aspartate fermented. Ammonia was produced in high amounts, indicating that 96% of the L-aspartate fermented was deaminated. These data suggest that L-aspartate is mainly being reduced through a number of intermediate reactions involving enzymes of the tricarboxylic acid cycle to succinate. L-[14C]asparagine was also fermented by resting cells of B. melaninogenicus to form L-aspartate, which was subsequently, but less actively, fermented. PMID:13713

  18. Exchange of aspartate and alanine. Mechanism for development of a proton-motive force in bacteria.

    PubMed

    Abe, K; Hayashi, H; Maloney, P C; Malone, P C

    1996-02-09

    We examined the idea that aspartate metabolism by Lactobacillus subsp. M3 is organized as a proton-motive metabolic cycle by using reconstitution to monitor the activity of the carrier, termed AspT, expected to carry out the electrogenic exchange of precursor (aspartate) and product (alanine). Membranes of Lactobacillus subsp. M3 were extracted with 1.25% octyl glucoside in the presence of 0. 4% Escherichia coli phospholipid and 20% glycerol. The extracts were then used to prepare proteoliposomes loaded with either aspartate or alanine. Aspartate-loaded proteoliposomes accumulated external [3H]aspartate by exchange with internal substrate; this homologous self-exchange (Kt = 0.4 mm) was insensitive to potassium or proton ionophores and was unaffected by the presence or absence of Na+, K+, or Mg2+. Alanine-loaded proteoliposomes also took up [3H]aspartate in a heterologous antiport reaction that was stimulated or inhibited by an inside-positive or inside-negative membrane potential, respectively. Several lines of evidence suggest that these homologous and heterologous exchange reactions were catalyzed by the same functional unit. Thus, [3H]aspartate taken up by AspT during self-exchange was released by a delayed addition of alanine. In addition, the spontaneous loss of AspT activity that occurs when a detergent extract is held at 37 degrees C prior to reconstitution was prevented by the presence of either aspartate (KD(aspartate) = 0.3 mm) or alanine (KD(alanine) > or = 10 mm), indicating that both substrates interact directly with AspT. These findings are consistent with operation of a proton-motive metabolic cycle during aspartate metabolism by Lactobacillus subsp. M3.

  19. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis

    PubMed Central

    Birsoy, Kıvanç; Wang, Tim; Chen, Walter; Freinkman, Elizaveta; Abu-Remaileh, Monther; Sabatini, David M.

    2015-01-01

    Summary The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation. PMID:26232224

  20. A Deficiency in Aspartate Biosynthesis in Lactococcus lactis subsp. lactis C2 Causes Slow Milk Coagulation†

    PubMed Central

    Wang, Hua; Yu, Weizhu; Coolbear, Tim; O’Sullivan, Dan; McKay, Larry L.

    1998-01-01

    A mutant of fast milk-coagulating (Fmc+) Lactococcus lactis subsp. lactis C2, designated L. lactis KB4, was identified. Although possessing the known components essential for utilizing casein as a nitrogen source, which include functional proteinase (PrtP) activity and oligopeptide, di- and tripeptide, and amino acid transport systems, KB4 exhibited a slow milk coagulation (Fmc−) phenotype. When the amino acid requirements of L. lactis C2 were compared with those of KB4 by use of a chemically defined medium, it was found that KB4 was unable to grow in the absence of aspartic acid. This aspartic acid requirement could also be met by aspartate-containing peptides. The addition of aspartic acid to milk restored the Fmc+ phenotype of KB4. KB4 was found to be defective in pyruvate carboxylase and thus was deficient in the ability to form oxaloacetate and hence aspartic acid from pyruvate and carbon dioxide. The results suggest that when lactococci are propagated in milk, aspartate derived from casein is unable to meet fully the nutritional demands of the lactococci, and they become dependent upon aspartate biosynthesis. PMID:9572935

  1. Aspartate Biosynthesis Is Essential for the Growth of Streptococcus thermophilus in Milk, and Aspartate Availability Modulates the Level of Urease Activity▿

    PubMed Central

    Arioli, Stefania; Monnet, Christophe; Guglielmetti, Simone; Parini, Carlo; De Noni, Ivano; Hogenboom, Johannes; Halami, Prakash M.; Mora, Diego

    2007-01-01

    We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Δppc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with l-aspartic acid, the final product of the metabolic pathway governed by phosphoenolpyruvate carboxylase. It was concluded that aspartate present in milk is not sufficient for the growth of S. thermophilus. As a consequence, phosphoenolpyruvate carboxylase activity was considered fundamental for the biosynthesis of l-aspartic acid in S. thermophilus metabolism. This enzymatic activity is therefore essential for growth of S. thermophilus in milk even if S. thermophilus was cultured in association with proteinase-positive Lactobacillus delbrueckii subsp. bulgaricus. It was furthermore observed that the supplementation of milk with aspartate significantly affected the level of urease activity. Further experiments, carried out with a pureI-gusA recombinant strain, revealed that expression of the urease operon was sensitive to the aspartate concentration in milk and to the cell availability of glutamate, glutamine, and ammonium ions. PMID:17660309

  2. Functional role of aspartic proteinase cathepsin D in insect metamorphosis

    PubMed Central

    Gui, Zhong Zheng; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Wei, Ya Dong; Choo, Young Moo; Kang, Pil Don; Yoon, Hyung Joo; Kim, Iksoo; Je, Yeon Ho; Seo, Sook Jae; Lee, Sang Mong; Guo, Xijie; Sohn, Hung Dae; Jin, Byung Rae

    2006-01-01

    Background Metamorphosis is a complex, highly conserved and strictly regulated development process that involves the programmed cell death of obsolete larval organs. Here we show a novel functional role for the aspartic proteinase cathepsin D during insect metamorphosis. Results Cathepsin D of the silkworm Bombyx mori (BmCatD) was ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression led to programmed cell death. Furthermore, BmCatD was highly induced in the fat body of baculovirus-infected B. mori larvae, suggesting that this gene is involved in the induction of metamorphosis of host insects infected with baculovirus. RNA interference (RNAi)-mediated BmCatD knock-down inhibited programmed cell death of the larval fat body, resulting in the arrest of larval-pupal transformation. BmCatD RNAi also inhibited the programmed cell death of larval gut during pupal stage. Conclusion Based on these results, we concluded that BmCatD is critically involved in the programmed cell death of the larval fat body and larval gut in silkworm metamorphosis. PMID:17062167

  3. Intentional overdose with insulin glargine and insulin aspart.

    PubMed

    Tofade, Toyin S; Liles, E Allen

    2004-10-01

    Reports of intentional massive overdoses of insulin are infrequent. A review of the literature revealed no reports of overdose attempts with either insulin glargine or insulin aspart. We report the case of a 33-year-old woman without diabetes mellitus who intentionally injected herself with an overdose of both products, which belonged to her husband. She arrived at the emergency department 15 hours after her suicide attempt, which took place the night before. Her husband had checked her blood glucose level throughout the night and had given her high-carbohydrate drinks and foods. The patient had a history of obsessive-compulsive disorder, major depression, and numerous suicide attempts. She recovered from the resulting hypoglycemia after 40 hours of dextrose infusion and was transferred to a mental health facility. The main danger associated with insulin overdose is the resultant hypoglycemia and its effects on the central nervous system; hypokalemia, hypophosphatemia, and hypomagnesemia also can develop with excess insulin administration. Dextrose infusion, with liberal oral intake when possible, and monitoring for electrolyte changes, making adjustments as needed, are recommended for the treatment of intentional insulin overdose.

  4. New paradigm for allosteric regulation of Escherichia coli aspartate transcarbamoylase.

    PubMed

    Cockrell, Gregory M; Zheng, Yunan; Guo, Wenyue; Peterson, Alexis W; Truong, Jennifer K; Kantrowitz, Evan R

    2013-11-12

    For nearly 60 years, the ATP activation and the CTP inhibition of Escherichia coli aspartate transcarbamoylase (ATCase) has been the textbook example of allosteric regulation. We present kinetic data and five X-ray structures determined in the absence and presence of a Mg(2+) concentration within the physiological range. In the presence of 2 mM divalent cations (Mg(2+), Ca(2+), Zn(2+)), CTP does not significantly inhibit the enzyme, while the allosteric activation by ATP is enhanced. The data suggest that the actual allosteric inhibitor of ATCase in vivo is the combination of CTP, UTP, and a divalent cation, and the actual allosteric activator is a divalent cation with ATP or ATP and GTP. The structural data reveals that two NTPs can bind to each allosteric site with a divalent cation acting as a bridge between the triphosphates. Thus, the regulation of ATCase is far more complex than previously believed and calls many previous studies into question. The X-ray structures reveal that the catalytic chains undergo essentially no alternations; however, several regions of the regulatory chains undergo significant structural changes. Most significant is that the N-terminal region of the regulatory chains exists in different conformations in the allosterically activated and inhibited forms of the enzyme. Here, a new model of allosteric regulation is proposed.

  5. Adsorption of Aspartic Acid onto Rutile: Implications for Biochirality

    NASA Astrophysics Data System (ADS)

    Estrada, C. F.; Jonsson, C. M.; Jonsson, C. L.; Sverjensky, D. A.; Hazen, R. M.

    2008-12-01

    Mineral surfaces may have facilitated the concentration and polymerization of simple biomolecules into macromolecules while promoting the development of biochirality. In this study, rutile and aspartic acid (Asp) were investigated as a possible system in this scenario. Batch adsorption experiments were performed to examine the adsorption of Asp as a function of total concentration and pH. A constant background electrolyte of 0.1 M NaCl was applied to the system, and all solutions were purged with argon gas to eliminate carbon dioxide contamination. Asp adsorbs onto rutile to the highest extent over the pH range 3-5.5 suggesting that an acidic environment is required for the adsorption between Asp and rutile to occur in significant amounts. This pH range of maximum adsorption is constrained between the isoelectric point of Asp and the point of zero charge of rutile, which indicates that electrostatic effects are influencing Asp adsorption. Both the L- and D- enantiomers of Asp were individually adsorbed onto the rutile surface to determine the potential of the system for chiral selection. Preliminary results indicate that D-Asp may possibly adsorb in greater amounts than L-Asp at higher Asp total concentrations. This trend is unexpected as the growth planes dominating the rutile are achiral, and a more thorough study is required to validate this difference in adsorption. Nevertheless, this result may provide insight on the emergence of chiral selection in macromolecules within what might be a predominantly achiral prebiotic system.

  6. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.

    PubMed

    Gyarmati, Benjámin; Mészár, E Zsuzsanna; Kiss, Lóránd; Deli, Mária A; László, Krisztina; Szilágyi, András

    2015-08-01

    Chemically cross-linked poly(aspartic acid) (PASP) gels were prepared by a solid-liquid phase separation technique, cryogelation, to achieve a supermacroporous interconnected pore structure. The precursor polymer of PASP, polysuccinimide (PSI) was cross-linked below the freezing point of the solvent and the forming crystals acted as templates for the pores. Dimethyl sulfoxide was chosen as solvent instead of the more commonly used water. Thus larger temperatures could be utilized for the preparation and the drawback of increase in specific volume of water upon freezing could be eliminated. The morphology of the hydrogels was characterized by scanning electron microscopy and interconnectivity of the pores was proven by the small flow resistance of the gels. Compression tests also confirmed the interconnected porous structure and the complete re-swelling and shape recovery of the supermacroporous PASP hydrogels. The prepared hydrogels are of interest for several biomedical applications as scaffolding materials because of their cytocompatibility, controllable morphology and pH-responsive character.

  7. Advanced drug delivery of N-acetylcarnosine (N-acetyl-beta-alanyl-L-histidine), carcinine (beta-alanylhistamine) and L-carnosine (beta-alanyl-L-histidine) in targeting peptide compounds as pharmacological chaperones for use in tissue engineering, human disease management and therapy: from in vitro to the clinic.

    PubMed

    Babizhayev, Mark A; Yegorov, Yegor E

    2010-11-01

    A pharmacological chaperone is a relatively new concept in the treatment of certain chronic disabling diseases. Cells maintain a complete set of functionally competent proteins normally and in the face of injury or environmental stress with the use of various mechanisms, including systems of proteins called molecular chaperones. Proteins that are denatured by any form of proteotoxic stress are cooperatively recognized by heat shock proteins (HSP) and directed for refolding or degradation. Under non-denaturing conditions HSP have important functions in cell physiology such as in transmembrane protein transport and in enabling assembly and folding of newly synthesized polypeptides. Besides cellular molecular chaperones, which are stress-induced proteins, there have been recently reported chemical, or so-called pharmacological chaperones with demonstrated ability to be effective in preventing misfolding of different disease causing proteins, specifically in the therapeutic management of sight-threatening eye diseases, essentially reducing the severity of several neurodegenerative disorders (such as age-related macular degeneration), cataract and many other protein-misfolding diseases. This work reviews the biological and therapeutic activities protected with the patents of the family of imidazole-containing peptidomimetics Carcinine (β-alanylhistamine), N-acetylcarnosine (N-acetyl-β-alanylhistidine) and Carnosine (β-alanyl-L-histidine) which are essential constituents possessing diverse biological and pharmacological chaperone properties in human tissues.

  8. N-Methyl-D-Aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity

    EPA Science Inventory

    N-Methyl-D-aspartate Receptor Activation May Contribute to Glufosinate Neurotoxicity Glufosinate (GLF) at high levels in mammals causes convulsions through a mechanism that is not completely understood. The structural similarity of GLF to glutamate (GLU) implicates the glutamate...

  9. Purification and characterization of aspartic protease derived from Sf9 insect cells.

    PubMed

    Gotoh, Takeshi; Ono, Hiroki; Kikuchi, Ken-Ichi; Nirasawa, Satoru; Takahashi, Saori

    2010-01-01

    An aspartic protease that is significantly produced by baculovirus-infected Spodoptera frugiperda Sf9 insect cells was purified to homogeneity from a growth medium. To monitor aspartic protease activity, an internally quenched fluoresce (IQF) substrate specific to cathepsin D was used. The purified aspartic protease showed a single protein band on SDS-PAGE with an apparent molecular mass of 40 kDa. The N-terminal amino acid sequence of the enzyme had a high homology to a Bombyx mori aspartic protease. The enzyme showed greatest affinity for the IQF substrate at pH 3.0 with a K(m) of 0.85 µM. The k(cat) and k(cat)/K(m) values were 13 s(-1) and 15 s(-1) µM(-1) respectively. Pepstatin A proved to be a potent competitive inhibitor with inhibitor constant, K(i), of 25 pM.

  10. New evidence for the antiquity of man in North America deduced from aspartic acid racemization.

    PubMed

    Bada, J L; Schroeder, R A; Carter, G F

    1974-05-17

    Ages of several Californzia Paleo-Indlian skeletons have been deduced from the extent of aspartic acid racemization. These dates suggest that man was present in North America at least 50,000 years before the present.

  11. Atomic resolution crystal structure of Sapp2p, a secreted aspartic protease from Candida parapsilosis.

    PubMed

    Dostál, Jiří; Pecina, Adam; Hrušková-Heidingsfeldová, Olga; Marečková, Lucie; Pichová, Iva; Řezáčová, Pavlina; Lepšík, Martin; Brynda, Jiří

    2015-12-01

    The virulence of the Candida pathogens is enhanced by the production of secreted aspartic proteases, which therefore represent possible targets for drug design. Here, the crystal structure of the secreted aspartic protease Sapp2p from Candida parapsilosis was determined. Sapp2p was isolated from its natural source and crystallized in complex with pepstatin A, a classical aspartic protease inhibitor. The atomic resolution of 0.83 Å allowed the protonation states of the active-site residues to be inferred. A detailed comparison of the structure of Sapp2p with the structure of Sapp1p, the most abundant C. parapsilosis secreted aspartic protease, was performed. The analysis, which included advanced quantum-chemical interaction-energy calculations, uncovered molecular details that allowed the experimentally observed equipotent inhibition of both isoenzymes by pepstatin A to be rationalized.

  12. Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells.

    PubMed

    Sullivan, Lucas B; Gui, Dan Y; Hosios, Aaron M; Bush, Lauren N; Freinkman, Elizaveta; Vander Heiden, Matthew G

    2015-07-30

    Mitochondrial respiration is important for cell proliferation; however, the specific metabolic requirements fulfilled by respiration to support proliferation have not been defined. Here, we show that a major role of respiration in proliferating cells is to provide electron acceptors for aspartate synthesis. This finding is consistent with the observation that cells lacking a functional respiratory chain are auxotrophic for pyruvate, which serves as an exogenous electron acceptor. Further, the pyruvate requirement can be fulfilled with an alternative electron acceptor, alpha-ketobutyrate, which provides cells neither carbon nor ATP. Alpha-ketobutyrate restores proliferation when respiration is inhibited, suggesting that an alternative electron acceptor can substitute for respiration to support proliferation. We find that electron acceptors are limiting for producing aspartate, and supplying aspartate enables proliferation of respiration deficient cells in the absence of exogenous electron acceptors. Together, these data argue a major function of respiration in proliferating cells is to support aspartate synthesis.

  13. Chiral Asymmetric Structures in Aspartic Acid and Valine Crystals Assessed by Atomic Force Microscopy.

    PubMed

    Teschke, Omar; Soares, David Mendez

    2016-03-29

    Structures of crystallized deposits formed by the molecular self-assembly of aspartic acid and valine on silicon substrates were imaged by atomic force microscopy. Images of d- and l-aspartic acid crystal surfaces showing extended molecularly flat sheets or regions separated by single molecule thick steps are presented. Distinct orientation surfaces were imaged, which, combined with the single molecule step size, defines the geometry of the crystal. However, single molecule step growth also reveals the crystal chirality, i.e., growth orientations. The imaged ordered lattice of aspartic acid (asp) and valine (val) mostly revealed periodicities corresponding to bulk terminations, but a previously unreported molecular hexagonal lattice configuration was observed for both l-asp and l-val but not for d-asp or d-val. Atomic force microscopy can then be used to identify the different chiral forms of aspartic acid and valine crystals.

  14. Aspartic Acid Racemization and Age-Depth Relationships for Organic Carbon in Siberian Permafrost

    NASA Astrophysics Data System (ADS)

    Brinton, Karen L. F.; Tsapin, Alexandre I.; Gilichinsky, David; McDonald, Gene D.

    2002-03-01

    We have analyzed the degree of racemization of aspartic acid in permafrost samples from Northern Siberia, an area from which microorganisms of apparent ages up to a few million years have previously been isolated and cultured. We find that the extent of aspartic acid racemization in permafrost cores increases very slowly up to an age of ~25,000 years (around 5 m in depth). The apparent temperature of racemization over the age range of 0-25,000 years, determined using measured aspartic acid racemization rate constants, is -19°C. This apparent racemization temperature is significantly lower than the measured environmental temperature (-11 to -13°C) and suggests active recycling of D-aspartic acid in Siberian permafrost up to an age of around 25,000 years. This indicates that permafrost organisms are capable of repairing some molecular damage incurred while in a "dormant" state over geologic time.

  15. Aspartate oxidase plays an important role in Arabidopsis stomatal immunity.

    PubMed

    Macho, Alberto P; Boutrot, Freddy; Rathjen, John P; Zipfel, Cyril

    2012-08-01

    Perception of pathogen-associated molecular patterns (PAMPs), such as bacterial flagellin (or the peptide flg22), by surface-localized receptors activates defense responses and subsequent immunity. In a previous forward-genetic screen aimed at the identification of Arabidopsis (Arabidopsis thaliana) flagellin-insensitive (fin) mutants, we isolated fin4, which is severely affected in flg22-triggered reactive oxygen species (ROS) bursts. Here, we report that FIN4 encodes the chloroplastic enzyme ASPARTATE OXIDASE (AO), which catalyzes the first irreversible step in the de novo biosynthesis of NAD. Genetic studies on the role of NAD have been hindered so far by the lethality of null mutants in NAD biosynthetic enzymes. Using newly identified knockdown fin alleles, we found that AO is required for the ROS burst mediated by the NADPH oxidase RBOHD triggered by the perception of several unrelated PAMPs. AO is also required for RBOHD-dependent stomatal closure. However, full AO activity is not required for flg22-induced responses that are RBOHD independent. Interestingly, although the fin4 mutation dramatically affects RBOHD function, it does not affect functions carried out by other members of the RBOH family, such as RBOHC and RBOHF. Finally, we determined that AO is required for stomatal immunity against the bacterium Pseudomonas syringae. Altogether, our work reveals a novel specific requirement for AO activity in PAMP-triggered RBOHD-dependent ROS burst and stomatal immunity. In addition, the availability of viable mutants for the chloroplastic enzyme AO will enable future detailed studies on the role of NAD metabolism in different cellular processes, including immunity, in Arabidopsis.

  16. Pharmacology of Triheteromeric N-Methyl-D-Aspartate Receptors

    PubMed Central

    Cheriyan, John; Balsara, Rashna D.; Hansen, Kasper B.; Castellino, Francis J.

    2016-01-01

    The N-Methyl-D-Aspartate Receptors (NMDARs) are heteromeric cation channels involved in learning, memory, and synaptic plasticity, and their dysregulation leads to various neurodegenerative disorders. Recent evidence has shown that apart from the GluN1/GluN2A and GluN1/GluN2B diheteromeric ion channels, the NMDAR also exists as a GluN1/GluN2A/GluN2B triheteromeric channel that occupies the majority of the synaptic space. These GluN1/GluN2A/GluN2B triheteromers exhibit pharmacological and electrophysiological properties that are distinct from the GluN1/GluN2A and GluN1/GluN2B diheteromeric subtypes. However, these receptors have not been characterized with regards to their inhibition by conantokins, as well as their allosteric modulation by polyamines and extracellular protons. Here, we show that the GluN1/GluN2A/GluN2B triheteromeric channels showed less sensitivity to GluN2B-specific conantokin (con)-G and con-RlB, and subunit non-specific con-T, compared to the GluN2A-specific inhibitor TCN-201. Also, spermine modulation of GluN1/GluN2A/GluN2B triheteromers switched its nature from potentiation to inhibition in a pH dependent manner, and was 2.5-fold slower compared to the GluN1/GluN2B diheteromeric channels. Unraveling the distinctive functional attributes of the GluN1/GluN2A/GluN2B triheteromers is physiologically relevant since they form an integral part of the synapse, which will aid in understanding spermine/pH-dependent potentiation of these receptors in pathological settings. PMID:26917100

  17. Motor axon synapses on renshaw cells contain higher levels of aspartate than glutamate.

    PubMed

    Richards, Dannette S; Griffith, Ronald W; Romer, Shannon H; Alvarez, Francisco J

    2014-01-01

    Motoneuron synapses on spinal cord interneurons known as Renshaw cells activate nicotinic, AMPA and NMDA receptors consistent with co-release of acetylcholine and excitatory amino acids (EAA). However, whether these synapses express vesicular glutamate transporters (VGLUTs) capable of accumulating glutamate into synaptic vesicles is controversial. An alternative possibility is that these synapses release other EAAs, like aspartate, not dependent on VGLUTs. To clarify the exact EAA concentrated at motor axon synapses we performed a quantitative postembedding colloidal gold immunoelectron analysis for aspartate and glutamate on motor axon synapses (identified by immunoreactivity to the vesicular acetylcholine transporter; VAChT) contacting calbindin-immunoreactive (-IR) Renshaw cell dendrites. The results show that 71% to 80% of motor axon synaptic boutons on Renshaw cells contained aspartate immunolabeling two standard deviations above average neuropil labeling. Moreover, VAChT-IR synapses on Renshaw cells contained, on average, aspartate immunolabeling at 2.5 to 2.8 times above the average neuropil level. In contrast, glutamate enrichment was lower; 21% to 44% of VAChT-IR synapses showed glutamate-IR two standard deviations above average neuropil labeling and average glutamate immunogold density was 1.7 to 2.0 times the neuropil level. The results were not influenced by antibody affinities because glutamate antibodies detected glutamate-enriched brain homogenates more efficiently than aspartate antibodies detecting aspartate-enriched brain homogenates. Furthermore, synaptic boutons with ultrastructural features of Type I excitatory synapses were always labeled by glutamate antibodies at higher density than motor axon synapses. We conclude that motor axon synapses co-express aspartate and glutamate, but aspartate is concentrated at higher levels than glutamate.

  18. Aspartic peptidases of human pathogenic trypanosomatids: perspectives and trends for chemotherapy.

    PubMed

    Santos, L O; Garcia-Gomes, A S; Catanho, M; Sodre, C L; Santos, A L S; Branquinha, M H; d'Avila-Levy, C M

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas' disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  19. Aspartic Peptidases of Human Pathogenic Trypanosomatids: Perspectives and Trends for Chemotherapy

    PubMed Central

    Santos, L.O.; Garcia-Gomes, A.S.; Catanho, M.; Sodré, C.L.; Santos, A.L.S.; Branquinha, M.H.; d’Avila-Levy, C.M.

    2013-01-01

    Aspartic peptidases are proteolytic enzymes present in many organisms like vertebrates, plants, fungi, protozoa and in some retroviruses such as human immunodeficiency virus (HIV). These enzymes are involved in important metabolic processes in microorganisms/virus and play major roles in infectious diseases. Although few studies have been performed in order to identify and characterize aspartic peptidase in trypanosomatids, which include the etiologic agents of leishmaniasis, Chagas’ disease and sleeping sickness, some beneficial properties of aspartic peptidase inhibitors have been described on fundamental biological events of these pathogenic agents. In this context, aspartic peptidase inhibitors (PIs) used in the current chemotherapy against HIV (e.g., amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) were able to inhibit the aspartic peptidase activity produced by different species of Leishmania. Moreover, the treatment of Leishmania promastigotes with HIV PIs induced several perturbations on the parasite homeostasis, including loss of the motility and arrest of proliferation/growth. The HIV PIs also induced an increase in the level of reactive oxygen species and the appearance of irreversible morphological alterations, triggering parasite death pathways such as programed cell death (apoptosis) and uncontrolled autophagy. The blockage of physiological parasite events as well as the induction of death pathways culminated in its incapacity to adhere, survive and escape of phagocytic cells. Collectively, these results support the data showing that parasites treated with HIV PIs have a significant reduction in the ability to cause in vivo infection. Similarly, the treatment of Trypanosoma cruzi cells with pepstatin A showed a significant inhibition on both aspartic peptidase activity and growth as well as promoted several and irreversible morphological changes. These studies indicate that aspartic peptidases can be promising targets in

  20. The standard enthalpies of formation of crystalline N-(carboxymethyl)aspartic acid and its aqueous solutions

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernyavskaya, N. V.; Volkov, A. V.; Nikol'Skii, V. M.

    2007-07-01

    The energy of combustion of N-(carboxymethyl)aspartic acid (CMAA) was determined by bomb calorimetry in oxygen. The standard enthalpies of combustion and formation of crystalline N-(carboxymethyl)aspartic acid were calculated. The heat effects of solution of crystalline CMAA in water and a solution of sodium hydroxide were measured at 298.15 K by direct calorimetry. The standard enthalpies of formation of CMAA and its dissociation products in aqueous solution were determined.

  1. Infrared and Raman spectra of DL-aspartic acid nitrate monohydrate

    NASA Astrophysics Data System (ADS)

    Rajkumar, B. J. M.; Ramakrishnan, V.; Rajaram, R. K.

    1998-09-01

    Infrared and Raman spectral studies of DL-aspartic acid nitrate monohydrate help to determine the influence of extensive intermolecular hydrogen bonding in the aspartic acid crystal. The presence of the carbonyl rather than the carboxylic group indicates that the molecule is ionic. The shifting of several group frequencies in the molecule confirms extensive hydrogen bonding. The anion fundamentals however continue to be degenerate. This indicates that its symmetry is unaffected in the molecule.

  2. Lowered circulating aspartate is a metabolic feature of human breast cancer

    PubMed Central

    Xie, Guoxiang; Zhou, Bingsen; Zhao, Aihua; Qiu, Yunping; Zhao, Xueqing; Garmire, Lana; Shvetsov, Yurii B.; Yu, Herbert; Yen, Yun; Jia, Wei

    2015-01-01

    Distinct metabolic transformation is essential for cancer cells to sustain a high rate of proliferation and resist cell death signals. Such a metabolic transformation results in unique cellular metabolic phenotypes that are often reflected by distinct metabolite signatures in tumor tissues as well as circulating blood. Using a metabolomics platform, we find that breast cancer is associated with significantly (p = 6.27E-13) lowered plasma aspartate levels in a training group comprising 35 breast cancer patients and 35 controls. The result was validated with 103 plasma samples and 183 serum samples of two groups of primary breast cancer patients. Such a lowered aspartate level is specific to breast cancer as it has shown 0% sensitivity in serum from gastric (n = 114) and colorectal (n = 101) cancer patients. There was a significantly higher level of aspartate in breast cancer tissues (n = 20) than in adjacent non-tumor tissues, and in MCF-7 breast cancer cell line than in MCF-10A cell lines, suggesting that the depleted level of aspartate in blood of breast cancer patients is due to increased tumor aspartate utilization. Together, these findings suggest that lowed circulating aspartate is a key metabolic feature of human breast cancer. PMID:26452258

  3. Hydrolysis of aspartic acid phosphoramidate nucleotides: a comparative quantum chemical study.

    PubMed

    Michielssens, Servaas; Tien Trung, Nguyen; Froeyen, Matheus; Herdewijn, Piet; Tho Nguyen, Minh; Ceulemans, Arnout

    2009-09-07

    L-Aspartic acid has recently been found to be a good leaving group during HIV reverse transcriptase catalyzed incorporation of deoxyadenosine monophosphate (dAMP) in DNA. This showed that L-Asp is a good mimic for the pyrophosphate moiety of deoxyadenosine triphosphate. The present work explores the thermochemistry and mechanism for hydrolysis of several models for L-aspartic-dAMP using B3LYP/DGDZVP, MP2/6-311++G** and G3MP2 level of theory. The effect of the new compound is gradually investigated: starting from a simple methyl amine leaving group up to the aspartic acid leaving group. The enzymatic environment was mimicked by involving two Mg(2+) ions and some important active site residues in the reaction. All reactions are compared to the corresponding O-coupled leaving group, which is methanol for methyl amine and malic acid for aspartic acid. With methyl amine as a leaving group a tautomeric associative or tautomeric dissociative mechanism is preferred and the barrier is lower than the comparable mechanism with methanol as a leaving group. The calculations on the aspartic acid in the enzymatic environment show that qualitatively the mechanism is the same as for triphosphate but the barrier for hydrolysis by the associative mechanism is higher for L-aspartic-dAMP than for L-malic-dAMP and pyrophosphate.

  4. Ontogeny of malate-aspartate shuttle capacity and gene expression in cardiac mitochondria.

    PubMed

    Scholz, T D; Koppenhafer, S L; tenEyck, C J; Schutte, B C

    1998-03-01

    Developmental downregulation of the malate-aspartate shuttle has been observed in cardiac mitochondria. The goals of this study were to determine the time course of the postnatal decline and to identify potential regulatory sites by measuring steady-state myocardial mRNA and protein levels of the mitochondrial proteins involved in the shuttle. By use of isolated porcine cardiac mitochondria incubated with saturating concentrations of the cytosolic components of the malate-aspartate shuttle, shuttle capacity was found to decline by approximately 50% during the first 5 wk of life (from 921 +/- 48 to 531 +/- 53 nmol.min-1.mg protein-1). Mitochondrial aspartate aminotransferase mRNA levels were greater in adult than in newborn myocardium. mRNA levels of mitochondrial malate dehydrogenase in adult cardiac tissue were 224% of levels in newborn tissue, whereas protein levels were 54% greater in adult myocardium. Aspartate/glutamate carrier protein levels were also greater in adult than in newborn tissue. mRNA and protein levels of the oxoglutarate/malate carrier were increased in newborn myocardium. It was concluded that 1) myocardial malate-aspartate shuttle capacity declines rapidly after birth, 2) divergence of mitochondrial malate dehydrogenase mRNA and protein levels during development suggests posttranscriptional regulation of this protein, and 3) the developmental decline in malate-aspartate shuttle capacity is regulated by decreased oxoglutarate/malate carrier gene expression.

  5. Temperature dependence of N-methyl-D-aspartate receptor channels and N-methyl-D-aspartate receptor excitatory postsynaptic currents.

    PubMed

    Korinek, M; Sedlacek, M; Cais, O; Dittert, I; Vyklicky, L

    2010-02-03

    N-methyl-d-aspartate (NMDA) receptors (NMDARs) are highly expressed in the CNS and mediate the slow component of excitatory transmission. The present study was aimed at characterizing the temperature dependence of the kinetic properties of native NMDARs, with special emphasis on the deactivation of synaptic NMDARs. We used patch-clamp recordings to study synaptic NMDARs at layer II/III pyramidal neurons of the rat cortex, recombinant GluN1/GluN2B receptors expressed in human embryonic kidney (HEK293) cells, and NMDARs in cultured hippocampal neurons. We found that time constants characterizing the deactivation of NMDAR-mediated excitatory postsynaptic currents (EPSCs) were similar to those of the deactivation of responses to a brief application of glutamate recorded under conditions of low NMDAR desensitization (whole-cell recording from cultured hippocampal neurons). In contrast, the deactivation of NMDAR-mediated responses exhibiting a high degree of desensitization (outside-out recording) was substantially faster than that of synaptic NMDA receptors. The time constants characterizing the deactivation of synaptic NMDARs and native NMDARs activated by exogenous glutamate application were only weakly temperature sensitive (Q(10)=1.7-2.2), in contrast to those of recombinant GluN1/GluN2B receptors, which are highly temperature sensitive (Q(10)=2.7-3.7). Ifenprodil reduced the amplitude of NMDAR-mediated EPSCs by approximately 50% but had no effect on the time course of deactivation. Analysis of GluN1/GluN2B responses indicated that the double exponential time course of deactivation reflects mainly agonist dissociation and receptor desensitization. We conclude that the temperature dependences of native and recombinant NMDAR are different; in addition, we contribute to a better understanding of the molecular mechanism that controls the time course of NMDAR-mediated EPSCs.

  6. L-aspartic acid transport by cat erythrocytes

    SciTech Connect

    Chen, C.W.; Preston, R.L.

    1986-03-01

    Cat and dog red cells are unusual in that they have no Na/K ATPase and contain low K and high Na intracellularly. They also show significant Na dependent L-aspartate (L-asp) transport. The authors have characterized this system in cat RBCs. The influx of /sup 3/H-L-asp (typically 2..mu..M) was measured in washed RBCs incubated for 60 s at 37/sup 0/C in medium containing 140 mM NaCl, 5 mM Kcl, 2 mM CaCl/sub 2/, 15 mM MOPS pH 7.4, 5 mM glucose, and /sup 14/C-PEG as a space marker. The cells were washed 3 times in the medium immediately before incubation which was terminated by centrifuging the RBCs through a layer of dibutylphthalate. Over an L-asp concentration range of 0.5-1000..mu..M, influx obeyed Michaelis-Menten kinetics with a small added linear diffusion component. The Kt and Jmax of the saturable component were 5.40 +/- 0.34 ..mu..M and 148.8 +/- 7.2 ..mu..mol 1. cell/sup -1/h/sup -1/ respectively. Replacement of Na with Li, K, Rb, Cs or choline reduce influx to diffusion. With the addition of asp analogues (4/sup +/M L-asp, 40/sup +/M inhibitor), the following sequence of inhibition was observed (range 80% to 40% inhib.): L-glutamate > L-cysteine sulfonate > D-asp > L-cysteic acid > D-glutamate. Other amino acids such as L-alanine, L-proline, L-lysine, L-cysteine, and taurine showed no inhibition (<5%). These data suggest that cat red cells contain a high-affinity Na dependent transport system for L-asp, glutamate, and closely related analogues which resembles that found in the RBCs of other carnivores and in neural tissues.

  7. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  8. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT.

  9. Caffeine alters glutamate-aspartate transporter function and expression in rat retina.

    PubMed

    de Freitas, Adriana Pinto; Ferreira, Danielle Dias Pinto; Fernandes, Arlete; Martins, Robertta Silva; Borges-Martins, Vladimir Pedro Peralva; Sathler, Matheus Figueiredo; Dos-Santos-Pereira, Maurício; Paes-de-Carvalho, Roberto; Giestal-de-Araujo, Elizabeth; de Melo Reis, Ricardo Augusto; Kubrusly, Regina Celia Cussa

    2016-11-19

    l-Glutamate and l-aspartate are the main excitatory amino acids (EAAs) in the Central Nervous System (CNS) and their uptake regulation is critical for the maintenance of the excitatory balance. Excitatory amino acid transporters (EAATs) are widely distributed among central neurons and glial cells. GLAST and GLT1 are expressed in glial cells, whereas excitatory amino acid transporter 3/excitatory amino acid carrier 1 (EAAT3/EAAC1) is neuronal. Different signaling pathways regulate glutamate uptake by modifying the activity and expression of EAATs. In the present work we show that immature postnatal day 3 (PN3) rat retinas challenged by l-glutamate release [(3)H]-d-Aspartate linked to the reverse transport, with participation of NMDA, but not of non-NMDA receptors. The amount of [(3)H]-d-Aspartate released by l-glutamate is reduced during retinal development. Moreover, immature retinae at PN3 and PN7, but not PN14, exposed to a single dose of 200 or 500μM caffeine or the selective A2A receptor (A2AR) antagonist 100nM ZM241385 decreased [(3)H]-d-Aspartate uptake. Caffeine also selectively increased total expression of EAAT3 at PN7 and its expression in membrane fractions. However, both EAAT1 and EAAT2 were reduced after caffeine treatment in P2 fraction. Addition of 100nM DPCPX, an A1 receptor (A1R) antagonist, had no effect on the [(3)H]-d-Aspartate uptake. [(3)H]-d-Aspartate release was dependent on both extracellular sodium and Dl-TBOA, but not calcium, implying a transporter-mediated mechanism. Our results suggest that in the developing rat retina caffeine modulates [(3)H]-d-Aspartate uptake by blocking adenosine A2AR.

  10. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  11. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Abstracts Service Registry No. 65-82-7) is the derivative of the amino acid methionine formed by addition of... percent L- and DL-methionine (expressed as the free amino acid) by weight of the total protein of the...) The amounts of additive and each amino acid contained in any mixture. (3) Adequate directions for...

  12. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  13. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Acetyl-L-methionine (Chemical Abstracts Service Registry No. 65-82-7) is the derivative of the amino acid... provide a total of 3.1 percent L- and DL-methionine (expressed as the free amino acid) by weight of the... contained therein. (2) The amounts of additive and each amino acid contained in any mixture. (3)...

  14. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... amino acid methionine formed by addition of an acetyl group to the alpha-amino group of methionine. It... amino acid) by weight of the total protein of the finished food, including the amount naturally present... of the additive contained therein. (2) The amounts of additive and each amino acid contained in...

  15. Effect of peroxides on [3H]D-aspartate release from bovine isolated retinae.

    PubMed

    LeDay, Angela M; Awe, Sunday O; Kulkarni, Kaustubh; Harris, Lydia C; Opere, Catherine; Dash, Alekha; Ohia, Sunny E

    2004-04-01

    In the present study, we investigated the effect of naturally occurring and synthetic peroxides on K+-depolarization-evoked release of [3H]D-aspartate from bovine isolated retinae. Furthermore, effect of peroxides on endogenous glutamate concentrations were measured by HPLC in bovine neural retinae and vitreous humor of eyes treated with hydrogen peroxide (H2O2) ex vivo. Both naturally occurring H2O2 (1-100 microM) and synthetic (cumene hydroperoxide, cuOOH; 1-100 microM) peroxides caused a concentration-dependent inhibition of K+-evoked [3H]D-aspartate release without affecting basal tritium efflux. The antioxidant, trolox (2 mM) prevented the inhibition of evoked [3H]D-aspartate overflow elicited by both H2O2 (30 microM) and cuOOH (10 microM). Inhibition of catalase by 3-amino-triazole (3- AT 100 mM) enhanced an inhibitory effect of a low concentration of H2O2 (1 microM) but antagonized the effect of H2O2 (30 microM) on K+-induced [3H]D-aspartate release. In ex vivo experiments, exogenously applied H2O2 (1-100 microM) also caused a concentration-related decrease in glutamate levels in the bovine retina. We conclude that peroxides can inhibit K+-evoked release of [3H]D-aspartate and also decrease endogenous glutamate concentrations in the bovine retina.

  16. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development1[OPEN

    PubMed Central

    Gao, Hui; Zhang, Yinghui; Wang, Wanlei; Zhao, Keke; Liu, Chunmei; Bai, Lin; Li, Rui

    2017-01-01

    Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39. Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39. A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis. PMID:27872247

  17. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    PubMed

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  18. Reversible receptor methylation is essential for normal chemotaxis of Escherichia coli in gradients of aspartic acid.

    PubMed Central

    Weis, R M; Koshland, D E

    1988-01-01

    The chemotaxis of wild-type cells of Escherichia coli and double mutants lacking the methyltransferase and the methylesterase activities of the receptor modification system has been compared in spatial gradients of aspartic acid. Previous studies showing that a chemotactic response can be observed for the mutant raised questions about the role of methylation in the bacterial memory. To clarify the role of methylation, the redistribution of bacteria in stabilized defined gradients of aspartic acid was monitored by light scattering. There was no redistribution of the mutant cells in nonsaturating gradients of aspartic acid, but over the same range these mutant bacteria were observed to respond and to adapt during tethering experiments. In large saturating gradients of aspartate, slight movement of the mutant up the gradient was observed. These results show that dynamic receptor methylation is required for the chemotactic response to gentle gradients of aspartic acid and that methylation resets to zero and is part of the normal wild-type memory. There are certain gradients, however, in which the methylation-deficient mutants show chemotactic ability, thus explaining the apparent anomaly. Images PMID:2829179

  19. Efficient aspartic acid production by a psychrophile-based simple biocatalyst.

    PubMed

    Tajima, Takahisa; Hamada, Mai; Nakashimada, Yutaka; Kato, Junichi

    2015-10-01

    We previously constructed a Psychrophile-based Simple bioCatalyst (PSCat) reaction system, in which psychrophilic metabolic enzymes are inactivated by heat treatment, and used it here to study the conversion of aspartic acid from fumaric acid mediated by the activity of aspartate ammonia-lyase (aspartase). In Escherichia coli, the biosynthesis of aspartic acid competes with that of L-malic acid produced from fumaric acid by fumarase. In this study, E. coli aspartase was expressed in psychrophilic Shewanella livingstonensis Ac10 heat treated at 50 °C for 15 min. The resultant PSCat could convert fumaric acid to aspartic acid without the formation of L-malic acid because of heat inactivation of psychrophilic fumarase activity. Furthermore, alginate-immobilized PSCat produced high yields of aspartic acid and could be re-used nine times. The results of our study suggest that PSCat can be applied in biotechnological production as a new approach to increase the yield of target compounds.

  20. Washout of tritium from 3R-3(/sup 3/H)-L-aspartate in the aspartase reaction

    SciTech Connect

    Katz, B.M.; Cook, P.F.

    1987-05-01

    Bacterial aspartase catalyzes the reversible conversion of L-aspartate to fumarate and ammonia. Recent studies that made use of deuterium and /sup 15/N isotope effects suggested a carbanion intermediate mechanism in which C-N bond cleavage is rate determining. This could result in removal of a proton from the 3R position of aspartate at a rate of faster than the elimination of ammonia. 3R-3(/sup 3/H)-Aspartate was prepared enzymatically using aspartase from fumarate, ammonia and /sup 3/H/sub 2/O and aspartate isolated via chromatography on Dowex 50W x 8 at pH 1, eluting with 2N pyridine. The rate of /sup 3/H washout from this aspartate was then measured as a function of aspartate concentration and compared to the rate of production of fumarate. Tritium does washout of aspartate at a rate faster than fumarate is formed but the proton is apparently not rapidly equilibrated with solvent. The tritium washout experiments were supplemented using 3R-3(/sup 2/H)-aspartate prepared as above with /sup 2/H/sub 2/O replacing /sup 3/H/sub 2/O and monitoring the appearance of 3R-3(/sup 1/H)-aspartate via /sup 1/H-NMR. Results confirm the tritium washout results. Data are discussed in terms of the carbanion mechanism.

  1. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    NASA Astrophysics Data System (ADS)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  2. Attractant Signaling by an Aspartate Chemoreceptor Dimer with a Single Cytoplasmic Domain

    NASA Astrophysics Data System (ADS)

    Gardina, Paul J.; Manson, Michael D.

    1996-10-01

    Signal transduction across cell membranes often involves interactions among identical receptor subunits, but the contribution of individual subunits is not well understood. The chemoreceptors of enteric bacteria mediate attractant responses by interrupting a phosphotransfer circuit initiated at receptor complexes with the protein kinase CheA. The aspartate receptor (Tar) is a homodimer, and oligomerized cytoplasmic domains stimulate CheA activity much more than monomers do in vitro. Intragenic complementation was used to show in Escherichia coli that heterodimers containing one full-length and one truncated Tar subunit mediated responses to aspartate in the presence of full-length Tar homodimers that could not bind aspartate. Thus, a Tar dimer containing only one cytoplasmic domain can initiate an attractant (inhibitory) signal, although it may not be able to stimulate kinase activity of CheA.

  3. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease

    PubMed Central

    Li, Mi; Gustchina, Alla; Cruz, Rui; Simões, Marisa; Curto, Pedro; Martinez, Juan; Faro, Carlos; Simões, Isaura; Wlodawer, Alexander

    2015-01-01

    The crystal structures of two constructs of RC1339/APRc from Rickettsia conorii, consisting of either residues 105–231 or 110–231 followed by a His tag, have been determined in three different crystal forms. As predicted, the fold of a monomer of APRc resembles one-half of the mandatory homodimer of retroviral pepsin-like aspartic proteases (retropepsins), but the quaternary structure of the dimer of APRc differs from that of the canonical retropepsins. The observed dimer is most likely an artifact of the expression and/or crystallization conditions since it cannot support the previously reported enzymatic activity of this bacterial aspartic protease. However, the fold of the core of each monomer is very closely related to the fold of retropepsins from a variety of retroviruses and to a single domain of pepsin-like eukaryotic enzymes, and may represent a putative common ancestor of monomeric and dimeric aspartic proteases. PMID:26457434

  4. N-phosphonacetyl-L-isoasparagine a Potent and Specific Inhibitor of E. coli Aspartate Transcarbamoylase†

    PubMed Central

    Eldo, Joby; Cardia, James P.; O’Day, Elizabeth M.; Xia, Jiarong; Tsurata, Hiro; Kantrowitz, Evan R.

    2008-01-01

    The synthesis of a new inhibitor, N-phosphonacetyl-L-isoasparagine (PALI), of Escherichia coli aspartate transcarbamoylase (ATCase) is reported, as well as structural studies of the enzyme·PALI complex. PALI was synthesized in 7 steps from β-benzyl L-aspartate. The KD of PALI was 2 μM. Kinetics and small-angle X-ray scattering experiments showed that PALI can induce the cooperative transition of ATCase from the T to the R state. The X-ray structure of the enzyme·PALI complex showed 22 hydrogen bonding interactions between the enzyme and PALI. The kinetic characterization and crystal structure of the ATCase·PALI complex also provides detailed information regarding the importance of the α-carboxylate for the binding of the substrate aspartate. PMID:17004708

  5. Intramitochondrial localization of alanine aminotransferase in rat-liver mitochondria: comparison with glutaminase and aspartate aminotransferase.

    PubMed

    Masola, B; Devlin, T M

    1995-12-01

    The removal of the outer mitochondrial membrane and hence of constituents of the intermembrane space in rat-liver mitochondria using digitonin showed that phosphate-dependent glutaminase, alanine and aspartate aminotransferase were localized in the mitoplasts. Further fractionation of mitoplasts following their sonication resulted in 90% of glutaminase, 98% of alanine aminotransferase and 48% of aspartate aminotransferase being recovered in the soluble fraction while the remainder of each enzyme was recovered in the sonicated vesicles fraction. These results indicated that glutaminase and alanine aminotransferase were soluble matrix enzymes, the little of each enzyme recovered in the sonicated vesicles fraction being probably due to entrapment in the vesicles. Aspartate aminotransferase had dual localization, in the inner membrane and matrix with the high specific activity in sonicated vesicles confirming its association with the membrane. Activation experiments suggested that the membrane-bound enzyme was localized on the inner side of the inner mitochondrial membrane.

  6. Aspartate embedding depth affects pHLIP's insertion pKa.

    PubMed

    Fendos, Justin; Barrera, Francisco N; Engelman, Donald M

    2013-07-09

    We have used the pHlow insertion peptide (pHLIP) family to study the role of aspartate embedding depth in pH-dependent transmembrane peptide insertion. pHLIP binds to the surface of a lipid bilayer as a largely unstructured monomer at neutral pH. When the pH is lowered, pHLIP inserts spontaneously across the membrane as a spanning α-helix. pHLIP insertion is reversible when the pH is adjusted back to a neutral value. One of the critical events facilitating pHLIP insertion is the protonation of aspartates in the spanning domain of the peptide: the negative side chains of these residues convert to uncharged, polar forms, facilitating insertion by altering the hydrophobicity of the spanning domain. To examine this protonation mechanism further, we created pHLIP sequence variants in which the two spanning aspartates (D14 and D25) were moved up or down in the sequence. We hypothesized that the aspartate depth in the inserted state would directly affect the proton affinity of the acidic side chains, altering the pKa of pH-dependent insertion. To this end, we also mutated the arginine at position 11 to determine whether arginine snorkeling modulates the insertion pKa by affecting the aspartate depth. Our results indicate that both types of mutations change the insertion pKa, supporting the idea that the aspartate depth is a participating parameter in determining the pH dependence. We also show that pHLIP's resistance to aggregation can be altered with our mutations, identifying a new criterion for improving the performance of pHLIP in vivo when targeting acidic disease tissues such as cancer and inflammation.

  7. Aspartate-bond isomerization affects the major conformations of synthetic peptides.

    PubMed

    Szendrei, G I; Fabian, H; Mantsch, H H; Lovas, S; Nyéki, O; Schön, I; Otvos, L

    1994-12-15

    The aspartic acid bond changes to an beta-aspartate bond frequently as a side-reaction during peptide synthesis and often as a post-translational modification of proteins. The formation of beta-asparate bonds is reported to play a major role not only in protein metabolism, activation and deactivation, but also in pathological processes such as deposition of the neuritic plaques of Alzheimer's disease. Recently, we reported how conformational changes following the aspartic-acid-bond isomerization may help the selective aggregation and retention of the amyloid beta peptide in affected brains (Fabian et al., 1994). In the current study we used circular dichroism, Fourier-transform infrared spectroscopy, and molecular modeling to characterize the general effect of the beta-aspartate-bond formation on the conformation of five sets of synthetic model peptides. Each of the non-modified, parent peptides has one of the major secondary structures as the dominant spectroscopically determined conformation: a type I beta turn, a type II beta turn, short segments of alpha or 3(10) helices, or extended beta strands. We found that both types of turn structures are stabilized by the aspartic acid-bond isomerization. The isomerization at a terminal position did not affect the helix propensity, but placing it in mid-chain broke both the helix and the beta-pleated sheet with the formation of reverse turns. The alteration of the geometry of the lowest energy reverse turn was also supported by molecular dynamics calculations. The tendency of the aspartic acid-bond isomerization to stabilize turns is very similar to the effect of incorporating sugars into synthetic peptides and suggests a common feature of these post-translational modifications in defining the secondary structure of protein fragments.

  8. Crystallization and preliminary X-ray diffraction analysis of the periplasmic domain of the Escherichia coli aspartate receptor Tar and its complex with aspartate

    SciTech Connect

    Mise, Takeshi; Matsunami, Hideyuki; Samatey, Fadel A.; Maruyama, Ichiro N.

    2014-08-27

    The periplasmic domain of the E. coli aspartate receptor Tar was cloned, expressed, purified and crystallized with and without bound ligand. The crystals obtained diffracted to resolutions of 1.58 and 1.95 Å, respectively. The cell-surface receptor Tar mediates bacterial chemotaxis toward an attractant, aspartate (Asp), and away from a repellent, Ni{sup 2+}. To understand the molecular mechanisms underlying the induction of Tar activity by its ligands, the Escherichia coli Tar periplasmic domain with and without bound aspartate (Asp-Tar and apo-Tar, respectively) were each crystallized in two different forms. Using ammonium sulfate as a precipitant, crystals of apo-Tar1 and Asp-Tar1 were grown and diffracted to resolutions of 2.10 and 2.40 Å, respectively. Alternatively, using sodium chloride as a precipitant, crystals of apo-Tar2 and Asp-Tar2 were grown and diffracted to resolutions of 1.95 and 1.58 Å, respectively. Crystals of apo-Tar1 and Asp-Tar1 adopted space group P4{sub 1}2{sub 1}2, while those of apo-Tar2 and Asp-Tar2 adopted space groups P2{sub 1}2{sub 1}2{sub 1} and C2, respectively.

  9. Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states

    NASA Astrophysics Data System (ADS)

    Reidelbach, Marco; Betz, Fridtjof; Mäusle, Raquel Maya; Imhof, Petra

    2016-08-01

    Proton transfer reactions are complex transitions due to the size and flexibility of the hydrogen-bonded networks along which the protons may ;hop;. The combination of molecular dynamics based sampling of water positions and orientations with direct sampling of proton positions is an efficient way to capture the interplay of these degrees of freedom in a transition network. The energetically most favourable pathway in the proton transfer network computed for an aspartate-water cluster shows the pre-orientation of water molecules and aspartate side chains to be a pre-requisite for the subsequent concerted proton transfer to the product state.