Exploring the functional side of the Ocean Sampling Day metagenomes
NASA Astrophysics Data System (ADS)
Antonio, F. G.; Kottmann, R.; Wallom, D.; Glöckner, F. O.
2016-02-01
The Ocean Sampling Day (OSD) is a simultaneous, collaborative, standardized, and global mega-sequencing campaign to analyze marine microbial community composition and functional traits. 150 metagenomes were sequenced from the first OSD in June 2014 including a rich set of environmental and oceanographic measurements. Unlike other ocean mega-surveys such as Global Ocean Sampling (GOS) or the TARA expedition that mostly sampled open ocean waters most of the OSD samples are from coastal sampling sites, an area not previously well studied in this regard. The result is that OSD adds more than three million new genes to the recently published Ocean Microbial-Reference Gene Catalog (Sunawaga et al., 2015). This allows us to significantly increase our knowledge of the ocean microbiome, identify hot-spots of novelty in terms of function and investigate the impact of human activities on oceans coastal areas where there is the largest interaction between dense human populations and the marine world. Additionally, these cumulative samples, related in time, space and environmental parameters, are providing insights into fundamental rules describing microbial diversity and function and contribute to the blue economy through the identification of novel ocean-derived biotechnologies. References: Sunagawa, Coelho, Chaffron, et al. (2015, May). Structure and function of the global ocean microbiome. Science, 348(6237), 126135.
Sampling Biases in MODIS and SeaWiFS Ocean Chlorophyll Data
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.
2007-01-01
Although modem ocean color sensors, such as MODIS and SeaWiFS are often considered global missions, in reality it takes many days, even months, to sample the ocean surface enough to provide complete global coverage. The irregular temporal sampling of ocean color sensors can produce biases in monthly and annual mean chlorophyll estimates. We quantified the biases due to sampling using data assimilation to create a "truth field", which we then sub-sampled using the observational patterns of MODIS and SeaWiFS. Monthly and annual mean chlorophyll estimates from these sub-sampled, incomplete daily fields were constructed and compared to monthly and annual means from the complete daily fields of the assimilation model, at a spatial resolution of 1.25deg longitude by 0.67deg latitude. The results showed that global annual mean biases were positive, reaching nearly 8% (MODIS) and >5% (SeaWiFS). For perspective the maximum interannual variability in the SeaWiFS chlorophyll record was about 3%. Annual mean sampling biases were low (<3%) in the midlatitudes (between -40deg and 40deg). Low interannual variability in the global annual mean sampling biases suggested that global scale trend analyses were valid. High latitude biases were much higher than the global annual means, up to 20% as a basin annual mean, and over 80% in some months. This was the result of the high solar zenith angle exclusion in the processing algorithms. Only data where the solar angle is <75deg are permitted, in contrast to the assimilation which samples regularly over the entire area and month. High solar zenith angles do not facilitate phytoplankton photosynthesis and consequently low chlorophyll concentrations occurring here are missed by the data sets. Ocean color sensors selectively sample in locations and times of favorable phytoplankton growth, producing overestimates of chlorophyll. The biases derived from lack of sampling in the high latitudes varied monthly, leading to artifacts in the apparent seasonal cycle from ocean color sensors. A false secondary peak in chlorophyll occurred in May-August, which resulted from lack of sampling in the Antarctic.
Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses.
Roux, Simon; Brum, Jennifer R; Dutilh, Bas E; Sunagawa, Shinichi; Duhaime, Melissa B; Loy, Alexander; Poulos, Bonnie T; Solonenko, Natalie; Lara, Elena; Poulain, Julie; Pesant, Stéphane; Kandels-Lewis, Stefanie; Dimier, Céline; Picheral, Marc; Searson, Sarah; Cruaud, Corinne; Alberti, Adriana; Duarte, Carlos M; Gasol, Josep M; Vaqué, Dolors; Bork, Peer; Acinas, Silvia G; Wincker, Patrick; Sullivan, Matthew B
2016-09-29
Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting 'global ocean virome' dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they act as key players in nutrient cycling and trophic networks.
Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses
NASA Astrophysics Data System (ADS)
2016-09-01
Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting ‘global ocean virome’ dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where they act as key players in nutrient cycling and trophic networks.
The Ocean Gene Atlas: exploring the biogeography of plankton genes online.
Villar, Emilie; Vannier, Thomas; Vernette, Caroline; Lescot, Magali; Cuenca, Miguelangel; Alexandre, Aurélien; Bachelerie, Paul; Rosnet, Thomas; Pelletier, Eric; Sunagawa, Shinichi; Hingamp, Pascal
2018-05-21
The Ocean Gene Atlas is a web service to explore the biogeography of genes from marine planktonic organisms. It allows users to query protein or nucleotide sequences against global ocean reference gene catalogs. With just one click, the abundance and location of target sequences are visualized on world maps as well as their taxonomic distribution. Interactive results panels allow for adjusting cutoffs for alignment quality and displaying the abundances of genes in the context of environmental features (temperature, nutrients, etc.) measured at the time of sampling. The ease of use enables non-bioinformaticians to explore quantitative and contextualized information on genes of interest in the global ocean ecosystem. Currently the Ocean Gene Atlas is deployed with (i) the Ocean Microbial Reference Gene Catalog (OM-RGC) comprising 40 million non-redundant mostly prokaryotic gene sequences associated with both Tara Oceans and Global Ocean Sampling (GOS) gene abundances and (ii) the Marine Atlas of Tara Ocean Unigenes (MATOU) composed of >116 million eukaryote unigenes. Additional datasets will be added upon availability of further marine environmental datasets that provide the required complement of sequence assemblies, raw reads and contextual environmental parameters. Ocean Gene Atlas is a freely-available web service at: http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.
NASA Technical Reports Server (NTRS)
Hicks, K.; Steele, W.
1974-01-01
The SEASAT program will provide scientific and economic benefits from global remote sensing of the ocean's dynamic and physical characteristics. The program as presently envisioned consists of: (1) SEASAT A; (2) SEASAT B; and (3) Operational SEASAT. This economic assessment was to identify, rationalize, quantify and validate the economic benefits evolving from SEASAT. These benefits will arise from improvements in the operating efficiency of systems that interface with the ocean. SEASAT data will be combined with data from other ocean and atmospheric sampling systems and then processed through analytical models of the interaction between oceans and atmosphere to yield accurate global measurements and global long range forecasts of ocean conditions and weather.
Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B
2013-09-01
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51-92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.
Insights into global diatom distribution and diversity in the world's ocean.
Malviya, Shruti; Scalco, Eleonora; Audic, Stéphane; Vincent, Flora; Veluchamy, Alaguraj; Poulain, Julie; Wincker, Patrick; Iudicone, Daniele; de Vargas, Colomban; Bittner, Lucie; Zingone, Adriana; Bowler, Chris
2016-03-15
Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically important groups of phytoplankton. They are considered to be particularly important in nutrient-rich coastal ecosystems and at high latitudes, but considerably less so in the oligotrophic open ocean. The Tara Oceans circumnavigation collected samples from a wide range of oceanic regions using a standardized sampling procedure. Here, a total of ∼12 million diatom V9-18S ribosomal DNA (rDNA) ribotypes, derived from 293 size-fractionated plankton communities collected at 46 sampling sites across the global ocean euphotic zone, have been analyzed to explore diatom global diversity and community composition. We provide a new estimate of diversity of marine planktonic diatoms at 4,748 operational taxonomic units (OTUs). Based on the total assigned ribotypes, Chaetoceros was the most abundant and diverse genus, followed by Fragilariopsis, Thalassiosira, and Corethron We found only a few cosmopolitan ribotypes displaying an even distribution across stations and high abundance, many of which could not be assigned with confidence to any known genus. Three distinct communities from South Pacific, Mediterranean, and Southern Ocean waters were identified that share a substantial percentage of ribotypes within them. Sudden drops in diversity were observed at Cape Agulhas, which separates the Indian and Atlantic Oceans, and across the Drake Passage between the Atlantic and Southern Oceans, indicating the importance of these ocean circulation choke points in constraining diatom distribution and diversity. We also observed high diatom diversity in the open ocean, suggesting that diatoms may be more relevant in these oceanic systems than generally considered.
Insights into global diatom distribution and diversity in the world’s ocean
Malviya, Shruti; Scalco, Eleonora; Audic, Stéphane; Vincent, Flora; Veluchamy, Alaguraj; Poulain, Julie; Wincker, Patrick; Iudicone, Daniele; de Vargas, Colomban; Bittner, Lucie; Zingone, Adriana; Bowler, Chris
2016-01-01
Diatoms (Bacillariophyta) constitute one of the most diverse and ecologically important groups of phytoplankton. They are considered to be particularly important in nutrient-rich coastal ecosystems and at high latitudes, but considerably less so in the oligotrophic open ocean. The Tara Oceans circumnavigation collected samples from a wide range of oceanic regions using a standardized sampling procedure. Here, a total of ∼12 million diatom V9-18S ribosomal DNA (rDNA) ribotypes, derived from 293 size-fractionated plankton communities collected at 46 sampling sites across the global ocean euphotic zone, have been analyzed to explore diatom global diversity and community composition. We provide a new estimate of diversity of marine planktonic diatoms at 4,748 operational taxonomic units (OTUs). Based on the total assigned ribotypes, Chaetoceros was the most abundant and diverse genus, followed by Fragilariopsis, Thalassiosira, and Corethron. We found only a few cosmopolitan ribotypes displaying an even distribution across stations and high abundance, many of which could not be assigned with confidence to any known genus. Three distinct communities from South Pacific, Mediterranean, and Southern Ocean waters were identified that share a substantial percentage of ribotypes within them. Sudden drops in diversity were observed at Cape Agulhas, which separates the Indian and Atlantic Oceans, and across the Drake Passage between the Atlantic and Southern Oceans, indicating the importance of these ocean circulation choke points in constraining diatom distribution and diversity. We also observed high diatom diversity in the open ocean, suggesting that diatoms may be more relevant in these oceanic systems than generally considered. PMID:26929361
Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B
2013-01-01
Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51–92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research. PMID:23635867
NASA Astrophysics Data System (ADS)
Shimoda, G.; Kogiso, T.
2017-12-01
Chemical composition of altered oceanic crust is one of important constraints to delineate chemical heterogeneity of the mantle. Accordingly, many researchers have been studied to determine bulk chemical composition of altered oceanic crust mainly based on chemical compositions of old oceanic crusts at Site 801 and Site 417/418, and young crust at Site 504 (e.g., Staudigel et al., 1996; Bach et al. 2003; Kuo et al., 2016). Their careful estimation provided reliable bulk chemical compositions of these Sites and revealed common geochemical feature of alteration. To assess effect of recycling of altered oceanic crust on chemical evolution of the mantle, it might be meaningful to discuss whether the reported chemical compositions of altered oceanic crusts can represent chemical composition of globally subducted oceanic crusts. Reported chemical compositions of fresh glass or less altered samples from Site 801, 417/418 and 504 were highly depleted compared to that of global MORB reported by Gale et al. (2013), suggesting that there might be sampling bias. Hence, it could be important to consider chemical difference between oceanic crusts of these three Sites and global MORB to discuss effect of recycling of oceanic crust on isotopic heterogeneity of the mantle. It has been suggested that one of controlling factors of chemical variation of oceanic crust is crustal spreading rate because different degree of partial melting affects chemical composition of magmas produced at a mid-ocean ridge. Crustal spreading rate could also affect intensity of alteration. Namely, oceanic crusts produced at slow-spreading ridges may prone to be altered due to existence of larger displacement faults compared to fast spreading ridges which have relatively smooth topography. Thus, it might be significant to evaluate isotopic evolution of oceanic crusts those were produced at different spreading rates. In this presentation, we will provide a possible chemical variation of altered oceanic crusts based on reported bulk chemical compositions of altered oceanic crusts and global data sets of MORB. On the basis of the chemical variation, we will discuss isotopic evolution of altered oceanic crusts to delineate isotopic variation of recycled oceanic crusts.
NASA Astrophysics Data System (ADS)
Garry, Freya; McDonagh, Elaine; Blaker, Adam; Roberts, Chris; Desbruyères, Damien; King, Brian
2017-04-01
Estimates of heat content change in the deep oceans (below 2000 m) over the last thirty years are obtained from temperature measurements made by hydrographic survey ships. Cruises occupy the same tracks across an ocean basin approximately every 5+ years. Measurements may not be sufficiently frequent in time or space to allow accurate evaluation of total ocean heat content (OHC) and its rate of change. It is widely thought that additional deep ocean sampling will also aid understanding of the mechanisms for OHC change on annual to decadal timescales, including how OHC varies regionally under natural and anthropogenically forced climate change. Here a 0.25˚ ocean model is used to investigate the magnitude of uncertainties and biases that exist in estimates of deep ocean temperature change from hydrographic sections due to their infrequent timing and sparse spatial distribution during 1990 - 2010. Biases in the observational data may be due to lack of spatial coverage (not enough sections covering the basin), lack of data between occupations (typically 5-10 years apart) and due to occupations not closely spanning the time period of interest. Between 1990 - 2010, the modelled biases globally are comparatively small in the abyssal ocean below 3500 m although regionally certain biases in heat flux into the 4000 - 6000 m layer can be up to 0.05 Wm-2. Biases in the heat flux into the deep 2000 - 4000 m layer due to either temporal or spatial sampling uncertainties are typically much larger and can be over 0.1 Wm-2 across an ocean. Overall, 82% of the warming trend below 2000 m is captured by observational-style sampling in the model. However, at 2500 m (too deep for additional temperature information to be inferred from upper ocean Argo) less than two thirds of the magnitude of the global warming trend is obtained, and regionally large biases exist in the Atlantic, Southern and Indian Oceans, highlighting the need for widespread improved deep ocean temperature sampling. In addition to bias due to infrequent sampling, moving the timings of occupations by a few months generates relatively large uncertainty due to intra-annual variability in deep ocean model temperature, further strengthening the case for high temporal frequency observations in the deep ocean (as could be achieved using deep ocean autonomous float technologies). Biases due to different uncertainties can have opposing signs and differ in relative importance both regionally and with depth revealing the importance of reducing all uncertainties (both spatial and temporal) simultaneously in future deep ocean observing design.
Ocean plankton. Structure and function of the global ocean microbiome.
Sunagawa, Shinichi; Coelho, Luis Pedro; Chaffron, Samuel; Kultima, Jens Roat; Labadie, Karine; Salazar, Guillem; Djahanschiri, Bardya; Zeller, Georg; Mende, Daniel R; Alberti, Adriana; Cornejo-Castillo, Francisco M; Costea, Paul I; Cruaud, Corinne; d'Ovidio, Francesco; Engelen, Stefan; Ferrera, Isabel; Gasol, Josep M; Guidi, Lionel; Hildebrand, Falk; Kokoszka, Florian; Lepoivre, Cyrille; Lima-Mendez, Gipsi; Poulain, Julie; Poulos, Bonnie T; Royo-Llonch, Marta; Sarmento, Hugo; Vieira-Silva, Sara; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Bowler, Chris; de Vargas, Colomban; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric; Raes, Jeroen; Acinas, Silvia G; Bork, Peer
2015-05-22
Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems. Copyright © 2015, American Association for the Advancement of Science.
Shedding light on the Global Ocean microbiome with algorithms and data collection
NASA Astrophysics Data System (ADS)
Lauro, F.; Ostrowski, M.; Chénard, C.; Acerbi, E.; Paulsen, I.; Jensen, R.
2016-02-01
In the Global Oceans, the marine microbiome plays a critical role in biogeochemical cycling of nutrients, but surveying marine microbial communities requires ship time for sample collection, economically constraining the number of samples collected. An integrative understanding of the microbiome's activity and performance requires the collection of high-density data, both temporally and spatially in a cost-effective way. We have overcome this bottleneck by crowdsourcing the data collection to vessels of opportunity, including bluewater sailing yachts. Sailors know the oceans, and experience first-hand the declines in ocean productivity and the effects of pollution and climate change. Moreover, simply the ability to sample a microbial community during anomalous or inclement weather conditions is a major advance in sampling strategy. Our approach inherently incorporates the benefit of outreach and participation of people in scientific research, gaining positive media attention for sailors, scientists and concerned citizens alike. We have tested the basic methods during a 2013 Indian Ocean Concept Cruise, from Cape Town to Singapore, performing experimental work and reaching sampling locations inaccessible to traditional Oceanographic Vessels. At the same time we developed a small, yacht-adapted automated sampling device that takes a variety of biological and chemical measurements. In 2015 our first beta-cruisers sampled the Pacific Ocean in the first ever citizen-oceanography transect at high and low latitudes in both hemispheres. The collected samples were characterized with next-gen sequencing technology and analysed with a combination of novel algorithmic approaches. With big data management, machine learning algorithms and agent-based models we show that it is possible to deconvolute the complexity of the Ocean Microbiome for the scientific management of fisheries, marine protected areas and preservation of the oceans and seas for generations to come.
NASA Astrophysics Data System (ADS)
Barrows, A.; Petersen, C.
2017-12-01
Plastic is a major pollutant throughout the world. The majority of the 322 million tons produced annually is used for single-use packaging. What makes plastic an attractive packaging material: cheap, light-weight and durable are also the features that help make it a common and persistent pollutant. There is a growing body of research on microplastic, particles less than 5 mm in size. Microfibers are the most common microplastic in the marine environment. Global estimates of marine microplastic surface concentrations are based on relatively small sample sizes when compared to the vast geographic scale of the ocean. Microplastic residence time and movement along the coast and sea surface outside of the gyres is still not well researched. This five-year project utilized global citizen scientists to collect 1,628 1-liter surface grab samples in every major ocean. The Artic and Southern oceans contained highest average of particles per liter of surface water. Open ocean samples (further than 12 nm from land, n = 686) contained a higher particle average (17 pieces L-1) than coastal samples (n = 723) 6 pieces L-1. Particles were predominantly 100 µm- 1.5 mm in length (77%), smaller than what has been captured in the majority of surface studies. Utilization of citizen scientists to collect data both in fairly accessible regions of the world as well as from areas hard to reach and therefore under sampled, provides us with a wider perspective of global microplastics occurrence. Our findings confirm global microplastic accumulation zone model predictions. The open ocean and poles have sequestered and trapped plastic for over half a century, and show that not only plastics, but anthropogenic fibers are polluting the environment. Continuing to fill knowledge gaps on microplastic shape, size and color in remote ocean areas will drive more accurate oceanographic models of plastic accumulation zones. Incorporation of smaller-sized particles in these models, which has previously been lacking, will help to better understand potential fate and transformation microplastic and anthropogenic particles in the marine environment.
NASA Technical Reports Server (NTRS)
Goyet, Catherine; Davis, Daniel; Peltzer, Edward T.; Brewer, Peter G.
1995-01-01
Large-scale ocean observing programs such as the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE) today, must face the problem of designing an adequate sampling strategy. For ocean chemical variables, the goals and observing technologies are quite different from ocean physical variables (temperature, salinity, pressure). We have recently acquired data on the ocean CO2 properties on WOCE cruises P16c and P17c that are sufficiently dense to test for sampling redundancy. We use linear and quadratic interpolation methods on the sampled field to investigate what is the minimum number of samples required to define the deep ocean total inorganic carbon (TCO2) field within the limits of experimental accuracy (+/- 4 micromol/kg). Within the limits of current measurements, these lines were oversampled in the deep ocean. Should the precision of the measurement be improved, then a denser sampling pattern may be desirable in the future. This approach rationalizes the efficient use of resources for field work and for estimating gridded (TCO2) fields needed to constrain geochemical models.
The ocean sampling day consortium.
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; Schnetzer, Julia; Kostadinov, Ivaylo; Lehmann, Katja; Fernandez-Guerra, Antonio; Jeanthon, Christian; Rahav, Eyal; Ullrich, Matthias; Wichels, Antje; Gerdts, Gunnar; Polymenakou, Paraskevi; Kotoulas, Giorgos; Siam, Rania; Abdallah, Rehab Z; Sonnenschein, Eva C; Cariou, Thierry; O'Gara, Fergal; Jackson, Stephen; Orlic, Sandi; Steinke, Michael; Busch, Julia; Duarte, Bernardo; Caçador, Isabel; Canning-Clode, João; Bobrova, Oleksandra; Marteinsson, Viggo; Reynisson, Eyjolfur; Loureiro, Clara Magalhães; Luna, Gian Marco; Quero, Grazia Marina; Löscher, Carolin R; Kremp, Anke; DeLorenzo, Marie E; Øvreås, Lise; Tolman, Jennifer; LaRoche, Julie; Penna, Antonella; Frischer, Marc; Davis, Timothy; Katherine, Barker; Meyer, Christopher P; Ramos, Sandra; Magalhães, Catarina; Jude-Lemeilleur, Florence; Aguirre-Macedo, Ma Leopoldina; Wang, Shiao; Poulton, Nicole; Jones, Scott; Collin, Rachel; Fuhrman, Jed A; Conan, Pascal; Alonso, Cecilia; Stambler, Noga; Goodwin, Kelly; Yakimov, Michael M; Baltar, Federico; Bodrossy, Levente; Van De Kamp, Jodie; Frampton, Dion Mf; Ostrowski, Martin; Van Ruth, Paul; Malthouse, Paul; Claus, Simon; Deneudt, Klaas; Mortelmans, Jonas; Pitois, Sophie; Wallom, David; Salter, Ian; Costa, Rodrigo; Schroeder, Declan C; Kandil, Mahrous M; Amaral, Valentina; Biancalana, Florencia; Santana, Rafael; Pedrotti, Maria Luiza; Yoshida, Takashi; Ogata, Hiroyuki; Ingleton, Tim; Munnik, Kate; Rodriguez-Ezpeleta, Naiara; Berteaux-Lecellier, Veronique; Wecker, Patricia; Cancio, Ibon; Vaulot, Daniel; Bienhold, Christina; Ghazal, Hassan; Chaouni, Bouchra; Essayeh, Soumya; Ettamimi, Sara; Zaid, El Houcine; Boukhatem, Noureddine; Bouali, Abderrahim; Chahboune, Rajaa; Barrijal, Said; Timinouni, Mohammed; El Otmani, Fatima; Bennani, Mohamed; Mea, Marianna; Todorova, Nadezhda; Karamfilov, Ventzislav; Ten Hoopen, Petra; Cochrane, Guy; L'Haridon, Stephane; Bizsel, Kemal Can; Vezzi, Alessandro; Lauro, Federico M; Martin, Patrick; Jensen, Rachelle M; Hinks, Jamie; Gebbels, Susan; Rosselli, Riccardo; De Pascale, Fabio; Schiavon, Riccardo; Dos Santos, Antonina; Villar, Emilie; Pesant, Stéphane; Cataletto, Bruno; Malfatti, Francesca; Edirisinghe, Ranjith; Silveira, Jorge A Herrera; Barbier, Michele; Turk, Valentina; Tinta, Tinkara; Fuller, Wayne J; Salihoglu, Ilkay; Serakinci, Nedime; Ergoren, Mahmut Cerkez; Bresnan, Eileen; Iriberri, Juan; Nyhus, Paul Anders Fronth; Bente, Edvardsen; Karlsen, Hans Erik; Golyshin, Peter N; Gasol, Josep M; Moncheva, Snejana; Dzhembekova, Nina; Johnson, Zackary; Sinigalliano, Christopher David; Gidley, Maribeth Louise; Zingone, Adriana; Danovaro, Roberto; Tsiamis, George; Clark, Melody S; Costa, Ana Cristina; El Bour, Monia; Martins, Ana M; Collins, R Eric; Ducluzeau, Anne-Lise; Martinez, Jonathan; Costello, Mark J; Amaral-Zettler, Linda A; Gilbert, Jack A; Davies, Neil; Field, Dawn; Glöckner, Frank Oliver
2015-01-01
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
Savery, Laura C; Wise, Sandra S; Falank, Carolyne; Wise, James; Gianios, Christy; Douglas Thompson, W; Perkins, Christopher; Zheng, Tongzhang; Zhu, Cairong; Wise, John Pierce
2014-02-15
Lead (Pb) is an oceanic pollutant of global concern. Anthropogenic activities are increasing oceanic levels, but to an unknown extent. The sperm whale (Physeter macrocephalus) has a global distribution and high trophic level. The aim of this study was to establish a global baseline of oceanic Pb concentrations using free-ranging sperm whales as an indicator species. Skin biopsies (n=337) were collected during the voyage of the Odyssey (2000-2005) from 17 regions considering gender and age. Pb was detectable in 315 samples with a global mean of 1.6 ug/gww ranging from 0.1 to 129.6 ug/gww. Papua New Guinea, Bahamas and Australia had the highest regional mean with 6.1, 3.4, and 3.1 ug/gww, respectively. Pb concentrations were not significantly different between sex and age in males. This is the first global toxicological dataset for Pb in a marine mammal and confirms Pb is widely distributed with hotspots in some regions. Copyright © 2014. Published by Elsevier Ltd.
Gregg, Watson W; Rousseaux, Cécile S
2014-09-01
Quantifying change in ocean biology using satellites is a major scientific objective. We document trends globally for the period 1998-2012 by integrating three diverse methodologies: ocean color data from multiple satellites, bias correction methods based on in situ data, and data assimilation to provide a consistent and complete global representation free of sampling biases. The results indicated no significant trend in global pelagic ocean chlorophyll over the 15 year data record. These results were consistent with previous findings that were based on the first 6 years and first 10 years of the SeaWiFS mission. However, all of the Northern Hemisphere basins (north of 10° latitude), as well as the Equatorial Indian basin, exhibited significant declines in chlorophyll. Trend maps showed the local trends and their change in percent per year. These trend maps were compared with several other previous efforts using only a single sensor (SeaWiFS) and more limited time series, showing remarkable consistency. These results suggested the present effort provides a path forward to quantifying global ocean trends using multiple satellite missions, which is essential if we are to understand the state, variability, and possible changes in the global oceans over longer time scales.
The Ocean Sampling Day Consortium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo
In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less
The Ocean Sampling Day Consortium
Kopf, Anna; Bicak, Mesude; Kottmann, Renzo; ...
2015-06-19
In this study, Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and theirmore » embedded functional traits.« less
NASA Technical Reports Server (NTRS)
Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan
2014-01-01
To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant change in the global mean AOT, suggesting that sampling density is unlikely to limit the use of such instruments for climate applications at least on a global, monthly scale.
The geological record of ocean acidification.
Hönisch, Bärbel; Ridgwell, Andy; Schmidt, Daniela N; Thomas, Ellen; Gibbs, Samantha J; Sluijs, Appy; Zeebe, Richard; Kump, Lee; Martindale, Rowan C; Greene, Sarah E; Kiessling, Wolfgang; Ries, Justin; Zachos, James C; Royer, Dana L; Barker, Stephen; Marchitto, Thomas M; Moyer, Ryan; Pelejero, Carles; Ziveri, Patrizia; Foster, Gavin L; Williams, Branwen
2012-03-02
Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.
Gimmler, Anna; Korn, Ralf; de Vargas, Colomban; Audic, Stéphane; Stoeck, Thorsten
2016-01-01
Illumina reads of the SSU-rDNA-V9 region obtained from the circumglobal Tara Oceans expedition allow the investigation of protistan plankton diversity patterns on a global scale. We analyzed 6,137,350 V9-amplicons from ocean surface waters and the deep chlorophyll maximum, which were taxonomically assigned to the phylum Ciliophora. For open ocean samples global planktonic ciliate diversity is relatively low (ca. 1,300 observed and predicted ciliate OTUs). We found that 17% of all detected ciliate OTUs occurred in all oceanic regions under study. On average, local ciliate OTU richness represented 27% of the global ciliate OTU richness, indicating that a large proportion of ciliates is widely distributed. Yet, more than half of these OTUs shared <90% sequence similarity with reference sequences of described ciliates. While alpha-diversity measures (richness and exp(Shannon H)) are hardly affected by contemporary environmental conditions, species (OTU) turnover and community similarity (β-diversity) across taxonomic groups showed strong correlation to environmental parameters. Logistic regression models predicted significant correlations between the occurrence of specific ciliate genera and individual nutrients, the oceanic carbonate system and temperature. Planktonic ciliates displayed distinct vertical distributions relative to chlorophyll a. In contrast, the Tara Oceans dataset did not reveal any evidence that latitude is structuring ciliate communities. PMID:27633177
Persistent organic pollutants in the Atlantic and southern oceans and oceanic atmosphere.
Luek, Jenna L; Dickhut, Rebecca M; Cochran, Michele A; Falconer, Renee L; Kylin, Henrik
2017-04-01
Persistent organic pollutants (POPs) continue to cycle through the atmosphere and hydrosphere despite banned or severely restricted usages. Global scale analyses of POPs are challenging, but knowledge of the current distribution of these compounds is needed to understand the movement and long-term consequences of their global use. In the current study, air and seawater samples were collected Oct. 2007-Jan. 2008 aboard the Icebreaker Oden en route from Göteborg, Sweden to McMurdo Station, Antarctica. Both air and surface seawater samples consistently contained α-hexachlorocyclohexane (α-HCH), γ-HCH, hexachlorobenzene (HCB), α-Endosulfan, and polychlorinated biphenyls (PCBs). Sample concentrations for most POPs in air were higher in the northern hemisphere with the exception of HCB, which had high gas phase concentrations in the northern and southern latitudes and low concentrations near the equator. South Atlantic and Southern Ocean seawater had a high ratio of α-HCH to γ-HCH, indicating persisting levels from technical grade sources. The Atlantic and Southern Ocean continue to be net sinks for atmospheric α-, γ-HCH, and Endosulfan despite declining usage. Copyright © 2017 Elsevier B.V. All rights reserved.
[Review of estimation on oceanic primary productivity by using remote sensing methods.
Xu, Hong Yun; Zhou, Wei Feng; Ji, Shi Jian
2016-09-01
Accuracy estimation of oceanic primary productivity is of great significance in the assessment and management of fisheries resources, marine ecology systems, global change and other fields. The traditional measurement and estimation of oceanic primary productivity has to rely on in situ sample data by vessels. Satellite remote sensing has advantages of providing dynamic and eco-environmental parameters of ocean surface at large scale in real time. Thus, satellite remote sensing has increasingly become an important means for oceanic primary productivity estimation on large spatio-temporal scale. Combining with the development of ocean color sensors, the models to estimate the oceanic primary productivity by satellite remote sensing have been developed that could be mainly summarized as chlorophyll-based, carbon-based and phytoplankton absorption-based approach. The flexibility and complexity of the three kinds of models were presented in the paper. On this basis, the current research status for global estimation of oceanic primary productivity was analyzed and evaluated. In view of these, four research fields needed to be strengthened in further stu-dy: 1) Global oceanic primary productivity estimation should be segmented and studied, 2) to dee-pen the research on absorption coefficient of phytoplankton, 3) to enhance the technology of ocea-nic remote sensing, 4) to improve the in situ measurement of primary productivity.
Spaceborne Lidar in the Study of Marine Systems.
Hostetler, Chris A; Behrenfeld, Michael J; Hu, Yongxiang; Hair, Johnathan W; Schulien, Jennifer A
2018-01-03
Satellite passive ocean color instruments have provided an unbroken ∼20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.
Spaceborne Lidar in the Study of Marine Systems
NASA Astrophysics Data System (ADS)
Hostetler, Chris A.; Behrenfeld, Michael J.; Hu, Yongxiang; Hair, Johnathan W.; Schulien, Jennifer A.
2018-01-01
Satellite passive ocean color instruments have provided an unbroken ˜20-year record of global ocean plankton properties, but this measurement approach has inherent limitations in terms of spatial-temporal sampling and ability to resolve vertical structure within the water column. These limitations can be addressed by coupling ocean color data with measurements from a spaceborne lidar. Airborne lidars have been used for decades to study ocean subsurface properties, but recent breakthroughs have now demonstrated that plankton properties can be measured with a satellite lidar. The satellite lidar era in oceanography has arrived. Here, we present a review of the lidar technique, its applications in marine systems, a perspective on what can be accomplished in the near future with an ocean- and atmosphere-optimized satellite lidar, and a vision for a multiplatform virtual constellation of observational assets that would enable a three-dimensional reconstruction of global ocean ecosystems.
Integrated studies of uncultured microbes in the global ocean (Invited)
NASA Astrophysics Data System (ADS)
Dupont, C.; Rusch, D.; Martiny, A.; Lasken, R.
2010-12-01
The Global Ocean Sampling (GOS) initiative at the J. Craig Venter Institute represents the most extensive metagenomic study of a single environment. Early findings highlighted the potential of shotgun metagenomics to expand our knowledge of marine microbial biodiversity and physiology. However, it also became clear that many of the abundant marine microbes remain uncultured, hindering a direct connection between phylogeny and ecophysiology. In two recent studies, a combination of single cell genomics and aggressive assembly of binned metagenomic data have resulted in the acquisition of multiple genomes for two uncultured but globally relevant organisms. Metabolic reconstructions of the whole genomes revealed unique physiological adaptations in marine Prochlorococcus to high nutrient, low Fe regions of the global ocean and illuminated the potential ecological role of the gamma-proteobacterial 16S clade SAR86. The internal reference genomes also facilitate fragment recruitment based biogeographical studies, both at the whole genome level and the protein level.
Eigl, R; Steier, P; Winkler, S R; Sakata, K; Sakaguchi, A
2016-10-01
We succeeded in obtaining the depth profile of 236 U for a sampling station in the Northeast Pacific Ocean using only one litre of seawater sample from each depth. For this purpose, a new procedure was developed that allowed for the preparation of accelerator mass spectrometry targets for trace uranium using only 100 μg of iron carrier material. The 236 U concentrations in water samples from the Northeast Pacific Ocean showed large variations from (9.26 ± 0.42) × 10 6 atoms/kg at 60 m depth to (0.08 ± 0.02) × 10 6 atoms/kg at a depth of 3000 m. The high 236 U concentrations in surface water reflect the input of 236 U by global and local fallout from nuclear weapons tests. The low 236 U concentrations in seawater from 1500 m and below are an indicator for the low vertical diffusion of surface water to deeper layers in the North Pacific Ocean. The total inventory of 236 U on the water column was (8.35 ± 0.23) × 10 12 atoms/m 2 , which is lower compared to those of other ocean regions solely affected by global fallout on comparable latitudes. This study represents the first dataset for 236 U in the Pacific Ocean and shows the possibility of downsizing sample volumes which may help in future applications of 236 U as tracer for large ocean areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Loubere, Paul; Fariduddin, Mohammad
1999-03-01
We present a quantitative method, based on the relative abundances of benthic foraminifera in deep-sea sediments, for estimating surface ocean biological productivity over the timescale of centuries to millennia. We calibrate the method using a global data set composed of 207 samples from the Atlantic, Pacific, and Indian Oceans from a water depth range between 2300 and 3600 m. The sample set was developed so that other, potentially significant, environmental variables would be uncorrelated to overlying surface ocean productivity. A regression of assemblages against productivity yielded an r2 = 0.89 demonstrating a strong productivity signal in the faunal data. In addition, we examined assemblage response to annual variability in biological productivity (seasonality). Our data set included a range of seasonalities which we quantified into a seasonality index using the pigment color bands from the coastal zone color scanner (CZCS). The response of benthic foraminiferal assemblage composition to our seasonality index was tested with regression analysis. We obtained a statistically highly significant r2 = 0.75. Further, discriminant function analysis revealed a clear separation among sample groups based on surface ocean productivity and our seasonality index. Finally, we tested the response of benthic foraminiferal assemblages to three different modes of seasonality. We observed a distinct separation of our samples into groups representing low seasonal variability, strong seasonality with a single main productivity event in the year, and strong seasonality with multiple productivity events in the year. Reconstructing surface ocean biological productivity with benthic foraminifera will aid in modeling marine biogeochemical cycles. Also, estimating mode and range of annual seasonality will provide insight to changing oceanic processes, allowing the examination of the mechanisms causing changes in the marine biotic system over time. This article contains supplementary material.
Global diversity and biogeography of deep-sea pelagic prokaryotes.
Salazar, Guillem; Cornejo-Castillo, Francisco M; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Álvarez-Salgado, X Antón; Duarte, Carlos M; Gasol, Josep M; Acinas, Silvia G
2016-03-01
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.
Global diversity and biogeography of deep-sea pelagic prokaryotes
Salazar, Guillem; Cornejo-Castillo, Francisco M; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Álvarez-Salgado, X Antón; Duarte, Carlos M; Gasol, Josep M; Acinas, Silvia G
2016-01-01
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered. PMID:26251871
Global Biogeochemical Fluxes Program for the Ocean Observatories Initiative: A Proposal. (Invited)
NASA Astrophysics Data System (ADS)
Ulmer, K. M.; Taylor, C.
2010-12-01
The overarching emphasis of the Global Biogeochemical Flux Ocean Observatories Initiative
Perfluoroalkylated substances in the global tropical and subtropical surface oceans.
González-Gaya, Belén; Dachs, Jordi; Roscales, Jose L; Caballero, Gemma; Jiménez, Begoña
2014-11-18
In this study, perfluoroalkylated substances (PFASs) were analyzed in 92 surface seawater samples taken during the Malaspina 2010 expedition which covered all the tropical and subtropical Atlantic, Pacific and Indian oceans. Nine ionic PFASs including C6-C10 perfluoroalkyl carboxylic acids (PFCAs), C4 and C6-C8 perfluoroalkyl sulfonic acids (PFSAs) and two neutral precursors perfluoroalkyl sulfonamides (PFASAs), were identified and quantified. The Atlantic Ocean presented the broader range in concentrations of total PFASs (131-10900 pg/L, median 645 pg/L, n = 45) compared to the other oceanic basins, probably due to a better spatial coverage. Total concentrations in the Pacific ranged from 344 to 2500 pg/L (median = 527 pg/L, n = 27) and in the Indian Ocean from 176 to 1976 pg/L (median = 329, n = 18). Perfluorooctanesulfonic acid (PFOS) was the most abundant compound, accounting for 33% of the total PFASs globally, followed by perfluorodecanoic acid (PFDA, 22%) and perfluorohexanoic acid (PFHxA, 12%), being the rest of the individual congeners under 10% of total PFASs, even for perfluorooctane carboxylic acid (PFOA, 6%). PFASAs accounted for less than 1% of the total PFASs concentration. This study reports the ubiquitous occurrence of PFCAs, PFSAs, and PFASAs in the global ocean, being the first attempt, to our knowledge, to show a comprehensive assessment in surface water samples collected in a single oceanic expedition covering tropical and subtropical oceans. The potential factors affecting their distribution patterns were assessed including the distance to coastal regions, oceanic subtropical gyres, currents and biogeochemical processes. Field evidence of biogeochemical controls on the occurrence of PFASs was tentatively assessed considering environmental variables (solar radiation, temperature, chlorophyll a concentrations among others), and these showed significant correlations with some PFASs, but explaining small to moderate percentages of variability. This suggests that a number of physical and biogeochemical processes collectively drive the oceanic occurrence and fate of PFASs in a complex manner.
Validation of Ocean Color Satellite Data Products in Under Sampled Marine Areas. Chapter 6
NASA Technical Reports Server (NTRS)
Subramaniam, Ajit; Hood, Raleigh R.; Brown, Christopher W.; Carpenter, Edward J.; Capone, Douglas G.
2001-01-01
The planktonic marine cyanobacterium, Trichodesmium sp., is broadly distributed throughout the oligotrophic marine tropical and sub-tropical oceans. Trichodesmium, which typically occurs in macroscopic bundles or colonies, is noteworthy for its ability to form large surface aggregations and to fix dinitrogen gas. The latter is important because primary production supported by N2 fixation can result in a net export of carbon from the surface waters to deep ocean and may therefore play a significant role in the global carbon cycle. However, information on the distribution and density of Trichodesmium from shipboard measurements through the oligotrophic oceans is very sparse. Such estimates are required to quantitatively estimate total global rates of N2 fixation. As a result current global rate estimates are highly uncertain. Thus in order to understand the broader biogeochemical importance of Trichodesmium and N2 fixation in the oceans, we need better methods to estimate the global temporal and spatial variability of this organism. One approach that holds great promise is satellite remote sensing. Satellite ocean color sensors are ideal instruments for estimating global phytoplankton biomass, especially that due to episodic blooms, because they provide relatively high frequency synoptic information over large areas. Trichodesmium has a combination of specific ultrastructural and biochemical features that lend themselves to identification of this organism by remote sensing. Specifically, these features are high backscatter due to the presence of gas vesicles, and absorption and fluorescence of phycoerythrin. The resulting optical signature is relatively unique and should be detectable with satellite ocean color sensors such as the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS).
The NRL relocatable ocean/acoustic ensemble forecast system
NASA Astrophysics Data System (ADS)
Rowley, C.; Martin, P.; Cummings, J.; Jacobs, G.; Coelho, E.; Bishop, C.; Hong, X.; Peggion, G.; Fabre, J.
2009-04-01
A globally relocatable regional ocean nowcast/forecast system has been developed to support rapid implementation of new regional forecast domains. The system is in operational use at the Naval Oceanographic Office for a growing number of regional and coastal implementations. The new system is the basis for an ocean acoustic ensemble forecast and adaptive sampling capability. We present an overview of the forecast system and the ocean ensemble and adaptive sampling methods. The forecast system consists of core ocean data analysis and forecast modules, software for domain configuration, surface and boundary condition forcing processing, and job control, and global databases for ocean climatology, bathymetry, tides, and river locations and transports. The analysis component is the Navy Coupled Ocean Data Assimilation (NCODA) system, a 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity using remotely-sensed SST, SSH, and sea ice concentration, plus in situ observations of temperature, salinity, and currents from ships, buoys, XBTs, CTDs, profiling floats, and autonomous gliders. The forecast component is the Navy Coastal Ocean Model (NCOM). The system supports one-way nesting and multiple assimilation methods. The ensemble system uses the ensemble transform technique with error variance estimates from the NCODA analysis to represent initial condition error. Perturbed surface forcing or an atmospheric ensemble is used to represent errors in surface forcing. The ensemble transform Kalman filter is used to assess the impact of adaptive observations on future analysis and forecast uncertainty for both ocean and acoustic properties.
Atmospheric Concentrations of Persistent Organic Pollutants in the Southern Ocean
NASA Astrophysics Data System (ADS)
Vlahos, P.; Edson, J.; Cifuentes, A.; McGillis, W. R.; Zappa, C.
2008-12-01
Long-range transport of persistent organic pollutant (POPs) is a global concern. Remote regions such as the Southern Ocean are greatly under-sampled though critical components in understanding POPs cycling. Over 20 high-volume air samples were collected in the Southern Ocean aboard the RV Brown during the GASEX III experiment between Mar 05 to April 9 2008. The relatively stationary platform (51S,38W) enabled the collection of a unique atmospheric time series at this open ocean station. Air sampling was also conducted across transects from Punto Arenas, Chile and to Montevideo, Uruguay. Samples were collected using glass sleeves packed with poly-urethane foam plugs and C-18 resin in order to collect target organic pollutants (per-fluorinated compounds, currently and historically used pesticides) in this under-sampled region. Here we present POPs concentrations and trends over the sampled period and compare variations with air parcel back trajectories to establish potential origins of their long-range transport.
Evaluation of High Resolution IMERG Satellite Precipitation over the Global Oceans using OceanRAIN
NASA Astrophysics Data System (ADS)
Kucera, P. A.; Klepp, C.
2017-12-01
Precipitation is a key parameter of the essential climate variables in the Earth System that is a key variable in the global water cycle. Observations of precipitation over oceans is relatively sparse. Satellite observations over oceans is the only viable means of measuring the spatially distribution of precipitation. In an effort to improve global precipitation observations, the research community has developed a state of the art precipitation dataset as part of the NASA/JAXA Global Precipitation Measurement (GPM) program. The satellite gridded product that has been developed is called Integrated Multi-satelliE Retrievals for GPM (IMERG), which has a maximum spatial resolution of 0.1º x 0.1º and temporal 30 minute. Even with the advancements in retrievals, there is a need to quantify uncertainty of IMERG precipitation estimates especially over oceans. To address this need, the OceanRAIN dataset has been used to create a comprehensive database to compare IMERG products. The OceanRAIN dataset was created using observations from the ODM-470 optical disdrometer that has been deployed on 12 research vessels worldwide with 6 long-term installations operating in all climatic regions, seasons and ocean basins. More than 6 million data samples have been collected on the OceanRAIN program. These data were matched to IMERG grids for the study period of 15 March 2014-01 April 2017. This evaluation produced over 1500 matched IMERG-OceanRAIN pairs of precipitation observed at the surface. These matched pairs were used to evaluate the performance of IMERG stratified by different latitudinal bands and precipitation regimes. The presentation will provide an overview of the study and summary of evaluation results.
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
NASA Technical Reports Server (NTRS)
Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.
2011-01-01
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Balmaseda, Magdalena; Awaji, Toshiyuki; Barnier, Bernard; Behringer, David; Bell, Mike; Bourassa, Mark; Brasseur, Pierre; Breivik, Lars-Anders; Carton, James;
2009-01-01
Ocean assimilation systems synthesize diverse in situ and satellite data streams into four-dimensional state estimates by combining the various observations with the model. Assimilation is particularly important for the ocean where subsurface observations, even today, are sparse and intermittent compared with the scales needed to represent ocean variability and where satellites only sense the surface. Developments in assimilation and in the observing system have advanced our understanding and prediction of ocean variations at mesoscale and climate scales. Use of these systems for assessing the observing system helps identify the strengths of each observation type. Results indicate that the ocean remains under-sampled and that further improvements in the observing system are needed. Prospects for future advances lie in improved models and better estimates of error statistics for both models and observations. Future developments will be increasingly towards consistent analyses across components of the Earth system. However, even today ocean synthesis and assimilation systems are providing products that are useful for many applications and should be considered an integral part of the global ocean observing and information system.
Global Ocean Integrals and Means, with Trend Implications.
Wunsch, Carl
2016-01-01
Understanding the ocean requires determining and explaining global integrals and equivalent average values of temperature (heat), salinity (freshwater and salt content), sea level, energy, and other properties. Attempts to determine means, integrals, and climatologies have been hindered by thinly and poorly distributed historical observations in a system in which both signals and background noise are spatially very inhomogeneous, leading to potentially large temporal bias errors that must be corrected at the 1% level or better. With the exception of the upper ocean in the current altimetric-Argo era, no clear documentation exists on the best methods for estimating means and their changes for quantities such as heat and freshwater at the levels required for anthropogenic signals. Underestimates of trends are as likely as overestimates; for example, recent inferences that multidecadal oceanic heat uptake has been greatly underestimated are plausible. For new or augmented observing systems, calculating the accuracies and precisions of global, multidecadal sampling densities for the full water column is necessary to avoid the irrecoverable loss of scientifically essential information.
Metagenomic Exploration of Viruses throughout the Indian Ocean
Lorenzi, Hernan A.; Fadrosh, Douglas W.; Brami, Daniel; Thiagarajan, Mathangi; McCrow, John P.; Tovchigrechko, Andrey; Yooseph, Shibu; Venter, J. Craig
2012-01-01
The characterization of global marine microbial taxonomic and functional diversity is a primary goal of the Global Ocean Sampling Expedition. As part of this study, 19 water samples were collected aboard the Sorcerer II sailing vessel from the southern Indian Ocean in an effort to more thoroughly understand the lifestyle strategies of the microbial inhabitants of this ultra-oligotrophic region. No investigations of whole virioplankton assemblages have been conducted on waters collected from the Indian Ocean or across multiple size fractions thus far. Therefore, the goals of this study were to examine the effect of size fractionation on viral consortia structure and function and understand the diversity and functional potential of the Indian Ocean virome. Five samples were selected for comprehensive metagenomic exploration; and sequencing was performed on the microbes captured on 3.0-, 0.8- and 0.1 µm membrane filters as well as the viral fraction (<0.1 µm). Phylogenetic approaches were also used to identify predicted proteins of viral origin in the larger fractions of data from all Indian Ocean samples, which were included in subsequent metagenomic analyses. Taxonomic profiling of viral sequences suggested that size fractionation of marine microbial communities enriches for specific groups of viruses within the different size classes and functional characterization further substantiated this observation. Functional analyses also revealed a relative enrichment for metabolic proteins of viral origin that potentially reflect the physiological condition of host cells in the Indian Ocean including those involved in nitrogen metabolism and oxidative phosphorylation. A novel classification method, MGTAXA, was used to assess virus-host relationships in the Indian Ocean by predicting the taxonomy of putative host genera, with Prochlorococcus, Acanthochlois and members of the SAR86 cluster comprising the most abundant predictions. This is the first study to holistically explore virioplankton dynamics across multiple size classes and provides unprecedented insight into virus diversity, metabolic potential and virus-host interactions. PMID:23082107
NASA Astrophysics Data System (ADS)
Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.
2017-12-01
The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.
Validation of High Resolution IMERG Satellite Precipitation over the Global Oceans using OceanRAIN
NASA Astrophysics Data System (ADS)
Kucera, Paul; Klepp, Christian
2017-04-01
Precipitation is a key parameter of the essential climate variables in the Earth System that is a key variable in the global water cycle. Observations of precipitation over oceans is relatively sparse. Satellite observations over oceans is the only viable means of measuring the spatially distribution of precipitation. In an effort to improve global precipitation observations, the research community has developed a state of the art precipitation dataset as part of the NASA/JAXA Global Precipitation Measurement (GPM) program. The satellite gridded product that has been developed is called Integrated Multi-satelliE Retrievals for GPM (IMERG), which has a maximum spatial resolution of 0.1° x 0.1° and temporal 30 minute. Even with the advancements in retrievals, there is a need to quantify uncertainty of IMERG especially over oceans. To address this need, the OceanRAIN dataset has been used to create a comprehensive database to compare IMERG products. The OceanRAIN dataset was collected using an ODM-470 optical disdrometer that has been deployed on 12 research vessels worldwide with 6 long-term installations operating in all climatic regions, seasons and ocean basins. More than 5.5 million data samples have been collected on the OceanRAIN program. These data were matched to IMERG grids for the study period of 15 March 2014-31 January 2016. This evaluation produced over a 1000 matched pairs with precipitation observed at the surface. These matched pairs were used to evaluate the performance of IMERG for different latitudinal bands and precipitation regimes. The presentation will provide an overview of the study and summary of evaluation results.
Organophosphorus esters in the oceans and possible relation with ocean gyres.
Cheng, Wenhan; Xie, Zhouqing; Blais, Jules M; Zhang, Pengfei; Li, Ming; Yang, Chengyun; Huang, Wen; Ding, Rui; Sun, Liguang
2013-09-01
Four organophosphorus esters (OPEs) were detected in aerosol samples collected in the West Pacific, the Indian Ocean and the Southern Ocean from 2009 to 2010, suggesting their circumpolar and global distribution. In general, the highest concentrations were detected near populated regions in China, Australia and New Zealand. OPE concentrations in the Southern Ocean were about two orders of magnitude lower than those near major continents. Additionally, relatively high OPE concentrations were detected at the Antarctic Peninsula, where several scientific survey stations are located. The four OPEs investigated here are significantly correlated with each other, suggesting they may derive from the same source. In the circumpolar transect, OPE concentrations were associated with ocean gyres in the open ocean. Their concentrations were positively related with average vorticity in the sampling area suggesting that a major source of OPEs may be found in ocean gyres where plastic debris is known to accumulate. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Swan, Chantal M.; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte
2016-03-01
Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°×1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32±5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. The results are publically accessible via
Large variability of bathypelagic microbial eukaryotic communities across the world's oceans.
Pernice, Massimo C; Giner, Caterina R; Logares, Ramiro; Perera-Bel, Júlia; Acinas, Silvia G; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon
2016-04-01
In this work, we study the diversity of bathypelagic microbial eukaryotes (0.8-20 μm) in the global ocean. Seawater samples from 3000 to 4000 m depth from 27 stations in the Atlantic, Pacific and Indian Oceans were analyzed by pyrosequencing the V4 region of the 18S ribosomal DNA. The relative abundance of the most abundant operational taxonomic units agreed with the results of a parallel metagenomic analysis, suggesting limited PCR biases in the tag approach. Although rarefaction curves for single stations were seldom saturated, the global analysis of all sequences together suggested an adequate recovery of bathypelagic diversity. Community composition presented a large variability among samples, which was poorly explained by linear geographic distance. In fact, the similarity between communities was better explained by water mass composition (26% of the variability) and the ratio in cell abundance between prokaryotes and microbial eukaryotes (21%). Deep diversity appeared dominated by four taxonomic groups (Collodaria, Chrysophytes, Basidiomycota and MALV-II) appearing in different proportions in each sample. Novel diversity amounted to 1% of the pyrotags and was lower than expected. Our study represents an essential step in the investigation of bathypelagic microbial eukaryotes, indicating dominating taxonomic groups and suggesting idiosyncratic assemblages in distinct oceanic regions.
Modelling global distribution, risk and mitigation strategies of floating plastic pollution
NASA Astrophysics Data System (ADS)
van Sebille, Erik; Wilcox, Chris; Sherman, Peter; Hardesty, Britta Denise; Lavender Law, Kara
2016-04-01
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardise a global dataset of plastic marine debris measured using surface-trawling plankton nets and couple this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons. A large fraction of the uncertainty in these estimates comes from sparse sampling in coastal and Southern Hemisphere regions. We then use this global distribution of small floating plastic debris to map out where in the ocean the risk to marine life (in particular seabirds and plankton growth) is greatest, using a quantitative risk framework. We show that the largest risk occurs not necessarily in regions of high plastic concentration, but rather in regions of extensive foraging with medium-high plastic concentrations such as coastal upwelling regions and the Southern Ocean. Finally, we use the estimates of distribution to investigate where in the ocean plastic can most optimally be removed, assuming hypothetical clean-up booms following the ideas from The Ocean Cleanup project. We show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres. Based on these results, we propose more focus on the coastal zones when considering future efforts in sampling, risk management and mitigation.
NASA Astrophysics Data System (ADS)
Swan, Chantal M.; Nelson, Norman B.; Siegel, David A.; Kostadinov, Tihomir S.
2012-05-01
The cycling pathways of chromophoric dissolved organic matter (CDOM) within marine systems must be constrained to better assess the impact of CDOM on surface ocean photochemistry and remote sensing of ocean color. Photobleaching, the loss of absorption by CDOM due to light exposure, is the primary sink for marine CDOM. Herein the susceptibility of CDOM to photobleaching by sea surface-level solar radiation was examined in 15 samples collected from wide-ranging open ocean regimes. Samples from the Pacific, Atlantic, Indian and Southern Oceans were irradiated over several days with full-spectrum light under a solar simulator at in situ temperature in order to measure photobleaching rate and derive an empirical matrix, ɛsurf (m-1 μEin-1), which quantifies the effect of surface irradiance on the spectral absorption of CDOM. Irradiation responses among the ocean samples were similar within the ultraviolet (UV) region of the spectrum spanning 300-360 nm, generally exhibiting a decrease in the CDOM absorption coefficient (m-1) and concomitant increase in the CDOM spectral slope parameter, S (nm-1). However, an unexpected irradiation-induced increase in CDOM absorption between approximately 360 and 500 nm was observed for samples from high-nutrient low-chlorophyll (HNLC) environments. This finding was linked to the presence of dissolved nitrate and may explain discrepancies in action spectra for dimethylsulfide (DMS) photobleaching observed between the Equatorial Pacific and Subtropical North Atlantic Oceans. The nitrate-to-phosphate ratio explained 27-70% of observed variability in ɛsurf at observation wavelengths of 330-440 nm, while the initial spectral slope of the samples explained up to 52% of variability in ɛsurf at observation wavelengths of 310-330 nm. These results suggest that the biogeochemical and solar exposure history of the water column, each of which influence the chemical character and thus the spectral quality of CDOM and its photoreactivity, are the main factors regulating the susceptibility of CDOM to photodegradation in the surface ocean. The ɛsurf parameter reported herein may be applied to remote sensing retrievals of CDOM to estimate photobleaching at the surface on regional to global scales.
Satellite Sea-surface Salinity Retrieval Dependencies
NASA Astrophysics Data System (ADS)
Bayler, E. J.; Ren, L.
2016-02-01
Comparing satellite sea-surface salinity (SSS) measurements and in situ observations reveals large-scale differences. What causes these differences? In this study, five boxes, sampling various oceanic regimes of the global ocean, provide insights on the relative performance of satellite SSS retrievals with respect to the influences of SST, precipitation and wind speed. The regions sampled are: the Inter-tropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), NASA's Salinity Processes of the Upper-ocean Regional Study (SPURS) area, the North Pacific subarctic region, and the southern Indian Ocean. This study examines satellite SSS data from NASA's Aquarius Mission and ESA's Soil Moisture - Ocean Salinity (SMOS) mission, specifically: Aquarius official Aquarius Data Processing System (ADPS) Level-2 data, experimental Aquarius Combined Active-Passive (CAP) Level-2 SSS data developed by NASA's Jet Propulsion Laboratory (JPL), and SMOS Level-2 data.
Two MODIS Aerosol Products Over Ocean on the Terra and Aqua CERES SSF Datasets
NASA Technical Reports Server (NTRS)
Ignatov, Alexander; Minnis, Patrick; Loeb, Norman; Wielicki, Bruce; Miller, Walter; Sun-Mack, Sunny; Tanre, Didier; Remer, Lorraine; Laszlo, Istvan; Geier, Erika
2004-01-01
Over ocean, two aerosol products are reported on the Terra and Aqua CERES SSFs. Both are derived from MODIS, but using different sampling and aerosol algorithms. This study briefly summarizes these products, and compares using 2 weeks of global Terra data from 15-21 December 2000, and 1-7 June 2001.
Díez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; Dupont, Christopher L.; Allen, Andrew E.; Yooseph, Shibu; Rusch, Douglas B.; Bergman, Birgitta
2016-01-01
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important. PMID:27196065
Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; ...
2016-05-19
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina
Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less
NASA Astrophysics Data System (ADS)
Coelho, L. P.; Colin, S.; Sunagawa, S.; Karsenti, E.; Bork, P.; Pepperkok, R.; de Vargas, C.
2016-02-01
Protists are responsible for much of the diversity in the eukaryotic kingdomand are crucial to several biogeochemical processes of global importance (e.g.,the carbon cycle). Recent global investigations of these organisms have reliedon sequence-based approaches. These methods do not, however, capture thecomplex functional morphology of these organisms nor can they typically capturephenomena such as interactions (except indirectly through statistical means).Direct imaging of these organisms, can therefore provide a valuable complementto sequencing and, when performed quantitatively, provide measures ofstructures and interaction patterns which can then be related back to sequencebased measurements. Towards this end, we developed a framework, environmentalhigh-content fluorescence microscopy (e-HCFM) which can be applied toenvironmental samples composed of mixed communities. This strategy is based ongeneral purposes dyes that stain major structures in eukaryotes. Samples areimaged using scanning confocal microscopy, resulting in a three-dimensionalimage-stack. High-throughput can be achieved using automated microscopy andcomputational analysis. Standard bioimage informatics segmentation methodscombined with feature computation and machine learning results in automatictaxonomic assignments to the objects that are imaged in addition to severalbiochemically relevant measurements (such as biovolumes, fluorescenceestimates) per organism. We provide results on 174 image acquisition from TaraOcean samples, which cover organisms from 5 to 180 microns (82 samples in the5-20 fraction, 96 in the 20-180 fraction). We show a validation of the approachboth on technical grounds (demonstrating the high accuracy of automatedclassification) and provide results obtain from image analysis and fromintegrating with other data, such as associated environmental parametersmeasured in situ as well as perspectives on integration with sequenceinformation.
Global assessment of benthic nepheloid layers and linkage with upper ocean dynamics
NASA Astrophysics Data System (ADS)
Gardner, Wilford D.; Richardson, Mary Jo; Mishonov, Alexey V.
2018-01-01
Global maps of the maximum bottom concentration, thickness, and integrated particle mass in benthic nepheloid layers are published here to support collaborations to understand deep ocean sediment dynamics, linkage with upper ocean dynamics, and assessing the potential for scavenging of adsorption-prone elements near the deep ocean seafloor. Mapping the intensity of benthic particle concentrations from natural oceanic processes also provides a baseline that will aid in quantifying the industrial impact of current and future deep-sea mining. Benthic nepheloid layers have been mapped using 6,392 full-depth profiles made during 64 cruises using our transmissometers mounted on CTDs in multiple national/international programs including WOCE, SAVE, JGOFS, CLIVAR-Repeat Hydrography, and GO-SHIP during the last four decades. Intense benthic nepheloid layers are found in areas where eddy kinetic energy in overlying waters, mean kinetic energy 50 m above bottom (mab), and energy dissipation in the bottom boundary layer are near the highest values in the ocean. Areas of intense benthic nepheloid layers include the Western North Atlantic, Argentine Basin in the South Atlantic, parts of the Southern Ocean and areas around South Africa. Benthic nepheloid layers are weak or absent in most of the Pacific, Indian, and Atlantic basins away from continental margins. High surface eddy kinetic energy is associated with the Kuroshio Current east of Japan. Data south of the Kuroshio show weak nepheloid layers, but no transmissometer data exist beneath the Kuroshio, a deficiency that should be remedied to increase understanding of eddy dynamics in un-sampled and under-sampled oceanic areas.
NASA Technical Reports Server (NTRS)
Dickey, Tommy D.; Granata, Timothy C.; Taupier-Letage, Isabelle
1992-01-01
The processes controlling the flux of carbon in the upper ocean have dynamic ranges in space and time of at least nine orders of magnitude. These processes depend on a broad suite of inter-related biogeochemical, bio-optical, and physical variables. These variables should be sampled on scales matching the relevant phenomena. Traditional ship-based sampling, while critical for detailed and more comprehensive observations, can span only limited portions of these ranges because of logistical and financial constraints. Further, remote observations from satellite platforms enable broad horizontal coverage which is restricted to the upper few meters of the ocean. For these main reasons, automated subsurface measurement systems are important for the fulfillment of research goals related to the regional and global estimation and modeling of time varying biogeochemical fluxes. Within the past few years, new sensors and systems capable of autonomously measuring several of the critical variables have been developed. The platforms for deploying these systems now include moorings and drifters and it is likely that autonomous underwater vehicles (AUV's) will become available for use in the future. Each of these platforms satisfies particular sampling needs and can be used to complement both shipboard and satellite observations. In the present review, (1) sampling considerations will be summarized, (2) examples of data obtained from some of the existing automated in situ sampling systems will be highlighted, (3) future sensors and systems will be discussed, (4) data management issues for present and future automated systems will be considered, and (5) the status of near real-time data telemetry will be outlined. Finally, we wish to make it clear at the outset that the perspectives presented here are those of the authors and are not intended to represent those of the United States JGOFS program, the International JGOFS program, NOAA's C&GC program, or other global ocean programs.
Conway, Thomas [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA); Tans, Pieter [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA)
2009-01-01
The National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) has measured CO2 in air samples collected weekly at a global network of sites since the late 1960s. Atmospheric CO2 mixing ratios reported in these files were measured by a nondispersive infrared absorption technique in air samples collected in glass flasks. All CMDL flask samples are measured relative to standards traceable to the World Meteorological Organization (WMO) CO2 mole fraction scale. These measurements constitute the most geographically extensive, carefully calibrated, internally consistent atmospheric CO2 data set available and are essential for studies aimed at better understanding the global carbon cycle budget.
Dimethyl sulfide in the surface ocean and the marine atmosphere: a global view.
Andreae, M O; Raemdonck, H
1983-08-19
Dimethyl sulfide (DMS) has been identified as the major volatile sulfur compound in 628 samples of surface seawater representing most of the major oceanic ecozones. In at least three respects, its vertical distribution, its local patchiness, and its distribution in oceanic ecozones, the concentration of DMS in the sea exhibits a pattern similar to that of primary production. The global weightedaverage concentration of DMS in surface seawater is 102 nanograms of sulfur (DMS) per liter, corresponding to a global sea-to-air flux of 39 x 10(12) grams of sulfur per year. When the biogenic sulfur contributions from the land surface are added, the biogenic sulfur gas flux is approximately equal to the anthropogenic flux of sulfur dioxide. The DMS concentration in air over the equatorial Pacific varies diurnally between 120 and 200 nanograms of sulfur (DMS) per cubic meter, in agreement with the predictions of photochemical models. The estimated source flux of DMS from the oceans to the marine atmosphere is in agreement with independently obtained estimates of the removal fluxes of DMS and its oxidation products from the atmosphere.
Dimethyl Sulfide in the Surface Ocean and the Marine Atmosphere: A Global View
NASA Astrophysics Data System (ADS)
Andreae, Meinrat O.; Raemdonck, Hans
1983-08-01
Dimethyl sulfide (DMS) has been identified as the major volatile sulfur compound in 628 samples of surface seawater representing most of the major oceanic ecozones. In at least three respects, its vertical distribution, its local patchiness, and its distribution in oceanic ecozones, the concentration of DMS in the sea exhibits a pattern similar to that of primary production. The global weighted-average concentration of DMS in surface seawater is 102 nanograms of sulfur (DMS) per liter, corresponding to a global sea-to-air flux of 39 × 1012 grams of sulfur per year. When the biogenic sulfur contributions from the land surface are added, the biogenic sulfur gas flux is approximately equal to the anthropogenic flux of sulfur dioxide. The DMS concentration in air over the equatorial Pacific varies diurnally between 120 and 200 nanograms of sulfur (DMS) per cubic meter, in agreement with the predictions of photochemical models. The estimated source flux of DMS from the oceans to the marine atmosphere is in agreement with independently obtained estimates of the removal fluxes of DMS and its oxidation products from the atmosphere.
Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink
NASA Astrophysics Data System (ADS)
McKinley, Galen A.; Fay, Amanda R.; Lovenduski, Nicole S.; Pilcher, Darren J.
2017-01-01
Since preindustrial times, the ocean has removed from the atmosphere 41% of the carbon emitted by human industrial activities. Despite significant uncertainties, the balance of evidence indicates that the globally integrated rate of ocean carbon uptake is increasing in response to increasing atmospheric CO2 concentrations. The El Niño-Southern Oscillation in the equatorial Pacific dominates interannual variability of the globally integrated sink. Modes of climate variability in high latitudes are correlated with variability in regional carbon sinks, but mechanistic understanding is incomplete. Regional sink variability, combined with sparse sampling, means that the growing oceanic sink cannot yet be directly detected from available surface data. Accurate and precise shipboard observations need to be continued and increasingly complemented with autonomous observations. These data, together with a variety of mechanistic and diagnostic models, are needed for better understanding, long-term monitoring, and future projections of this critical climate regulation service.
Degree of Ice Particle Surface Roughness Inferred from Polarimetric Observations
NASA Technical Reports Server (NTRS)
Hioki, Souichiro; Yang, Ping; Baum, Bryan A.; Platnick, Steven; Meyer, Kerry G.; King, Michael D.; Riedi, Jerome
2016-01-01
The degree of surface roughness of ice particles within thick, cold ice clouds is inferred from multidirectional, multi-spectral satellite polarimetric observations over oceans, assuming a column-aggregate particle habit. An improved roughness inference scheme is employed that provides a more noise-resilient roughness estimate than the conventional best-fit approach. The improvements include the introduction of a quantitative roughness parameter based on empirical orthogonal function analysis and proper treatment of polarization due to atmospheric scattering above clouds. A global 1-month data sample supports the use of a severely roughened ice habit to simulate the polarized reflectivity associated with ice clouds over ocean. The density distribution of the roughness parameter inferred from the global 1- month data sample and further analyses of a few case studies demonstrate the significant variability of ice cloud single-scattering properties. However, the present theoretical results do not agree with observations in the tropics. In the extra-tropics, the roughness parameter is inferred but 74% of the sample is out of the expected parameter range. Potential improvements are discussed to enhance the depiction of the natural variability on a global scale.
Dlugokencky, E. J. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Lang, P. M. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Masarie, K. A. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Steele, L. P. [Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria, Australia
1994-01-01
This data base presents atmospheric methane (CH4) mixing ratios from flask air samples collected over the period 1983-1993 by the National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory's (NOAA/CMDL's) global cooperative air sampling network. Air samples were collected approximately once per week at 44 fixed sites (37 of which were still active at the end of 1993). Samples were also collected at 5 degree latitude intervals along shipboard cruise tracks in the Pacific Ocean between North America and New Zealand (or Australia) and at 3 degree latitude intervals along cruise tracks in the South China Sea between Singapore and Hong Kong. The shipboard measurements were made approximately every 3 weeks per latitude zone by each of two ships in the Pacific Ocean and approximately once every week per latitude zone in the South China Sea. All samples were analyzed for CH4 at the NOAA/CMDL laboratory in Boulder, Colorado, by gas chromatography with flame ionization detection, and each aliquot was referenced to the NOAA/CMDL methane standard scale. In addition to providing the complete set of atmospheric CH4 measurements from flask air samples collected at the NOAA/CMDL network sites, this data base also includes files which list monthly mean mixing ratios derived from the individual flask air measurements. These monthly summary data are available for 35 of the fixed sites and 21 of the shipboard sampling sites.
Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology
NASA Technical Reports Server (NTRS)
Gregg, Watson
2011-01-01
The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected by solar zenith angle requirements and obscuration from clouds and aerosols. Combined with in situ dataenhanced satellite data, the model is forced into consistency using data assimilation. This approach eliminates sampling discrepancies from satellites. Combining the reduced differences of satellite data sets using in situ data, and the removal of sampling biases using data assimilation, we generate consistent data records of ocean color. These data records can support investigations of long-term effects of climate change on ocean biology over multiple satellites, and can improve the consistency of future satellite data sets.
Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure
NASA Astrophysics Data System (ADS)
Pilet, S.; Abe, N.; Rochat, L.; Kaczmarek, M.-A.; Hirano, N.; Machida, S.; Buchs, D. M.; Baumgartner, P. O.; Müntener, O.
2016-12-01
Oceanic lithospheric mantle is generally interpreted as depleted mantle residue after mid-ocean ridge basalt extraction. Several models have suggested that metasomatic processes can refertilize portions of the lithospheric mantle before subduction. Here, we report mantle xenocrysts and xenoliths in petit-spot lavas that provide direct evidence that the lower oceanic lithosphere is affected by metasomatic processes. We find a chemical similarity between clinopyroxene observed in petit-spot mantle xenoliths and clinopyroxene from melt-metasomatized garnet or spinel peridotites, which are sampled by kimberlites and intracontinental basalts respectively. We suggest that extensional stresses in oceanic lithosphere, such as plate bending in front of subduction zones, allow low-degree melts from the seismic low-velocity zone to percolate, interact and weaken the oceanic lithospheric mantle. Thus, metasomatism is not limited to mantle upwelling zones such as mid-ocean ridges or mantle plumes, but could be initiated by tectonic processes. Since plate flexure is a global mechanism in subduction zones, a significant portion of oceanic lithospheric mantle is likely to be metasomatized. Recycling of metasomatic domains into the convecting mantle is fundamental to understanding the generation of small-scale mantle isotopic and volatile heterogeneities sampled by oceanic island and mid-ocean ridge basalts.
NASA Astrophysics Data System (ADS)
Gross, Juliane; Treiman, Allan H.; Mercer, Celestine N.
2014-02-01
The composition of the lunar crust provides clues about the processes that formed it and hence contains information on the origin and evolution of the Moon. Current understanding of lunar evolution is built on the Lunar Magma Ocean hypothesis that early in its history, the Moon was wholly or mostly molten. This hypothesis is based on analyses of Apollo samples of ferroan anorthosites (>90% plagioclase; molar Mg/(Mg+Fe)=Mg#<75) and the assumption that they are globally distributed. However, new results from lunar meteorites, which are random samples of the Moon's surface, and remote sensing data, show that ferroan anorthosites are not globally distributed and that the Apollo highland samples, used as a basis for the model, are influenced by ejecta from the Imbrium basin. In this study we evaluate anorthosites from all currently available adequately described lunar highland meteorites, representing a more widespread sampling of the lunar highlands than Apollo samples alone, and find that ∼80% of them are significantly more magnesian than Apollo ferroan anorthosites. Interestingly, Luna mission anorthosites, collected outside the continuous Imbrium ejecta, are also highly magnesian. If the lunar highland crust consists dominantly of magnesian anorthosites, as suggested by their abundance in samples sourced outside Imbrium ejecta, a reevaluation of the Lunar Magma Ocean model is a sensible step forward in the endeavor to understand lunar evolution. Our results demonstrate that lunar anorthosites are more similar in their chemical trends and mineral abundance to terrestrial massif anorthosites than to anorthosites predicted in a Lunar Magma Ocean. This analysis does not invalidate the idea of a Lunar Magma Ocean, which seems a necessity under the giant impact hypothesis for the origin of the moon. However, it does indicate that most rocks now seen at the Moon's surface are not primary products of a magma ocean alone, but are products of more complex crustal processes.
NASA Astrophysics Data System (ADS)
Rynearson, T. A.; Chen, G.
2016-02-01
The open ocean North Atlantic spring bloom influences regional ecology and global biogeochemistry. Diatoms dominate the peak of the bloom and significantly impact productivity and export of organic carbon from the bloom. Despite their key role in a yearly event with global impacts, the genetic diversity and population structure of diatoms that comprise this open ocean bloom are unknown. Here we investigated the population genetics of the diatom Thalassiosira gravida sampled during the 2008 North Atlantic Bloom Experiment using newly-developed microsatellite markers. Here, we show that the genetic diversity of open ocean diatoms is high and that their population structure differs dramatically from coastal diatoms. High levels of genetic diversity were observed across all water samples and did not change during the bloom. Four genetically distinct populations were identified but were not associated with different water masses, depths or time points during the bloom. Instead, all four populations co-existed within samples, spanning different water masses, stages of the bloom and depths of over >300 m. The pattern of genetically distinct, co-existing populations in the open ocean contrasts dramatically with coastal habitats, where distinct populations have not been observed to co-exist at the same time and place. It is likely that populations originate via transport from disparate locations combined with overwintering capacity in the water column or sediments. The pattern of co-existence suggests that the open ocean may serve as a gene pool that harbors different populations that are then available for selection to act upon, which may contribute to the ecological and biogeochemical success of diatoms and influence their long-term evolutionary survival.
Fractional solubility of aerosol iron: Synthesis of a global-scale data set
NASA Astrophysics Data System (ADS)
Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.; Baker, Alexander R.; Powell, Claire F.
2012-07-01
Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool - the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ∼1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.
Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean
Chan, L.-H.; Hein, J.R.
2007-01-01
To test the feasibility of using lithium isotopes in marine ferromanganese deposits as an indicator of paleoceanographic conditions and seawater composition, we analyzed samples from a variety of tectonic environments in the global ocean. Hydrogenetic, hydrothermal, mixed hydrogenetic–hydrothermal, and hydrogenetic–diagenetic samples were subjected to a two-step leaching and dissolution procedure to extract first the loosely bound Li and then the more tightly bound Li in the Mn oxide and Fe oxyhydroxide. Total leachable Li contents vary from 2 by coulombic force. Hence, the abundant Li in hydrothermal deposits is mainly associated with the dominant phase, MnO2. The surface of amorphous FeOOH holds a slightly positive charge and attracts little Li, as demonstrated by data for hydrothermal Fe oxyhydroxide. Loosely sorbed Li in both hydrogenetic crusts and hydrothermal deposits exhibit Li isotopic compositions that resemble that of modern seawater. We infer that the hydrothermally derived Li scavenged onto the surface of MnO2 freely exchanged with ambient seawater, thereby losing its original isotopic signature. Li in the tightly bound sites is always isotopically lighter than that in the loosely bound fraction, suggesting that the isotopic fractionation occurred during formation of chemical bonds in the oxide and oxyhydroxide structures. Sr isotopes also show evidence of re-equilibration with seawater after deposition. Because of their mobility, Li and Sr in the ferromanganese crusts do not faithfully record secular variations in the isotopic compositions of seawater. However, Li content can be a useful proxy for the hydrothermal history of ocean basins. Based on the Li concentrations of the globally distributed hydrogenetic and hydrothermal samples, we estimate a scavenging flux of Li that is insignificant compared to the hydrothermal flux and river input to the ocean.
AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space
NASA Technical Reports Server (NTRS)
LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi
2004-01-01
Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).
Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths
NASA Astrophysics Data System (ADS)
Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.
2015-12-01
Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure represents a global mechanism in subduction zone, a portion of oceanic lithospheric mantle is likely to be metasomatized; recycling of these enriched domains into the convecting mantle is fundamental to understand the generation of small scale mantle isotopic and volatile heterogeneities sampled by OIBs and MORBs.
In situ imaging reveals the biomass of giant protists in the global ocean.
Biard, Tristan; Stemmann, Lars; Picheral, Marc; Mayot, Nicolas; Vandromme, Pieter; Hauss, Helena; Gorsky, Gabriel; Guidi, Lionel; Kiko, Rainer; Not, Fabrice
2016-04-28
Planktonic organisms play crucial roles in oceanic food webs and global biogeochemical cycles. Most of our knowledge about the ecological impact of large zooplankton stems from research on abundant and robust crustaceans, and in particular copepods. A number of the other organisms that comprise planktonic communities are fragile, and therefore hard to sample and quantify, meaning that their abundances and effects on oceanic ecosystems are poorly understood. Here, using data from a worldwide in situ imaging survey of plankton larger than 600 μm, we show that a substantial part of the biomass of this size fraction consists of giant protists belonging to the Rhizaria, a super-group of mostly fragile unicellular marine organisms that includes the taxa Phaeodaria and Radiolaria (for example, orders Collodaria and Acantharia). Globally, we estimate that rhizarians in the top 200 m of world oceans represent a standing stock of 0.089 Pg carbon, equivalent to 5.2% of the total oceanic biota carbon reservoir. In the vast oligotrophic intertropical open oceans, rhizarian biomass is estimated to be equivalent to that of all other mesozooplankton (plankton in the size range 0.2-20 mm). The photosymbiotic association of many rhizarians with microalgae may be an important factor in explaining their distribution. The previously overlooked importance of these giant protists across the widest ecosystem on the planet changes our understanding of marine planktonic ecosystems.
Monitoring Ocean CO2 Fluxes from Space: GOSAT and OCO-2
NASA Technical Reports Server (NTRS)
Crisp, David
2012-01-01
The ocean is a major component of the global carbon cycle, emitting over 330 billion tons of carbon dioxide (CO2) into the atmosphere each year, or about 10 times that emitted fossil fuel combustion and all other human activities [1, 2]. The ocean reabsorbs a comparable amount of CO2 each year, along with 25% of the CO2 emitted by these human activities. The nature and geographic distribution of the processes controlling these ocean CO2 fluxes are still poorly constrained by observations. A better understanding of these processes is essential to predict how this important CO2 sink may evolve as the climate changes.While in situ measurements of ocean CO2 fluxes can be very precise, the sampling density is far too sparse to quantify ocean CO2 sources and sinks over much of the globe. One way to improve the spatial resolution, coverage, and sampling frequency is to make observations of the column averaged CO2 dry air mole fraction, XCO2, from space [4, 5, 6]. Such measurements could provide global coverage at high resolution (< 100 km) on monthly time scales. High precision (< 1 part per million, ppm) is essential to resolve the small, near-surface CO2 variations associated with ocean fluxes and to better constrain the CO2 transport over the ocean. The Japanese Greenhouse gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were first two space based sensors designed specifically for this task. GOSAT was successfully launched on January 23, 2009, and has been returning measurements of XCO2 since April 2009. The OCO mission was lost in February 2009, when its launch vehicle malfunctioned and failed to reach orbit. In early 2010, NASA authorized a re-flight of OCO, called OCO-2, which is currently under development.
Hein, J.R.; Koschinsky, A.; Halliday, A.N.
2003-01-01
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases. Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ???10% is leached with the MnO2. Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6- in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce. ?? 2003 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Testor, Pierre
2013-04-01
In the 1990 s, while gliders were being developed and successfully passing first tests, their potential use for ocean research started to be discussed in international conferences because they could help us improve the cost-effectiveness, sampling, and distribution of the ocean observations (see OceanObs'99 Conference Statement - UNESCO). After the prototype phase, in the 2000 s, one could only witness the growing glider activity throughout the world. The first glider experiments in Europe brought together several teams that were interested in the technology and a consortium formed naturally from these informal collaborations. Since 2006, Everyone's Gliding Observatories (EGO - http://www.ego-network.org) Workshops and Glider Schools have been organized, whilst becoming the international forum for glider activities. Some key challenges have emerged from the expansion of the glider system and require now setting up a sustainable European as well as a global system to operate glider and to ensure a smooth and sustained link to the Global Ocean Observing System (GOOS). Glider technology faces many scientific, technological and logistical issues. In particular, it approaches the challenge of controlling many steerable probes in a variable environment for better sampling. It also needs the development of new formats and procedures in order to build glider observatories at a global level. Several geographically distributed teams of oceanographers now operate gliders, and there is a risk of fragmentation. We will here present results from our consortium who intends to solve most of these issues through scientific and technological coordination and networking. This approach is supported by the ESF through Cooperation in the field of Scientific and Technical Research (COST). The COST Action ES0904 "EGO" started in July 2010 aiming to build international cooperation and capacities at the scientific, technological, and organizational levels, for sustained observations of the oceans with gliders. A major impact of this Action was the elaboration of the EU Collaborative Project GROOM, Gliders for Research, Ocean Observation and Management for the FP7 call "Capacities - Research Infrastructures", which addresses the topic "design studies for research infrastructures in all S&T fields" (see http://www.groom-fp.eu).
Kanhai, La Daana K; Officer, Rick; Lyashevska, Olga; Thompson, Richard C; O'Connor, Ian
2017-02-15
Microplastics in the world's oceans are a global concern due to the potential threat they pose to marine organisms. This study investigated microplastic abundance, distribution and composition in the Atlantic Ocean on a transect from the Bay of Biscay to Cape Town, South Africa. Microplastics were sampled from sub-surface waters using the underway system of the RV Polarstern. Potential microplastics were isolated from samples and FT-IR spectroscopy was used to identify polymer types. Of the particles analysed, 63% were rayon and 37% were synthetic polymers. The majority of microplastics were identified as polyesters (49%) and blends of polyamide or acrylic/polyester (43%). Overall, fibres (94%) were predominant. Average microplastic abundance in the Atlantic Ocean was 1.15±1.45particlesm -3 . Of the 76 samples, 14 were from the Benguela upwelling and there was no statistically significant difference in microplastic abundance between upwelled and non-upwelled sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Understanding Microplastic Distribution: A Global Citizen Monitoring Effort
NASA Astrophysics Data System (ADS)
Barrows, A.
2016-02-01
Understanding distribution and abundance of microplastics in the world's oceans will continue to help inform global law-making. Through recruiting and training over 500 volunteers our study has collected over 1000 samples from remote and populated areas world-wide. Samples include water collected at the sea surface and throughout the water column. Surface to depth sampling has provided insight into vertical plastic distribution. The development of unique field and laboratory methodology has enabled plastics to be quantified down to 50 µm. In 2015, the study expanded to include global freshwater systems. By understanding plastic patterns, distribution and concentration in large and small watersheds we will better understand how freshwater systems are contributing to marine microplastic pollution.
The Indigo V Indian Ocean Expedition: a prototype for citizen microbial oceanography
NASA Astrophysics Data System (ADS)
Lauro, Federico; Senstius, Jacob; Cullen, Jay; Lauro, Rachelle; Neches, Russell; Grzymski, Joseph
2014-05-01
Microbial Oceanography has long been an extremely expensive discipline, requiring ship time for sample collection and thereby economically constraining the number of samples collected. This is especially true for under-sampled water bodies such as the Indian Ocean. Specialised scientific equipment only adds to the costs. Moreover, long term monitoring of microbial communities and large scale modelling of global biogeochemical cycles requires the collection of high-density data both temporally and spatially in a cost-effective way. Thousands of private ocean-going vessels are cruising around the world's oceans every day. We believe that a combination of new technologies, appropriate laboratory protocols and strategic operational partnerships will allow researchers to broaden the scope of participation in basic oceanographic research. This will be achieved by equipping sailing vessels with small, satcom-equipped sampling devices, user-friendly collection techniques and a 'pre-addressed-stamped-envelope' to send in the samples for analysis. We aim to prove that 'bigger' is not necessarily 'better' and the key to greater understanding of the world's oceans is to forge the way to easier and cheaper sample acquisition. The ultimate goal of the Indigo V Expedition is to create a working blue-print for 'citizen microbial oceanography'. We will present the preliminary outcomes of the first Indigo V expedition, from Capetown to Singapore, highlighting the challenges and opportunities of such endeavours.
Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid
2018-01-01
As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms. PMID:29304182
Gonçalves-Araujo, Rafael; Rabe, Benjamin; Peeken, Ilka; Bracher, Astrid
2018-01-01
As consequences of global warming sea-ice shrinking, permafrost thawing and changes in fresh water and terrestrial material export have already been reported in the Arctic environment. These processes impact light penetration and primary production. To reach a better understanding of the current status and to provide accurate forecasts Arctic biogeochemical and physical parameters need to be extensively monitored. In this sense, bio-optical properties are useful to be measured due to the applicability of optical instrumentation to autonomous platforms, including satellites. This study characterizes the non-water absorbers and their coupling to hydrographic conditions in the poorly sampled surface waters of the central and eastern Arctic Ocean. Over the entire sampled area colored dissolved organic matter (CDOM) dominates the light absorption in surface waters. The distribution of CDOM, phytoplankton and non-algal particles absorption reproduces the hydrographic variability in this region of the Arctic Ocean which suggests a subdivision into five major bio-optical provinces: Laptev Sea Shelf, Laptev Sea, Central Arctic/Transpolar Drift, Beaufort Gyre and Eurasian/Nansen Basin. Evaluating ocean color algorithms commonly applied in the Arctic Ocean shows that global and regionally tuned empirical algorithms provide poor chlorophyll-a (Chl-a) estimates. The semi-analytical algorithms Generalized Inherent Optical Property model (GIOP) and Garver-Siegel-Maritorena (GSM), on the other hand, provide robust estimates of Chl-a and absorption of colored matter. Applying GSM with modifications proposed for the western Arctic Ocean produced reliable information on the absorption by colored matter, and specifically by CDOM. These findings highlight that only semi-analytical ocean color algorithms are able to identify with low uncertainty the distribution of the different optical water constituents in these high CDOM absorbing waters. In addition, a clustering of the Arctic Ocean into bio-optical provinces will help to develop and then select province-specific ocean color algorithms.
2015-08-20
evapotranspiration (ET) over oceans may be significantly lower than previously thought. The MEP model parameterized turbulent transfer coefficients...fluxes, ocean freshwater fluxes, regional crop yield among others. An on-going study suggests that the global annual evapotranspiration (ET) over...Bras, Jingfeng Wang. A model of evapotranspiration based on the theory of maximum entropy production, Water Resources Research, (03 2011): 0. doi
NASA Technical Reports Server (NTRS)
Esteban-Fernandez, Daniel; Peral, Eva; McWatters, Dalia; Pollard, Brian; Rodriguez, Ernesto; Hughes, Richard
2013-01-01
Over the last two decades, several nadir profiling radar altimeters have provided our first global look at the ocean basin-scale circulation and the ocean mesoscale at wavelengths longer than 100 km. Due to sampling limitations, nadir altimetry is unable to resolve the small wavelength ocean mesoscale and sub-mesoscale that are responsible for the vertical mixing of ocean heat and gases and the dissipation of kinetic energy from large to small scales. The proposed Surface Water and Ocean Topography (SWOT) mission would be a partnership between NASA, CNES (Centre National d'Etudes Spaciales) and the Canadian Space Agency, and would have as one of its main goals the measurement of ocean topography with kilometer-scale spatial resolution and centimeter scale accuracy. In this paper, we provide an overview of all ocean error sources that would contribute to the SWOT mission.
The relationship between dissolved hydrogen and nitrogen fixation in ocean waters
NASA Astrophysics Data System (ADS)
Moore, Robert M.; Punshon, Stephen; Mahaffey, Claire; Karl, David
2009-09-01
Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N 2) fixation is estimated to supply 8×10 12 moles N y -1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N 2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N 2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H 2), but the extent to which it leads to supersaturation of H 2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H 2 concentration (nmol L -1), and rates of N 2 fixation (μmol N m -3 d -1), determined using 15N 2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation ( r=0.98) between dissolved H 2 and rates of N 2 fixation, with the greatest supersaturation of H 2 and highest rates of N 2 fixation being observed in the subtropical gyres at the southern (˜18°S) and northern (18°N) reaches of the transect. The lowest H 2 saturation and N 2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H 2 supersaturations and N 2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.
Global Patterns of Bacterial Beta-Diversity in Seafloor and Seawater Ecosystems
Zinger, Lucie; Amaral-Zettler, Linda A.; Fuhrman, Jed A.; Horner-Devine, M. Claire; Huse, Susan M.; Welch, David B. Mark; Martiny, Jennifer B. H.; Sogin, Mitchell; Boetius, Antje; Ramette, Alban
2011-01-01
Background Marine microbial communities have been essential contributors to global biomass, nutrient cycling, and biodiversity since the early history of Earth, but so far their community distribution patterns remain unknown in most marine ecosystems. Methodology/Principal Findings The synthesis of 9.6 million bacterial V6-rRNA amplicons for 509 samples that span the global ocean's surface to the deep-sea floor shows that pelagic and benthic communities greatly differ, at all taxonomic levels, and share <10% bacterial types defined at 3% sequence similarity level. Surface and deep water, coastal and open ocean, and anoxic and oxic ecosystems host distinct communities that reflect productivity, land influences and other environmental constraints such as oxygen availability. The high variability of bacterial community composition specific to vent and coastal ecosystems reflects the heterogeneity and dynamic nature of these habitats. Both pelagic and benthic bacterial community distributions correlate with surface water productivity, reflecting the coupling between both realms by particle export. Also, differences in physical mixing may play a fundamental role in the distribution patterns of marine bacteria, as benthic communities showed a higher dissimilarity with increasing distance than pelagic communities. Conclusions/Significance This first synthesis of global bacterial distribution across different ecosystems of the World's oceans shows remarkable horizontal and vertical large-scale patterns in bacterial communities. This opens interesting perspectives for the definition of biogeographical biomes for bacteria of ocean waters and the seabed. PMID:21931760
NASA Astrophysics Data System (ADS)
Fu, Lee-Lueng; Morrow, Rosemary
2016-07-01
The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.
A Stable U Isotopic Perspective on the U Budget and Global Extent of Modern Anoxia in the Ocean.
NASA Astrophysics Data System (ADS)
Tissot, F.; Dauphas, N.
2015-12-01
Isotopic fractionation between U4+ and U6+makes U stable isotopes potential tracers of global paleoredox conditions. In this work [1], we put the U-proxy up to a test against a highly constrained system: the modern ocean. We measured a large number of seawater samples from geographically diverse locations and found that the open ocean has a homogenous isotopic composition at δ238USW= -0.392 ± 0.005 ‰ (rel. to CRM-112a). From our measurement of rock samples (n=64) and compilations of literature data (n=380), we then estimated the U isotopic compositions of the various reservoirs involved in the modern oceanic U budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Using a steady-state model, we compared the isotopic composition of the seawater predicted by the four most recent U oceanic budgets [2-5] to the modern seawater value we measured. Three of these budgets [2-4] predict a seawater isotopic composition in very good agreement with the observed δ238USW, which strengthens our confidence in the isotopic fractionation factors associated with each deposition environment and the fact that U is at steady-state in the modern ocean. The U oceanic budget of Henderson and Anderson (2003) does not reproduce the observed seawater composition because the U flux to anoxic/euxinic sediments relative to the total U flux out of the ocean is high in their model, which our analysis shows cannot be correct. The U isotopic composition of seawater is used to constrain the extent of anoxia in the modern ocean (% of seafloor covered by anoxic/euxinic sediments), which is 0.21 ± 0.09 %. This work demonstrates that stable isotopes of U can indeed trace the extent of anoxia in the modern global ocean, thereby validating the application of U isotope measurements to paleoredox reconstructions. Based on the above work, we will present the best estimate of the modern oceanic U budget. [1] Tissot F.L.H., Dauphas N. (2015) Geochim Cosmochim Ac 167, 113-143 [2] Barnes C. E., Cochran J. K. (1990) Earth Planet Sc Lett 97, 94-101 [3] Morford J. L., Emerson S. (1999) Geochim Cosmochim Ac 63, 1735-1750 [4] Dunk R. M., Mills R. A., Jenkins W. J. (2002) Chemical Geology 190, 45-67 [5] Henderson G. M., Anderson R. F. (2003) Rev Mineral Geochem 52, 493-531
Species diversity in the cryptic abyssal holothurian Psychropotes longicauda (Echinodermata)
NASA Astrophysics Data System (ADS)
Gubili, Chrysoula; Ross, Elizabeth; Billett, David S. M.; Yool, Andrew; Tsairidis, Charalampos; Ruhl, Henry A.; Rogacheva, Antonina; Masson, Doug; Tyler, Paul A.; Hauton, Chris
2017-03-01
Despite the plethora of studies on swallow-water invertebrates, almost nothing is known about the evolution and population structure of deep-sea species at the global scale. The aim of this study was to assess phylogeographic patterns of a common and cosmopolitan, predominantly abyssal sea cucumber, Psychropotes longicauda, based on samples from the Atlantic, Southern, Indian and Pacific oceans. Sequences of the mitochondrial COI and 16S genes were analysed for 128 specimens of P. longicauda. In addition, temporal genetic variation was investigated at one site, the Porcupine Abyssal Plain, NE Atlantic Ocean over a period of 34 years. Two distinct lineages within the global distribution were identified. The sister clades probably could be classified as separate species based on the observed genetic divergence (>5.0%) and phylogenetic reconstruction with indications of a Southern Hemisphere origin. Moreover, significant population differentiation was detected between the North Atlantic and localities in both the Pacific and Indian oceans. No bathymetric structuring was detected among lineages. Temporal genetic shifts were detected in a time series of samples from 1977 to 2011. Our data confirm the previously suspected cryptic species diversity throughout the wide distributional range previously attributed to the single species P. longicauda. The presence of sympatric species in the North Pacific and Indian Oceans has been underestimated by previous morphological analyses. The differentiation at the population level detected in the main lineages among the four oceans could suggest restricted gene flow despite wide-scale dispersal potential of the species.
U.S. GODAE: Global Ocean Prediction With the HYbrid Coordinate Ocean Model (HYCOM)
2009-06-01
REPORT DATE (DD-MM- YYYY) 12-08-2009 2. REPORT TYPE Journal Article 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE U.S. GODAE: Global ...the lerformance and application of eddy-resolving, real-time global - and basin-scale ocean prediction systems using the HYbrid Coordinate Ocean...prediction system outputs. In addnion to providing real-time, eddy-resolving global - and basin-scale ocean prediction systems for the US Navy and NOAA, this
Clio: An Autonomous Vertical Sampling Vehicle for Global Ocean Biogeochemical Mapping
NASA Astrophysics Data System (ADS)
Jakuba, M.; Gomez-Ibanez, D.; Saito, M. A.; Dick, G.; Breier, J. A., Jr.
2014-12-01
We report the preliminary design of a fast vertical profiling autonomous underwater vehicle, called Clio, designed to cost-effectively improve the understanding of marine microorganism ecosystem dynamics on a global scale. The insights into biogeochemical cycles to be gained from illuminating the relationships between ocean life and chemistry have led to establishment of the GEOTRACES program. The nutrient and trace element profiles generated by GEOTRACES will provide insight into what is happening biogeochemically, but not how it is happening, i.e., what biochemical pathways are active? Advances in sequencing technology and in situ preservation have made it possible to study the genomics (DNA), transcriptomics (RNA), proteomics (proteins and enzymes), metabolomics (lipids and other metabolites), and metallomics (metals), associated with marine microorganisms; however, these techniques require sample collection. To this end, Clio will carry two to four SUspended Particle Rosette (SUPR) multi-samplers to depths of 6000 m. Clio is being designed specifically to complement the GEOTRACES program—to operate simultaneously and independently of the wire-based sampling protocols developed for GEOTRACES. At each GEOTRACES ocean transect sampling station, Clio will be deployed from the ship, transit vertically to the seafloor, and then ascend to, and stop at up to 32 sampling depths, where it will filter up to 150 l of seawater per sample. Filtered samples for RNA will be administered a dose of preservative (RNALater) in situ. Clio must efficiently hold station at multiple depths between the surface and 6000 m, but also move rapidly between sampling depths. It must be chemically clean and avoid disturbing the water column while sampling. Clio must be operationally friendly, requiring few personnel to operate, and have minimal impact on shipboard operations. We have selected a positively-buoyant thruster-driven design with a quasi-isopycnal construction. Our simulations indicate the vehicle can complete dives that mirror their GEOTRACES counterparts within the station time alloted. The simulation includes the effects of material/housing compressibility and thermal expansion, and employs a global average T/S profile from the Levitus 1982 climatology.
NASA Astrophysics Data System (ADS)
Mackensen, A.; Zahn, R.; Hall, I.; Kuhn, G.; Koc, N.; Francois, R.; Hemming, S.; Goldstein, S.; Rogers, J.; Ehrmann, W.
2003-04-01
Quantifying oceanic variability at timescales of oceanic, atmospheric, and cryospheric processes are the fundamental objectives of the international IMAGES program. In this context the Southern Ocean plays a leading role in that it is involved, through its influence on global ocean circulation and carbon budget, with the development and maintenance of the Earth's climate system. The seas surrounding Antarctica contain the world's only zonal circum-global current system that entrains water masses from the three main ocean basins, and maintains the thermal isolation of Antarctica from warmer surface waters to the north. Furthermore, the Southern Ocean is a major site of bottom and intermediate water formation and thus actively impacts the global thermohaline circulation (THC). This proposal is an outcome of the IMAGES Southern Ocean Working Group and constitutes one component of a suite of new IMAGES/IODP initiatives that aim at resolving past variability of the Antarctic Circumpolar Current (ACC) on orbital and sub-orbital timescales and its involvement with rapid global ocean variability and climate instability. The primary aim of this proposal is to determine millennial- to sub-centennial scale variability of the ACC and the ensuing Atlantic-Indian water transports, including surface transports and deep-water flow. We will focus on periods of rapid ocean and climate change and assess the role of the Southern Ocean in these changes, both in terms of its thermohaline circulation and biogeochemical inventories. We propose a suite of 11 sites that form a latitudinal transect across the ACC in the westernmost Indian Ocean sector of the Southern Ocean. The transect is designed to allow the reconstruction of ACC variability across a range of latitudes in conjunction with meridional shifts of the surface ocean fronts. The northernmost reaches of the transect extend into the Agulhas Current and its retroflection system which is a key component of the THC warm water return flow to the Atlantic. The principal topics are: (i) the response of the ACC to climate variability; (ii) the history of the Southern Ocean surface ocean fronts during periods of rapid climate change; (iii) the history of North Atlantic Deep Water (NADW) export to the deep South Indian Ocean; (iv) the variability of Southern Ocean biogeochemical fluxes and their influence on Circumpolar Deep Water (CDW) carbon inventories and atmospheric chemistry; and (v) the variability of surface ocean fronts and the Indian-Atlantic surface ocean density flux. To achieve these objectives we will generate fine-scale records of palaeoceanographic proxies that are linked to a variety of climatically relevant ocean parameters. Temporal resolution of the records, depending on sedimentation rates, will range from millennial to sub-centennial time scales. Highest sedimentation rates are expected at coring sites located on current-controlled sediment drifts, whereas dense sampling of cores with moderate sedimentation rates will enable at least millennial-scale events to be resolved.
Spaceborne Studies Of Ocean Circulation
NASA Astrophysics Data System (ADS)
Patzert, William C.
1984-08-01
The global view of the oceans seen by Seasat during its 1978 flight demonstrated the feasibility of ocean remote sensing. These first-ever global data sets of sea surface topography (altimeter) and marine winds (scatterometer) laid the foundation for two satellite missions planned for the late 1980's. The future missions are the next generation of altimeter and scatterometer to be flown aboard TOPEX (Topography Experiment) and NROSS (Navy Remote Ocean Sensing System), respectively. The data from these satellites will be coordinated with measurements made at sea to determine the driving forces of ocean circulation and to study the oceans role in climate variability. Sea surface winds (calculated from scatterometer measurements) are the fundamental driving force for ocean waves and currents (estimated from altimeter measurements). On a global scale, the winds and currents are approximately equal partners in redistributing the excess heat gained in the tropics from solar radiation to the cooler polar regions. Small perturbations in this system can dramatically alter global weather, such as the El Niho event of 1982-83. During an El Ni?io event, global wind patterns and ocean currents are perturbed causing unusual ocean warming in the tropical Pacfic Ocean. These ocean events are coupled to complex fluctuations in global weather. Only with satellites will we be able to collect the global data sets needed to study events such as El Ni?o. When TOPEX and NROSS fly, oceanographers will have the equivalent of meteorological high and low pressure charts of ocean topography as well as the surface winds to study ocean "weather." This ability to measure ocean circulation and its driving forces is a critical element in understanding the influence of oceans on society. Climatic changes, fisheries, commerce, waste disposal, and national defense are all involved.
NASA Astrophysics Data System (ADS)
Le Traon, P. Y.
2012-04-01
The launch of the US/French mission Topex/Poseidon (T/P) (CNES/NASA) in August 1992 was the start of a revolution in oceanography. For the first time, a very precise altimeter system optimized for large scale sea level and ocean circulation observations was flying. Topex/Poseidon revolutionized our vision and understanding of the ocean. It provided new views of the large scale seasonal and interannual sea level and ocean circulation variations. T/P alone could not observe the mesoscale circulation. In the 1990s, the ESA satellites ERS-1/2 were flying simultaneously with T/P. The ERS-1/2 orbit was well adapted for mesoscale circulation sampling but the orbit determination and altimeter performance were much less precise than for T/P. We demonstrated that we could use T/P as a reference mission for ERS-1/2 and bring the ERS-1/2 data to an accuracy level comparable to T/P. This was an essential first step for the merging of T/P and ERS-1/2. The second step required the development of a global optimal interpolation method. Near real time high resolution global sea level anomaly maps were then derived. These maps have been operationally produced as part of the SSALTO/DUACS system for the last 15 years. They are now widely used by the oceanographic community and have contributed to a much better understanding and recognition of the role and importance of mesoscale dynamics. The unique capability of satellite altimetry to observe the global ocean in near real time at high resolution was essential to the development of global ocean forecasting, a second revolution in oceanography. The Global Ocean Data Assimilation Experiment (GODAE) (1998-2008) was phased with the T/P and ERS-1/2 successors (Jason-1 and ENVISAT) and was instrumental in the development of global operational oceanography capabilities. Europe played a leading role in GODAE. In 1998, the global in-situ observing system was inadequate for the global scope of GODAE. This led to the development of Argo, an initial joint venture between CLIVAR and GODAE. Argo has been an outstanding success. The 3000 Argo profiling floats now provide the most important global in-situ observations to monitor and understand the role of the ocean on the earth climate. This is a third revolution in oceanography. I was lucky enough to be involved with many colleagues and friends in these three revolutions or breakthroughs in oceanography. The presentation will provide some historical background on the development of the SSALTO/DUACS merged altimeter products and an overview of their utility and use for ocean research and operational oceanography. I will thengo throughthe development of operational oceanography and Argo over the past 15 years focussing on European contributions, in particular, in the framework of the GMES Marine Service, EuroGOOSand the Euro-Argo research infrastructure. Perspectives and new challenges for the integrated global ocean observing system will be finally discussed.
NASA Astrophysics Data System (ADS)
Jones, M. R.; Soule, S. A.; Gonnermann, H. M.; Le Roux, V.; Clague, D. A.
2018-07-01
Quantitative metrics for eruption rates at mid-ocean ridges (MORs) would improve our understanding of the structure and formation of the uppermost oceanic crust and would provide a means to link volcanic processes with the conditions of the underlying magmatic system. However, these metrics remain elusive because no MOR eruptions have been directly observed. The possibility of disequilibrium degassing in mid-ocean ridge basalts (MORB), due to high eruptive depressurization rates, makes the analysis of volatile concentrations in MORB glass a promising method for evaluating eruption rates. In this study, we estimate magma ascent and lava flow emplacement rates during the 2011 eruption of Axial Seamount based on numerical modeling of diffusion-controlled bubble growth and new measurements of dissolved volatiles, vesicularity, and vesicle size distributions in erupted basalts. This dataset provides a unique view of the variability in magma ascent (∼0.02-1.2 m/s) and lava flow rates (∼0.1-0.7 m/s) during a submarine MOR eruption based on 50 samples collected from a >10 km long fissure system and three individual lava flow lobes. Samples from the 2011 eruption display an unprecedented range in dissolved CO2 concentrations, nearly spanning the full range observed on the global MOR system. The variable vesicularity and dissolved CO2 concentrations in these samples can be explained by differences in the extent of degassing, dictated by flow lengths and velocities during both vertical ascent and horizontal flow along the seafloor. Our results document, for the first time, the variability in magma ascent rates during a submarine eruption (∼0.02-1.2 m/s), which spans the global range previously proposed based on CO2 degassing. The slowest ascent rates are associated with hummocky flows while faster ascent rates produce channelized sheet flows. This study corroborates degassing-based models for eruption rates using comparisons with independent methods and documents the relationship between eruption dynamics, magma ascent rates, and the morphology of eruptive products. Globally, this approach allows interrogation of the processes that govern mid-ocean ridge eruptions and influence the formation of the oceanic crust.
NASA Technical Reports Server (NTRS)
Meyers, Gary
1992-01-01
The background and goals of Indian Ocean thermal sampling are discussed from the perspective of a national project which has research goals relevant to variation of climate in Australia. The critical areas of SST variation are identified. The first goal of thermal sampling at this stage is to develop a climatology of thermal structure in the areas and a description of the annual variation of major currents. The sampling strategy is reviewed. Dense XBT sampling is required to achieve accurate, monthly maps of isotherm-depth because of the high level of noise in the measurements caused by aliasing of small scale variation. In the Indian Ocean ship routes dictate where adequate sampling can be achieved. An efficient sampling rate on available routes is determined based on objective analysis. The statistical structure required for objective analysis is described and compared at 95 locations in the tropical Pacific and 107 in the tropical Indian Oceans. XBT data management and quality control methods at CSIRO are reviewed. Results on the mean and annual variation of temperature and baroclinic structure in the South Equatorial Current and Pacific/Indian Ocean Throughflow are presented for the region between northwest Australia and Java-Timor. The mean relative geostrophic transport (0/400 db) of Throughflow is approximately 5 x 106 m3/sec. A nearly equal volume transport is associated with the reference velocity at 400 db. The Throughflow feeds the South Equatorial Current, which has maximum westward flow in August/September, at the end of the southeasterly Monsoon season. A strong semiannual oscillation in the South Java Current is documented. The results are in good agreement with the Semtner and Chervin (1988) ocean general circulation model. The talk concludes with comments on data inadequacies (insufficient coverage, timeliness) particular to the Indian Ocean and suggestions on the future role that can be played by Data Centers, particularly with regard to quality control of data as research bodies are replaced by operational bodies in the Global Ocean Observing System.
The NASA CYGNSS mission: a pathfinder for GNSS scatterometry remote sensing applications
NASA Astrophysics Data System (ADS)
Rose, Randy; Gleason, Scott; Ruf, Chris
2014-10-01
Global Navigation Satellite System (GNSS) based scatterometry offers breakthrough opportunities for wave, wind, ice, and soil moisture remote sensing. Recent developments in electronics and nano-satellite technologies combined with modeling techniques developed over the past 20 years are enabling a new class of remote sensing capabilities that present more cost effective solutions to existing problems while opening new applications of Earth remote sensing. Key information about the ocean and global climate is hidden from existing space borne observatories because of the frequency band in which they operate. Using GNSS-based bi-static scatterometry performed by a constellation of microsatellites offers remote sensing of ocean wave, wind, and ice data with unprecedented temporal resolution and spatial coverage across the full dynamic range of ocean wind speeds in all precipitating conditions. The NASA Cyclone Global Navigation Satellite System (CYGNSS) is a space borne mission being developed to study tropical cyclone inner core processes. CYGNSS consists of 8 GPS bi-static radar receivers to be deployed on separate micro-satellites in October 2016. CYGNSS will provide data to address what are thought to be the principle deficiencies with current tropical cyclone intensity forecasts: inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the tropical cyclone life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. It is anticipated that numerous additional Earth science applications can also benefit from the cost effective high spatial and temporal sampling capabilities of GNSS remote sensing. These applications include monitoring of rough and dangerous sea states, global observations of sea ice cover and extent, meso-scale ocean circulation studies, and near surface soil moisture observations. This presentation provides a primer for GNSS based scatterometry, an overview of NASA's CYGNSS mission and its expected performance, as well as a summary of possible other GNSS based remote sensing applications.
Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.
Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim
2018-03-01
Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-10-01
In this article we propose two grid generation methods for global ocean general circulation models. Contrary to conventional dipolar or tripolar grids, the proposed methods are based on Schwarz-Christoffel conformal mappings that map areas with user-prescribed, irregular boundaries to those with regular boundaries (i.e., disks, slits, etc.). The first method aims at improving existing dipolar grids. Compared with existing grids, the sample grid achieves a better trade-off between the enlargement of the latitudinal-longitudinal portion and the overall smooth grid cell size transition. The second method addresses more modern and advanced grid design requirements arising from high-resolution and multi-scale ocean modeling. The generated grids could potentially achieve the alignment of grid lines to the large-scale coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the grids are orthogonal curvilinear, they can be easily utilized by the majority of ocean general circulation models that are based on finite difference and require grid orthogonality. The proposed grid generation algorithms can also be applied to the grid generation for regional ocean modeling where complex land-sea distribution is present.
Improved estimates of ocean heat content from 1960 to 2015.
Cheng, Lijing; Trenberth, Kevin E; Fasullo, John; Boyer, Tim; Abraham, John; Zhu, Jiang
2017-03-01
Earth's energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.
Improved estimates of ocean heat content from 1960 to 2015
Cheng, Lijing; Trenberth, Kevin E.; Fasullo, John; Boyer, Tim; Abraham, John; Zhu, Jiang
2017-01-01
Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the data-rich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and with variability on decadal and multidecadal time scales (signal) that can be reliably distinguished from sampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition, OHC changes in six major oceans are reliable on decadal time scales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study. PMID:28345033
A review of sensors, samplers and methods for marine biological observations.
NASA Astrophysics Data System (ADS)
Simmons, S. E.; Chavez, F.; Pearlman, J.; Working Group, T B S
2016-02-01
Physical scientists now have Argo floats, gliders and AUVs to supplement satellites to provide a 3-D view of the time-varying global ocean temperature and salinity structure. Biogeochemists are catching up with evolving sensors for nitrate, optical properties, oxygen and pH that can now be added to these autonomous systems. Biologists are still lagging, although some promising sensor systems based on but not limited to acoustic, chemical, genomic or imaging techniques, that can sense from microbes to whales, are on the horizon. These techniques can not only be applied in situ but also on samples returned to the laboratory using the autonomous systems. The number of samples is limiting, requiring adaptive and smart systems. Given the importance of biology to ocean health and the future earth, and the present reliance on humans and ships for observing species and abundance it is paramount that new biological sensor systems be developed. This abstract will review recent efforts to identify core biological variables for the US Integrated Ocean Observing System and address new sensors and innovations for observing these variables, particularly focused on availability and maturity of sensors. The relevance of this work in a global context will also be touched on.
NASA Astrophysics Data System (ADS)
Latrubesse, E. M.; Park, E.; Aquino, S.
2017-12-01
Global studies have ascertained that relatively small drainage basins of Sumatra, Java, Borneo, Celebes, and Timor, which represent only 2% of the land draining to the ocean, may discharge about 4200 million tons/y of sediment. It means approximately 25% of the global sediment export to the ocean (Milliman and Farnsworth, 2013). With an area of 750,000 km2, Borneo, the 3rdlargest island in the world (after Greenland and New Guinea) could export from to the ocean approximately 910 Mt/y. About half (459 Mt) of the island discharge is from rivers draining Sarawak (Malaysia) to the South China Sea; while the other half (450 Mt) drain Kalimantan to the Java, Makassar Strait, and Celebes Seas (Milliman and Farnsworth, 2013). However, direct measurements of suspended sediments in Borneo are not available and the calculations of sediment yields and transferences to the ocean have been based on probabilistic curves. We hypothesize that the available data on the volume of sediment discharge are overestimated. We provide evidences that support our hypothesis through geological/geomorphological mappings, fluvial surveys, suspended sediment samplings, analyses on the channel stability of major rivers, and surface suspended sediments concentration modelling (SSSC) of river plumes in the coastal zone. Our initial assessments on sediment budget indicates that Borneo could produce and supply to the Ocean significantly less sediment than previously estimated by other authors. ReferencesMilliman and Farnsworth (2013), Appendix F (Asia) and G (Oceania), In River discharge to the coastal ocean, 289-329.
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.
2016-12-01
Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.
Global habitat suitability for framework-forming cold-water corals.
Davies, Andrew J; Guinotte, John M
2011-04-15
Predictive habitat models are increasingly being used by conservationists, researchers and governmental bodies to identify vulnerable ecosystems and species' distributions in areas that have not been sampled. However, in the deep sea, several limitations have restricted the widespread utilisation of this approach. These range from issues with the accuracy of species presences, the lack of reliable absence data and the limited spatial resolution of environmental factors known or thought to control deep-sea species' distributions. To address these problems, global habitat suitability models have been generated for five species of framework-forming scleractinian corals by taking the best available data and using a novel approach to generate high resolution maps of seafloor conditions. High-resolution global bathymetry was used to resample gridded data from sources such as World Ocean Atlas to produce continuous 30-arc second (∼1 km(2)) global grids for environmental, chemical and physical data of the world's oceans. The increased area and resolution of the environmental variables resulted in a greater number of coral presence records being incorporated into habitat models and higher accuracy of model predictions. The most important factors in determining cold-water coral habitat suitability were depth, temperature, aragonite saturation state and salinity. Model outputs indicated the majority of suitable coral habitat is likely to occur on the continental shelves and slopes of the Atlantic, South Pacific and Indian Oceans. The North Pacific has very little suitable scleractinian coral habitat. Numerous small scale features (i.e., seamounts), which have not been sampled or identified as having a high probability of supporting cold-water coral habitat were identified in all ocean basins. Field validation of newly identified areas is needed to determine the accuracy of model results, assess the utility of modelling efforts to identify vulnerable marine ecosystems for inclusion in future marine protected areas and reduce coral bycatch by commercial fisheries.
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Aoyama, M.; Biddulph, D.; Breier, R.; Buesseler, K.; Chang, C. C.; Golser, R.; Hou, X. L.; Ješkovský, M.; Jull, A. J. T.; Kaizer, J.; Nakano, M.; Nies, H.; Palcsu, L.; Papp, L.; Pham, M. K.; Steier, P.; Zhang, L. Y.
2013-08-01
Radionuclide impact of the Fukushima Dai-ichi nuclear power plant accident on the distribution of radionuclides in seawater of the NW Pacific Ocean is compared with global fallout from atmospheric tests of nuclear weapons. Surface and water column samples collected during the Ka'imikai-o-Kanaloa (KOK) international expedition carried out in June 2011 were analyzed for 134Cs, 137Cs, 129I and 3H. The 137Cs, 129I and 3H levels in surface seawater offshore Fukushima varied between 0.002-3.5 Bq L-1, 0.01-0.8 μBq L-1, and 0.05-0.15 Bq L-1, respectively. At the sampling site about 40 km from the coast, where all three radionuclides were analyzed, the Fukushima impact on the levels of these three radionuclides represents an increase above the global fallout background by factors of about 1000, 50 and 3, respectively. The water column data indicate that the transport of Fukushima-derived radionuclides downward to the depth of 300 m has already occurred. The observed 137Cs levels in surface waters and in the water column are compared with predictions obtained from the ocean general circulation model, which indicates that the Kuroshio Current acts as a southern boundary for the transport of the radionuclides, which have been transported from the Fukushima coast eastward in the NW Pacific Ocean. The 137Cs inventory in the water column is estimated to be about 2.2 PBq, what can be regarded as a lower limit of the direct liquid discharges into the sea as the seawater sampling was carried out only in the area from 34 to 37° N, and from 142 to 147° E. About 4.6 GBq of 129I was deposited in the NW Pacific Ocean, and 2.4-7 GBq of 129I was directly discharged as liquid wastes into the sea offshore Fukushima. The total amount of 3H released and deposited over the NW Pacific Ocean was estimated to be 0.1-0.5 PBq. These estimations depend, however, on the evaluation of the total 137Cs activities released as liquid wastes directly into the sea, which should improve when more data are available. Due to a suitable residence time in the ocean, Fukushima-derived radionuclides will provide useful tracers for isotope oceanography studies on the transport of water masses during the next decades in the NW Pacific Ocean.
Barium isotopes in cold-water corals
NASA Astrophysics Data System (ADS)
Hemsing, Freya; Hsieh, Yu-Te; Bridgestock, Luke; Spooner, Peter T.; Robinson, Laura F.; Frank, Norbert; Henderson, Gideon M.
2018-06-01
Recent studies have introduced stable Ba isotopes (δ 138 / 134Ba) as a novel tracer for ocean processes. Ba isotopes could potentially provide insight into the oceanic Ba cycle, the ocean's biological pump, water-mass provenance in the deep ocean, changes in activity of hydrothermal vents, and land-sea interactions including tracing riverine inputs. Here, we show that aragonite skeletons of various colonial and solitary cold-water coral (CWC) taxa record the seawater (SW) Ba isotope composition. Thirty-six corals of eight different taxa from three oceanic regions were analysed and compared to δ 138 / 134Ba measurements of co-located seawater samples. Sites were chosen to cover a wide range of temperature, salinity, Ba concentrations and Ba isotope compositions. Seawater samples at the three sites exhibit the well-established anti-correlation between Ba concentration and δ 138 / 134Ba. Furthermore, our data set suggests that Ba/Ca values in CWCs are linearly correlated with dissolved [Ba] in ambient seawater, with an average partition coefficient of DCWC/SW = 1.8 ± 0.4 (2SD). The mean isotope fractionation of Ba between seawater and CWCs Δ138/134BaCWC-SW is -0.21 ± 0.08‰ (2SD), indicating that CWC aragonite preferentially incorporates the lighter isotopes. This fractionation likely does not depend on temperature or other environmental variables, suggesting that aragonite CWCs could be used to trace the Ba isotope composition in ambient seawater. Coupled [Ba] and δ 138 / 134Ba analysis on fossil CWCs has the potential to provide new information about past changes in the local and global relationship between [Ba] and δ 138 / 134Ba and hence about the operation of the past global oceanic Ba cycle in different climate regimes.
Seismic evidence for broad attenuation anomalies in the asthenosphere beneath the Pacific Ocean
NASA Astrophysics Data System (ADS)
Adenis, Alice; Debayle, Eric; Ricard, Yanick
2017-06-01
We present QADR17, a global model of Rayleigh-wave attenuation based on a massive surface wave data set (372 629 frequency-dependent attenuation curves in the period range 50-260 s). We correct for focusing-defocusing effects and geometrical spreading, and perform a stringent selection to only keep robust observations. Then, data with close epicentres recorded at the same station are clustered, as they sample the same Earth's structure. After this pre-selection, our data set consists of about 35 000 curves that constrain the Rayleigh-wave intrinsic attenuation in the upper mantle. The logarithms of the attenuation along the individual rays are then inverted to obtain global maps of the logarithm of the local attenuation. After a first inversion, outliers are rejected and a second inversion yields a variance reduction of about 45 per cent. Our attenuation maps present strong agreement with surface tectonics at periods lower than 200 s, with low attenuation under continents and high attenuation under oceans. Over oceans, attenuation decreases with increasing crustal ages, but at periods sensitive to the uppermost 150 km, mid-ocean ridges are not characterized by a very localized anomaly, in contrast to what is commonly observed for seismic velocity models. Attenuation is rather well correlated with hotspots, especially in the Pacific ocean, where a strong attenuating anomaly is observed in the long wavelength component of our signal at periods sampling the oceanic asthenosphere. We suggest that this anomaly results from the horizontal spreading of several thermal plumes within the asthenosphere. Strong velocity reductions associated with high attenuation anomalies of moderate amplitudes beneath the East Pacific Rise, the Red Sea and the eastern part of Asia may require additional mechanisms, such as partial melting.
Marine anthropogenic radiotracers in the Southern Hemisphere: New sampling and analytical strategies
NASA Astrophysics Data System (ADS)
Levy, I.; Povinec, P. P.; Aoyama, M.; Hirose, K.; Sanchez-Cabeza, J. A.; Comanducci, J.-F.; Gastaud, J.; Eriksson, M.; Hamajima, Y.; Kim, C. S.; Komura, K.; Osvath, I.; Roos, P.; Yim, S. A.
2011-04-01
The Japan Agency for Marine Earth Science and Technology conducted in 2003-2004 the Blue Earth Global Expedition (BEAGLE2003) around the Southern Hemisphere Oceans, which was a rare opportunity to collect many seawater samples for anthropogenic radionuclide studies. We describe here sampling and analytical methodologies based on radiochemical separations of Cs and Pu from seawater, as well as radiometric and mass spectrometry measurements. Several laboratories took part in radionuclide analyses using different techniques. The intercomparison exercises and analyses of certified reference materials showed a reasonable agreement between the participating laboratories. The obtained data on the distribution of 137Cs and plutonium isotopes in seawater represent the most comprehensive results available for the Southern Hemisphere Oceans.
NASA Astrophysics Data System (ADS)
Gholizadeh, H.; Robeson, S. M.
2015-12-01
Empirical models have been widely used to estimate global chlorophyll content from remotely sensed data. Here, we focus on the standard NASA empirical models that use blue-green band ratios. These band ratio ocean color (OC) algorithms are in the form of fourth-order polynomials and the parameters of these polynomials (i.e. coefficients) are estimated from the NASA bio-Optical Marine Algorithm Data set (NOMAD). Most of the points in this data set have been sampled from tropical and temperate regions. However, polynomial coefficients obtained from this data set are used to estimate chlorophyll content in all ocean regions with different properties such as sea-surface temperature, salinity, and downwelling/upwelling patterns. Further, the polynomial terms in these models are highly correlated. In sum, the limitations of these empirical models are as follows: 1) the independent variables within the empirical models, in their current form, are correlated (multicollinear), and 2) current algorithms are global approaches and are based on the spatial stationarity assumption, so they are independent of location. Multicollinearity problem is resolved by using partial least squares (PLS). PLS, which transforms the data into a set of independent components, can be considered as a combined form of principal component regression (PCR) and multiple regression. Geographically weighted regression (GWR) is also used to investigate the validity of spatial stationarity assumption. GWR solves a regression model over each sample point by using the observations within its neighbourhood. PLS results show that the empirical method underestimates chlorophyll content in high latitudes, including the Southern Ocean region, when compared to PLS (see Figure 1). Cluster analysis of GWR coefficients also shows that the spatial stationarity assumption in empirical models is not likely a valid assumption.
A Multiyear Dataset of SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe; Nelkin, Eric; Einaudi, Franco (Technical Monitor)
2001-01-01
The surface turbulent fluxes of momentum, latent heat, and sensible heat over global oceans are essential to weather, climate and ocean problems. Evaporation is a key component of the hydrological cycle and the surface heat budget, while the wind stress is the major forcing for driving the oceanic circulation. The global air-sea fluxes of momentum, latent and sensible heat, radiation, and freshwater (precipitation-evaporation) are the forcing for driving oceanic circulation and, hence, are essential for understanding the general circulation of global oceans. The global air-sea fluxes are required for driving ocean models and validating coupled ocean-atmosphere global models. We have produced a 7.5-year (July 1987-December 1994) dataset of daily surface turbulent fluxes over the global oceans from the Special Sensor microwave/Imager (SSM/I) data. Daily turbulent fluxes were derived from daily data of SSM/I surface winds and specific humidity, National Centers for Environmental Prediction (NCEP) sea surface temperatures, and European Centre for Medium-Range Weather Forecasts (ECMWF) air-sea temperature differences, using a stability-dependent bulk scheme. The retrieved instantaneous surface air humidity (with a 25-km resolution) validated well with that of the collocated radiosonde observations over the global oceans. Furthermore, the retrieved daily wind stresses and latent heat fluxes were found to agree well with that of the in situ measurements (IMET buoy, RV Moana Wave, and RV Wecoma) in the western Pacific warm pool during the TOGA COARE intensive observing period (November 1992-February 1993). The global distributions of 1988-94 seasonal-mean turbulent fluxes will be presented. In addition, the global distributions of 1990-93 annual-means turbulent fluxes and input variables will be compared with those of UWM/COADS covering the same period. The latter is based on the COADS (comprehensive ocean-atmosphere data set) and is recognized to be one of the best climatological analyses of fluxes derived from ship observations.
Global rates of mantle serpentinization and H2 release at oceanic transform faults
NASA Astrophysics Data System (ADS)
Ruepke, Lars; Hasenclever, Joerg
2017-04-01
The cycling of seawater through the ocean floor is the dominant mechanism of biogeochemical exchange between the solid earth and the global ocean. Crustal fluid flow appears to be typically associated with major seafloor structures, and oceanic transform faults (OTF) are one of the most striking yet poorly understood features of the global mid-ocean ridge systems. Fracture zones and transform faults have long been hypothesized to be sites of substantial biogeochemical exchange between the solid Earth and the global ocean. This is particularly interesting with regard to the ocean biome. Deep ocean ecosystems constitute 60% of it but their role in global ocean biogeochemical cycles is much overlooked. There is growing evidence that life is supported by chemosynthesis at hydrothermal vents but also in the crust, and therefore this may be a more abundant process than previously thought. In this context, the serpentine forming interaction between seawater and cold lithospheric mantle rocks is particularly interesting as it is also a mechanism of abiotic hydrogen and methane formation. Interestingly, a quantitative global assessment of mantle serpentinization at oceanic transform faults in the context of the biogeochemical exchange between the seafloor and the global ocean is still largely missing. Here we present the results of a set of 3-D thermo-mechanical model calculations that investigate mantle serpentinization at OTFs for the entire range of globally observed slip rates and fault lengths. These visco-plastic models predict the OTF thermal structure and the location of crustal-scale brittle deformation, which is a prerequisite for mantle serpentinization to occur. The results of these simulations are integrated with information on the global distribution of OTF lengths and slip rates yielding global estimates on mantle serpentinization and associated H2 release. We find that OTFs are potentially sites of intense crustal fluid flow and are in terms of H2 release almost as important as MOR-related serpentinization.
NASA Technical Reports Server (NTRS)
Ciais, Philippe; Tans, Pieter P.; White, James W. C.; Trolier, Michael; Francey, Roger J.; Berry, Joe A.; Randall, David R.; Sellers, Piers J.; Collatz, James G.; Schimel, David S.
1995-01-01
Using delta C-13 measurements in atmospheric CO2 from a cooperative global air sampling network, we determined the partitioning of the net uptake of CO2 between ocean and land as a function of latitude and time. The majority of delta C-13 measurements were made at the Institute of Arctic and Alpine Research (INSTAAR) of the University of Colorado. We perform an inverse deconvolution of both CO2 and delta C-13 observations, using a two-dimensional model of atmospheric transport. Also, the discrimination against C-13 by plant photosynthesis, as a function of latitude and time, is calculated from global runs of the simple biosphere (SiB) model. Uncertainty due to the longitudinal structure of the data, which is not represented by the model, is studied through a bootstrap analysis by adding and omitting measurement sites. The resulting error estimates for our inferred sources and sinks are of the order of 1 GTC (1 GTC = 10(exp 15) gC). Such error bars do not reflect potential systematic errors arising from our estimates of the isotopic disequilibria between the atmosphere and the oceans and biosphere, which are estimated in a separate sensitivity analysis. With respect to global totals for 1992 we found that 3.2 GTC of carbon dissolved into the ocean and that 1.5 GTC were sequestered by land ecosystems. Northern hemisphere ocean gyres north of 15 deg N absorbed 2.7 GTC. The equatorial oceans between 10 deg S and 10 deg N were a net source to the atmosphere of 0.9 GTC. We obtained a sink of 1.6 GTC in southern ocean gyres south of 20 deg S, although the deconvolution is poorly constrained by sparse data coverage at high southern latitudes. The seasonal uptake of CO2 in the northern gyres appears to be correlated with a bloom of phytoplankton in surface waters. On land, northern temperate and boreal ecosystems between 35 deg N and 65 deg N were found to be a major sink of CO2 in 1992, as large as 3.5 GTC. Northern tropical ecosystems (equator-30 deg N) appear to be a net source to the source to the atmosphere of 2 GTC which could reflect biomass burning. A small sink, 0.3 GTC, was inferred for southern tropical ecosystems (30 deg S-equator).
Climatology and Archived Data - Naval Oceanography Portal
Archived Data godae_text_logo.png Global Ocean Data Assimilation Experiment (GODAE) The Global Ocean Data Assimilation Experiment (GODAE) is a practical demonstration of near-real-time, global ocean data assimilation
Toulza, Eve; Tagliabue, Alessandro; Blain, Stéphane; Piganeau, Gwenael
2012-01-01
Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas. Here, we built a database of 2319 sequences, corresponding to 140 gene families of iron metabolism with a large phylogenetic spread, to explore the microbial strategies of iron acquisition in the ocean's bacterial community. We estimate iron metabolism strategies from metagenome gene content and investigate whether their prevalence varies with dissolved iron concentrations obtained from a biogeochemical model. We show significant quantitative and qualitative variations in iron metabolism pathways, with a higher proportion of iron metabolism genes in low iron environments. We found a striking difference between coastal and open ocean sites regarding Fe(2+) versus Fe(3+) uptake gene prevalence. We also show that non-specific siderophore uptake increases in low iron open ocean environments, suggesting bacteria may acquire iron from natural siderophore-like organic complexes. Despite the lack of knowledge of iron uptake mechanisms in most marine microorganisms, our approach provides insights into how the iron metabolic pathways of microbial communities may vary with seawater iron concentrations.
Pelagic ecology of the South West Indian Ocean Ridge seamounts: Introduction and overview
NASA Astrophysics Data System (ADS)
Rogers, A. D.
2017-02-01
The Indian Ocean was described by Behrman (1981) as the "Forlorn Ocean", a region neglected by science up to the late-1950s. For example, the Challenger Expedition from 1872 to 1876 largely avoided the Indian Ocean, sailing from Cape Town into Antarctic waters sampling around the Prince Edward Islands, Kerguelen Island and Crozet Islands before heading to Melbourne. From 1876 to the 1950s there were expeditions on several vessels including the Valdivia, Gauss and Planet (Germany), the Snellius (Netherlands), Discovery II, MahaBiss (United Kingdom), Albatross (Sweden), Dana and Galathea (Denmark; Behrman, 1981). There was no coordination between these efforts and overall the Indian Ocean, especially the deep sea remained perhaps the most poorly explored of the world's oceans. This situation was largely behind the multilateral effort represented by the International Indian Ocean Expedition (IIEO), which was coordinated by the Scientific Committee for Ocean Research (SCOR), and which ran from 1959-1965. Work during this expedition focused on the Arabian Sea, the area to the northwest of Australia and the waters over the continental shelves and slopes of coastal states in the region. Subsequently several large-scale international oceanographic programmes have included significant components in the Indian Ocean, including the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE). These studies were focused on physical oceanographic measurements and biogeochemistry and whilst the Indian Ocean is still less understood than other large oceans it is now integrated into the major ocean observation systems (Talley et al., 2011). This cannot be said for many aspects of the biology of the region, despite the fact that the Indian Ocean is one of the places where exploitation of marine living resources is still growing (FAO, 2016). The biology of the deep Indian Ocean outside of the Arabian Sea is particularly poorly understood given the presence of globally significant areas of seamounts, submarine plateaus, continental and island slopes.
How well can we measure Earth's Energy Imbalance?
NASA Astrophysics Data System (ADS)
Hakuba, M. Z.; Stephens, G. L.; Landerer, F. W.; Webb, F.; Bettadpur, S. V.; Tapley, B. D.; Christophe, B.; Foulon, B.
2017-12-01
The direct measurement of Earth's energy imbalance (EEI) is one of the greatest challenges in climate research. The global mean EEI is the integrated value of global warming, while its spatial and temporal variability can tell us about the strength and direction of heat transports and reflects internal climate modes such as ENSO. These heat flows ultimately control the circulation in the atmosphere and ocean, and henceforth the water cycle and habitability of our planet. Current space-born systems measure the radiative components of the global mean energy budget with unprecedented accuracy and stability, but the residual budget derived from them has errors too large to determine the absolute magnitude of EEI. Best estimates of EEI are currently derived from changes in ocean heat content, which are afflicted with horizontal and vertical sampling issues. Hence, we see the need to improve on current approaches in order to circumvent calibration issues that are inevitable in radiometry, and sampling issues that are inevitable when profiling the ocean. We will present alternative methods to estimate the EEI by 1) exploiting existing datasets of ocean mass and sea level height from remote sensing. A combination of such datasets, as for example provided by the GRACE and Jason missions, provides a way of estimating the thermo-steric sea level rise and therefore the thermal expansion of the ocean due to heat uptake. Recent studies suggest the retrieval of ocean heat uptake is possible within acceptable error bounds, although the magnitude and sources of error are yet to be comprehensively defined. 2) To monitor the integrated value of EEI from space, we propose a method that aims at measuring the non-gravitational force due to radiation pressure acting on Earth orbiting spacecrafts. This requires measurements of acceleration at high accuracy. The concept of deriving EEI from radiation pressure has been explored in the past and today's advanced capabilities suggest it is feasible to measure the EEI accurately enough to answer the question: At what rate is our planet warming? This method provides little information on spectral distribution and spatiotemporal resolution. However, by directly measuring EEI, it could complement existing efforts and improve our understanding of the climatic changes our planet is subjected to.
Ocean plankton. Environmental characteristics of Agulhas rings affect interocean plankton transport.
Villar, Emilie; Farrant, Gregory K; Follows, Michael; Garczarek, Laurence; Speich, Sabrina; Audic, Stéphane; Bittner, Lucie; Blanke, Bruno; Brum, Jennifer R; Brunet, Christophe; Casotti, Raffaella; Chase, Alison; Dolan, John R; d'Ortenzio, Fabrizio; Gattuso, Jean-Pierre; Grima, Nicolas; Guidi, Lionel; Hill, Christopher N; Jahn, Oliver; Jamet, Jean-Louis; Le Goff, Hervé; Lepoivre, Cyrille; Malviya, Shruti; Pelletier, Eric; Romagnan, Jean-Baptiste; Roux, Simon; Santini, Sébastien; Scalco, Eleonora; Schwenck, Sarah M; Tanaka, Atsuko; Testor, Pierre; Vannier, Thomas; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Boss, Emmanuel; de Vargas, Colomban; Gorsky, Gabriel; Ogata, Hiroyuki; Pesant, Stéphane; Sullivan, Matthew B; Sunagawa, Shinichi; Wincker, Patrick; Karsenti, Eric; Bowler, Chris; Not, Fabrice; Hingamp, Pascal; Iudicone, Daniele
2015-05-22
Agulhas rings provide the principal route for ocean waters to circulate from the Indo-Pacific to the Atlantic basin. Their influence on global ocean circulation is well known, but their role in plankton transport is largely unexplored. We show that, although the coarse taxonomic structure of plankton communities is continuous across the Agulhas choke point, South Atlantic plankton diversity is altered compared with Indian Ocean source populations. Modeling and in situ sampling of a young Agulhas ring indicate that strong vertical mixing drives complex nitrogen cycling, shaping community metabolism and biogeochemical signatures as the ring and associated plankton transit westward. The peculiar local environment inside Agulhas rings may provide a selective mechanism contributing to the limited dispersal of Indian Ocean plankton populations into the Atlantic. Copyright © 2015, American Association for the Advancement of Science.
Ocean-atmosphere science from the NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission
NASA Astrophysics Data System (ADS)
Werdell, J.
2016-12-01
The new NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission is a strategic climate continuity activity that will not only extend key heritage ocean color, cloud, and aerosol data records, but also enable new insight into oceanographic and atmospheric responses to Earth's changing climate. The primary PACE instrument will be a spectroradiometer that spans the ultraviolet to shortwave infrared region at 5 nm resolution with a ground sample distance of 1 km at nadir. This payload will likely be complemented by a multi-angle polarimeter with a similar spectral range. Scheduled for launch in 2022, this PACE instrument pair will revolutionize studies of global biogeochemistry and carbon cycles in the ocean-atmosphere system. Here, I present a PACE mission overview, with focus on instrument characteristics, core and advanced data products, and overarching science objectives.
2009-06-30
Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate Global Ocean...2009 4. TITLE AND SUBTITLE Salinity Boundary Conditions and the Atlantic Meridional Overturning Circulation in Depth and Quasi-Isopycnic Coordinate... Atlantic Meridional Overturning Circulation (AMOC) in global simulations performed with the depth coordinate Parallel Ocean Program (POP) ocean
Decline in global oceanic oxygen content during the past five decades.
Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin
2017-02-15
Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12 mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15 mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.
Chao, How-Ran; Lin, Ding-Yan; Chen, Kuang-Yu; Gou, Yan-Yu; Chiou, Tsyr-Huei; Lee, Wen-Jhy; Chen, Shui-Jen; Wang, Lin-Chi
2014-09-01
This study investigates the atmospheric occurrence of persistent organic pollutants (POPs) over the Pacific Ocean near southern Taiwan and the northern Philippines. We determined sixty-six compounds, including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), dioxin-like polychlorinated biphenyls (DLPCBs), polybrominated diphenyl ethers (PBDEs), as well as polychlorinated diphenyl ethers (PCDEs), polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs), and polybrominated biphenyls (PBBs), in air samples simultaneously collected from the offshore oceanic atmosphere (n=6) and over a rural area (n=2). We calculated the atmospheric World Health Organization 2005 toxic equivalency levels (WHO2005-TEQ), for the total dioxin-like POPs, including PCDD/Fs, DLPCBs, and PBDD/Fs, being 0.00612 pg WHO2005-TEQ/m(3) and 0.0138 pg WHO2005-TEQ/m(3) over the ocean and land, respectively. We found unexpected lower averaged atmospheric PBDE concentrations in the rural area (15.9 pg/m(3)) than over the ocean (31.1 pg/m(3)) due to higher levels of the BDE209 congener, although the difference was not statistically significant. We have compared and reported our field results with previously published datasets over the global oceans, which suggest PCBs and PBDEs are the dominant chemical contaminants in the global oceanic atmosphere among these halogenated POPs (e.g. PCBs and Σdi-hepta PBDEs could be found in the range of 0.09-48.7 and 8.07-94.0 pg/m(3), respectively, including our dataset). However, there are still very few investigations on the global atmospheric levels of PBDD/Fs, PCDEs and PBBs and our data sums to these earlier studies. Finally, we point out that the halogenated POPs originated from Taiwan or the continental East Asia which could easily reach remote ocean sites via atmospheric transport. Copyright © 2014 Elsevier B.V. All rights reserved.
Global oceanic emission of ammonia: Constraints from seawater and atmospheric observations
NASA Astrophysics Data System (ADS)
Paulot, F.; Jacob, D. J.; Johnson, M. T.; Bell, T. G.; Baker, A. R.; Keene, W. C.; Lima, I. D.; Doney, S. C.; Stock, C. A.
2015-08-01
Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a-1, much lower than current literature values (7-23 TgN a-1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a-1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2-5 TgN a-1, comparable in magnitude to other natural sources from open fires and soils.
Impact of Parameterized Lee Wave Drag on the Energy Budget of an Eddying Global Ocean Model
2013-08-26
Teixeira, J., Peng, M., Hogan, T.F., Pauley, R., 2002. Navy Operational Global Atmospheric Prediction System (NOGAPS): Forcing for ocean models...Impact of parameterized lee wave drag on the energy budget of an eddying global ocean model David S. Trossman a,⇑, Brian K. Arbic a, Stephen T...input and output terms in the total mechanical energy budget of a hybrid coordinate high-resolution global ocean general circulation model forced by winds
Sea surface temperature and salinity from French research vessels, 2001–2013
Gaillard, Fabienne; Diverres, Denis; Jacquin, Stéphane; Gouriou, Yves; Grelet, Jacques; Le Menn, Marc; Tassel, Joelle; Reverdin, Gilles
2015-01-01
French Research vessels have been collecting thermo-salinometer (TSG) data since 1999 to contribute to the Global Ocean Surface Underway Data (GOSUD) programme. The instruments are regularly calibrated and continuously monitored. Water samples are taken on a daily basis by the crew and later analysed in the laboratory. We present here the delayed mode processing of the 2001–2013 dataset and an overview of the resulting quality. Salinity measurement error was a few hundredths of a unit or less on the practical salinity scale (PSS), due to careful calibration and instrument maintenance, complemented with a rigorous adjustment on water samples. In a global comparison, these data show excellent agreement with an ARGO-based salinity gridded product. The Sea Surface Salinity and Temperature from French REsearch SHips (SSST-FRESH) dataset is very valuable for the ‘calibration and validation’ of the new satellite observations delivered by the Soil Moisture and Ocean Salinity (SMOS) and Aquarius missions. PMID:26504523
Marine biogeography, climate change and societal needs
NASA Astrophysics Data System (ADS)
Krause, Dale C.; Angel, Martin V.
Pelagic biogeography deals with the large scale distributional patterns of pelagic organisms in the world's oceans, their origins through evolution and the changes in ocean morphology during the geological past, and the factors which currently control and maintain them. The knowledge it generates has a wide variety of uses in science, both basic and applied, and in socio-economics. Its products include: (1) Distributional data compiled in data bases, maps and atlases; (2) Explanatory scientific and non-scientific publications on the distributions and their implications; (3) Standardisation of methodologies; (4) Trained specialists; (5) Advice to society on oceanic aspects of global resource management; and (6) Assessments of oceanic biodiversity in relation to the Biodiversity Convention. The immediate users of this knowledge include oceanographers in other disciplines, ecologists, applied scientists and engineers, resource managers, fishermen, environmentalists, teachers, international lawuers and policy-makers. At present the largest users are the natural resource managers seeking to optimise and to sustain the resource for which they are responsible. There is a considerable body of national and international legislation which is underpinned by biogeographical information. Similarly much of our understanding about past climate which is being used to predict future trends, is based on applying information on present-day distributional patterns to the interpretation of the fossil record in marine sediments. Global change, in the ocean, the atmosphere and on land, is strongly modulated by the feedback between marine organisms, nutrients and greenhouse gases. The marked coherence observed between the distributions of physical, chemical and biological patterns suggest that the process involved in this feedback are linked with pelagic community structure. Remote sensing of sea-surface properties and the heat content of the mixed-layer, offer considerable potential for linking ecological and biogeographical processes to large scale features of ocean circulation and climatology. The long-term monitoring of the ocean in the Global Ocean Observing System will need to integrate physical, chemical and ecological data, if the models used to predict future change are to achieve adequate precision. The future use and resource management of the oceans has to involve biogeographical information. Traditional sampling methods, even when supplemented by large scale surveys such as CALCOFI and the Continuous Plankton Recorder surveys, will never provide sufficient data, so new techniques for intensive sampling and monitoring are being sought. Some surrogate measures such as chlorophyll fluorescence are already well established as standard oceanographic methodology; others involving acoustics and optical properties have the potential for sampling the biological characteristics at the same time/space scales as the physicochemical properties of the oceans are being studied. However, the calibration of these new techniques against traditional sampling and observational methods remains problematic. Information technology is beginning to be used, not only to unify the systematics of many taxonomic groups, but also to improve information exchange. Improvements in digital data bases will lead to freer exchange of information, and also facilitate the production of maps and interpretations customized for other users. The scientific resources being devoted to pelagic biogeography are declining with potentially serious consequences. This trend can only be reversed if the biogeographers themselves make their output more accessible and user-friendly for non-scientists, and take advantage of the new technologies which promise to re-vitalise the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nydal, R.; Brenkert, A.L.; Boden, T.A.
1998-03-01
In the 1960s, thermonuclear bomb tests released significant pulses of radioactive carbon-14 ({sup 14}C) into the atmosphere. These major perturbations allowed scientists to study the dynamics of the global carbon cycle by calculating rates of isotope exchange between the atmosphere and ocean waters. A total of 950 ocean surface water observations were made from 1965 through 1994. The measurements were taken at 30 stations in the Atlantic Ocean, 14 stations in the Indian Ocean, and 38 stations in the Pacific Ocean. Thirty-two of the 950 samples were taken in the Atlantic Ocean during the R/V Andenes research cruise. {sup 14}Cmore » was measured in 871 of the 950 samples, and those measurements have been corrected ({Delta}{sup 14}C) for isotopic fractionation and radioactive decay. The {Delta}{sup 14}C values range between {minus}113.3 and 280.9 per mille and have a mean value of 101.3 per mille. The highest yearly mean (146.5 per mille) was calculated for 1969, the lowest yearly mean value was calculated for 1990 (67.9 per mille) illustrating a decrease over time. This decrease was to be expected as a result of the ban on atmospheric thermonuclear tests and the slow mixing of the ocean surface waters with the deeper layers.« less
Morales, Laura; Dachs, Jordi; González-Gaya, Belén; Hernán, Gema; Abalos, Manuela; Abad, Esteban
2014-09-02
The remote oceans are among the most pristine environments in the world, away from sources of anthropogenic persistent organic pollutants (POP), but nevertheless recipients of atmospheric deposition of POPs that have undergone long-range atmospheric transport (LRAT). In this work, the background occurrence of gas and aerosol phase polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin like polychlorinated biphenyls (dl-PCB) is evaluated for the first time in the atmosphere of the tropical and subtropical Atlantic, Pacific, and Indian oceans. Thirty-nine air samples were collected during the eight-month Malaspina circumnavigation cruise onboard the R/V Hespérides. The background levels of dioxins and dl-PCBs remained very low and in many cases very close to or below the limit of detection. Expectedly, the levels of PCBs were higher than dioxins, PCB#118 being the most abundant compound. In the particular case of dioxins, octachlorodibenzo-p-dioxin (OCDD) was the most abundant PCDD/F congener. Distribution of dl-PCB is dominated by the gas phase, while for PCDD/F the aerosol phase concentrations were higher, particularly for the more hydrophobic congeners. The Atlantic Ocean presented on average the highest PCDD/F and dl-PCB concentrations, being lower in the southern hemisphere. The assessment of air mass back trajectories show a clear influence of continental source regions, and lower concentrations when the air mass has an oceanic origin. In addition, the samples affected by an oceanic air mass are characterized by a lower contribution of the less chlorinated dioxins in comparison with the furans, consistent with the reported higher reaction rate constants of dibenzo-p-dioxins with OH radicals than those of dibenzofurans. The total dry atmospheric deposition of aerosol-bound ∑PCDD/F and ∑dl-PCB to the global oceans was estimated to be 354 and 896 kg/year, respectively.
Enhanced deep ocean ventilation and oxygenation with global warming
NASA Astrophysics Data System (ADS)
Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.
2014-12-01
Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.
Griffiths, Huw J.
2010-01-01
The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are represented by just a handful of digital records. PMID:20689841
NASA Technical Reports Server (NTRS)
Fukumori, I.; Fu, L. L.; Chao, Y.
1998-01-01
The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.
Detecting anthropogenic climate forcing in the ocean
NASA Astrophysics Data System (ADS)
Wijffels, S. A.
2016-12-01
Owing to its immense heat capacity, the global ocean is the fly-wheel of the climate system, absorbing, redistributing and storing heat on long timescales and over great distances. Of the extra heat trapped in the Earth System due to rising greenhouse gases, over 90% is being stored in the global oceans. Tracking this warming has been challenging due to past changes in the coverage and technology used in past ocean observations. Here, I'll review progress in estimating past warming rates and patterns. The warming of Earth's surface is also driving changes in the global hydrological cycle, which also intimately involves the oceans. Global ocean salinity changes reveal another footprint of a warming Earth. Some simple model runs that give insight into observed subsurface changes will also be described, along with an update on current warming rates and patterns as tracked by the global Argo programme. The prospects for the next advances in broadscale ocean monitoring will also be discussed.
Topographic Enhancement of Vertical Mixing in the Southern Ocean
NASA Astrophysics Data System (ADS)
Mashayek, A.; Ferrari, R. M.; Merrifield, S.; St Laurent, L.
2016-02-01
Diapycnal turbulent mixing in the Southern Ocean is believed to play a role in setting the rate of the ocean Meridional Overturning Circulation (MOC), an important element of the global climate system. Whether this role is important, however, depends on the strength of this mixing, which remains poorly qualified on global scale. To address this question, a passive tracer was released upstream of the Drake Passage in 2009 as a part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). The mixing was then inferred from the vertical/diapycnal spreading of the tracer. The mixing was also calculated from microstructure measurements of shear and stratification. The diapycnal turbulent mixing inferred from the tracer was found to be an order of magnitude larger than that estimated with the microstructure probes at various locations along the path of the tracer. While the values inferred from tracer imply a key role played by mixing in setting the MOC, those based on localized measurements suggest otherwise. In this work we use a high resolution numerical ocean model of the Drake Passage region sampled in the DIMES experiment to explain that the difference between the two estimates arise from the large values of mixing encountered by the tracer, when it flows close to the bottom topography. We conclude that the large mixing close to the ocean bottom topography is sufficiently strong to play an important role in setting the Southern Ocean branch of the MOC below 2 km.
Building a Global Ocean Science Education Network
NASA Astrophysics Data System (ADS)
Scowcroft, G. A.; Tuddenham, P. T.; Pizziconi, R.
2016-02-01
It is imperative for ocean science education to be closely linked to ocean science research. This is especially important for research that addresses global concerns that cross national boundaries, including climate related issues. The results of research on these critical topics must find its way to the public, educators, and students of all ages around the globe. To facilitate this, opportunities are needed for ocean scientists and educators to convene and identify priorities and strategies for ocean science education. On June 26 and 27, 2015 the first Global Ocean Science Education (GOSE) Workshop was convened in the United States at the University of Rhode Island Graduate School of Oceanography. The workshop, sponsored by the Consortium for Ocean Science Exploration and Engagement (COSEE) and the College of Exploration, had over 75 participants representing 15 nations. The workshop addressed critical global ocean science topics, current ocean science research and education priorities, advanced communication technologies, and leveraging international ocean research technologies. In addition, panels discussed elementary, secondary, undergraduate, graduate, and public education across the ocean basins with emphasis on opportunities for international collaboration. Special presentation topics included advancements in tropical cyclone forecasting, collaborations among Pacific Islands, ocean science for coastal resiliency, and trans-Atlantic collaboration. This presentation will focus on workshop outcomes as well as activities for growing a global ocean science education network. A summary of the workshop report will also be provided. The dates and location for the 2016 GOES Workshop will be announced. See http://www.coexploration.net/gose/index.html
NASA Astrophysics Data System (ADS)
Chang, C.; Burr, G. S.; Jull, A. T.; Pandey, A.; Thiemens, M. H.; Biddulph, D.; Russell, J. L.
2012-12-01
The long-lived radionuclide Iodine-129 is well known as a useful environmental tracer. At present, the global I-129 in surface water is about 1-2 orders of magnitude higher than pre-1990 levels. The anthropogenic I-129 signal produced from industrial nuclear fuel reprocessing plants is known to be the primary source of I-129 in marine surface waters of the Atlantic, and elevated I-129 values are found globally. On March 11, 2011, the Great East Japan Earthquake produced a devastating tsunami that severely damaged the Fukushima Daiichi Nuclear Power Plant. The damage caused a substantial release of radionuclides into the atmosphere and ocean in the weeks following the catastrophe. We expect to be able to identify I-129 from surface seawater in the Pacific Ocean. We will present I-129 results of water samples collected weekly near Scripps Institution of Oceanography, San Diego, CA for a year. We also have a pair of measurements collected a year apart from Kaohsiung, Taiwan. By establishing I-129 time series, we can observe the spread of I-129 in the surface waters of the Pacific Ocean that resulted from the accidental releases. This information can also be used to better understand surface ocean circulation.
Global Ocean Carbon and Biogeochemistry Coordination
NASA Astrophysics Data System (ADS)
Telszewski, Maciej; Tanhua, Toste; Palacz, Artur
2016-04-01
The complexity of the marine carbon cycle and its numerous connections to carbon's atmospheric and terrestrial pathways means that a wide range of approaches have to be used in order to establish it's qualitative and quantitative role in the global climate system. Ocean carbon and biogeochemistry research, observations, and modelling are conducted at national, regional, and global levels to quantify the global ocean uptake of atmospheric CO2 and to understand controls of this process, the variability of uptake and vulnerability of carbon fluxes into the ocean. These science activities require support by a sustained, international effort that provides a central communication forum and coordination services to facilitate the compatibility and comparability of results from individual efforts and development of the ocean carbon data products that can be integrated with the terrestrial, atmospheric and human dimensions components of the global carbon cycle. The International Ocean Carbon Coordination Project (IOCCP) was created in 2005 by the IOC of UNESCO and the Scientific Committee on Oceanic Research. IOCCP provides an international, program-independent forum for global coordination of ocean carbon and biogeochemistry observations and integration with global carbon cycle science programs. The IOCCP coordinates an ever-increasing set of observations-related activities in the following domains: underway observations of biogeochemical water properties, ocean interior observations, ship-based time-series observations, large-scale ocean acidification monitoring, inorganic nutrients observations, biogeochemical instruments and autonomous sensors and data and information creation. Our contribution is through the facilitation of the development of globally acceptable strategies, methodologies, practices and standards homogenizing efforts of the research community and scientific advisory groups as well as integrating the ocean biogeochemistry observations with the multidisciplinary global ocean observing system. Over the past 4-5 years IOCCP's long standing experience in coordinating biogeochemical observations and data flows globally, resulted in assuming a leadership role during the design and implementation of the biogeochemistry portion of the Framework for Ocean Observing (FOO, 2012). To optimize and enhance the global ocean observing system IOCCP started to implement major elements of the system's approach outlined in the FOO. Starting by setting of ocean observing requirements representing the needs of societal and scientific stakeholders, followed by development of a set of essential ocean variables (EOVs) with spatial and temporal resolution specifications to best meet current demands for data and information services given current and potential national capabilities. The IOCCP works directly with projects and programs programmatically connected to GOOS as well as the WMO-IOC JCOMM to integrate ocean carbon and biogeochemistry observation information into the plans of the Global Climate Observing System in support of the United Nations Framework Convention on Climate Change, the World Summit on Sustainable Development, the Group on Earth Observations, and other international and intergovernmental strategies. We would like to update our partners across disciplines and domains on our short- and long-term strategies as well as learn from their combined experience and knowledge so that our individual activities align more with those undertaken by our counterparts in biological and physical oceanography as well as in terrestrial and atmospheric domains.
NASA Technical Reports Server (NTRS)
Werdell, P. Jeremy; Proctor, Christopher W.; Boss, Emmanuel; Leeuw, Thomas; Ouhssain, Mustapha
2013-01-01
Developing and validating data records from operational ocean color satellite instruments requires substantial volumes of high quality in situ data. In the absence of broad, institutionally supported field programs, organizations such as the NASA Ocean Biology Processing Group seek opportunistic datasets for use in their operational satellite calibration and validation activities. The publicly available, global biogeochemical dataset collected as part of the two and a half year Tara Oceans expedition provides one such opportunity. We showed how the inline measurements of hyperspectral absorption and attenuation coefficients collected onboard the R/V Tara can be used to evaluate near-surface estimates of chlorophyll-a, spectral particulate backscattering coefficients, particulate organic carbon, and particle size classes derived from the NASA Moderate Resolution Imaging Spectroradiometer onboard Aqua (MODISA). The predominant strength of such flow-through measurements is their sampling rate-the 375 days of measurements resulted in 165 viable MODISA-to-in situ match-ups, compared to 13 from discrete water sampling. While the need to apply bio-optical models to estimate biogeochemical quantities of interest from spectroscopy remains a weakness, we demonstrated how discrete samples can be used in combination with flow-through measurements to create data records of sufficient quality to conduct first order evaluations of satellite-derived data products. Given an emerging agency desire to rapidly evaluate new satellite missions, our results have significant implications on how calibration and validation teams for these missions will be constructed.
NASA Astrophysics Data System (ADS)
Exports Science Definition Team
2016-04-01
Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.
NASA Astrophysics Data System (ADS)
Dutkiewicz, Adriana; Müller, Dietmar; O'Callaghan, Simon
2017-04-01
World's ocean basins contain a rich and nearly continuous record of environmental fluctuations preserved as different types of deep-sea sediments. The sediments represent the largest carbon sink on Earth and its largest geological deposit. Knowing the controls on the distribution of these sediments is essential for understanding the history of ocean-climate dynamics, including changes in sea-level and ocean circulation, as well as biological perturbations. Indeed, the bulk of deep-sea sediments comprises the remains of planktonic organisms that originate in the photic zone of the global ocean implying a strong connection between the seafloor and the sea surface. Machine-learning techniques are perfectly suited to unravelling these controls as they are able to handle large sets of spatial data and they often outperform traditional spatial analysis approaches. Using a support vector machine algorithm we recently created the first digital map of seafloor lithologies (Dutkiewicz et al., 2015) based on 14,400 surface samples. This map reveals significant deviations in distribution of deep-sea lithologies from hitherto hand-drawn maps based on far fewer data points. It also allows us to explore quantitatively, for the first time, the relationship between oceanographic parameters at the sea surface and lithologies on the seafloor. We subsequently coupled this global point sample dataset of 14,400 seafloor lithologies to bathymetry and oceanographic grids (sea-surface temperature, salinity, dissolved oxygen and dissolved inorganic nutrients) and applied a probabilistic Gaussian process classifier in an exhaustive combinatorial fashion (Dutkiewicz et al., 2016). We focused on five major lithologies (calcareous sediment, diatom ooze, radiolarian ooze, clay and lithogenous sediment) and used a computationally intensive five-fold cross-validation, withholding 20% of the data at each iteration, to assess the predictive performance of the machine learning method. We find that the occurrence of five major lithologies in the world's ocean can be predicted on the basis of just two or three parameters, notably sea-surface salinity and sea-surface temperature. These parameters control the growth and composition of plankton and specific salinities and temperatures are also associated with the influx of non-aerosol terrigenous material into the ocean. Bathymetry is an important parameter for discriminating the occurrence of calcareous sediment, clay and coarse lithogenous sediment from each other but it is not important for biosiliceous oozes. Consequently, radiolarian and diatom oozes are poor indicators of palaeo-depth. Contrary to widely held view, we find that calcareous and siliceous oozes are not linked to high surface productivity. Our analysis shows that small shifts in surface ocean conditions significantly affect the lithology of modern seafloor sediments on a global scale and that these relationships need to be incorporated into interpretations of the geological record of ocean basins. Dutkiewicz, A., Müller, R. D., O'Callaghan, S., and Jónasson, H., 2015, Census of seafloor sediments in the world's ocean: Geology, v. 43, no. 9, p. 795-798. Dutkiewicz, A., O'Callaghan, S., and Müller, R. D., 2016, Controls on the distribution of deep-sea sediments: Geochem. Geophys. Geosyst., v. 17, p. 1-24.
Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements
NASA Astrophysics Data System (ADS)
Sweeney, Colm; Gloor, Emanuel; Jacobson, Andrew R.; Key, Robert M.; McKinley, Galen; Sarmiento, Jorge L.; Wanninkhof, Rik
2007-06-01
The 14CO2 released into the stratosphere during bomb testing in the early 1960s provides a global constraint on air-sea gas exchange of soluble atmospheric gases like CO2. Using the most complete database of dissolved inorganic radiocarbon, DI14C, available to date and a suite of ocean general circulation models in an inverse mode we recalculate the ocean inventory of bomb-produced DI14C in the global ocean and confirm that there is a 25% decrease from previous estimates using older DI14C data sets. Additionally, we find a 33% lower globally averaged gas transfer velocity for CO2 compared to previous estimates (Wanninkhof, 1992) using the NCEP/NCAR Reanalysis 1 1954-2000 where the global mean winds are 6.9 m s-1. Unlike some earlier ocean radiocarbon studies, the implied gas transfer velocity finally closes the gap between small-scale deliberate tracer studies and global-scale estimates. Additionally, the total inventory of bomb-produced radiocarbon in the ocean is now in agreement with global budgets based on radiocarbon measurements made in the stratosphere and troposphere. Using the implied relationship between wind speed and gas transfer velocity ks = 0.27
2012-04-10
System (GOFS) V3.0 – 1/12 HYCOM/NCODA: Phase I‖ by Metzger et al., dated 26 November 2008 (NRL/MR/7320—08- 9148). The HYbrid Coordinate Ocean...C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin , 2009. U.S. GODAE: Global...E.J. Metzger, J.F. Shriver, O.M. Smedstad, A.J. Wallcraft, and C.N. Barron, 2008 : Eddy-resolving global ocean prediction. In "Eddy-Resolving Ocean
NASA Astrophysics Data System (ADS)
Wang, J.; Su, Z.; Klein, P.; Thompson, A. F.; Menemenlis, D.; Fu, L. L.
2016-12-01
The major observational advance expected from the Surface Water and Ocean Topography (SWOT) altimeter, compared with existing altimeters, is that it will provide wide-swath (120 km) along-track data that permit the sampling of oceanic scales between 15 and 150km. The potential of this satellite mission is to understand the dynamical impact of these small scales on ocean dynamics. Such impact is known to affect the vertical velocity field (and therefore the vertical fluxes of ocean properties) and significantly affect both the inverse and direct kinetic energy cascades. The need to monitor these scales on a global scale is illustrated by the results of a realistic global ocean simulation. This model has 1/48-degree horizontal grid spacing, 90 vertical levels, and the inclusion of tidal forcing. This simulation reveals a strong seasonality of ocean dynamics at scales less than 100 km, not only in the previously documented regions, such as the Kuroshio extension, Gulf Stream, and subtropical gyres; but also in most other regions, such as most of the Southern Hemisphere and the North-East Atlantic. This strong seasonality, with a maximum amplitude consistently in winter, is associated with deep winter mixed-layer and energetic mesoscale eddies, pointing to mixed-layer instability as a major driver of the seasonality of dynamics at small scales. In addition to seasonal variations, strong intermittencies of ocean dynamics with a period of one to two weeks are also observed occasionally with the same amplitude as the seasonal variability. In this presentation, we discuss the consequences and the challenges posed by the strong spatial and temporal variability to SWOT data analysis.
Importance of salt fingering for new nitrogen supply in the oligotrophic ocean.
Fernández-Castro, B; Mouriño-Carballido, B; Marañón, E; Chouciño, P; Gago, J; Ramírez, T; Vidal, M; Bode, A; Blasco, D; Royer, S-J; Estrada, M; Simó, R
2015-09-09
The input of new nitrogen into the euphotic zone constrains the export of organic carbon to the deep ocean and thereby the biologically mediated long-term CO2 exchange between the ocean and atmosphere. In low-latitude open-ocean regions, turbulence-driven nitrate diffusion from the ocean's interior and biological fixation of atmospheric N2 are the main sources of new nitrogen for phytoplankton productivity. With measurements across the tropical and subtropical Atlantic, Pacific and Indian oceans, we show that nitrate diffusion (171±190 μmol m(-2) d(-1)) dominates over N2 fixation (9.0±9.4 μmol m(-2) d(-1)) at the time of sampling. Nitrate diffusion mediated by salt fingers is responsible for ca. 20% of the new nitrogen supply in several provinces of the Atlantic and Indian Oceans. Our results indicate that salt finger diffusion should be considered in present and future ocean nitrogen budgets, as it could supply globally 0.23-1.00 Tmol N yr(-1) to the euphotic zone.
Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins
Mountjoy, Joshu J.; Howarth, Jamie D.; Orpin, Alan R.; Barnes, Philip M.; Bowden, David A.; Rowden, Ashley A.; Schimel, Alexandre C. G.; Holden, Caroline; Horgan, Huw J.; Nodder, Scott D.; Patton, Jason R.; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim
2018-01-01
Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean—the ultimate sink—and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude (Mw) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful “canyon flushing” event and turbidity current that traveled >680 km along one of the world’s longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year−1, substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean. PMID:29546245
Mission to Planet Earth. The living ocean: Observing ocean color from space
NASA Technical Reports Server (NTRS)
1994-01-01
Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.
Sea level change since 2005: importance of salinity
NASA Astrophysics Data System (ADS)
Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.
2017-12-01
Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.
The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiyong; Lu, Jian; Liu, Fukai
Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less
The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming
Luo, Yiyong; Lu, Jian; Liu, Fukai; ...
2016-02-04
Climate models project a positive Indian Ocean Dipole (pIOD)-like SST response in the tropical Indian Ocean to global warming. By employing the Community Earth System Model (CESM) and applying an overriding technique to its ocean component Parallel Ocean Program version 2 (POP2), this study investigates the similarity and difference of the formation mechanisms for the changes in the tropical Indian Ocean during the pIOD versus global warming. Results show that their formation processes and related seasonality are quite similar; in particular, the Bjerknes feedback is the leading mechanism in producing the anomalous cooling over the eastern tropics in both cases.more » Some differences are also found, including that the cooling effect of the vertical advection over the eastern tropical Indian Ocean is dominated by the anomalous vertical velocity during the pIOD while it is dominated by the anomalous upper-ocean stratification under global warming. Lastly, these findings above are further examined with an analysis of the mixed layer heat budget.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... five potential sources of threat under this factor: 1. Global Climate Warming and Ocean Acidification... 5. Oil and Gas Development. Global climate warming and ocean acidification pose a potential threat... information suggests it is likely that global warming and ocean acidification may affect eastern North Pacific...
Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2005-01-01
Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.
Mean global ocean temperatures during the last glacial transition.
Bereiter, Bernhard; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji; Severinghaus, Jeff
2018-01-03
Little is known about the ocean temperature's long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO 2 , thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.
Mean global ocean temperatures during the last glacial transition
NASA Astrophysics Data System (ADS)
Bereiter, Bernhard; Shackleton, Sarah; Baggenstos, Daniel; Kawamura, Kenji; Severinghaus, Jeff
2018-01-01
Little is known about the ocean temperature’s long-term response to climate perturbations owing to limited observations and a lack of robust reconstructions. Although most of the anthropogenic heat added to the climate system has been taken up by the ocean up until now, its role in a century and beyond is uncertain. Here, using noble gases trapped in ice cores, we show that the mean global ocean temperature increased by 2.57 ± 0.24 degrees Celsius over the last glacial transition (20,000 to 10,000 years ago). Our reconstruction provides unprecedented precision and temporal resolution for the integrated global ocean, in contrast to the depth-, region-, organism- and season-specific estimates provided by other methods. We find that the mean global ocean temperature is closely correlated with Antarctic temperature and has no lead or lag with atmospheric CO2, thereby confirming the important role of Southern Hemisphere climate in global climate trends. We also reveal an enigmatic 700-year warming during the early Younger Dryas period (about 12,000 years ago) that surpasses estimates of modern ocean heat uptake.
The global distribution and dynamics of chromophoric dissolved organic matter.
Nelson, Norman B; Siegel, David A
2013-01-01
Chromophoric dissolved organic matter (CDOM) is a ubiquitous component of the open ocean dissolved matter pool, and is important owing to its influence on the optical properties of the water column, its role in photochemistry and photobiology, and its utility as a tracer of deep ocean biogeochemical processes and circulation. In this review, we discuss the global distribution and dynamics of CDOM in the ocean, concentrating on developments in the past 10 years and restricting our discussion to open ocean and deep ocean (below the main thermocline) environments. CDOM has been demonstrated to exert primary control on ocean color by its absorption of light energy, which matches or exceeds that of phytoplankton pigments in most cases. This has important implications for assessing the ocean biosphere via ocean color-based remote sensing and the evaluation of ocean photochemical and photobiological processes. The general distribution of CDOM in the global ocean is controlled by a balance between production (primarily microbial remineralization of organic matter) and photolysis, with vertical ventilation circulation playing an important role in transporting CDOM to and from intermediate water masses. Significant decadal-scale fluctuations in the abundance of global surface ocean CDOM have been observed using remote sensing, indicating a potentially important role for CDOM in ocean-climate connections through its impact on photochemistry and photobiology.
van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B
2017-07-01
Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.
Decadal Changes in Global Ocean Chlorophyll
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karsenti, Eric
2013-03-01
Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, California.
Karsenti, Eric [European Molecular Biology Lab. (EMBL), Heidelberg (Germany)
2018-05-23
Eric Karsenti of EMBL delivers the closing keynote on "TARA OCEANS: A Global Analysis of Oceanic Plankton Ecosystems" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, California.
NASA Technical Reports Server (NTRS)
Johnson, B.
1988-01-01
The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.
Ocean Salinity Variance and the Global Water Cycle.
NASA Astrophysics Data System (ADS)
Schmitt, R. W.
2012-12-01
Ocean salinity variance is increasing and appears to be an indicator of rapid change in the global water cycle. While the small terrestrial water cycle does not reveal distinct trends, in part due to strong manipulation by civilization, the much larger oceanic water cycle seems to have an excellent proxy for its intensity in the contrasts in sea surface salinity (SSS). Change in the water cycle is arguably the most important challenge facing mankind. But how well do we understand the oceanic response? Does the ocean amplify SSS change to make it a hyper-sensitive indicator of change in the global water cycle? An overview of the research challenges to the oceanographic community for understanding the dominant component of the global water cycle is provided.
Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui
2015-05-18
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.
Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui
2015-01-01
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028
Godard-Codding, Céline A J; Clark, Rebecca; Fossi, Maria Cristina; Marsili, Letizia; Maltese, Silvia; West, Adam G; Valenzuela, Luciano; Rowntree, Victoria; Polyak, Ildiko; Cannon, John C; Pinkerton, Kim; Rubio-Cisneros, Nadia; Mesnick, Sarah L; Cox, Stephen B; Kerr, Iain; Payne, Roger; Stegeman, John J
2011-03-01
Ocean pollution affects marine organisms and ecosystems as well as humans. The International Oceanographic Commission recommends ocean health monitoring programs to investigate the presence of marine contaminants and the health of threatened species and the use of multiple and early-warning biomarker approaches. We explored the hypothesis that biomarker and contaminant analyses in skin biopsies of the threatened sperm whale (Physeter macrocephalus) could reveal geographical trends in exposure on an oceanwide scale. We analyzed cytochrome P450 1A1 (CYP1A1) expression (by immunohistochemistry), stable nitrogen and carbon isotope ratios (as general indicators of trophic position and latitude, respectively), and contaminant burdens in skin biopsies to explore regional trends in the Pacific Ocean. Biomarker analyses revealed significant regional differences within the Pacific Ocean. CYP1A1 expression was highest in whales from the Galapagos, a United Nations Educational, Scientific, and Cultural Organization World Heritage marine reserve, and was lowest in the sampling sites farthest away from continents. We examined the possible influence of the whales' sex, diet, or range and other parameters on regional variation in CYP1A1 expression, but data were inconclusive. In general, CYP1A1 expression was not significantly correlated with contaminant burdens in blubber. However, small sample sizes precluded detailed chemical analyses, and power to detect significant associations was limited. Our large-scale monitoring study was successful at identifying regional differences in CYP1A1 expression, providing a baseline for this known biomarker of exposure to aryl hydrocarbon receptor agonists. However, we could not identify factors that explained this variation. Future oceanwide CYP1A1 expression profiles in cetacean skin biopsies are warranted and could reveal whether globally distributed chemicals occur at biochemically relevant concentrations on a global basis, which may provide a measure of ocean integrity.
Analysis of global oceanic rainfall from microwave data
NASA Technical Reports Server (NTRS)
Rao, M.
1978-01-01
A Global Rainfall Atlas was prepared from Nimbus 5 ESMR data. The Atlas includes global oceanic rainfall maps based on weekly, monthly and seasonal averages, complete through the end of 1975. Similar maps for 1973 and 1974 were studied. They reveal several previously unknown areas of enhanced rainfall and preliminary data on interannual variability of oceanic rainfall.
Empirical algorithms to predict aragonite saturation state
NASA Astrophysics Data System (ADS)
Turk, Daniela; Dowd, Michael
2017-04-01
Novel sensor packages deployed on autonomous platforms (Profiling Floats, Gliders, Moorings, SeaCycler) and biogeochemical models have a potential to increase the coverage of a key water chemistry variable, aragonite saturation state (ΩAr) in time and space, in particular in the under sampled regions of global ocean. However, these do not provide the set of inorganic carbon measurements commonly used to derive ΩAr. There is therefore a need to develop regional predictive models to determine ΩAr from measurements of commonly observed or/and non carbonate oceanic variables. Here, we investigate predictive skill of several commonly observed oceanographic variables (temperature, salinity, oxygen, nitrate, phosphate and silicate) in determining ΩAr using climatology and shipboard data. This will allow us to assess potential for autonomous sensors and biogeochemical models to monitor ΩAr regionally and globally. We apply the regression models to several time series data sets and discuss regional differences and their implications for global estimates of ΩAr.
Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter
2008-04-25
An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements.
NASA Technical Reports Server (NTRS)
Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.
2013-01-01
Phytoplankton are free-floating algae that grow in the euphotic zone of the upper ocean, converting carbon dioxide, sunlight, and available nutrients into organic carbon through photosynthesis. Despite their microscopic size, these photoautotrophs are responsible for roughly half the net primary production on Earth (NPP; gross primary production minus respiration), fixing atmospheric CO2 into food that fuels our global ocean ecosystems. Phytoplankton thus play a critical role in the global carbon cycle, and their growth patterns are highly sensitive to environmental changes such as increased ocean temperatures that stratify the water column and prohibit the transfer of cold, nutrient richwaters to the upper ocean euphotic zone.
NASA Astrophysics Data System (ADS)
Tully, B. J.; Heidelberg, J. F.; Kraft, B.; Girguis, P. R.; Huber, J. A.
2016-12-01
The oceanic crust contains the largest aquifer on Earth with a volume approximately 2% of the global ocean. Ongoing research at the North Pond (NP) site, west of the Mid-Atlantic Ridge, provides an environment representative of oxygenated crustal aquifers beneath oligotrophic surface waters. Using subseafloor CORK observatories for multiple sampling depths beneath the seafloor, crustal fluids were sampled along the predicted aquifer fluid flow path over a two-year period. DNA was extracted and sequenced for metagenomic analysis from 22 crustal fluid samples, along with the overlying bottom. At broad taxonomic groupings, the aquifer system is highly dynamic over time and space, with shifts in dominant taxa and "blooms" of transient groups that appear at discreet time points and sample depths. We were able to reconstruct 194 high-quality, low-contamination bacterial and archaeal metagenomic-assembled genomes (MAGs) with estimated completeness >50% (429 MAGs >20% complete). Environmental genomes were assigned to phylogenies from the major bacterial phyla, putative novel groups, and poorly sampled phylogenetic groups, including the Marinimicrobia, Candidate Phyla Radiation, and Planctomycetes. Biogeochemically relevant processes were assigned to MAGs, including denitrification, dissimilatory sulfur and hydrogen cycling, and carbon fixation. Collectively, the oxic NP aquifer system represents a diverse, dynamic microbial habitat with the metabolic potential to impact multiple globally relevant biogeochemical cycles, including nitrogen, sulfur, and carbon.
Anticipated Improvements to Net Surface Freshwater Fluxes from GPM
NASA Technical Reports Server (NTRS)
Smith, Eric A.
2005-01-01
Evaporation and precipitation over the oceans play very important roles in the global water cycle, upper-ocean heat budget, ocean dynamics, and coupled ocean-atmosphere dynamics. In the conventional representation of the terrestrial water cycle, the assumed role of the oceans is to act as near-infinite reservoirs of water with the main drivers of the water cycle being land- atmosphere interactions in which excess precipitation (P) over evaporation (E) is returned to the oceans as surface runoff and baseflow. Whereas this perspective is valid for short space and time scales -- fundamental principles, available observed estimates, and results from models indicate that the oceans play a far more important role in the large-scale water cycle at seasonal and longer timescales. Approximately 70-80% of the total global evaporation and precipitation occurs over oceans. Moreover, latent heat release into the atmosphere over the oceans is the major heat source driving global atmospheric circulations, with the moisture transported by circulations from oceans to continents being the major source of water precipitating over land. Notably, the major impediment in understanding and modeling the oceans role in the global water cycle is the lack of reliable net surface freshwater flux estimates (E - P fluxes) at the salient spatial and temporal resolutions, i.e., consistent coupled weekly to monthly E - P gridded datasets.
NASA Supercomputer Improves Prospects for Ocean Climate Research
NASA Technical Reports Server (NTRS)
Menemenlis, D.; Hill, C.; Adcroft, A.; Campin, J. -M.; Cheng, B.; Ciotti, B.; Fukumori, I.; Heimbach, P.; Henze, C.; Kohl, A.;
2005-01-01
Estimates of ocean circulation constrained by in situ and remotely sensed observations have become routinely available during the past five years, and they are being applied to myriad scientific and operational problems [Stammer et al.,2002]. Under the Global Ocean Data Assimilation Experiment (GODAE), several regional and global estimates have evolved for applications in climate research, seasonal forecasting, naval operations, marine safety, fisheries,the offshore oil industry, coastal management, and other areas. This article reports on recent progress by one effort, the consortium for Estimating the Circulation and Climate of the Ocean (ECCO), toward a next-generation synthesis of ocean and sea-ice data that is global, that covers the full ocean depth, and that permits eddies.
Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.
Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A
2017-01-01
A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.
Future U.S. ocean color missions-OCI, MODIS and HIRIS
NASA Astrophysics Data System (ADS)
Davis, C. O.
The Coastal Zone Color Scanner (CZCS) launched by the National Aeronautics and Space Administration (NASA) on the Nimbus-7 Satellite in 1978 has provided exceptionally valuable data for studies of the productivity of the ocean, fisheries, the detection of oceanic fronts and currents, and the optical properties of the ocean. NASA has been working with the scientific community, the National Oceanographic and Atmospheric Administration (NOAA), France's Centre National d'Etudes Spatiales (CNES), and industry to develop an Ocean Color Imager (OCI), a follow-on instrument which would provide the near real-time and global data necessary to fill these needs in the 1990's. The Earth Observing Satellite Company (EOSAT) is considering flying an ocean and land wide-field color instrument which would meet these needs on Landsat 6 or 7 planned for launch in 1989 and 1991, respectively. It would provide eight ocean color channels for improved atmospheric correction and in-water algorithms, global coverage and near real-time data for operational uses. In the mid 1990's NASA is planning to fly a Moderate Resolution Imaging Spectrometer (MODIS) and a High Resolution Imaging Spectrometer (HIRIS) as part of the Earth Observing System (Eos) on the Polar Platform of the Space Station. These instruments are array spectrometers which would provide full spectral resolution in the visible and infrared. This opens the possibility of separating different groups of phytoplankton, suspended sediments and other substances in the water. Also, HIRIS would have across track pointing ability which will allow high resolution rapid sampling of dynamic coastal areas and estuaries.
Merging Ocean Color Data from Multiple Missions. Chapter 12
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2001-01-01
Oceanic phytoplankton may play an important role in the cycling of carbon on the Earth, through the uptake of carbon dioxide in the process of photosynthesis. Although they are ubiquitous in the global oceans, their abundances and dynamics are difficult to estimate, primarily due to the vast spatial extent of the oceans and the short time scales over which their abundances can change. Consequently, the effects of oceanic phytoplankton on biogeochemical cycling, climate change, and fisheries are not well known. In response to the potential importance of phytoplankton in the global carbon cycle and the lack of comprehensive data, the National Aeronautics and Space Administration (NASA) and the international community have established high priority satellite missions designed to acquire and produce high quality ocean color data. Seven of the missions are routine global observational missions: the Ocean Color and Temperature Sensor (OCTS), the Polarization and Directionality of the Earth's Reflectances sensor (POLDER), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer-AM (MODIS-AM), Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), and MODIS-PM. In addition, there are several other missions capable of providing ocean color data on smaller scales. Most of these missions contain the spectral band complement considered necessary to derive oceanic pigment concentrations (i.e., phytoplankton abundance) and other related parameters. Many contain additional bands that can provide important ancillary information about the optical and biological state of the oceans. Any individual ocean color mission is limited in ocean coverage due to sun glint and clouds. For example, one of the first proposed missions, the SeaWiFS, can provide about 45% coverage of the global ocean in four days and only about 15% in one day.
NASA Astrophysics Data System (ADS)
Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.
2016-02-01
Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.
NASA Technical Reports Server (NTRS)
1975-01-01
Unregulated uses of the oceans may threaten the global ecological balance, alter plant and animal life and significantly impact the global climatic systems. Recent plans to locate large scale structures on the oceans and to exploit the mineral riches of the seas pose even greater risk to the ecological system. Finally, increasing use of the oceans for large scale transport greatly enhances the probability of collision, polluting spills and international conflict.
NASA Astrophysics Data System (ADS)
Pelz, M.; Hoeberechts, M.; McLean, M. A.; Riddell, D. J.; Ewing, N.; Brown, J. C.
2016-12-01
This presentation outlines the authentic research experiences created by Ocean Networks Canada's Ocean Sense program, a transformative education program that connects students and teachers with place-based, real-time data via the Internet. This program, developed in collaboration with community educators, features student-centric activities, clearly outlined learning outcomes, assessment tools and curriculum aligned content. Ocean Networks Canada (ONC), an initiative of the University of Victoria, develops, operates, and maintains cabled ocean observatory systems. Technologies developed on the world-leading NEPTUNE and VENUS observatories have been adapted for small coastal installations called "community observatories," which enable community members to directly monitor conditions in the local ocean environment. Data from these observatories are fundamental to lessons and activities in the Ocean Sense program. Marketed as Ocean Sense: Local observations, global connections, the program introduces middle and high school students to research methods in biology, oceanography and ocean engineering. It includes a variety of resources and opportunities to excite students and spark curiosity about the ocean environment. The program encourages students to connect their local observations to global ocean processes and the observations of students in other geographic regions. Connection to place and local relevance of the program is enhanced through an emphasis on Indigenous and place-based knowledge. The program promotes of cross-cultural learning with the inclusion of Indigenous knowledge of the ocean. Ocean Sense provides students with an authentic research experience by connecting them to real-time data, often within their own communities. Using the freely accessible data portal, students can curate the data they need from a range of instruments and time periods. Further, students are not restricted to their local community; if their question requires a greater range of data, they also have access to the other observatories in the network. Our presentation will explore the design, implementation and lessons learned from the ongoing development of the Ocean Sense program, from its inception to its current form today. Sample activities will be made available.
Thallium isotopes track fluctuations in global manganese oxide burial during the Ediacaran Period
NASA Astrophysics Data System (ADS)
Ostrander, C. M.; Nielsen, S.; Owens, J. D.; Jiang, G.; Planavsky, N.; Sahoo, S. K.; Zhang, F.; Lyons, T. W.; Anbar, A. D.
2017-12-01
Complex marine ecosystems appear in the geologic record for the first time during the Ediacaran (635 - 541 Ma), after the Marinoan Glaciation but before the Cambrian Explosion. Much debate surrounds the redox-state of global oceans during this diversification, with some arguing for pervasive anoxic conditions and others for increased oxygenation, including the possibility of episodic oxygen increases. Here, we use thallium (Tl) isotopes preserved in organic-rich shales from a deep-water section at Wuhe, South China, to track large-scale perturbations in Mn oxide burial during the Ediacaran. Changes to the Tl isotope composition of seawater over geologic timescales are driven dominantly by fluctuations in global Mn oxide burial, which require persistent O2 at the sediment-water interface. Importantly, the suite of sedimentary rocks analyzed is thought to have been deposited beneath persistent localized euxinia, which is an environment shown to effectively capture the Tl isotope composition of seawater. Within samples previously suggested to host oceanic oxygenation episodes (OOEs) because of high redox-sensitive element (RSE) enrichments (Sahoo et al. 2016, Geobiology), we find Tl isotope values as light as -5 epsilon units, which are indicative of removal of heavy Tl by Mn oxides elsewhere in the Ediacaran ocean and in-line with the presence of deep-marine O2. Intriguingly, between these events, during periods previously viewed as dominantly anoxic, we find Tl isotope excursions to values that are even lighter than during the OOEs (less than -10 epsilon units). To first order, these results imply that an even larger Mn oxide sink was present between the OOEs, which would require pervasive oceanic oxygenation. This interpretation is in direct conflict with interpretations of low RSE enrichments in these same samples, which invoke reservoir drawdown due to widespread anoxia—as well as many other data that suggest dominantly anoxic deep marine conditions through the Ediacaran (e.g. Sperling et al. 2015, Nature). Further work is needed to interpret this paradox.
Shamblin, Brian M.; Bolten, Alan B.; Abreu-Grobois, F. Alberto; Bjorndal, Karen A.; Cardona, Luis; Carreras, Carlos; Clusa, Marcel; Monzón-Argüello, Catalina; Nairn, Campbell J.; Nielsen, Janne T.; Nel, Ronel; Soares, Luciano S.; Stewart, Kelly R.; Vilaça, Sibelle T.; Türkozan, Oguz; Yilmaz, Can; Dutton, Peter H.
2014-01-01
Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology. PMID:24465810
Improved estimates of ocean heat content from 1960 to 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lijing; Trenberth, Kevin E.; Fasullo, John
Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide here updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the datarich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and withmore » variability on decadal and multidecadal time scales (signal) that can be reliably distinguished fromsampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition,OHC changes in sixmajor oceans are reliable on decadal timescales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.« less
Improved estimates of ocean heat content from 1960 to 2015
Cheng, Lijing; Trenberth, Kevin E.; Fasullo, John; ...
2017-03-10
Earth’s energy imbalance (EEI) drives the ongoing global warming and can best be assessed across the historical record (that is, since 1960) from ocean heat content (OHC) changes. An accurate assessment of OHC is a challenge, mainly because of insufficient and irregular data coverage. We provide here updated OHC estimates with the goal of minimizing associated sampling error. We performed a subsample test, in which subsets of data during the datarich Argo era are colocated with locations of earlier ocean observations, to quantify this error. Our results provide a new OHC estimate with an unbiased mean sampling error and withmore » variability on decadal and multidecadal time scales (signal) that can be reliably distinguished fromsampling error (noise) with signal-to-noise ratios higher than 3. The inferred integrated EEI is greater than that reported in previous assessments and is consistent with a reconstruction of the radiative imbalance at the top of atmosphere starting in 1985. We found that changes in OHC are relatively small before about 1980; since then, OHC has increased fairly steadily and, since 1990, has increasingly involved deeper layers of the ocean. In addition,OHC changes in sixmajor oceans are reliable on decadal timescales. All ocean basins examined have experienced significant warming since 1998, with the greatest warming in the southern oceans, the tropical/subtropical Pacific Ocean, and the tropical/subtropical Atlantic Ocean. This new look at OHC and EEI changes over time provides greater confidence than previously possible, and the data sets produced are a valuable resource for further study.« less
NASA Astrophysics Data System (ADS)
Todd, James; Legler, David; Piotrowicz, Stephen; Raymond, Megan; Smith, Emily; Tedesco, Kathy; Thurston, Sidney
2017-04-01
The Ocean Observing and Monitoring Division (OOMD, formerly the Climate Observation Division) of the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office provides long-term, high-quality global observations, climate information and products for researchers, forecasters, assessments and other users of environmental information. In this context, OOMD-supported activities serve a foundational role in an enterprise that aims to advance 1) scientific understanding, 2) monitoring and prediction of climate and 3) understanding of potential impacts to enable a climate resilient society. Leveraging approximately 50% of the Global Ocean Observing System, OOMD employs an internationally-coordinated, multi-institution global strategy that brings together data from multiple platforms including surface drifting buoys, Argo profiling floats, flux/transport moorings (RAMA, PIRATA, OceanSITES), GLOSS tide gauges, SOOP-XBT and SOOP-CO2, ocean gliders and repeat hydrographic sections (GO-SHIP). OOMD also engages in outreach, education and capacity development activities to deliver training on the social-economic applications of ocean data. This presentation will highlight recent activities and plans for 2017 and beyond.
NASA Astrophysics Data System (ADS)
McKain, K.; Sweeney, C.; Stephens, B. B.; Long, M. C.; Jacobson, A. R.; Basu, S.; Chatterjee, A.; Weir, B.; Wofsy, S. C.; Atlas, E. L.; Blake, D. R.; Montzka, S. A.; Stern, R.
2017-12-01
The Southern Ocean plays an important role in the global carbon cycle and climate system, but net CO2 flux into the Southern Ocean is difficult to measure and model because it results from large opposing and seasonally-varying fluxes due to thermal forcing, biological uptake, and deep-water mixing. We present an analysis to constrain the seasonal cycle of net CO2 exchange with the Southern Ocean, and the magnitude of summer uptake, using the vertical gradients in atmospheric CO2 observed during three aircraft campaigns in the southern polar region. The O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) was an airborne campaign that intensively sampled the atmosphere at 0-13 km altitude and 45-75 degrees south latitude in the austral summer (January-February) of 2016. The global airborne campaigns, the HIAPER Pole-to-Pole Observations (HIPPO) study and the Atmospheric Tomography Mission (ATom), provide additional measurements over the Southern Ocean from other seasons and multiple years (2009-2011, 2016-2017). Derivation of fluxes from measured vertical gradients requires robust estimates of the residence time of air in the polar tropospheric domain, and of the contribution of long-range transport from northern latitudes outside the domain to the CO2 gradient. We use diverse independent approaches to estimate both terms, including simulations using multiple transport and flux models, and observed gradients of shorter-lived tracers with specific sources regions and well-known loss processes. This study demonstrates the utility of aircraft profile measurements for constraining large-scale air-sea fluxes for the Southern Ocean, in contrast to those derived from the extrapolation of sparse ocean and atmospheric measurements and uncertain flux parameterizations.
NASA Technical Reports Server (NTRS)
Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.
2014-01-01
Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.
NASA Astrophysics Data System (ADS)
Iwamori, Hikaru; Albaréde, Francis; Nakamura, Hitomi
2010-11-01
In order to further our understanding of the global geochemical structure and mantle dynamics, a global isotopic data set of oceanic basalts was analyzed by Independent Component Analysis (ICA), a relatively new method of multivariate analysis. The data set consists of 2773 mid-ocean ridge basalts (MORB) and 1515 ocean island basalts (OIB) with five isotopic ratios of Pb, Nd and Sr. The data set spatially covers the major oceans and enables us to compare the results with global geophysical observations. Three independent components (ICs) have been found, two of which are essentially identical to those previously found for basalts from the Atlantic and Indian Oceans. The two ICs (IC1 and IC2) span a compositional plane that accounts for 95.7% of the sample variance, while the third IC (IC3) accounts for 3.7%. Based on the geochemical nature of ICs and a forward model concerning trace elemental and isotopic compositions, the origin of the ICs is discussed. IC1 discriminates OIB from MORB, and may be related to elemental fractionation associated with melting and the subsequent radiogenic in growth with an average recycling time of 0.8 to 2.4 Ga. IC2 tracks the regional provenance of both MORB and OIB and may be related to aqueous fluid-rock interaction and the subsequent radiogenic ingrowth with an average recycling time of 0.3 to 0.9 Ga. IC3 fingerprints upper continental crustal material and its high value appears in limited geographical and tectonic settings. Variations in the melt component (IC1) and in the aqueous fluid component (IC2) inherited in the mantle most likely reflect mid-ocean ridge and subduction zone processes, respectively. Long-term accumulation of dense materials rich in the IC1 melt component at the base of the convective mantle accounts for its longer recycling time with respect to that for less dense materials rich in the aqueous fluid component (IC2). IC2 broadly correlates with the seismic velocity structures of the lowermost mantle and electric conductivity around the mantle transition zones. We propose that IC2 reflects hydrogen distribution within the mantle and that several global domains enriched in hydrogen could exist as vertical sectors extending all the way down to the core-mantle boundary.
2010-01-01
Circulation in the Indonesian Seas: 1/12 degree Global HYCOM and the INSTANT Observations 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...SUPPLEMENTARY NOTES 14. ABSTRACT A l/l 2 global version of the HYbrid Coordinate Ocean Model (HYCOM) using 3-hourly atmospheric forcing is analyzed and...TERMS Indonesian Throughflow, global HYCOM, INSTANT, Inter-ocean exchange, ocean modeling 16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified b
Cuadrat, Rafael R C; Ferrera, Isabel; Grossart, Hans-Peter; Dávila, Alberto M R
2016-02-01
Marine habitats harbor a great diversity of microorganism from the three domains of life, only a small fraction of which can be cultivated. Metagenomic approaches are increasingly popular for addressing microbial diversity without culture, serving as sensitive and relatively unbiased methods for identifying and cataloging the diversity of nucleic acid sequences derived from organisms in environmental samples. Aerobic anoxygenic phototrophic bacteria (AAP) play important roles in carbon and energy cycling in aquatic systems. In oceans, those bacteria are widely distributed; however, their abundance and importance are still poorly understood. The aim of this study was to estimate abundance and diversity of AAPs in metagenomes from an upwelling affected coastal bay in Arraial do Cabo, Brazil, using in silico screening for the anoxygenic photosynthesis core genes. Metagenomes from the Global Ocean Sample Expedition (GOS) were screened for comparative purposes. AAPs were highly abundant in the free-living bacterial fraction from Arraial do Cabo: 23.88% of total bacterial cells, compared with 15% in the GOS dataset. Of the ten most AAP abundant samples from GOS, eight were collected close to the Equator where solar irradiation is high year-round. We were able to assign most retrieved sequences to phylo-groups, with a particularly high abundance of Roseobacter in Arraial do Cabo samples. The high abundance of AAP in this tropical bay may be related to the upwelling phenomenon and subsequent picoplankton bloom. These results suggest a link between upwelling and light abundance and demonstrate AAP even in oligotrophic tropical and subtropical environments. Longitudinal studies in the Arraial do Cabo region are warranted to understand the dynamics of AAP at different locations and seasons, and the ecological role of these unique bacteria for biogeochemical and energy cycling in the ocean.
The international Argo data infrastructure; past, present, and future.
NASA Astrophysics Data System (ADS)
Buck, J. J. H.; Pouliquen, S.; Thresher, A.; Schmechtig, C.; Ignaszewski, M.; Carval, T.; Scanderbeg, M.; Frost, M.
2016-12-01
The Argo array is composed of over 3,000 autonomous profiling floats that measure the temperature and salinity of the upper 2,000 m of the global deep ocean every ten days. Argo is a key component of the global ocean observing system and the data addresses crucial questions such as quantifying the heat content of the upper ocean and steric sea level change. Further to this data are routinely assimilated into operational ocean forecast models. Argo is underpinned by an international data system that was founded in the year 2,000 at the first meeting of the Argo data management team. The Argo data system is built on principles of open data and supplying data to both operational ocean models and research communities within 24 hours of collection. The data system served as a template for the established international OceanSITES community and the emerging Everyones Glider Observatories initiative. The Argo data system is composed of national Data Assembly Centers (DAC) that supply data to two mirrored Global Data Assembly Centres (GDAC). GDAC data exchanges are based on File Transfer Protocol (FTP). A significant recent data system development is the assignment of a single dynamic DOI to GDAC holdings enabling time dependent unambiguous data citation at a monthly granularity. The on-going evolution of Argo to address new global questions requires deeper data, shallower data, biogeochemical sampling and increased spatial coverage. These enhancements are increasing data complexity and volumes necessitating significant recent data format adaptation. The challenge and achievement was to preserve data formats and quality for existing established users while still allowing the integration of new data streams. The implementation of these adaptations is currently in progress within DACs. Argo data have been traditionally delivered via FTP protocol with developments are on-going to facilitate new users and emerging expectations on data delivery mechanisms. These experimental developments include access via Application Programming Interfaces such as ERDDAP, integration with other components of GOOS within the AtlantOS project, and a prototype 'Big Data' solution is being developed within the EU ENVRIplus project.
Observing System Evaluations Using GODAE Systems
2009-09-01
DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution is unlimite 13. SUPPLEMENTARY NOTES 20091228151 14. ABSTRACT Global ocean...forecast systems, developed under the Global Ocean Data Assimilation Experiment (GODAE), are a powerful means of assessing the impact of different...components of the Global Ocean Observing System (GOOS). Using a range of analysis tools and approaches, GODAE systems are useful for quantifying the
Cenozoic planktonic marine diatom diversity and correlation to climate change
Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas
2014-01-01
Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.
Decadal Changes in Global Ocean Annual Primary Production
NASA Technical Reports Server (NTRS)
Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.
Design and analysis of a global sub-mesoscale and tidal dynamics admitting virtual ocean.
NASA Astrophysics Data System (ADS)
Menemenlis, D.; Hill, C. N.
2016-02-01
We will describe the techniques used to realize a global kilometerscale ocean model configuration that includes representation of sea-ice and tidal excitation, and spans scales from planetary gyres to internal tides. A simulation using this model configuration provides a virtual ocean that admits some sub-mesoscale dynamics and tidal energetics not normally represented in global calculations. This extends simulated ocean behavior beyond broadly quasi-geostrophic flows and provides a preliminary example of a next generation computational approach to explicitly probing the interactions between instabilities that are usually parameterized and dominant energetic scales in the ocean. From previous process studies we have ascertained that this can lead to a qualitative improvement in the realism of many significant processes including geostrophic eddy dynamics, shelf-break exchange and topographic mixing. Computationally we exploit high-degrees of parallelism in both numerical evaluation and in recording model state to persistent disk storage. Together this allows us to compute and record a full three-dimensional model trajectory at hourly frequency for a timeperiod of 5 months with less than 9 million core hours of parallel computer time, using the present generation NASA Ames Research Center facilities. We have used this capability to create a 5 month trajectory archive, sampled at high spatial and temporal frequency for an ocean configuration that is initialized from a realistic data-assimilated state and driven with reanalysis surface forcing from ECMWF. The resulting database of model state provides a novel virtual laboratory for exploring coupling across scales in the ocean, and for testing ideas on the relationship between small scale fluxes and large scale state. The computation is complemented by counterpart computations that are coarsened two and four times respectively. In this presentation we will review the computational and numerical technologies employed and show how the high spatio-temporal frequency archive of model state can provide a new and promising tool for researching richer ocean dynamics at scale. We will also outline how computations of this nature could be combined with next generation computer hardware plans to help inform important climate process questions.
NASA Astrophysics Data System (ADS)
Ackleson, S. G.
2012-12-01
Ocean observatories (systems of coordinated sensors and platforms providing real-time in situ observations across multiple temporal and spatial scales) have advanced rapidly during the past several decades with the integration of novel hardware, development of advanced cyber-infrastructures and data management software, and the formation of researcher networks employing fixed, drifting, and mobile assets. These advances have provided persistent, real-time, multi-disciplinary observations representing even the most extreme environmental conditions, enabled unique and informative views of complicated ocean processes, and aided in the development of more accurate and higher fidelity ocean models. Combined with traditional ship-based and remotely sensed observations, ocean observatories have yielded new knowledge across a broad spectrum of earth-ocean scales that would likely not exist otherwise. These developments come at a critical time in human history when the demands of global population growth are creating unprecedented societal challenges associated with rapid climatic change and unsustainable consumption of key ocean resources. Successfully meeting and overcoming these challenges and avoiding the ultimate tragedy of the commons will require greater knowledge of environmental processes than currently exists, including interactions between the ocean, the overlying atmosphere, and the adjacent land and synthesizing new knowledge into effective policy and management structures. To achieve this, researchers must have free and ready access to comprehensive data streams (oceanic, atmospheric, and terrestrial), regardless of location and collection system. While the precedent for the concept of free and open access to environmental data is not new (it traces back to the International Geophysical Year, 1957), implementing procedures and standards on a global scale is proving to be difficult, both logistically and politically. Observatories have been implemented in many parts of the global ocean, inspiring researchers to begin planning and developing connected regional observing systems that are networked into a Global Ocean Observing System as part of a comprehensive Global Earth Observation System of Systems. However, much remains to be accomplished, especially in the areas of standardizing observation methods and metadata, implementing procedures to assure an acceptable level of data quality, and defining and producing key derived products. This paper will briefly discuss the evolution of ocean observatories, summarize current efforts to develop local, regional and global observing networks, and suggest future steps towards a global ocean observing system.
2015-07-17
under- ice scattering, bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1...and Climate of the Ocean, Phase II (ECCO2): High-Resolution Global-Ocean and Sea- Ice Data Synthesis) model re- analysis for the years 1992 and 1993...The ECCO2 model is a state estimation based upon data syntheses obtained by least squares fitting of the global ocean and sea- ice configuration of
Arctic Ocean Paleoceanography and Future IODP Drilling
NASA Astrophysics Data System (ADS)
Stein, Ruediger
2015-04-01
Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, such as the Lomonosov Ridge. These new detailed climate records spanning time intervals from the (late Cretaceous/)Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. During the Polarstern Expedition PS87 in August-September 2014, new site survey data including detailed multibeam bathymetry, multi-channel seismic and Parasound profiling as well as geological coring, were obtained on Lomonosov Ridge (Stein, 2015), being the basis for a more precise planning and update for a future IODP drilling campaign. Reference: Stein, R. (Ed.), 2015. Cruise Report of Polarstern Expedition PS87-2014 (Arctic Ocean/Lomonosov Ridge). Reps. Pol. Mar. Res., in press. Stein, R. , Weller, P. , Backman, J. , Brinkhuis, H., Moran, K. , Pälike, H., 2014. Cenozoic Arctic Ocean Climate History: Some highlights from the IODP Arctic Coring Expedition (ACEX). Developments in Marine Geology 7, Elsevier Amsterdam/New York, pp. 259-293.
Ubiquitous healthy diatoms in the deep sea confirms deep carbon injection by the biological pump
NASA Astrophysics Data System (ADS)
Agustí, Susana; González-Gordillo, Jose I.; Vaqué, Dolors; Estrada, Marta; Cerezo, Maria I.; Salazar, Guillem; Gasol, Josep M.; Duarte, Carlos M.
2016-04-01
The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean awaits confirmation. Photosynthetic plankton, directly responsible for trapping CO2 in organic form in the surface layer, are a key constituent of the flux of sinking particles and are assumed to die and become detritus upon leaving the photic layer. Research in the 1960-70's reported the occasional presence of well-preserved phytoplankton cells in the deep ocean, but these observations, which could signal at rapid sinking rates, were considered anecdotal. Using new developments we tested the presence of healthy phytoplankton cells in the deep sea (2000 to 4000 m depth) along the Malaspina 2010 Circumnavigation Expedition, a global expedition sampling the bathypelagic zone of the Atlantic, Indian and Pacific Oceans. In particular, we used a new microplankton sampling device, the Bottle-Net, 16S rDNA sequences, flow cytometric counts, vital stains and experiments to explore the abundance and health status of photosynthetic plankton cells between 2,000 and 4,000 m depth along the Circumnavigation track. We described the community of microplankton (> 20μm) found at the deep ocean (2000-4000 m depth), surprisingly dominated by phytoplankton, and within this, by diatoms. Moreover, we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark sea. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from few days to few weeks, corresponding to sinking rates of 124 to 732 m d-1, comparable to those of fast sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep-sea and that this is a prevalent process operating across the global oligotrophic ocean.
TOPEX/Poseidon - An international satellite oceanography mission
NASA Technical Reports Server (NTRS)
Townsend, W. F.; Fellous, J.-L.
1986-01-01
The TOPEX/Poseidon mission, a joint NASA-CNES effort, strives to provide highly accurate global ocean topography measurements over a three year period utilizing highly advanced satellite radar altimetry techniques. Scheduled for launch in late 1991, the TOPEX/Poseidon satellite, together with ESA's first European remote sensing satellite and NASA's scatterometer, promises to provide a fundamental breakthrough in the present knowledge of how the oceans work as a global system. As part of the World Ocean Circulation Experiment, TOPEX/Poseidon measurements will aid in the determination of the three-dimensional current structure of the global oceans.
The Marine Resources Experiment Program (MAREX)
NASA Technical Reports Server (NTRS)
1982-01-01
The Satellite Ocean Color Science Working Group was established to consider the scientific utility of repeated satellite measurements of ocean color, especially for measuring global ocean chlorophyll and for studying the fate of global primary productivity in the sea. Results of the group's deliberations are presented. The scientific requirements are given for ocean color data from a CZCS follow on sensor in order to address global primary productivity, fishery, and carbon storage problems. Some specific experiments, called the marine resource experiment and designed to determine critical nutrient fluxes, photosynthetic rates, and primary productivity and biomass, are outlined.
OceanSITES: Sustained Ocean Time Series Observations in the Global Ocean.
NASA Astrophysics Data System (ADS)
Weller, R. A.; Gallage, C.; Send, U.; Lampitt, R. S.; Lukas, R.
2016-02-01
Time series observations at critical or representative locations are an essential element of a global ocean observing system that is unique and complements other approaches to sustained observing. OceanSITES is an international group of oceanographers associated with such time series sites. OceanSITES exists to promote the continuation and extension of ocean time series sites around the globe. It also exists to plan and oversee the global array of sites in order to address the needs of research, climate change detection, operational applications, and policy makers. OceanSITES is a voluntary group that sits as an Action Group of the JCOMM-OPS Data Buoy Cooperation Panel, where JCOMM-OPS is the operational ocean observing oversight group of the Joint Commission on Oceanography and Marine Meteorology of the International Oceanographic Commission and the World Meteorological Organization. The way forward includes working to complete the global array, moving toward multidisciplinary instrumentation on a subset of the sites, and increasing utilization of the time series data, which are freely available from two Global Data Assembly Centers, one at the National Data Buoy Center and one at Coriolis at IFREMER. One recnet OceanSITES initiative and several results from OceanSITES time series sites are presented. The recent initiative was the assembly of a pool of temperature/conductivity recorders fro provision to OceanSITES sites in order to provide deep ocean temperature and salinity time series. Examples from specific sites include: a 15-year record of surface meteorology and air-sea fluxes from off northern Chile that shows evidence of long-term trends in surface forcing; change in upper ocean salinity and stratification in association with regional change in the hydrological cycle can be seen at the Hawaii time series site; results from monitoring Atlantic meridional transport; and results from a European multidisciplinary time series site.
Buttigieg, Pier Luigi; Fadeev, Eduard; Bienhold, Christina; Hehemann, Laura; Offre, Pierre; Boetius, Antje
2018-02-21
Microbial observation is of high relevance in assessing marine phenomena of scientific and societal concern including ocean productivity, harmful algal blooms, and pathogen exposure. However, we have yet to realise its potential to coherently and comprehensively report on global ocean status. The ability of satellites to monitor the distribution of phytoplankton has transformed our appreciation of microbes as the foundation of key ecosystem services; however, more in-depth understanding of microbial dynamics is needed to fully assess natural and anthropogenically induced variation in ocean ecosystems. While this first synthesis shows that notable efforts exist, vast regions such as the ocean depths, the open ocean, the polar oceans, and most of the Southern Hemisphere lack consistent observation. To secure a coordinated future for a global microbial observing system, existing long-term efforts must be better networked to generate shared bioindicators of the Global Ocean's state and health. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Izett, Jonathan G.; Fennel, Katja
2018-02-01
Rivers deliver large amounts of fresh water, nutrients, and other terrestrially derived materials to the coastal ocean. Where inputs accumulate on the shelf, harmful effects such as hypoxia and eutrophication can result. In contrast, where export to the open ocean is efficient riverine inputs contribute to global biogeochemical budgets. Assessing the fate of riverine inputs is difficult on a global scale. Global ocean models are generally too coarse to resolve the relatively small scale features of river plumes. High-resolution regional models have been developed for individual river plume systems, but it is impractical to apply this approach globally to all rivers. Recently, generalized parameterizations have been proposed to estimate the export of riverine fresh water to the open ocean (Izett & Fennel, 2018, https://doi.org/10.1002/2017GB005667; Sharples et al., 2017, https://doi.org/10.1002/2016GB005483). Here the relationships of Izett and Fennel, https://doi.org/10.1002/2017GB005667 are used to derive global estimates of open-ocean export of fresh water and dissolved inorganic silicate, dissolved organic carbon, and dissolved organic and inorganic phosphorus and nitrogen. We estimate that only 15-53% of riverine fresh water reaches the open ocean directly in river plumes; nutrient export is even less efficient because of processing on continental shelves. Due to geographic differences in riverine nutrient delivery, dissolved silicate is the most efficiently exported to the open ocean (7-56.7%), while dissolved inorganic nitrogen is the least efficiently exported (2.8-44.3%). These results are consistent with previous estimates and provide a simple way to parameterize export to the open ocean in global models.
Global Distribution of Seamounts as Inferred from Ship Depth Soundings and Satellite Altimetry
NASA Astrophysics Data System (ADS)
Wessel, P.; Kim, S.; Sandwell, D. T.
2006-12-01
Traditionally, seamounts are active or extinct undersea volcanoes rising more than 1 km above the abyssal plain, but scientists now regularly apply the seamount label to features of just a few tens of meters in height. As constructional features they represent a small but significant fraction of the total volcanic extrusive budget for oceanic seafloor and their distribution provides key information on the variations in intraplate volcanic activity through space and time. Furthermore, they sustain significant ecological communities, determine habitats for fish, and act as obstacles to ocean currents, thus enhancing tidal energy dissipation and ocean mixing. Consequently, it is of some importance to locate and characterize seamounts. Two approaches are used to map the global distribution of seamounts. Depth soundings from single- and multi-beam echo sounders can provide the most detailed maps with up to 100--200 m horizontal resolution. However, soundings from the 5600 publicly available cruises sample only a small fraction of the ocean floor. Direct radar measurements of the ocean surface by satellite-borne altimeters have been used to infer the marine gravity field. By examining such gravity data one can characterize seamounts taller than ~2 km and such studies have produced seamount catalogues holding almost 15,000 seamounts. Recent retracking of the original radar altimeter waveforms to improve the accuracy of the gravity field has resulted in a two-fold increase in resolution. By extrapolating the inferred power-law that relates seamount size to frequency we estimate that 45,000 smaller seamounts taller than 1.5 km still remain uncharted. Future altimetry missions could improve on resolution and decrease noise levels even further, allowing for an even larger number of small (1--1.5 km) seamounts to be separated from the background abyssal hill fabric. Mapping the complete global distribution of seamounts will help constrain competing models of seamount formation as well as facilitate the understanding of marine habitats and deep ocean circulation.
Mapping the Arctic: Online Undergraduate Education Using Scientific Research in International Policy
NASA Astrophysics Data System (ADS)
Reed, D. L.; Edwards, B. D.; Gibbons, H.
2011-12-01
Ocean science education has the opportunity to span traditional academic disciplines and undergraduate curricula because of its interdisciplinary approach to address contemporary issues on a global scale. Here we report one such opportunity, which involves the development of a virtual oceanographic expedition to map the seafloor in the Arctic Ocean for use in the online Global Studies program at San Jose State University. The U.S. Extended Continental Shelf Project provides an extensive online resource to follow the activities of the third joint U.S. and Canada expedition in the Arctic Ocean, the 2010 Extended Continental Shelf survey, involving the icebreakers USCGC Healy and CCGS Louis S. St-Laurent. In the virtual expedition, students join the work of scientists from the U.S. Geological Survey and the Canadian Geological Survey by working through 21 linked web pages that combine text, audio, video, animations and graphics to first learn about the U.N. Convention on the Law of the Sea (UNCLOS). Then, students gain insight into the complexity of science and policy interactions by relating the UNCLOS to issues in the Arctic Ocean, now increasingly accessible to exploration and development as a result of climate change. By participating on the virtual expedition, students learn the criteria contained in Article 76 of UNCLOS that are used to define the extended continental shelf and the scientific methods used to visualize the seafloor in three-dimensions. In addition to experiencing life at sea aboard a research vessel, at least virtually, students begin to interpret the meaning of seafloor features and the use of seafloor sediment samples to understand the application of ocean science to international issues, such as the implications of climate change, national sovereign rights as defined by the UNCLOS, and marine resources. The virtual expedition demonstrates that ocean science education can extend beyond traditional geoscience courses by taking advantage of emerging academic disciplines, contemporary global issues and new learning delivery systems.
NASA Astrophysics Data System (ADS)
Organelli, E.; Claustre, H.; Serra, R.; Bricaud, A.; Schmechtig, C.; D'Ortenzio, F.; Poteau, A.; Mangin, A.; Leymarie, E.; Obolensky, G.; Prieur, L. M.; Dall'Olmo, G.; Xing, X.
2016-02-01
Thanks to a new generation of Bio-Argo floats equipped with sensors for PAR (Photosynthetically Available Irradiance) and downward irradiance measurements at selected wavelengths (i.e., 380, 412 and 490 nm), the number of radiometric measurements has been dramatically increasing and data are available for diverse open ocean systems, including winter periods with harsh seas when ships can hardly sample. More than 6500 radiometric profiles have so far been acquired around solar noon in the upper 250 m of the ocean. These radiometric profiles, acquired simultaneously to other key biogeochemical and bio-optical variables (chlorophyll a, CDOM, light backscattering), represent a fruitful data source for validation of Ocean Color (OC) products. Two different strategies can be implemented: direct validation of satellite OC products and identification of regions characterized by bio-optical anomalies. Diffuse attenuation coefficients (Kd) derived from these profiles, after a specifically developed quality control, are used for these purposes.A good agreement is observed between satellite-derived Kd values at 490 nm and their Bio-Argo counterparts. However, satellite overestimates low in situ Kd values found in very clear waters (e.g., Atlantic and Pacific Sub-Tropical Gyres). The analysis of the spectral Kd variability in the surface ocean shows the potential of Bio-Argo floats in identifying those regions with optical properties departing from global bio-optical relationships. Divergences of the ratio between Kd values at 380 nm and those at 490 nm from global bio-optical models are observed in areas such as the Mediterranean Sea and the North Atlantic in winter. This might cause difficulties in retrieving biogeochemical parameters from satellite data. Hence, delineation of "anomalous" regions by Bio-Argo floats represents a useful strategy for planning dedicated cruises, setting mooring buoys or using CAL/VAL floats in order to improve Ocean Color applications.
NASA Astrophysics Data System (ADS)
Nikurashin, Maxim; Gunn, Andrew
2017-04-01
The meridional overturning circulation (MOC) is a planetary-scale oceanic flow which is of direct importance to the climate system: it transports heat meridionally and regulates the exchange of CO2 with the atmosphere. The MOC is forced by wind and heat and freshwater fluxes at the surface and turbulent mixing in the ocean interior. A number of conceptual theories for the sensitivity of the MOC to changes in forcing have recently been developed and tested with idealized numerical models. However, the skill of the simple conceptual theories to describe the MOC simulated with higher complexity global models remains largely unknown. In this study, we present a systematic comparison of theoretical and modelled sensitivity of the MOC and associated deep ocean stratification to vertical mixing and southern hemisphere westerlies. The results show that theories that simplify the ocean into a single-basin, zonally-symmetric box are generally in a good agreement with a realistic, global ocean circulation model. Some disagreement occurs in the abyssal ocean, where complex bottom topography is not taken into account by simple theories. Distinct regimes, where the MOC has a different sensitivity to wind or mixing, as predicted by simple theories, are also clearly shown by the global ocean model. The sensitivity of the Indo-Pacific, Atlantic, and global basins is analysed separately to validate the conceptual understanding of the upper and lower overturning cells in the theory.
Improved Global Ocean Color Using Polymer Algorithm
NASA Astrophysics Data System (ADS)
Steinmetz, Francois; Ramon, Didier; Deschamps, ierre-Yves; Stum, Jacques
2010-12-01
A global ocean color product has been developed based on the use of the POLYMER algorithm to correct atmospheric scattering and sun glint and to process the data to a Level 2 ocean color product. Thanks to the use of this algorithm, the coverage and accuracy of the MERIS ocean color product have been significantly improved when compared to the standard product, therefore increasing its usefulness for global ocean monitor- ing applications like GLOBCOLOUR. We will present the latest developments of the algorithm, its first application to MODIS data and its validation against in-situ data from the MERMAID database. Examples will be shown of global NRT chlorophyll maps produced by CLS with POLYMER for operational applications like fishing or oil and gas industry, as well as its use by Scripps for a NASA study of the Beaufort and Chukchi seas.
NASA Astrophysics Data System (ADS)
Chang, C. C.; Burr, G.; Jull, A. J. T.; Priyadarshi, A.; Thiemens, M. H.; Biddulph, D.; Russell, J. L.
2014-12-01
129I is a long-lived radionuclide that has been used as a useful environmental tracer. At present, the global 129I in surface water is about 1-2 orders of magnitude higher than pre-1990 levels. The anthropogenic 129I signal produced from industrial nuclear fuel reprocessing plants is known to be the primary source of 129I in marine surface waters of the Atlantic, and elevated 129I values are found globally. The Great East Japan Earthquake and the induced tsunami in 2011 triggered the nuclear shutdowns, failures, and partial meltdowns of Fukushima Daiichi Nuclear Power Plant. The accident resulted in a series of radioactive material releases into the environment and spread out through atmospheric and ocean circulation. We will present 129I results of water samples collected weekly near Scripps Institution of Oceanography, San Diego, CA for the past 3 years. We also have several measurements collected a year apart from Kaohsiung, Taiwan, which represent west margin of Pacific Ocean, and from Alaska, Washington, and Oregon. By establishing 129I time series, we can observe the spread of 129I in the surface waters of the Pacific Ocean that resulted from the accidental releases.
Syed, Tajdarul H.; Famiglietti, James S.; Chambers, Don P.; Willis, Josh K.; Hilburn, Kyle
2010-01-01
Freshwater discharge from the continents is a key component of Earth’s water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994–2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km3/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km3/y2, which was largely attributed to an increase of global-ocean evaporation (768 km3/y2). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle. PMID:20921364
Sensitivity of ocean oxygenation to variations in tropical zonal wind stress magnitude
NASA Astrophysics Data System (ADS)
Ridder, Nina N.; England, Matthew H.
2014-09-01
Ocean oxygenation has been observed to have changed over the past few decades and is projected to change further under global climate change due to an interplay of several mechanisms. In this study we isolate the effect of modified tropical surface wind stress conditions on the evolution of ocean oxygenation in a numerical climate model. We find that ocean oxygenation varies inversely with low-latitude surface wind stress. Approximately one third of this response is driven by sea surface temperature anomalies; the remaining two thirds result from changes in ocean circulation and marine biology. Global mean O2 concentration changes reach maximum values of +4 μM and -3.6 μM in the two most extreme perturbation cases of -30% and +30% wind change, respectively. Localized changes lie between +92 μM under 30% reduced winds and -56 μM for 30% increased winds. Overall, we find that the extent of the global low-oxygen volume varies with the same sign as the wind perturbation; namely, weaker winds reduce the low-oxygen volume on the global scale and vice versa for increased trade winds. We identify two regions, one in the Pacific Ocean off Chile and the other in the Indian Ocean off Somalia, that are of particular importance for the evolution of oxygen minimum zones in the global ocean.
Ocean-Atmosphere Interactions Modulate Irrigation's Climate Impacts
NASA Technical Reports Server (NTRS)
Krakauer, Nir Y.; Puma, Michael J.; Cook, Benjamin I.; Gentine, Pierre; Nazarenko, Larissa
2016-01-01
Numerous studies have focused on the local and regional climate effects of irrigated agriculture and other land cover and land use change (LCLUC) phenomena, but there are few studies on the role of ocean- atmosphere interaction in modulating irrigation climate impacts. Here, we compare simulations with and without interactive sea surface temperatures of the equilibrium effect on climate of contemporary (year 2000) irrigation geographic extent and intensity. We find that ocean-atmosphere interaction does impact the magnitude of global-mean and spatially varying climate impacts, greatly increasing their global reach. Local climate effects in the irrigated regions remain broadly similar, while non-local effects, particularly over the oceans, tend to be larger. The interaction amplifies irrigation-driven standing wave patterns in the tropics and mid-latitudes in our simulations, approximately doubling the global-mean amplitude of surface temperature changes due to irrigation. The fractions of global area experiencing significant annual-mean surface air temperature and precipitation change also approximately double with ocean-atmosphere interaction. Subject to confirmation with other models, these findings imply that LCLUC is an important contributor to climate change even in remote areas such as the Southern Ocean, and that attribution studies should include interactive oceans and need to consider LCLUC, including irrigation, as a truly global forcing that affects climate and the water cycle over ocean as well as land areas.
Pastene, Luis A; Goto, Mutsuo; Kanda, Naohisa; Zerbini, Alexandre N; Kerem, Dan; Watanabe, Kazuo; Bessho, Yoshitaka; Hasegawa, Masami; Nielsen, Rasmus; Larsen, Finn; Palsbøll, Per J
2007-04-01
How do populations of highly mobile species inhabiting open environments become reproductively isolated and evolve into new species? We test the hypothesis that elevated ocean-surface temperatures can facilitate allopatry among pelagic populations and thus promote speciation. Oceanographic modelling has shown that increasing surface temperatures cause localization and reduction of upwelling, leading to fragmentation of feeding areas critical to pelagic species. We test our hypothesis by genetic analyses of populations of two closely related baleen whales, the Antarctic minke whale (Balaenoptera bonaerensis) and common minke whale (Balaenoptera acutorostrata) whose current distributions and migration patterns extent are largely determined by areas of consistent upwelling with high primary production. Phylogeographic and population genetic analyses of mitochondrial DNA control-region nucleotide sequences collected from 467 whales sampled in four different ocean basins were employed to infer the evolutionary relationship among populations of B. acutorostrata by rooting an intraspecific phylogeny with a population of B. bonaerensis. Our findings suggest that the two species diverged in the Southern Hemisphere less than 5 million years ago (Ma). This estimate places the speciation event during a period of extended global warming in the Pliocene. We propose that elevated ocean temperatures in the period facilitated allopatric speciation by disrupting the continuous belt of upwelling maintained by the Antarctic Circumpolar Current. Our analyses revealed that the current populations of B. acutorostrata likely diverged after the Pliocene some 1.5 Ma when global temperatures had decreased and presumably coinciding with the re-establishment of the polar-equatorial temperature gradient that ultimately drives upwelling. In most population samples, we detected genetic signatures of exponential population expansions, consistent with the notion of increasing carrying capacity after the Pliocene. Our hypothesis that prolonged periods of global warming facilitate speciation in pelagic marine species that depend on upwelling should be tested by comparative analyses in other pelagic species.
Revealing the timing of ocean stratification using remotely sensed ocean fronts
NASA Astrophysics Data System (ADS)
Miller, Peter I.; Loveday, Benjamin R.
2017-10-01
Stratification is of critical importance to the circulation, mixing and productivity of the ocean, and is expected to be modified by climate change. Stratification is also understood to affect the surface aggregation of pelagic fish and hence the foraging behaviour and distribution of their predators such as seabirds and cetaceans. Hence it would be prudent to monitor the stratification of the global ocean, though this is currently only possible using in situ sampling, profiling buoys or underwater autonomous vehicles. Earth observation (EO) sensors cannot directly detect stratification, but can observe surface features related to the presence of stratification, for example shelf-sea fronts that separate tidally-mixed water from seasonally stratified water. This paper describes a novel algorithm that accumulates evidence for stratification from a sequence of oceanic front maps, and discusses preliminary results in comparison with in situ data and simulations from 3D hydrodynamic models. In certain regions, this method can reveal the timing of the seasonal onset and breakdown of stratification.
Abedini, Atosa A.; Hurwitz, S.; Evans, William C.
2006-01-01
The database (Version 1.0) is a MS-Excel file that contains close to 5,000 entries of published information on noble gas concentrations and isotopic ratios from volcanic systems in Mid-Ocean ridges, ocean islands, seamounts, and oceanic and continental arcs (location map). Where they were available we also included the isotopic ratios of strontium, neodymium, and carbon. The database is sub-divided both into material sampled (e.g., volcanic glass, different minerals, fumarole, spring), and into different tectonic settings (MOR, ocean islands, volcanic arcs). Included is also a reference list in MS-Word and pdf from which the data was derived. The database extends previous compilations by Ozima (1994), Farley and Neroda (1998), and Graham (2002). The extended database allows scientists to test competing hypotheses, and it provides a framework for analysis of noble gas data during periods of volcanic unrest.
NASA Astrophysics Data System (ADS)
Rowley, C. D.; Hogan, P. J.; Martin, P.; Thoppil, P.; Wei, M.
2017-12-01
An extended range ensemble forecast system is being developed in the US Navy Earth System Prediction Capability (ESPC), and a global ocean ensemble generation capability to represent uncertainty in the ocean initial conditions has been developed. At extended forecast times, the uncertainty due to the model error overtakes the initial condition as the primary source of forecast uncertainty. Recently, stochastic parameterization or stochastic forcing techniques have been applied to represent the model error in research and operational atmospheric, ocean, and coupled ensemble forecasts. A simple stochastic forcing technique has been developed for application to US Navy high resolution regional and global ocean models, for use in ocean-only and coupled atmosphere-ocean-ice-wave ensemble forecast systems. Perturbation forcing is added to the tendency equations for state variables, with the forcing defined by random 3- or 4-dimensional fields with horizontal, vertical, and temporal correlations specified to characterize different possible kinds of error. Here, we demonstrate the stochastic forcing in regional and global ensemble forecasts with varying perturbation amplitudes and length and time scales, and assess the change in ensemble skill measured by a range of deterministic and probabilistic metrics.
Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets
NASA Astrophysics Data System (ADS)
Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.
2018-04-01
Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.
IMBER (Integrated Marine Biogeochemistry and Ecosystem Research: Support of Ocean Carbon Research
NASA Astrophysics Data System (ADS)
Rimetz-Planchon, J.; Gattuso, J.; Maddison, L.; Bakker, D. C.; Gruber, N.
2011-12-01
IMBER (Integrated Marine Biogeochemistry and Ecosystem Research), co-sponsored by SCOR (Scientific Committee on Oceanic Research) and IGBP (International Geosphere-Biosphere Programme), coordinates research that focuses on understanding and predicting changes in oceanic food webs and biogeochemical cycles that arise from global change. An integral part of this overall goal is to understand the marine carbon cycle, with emphasis on changes that may occur as a result of a changing climate, increased atmospheric CO2 levels and/or reduced oceanic pH. To address these key ocean carbon issues, IMBER and SOLAS (Surface Ocean Lower Atmosphere Study), formed the joint SOLAS-IMBER Carbon, or SIC Working Group. The SIC Working Group activities are organised into three sub-groups. Sub-group 1 (Surface Ocean Systems) focuses on synthesis, instrumentation and technology development, VOS (Voluntary Observing Ships) and mixed layer sampling strategies. The group contributed to the development of SOCAT (Surface Ocean CO2 Atlas, www.socat.info), a global compilation of underway surface water fCO2 (fugacity of CO2) data in common format. It includes 6.3 million measurements from 1767 cruises from 1968 and 2008 by more than 10 countries. SOCAT will be publically available and will serve a wide range of user communities. Its public release is planned for September 2011. SOCAT is strongly supported by IOCCP and CARBOOCEAN. Sub-group 2 (Interior Ocean Carbon Storage) covers inventory and observations, natural variability, transformation and interaction with modelling. It coordinated a review of vulnerabilities of the decadal variations of the interior ocean carbon and oxygen cycle. It has also developed a plan to add dissolved oxygen sensors to the ARGO float program in order to address the expected loss of oxygen as a result of ocean warming. The group also focuses on the global synthesis of ocean interior carbon observations to determine the oceanic uptake of anthropogenic CO2 since the mid 1990s. Sub-group 3 (SOLAS-IMBER Ocean Acidification or SIOA) coordinates international research efforts in ocean acidification and undertakes synthesis activities in ocean acidification at the international level. Several on-going synthesis activities, such as book projects and work by the Intergovernmental Panel on Climate Change (IPCC) are endorsed by this group. The SIOA developed a package of activities which it identified as critical to assess the effects of ocean acidification but are, for the most part, not funded at the national or regional levels and must be carried out at the international level. Among them is the promotion of international experiments, the sharing of experimental platforms, and the undertaking of inter-comparison exercises. The SIOA has submitted a proposal to launch an Ocean Acidification International Coordination Office in March 2011. This poster highlights some results from the SIC Working Group and indicates future challenges.
NASA Astrophysics Data System (ADS)
Rhodes, R. C.; Barron, C. N.; Fox, D. N.; Smedstad, L. F.
2001-12-01
A global implementation of the Navy Coastal Ocean Model (NCOM), developed by the Naval Research Laboratory (NRL) at Stennis Space Center is currently running in real-time and is planned for transition to the Naval Oceanographic Office (NAVOCEANO) in 2002. The model encompasses the open ocean to 5 m depth on a curvilinear global model grid with 1/8 degree grid spacing at 45N, extending from 80 S to a complete arctic cap with grid singularities mapped into Canada and Russia. Vertically, the model employs 41 sigma-z levels with sigma in the upper-ocean and coastal regions and z in the deeper ocean. The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides 6-hourly wind stresses and heat fluxes for forcing, while the operational Modular Ocean Data Assimilation System (MODAS) provides the background climatology and tools for data pre-processing. Operationally available sea surface temperature (SST) and altimetry (SSH) data are assimilated into the NAVOCEANO global 1/8 degree MODAS 2-D analysis and the 1/16 degree Navy Layered Ocean Model (NLOM) to provide analyses and forecasts of SSH and SST. The 2-D SSH and SST nowcast fields are used as input to the MODAS synthetic climatology database to yield three-dimensional fields of synthetic temperature and salinity for assimilation into global NCOM. The synthetic profiles are weighted higher at depth in the assimilation process to allow the numerical model to properly develop the mixed-layer structure driven by the real-time atmospheric forcing. Global NCOM nowcasts and forecasts provide a valuable resource for rapid response to the varied and often unpredictable operational requests for 3-dimensional fields of ocean temperature, salinity, and currents. In some cases, the resolution of the global product is sufficient for guidance. In cases requiring higher resolution, the global product offers a quick overview of local circulation and provides initial and boundary conditions for higher resolution coastal models that may be more specialized for a particular task or domain. Nowcast and forecast results are presented globally and in selected areas of interest and model results are compared with historical and concurrent observations and analyses.
ARM Carbon Cycle Gases Flasks at SGP Site
Biraud, Sebastien
2013-03-26
Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.
Salinity Remote Sensing and the Study of the Global Water Cycle
NASA Technical Reports Server (NTRS)
Lagerloef, G. S. E.; LeVine, David M.; Chao, Y.; Colomb, F. Raul; Font, J.
2007-01-01
The SMOS and AquariusISAC-D satellite missions will begin a new era to map the global sea surface salinity (SSS) field and its variability from space within the next twothree years. They will provide critical data needed to study the interactions between the ocean circulation, global water cycle and climate. Key scientific issues to address are (1) mapping large expanses of the ocean where conventional SSS data do not yet exist, (2) understanding the seasonal and interannual SSS variations and the link to precipitation, evaporation and sea-ice patterns, (3) links between SSS and variations in the oceanic overturning circulation, (4) air-sea coupling processes in the tropics that influence El Nino, and (4) closing the marine freshwater budget. There is a growing body of oceanographic evidence in the form of salinity trends that portend significant changes in the hydrologic cycle. Over the past several decades, highlatitude oceans have become fresher while the subtropical oceans have become saltier. This change is slowly spreading into the subsurface ocean layers and may be affecting the strength of the ocean's therrnohaline overturning circulation. Salinity is directly linked to the ocean dynamics through the density distribution, and provides an important signature of the global water cycle. The distribution and variation of oceanic salinity is therefore attracting increasing scientific attention due to the relationship to the global water cycle and its influence on circulation, mixing, and climate processes. The oceans dominate the water cycle by providing 86% of global surface evaporation (E) and receiving 78% of global precipitation (P). Regional differences in E-P, land runoff, and the melting or freezing of ice affect the salinity of surface water. Direct observations of E-P over the ocean have large uncertainty, with discrepancies between the various state-of-the-art precipitation analyses of a factor of two or more in many regions. Quantifying the climatic influence of the oceanic water cycle requires more accurately resolving the net air-sea water flux. Measuring global SSS trends on seasonal to interannual timescales by satellite is fundamental to this problem because the SSS trends represent detectable time-integrated signals of the variable marine hydrological cycle. Satellite measurements, coupled with an array of in situ observations, will provide global synoptic SSS fields for the first time history. These data will provide a strong constraint on climate models and data assimilation efforts, which must properly represent the freshwater budget in terms of E-P, ocean advection and surface layer mixing in order to accurately simulate the true ocean state. The SSS fields will allow us to quantify the covariability between the SSS and the strong seasonal E-P cycle in the tropics and high latitudes. Field measurement campaigns to exploit satellite and in situ measurements to close the seasonal E-P cycle over an ocean region are being considered. Lastly the satellite systems will monitor and trace the large long-lived SSS anomalies from year to year that have the potential to influence El Nino and the large scale ocean circulation.
Global Paleobathymetry Reconstruction with Realistic Shelf-Slope and Sediment Wedge
NASA Astrophysics Data System (ADS)
Goswami, A.; Hinnov, L. A.; Gnanadesikan, A.; Olson, P.
2013-12-01
We present paleo-ocean bathymetry reconstructions in a 0.1°x0.1° resolution, using simple geophysical models (Plate Model Equation for oceanic lithosphere), published ages of the ocean floor (Müller et al. 2008), and modern world sediment thickness data (Divins 2003). The motivation is to create realistic paleobathymetry to understand the effect of ocean floor roughness on tides and heat transport in paleoclimate simulations. The values for the parameters in the Plate Model Equation are deduced from Crosby et al. (2006) and are used together with ocean floor age to model Depth to Basement. On top of the Depth to Basement, we added an isostatically adjusted multilayer sediment layer, as indicated from sediment thickness data of the modern oceans and marginal seas (Divins 2003). We also created another version of the sediment layer from the Müller et al. dataset. The Depth to Basement with the appropriate sediment layer together represent a realistic paleobathymetry. A Sediment Wedge was modeled to complement the reconstructed paleobathymetry by extending it to the coastlines. In this process we added a modeled Continental Shelf and Continental Slope to match the extent of the reconstructed paleobathymetry. The Sediment Wedge was prepared by studying the modern ocean where a complete history of seafloor spreading is preserved (north, south and central Atlantic Ocean, Southern Ocean between Australia-Antarctica, and the Pacific Ocean off the west coast of South America). The model takes into account the modern continental shelf-slope structure (as evident from ETOPO1/ETOPO5), tectonic margin type (active vs. passive margin) and age of the latest tectonic activity (USGS & CGMW). Once the complete ocean bathymetry is modeled, we combine it with PALEOMAP (Scotese, 2011) continental reconstructions to produce global paleoworld elevation-bathymetry maps. Modern time (00 Ma) was assumed as a test case. Using the above-described methodology we reconstructed modern ocean bathymetry, starting with age of the oceanic crust. We then reconstructed paleobathymetry for PETM (55 Ma) and Cenomanian-Turonian (90 Ma) times. For each case, the final products are: a) a global depth to basement measurement map based on plate model and EarthByte published age of the ocean crust for modern world; b) global oceanic crust bathymetry maps with a multilayer sediment layer (two versions with two types of sediment layers based on: i) observed total sediment thickness of the modern oceans and marginal seas, and ii) EarthByte-estimated global sediment data for 00 Ma); c) global oceanic bathymetry maps (two versions with two types of sediment layers) with reconstructed shelf and slope; and d) global elevation-bathymetry maps (two versions with two types of sediment layers) with continental elevations (PALEOMAP) and ocean bathymetry. Similar maps for other geological times can be produced using this method provided that ocean crustal age is known.
Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments
NASA Technical Reports Server (NTRS)
Rapp, J. F.; Draper, D. S.
2015-01-01
The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP
The structure and evolution of plankton communities
NASA Astrophysics Data System (ADS)
Longhurst, Alan R.
New understanding of the circulation of ancient oceans is not yet matched by progress in our understanding of their pelagic ecology, though it was the planktonic ecosystems that generated our offshore oil and gas reserves. Can we assume that present-day models of ecosystem function are also valid for ancient seas? This question is addressed by a study of over 4000 plankton samples to derive a comprehensive, global description of zooplankton community structure in modern oceans: this shows that copepods form only 50% of the biomass of all plankton, ranging from 70% in polar to 35% in tropical seas. Comparable figures are derived from 14 other taxonomic categories of zooplankton. For trophic groupings, the data indicate globally: geletinous predators - 14%; gelatinous herbivores - 4%; raptorial predators - 33%; macrofiltering herbivores - 20%; macrofiltering omnivores - 25%; and detritivores - 3%. A simple, idealized model for the modern pelagic ecosystem is derived from these percentages which indicates that metazooplankton are not the most important consumers of pico- and nano-plankton production which itself probably constitutes 90% of primary production in warm oceans. This model is then compared with candidate life-forms available in Palaeozoic and Mesozoic oceans to determine to what extent it is also valid for ancient ecosystems: it is concluded that it is probably unnecessary to postulate models fundamentally differing from it in order to accommodate the life-forms, both protozoic and metazoic, known to have populated ancient seas. Remarkably few life-forms have existed which cannot be paralleled in the modern ocean, which contains remarkably few life-forms which cannot be paralleled in the Palaeozoic ocean. As a first assumption, then, it is reasonable to assume that energy pathways were similar in ancient oceans to those we study today.
Global variations in abyssal peridotite compositions
NASA Astrophysics Data System (ADS)
Warren, Jessica M.
2016-04-01
Abyssal peridotites are ultramafic rocks collected from mid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt-rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for > 1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0-15% modal clinopyroxene and spinel Cr# = 0.1-0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt-rock interaction and pre-existing compositional variability, where melt-rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, 10% of abyssal peridotites are refractory (0% clinopyroxene, spinel Cr# > 0.5, bulk Al2O3 < 1 wt.%) and some ridge sections are dominated by harzburgites while lacking a significant basaltic crust. Abyssal ultramafic samples thus indicate that the mantle is multi-component, probably consisting of at least three components (lherzolite, harzburgite, and pyroxenite). Overall, the large compositional range among residual and melt-added peridotites implies that the oceanic lithospheric mantle is heterogeneous, which will lead to the generation of further heterogeneities upon subduction back into the mantle.
Hannisdal, Bjarte; Haaga, Kristian Agasøster; Reitan, Trond; Diego, David; Liow, Lee Hsiang
2017-07-12
Common species shape the world around us, and changes in their commonness signify large-scale shifts in ecosystem structure and function. However, our understanding of long-term ecosystem response to environmental forcing in the deep past is centred on species richness, neglecting the disproportional impact of common species. Here, we use common and widespread species of planktonic foraminifera in deep-sea sediments to track changes in observed global occupancy (proportion of sampled sites at which a species is present and observed) through the turbulent climatic history of the last 65 Myr. Our approach is sensitive to relative changes in global abundance of the species set and robust to factors that bias richness estimators. Using three independent methods for detecting causality, we show that the observed global occupancy of planktonic foraminifera has been dynamically coupled to past oceanographic changes captured in deep-ocean temperature reconstructions. The causal inference does not imply a direct mechanism, but is consistent with an indirect, time-delayed causal linkage. Given the strong quantitative evidence that a dynamical coupling exists, we hypothesize that mixotrophy (symbiont hosting) may be an ecological factor linking the global abundance of planktonic foraminifera to long-term climate changes via the relative extent of oligotrophic oceans. © 2017 The Authors.
Physical oceanography from satellites: Currents and the slope of the sea surface
NASA Technical Reports Server (NTRS)
Sturges, W.
1974-01-01
A global scheme using satellite altimetry in conjunction with thermometry techniques provides for more accurate determinations of first order leveling networks by overcoming discrepancies between ocean leveling and land leveling methods. The high noise content in altimetry signals requires filtering or correction for tides, etc., as well as carefully planned sampling schemes.
Global Real-Time Ocean Forecast System
services. Marine Modeling and Analysis Branch Logo Click here to go to the MMAB home page Global Real-Time 17 Oct 2017 at 0Z, the Global RTOFS model has been upgraded to version 1.1.2. Changes include: The ). The global operational Real-Time Ocean Forecast System (Global RTOFS) at the National Centers for
Currents Global Ocean Model Sea Surface Temperatures Gulf Stream ASCII Data Gulf Stream Comparison Gridded ASCAT Scatterometer Winds Lightning Strike Density Satellite Imagery Ocean Global Ocean Model , 2017 19:10:57 UTC Disclaimer Information Quality Help Glossary Privacy Policy Freedom of Information
Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis
Sonnenschein, Eva C; Nielsen, Kristian F; D'Alvise, Paul; Porsby, Cisse H; Melchiorsen, Jette; Heilmann, Jens; Kalatzis, Panos G; López-Pérez, Mario; Bunk, Boyke; Spröer, Cathrin; Middelboe, Mathias; Gram, Lone
2017-01-01
Tropodithietic acid (TDA)-producing Ruegeria mobilis strains of the Roseobacter clade have primarily been isolated from marine aquaculture and have probiotic potential due to inhibition of fish pathogens. We hypothesized that TDA producers with additional novel features are present in the oceanic environment. We isolated 42 TDA-producing R. mobilis strains during a global marine research cruise. While highly similar on the 16S ribosomal RNA gene level (99–100% identity), the strains separated into four sub-clusters in a multilocus sequence analysis. They were further differentiated to the strain level by average nucleotide identity using pairwise genome comparison. The four sub-clusters could not be associated with a specific environmental niche, however, correlated with the pattern of sub-typing using co-isolated phages, the number of prophages in the genomes and the distribution in ocean provinces. Major genomic differences within the sub-clusters include prophages and toxin-antitoxin systems. In general, the genome of R. mobilis revealed adaptation to a particle-associated life style and querying TARA ocean data confirmed that R. mobilis is more abundant in the particle-associated fraction than in the free-living fraction occurring in 40% and 6% of the samples, respectively. Our data and the TARA data, although lacking sufficient data from the polar regions, demonstrate that R. mobilis is a globally distributed marine bacterial species found primarily in the upper open oceans. It has preserved key phenotypic behaviors such as the production of TDA, but contains diverse sub-clusters, which could provide new capabilities for utilization in aquaculture. PMID:27552638
NASA Technical Reports Server (NTRS)
Chang, Alfred T. C.; Chiu, Long S.; Wilheit, Thomas T.
1993-01-01
Global averages and random errors associated with the monthly oceanic rain rates derived from the Special Sensor Microwave/Imager (SSM/I) data using the technique developed by Wilheit et al. (1991) are computed. Accounting for the beam-filling bias, a global annual average rain rate of 1.26 m is computed. The error estimation scheme is based on the existence of independent (morning and afternoon) estimates of the monthly mean. Calculations show overall random errors of about 50-60 percent for each 5 deg x 5 deg box. The results are insensitive to different sampling strategy (odd and even days of the month). Comparison of the SSM/I estimates with raingage data collected at the Pacific atoll stations showed a low bias of about 8 percent, a correlation of 0.7, and an rms difference of 55 percent.
Allan, Tom
2006-01-01
GANDER – for Global Altimeter Network Designed to Evaluate Risk – was an idea that was probably ahead of its time. Conceived at a time when ocean observing satellites were sometimes 10 years in the planning stage, the concept of affordable faster sampling through the use of altimeter-carrying microsats was primarily advanced as a way of detecting and tracking storms at sea on a daily basis. But, of course, a radar altimeter monitors changes in sea-level as well as surface wave height and wind speed. Here then is a system which, flown with more precise missions such as JASON 2, could meet the needs of ocean modellers by providing the greater detail required for tracking mesoscale eddies, whilst servicing forecasting centres and units at sea with near real-time sea state information. A tsunami mode, instantly activated when an undersea earthquake is detected by the global network of seismic stations, could also be incorporated.
NASA Astrophysics Data System (ADS)
Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.
2014-05-01
During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.
Ocean Data Assimilation Systems for GODAE
2009-09-01
we describe some of the ocean data assimilation systems that have been developed within the Global Ocean Data Assimilation Experiment (GODAE...assimilation systems in the post-GODAF. time period beyond 2008. 15. SUBJECT TERMS Global Ocean Data Assimilation Experiment, ARGO, subsurface...E. R. Franchi , 7000 Public Affairs (Unclassified/ Unlimited Only), Code 703o 4 yj ?>-* i o’ 1. Release of this paper is approved. 2. To the
NASA Astrophysics Data System (ADS)
Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.
2012-04-01
A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.
Distribution of benthic foraminifers (>125 um) in the surface sediments of the Arctic Ocean
Osterman, Lisa E.; Poore, Richard Z.; Foley, Kevin M.
1999-01-01
Census data on benthic foraminifers (>125 ?m) in surface sediment samples from 49 box cores are used to define four depth-controlled biofacies, which will aid in the paleoceanographic reconstruction of the Arctic Ocean. The shelf biofacies contains a mix of shallow-water calcareous and agglutinated species from the continental shelves of the Beaufort and Chukchi Seas and reflects the variable sedimentologic and oceanic conditions of the Arctic shelves. The intermediate-depth calcareous biofacies, found between 500 and 1,100 meters water depth (mwd), contains abundant Cassidulina teretis , presumably indicating the influence of Atlantic-derived water at this depth. In water depths between 1,100 and 3,500 m, a deepwater calcareous biofacies contains abundant Oridorsalis umbonatus . Below 3,500 mwd, the deepwater mixed calcareous/agglutinated biofacies of the Canada, Makarov, and Eurasian Basins reflects a combination of low productivity, dissolution, and sediment transport. Two other benthic foraminiferal species show specific environmental preferences. Fontbotia wuellerstorfi has a depth distribution between 900 and 3,500 mwd, but maximum abundance occurs in the region of the Mendeleyev Ridge. The elevated abundance of F. wuellerstorfi may be related to increased food supply carried by a branch of Atlantic water that crosses the Lomonosov Ridge near the Russian Continental Shelf. Triloculina frigida is recognized to be a species preferring lower slope sediments commonly disturbed by turbidites and bottom currents. INTRODUCTION At present, our understanding of the Arctic Ocean lags behind our understanding of other oceans, and fundamental questions still exist about its role in and response to global climate change. The Arctic Ocean is particularly sensitive to climatic fluctuations because small changes in the amounts of sea-ice cover can alter global albedo and thermohaline circulation (Aagaard and Carmack, 1994). Numerous questions still exist regarding the nature and timing of paleoclimatic events in the Arctic Ocean. In order to attempt to answer some of these questions, baseline studies are imperative. This report discusses the distribution of benthic foraminifers in surface sediment samples from 49 box cores (figs. 1 and 2, table 1) collected by the U.S. Geological Survey (USGS) with the assistance of the U.S. Coast Guard (USCG). A modern data set of benthic foraminiferal distribution is necessary for interpreting the paleoclimatic and oceanographic history of the Arctic Ocean.
A Deep-Ocean Observatory with Near Real-time Telemetry
NASA Astrophysics Data System (ADS)
Berger, J.; Orcutt, J. A.; Laske, G.
2014-12-01
We describe an autonomously deployable, deep-ocean observatory designed to provide long term and near-real-time observations from sites far offshore. The key feature of this new system is its ability to telemeter sensor data from the seafloor to shore without a cable or moored surface buoy. In the future the observatory will be deployable without a ship. The first application of this system is seismology. While permanent ocean seismic stations on the seafloor have long been a goal of global seismology, today there are still no ocean bottom stations in the Global Seismographic Network, mostly for reasons of life-cycle costs. Yet real-time data from stations in oceanic areas are critical for both national and international agencies in monitoring and characterizing earthquakes, tsunamis, and nuclear explosions. The system comprises an ocean bottom instrumentation package and a free-floating surface communications gateway, which uses a Liquid Robotics wave glider. The glider consists of a surfboard-sized float propelled by a tethered, submerged glider, which converts wave motion into thrust. For navigation, the wave gliders are equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, and an Iridium satellite modem. Wave gliders have demonstrated trans-oceanic range combined with long-term station holding. The 'communications gateway,' which provides the means of communicating between the ocean bottom package and land comprises a wave glider and a towed acoustic communications 'tow body'. Acoustic communications connect the subsea instruments and the surface gateway while communications between the gateway and land is provided by the Iridium satellite constellation. Tests of the surface gateway in 4350 m of water demonstrated the ability to send four channels of compressed 24-bit, 1 sample per second data from the ocean bottom to the gateway with an average power draw of approximately 0.2 W.
Alexander Polonsky Global warming hiatus, ocean variability and regional climate change
NASA Astrophysics Data System (ADS)
Polonsky, A.
2016-02-01
This presentation generalizes the results concerning ocean variability, large-scale interdecadal ocean-atmosphere interaction in the Atlantic and Pacific Oceans and their impact on global and regional climate change carried out by the author and his colleagues for about 20 years. It is demonstrated once more that Atlantic Multidecadal Oscillation (AMO, which was early referred by the author as "interdecadal mode of North Atlantic Oscillation") is the crucial natural interdecadal climatic signal for the Atlantic-European and Mediterranean regions. It is characterized by amplitude which is the same order as human-induced centennial climate change and exceeds trend-like anthropogenic change at the decadal scale. Fast increasing of the global and Northern Hemisphere air temperature in the last 30 yrs of XX century (especially pronounced in the North Atlantic region and surrounded areas) is due to coincidence of human-induced positive trend and transition from the negative to the positive phase of AMO. AMO accounts for about 50% (60%) of the global (Northern Hemisphere) temperature trend in that period. Recent global warming hiatus is mostly the result of switch off the AMO phase. Typical AMO temporal scale is dictated by meridional overturning variability in the Atlantic Ocean and associated magnitude of meridional heat transport. Pacific Decadal Oscillation (PDO) is the other natural interdecadal signal which significantly impacts the global and regional climate variability. The rate of the ocean warming for different periods assessed separately for the upper mixed layer and deeper layers using data of oceanic re-analysis since 1959 confirms the principal role of the natural interdecadal oceanic modes (AMO and PDO) in observing climate change. At the same time a lack of deep-ocean long-term observing system restricts the accuracy of assessment of the heat redistribution in the World Ocean. I thanks to Pavel Sukhonos for help in the presentation preparing.
Topex/Poseidon satellite - Enabling a joint U.S.-French mission for global ocean study
NASA Technical Reports Server (NTRS)
Hall, Ralph L.
1990-01-01
A joint U.S./French mission, which represents a merging of the prior NASA Topex and CNES Poseidon progams, is described. The Topex/Poseidon satellite will contribute to two of the World Climate Research Program's phases: the World Ocean Circulation Experiment and the Tropical Ocean Global Atmosphere experiment. The satellite's instruments will measure the ocean currents and their variability on the global basis via satellite altimetry and precision orbit determinations. The paper describes the satellite configuration and characteristics and the mission instruments and system elements. The Topex/Poseidon's design diagrams and block diagrams are included.
State of Climate 2011 - Global Ocean Phytoplankton
NASA Technical Reports Server (NTRS)
Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.;
2012-01-01
Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone
Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals
Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.
2008-01-01
Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241
NASA Astrophysics Data System (ADS)
Korbacz, A.; Brzeziński, A.; Thomas, M.
2008-04-01
We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.
Upper ocean O2 trends: 1958-2015
NASA Astrophysics Data System (ADS)
Ito, Takamitsu; Minobe, Shoshiro; Long, Matthew C.; Deutsch, Curtis
2017-05-01
Historic observations of dissolved oxygen (O2) in the ocean are analyzed to quantify multidecadal trends and variability from 1958 to 2015. Additional quality control is applied, and the resultant oxygen anomaly field is used to quantify upper ocean O2 trends at global and hemispheric scales. A widespread negative O2 trend is beginning to emerge from the envelope of interannual variability. Ocean reanalysis data are used to evaluate relationships with changes in ocean heat content (OHC) and oxygen solubility (O2,sat). Global O2 decline is evident after the 1980s, accompanied by an increase in global OHC. The global upper ocean O2 inventory (0-1000 m) changed at the rate of -243 ± 124 T mol O2 per decade. Further, the O2 inventory is negatively correlated with the OHC (r = -0.86; 0-1000 m) and the regression coefficient of O2 to OHC is approximately -8.2 ± 0.66 nmol O2 J-1, on the same order of magnitude as the simulated O2-heat relationship typically found in ocean climate models. Variability and trends in the observed upper ocean O2 concentration are dominated by the apparent oxygen utilization component with relatively small contributions from O2,sat. This indicates that changing ocean circulation, mixing, and/or biochemical processes, rather than the direct thermally induced solubility effects, are the primary drivers for the observed O2 changes. The spatial patterns of the multidecadal trend include regions of enhanced ocean deoxygenation including the subpolar North Pacific, eastern boundary upwelling systems, and tropical oxygen minimum zones. Further studies are warranted to understand and attribute the global O2 trends and their regional expressions.
Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data
NASA Astrophysics Data System (ADS)
Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan
2016-04-01
There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.
Povinec, P P; Liong Wee Kwong, L; Kaizer, J; Molnár, M; Nies, H; Palcsu, L; Papp, L; Pham, M K; Jean-Baptiste, P
2017-01-01
Tritium, radiocarbon and radiocesium concentrations in water column samples in coastal waters offshore Fukushima and in the western North Pacific Ocean collected in 2011-2012 during the Ka'imikai-o-Kanaloa (KoK) cruise are compared with other published results. The highest levels in surface seawater were observed for 134 Cs and 137 Cs in seawater samples collected offshore Fukushima (up to 1.1 Bq L -1 ), which represent an increase by about three orders of magnitude when compared with the pre-Fukushima concentration. Tritium levels were much lower (up to 0.15 Bq L -1 ), representing an increase by about a factor of 6. The impact on the radiocarbon distribution was measurable, but the observed levels were only by about 9% above the global fallout background. The 137 Cs (and similarly 134 Cs) inventory in the water column of the investigated western North Pacific region was (2.7 ± 0.4) PBq, while for 3 H it was only (0.3 ± 0.2) PBq. Direct releases of highly contaminated water from the damaged Fukushima NPP, as well as dry and wet depositions of these radionuclides over the western North Pacific considerably changed their distribution patterns in seawater. Presently we can distinguish Fukushima labeled waters from global fallout background thanks to short-lived 134 Cs. However, in the long-term perspective when 134 Cs will decay, new distribution patterns of 3 H, 14 C and 137 Cs in the Pacific Ocean should be established for future oceanographic and climate change studies in the Pacific Ocean. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stochastic Modeling and Global Warming Trend Extraction For Ocean Acoustic Travel Times.
1995-01-06
consideration and that these models can not currently be relied upon by themselves to predict global warming . Experimental data is most certainly needed, not...only to measure global warming itself, but to help improve the ocean model themselves. (AN)
Radioactive Iron Rain: Transporting 60Fe in Supernova Dust to the Ocean Floor
NASA Astrophysics Data System (ADS)
Fry, Brian J.; Fields, Brian D.; Ellis, John R.
2016-08-01
Several searches have found evidence of {}60{{Fe}} deposition, presumably from a near-Earth supernova (SN), with concentrations that vary in different locations on Earth. This paper examines various influences on the path of interstellar dust carrying {}60{{Fe}} from an SN through the heliosphere, with the aim of estimating the final global distribution on the ocean floor. We study the influences of magnetic fields, angle of arrival, wind, and ocean cycling of SN material on the concentrations at different locations. We find that the passage of SN material through the mesosphere/lower thermosphere has the greatest influence on the final global distribution, with ocean cycling causing lesser alteration as the SN material sinks to the ocean floor. SN distance estimates in previous works that assumed a uniform distribution are a good approximation. Including the effects on surface distributions, we estimate a distance of {46}-6+10 pc for an 8{--}10 {M}⊙ SN progenitor. This is consistent with an SN occurring within the Tuc-Hor stellar group ˜2.8 Myr ago, with SN material arriving on Earth ˜2.2 Myr ago. We note that the SN dust retains directional information to within 1◦ through its arrival in the inner solar system, so that SN debris deposition on inert bodies such as the Moon will be anisotropic, and thus could in principle be used to infer directional information. In particular, we predict that existing lunar samples should show measurable {}60{{Fe}} differences.
Vincent, Flora J; Colin, Sébastien; Romac, Sarah; Scalco, Eleonora; Bittner, Lucie; Garcia, Yonara; Lopes, Rubens M; Dolan, John R; Zingone, Adriana; de Vargas, Colomban; Bowler, Chris
2018-04-01
Diatoms are a diverse and ecologically important group of phytoplankton. Although most species are considered free living, several are known to interact with other organisms within the plankton. Detailed imaging and molecular characterization of any such partnership is, however, limited, and an appraisal of the large-scale distribution and ecology of such consortia was never attempted. Here, observation of Tara Oceans samples from the Benguela Current led to the detection of an epibiotic association between a pennate diatom and a tintinnid ciliate. We identified the diatom as Fragilariopsis doliolus that possesses a unique feature to form barrel-shaped chains, associated with seven different genera of tintinnids including five previously undescribed associations. The organisms were commonly found together in the Atlantic and Pacific Ocean basins, and live observations of the interaction have been recorded for the first time. By combining confocal and scanning electron microscopy of individual consortia with the sequencing of high-resolution molecular markers, we analyzed their distribution in the global ocean, revealing morpho-genetically distinct tintinnid haplotypes and biogeographically structured diatom haplotypes. The diatom was among the most abundant in the global ocean. We show that the consortia were particularly prevalent in nutrient-replete conditions, rich in potential predators. These observations support the hypothesis of a mutualistic symbiosis, wherein diatoms acquire increased motility and tintinnids benefit from silicification through increased protection, and highlight that such associations may be more prevalent than currently appreciated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, James K.B.
Prediction of the substantial biologically mediated carbon flows in a rapidly changing and acidifying ocean requires model simulations informed by observations of key carbon cycle processes on the appropriate space and time scales. From 2000 to 2004, the National Oceanographic Partnership Program (NOPP) supported the development of the first low-cost fully-autonomous ocean profiling Carbon Explorers that demonstrated that year-round real-time observations of particulate organic carbon (POC) concentration and sedimentation could be achieved in the world's ocean. NOPP also initiated the development of a sensor for particulate inorganic carbon (PIC) suitable for operational deployment across all oceanographic platforms. As a result,more » PIC profile characterization that once required shipboard sample collection and shipboard or shore based laboratory analysis, is now possible to full ocean depth in real time using a 0.2W sensor operating at 24 Hz. NOPP developments further spawned US DOE support to develop the Carbon Flux Explorer, a free-vehicle capable of following hourly variations of particulate inorganic and organic carbon sedimentation from near surface to kilometer depths for seasons to years and capable of relaying contemporaneous observations via satellite. We have demonstrated the feasibility of real time - low cost carbon observations which are of fundamental value to carbon prediction and when further developed, will lead to a fully enhanced global carbon observatory capable of real time assessment of the ocean carbon sink, a needed constraint for assessment of carbon management policies on a global scale.« less
AMS measurements of 14C and 129I in seawater around radioactive waste dump sites
NASA Astrophysics Data System (ADS)
Povinec, P. P.; Oregioni, B.; Jull, A. J. T.; Kieser, W. E.; Zhao, X.-L.
2000-10-01
According to a recent IAEA compilation of inventories of radioactive wastes dumped in the world ocean, a total of 85 PBq of radioactive wastes were dumped, in the Atlantic (45 PBq), the Pacific (1.4 PBq) and the Arctic (38 PBq) Oceans and their marginal seas between 1946 and 1993, mostly in the form of low-level wastes. 3H, and 14C formed an important part of the beta-activity of these dumped wastes. Because of its long half-life, 14C will be the main constituent in possible leakages from the wastes in the future. On the other hand, 14C and 129I are important radioactive tracers which have been artificially introduced into the oceans. Small amounts of 14C and 129I can be easily measured by accelerator mass spectrometry (AMS) on mg-size samples of carbon and iodine extracted from 500 ml seawater samples. The high analytical sensitivity enables one therefore to find even trace amounts of 14C and 129I which could be released from radioactive wastes, and to compare the measured levels with the global distribution of these radionuclides. The IAEAs Marine Environment Laboratory (IAEA-MEL) has been engaged in an assessment program related to radioactive waste dumping in the oceans since 1992 and has participated in several expeditions to the Atlantic, Arctic, Indian and Pacific Oceans to sample seawater, biota and sediment for radiological assessment studies. In the present paper, we report on methods of 14C and 129I measurements in seawater by AMS and present data on the NE Atlantic, the Arctic and the NW Pacific Ocean dumping sites. A small increase of 14C was observed at the NE Atlantic dumping site.
DAPAGLOCO - A global daily precipitation dataset from satellite and rain-gauge measurements
NASA Astrophysics Data System (ADS)
Spangehl, T.; Danielczok, A.; Dietzsch, F.; Andersson, A.; Schroeder, M.; Fennig, K.; Ziese, M.; Becker, A.
2017-12-01
The BMBF funded project framework MiKlip(Mittelfristige Klimaprognosen) develops a global climate forecast system on decadal time scales for operational applications. Herein, the DAPAGLOCO project (Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized) provides a global precipitation dataset as a combination of microwave-based satellite measurements over ocean and rain gauge measurements over land on daily scale. The DAPAGLOCO dataset is created for the evaluation of the MiKlip forecast system in the first place. The HOAPS dataset (Hamburg Ocean Atmosphere Parameter and Fluxes from Satellite data) is used for the derivation of precipitation rates over ocean and is extended by the use of measurements from TMI, GMI, and AMSR-E, in addition to measurements from SSM/I and SSMIS. A 1D-Var retrieval scheme is developed to retrieve rain rates from microwave imager data, which also allows for the determination of uncertainty estimates. Over land, the GPCC (Global Precipitation Climatology Center) Full Data Daily product is used. It consists of rain gauge measurements that are interpolated on a regular grid by ordinary Kriging. The currently available dataset is based on a neuronal network approach, consists of 21 years of data from 1988 to 2008 and is currently extended until 2015 using the 1D-Var scheme and with improved sampling. Three different spatial resolved dataset versions are available with 1° and 2.5° global, and 0.5° for Europe. The evaluation of the MiKlip forecast system by DAPAGLOCO is based on ETCCDI (Expert Team on Climate Change and Detection Indices). Hindcasts are used for the index-based comparison between model and observations. These indices allow for the evaluation of precipitation extremes, their spatial and temporal distribution as well as for the duration of dry and wet spells, average precipitation amounts and percentiles on global scale. Besides, an ETCCDI-based climatology of the DAPAGLOCO precipitation dataset has been derived.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-04-01
We present a method for reconstructing global ocean bathymetry that uses a plate cooling model for the oceanic lithosphere, the age distribution of the oceanic crust, global oceanic sediment thicknesses, plus shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to reconstruct realistic ocean bathymetry based on parameterized relationships of present-day variables that can be applied to global oceans in the geologic past, and to isolate locations where anomalous processes such as mantle convection may affect bathymetry. Parameters of the plate cooling model are combined with ocean crustal age to calculate depth-to-basement. To the depth-to-basement we add an isostatically adjusted, multicomponent sediment layer, constrained by sediment thickness in the modern oceans and marginal seas. A continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Shelf-slope-rise structures at active and passive margins are parameterized using modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and Central Atlantic Ocean, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth-to-basement, ocean bathymetry with an isostatically adjusted, multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
The implications of tides on the Mimas ocean hypothesis
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-02-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
The Implications of Tides on the Mimas Ocean Hypothesis
NASA Technical Reports Server (NTRS)
Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Patthoff, D. Alex; Tajeddine, Radwan
2017-01-01
We investigate whether a present-day global ocean within Mimas is compatible with the lack of tectonic activity on its surface by computing tidal stresses for ocean-bearing interior structure models derived from observed librations. We find that, for the suite of compatible rheological models, peak surface tidal stresses caused by Mimas' high eccentricity would range from a factor of 2 smaller to an order of magnitude larger than those on tidally active Europa. Thermal stresses from a freezing ocean, or a past higher eccentricity, would enhance present-day tidal stresses, exceeding the magnitudes associated with Europa's ubiquitous tidally driven fractures and, in some cases, the failure strength of ice in laboratory studies. Therefore, in order for Mimas to have an ocean, its ice shell cannot fail at the stress values implied for Europa. Furthermore, if Mimas' ocean is freezing out, the ice shell must also be able to withstand thermal stresses that could be an order of magnitude higher than the failure strength of laboratory ice samples. In light of these challenges, we consider an ocean-free Mimas to be the most straightforward model, best supported by our tidal stress analysis.
Godard-Codding, Céline A.J.; Clark, Rebecca; Fossi, Maria Cristina; Marsili, Letizia; Maltese, Silvia; West, Adam G.; Valenzuela, Luciano; Rowntree, Victoria; Polyak, Ildiko; Cannon, John C.; Pinkerton, Kim; Rubio-Cisneros, Nadia; Mesnick, Sarah L.; Cox, Stephen B.; Kerr, Iain; Payne, Roger; Stegeman, John J.
2011-01-01
Background Ocean pollution affects marine organisms and ecosystems as well as humans. The International Oceanographic Commission recommends ocean health monitoring programs to investigate the presence of marine contaminants and the health of threatened species and the use of multiple and early-warning biomarker approaches. Objective We explored the hypothesis that biomarker and contaminant analyses in skin biopsies of the threatened sperm whale (Physeter macrocephalus) could reveal geographical trends in exposure on an oceanwide scale. Methods We analyzed cytochrome P450 1A1 (CYP1A1) expression (by immunohistochemistry), stable nitrogen and carbon isotope ratios (as general indicators of trophic position and latitude, respectively), and contaminant burdens in skin biopsies to explore regional trends in the Pacific Ocean. Results Biomarker analyses revealed significant regional differences within the Pacific Ocean. CYP1A1 expression was highest in whales from the Galapagos, a United Nations Educational, Scientific, and Cultural Organization World Heritage marine reserve, and was lowest in the sampling sites farthest away from continents. We examined the possible influence of the whales’ sex, diet, or range and other parameters on regional variation in CYP1A1 expression, but data were inconclusive. In general, CYP1A1 expression was not significantly correlated with contaminant burdens in blubber. However, small sample sizes precluded detailed chemical analyses, and power to detect significant associations was limited. Conclusions Our large-scale monitoring study was successful at identifying regional differences in CYP1A1 expression, providing a baseline for this known biomarker of exposure to aryl hydrocarbon receptor agonists. However, we could not identify factors that explained this variation. Future oceanwide CYP1A1 expression profiles in cetacean skin biopsies are warranted and could reveal whether globally distributed chemicals occur at biochemically relevant concentrations on a global basis, which may provide a measure of ocean integrity. PMID:21134820
Ocean Fertilization and Ocean Acidification
NASA Astrophysics Data System (ADS)
Cao, L.; Caldeira, K.
2008-12-01
It has been suggested that ocean fertilization could help diminish ocean acidification. Here, we quantitatively evaluate this suggestion. Ocean fertilization is one of several ocean methods proposed to mitigate atmospheric CO2 concentrations. The basic idea of this method is to enhance the biological uptake of atmospheric CO2 by stimulating net phytoplankton growth through the addition of iron to the surface ocean. Concern has been expressed that ocean fertilization may not be very effective at reducing atmospheric CO2 concentrations and may produce unintended environmental consequences. The rationale for thinking that ocean fertilization might help diminish ocean acidification is that dissolved inorganic carbon concentrations in the near-surface equilibrate with the atmosphere in about a year. If ocean fertilization could reduce atmospheric CO2 concentrations, it would also reduce surface ocean dissolved inorganic carbon concentrations, and thus diminish the degree of ocean acidification. To evaluate this line of thinking, we use a global ocean carbon cycle model with a simple representation of marine biology and investigate the maximum potential effect of ocean fertilization on ocean carbonate chemistry. We find that the effect of ocean fertilization on ocean acidification depends, in part, on the context in which ocean fertilization is performed. With fixed emissions of CO2 to the atmosphere, ocean fertilization moderately mitigates changes in ocean carbonate chemistry near the ocean surface, but at the expense of further acidifying the deep ocean. Under the SRES A2 CO2 emission scenario, by year 2100 simulated atmospheric CO2, global mean surface pH, and saturation state of aragonite is 965 ppm, 7.74, and 1.55 for the scenario without fertilization and 833 ppm, 7.80, and 1.71 for the scenario with 100-year (between 2000 and 2100) continuous fertilization for the global ocean (For comparison, pre-industrial global mean surface pH and saturation state of aragonite is 8.18 and 3.5). As a result of ocean fertilization, 10 years from now, the depth of saturation horizon (the depth below which ocean water is undersaturated with respect to calcium carbonate) for aragonite in the Southern Ocean shoals from its present average value of about 700 m to 100 m. In contrast, no significant change in the depth of aragonite saturation horizontal is seen in the scenario without fertilization for the corresponding period. By year 2100, global mean calcite saturation horizon shoals from its present value of 3150 m to 2965 and 2534 m in the case without fertilization and with it. In contrast, if the sale of carbon credits from ocean fertilization leads to greater CO2 emissions to the atmosphere (e.g., if carbon credits from ocean fertilization are used to offset CO2 emissions from a coal plant), then there is the potential that ocean fertilization would further acidify the deep ocean without conferring any chemical benefit to surface ocean waters.
Sources of global warming of the upper ocean on decadal period scales
White, Warren B.; Dettinger, M.D.; Cayan, D.R.
2003-01-01
Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ???0.1??C, similar to that occuring with the interannual signal (i.e., El Nin??o-Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabetic heat storage (DHS) budget from 1975 to 2000. We find the anomalous DHS warming tendency of 0.3-0.9 W m-2 driven principally by a downward global tropical latent-plus-sensible heat flux anomaly into the ocean, overwhelming the tendency by weaker upward shortwave-minus-longwave heat flux anomaly to drive an anomalous DHS cooling tendency. During the peak quasi-decadal warming the estimated dissipation of DHS anomaly of 0.2-0.5 W m-2 into the deep ocean and a similar loss to the overlying atmosphere through air-sea heat flux anomaly are balanced by a decrease in the net poleward Ekman heat advection out of the tropics of 0.4-0.7 W m-2. This scenario is nearly the opposite of that accounting for global tropical warming during the El Nin??o. These diagnostics confirm that even though the global quasi-decadal signal is phase-locked to the 11-year signal in the Sun's surface radiative forcing of ???0.1 W m-2, the anomalous global tropical DHS tendency cannot be driven by it directly.
State estimation improves prospects for ocean research
NASA Astrophysics Data System (ADS)
Stammer, Detlef; Wunsch, C.; Fukumori, I.; Marshall, J.
Rigorous global ocean state estimation methods can now be used to produce dynamically consistent time-varying model/data syntheses, the results of which are being used to study a variety of important scientific problems. Figure 1 shows a schematic of a complete ocean observing and synthesis system that includes global observations and state-of-the-art ocean general circulation models (OGCM) run on modern computer platforms. A global observing system is described in detail in Smith and Koblinsky [2001],and the present status of ocean modeling and anticipated improvements are addressed by Griffies et al. [2001]. Here, the focus is on the third component of state estimation: the synthesis of the observations and a model into a unified, dynamically consistent estimate.
Randall, John E.; Bowen, Brian W.
2013-01-01
Current taxonomy indicates a single global species of the Great Barracuda (Sphyraena barracuda) despite differences in color and behavior between Atlantic and Pacific forms. To investigate these differences and qualify the dispersal characteristics of this unique coastal– pelagic teleost (bony fish), we conducted a global phylogeographic survey of 246 specimens from thirteen sampling locations using a 629-base pair fragment of mtDNA cytochrome b. Data indicate high overall gene flow in the Indo-Pacific over large distances (>16,500 km) bridging several biogeographic barriers. The West Atlantic population contains an mtDNA lineage that is divergent from the Indo-Pacific (d = 1.9%), while the East Atlantic (N = 23) has two mutations (d = 0.6%) apart from the Indo-Pacific. While we cannot rule out distinct evolutionary partitions among ocean basins based on behavior, coloration, and near-monophyly between Atlantic and Indo-Pacific subpopulations, more investigation is required before taxonomic status is revised. Overall, the pattern of high global dispersal and connectivity in S. barracuda more closely resembles those reported for large oceanic predators than reef-associated teleosts. PMID:25594680
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
Global abundance of planktonic heterotrophic protists in the deep ocean
Pernice, Massimo C; Forn, Irene; Gomes, Ana; Lara, Elena; Alonso-Sáez, Laura; Arrieta, Jesus M; del Carmen Garcia, Francisca; Hernando-Morales, Victor; MacKenzie, Roy; Mestre, Mireia; Sintes, Eva; Teira, Eva; Valencia, Joaquin; Varela, Marta M; Vaqué, Dolors; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon
2015-01-01
The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml−1 in mesopelagic waters down to 11±1 cells ml−1 in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml−1. The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean's microbial food web. PMID:25290506
Global abundance of planktonic heterotrophic protists in the deep ocean.
Pernice, Massimo C; Forn, Irene; Gomes, Ana; Lara, Elena; Alonso-Sáez, Laura; Arrieta, Jesus M; del Carmen Garcia, Francisca; Hernando-Morales, Victor; MacKenzie, Roy; Mestre, Mireia; Sintes, Eva; Teira, Eva; Valencia, Joaquin; Varela, Marta M; Vaqué, Dolors; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon
2015-03-01
The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml(-1) in mesopelagic waters down to 11±1 cells ml(-1) in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml(-1). The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean's microbial food web.
The Global Ocean Observing System
NASA Technical Reports Server (NTRS)
Kester, Dana
1992-01-01
A Global Ocean Observing System (GOOS) should be established now with international coordination (1) to address issues of global change, (2) to implement operational ENSO forecasts, (3) to provide the data required to apply global ocean circulation models, and (4) to extract the greatest value from the one billion dollar investment over the next ten years in ocean remote sensing by the world's space agencies. The objectives of GOOS will focus on climatic and oceanic predictions, on assessing coastal pollution, and in determining the sustainability of living marine resources and ecosystems. GOOS will be a complete system including satellite observations, in situ observations, numerical modeling of ocean processes, and data exchange and management. A series of practical and economic benefits will be derived from the information generated by GOOS. In addition to the marine science community, these benefits will be realized by the energy industries of the world, and by the world's fisheries. The basic oceanic variables that are required to meet the oceanic and predictability objectives of GOOS include wind velocity over the ocean, sea surface temperature and salinity, oceanic profiles of temperature and salinity, surface current, sea level, the extent and thickness of sea ice, the partial pressure of CO2 in surface waters, and the chlorophyll concentration of surface waters. Ocean circulation models and coupled ocean-atmosphere models can be used to evaluate observing system design, to assimilate diverse data sets from in situ and remotely sensed observations, and ultimately to predict future states of the system. The volume of ocean data will increase enormously over the next decade as new satellite systems are launched and as complementary in situ measuring systems are deployed. These data must be transmitted, quality controlled, exchanged, analyzed, and archived with the best state-of-the-art computational methods.
Bartlett, Rick; Elrick, Maya; Wheeley, James R; Polyak, Victor; Desrochers, André; Asmerom, Yemane
2018-05-21
Widespread marine anoxia is hypothesized as the trigger for the second pulse of the Late Ordovician (Hirnantian) mass extinction based on lithologic and geochemical proxies that record local bottom waters or porewaters. We test the anoxia hypothesis using δ 238 U values of marine limestones as a global seawater redox proxy. The δ 238 U trends at Anticosti Island, Canada, document an abrupt late Hirnantian ∼0.3‰ negative shift continuing through the early Silurian indicating more reducing seawater conditions. The lack of observed anoxic facies and no covariance among δ 238 U values and other local redox proxies suggests that the δ 238 U trends represent a global-ocean redox record. The Hirnantian ocean anoxic event (HOAE) onset is coincident with the extinction pulse indicating its importance in triggering it. Anoxia initiated during high sea levels before peak Hirnantian glaciation, and continued into the subsequent lowstand and early Silurian deglacial eustatic rise, implying that major climatic and eustatic changes had little effect on global-ocean redox conditions. The HOAE occurred during a global δ 13 C positive excursion, but lasted longer indicating that controls on the C budget were partially decoupled from global-ocean redox trends. U cycle modeling suggests that there was a ∼15% increase in anoxic seafloor area and ∼80% of seawater U was sequestered into anoxic sediments during the HOAE. Unlike other ocean anoxic events (OAE), the HOAE occurred during peak and waning icehouse conditions rather than during greenhouse climates. We interpret that anoxia was driven by global cooling, which reorganized thermohaline circulation, decreased deep-ocean ventilation, enhanced nutrient fluxes, stimulated productivity, which lead to expanded oxygen minimum zones. Copyright © 2018 the Author(s). Published by PNAS.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Xie, Huixiang; Fichot, CéDric G.; Chen, Guohua
2008-12-01
We investigated the thermal (dark) production of carbon monoxide (CO) from dissolved organic matter (DOM) in the water column of the St. Lawrence estuarine system in spring 2007. The production rate, Qco, decreased seaward horizontally and downward vertically. Qco exhibited a positive, linear correlation with the abundance of chromophoric dissolved organic matter (CDOM). Terrestrial DOM was more efficient at producing CO than marine DOM. The temperature dependence of Qco can be characterized by the Arrhenius equation with the activation energies of freshwater samples being higher than those of salty samples. Qco remained relatively constant between pH 4-6, increased slowly between pH 6-8 and then rapidly with further rising pH. Ionic strength and iron chemistry had little influence on Qco. An empirical equation, describing Qco as a function of CDOM abundance, temperature, pH, and salinity, was established to evaluate CO dark production in the global coastal waters (depth < 200 m). The total coastal CO dark production from DOM was estimated to be from 0.46 to 1.50 Tg CO-C a-1 (Tg carbon from CO a-1). We speculated the global oceanic (coastal plus open ocean) CO dark production to be in the range from 4.87 to 15.8 Tg CO-C a-1 by extrapolating the coastal water-based results to blue waters (depth > 200 m). Both the coastal and global dark source strengths are significant compared to the corresponding photochemical CO source strengths (coastal: ˜2.9 Tg CO-C a-1; global: ˜50 Tg CO-C a-1). Steady state deepwater CO concentrations inferred from Qco and microbial CO uptake rates are <0.1 nmol L-1.
Uncertainty characterization of HOAPS 3.3 latent heat-flux-related parameters
NASA Astrophysics Data System (ADS)
Liman, Julian; Schröder, Marc; Fennig, Karsten; Andersson, Axel; Hollmann, Rainer
2018-03-01
Latent heat flux (LHF) is one of the main contributors to the global energy budget. As the density of in situ LHF measurements over the global oceans is generally poor, the potential of remotely sensed LHF for meteorological applications is enormous. However, to date none of the available satellite products have included estimates of systematic, random, and sampling uncertainties, all of which are essential for assessing their quality. Here, the challenge is taken on by matching LHF-related pixel-level data of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite (HOAPS) climatology (version 3.3) to in situ measurements originating from a high-quality data archive of buoys and selected ships. Assuming the ground reference to be bias-free, this allows for deriving instantaneous systematic uncertainties as a function of four atmospheric predictor variables. The approach is regionally independent and therefore overcomes the issue of sparse in situ data densities over large oceanic areas. Likewise, random uncertainties are derived, which include not only a retrieval component but also contributions from in situ measurement noise and the collocation procedure. A recently published random uncertainty decomposition approach is applied to isolate the random retrieval uncertainty of all LHF-related HOAPS parameters. It makes use of two combinations of independent data triplets of both satellite and in situ data, which are analysed in terms of their pairwise variances of differences. Instantaneous uncertainties are finally aggregated, allowing for uncertainty characterizations on monthly to multi-annual timescales. Results show that systematic LHF uncertainties range between 15 and 50 W m-2 with a global mean of 25 W m-2. Local maxima are mainly found over the subtropical ocean basins as well as along the western boundary currents. Investigations indicate that contributions from qa (U) to the overall LHF uncertainty are on the order of 60 % (25 %). From an instantaneous point of view, random retrieval uncertainties are specifically large over the subtropics with a global average of 37 W m-2. In a climatological sense, their magnitudes become negligible, as do respective sampling uncertainties. Regional and seasonal analyses suggest that largest total LHF uncertainties are seen over the Gulf Stream and the Indian monsoon region during boreal winter. In light of the uncertainty measures, the observed continuous global mean LHF increase up to 2009 needs to be treated with caution. The demonstrated approach can easily be transferred to other satellite retrievals, which increases the significance of the present work.
US Integrated Ocean Observing System (IOOS°): Delivering Benefits to Science and Society
NASA Astrophysics Data System (ADS)
Willis, Z. S.
2011-12-01
The United States Integrated Ocean Observing System (IOOS°) is a user-driven, coordinated network of people, organizations, and technology that generate and disseminate continuous data about our coastal waters, Great Lakes, and oceans supported by strong research and development activities. IOOS° is our Eyes on our Oceans, Coasts and Great Lakes that enable the United States to track, predict, manage, and adapt to changes in our marine environment and deliver critical information to decision makers to improve safety, enhance our economy and protect our environment. IOOS provides a major shift in the approach to ocean observing by drawing together the vast network of disparate federal and non-federal observing systems to produce a cohesive suite of data, information, and products on a sufficient geographic and temporal scale to support decision-making. Two interdependent components constitute the U.S. IOOS: (1) the global ocean component, and (2) the coastal component. The strength of IOOS is in its partnerships, starting with the federal agencies, the partnerships extend internationally for the global component and to the local level for the coastal component. The coastal component includes the national set of observations for the U.S. Ocean, Coasts and Great Lakes, a network of Regional Associations that are establishing Regional Coastal Ocean Observing Systems (RCOOS) and the Alliance for Coastal Technologies (ACT). The U.S. IOOS is our nation's contribution to the Global Ocean Observing System (GOOS) - the ocean component of the Global Earth Observation System of Systems (GEOSS).
Novel lineages of Prochlorococcus and Synechococcus in the global oceans.
Huang, Sijun; Wilhelm, Steven W; Harvey, H Rodger; Taylor, Karen; Jiao, Nianzhi; Chen, Feng
2012-02-01
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.
Oceanic biogeochemical controls on global dynamics of persistent organic pollutants.
Dachs, Jordi; Lohmann, Rainer; Ockenden, Wendy A; Méjanelle, Laurence; Eisenreich, Steven J; Jones, Kevin C
2002-10-15
Understanding and quantifying the global dynamics and sinks of persistent organic pollutants (POPs) is important to assess their environmental impact and fate. Air-surface exchange processes, where temperature plays a central role in controlling volatilization and deposition, are of key importance in controlling global POP dynamics. The present study is an assessment of the role of oceanic biogeochemical processes, notably phytoplankton uptake and vertical fluxes of particles, on the global dynamics of POPs. Field measurements of atmospheric polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins (PCDDs), and furans (PCDFs) are combined with remote sensing estimations of oceanic temperature, wind speed, and chlorophyll, to model the interactions between air-water exchange, phytoplankton uptake, and export of organic matter and POPs out of the mixed surface ocean layer. Deposition is enhanced in the mid-high latitudes and is driven by sinking marine particulate matter, rather than by a cold condensation effect. However, the relative contribution of the biological pump is a function of the physical-chemical properties of POPs. It is concluded that oceanic biogeochemical processes play a critical role in controlling the global dynamics and the ultimate sink of POPs.
NASA Astrophysics Data System (ADS)
Birner, Suzanne K.; Cottrell, Elizabeth; Warren, Jessica M.; Kelley, Katherine A.; Davis, Fred A.
2018-07-01
The oxygen fugacity (fO2) of the oceanic upper mantle has fundamental implications for the production of magmas and evolution of the Earth's interior and exterior. Mid-ocean ridge basalts and peridotites sample the oceanic upper mantle, and retain a record of oxygen fugacity. While fO2 has been calculated for mid-ocean ridge basalts worldwide (>200 locations), ridge peridotites have been comparatively less well studied (33 samples from 11 locations), and never in the same geographic location as basalts. In order to determine whether peridotites and basalts from mid-ocean ridges record congruent information about the fO2 of the Earth's interior, we analyzed 31 basalts and 41 peridotites from the Oblique Segment of the Southwest Indian Ridge. By measuring basalts and peridotites from the same ridge segment, we can compare samples with maximally similar petrogenetic histories. We project the composition and oxygen fugacity of each lithology back to source conditions, and evaluate the effects of factors such as subsolidus diffusion in peridotites and fractional crystallization in basalts. We find that, on average, basalts and peridotites from the Oblique Segment both reflect a source mantle very near the quartz-fayalite-magnetite (QFM) buffer. However, peridotites record a significantly wider range of values (nearly 3 orders of magnitude in fO2), with a single dredge recording a range in fO2 greater than that previously reported for mid-ocean ridge peridotites worldwide. This suggests that mantle fO2 may be heterogeneous on relatively short length scales, and that this heterogeneity may be obscured within aggregated basalt melts. We further suggest that the global peridotite fO2 dataset may not provide a representative sample of average basalt-source mantle. Our study motivates further investigation of the fO2 recorded by ridge peridotites, as peridotites record information about the fO2 of the Earth's interior that cannot be gleaned from analysis of basalts alone.
Sources of global warming in upper ocean temperature during El Niño
White, Warren B.; Cayan, Daniel R.; Dettinger, Mike; Auad, Guillermo
2001-01-01
Global average sea surface temperature (SST) from 40°S to 60°N fluctuates ±0.3°C on interannual period scales, with global warming (cooling) during El Niño (La Niña). About 90% of the global warming during El Niño occurs in the tropical global ocean from 20°S to 20°N, half because of large SST anomalies in the tropical Pacific associated with El Niño and the other half because of warm SST anomalies occurring over ∼80% of the tropical global ocean. From examination of National Centers for Environmental Prediction [Kalnay et al., 1996] and Comprehensive Ocean-Atmosphere Data Set [Woodruff et al., 1993] reanalyses, tropical global warming during El Niño is associated with higher troposphere moisture content and cloud cover, with reduced trade wind intensity occurring during the onset phase of El Niño. During this onset phase the tropical global average diabatic heat storage tendency in the layer above the main pycnocline is 1–3 W m−2above normal. Its principal source is a reduction in the poleward Ekman heat flux out of the tropical ocean of 2–5 W m−2. Subsequently, peak tropical global warming during El Niño is dissipated by an increase in the flux of latent heat to the troposphere of 2–5 W m−2, with reduced shortwave and longwave radiative fluxes in response to increased cloud cover tending to cancel each other. In the extratropical global ocean the reduction in poleward Ekman heat flux out of the tropics during the onset of El Niño tends to be balanced by reduction in the flux of latent heat to the troposphere. Thus global warming and cooling during Earth's internal mode of interannual climate variability arise from fluctuations in the global hydrological balance, not the global radiation balance. Since it occurs in the absence of extraterrestrial and anthropogenic forcing, global warming on decadal, interdecadal, and centennial period scales may also occur in association with Earth's internal modes of climate variability on those scales.
Coordination and Integration of Global Ocean Observing through JCOMM
NASA Astrophysics Data System (ADS)
Legler, D. M.; Meldrum, D. T.; Hill, K. L.; Charpentier, E.
2016-02-01
The primary objective of the JCOMM Observations Coordination Group (OCG) is to provide technical coordination to implement fully integrated ocean observing system across the entire marine meteorology and oceanographic community. JCOMM OCG works in partnership with the Global Ocean Observing System, , which focusses on setting observing system requirements and conducting evalutions. JCOMM OCG initially focused on major global observing networks (e.g. Argo profiling floats, moored buoys, ship based observations, sea level stations, reference sites, etc), and is now expanding its horizon in recognition of new observing needs and new technologies/networks (e.g. ocean gliders). Over the next five years the JCOMM OCG is focusing its attention on integration and coordination in four major areas: observing network implementation particularly in response to integrated ocean observing requirements; observing system monitoring and metrics; standards and best practices; and improving integrated data management and access. This presentation will describe the scope and mission of JCOMM OCG; summarize the state of the global ocean observing system; highlight recent successes and resources for the research, prediction, and assessment communities; summarize our plans for the next several years; and suggest engagement opportunities.
A global reference model of Curie-point depths based on EMAG2
NASA Astrophysics Data System (ADS)
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.
A global reference model of Curie-point depths based on EMAG2.
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-03-21
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C) -1 for the ocean and K = ~2.5 W(m°C) -1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m 2 , leading to a global heat loss ranging from ~34.6 to 36.6 TW.
NASA Astrophysics Data System (ADS)
Kobayashi, Fumihisa; Maki, Teruya; Kakikawa, Makiko; Noda, Takuji; Mitamura, Hiromichi; Takahashi, Akinori; Imura, Satoshi; Iwasaka, Yasunobu
2016-03-01
The relationship between atmospheric bioaerosols and ecosystems is currently of global importance. Antarctica has an extreme climate, meaning that ecosystem behavior in this region is relatively simple. Direct sampling of atmospheric bioaerosols was performed at an Adélie penguin (Pygoscelis adeliae) colony at Hukuro Cove, Langhovde, Antarctica on 22 January 2013. The aim of the sampling was to reveal the effect of the penguins on the Antarctic ecosystem within the atmospheric bioaerosols. Samples were bio-analyzed using a next-generation sequencing method. Biomass concentrations of Bacilli-class bacteria were 19.4 times higher when sampled leeward of the penguin colony compared with windward sampling. The source of these bacteria was the feces of the penguins. Predicted atmospheric trajectories indicate that the bacteria disperse towards the Southern Ocean. The largest biomass concentration in the windward bacteria was of the Gammaproteobacteria class, which decreased markedly with distance through the penguin colony, being deposited on soil, surface water, and ocean. It is concluded that bioaerosols and ecosystems near the penguin colony strongly influence each other.
NASA Astrophysics Data System (ADS)
Barton, N. P.; Metzger, E. J.; Smedstad, O. M.; Ruston, B. C.; Wallcraft, A. J.; Whitcomb, T.; Ridout, J. A.; Zamudio, L.; Posey, P.; Reynolds, C. A.; Richman, J. G.; Phelps, M.
2017-12-01
The Naval Research Laboratory is developing an Earth System Model (NESM) to provide global environmental information to meet Navy and Department of Defense (DoD) operations and planning needs from the upper atmosphere to under the sea. This system consists of a global atmosphere, ocean, ice, wave, and land prediction models and the individual models include: atmosphere - NAVy Global Environmental Model (NAVGEM); ocean - HYbrid Coordinate Ocean Model (HYCOM); sea ice - Community Ice CodE (CICE); WAVEWATCH III™; and land - NAVGEM Land Surface Model (LSM). Data assimilation is currently loosely coupled between the atmosphere component using a 6-hour update cycle in the Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) and the ocean/ice components using a 24-hour update cycle in the Navy Coupled Ocean Data Assimilation (NCODA) with 3 hours of incremental updating. This presentation will describe the US Navy's coupled forecast model, the loosely coupled data assimilation, and compare results against stand-alone atmosphere and ocean/ice models. In particular, we will focus on the unique aspects of this modeling system, which includes an eddy resolving ocean model and challenges associated with different update-windows and solvers for the data assimilation in the atmosphere and ocean. Results will focus on typical operational diagnostics for atmosphere, ocean, and ice analyses including 500 hPa atmospheric height anomalies, low-level winds, temperature/salinity ocean depth profiles, ocean acoustical proxies, sea ice edge, and sea ice drift. Overall, the global coupled system is performing with comparable skill to the stand-alone systems.
Autumn photoproduction of carbon monoxide in Jiaozhou Bay, China
NASA Astrophysics Data System (ADS)
Ren, Chunyan; Yang, Guipeng; Lu, Xiaolan
2014-06-01
Carbon monoxide (CO) plays a significant role in global warming and atmospheric chemistry. Global oceans are net natural sources of atmospheric CO. CO at surface ocean is primarily produced from the photochemical degradation of chromophoric dissolved organic matter (CDOM). In this study, the effects of photobleaching, temperature and the origin (terrestrial or marine) of CDOM on the apparent quantum yields (AQY) of CO were studied for seawater samples collected from Jiaozhou Bay. Our results demonstrat that photobleaching, temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The concentration, absorbance and fluorescence of CDOM exponentially decreased with increasing light dose. Terrestrial riverine organic matter could be more prone to photodegradation than the marine algae-derived one. The relationships between CO AQY and the dissolved organic carbon-specific absorption coefficient at 254 nm for the photobleaching study were nonlinear, whereas those of the original samples were strongly linear. This suggests that: 1) terrestrial riverine CDOM was more efficient than marine algae-derived CDOM for CO photoproduction; 2) aromatic and olefinic moieties of the CDOM pool were affected more strongly by degradation processes than by aliphatic ones. Water temperature and the origin of CDOM strongly affected the efficiency of CO photoproduction. The photoproduction rate of CO in autumn was estimated to be 31.98 μmol m-2 d-1 and the total DOC photomineralization was equivalent to 3.25%-6.35% of primary production in Jiaozhou Bay. Our results indicate that CO photochemistry in coastal areas is important for oceanic carbon cycle.
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Clarizia, M. P.; Ridley, A. J.; Gleason, S.; O'Brien, A.
2014-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is the first NASA Earth Ventures spaceborne mission. CYGNSS consists of a constellation of eight small observatories carried into orbit on a single launch vehicle. The eight satellites comprise a constellation that flies closely together to measure the ocean surface wind field with unprecedented temporal resolution and spatial coverage, under all precipitating conditions, and over the full dynamic range of wind speeds experienced in a TC. The 8 CYGNSS observatories will fly in 500 km circular orbits at a common inclination of ~35°. Each observatory includes a Delay Doppler Mapping Instrument (DDMI) consisting of a modified GPS receiver capable of measuring surface scattering, a low gain zenith antenna for measurement of the direct GPS signal, and two high gain nadir antennas for measurement of the weaker scattered signal. Each DDMI is capable of measuring 4 simultaneous bi-static reflections, resulting in a total of 32 wind measurements per second across the globe by the full constellation. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. For comparison purposes, a similar analysis is conducted using the sampling of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core will be examined. The CYGNSS observatories are currently in Phase C development. An update on the current status of the mission will be presented, including the expected precision, accuracy and spatial and temporal sampling properties of the retrieved winds.
Ocean Observatories Initiative (OOI): Status of Design, Capabilities, and Implementation
NASA Astrophysics Data System (ADS)
Brasseur, L. H.; Banahan, S.; Cowles, T.
2009-05-01
The National Science Foundation's (NSF) Ocean Observatories Initiative (OOI) will implement the construction and operation of an interactive, integrated ocean observing network. This research- driven, multi-scale network will provide the broad ocean science community with access to advanced technology to enable studies of fundamental ocean processes. The OOI will afford observations at coastal, regional, and global scales on timeframes of milliseconds to decades in support of investigations into climate variability, ocean ecosystems, biogeochemical processes, coastal ocean dynamics, circulation and mixing dynamics, fluid-rock interactions, and the sub-seafloor biosphere. The elements of the OOI include arrays of fixed and re-locatable moorings, autonomous underwater vehicles, and cabled seafloor nodes. All assets combined, the OOI network will provide data from over 45 distinct types of sensors, comprising over 800 total sensors distributed in the Pacific and Atlantic oceans. These core sensors for the OOI were determined through a formal process of science requirements development. This core sensor array will be integrated through a system-wide cyberinfrastructure allowing for remote control of instruments, adaptive sampling, and near-real time access to data. Implementation of the network will stimulate new avenues of research and the development of new infrastructure, instrumentation, and sensor technologies. The OOI is funded by the NSF and managed by the Consortium for Ocean Leadership which focuses on the science, technology, education, and outreach for an emerging network of ocean observing systems.
Response of Halimeda to ocean acidification: Field and laboratory evidence
Robbins, L.L.; Knorr, P.O.; Hallock, P.
2009-01-01
Rising atmospheric pCO2 levels are changing ocean chemistry more dramatically now than in the last 20 million years. In fact, pHvalues of the open ocean have decreased by 0.1 since the 1800s and are predicted to decrease 0.1-0.4 globally in the next 90 years. Ocean acidification will affect fundamental geochemical and biological processes including calcification and carbonate sediment production. The west Florida shelf is a natural laboratory to examine the effects of ocean acidification on aragonite production by calcareous green algae. Scanning electron microscopy (SEM) of crystal morphology of calcifying organisms reveals ultrastructural details of calcification that occurred at different saturation states. Comparison of archived and recent specimens of calcareous green alga Halimeda spp. from the west Florida shelf, demonstrates crystal changes in shape and abundance over a 40+ year time span. Halimeda crystal data from apical sections indicate that increases in crystal concentration and decreases in crystal width occurred over the last 40+ years. Laboratory experiments using living specimens of Halimeda grown in environments with known pH values were used to constrain historical observations. Percentages of organic and inorganic carbon per sample weight of pooled species did not significantly change. However, individual species showed decreased inorganic carbon and increased organic carbon in more recent samples, although the sample sizes were limited. These results indicate that the effect of increased pCO 2 and decreased pH on calcification is reflected in the crystal morphology of this organism. More data are needed to confirm the observed changes in mass of crystal and organic carbon. ?? Author(s) 2009.
Global Earth Response to Loading by Ocean Tide Models
NASA Technical Reports Server (NTRS)
Estes, R. H.; Strayer, J. M.
1979-01-01
Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.
Antarctica and global change research
NASA Astrophysics Data System (ADS)
Weller, Gunter; Lange, Manfred
1992-03-01
The Antarctic, including the continent and Southern Ocean with the subantarctic islands, is a critical area in the global change studies under the International Geosphere-Biosphere Program (IGBP) and the World Climate Research Program (WCRP). Major scientific problems include the impacts of climate warming, the ozone hole, and sea level changes. Large-scale interactions between the atmosphere, ice, ocean, and biota in the Antarctic affect the entire global system through feedbacks, biogeochemical cycles, deep-ocean circulation, atmospheric transport of heat, moisture, and pollutants, and changes in ice mass balances. Antarctica is also a rich repository of paleoenvironmental information in its ice sheet and its ocean and land sediments.
Global biogeochemical implications of mercury discharges from rivers and sediment burial.
Amos, Helen M; Jacob, Daniel J; Kocman, David; Horowitz, Hannah M; Zhang, Yanxu; Dutkiewicz, Stephanie; Horvat, Milena; Corbitt, Elizabeth S; Krabbenhoft, David P; Sunderland, Elsie M
2014-08-19
Rivers are an important source of mercury (Hg) to marine ecosystems. Based on an analysis of compiled observations, we estimate global present-day Hg discharges from rivers to ocean margins are 27 ± 13 Mmol a(-1) (5500 ± 2700 Mg a(-1)), of which 28% reaches the open ocean and the rest is deposited to ocean margin sediments. Globally, the source of Hg to the open ocean from rivers amounts to 30% of atmospheric inputs. This is larger than previously estimated due to accounting for elevated concentrations in Asian rivers and variability in offshore transport across different types of estuaries. Riverine inputs of Hg to the North Atlantic have decreased several-fold since the 1970s while inputs to the North Pacific have increased. These trends have large effects on Hg concentrations at ocean margins but are too small in the open ocean to explain observed declines of seawater concentrations in the North Atlantic or increases in the North Pacific. Burial of Hg in ocean margin sediments represents a major sink in the global Hg biogeochemical cycle that has not been previously considered. We find that including this sink in a fully coupled global biogeochemical box model helps to balance the large anthropogenic release of Hg from commercial products recently added to global inventories. It also implies that legacy anthropogenic Hg can be removed from active environmental cycling on a faster time scale (centuries instead of millennia). Natural environmental Hg levels are lower than previously estimated, implying a relatively larger impact from human activity.
The GNSS Reflectometry Response to the Ocean Surface
NASA Astrophysics Data System (ADS)
Chang, Paul; Jelenak, Zorana; Soisuvarn, Seubson; Said, Faozi
2016-04-01
Global Navigation Satellite System - Reflectometry (GNSS-R) exploits signals of opportunity from the Global Navigation Satellite System (GNSS). GNSS transmitters continuously transmit navigation signals at L-band toward the earth's surface. The scattered power reflected off the earth's surface can be sensed by specially designed GNSS-R receivers. The reflected signal can then be used to glean information about the surface of the earth, such as ocean surface roughness, snow depth, sea ice extent, and soil moisture. The use of GNSS-R for ocean wind retrievals was first demonstrated from aircraft. On July 8 2014, the TechDemoSat-1 satellite (TDS-1) was launched by Surrey Satellite Technology, Ltd as a technology risk reduction mission into sun-synchronous orbit. This paper investigates the GNSS-R measurements collected by the Space GNSS Receiver-Remote Sensing Instrument (SGR-ReSI) on board the TDS-1 satellite. The sensitivity of the SGR-ReSI measurements to the ocean surface winds and waves are characterized. The effects of sea surface temperature, wind direction, and rain are also investigated. The SGR-ReSI measurements exhibited sensitivity through the entire range of wind speeds sampled in this dataset, up to 35 m/s. A significant dependence on the larger waves was observed for winds < 6 m/s. Additionally, an interesting dependence on SST was observed where the slope of the SGR-ReSI measurements is positive for winds < 5 m/s and reverses for winds > 5 m/s. There appeared to be very little wind direction signal, and investigation of the rain impacts found no apparent sensitivity in the data. These results are shown through the analysis of global statistics and examination of a few case studies. This released SGR-ReSI dataset provided the first opportunity to comprehensively investigate the sensitivity of satellite-based GNSS-R measurements to various ocean surface parameters. The upcoming NASA's Cyclone Global Navigation Satellite System (CYGNSS) satellite constellation will utilize a similar receiver to SGI-ReSI and thus this data provides valuable pre-launch knowledge for the CYGNSS mission.
Grewe, P M; Feutry, P; Hill, P L; Gunasekera, R M; Schaefer, K M; Itano, D G; Fuller, D W; Foster, S D; Davies, C R
2015-11-23
Tropical tuna fisheries are central to food security and economic development of many regions of the world. Contemporary population assessment and management generally assume these fisheries exploit a single mixed spawning population, within ocean basins. To date population genetics has lacked the required power to conclusively test this assumption. Here we demonstrate heterogeneous population structure among yellowfin tuna sampled at three locations across the Pacific Ocean (western, central, and eastern) via analysis of double digest restriction-site associated DNA using Next Generation Sequencing technology. The differences among locations are such that individuals sampled from one of the three regions examined can be assigned with close to 100% accuracy demonstrating the power of this approach for providing practical markers for fishery independent verification of catch provenance in a way not achieved by previous techniques. Given these results, an extended pan-tropical survey of yellowfin tuna using this approach will not only help combat the largest threat to sustainable fisheries (i.e. illegal, unreported, and unregulated fishing) but will also provide a basis to transform current monitoring, assessment, and management approaches for this globally significant species.
Grewe, P. M.; Feutry, P.; Hill, P. L.; Gunasekera, R. M.; Schaefer, K. M.; Itano, D. G.; Fuller, D. W.; Foster, S. D.; Davies, C. R.
2015-01-01
Tropical tuna fisheries are central to food security and economic development of many regions of the world. Contemporary population assessment and management generally assume these fisheries exploit a single mixed spawning population, within ocean basins. To date population genetics has lacked the required power to conclusively test this assumption. Here we demonstrate heterogeneous population structure among yellowfin tuna sampled at three locations across the Pacific Ocean (western, central, and eastern) via analysis of double digest restriction-site associated DNA using Next Generation Sequencing technology. The differences among locations are such that individuals sampled from one of the three regions examined can be assigned with close to 100% accuracy demonstrating the power of this approach for providing practical markers for fishery independent verification of catch provenance in a way not achieved by previous techniques. Given these results, an extended pan-tropical survey of yellowfin tuna using this approach will not only help combat the largest threat to sustainable fisheries (i.e. illegal, unreported, and unregulated fishing) but will also provide a basis to transform current monitoring, assessment, and management approaches for this globally significant species. PMID:26593698
Global Observations and Understanding of the General Circulation of the Oceans
NASA Technical Reports Server (NTRS)
1984-01-01
The workshop was organized to: (1) assess the ability to obtain ocean data on a global scale that could profoundly change our understanding of the circulation; (2) identify the primary and secondary elements needed to conduct a World Ocean Circulation Experiment (WOCE); (3) if the ability is achievable, to determine what the U.S. role in such an experiment should be; and (4) outline the steps necessary to assure that an appropriate program is conducted. The consensus of the workshop was that a World Ocean Circulation Experiment appears feasible, worthwhile, and timely. Participants did agree that such a program should have the overall goal of understanding the general circulation of the global ocean well enough to be able to predict ocean response and feedback to long-term changes in the atmosphere. The overall goal, specific objectives, and recommendations for next steps in planning such an experiment are included.
Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates
NASA Astrophysics Data System (ADS)
Baker, Alex; Altieri, Katye; Okin, Greg; Dentener, Frank; Uematsu, Mitsuo; Kanakidou, Maria; Sarin, Manmohan; Duce, Robert; Galloway, Jim; Keene, Bill; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh
2014-05-01
The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the industrial revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) recently completed a multi-model analysis of global N deposition, including comparisons to wet deposition observations from three regional networks in North America, Europe and Southeast Asia (Lamarque et al., Atmos. Chem. Phys., 13, 7977-8018, 2013). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is very difficult. In this work we attempt instead to use ~2600 observations of aerosol nitrate and ammonium concentrations, acquired chiefly from sampling aboard ships in the period 1995 - 2012, to assess the ACCMIP N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected four ocean regions (the eastern North Atlantic, the South Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Two of these regions are adjacent to the land networks used in the ACCMIP comparison, while the others are far removed from land regions for which the model output has been rigorously compared to observational data. Here we will present calculated dry deposition fluxes of nitrate and ammonium from average observed concentrations in these regions, using deposition velocities of 0.9 cm/s and 0.1 cm/s respectively, and the results of a comparison of these fluxes to the ACCMIP model ensemble product. Uncertainties in the comparison and potential sources of bias between the observations and model will be discussed.
A global ocean climatology of preindustrial and modern ocean δ13C
NASA Astrophysics Data System (ADS)
Eide, Marie; Olsen, Are; Ninnemann, Ulysses S.; Johannessen, Truls
2017-03-01
We present a global ocean climatology of dissolved inorganic carbon δ13C (‰) corrected for the 13C-Suess effect, preindustrial δ13C. This was constructed by first using Olsen and Ninnemann's (2010) back-calculation method on data from 25 World Ocean Circulation Experiment cruises to reconstruct the preindustrial δ13C on sections spanning all major oceans. Next, we developed five multilinear regression equations, one for each major ocean basin, which were applied on the World Ocean Atlas data to construct the climatology. This reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values. The maxima, of up to 1.8‰, occurs in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and apparent oxygen utilization (AOU) than between δ13C and phosphate. This arises because, in contrast to phosphate, AOU and δ13C are both partly reset when waters are ventilated in the Southern Ocean and underscore that δ13C is a highly robust proxy for past changes in ocean oxygen content and ocean ventilation. Our global preindustrial δ13C climatology is openly accessible and can be used, for example, for improved model evaluation and interpretation of sediment δ13C records.
A conceptual model of oceanic heat transport in the Snowball Earth scenario
NASA Astrophysics Data System (ADS)
Comeau, Darin; Kurtze, Douglas A.; Restrepo, Juan M.
2016-12-01
Geologic evidence suggests that the Earth may have been completely covered in ice in the distant past, a state known as Snowball Earth. This is still the subject of controversy, and has been the focus of modeling work from low-dimensional models up to state-of-the-art general circulation models. In our present global climate, the ocean plays a large role in redistributing heat from the equatorial regions to high latitudes, and as an important part of the global heat budget, its role in the initiation a Snowball Earth, and the subsequent climate, is of great interest. To better understand the role of oceanic heat transport in the initiation of Snowball Earth, and the resulting global ice covered climate state, the goal of this inquiry is twofold: we wish to propose the least complex model that can capture the Snowball Earth scenario as well as the present-day climate with partial ice cover, and we want to determine the relative importance of oceanic heat transport. To do this, we develop a simple model, incorporating thermohaline dynamics from traditional box ocean models, a radiative balance from energy balance models, and the more contemporary "sea glacier" model to account for viscous flow effects of extremely thick sea ice. The resulting model, consisting of dynamic ocean and ice components, is able to reproduce both Snowball Earth and present-day conditions through reasonable changes in forcing parameters. We find that including or neglecting oceanic heat transport may lead to vastly different global climate states, and also that the parameterization of under-ice heat transfer in the ice-ocean coupling plays a key role in the resulting global climate state, demonstrating the regulatory effect of dynamic ocean heat transport.
Global Modeling Study of the Bioavailable Atmospheric Iron Supply to the Global Ocean
NASA Astrophysics Data System (ADS)
Myriokefalitakis, S.; Krol, M. C.; van Noije, T.; Le Sager, P.
2017-12-01
Atmospheric deposition of trace constituents acts as a nutrient source to the open ocean and affect marine ecosystem. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in a bioavailable form that can be assimilated by the marine biota. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in the High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant, but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe forms, associated with mineral dust and combustion aerosols. The impact of atmospheric acidity and organic ligands on mineral dissolution processes, is parameterized based on updated experimental and theoretical findings. Model results are also evaluated against available observations. Overall, the link between the labile Fe atmospheric deposition and atmospheric composition changes is here demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs; modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).
Ocean circulation and climate during the past 120,000 years
NASA Astrophysics Data System (ADS)
Rahmstorf, Stefan
2002-09-01
Oceans cover more than two-thirds of our blue planet. The waters move in a global circulation system, driven by subtle density differences and transporting huge amounts of heat. Ocean circulation is thus an active and highly nonlinear player in the global climate game. Increasingly clear evidence implicates ocean circulation in abrupt and dramatic climate shifts, such as sudden temperature changes in Greenland on the order of 5-10 °C and massive surges of icebergs into the North Atlantic Ocean - events that have occurred repeatedly during the last glacial cycle.
New features of global climatology revealed by satellite-derived oceanic rainfall maps
NASA Technical Reports Server (NTRS)
Rao, M. S. V.; Theon, J. S.
1977-01-01
Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed.
Cool seafloor hydrothermal springs reveal global geochemical fluxes
NASA Astrophysics Data System (ADS)
Wheat, C. Geoffrey; Fisher, Andrew T.; McManus, James; Hulme, Samuel M.; Orcutt, Beth N.
2017-10-01
We present geochemical data from the first samples of spring fluids from Dorado Outcrop, a basaltic edifice on 23 M.y. old seafloor of the Cocos Plate, eastern Pacific Ocean. These samples were collected from the discharge of a cool hydrothermal system (CHS) on a ridge flank, where typical reaction temperatures in the volcanic crust are low (2-20 °C) and fluid residence times are short. Ridge-flank hydrothermal systems extract 25% of Earth's lithospheric heat, with a global discharge rate equivalent to that of Earth's river discharge to the ocean; CHSs comprise a significant fraction of this global flow. Upper crustal temperatures around Dorado Outcrop are ∼15 °C, the calculated residence time is <3 y, and the composition of discharging fluids is only slightly altered from bottom seawater. Many of the major ions concentrations in spring fluids are indistinguishable from those of bottom seawater; however, concentrations of Rb, Mo, V, U, Mg, phosphate, Si and Li are different. Applying these observed differences to calculated global CHS fluxes results in chemical fluxes for these ions that are ≥15% of riverine fluxes. Fluxes of K and B also may be significant, but better analytical resolution is required to confirm this result. Spring fluids also have ∼50% less dissolved oxygen (DO) than bottom seawater. Calculations of an analytical model suggest that the loss of DO occurs primarily (>80%) within the upper basaltic crust by biotic and/or abiotic consumption. This calculation demonstrates that permeable pathways within the upper crust can support oxic water-rock interactions for millions of years.
Sharing Data in the Global Ocean Observing System (Invited)
NASA Astrophysics Data System (ADS)
Lindstrom, E. J.; McCurdy, A.; Young, J.; Fischer, A. S.
2010-12-01
We examine the evolution of data sharing in the field of physical oceanography to highlight the challenges now before us. Synoptic global observation of the ocean from space and in situ platforms has significantly matured over the last two decades. In the early 1990’s the community data sharing challenges facing the World Ocean Circulation Experiment (WOCE) largely focused on the behavior of individual scientists. Satellite data sharing depended on the policy of individual agencies. Global data sets were delivered with considerable delay and with enormous personal sacrifice. In the 2000’s the requirements for global data sets and sustained observations from the likes of the U.N. Framework Convention on Climate Change have led to data sharing and cooperation at a grander level. It is more effective and certainly more efficient. The Joint WMO/IOC Technical Commission on Oceanography and Marine Meteorology (JCOMM) provided the means to organize many aspects of data collection and data dissemination globally, for the common good. In response the Committee on Earth Observing Satellites organized Virtual Constellations to enable the assembly and sharing of like kinds of satellite data (e.g., sea surface topography, ocean vector winds, and ocean color). Individuals in physical oceanography have largely adapted to the new rigors of sharing data for the common good, and as a result of this revolution new science has been enabled. Primary obstacles to sharing have shifted from the individual level to the national level. As we enter into the 2010’s the demands for ocean data continue to evolve with an expanded requirement for more real-time reporting and broader disciplinary coverage, to answer key scientific and societal questions. We are also seeing the development of more numerous national contributions to the global observing system. The drivers for the establishment of global ocean observing systems are expanding beyond climate to include biological and biogeochemical issues (e.g. biodiversity and ecosystem services, fisheries collapse, and ocean acidification). This expanded suite of demands and drivers challenge us further to share data for the common good across specialties. This requires that more ocean scientific communities and national ocean observing programs move towards maturity in terms of global data collection capability, sharing capacity, and data management standards. In oceanography the time has arrived for a cultural shift toward more shared collective observing capabilities. Necessarily we must also rapidly move toward harmony in national data sharing policies for the ocean environment. Building capacity to share ocean observations has been an objective for decades and has resulted in an expanded understanding of technologies and management policies that foster data sharing and provenance tracking.
Globalizing Lessons Learned from Regional-scale Observatories
NASA Astrophysics Data System (ADS)
Glenn, S. M.
2016-02-01
The Mid Atlantic Regional Association Coastal Ocean Observing System (MARACOOS) has accumulated a decade of experience designing, building and operating a Regional Coastal Ocean Observing System for the U.S. Integrated Ocean Observing System (IOOS). MARACOOS serves societal goals and supports scientific discovery at the scale of a Large Marine Ecosystem (LME). Societal themes include maritime safety, ecosystem decision support, coastal inundation, water quality and offshore energy. Scientific results that feed back on societal goals with better products include improved understanding of seasonal transport pathways and their impact on phytoplankton blooms and hypoxia, seasonal evolution of the subsurface Mid Atlantic Cold Pool and its impact on fisheries, biogeochemical transformations in coastal plumes, coastal ocean evolution and impact on hurricane intensities, and storm sediment transport pathways. As the global ocean observing requirements grow to support additional societal needs for information on fisheries and aquaculture, ocean acidification and deoxygenation, water quality and offshore development, global observing will necessarily evolve to include more coastal observations and forecast models at the scale of the world's many LMEs. Here we describe our efforts to share lessons learned between the observatory operators at the regional-scale of the LMEs. Current collaborators are spread across Europe, and also include Korea, Indonesia, Australia, Brazil and South Africa. Specific examples include the development of a world standard QA/QC approach for HF Radar data that will foster the sharing of data between countries, basin-scale underwater glider missions between internationally-distributed glider ports to developed a shared understanding of operations and an ongoing evaluation of the global ocean models in which the regional models for the LME will be nested, and joint training programs to develop the distributed teams of scientists and technicians required to support the global network. Globalization includes the development of international networks to coordinate activities, such as the Global HF Radar network supported by GEO, the global Everyone's Glider Organization supported by WMO and IOC, and the need for professional training supported by MTS.
NASA Astrophysics Data System (ADS)
Baker, K. S.; Chandler, C. L.
2008-12-01
Data management and informatics research are in a state of change in terms of data practices, information strategies, and roles. New ways of thinking about data and data management can facilitate interdisciplinary global ocean science. To meet contemporary expectations for local data use and reuse by a variety of audiences, collaborative strategies involving diverse teams of information professionals are developing. Such changes are fostering the growth of information infrastructures that support multi-scale sampling, data integration, and nascent networks of data repositories. In this retrospective, two examples of oceanographic projects incorporating data management in partnership with long-term science programs are reviewed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned - short-term and long-term - from a decade of data management within these two communities will be presented. A conceptual framework called Ocean Informatics provides one example for managing the complexities inherent to sharing oceanographic data. Elements are discussed that address the economies-of-scale as well as the complexities-of-scale pertinent to a broad vision of information management and scientific research.
Moonage Daydream: Reassessing the Simple Model for Lunar Magma Ocean Crystallization
NASA Technical Reports Server (NTRS)
Rapp, J. F.; Draper, D. S.
2016-01-01
Details of the differentiation of a global-scale lunar magma ocean (LMO) remain enigmatic, as the Moon is not simply composed of highlands anorthosite and a suite of mare basalts as inferred from early studies. Results from recent orbital missions, and the increasingly detailed study of lunar samples, have revealed a much larger range of lithologies, from relatively MgO-rich and "purest anorthosite" discovered on the lunar far side by the M3 instrument on Chandraayan-1 to more exotic lithologies such as Si-rich domes and spinel-rich clasts distributed globally. To understand this increasingly complex geology, we must understand the initial formation and evolution of the LMO, and the composition of the cumulates this differentiation could have produced. Several attempts at modelling such a crystallization sequence have been made, and have raised as many questions as they have answered. We present results from our ongoing experimental simulations of magma ocean crystallization, investigating two end-member bulk compositions (TWM and LPUM) under fully fractional crystallization conditions. These simulations represent melting of the entire silicate portion of the Moon, as an end-member starting point from which to begin assessing the evolution of the lunar interior and formation of the lunar crust.
NASA Astrophysics Data System (ADS)
Baker, Karen S.; Chandler, Cynthia L.
2008-09-01
Interdisciplinary global ocean science requires new ways of thinking about data and data management. With new data policies and growing technological capabilities, datasets of increasing variety and complexity are being made available digitally and data management is coming to be recognized as an integral part of scientific research. To meet the changing expectations of scientists collecting data and of data reuse by others, collaborative strategies involving diverse teams of information professionals are developing. These changes are stimulating the growth of information infrastructures that support multi-scale sampling, data repositories, and data integration. Two examples of oceanographic projects incorporating data management in partnership with science programs are discussed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned from a decade of data management within these communities provide an experience base from which to develop information management strategies—short-term and long-term. Ocean Informatics provides one example of a conceptual framework for managing the complexities inherent to sharing oceanographic data. Elements are introduced that address the economies-of-scale and the complexities-of-scale pertinent to a broader vision of information management and scientific research.
Griffin, Dale W.; Westphal, Douglas L.; Gray, Michael A.
2006-01-01
The objective of this study was to enhance our understanding of the fate and trans-Atlantic transport of dustborne microorganisms from Northern Africa to the Caribbean and Americas, and more specifically to determine if culturable populations could be detected at a mid-ocean site, closer to the source of dust relative to land-based Caribbean sites, during the early summer months of May and June. Between the dates of 22 May and 30 June 2003, daily air samples were collected and evaluated for the presence of culturable bacterial and fungal colony-forming units (CFU). Here we report a statistically significant correlation between daily atmospheric CFU counts at a mid-ocean research site (???15??N, 45??W) and daily desert dust concentrations as determined by the U.S. Navy's Naval Aerosol Analysis and Prediction System (NAAPS) Global Aerosol Model (Honrath et al. (2004). Journal of Geophysical Research, 109; Johnson et al. (2003). Global Biogeochemical Cycles, 17, 1063; Reid et al. (2004). Geophysical Research Letters, 31; Schollaert, Yoder, Westphal, & O'Reilly (2003). Journal of Geophysical Research, 108, 3191). ?? Springer Science+Business Media B.V. 2006.
On the Use of Satellite Altimetry to Detect Ocean Circulation's Magnetic Signals
NASA Astrophysics Data System (ADS)
Saynisch, J.; Irrgang, C.; Thomas, M.
2018-03-01
Oceanic magnetic signals are sensitive to ocean velocity, salinity, and heat content. The detection of respective signals with global satellite magnetometers would pose a very valuable source of information. While tidal magnetic fields are already detected, electromagnetic signals of the ocean circulation still remain unobserved from space. We propose to use satellite altimetry to construct proxy magnetic signals of the ocean circulation. These proxy time series could subsequently be fitted to satellite magnetometer data. The fitted data could be removed from the observations or the fitting constants could be analyzed for physical properties of the ocean, e.g., the heat budget. To test and evaluate this approach, synthetic true and proxy magnetic signals are derived from a global circulation model of the ocean. Both data sets are compared in dependence of location and time scale. We study and report when and where the proxy data describe the true signal sufficiently well. Correlations above 0.6 and explained variances of above 80% can be reported for large parts of the Antarctic ocean, thus explaining the major part of the global, subseasonal magnetic signal.
Scaling the metabolic balance of the oceans.
López-Urrutia, Angel; San Martin, Elena; Harris, Roger P; Irigoien, Xabier
2006-06-06
Oceanic communities are sources or sinks of CO2, depending on the balance between primary production and community respiration. The prediction of how global climate change will modify this metabolic balance of the oceans is limited by the lack of a comprehensive underlying theory. Here, we show that the balance between production and respiration is profoundly affected by environmental temperature. We extend the general metabolic theory of ecology to the production and respiration of oceanic communities and show that ecosystem rates can be reliably scaled from theoretical knowledge of organism physiology and measurement of population abundance. Our theory predicts that the differential temperature-dependence of respiration and photosynthesis at the organism level determines the response of the metabolic balance of the epipelagic ocean to changes in ambient temperature, a prediction that we support with empirical data over the global ocean. Furthermore, our model predicts that there will be a negative feedback of ocean communities to climate warming because they will capture less CO2 with a future increase in ocean temperature. This feedback of marine biota will further aggravate the anthropogenic effects on global warming.
Validation Test Report for the 1/8 deg Global Navy Coastal Ocean Model Nowcast/Forecast System
2007-01-24
Test Report for the 1/8° Global Navy Coastal Ocean Model Nowcast/Forecast System Charlie N. BarroN a. Birol Kara roBert C. rhodes ClarK rowley......OF ACRONYMS ......................................................................48 VALIDATION TEST REPORT FOR THE 1/8° GLOBAL NAVY COASTAL
Estimation of Volume and Freshwater Flux from the Arctic Ocean using SMAP and NCEP CFSv2
NASA Astrophysics Data System (ADS)
Bulusu, S.
2017-12-01
Spatial and temporal monitoring of sea surface salinity (SSS) plays an important role globally and especially over the Arctic Ocean. The Arctic ice melt has led to an influx of freshwater into the Arctic environment, a process that can be observed in SSS. The recently launched NASA's Soil Moisture Active Passive (SMAP) mission is primarily designed for the global monitoring of soil moisture using L- band (1.4GHz) frequency. SMAP also has the capability of measuring SSS and can thus extend the NASA's Aquarius salinity mission (ended June 7, 2015), salinity data record with improved temporal/spatial sampling. In this research an attempt is made to investigate the retrievability of SSS over the Arctic from SMAP satellite. The objectives of this study are to verify the use of SMAP sea surface salinity (and freshwater) variability in the Arctic Ocean and the extent to estimate freshwater, salt and volume flux from the Arctic Ocean. Along with SMAP data we will use NASA's Ice, Cloud,and land Elevation Satellites (ICESat and ICESat-2), and ESA's CryoSat-2, and NASA's Gravity Recovery and Climate Experiment (GRACE) satellites data to estimate ice melt in the Arctic. The preliminary results from SMAP compared well with the NCEP Climate Forecast System version 2 (CFSv2) salinity data in this region capturing patterns fairly well over the Arctic.
Historical and Future Trends in Global Source-receptor Relationships of Mercury
NASA Astrophysics Data System (ADS)
Chen, L.; Zhang, W.; Wang, X.
2017-12-01
Growing concerns about the risk associated with increasing environmental Mercury (Hg) levels have resulted in a focus on the relationships between intercontinental emitted and accumulated Hg. We use a global biogeochemical Hg model with eight continental regions and a global ocean to evaluate the legacy impacts of historical anthropogenic releases (2000 BC to 2008 AD) on global source-receptor relationships of Hg. The legacy impacts of historical anthropogenic releases are confirmed to be significant on the source-receptor relationships according to our results. Historical anthropogenic releases from Asia account for 8% of total soil Hg in North America, which is smaller than the proportion ( 17%) from previous studies. The largest contributors to the global oceanic Hg are historical anthropogenic releases from North America (26%), Asia (16%), Europe (14%) and South America (14%). Although anthropogenic releases from Asia have exceeded North America since the 1970s, source contributions to global Hg receptors from Asia have not exceeded North America so far. Future projections indicate that if Hg emissions are not effectively controlled, Asia will exceed North America as the largest contributor to the global ocean in 2019 and this has a long-term adverse impact on the future environment. For the Arctic Ocean, historical anthropogenic release from North America contributes most to the oceanic Hg reservoir and future projections reveal that the legacy impacts of historical releases from mid-latitudes would lead to the potential of rising Hg in the Arctic Ocean in the future decades, which calls for more effective Hg controls on mid-latitude releases.
Historical and future trends in global source-receptor relationships of mercury.
Chen, Long; Zhang, Wei; Zhang, Yanxu; Tong, Yindong; Liu, Maodian; Wang, Huanhuan; Xie, Han; Wang, Xuejun
2018-01-01
Growing concern about the risk associated with increasing environmental mercury (Hg) concentrations has resulted in a focus on the relationships between intercontinental emitted and accumulated Hg. We use a global biogeochemical Hg model with 8 continental regions and a global ocean to evaluate the legacy impacts of historical anthropogenic releases (2000BCE to 2008AD) on global source-receptor relationships of Hg. Legacy impacts of historical anthropogenic releases are confirmed to be significant on the source-receptor relationships according to our results. Historical anthropogenic releases from Asia account for 8% of total soil Hg in North America, which is smaller than the proportion (~17%) from previous studies. The largest contributors to the global oceanic Hg are historical anthropogenic releases from North America (26%), Asia (16%), Europe (14%) and South America (14%). Although anthropogenic releases from Asia have exceeded North America since the 1970s, source contributions to global Hg receptors from Asia have not exceeded North America so far. Future projections indicate that if Hg emissions are not effectively controlled, Asia will exceed North America as the largest contributor to the global ocean in 2019 and this has a long-term adverse impact on the future environment. For the Arctic Ocean, historical anthropogenic release from North America contributes most to the oceanic Hg reservoir and future projections reveal that the legacy impacts of historical releases from mid-latitudes would lead to the potential of rising Hg in the Arctic Ocean in the future decades, which calls for more effective Hg controls on mid-latitude releases. Copyright © 2017 Elsevier B.V. All rights reserved.
Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM
NASA Astrophysics Data System (ADS)
Zhang, Yutong; Xu, Haiming; Qiao, Fangli; Dong, Changming
2018-03-01
The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIOESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMott, Paul J.; Hill, Thomas C. J.
This campaign augmented measurements obtained via deployment of the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Mobile Facility (AMF) in the Marine ARM GPCI1 Investigation of Clouds (MAGIC) field campaign. The measurements, comprised of shipboard aerosol collections obtained during the five legs of the summer 2013 cruises, were sent for offline processing to measure ice nucleating particle (INP) number concentrations. The forty-three sample periods each represented, nominally, 24-hour segments during outbound and inbound transits of the Horizon Spirit. The samples were collected at locations between Los Angeles and Hawaii. Eight samples have been analyzed for immersion freezing temperature spectramore » thus far, using funding from other grants. Remaining samples are being frozen until support for further processing is obtained. Future analyses will investigate the inorganic/organic proportions of ice nuclei, in addition to determining the genetic composition of the overall biological community associated with INPs. Resulting correlations will be compared with other archived aerosol quantities, meteorological and ocean data (e.g., temperature, wind speed, sea surface temperature, etc…) and satellite ocean color products. These findings will ultimately aid in parameterizing oceanic (e.g., sea spray) INP emissions in regional and global scale models, when illustrating aerosol connections to cloud phases and properties. Independent future analyses of frozen filter samples, as proposed by collaborating investigators at the time of this report, will include single particle analyses of marine boundary layer aerosol compositions and morphology. The MAGIC-IN data are considered representative of the oligotrophic, low Chlorophyll-a (with the exception of near-shore) ocean regions, which exist along the MAGIC transect. Current analyses suggest that INP numbers in the marine boundary layer over this region are typically low, compared to existing measurements over marine areas and those collected in the laboratory as the result of realistic sea spray particle generation. These findings, along with separate studies, confirm the existence of highly variable emission sources for INP from oceans, (though weaker than land-based emissions at modestly cooled temperatures).« less
Timing of the departure of ocean biogeochemical cycles from the preindustrial state.
Christian, James R
2014-01-01
Changes in ocean chemistry and climate induced by anthropogenic CO2 affect a broad range of ocean biological and biogeochemical processes; these changes are already well underway. Direct effects of CO2 (e.g. on pH) are prominent among these, but climate model simulations with historical greenhouse gas forcing suggest that physical and biological processes only indirectly forced by CO2 (via the effect of atmospheric CO2 on climate) begin to show anthropogenically-induced trends as early as the 1920s. Dates of emergence of a number of representative ocean fields from the envelope of natural variability are calculated for global means and for spatial 'fingerprints' over a number of geographic regions. Emergence dates are consistent among these methods and insensitive to the exact choice of regions, but are generally earlier with more spatial information included. Emergence dates calculated for individual sampling stations are more variable and generally later, but means across stations are generally consistent with global emergence dates. The last sign reversal of linear trends calculated for periods of 20 or 30 years also functions as a diagnostic of emergence, and is generally consistent with other measures. The last sign reversal among 20 year trends is found to be a conservative measure (biased towards later emergence), while for 30 year trends it is found to have an early emergence bias, relative to emergence dates calculated by departure from the preindustrial mean. These results are largely independent of emission scenario, but the latest-emerging fields show a response to mitigation. A significant anthropogenic component of ocean variability has been present throughout the modern era of ocean observation.
Timing of the Departure of Ocean Biogeochemical Cycles from the Preindustrial State
Christian, James R.
2014-01-01
Changes in ocean chemistry and climate induced by anthropogenic CO2 affect a broad range of ocean biological and biogeochemical processes; these changes are already well underway. Direct effects of CO2 (e.g. on pH) are prominent among these, but climate model simulations with historical greenhouse gas forcing suggest that physical and biological processes only indirectly forced by CO2 (via the effect of atmospheric CO2 on climate) begin to show anthropogenically-induced trends as early as the 1920s. Dates of emergence of a number of representative ocean fields from the envelope of natural variability are calculated for global means and for spatial ‘fingerprints’ over a number of geographic regions. Emergence dates are consistent among these methods and insensitive to the exact choice of regions, but are generally earlier with more spatial information included. Emergence dates calculated for individual sampling stations are more variable and generally later, but means across stations are generally consistent with global emergence dates. The last sign reversal of linear trends calculated for periods of 20 or 30 years also functions as a diagnostic of emergence, and is generally consistent with other measures. The last sign reversal among 20 year trends is found to be a conservative measure (biased towards later emergence), while for 30 year trends it is found to have an early emergence bias, relative to emergence dates calculated by departure from the preindustrial mean. These results are largely independent of emission scenario, but the latest-emerging fields show a response to mitigation. A significant anthropogenic component of ocean variability has been present throughout the modern era of ocean observation. PMID:25386910
Ocean OSSEs: recent developments and future challenges
NASA Astrophysics Data System (ADS)
Kourafalou, V. H.
2012-12-01
Atmospheric OSSEs have had a much longer history of applications than OSSEs (and OSEs) in oceanography. Long standing challenges include the presence of coastlines and steep bathymetric changes, which require the superposition of a wide variety of space and time scales, leading to difficulties on ocean observation and prediction. For instance, remote sensing is critical for providing a quasi-synoptic oceanographic view, but the coverage is limited at the ocean surface. Conversely, in situ measurements are capable to monitor the entire water column, but at a single location and usually for a specific, short time. Despite these challenges, substantial progress has been made in recent years and international initiatives have provided successful OSSE/OSE examples and formed appropriate forums that helped define the future roadmap. These will be discussed, together with various challenges that require a community effort. Examples include: integrated (remote and in situ) observing system requirements for monitoring large scale and climatic changes, vs. short term variability that is particularly important on the regional and coastal spatial scales; satisfying the needs of both global and regional/coastal nature runs, from development to rigorous evaluation and under a clear definition of metrics; data assimilation in the presence of tides; estimation of real-time river discharges for Earth system modeling. An overview of oceanographic efforts that complement the standard OSSE methodology will also be given. These include ocean array design methods, such as representer-based analysis and adaptive sampling. Exciting new opportunities for both global and regional ocean OSSE/OSE studies have recently become possible with targeted periods of comprehensive data sets, such as the existing Gulf of Mexico observations from multiple sources in the aftermath of the DeepWater Horizon incident and the upcoming airborne AirSWOT, in preparation for the SWOT (Surface Water and Ocean Topography) mission.
Decoupling of Iron and Phosphate in the Global Ocean
NASA Technical Reports Server (NTRS)
Parekh, Payal
2003-01-01
Iron is an essential micronutrient for marine phytoplankton, limiting their growth in high nutrient, low chlorophyll regions of the ocean. I use a hierarchy of ocean circulation and biogeochemistry models to understand controls on global iron distribution. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a phosphorus cycling model. Iron's aeolian source is prescribed. In the context of a highly idealized multi-box model scheme, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. This biogeochemical scheme is also implemented in a coarse resolution ocean general circulation model. This model also successfully reproduces the broad regional patterns of iron and phosphorus. In particular, the high macronutrient concentrations of the Southern Ocean result from iron limitation in the model. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface phosphate response to increased aeolian dust flux. My box model and GCM results suggest that a global ten fold increase in dust flux can support a phosphate drawdown of 0.25-0.5 micromolar.
Talley, L D; Feely, R A; Sloyan, B M; Wanninkhof, R; Baringer, M O; Bullister, J L; Carlson, C A; Doney, S C; Fine, R A; Firing, E; Gruber, N; Hansell, D A; Ishii, M; Johnson, G C; Katsumata, K; Key, R M; Kramp, M; Langdon, C; Macdonald, A M; Mathis, J T; McDonagh, E L; Mecking, S; Millero, F J; Mordy, C W; Nakano, T; Sabine, C L; Smethie, W M; Swift, J H; Tanhua, T; Thurnherr, A M; Warner, M J; Zhang, J-Z
2016-01-01
Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth's climate system, is taking up most of Earth's excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean's overturning circulation.
Multi-property modeling of ocean basin carbon fluxes
NASA Technical Reports Server (NTRS)
Volk, Tyler
1988-01-01
The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.
NASA Astrophysics Data System (ADS)
Centurioni, Luca
2017-04-01
The Global Drifter Program is the principal component of the Global Surface Drifting Buoy Array, a branch of NOAA's Global Ocean Observing System and a scientific project of the Data Buoy Cooperation Panel (DBCP). The DBCP is an international program coordinating the use of autonomous data buoys to observe atmospheric and oceanographic conditions over ocean areas where few other measurements are taken. The Global Drifter Program maintains an array of over 1,250 Lagrangian drifters, reporting in near real-time and designed measure 15 m depth Lagrangian currents, sea surface temperature (SST) and sea level atmospheric pressure (SLP), among others, to fulfill the needs to observe the air-sea interface at temporal and spatial scales adequate to support short to medium-range weather forecasting, ocean state estimates and climate science. This overview talk will discuss the main achievements of the program, the main impacts for satellite SST calibration and validation, for numerical weather prediction, and it will review the main scientific findings based on the use of Lagrangian currents. Finally, we will present new developments in Lagrangian drifter technology, which include special drifters designed to measure sea surface salinity, wind and directional wave spectra. New opportunities for expanding the scope of the Global Drifter Program will be discussed.
Changes of the Oceanic Long-term and seasonal variation in a Global-warming Climate
NASA Astrophysics Data System (ADS)
Xia, Q.; He, Y.; Dong, C.
2015-12-01
Abstract: Gridded absolute dynamic topography (ADT) from AVISO and outputs of sea surface height above geoid from a series of climate models run for CMIP5 are used to analysis global sea level variation. Variance has been calculated to determine the magnitude of change in sea level variation over two decades. Increasing trend of variance of ADT suggests an enhanced fluctuation as well as geostrophic shear of global ocean. To further determine on what scale does the increasing fluctuation dominate, the global absolute dynamic topography (ADT) has been separated into two distinguished parts: the global five-year mean sea surface (MSS) and the residual absolute dynamic topography (RADT). Increased variance of MSS can be ascribed to the nonuniform rising of global sea level and an enhancement of ocean gyres in the Pacific Ocean. While trend in the variance of RADT is found to be close to zero which suggests an unchanged ocean mesoscale variability. The Gaussian-like distribution of global ADT are used to study the change in extreme sea levels. Information entropy has also been adapted in our study. Increasing trend of information entropy which measures the degree of dispersion of a probability distribution suggests more appearance of extreme sea levels. Extreme high sea levels are increasing with a higher growing rate than the mean sea level rise.
NASA Astrophysics Data System (ADS)
Severine, A.; Cyril, M.; Yves, D.; Laurent, B.; Hubert, L.
2006-12-01
The fate of fixed organic carbon in the ocean strongly varies with the phytoplankton group that makes photosynthesis. The monitoring of phytoplankton groups in the global ocean is thus of primary importance to evaluate and improve ocean carbon models. A new method (PHYSAT; Alvain et al., 2005) enables to distinguish between four different groups from space using SeaWiFS ocean color measurements. In addition to these four initial phytoplankton groups, which are diatoms, Prochlorococcus, Synecochoccus and haptophytes, we show that PHYSAT is also capable of identifying blooms of phaeocystis and coccolithophorids. Daily global SeaWiFS level-3 data from September 1997 to December 2004 were processed using PHYSAT. We present here the first monthly mean global climatology of the dominant phytoplankton groups. The seasonal cycle is discussed, with particular emphasis on the succession of phytoplankton groups during the North Atlantic spring bloom and on the coexistence of large phaeocystis and diatoms blooms during winter in the Austral Ocean. We also present the inter-annual variability for the 1998-2004 period. The contribution of diatoms to the total chlorophyll is highly variable (up to a factor of two) from one year to the other in both Atlantic and Austral Oceans, suggesting a significant variability in organic carbon export by diatoms in these regions. On the opposite, the phaeocystis contribution is less variable in the Austral Ocean.
Hain, Karin; Faestermann, Thomas; Fimiani, Leticia; Golser, Robin; Gómez-Guzmán, José Manuel; Korschinek, Gunther; Kortmann, Florian; Lierse von Gostomski, Christoph; Ludwig, Peter; Steier, Peter; Tazoe, Hirofumi; Yamada, Masatoshi
2017-02-21
The concentration of plutonium (Pu) and the isotopic ratios of 240 Pu to 239 Pu and 241 Pu to 239 Pu were determined by accelerator mass spectrometry (AMS) in Pacific Ocean water samples (20 L each) collected in late 2012. The isotopic Pu ratios are important indicators of different contamination sources and were used to identify a possible release of Pu into the ocean by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. In particular, 241 Pu is a well-suited indicator for a recent entry of Pu because 241 Pu from fallout of nuclear weapon testings has already significantly decayed. A total of 10 ocean water samples were prepared at the Radiochemie München of the TUM and analyzed at the Vienna Environmental Research Laboratory (VERA). Several samples showed a slightly elevated 240 Pu/ 239 Pu ratio of up to 0.22 ± 0.02 compared to global fallout ( 240 Pu/ 239 Pu = 0.180 ± 0.007), whereas all measured 241 Pu-to- 239 Pu ratios were consistent with nuclear weapon fallout ( 241 Pu/ 239 Pu < 2.4 × 10 -3 ), which means that no impact from the Fukushima accident was detected. From the average 241 Pu-to- 239 Pu ratio of 8 -2 +3 ×10 -4 at a sampling station located at a distance of 39.6 km to FDNPP, the 1-σ upper limit for the FDNPP contribution to the 239 Pu inventory in the water column was estimated to be 0.2%. Pu, with the signature of weapon-grade Pu was found in a single sample collected around 770 km off the west coast of the United States.
Merging Ocean Color Data From Multiple Missions. Chapter 6
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
2003-01-01
Oceanic phytoplankton may play an important role in the cycling of carbon on the Earth, through the uptake of carbon dioxide in the process of photosynthesis. Although they are ubiquitous in the global oceans, their abundances and dynamics are difficult to estimate, primarily due to the vast spatial extent of the oceans and the short time scales over which their abundances can change. Consequently, the effects of oceanic phytoplankton on biogeochemical cycling, climate change, and fisheries are not well known. In response to the potential importance of phytoplankton in the global carbon cycle and the lack of comprehensive data, NASA and the international community have established high priority satellite missions designed to acquire and produce high quality ocean color data (Table 6.1). Ten of the missions are routine global observational missions: the Ocean Color and Temperature Sensor (OCTS), the Polarization and Directionality of the Earth's Reflectances sensor (POLDER), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer-AM (MODIS-AM), Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), MODIS-PM, Super-GLI (S-GLI), and the Visible/Infrared Imager and Radiometer Suite (VIIRS) on the NPOESS Preparatory Project (NPP) and the National Polar-orbiting Operational Environmental Satellite System (NPOESS). In addition, there are several other missions capable of providing ocean color data on smaller scales. Most of these missions contain the spectral band complement considered necessary to derive oceanic chlorophyll concentrations and other related parameters. Many contain additional bands that can provide important ancillary information about the optical and biological state of the oceans.
An operational global ocean forecast system and its applications
NASA Astrophysics Data System (ADS)
Mehra, A.; Tolman, H. L.; Rivin, I.; Rajan, B.; Spindler, T.; Garraffo, Z. D.; Kim, H.
2012-12-01
A global Real-Time Ocean Forecast System (RTOFS) was implemented in operations at NCEP/NWS/NOAA on 10/25/2011. This system is based on an eddy resolving 1/12 degree global HYCOM (HYbrid Coordinates Ocean Model) and is part of a larger national backbone capability of ocean modeling at NWS in strong partnership with US Navy. The forecast system is run once a day and produces a 6 day long forecast using the daily initialization fields produced at NAVOCEANO using NCODA (Navy Coupled Ocean Data Assimilation), a 3D multi-variate data assimilation methodology. As configured within RTOFS, HYCOM has a horizontal equatorial resolution of 0.08 degrees or ~9 km. The HYCOM grid is on a Mercator projection from 78.64 S to 47 N and north of this it employs an Arctic dipole patch where the poles are shifted over land to avoid a singularity at the North Pole. This gives a mid-latitude (polar) horizontal resolution of approximately 7 km (3.5 km). The coastline is fixed at 10 m isobath with open Bering Straits. This version employs 32 hybrid vertical coordinate surfaces with potential density referenced to 2000 m. Vertical coordinates can be isopycnals, often best for resolving deep water masses, levels of equal pressure (fixed depths), best for the well mixed unstratified upper ocean and sigma-levels (terrain-following), often the best choice in shallow water. The dynamic ocean model is coupled to a thermodynamic energy loan ice model and uses a non-slab mixed layer formulation. The forecast system is forced with 3-hourly momentum, radiation and precipitation fluxes from the operational Global Forecast System (GFS) fields. Results include global sea surface height and three dimensional fields of temperature, salinity, density and velocity fields used for validation and evaluation against available observations. Several downstream applications of this forecast system will also be discussed which include search and rescue operations at US Coast Guard, navigation safety information provided by OPC using real time ocean model guidance from Global RTOFS surface ocean currents, operational guidance on radionuclide dispersion near Fukushima using 3D tracers, boundary conditions for various operational coastal ocean forecast systems (COFS) run by NOS etc.
Global Coastal and Marine Spatial Planning (CMSP) from Space Based AIS Ship Tracking
NASA Astrophysics Data System (ADS)
Schwehr, K. D.; Foulkes, J. A.; Lorenzini, D.; Kanawati, M.
2011-12-01
All nations need to be developing long term integrated strategies for how to use and preserve our natural resources. As a part of these strategies, we must evalutate how communities of users react to changes in rules and regulations of ocean use. Global characterization of the vessel traffic on our Earth's oceans is essential to understanding the existing uses to develop international Coast and Marine Spatial Planning (CMSP). Ship traffic within 100-200km is beginning to be effectively covered in low latitudes by ground based receivers collecting position reports from the maritime Automatic Identification System (AIS). Unfortunately, remote islands, high latitudes, and open ocean Marine Protected Areas (MPA) are not covered by these ground systems. Deploying enough autonomous airborne (UAV) and surface (USV) vessels and buoys to provide adequate coverage is a difficult task. While the individual device costs are plummeting, a large fleet of AIS receivers is expensive to maintain. The global AIS coverage from SpaceQuest's low Earth orbit satellite receivers combined with the visualization and data storage infrastructure of Google (e.g. Maps, Earth, and Fusion Tables) provide a platform that enables researchers and resource managers to begin answer the question of how ocean resources are being utilized. Near real-time vessel traffic data will allow managers of marine resources to understand how changes to education, enforcement, rules, and regulations alter usage and compliance patterns. We will demonstrate the potential for this system using a sample SpaceQuest data set processed with libais which stores the results in a Fusion Table. From there, the data is imported to PyKML and visualized in Google Earth with a custom gx:Track visualization utilizing KML's extended data functionality to facilitate ship track interrogation. Analysts can then annotate and discuss vessel tracks in Fusion Tables.
Skipjack tuna as a bioindicator of contamination by perfluorinated compounds in the oceans.
Hart, Kimberly; Kannan, Kurunthachalam; Tao, Lin; Takahashi, Shin; Tanabe, Shinsuke
2008-09-15
Perfluorinated chemicals (PFCs) have emerged as global environmental contaminants. Studies have reported the widespread occurrence of PFCs in biota from marine coastal waters and in remote polar regions. However, few studies have reported the distribution of PFCs in biota from offshore waters and open oceans. In this study, concentrations of nine PFCs were determined in the livers of 60 skipjack tuna (Katsuwonus pelamis) collected from offshore waters and the open ocean along the Pacific Rim, including the Sea of Japan, the East China Sea, the Indian Ocean, and the Western North Pacific Ocean, during 1997-1999. At least one of the nine PFCs was found in every tuna sample analyzed. Overall, perfluorooctanesulfonate (PFOS) and perfluoroundecanoic acid (PFUnDA) were the predominant compounds found in livers of tuna at concentrations of <1-58.9 and <1-31.6 ng/g, wet wt, respectively. Long-chain perfluorocarboxylates such as perfluorodecanoic acid (PFDA) and perfluorododecanoic acid (PFDoDA) were common in the tuna livers. In livers of tuna from several offshore and open-ocean locations, concentrations of PFUnDA were greater than the concentrations of PFOS. The profiles and concentrations of PFCs in tuna livers suggest that the sources in East Asia are dominated by long-chain perfluorocarboxylates, especially PFUnDA. High concentrations of PFUnDA in tuna may indicate a shift in sources of PFCs in East Asia. The spatial distribution of PFOS in skipjack tuna reflected the concentrations previously reported in seawater samples from the Pacific and Indian Oceans, suggesting that tuna are good bioindicators of pollution by PFOS. Despite its predominance in ocean waters, PFOA was rarely found in tuna livers, indicative of the low bioaccumulation potential of this compound. Our study establishes baseline concentrations of PFCs in skipjack tuna from the oceans of the Asia-Pacific region, enabling future temporal trend studies of PFCs in oceans.
Cenozoic Planktonic Marine Diatom Diversity and Correlation to Climate Change
Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas
2014-01-01
Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂18O (climate) and carbon cycle records (∂13C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂13C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls. PMID:24465441
Cenozoic planktonic marine diatom diversity and correlation to climate change.
Lazarus, David; Barron, John; Renaudie, Johan; Diver, Patrick; Türke, Andreas
2014-01-01
Marine planktonic diatoms export carbon to the deep ocean, playing a key role in the global carbon cycle. Although commonly thought to have diversified over the Cenozoic as global oceans cooled, only two conflicting quantitative reconstructions exist, both from the Neptune deep-sea microfossil occurrences database. Total diversity shows Cenozoic increase but is sample size biased; conventional subsampling shows little net change. We calculate diversity from a separately compiled new diatom species range catalog, and recalculate Neptune subsampled-in-bin diversity using new methods to correct for increasing Cenozoic geographic endemism and decreasing Cenozoic evenness. We find coherent, substantial Cenozoic diversification in both datasets. Many living cold water species, including species important for export productivity, originate only in the latest Miocene or younger. We make a first quantitative comparison of diatom diversity to the global Cenozoic benthic ∂(18)O (climate) and carbon cycle records (∂(13)C, and 20-0 Ma pCO2). Warmer climates are strongly correlated with lower diatom diversity (raw: rho = .92, p<.001; detrended, r = .6, p = .01). Diatoms were 20% less diverse in the early late Miocene, when temperatures and pCO2 were only moderately higher than today. Diversity is strongly correlated to both ∂(13)C and pCO2 over the last 15 my (for both: r>.9, detrended r>.6, all p<.001), but only weakly over the earlier Cenozoic, suggesting increasingly strong linkage of diatom and climate evolution in the Neogene. Our results suggest that many living marine planktonic diatom species may be at risk of extinction in future warm oceans, with an unknown but potentially substantial negative impact on the ocean biologic pump and oceanic carbon sequestration. We cannot however extrapolate our my-scale correlations with generic climate proxies to anthropogenic time-scales of warming without additional species-specific information on proximate ecologic controls.
A 3D parameterization of iron atmospheric deposition to the global ocean
NASA Astrophysics Data System (ADS)
Myriokefalitakis, Stelios; Krol, Maarten C.; van Noije, Twan P. C.; Le Sager, Philippe
2017-04-01
Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe, associated with dusts and combustion processes. The impact of atmospheric acidity on mineral solubility is parameterized based on updated experimental and theoretical findings, and model results are evaluated against available observations. The link between the soluble Fe atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient containing aerosols to atmospheric composition changes is demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs: Modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).
Combined constraints on global ocean primary production using observations and models
NASA Astrophysics Data System (ADS)
Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le
2013-09-01
production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.
NASA Astrophysics Data System (ADS)
Muglia, J.; Skinner, L.; Schmittner, A.
2017-12-01
Circulation changes have been suggested to play an important role in the sequestration of atmospheric CO2 in the glacial ocean. However, previous studies have resulted in contradictory results regarding the strength of the Atlantic Meridional Overturning Circulation (AMOC) and three-dimensional, quantitative reconstructions of the glacial ocean constrained by multiple proxies remain lacking. Here we simulate the modern and glacial ocean using a coupled, global, three-dimensional, physical-biogeochemical model constrained simultaneously by d13C, radiocarbon, and d15N to explore the effects of AMOC differences and Southern Ocean iron fertilization on the distributions of these isotopes and ocean carbon storage. We show that d13C and radiocarbon data sparsely sampled at the locations of existing glacial sediment cores can be used to reconstruct the modern AMOC accurately. Applying this method to the glacial ocean we find that a surprisingly weak (6-9 Sv or about half of today's) and shallow AMOC maximizes carbon storage and best reproduces the sediment data. Increasing the atmospheric soluble iron flux in the model's Southern Ocean intensifies export production, carbon storage, and improves agreement with d13C and d15N reconstructions. Our best fitting model is a significant improvement compared with previous studies. It suggests that a weak and shallow AMOC and enhanced iron fertilization conspired to maximize carbon storage in the glacial ocean.
NASA Astrophysics Data System (ADS)
Jessen, P. G.; Chen, S.
2014-12-01
This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.
The Global Precipitation Mission
NASA Technical Reports Server (NTRS)
Braun, Scott; Kummerow, Christian
2000-01-01
The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.
NASA Astrophysics Data System (ADS)
Dick, H.; Natland, J.
2003-04-01
No. With few exceptions, lower ocean crust sampled by dredge or submersible in tectonic windows such as Atlantis Bank in the Indian Ocean or the MARK area on the Mid-Atlantic Ridge are not representative of the ocean crust. They represent tectonic mixing of rocks from the mantle and crust on large faults that also localize late magmatic intrusion. Where this can be sorted out, the in-situ crustal sections may generally represent a sub-horizontal cross-section through the lower crust and mantle and not a vertical one. The gabbroic rocks exposed represent largely high-level intrusions, highly hybridized by late melt flow along deep faults, or highly evolved gabbro at the distal ends of larger intrusions emplaced into the mantle near transforms. Oceanic gabbros have average compositions that lie outside the range of primary MORB compositions, and rarely are equivalent to spatially associated MORB either as a parent to, or as a residue of their crystallization. Oceanic gabbros sampled from these complexes generally are very coarse-grained, and are unlike those seen in nearly all ophiolites and layered intrusions. In addition, there are few exposures of gabbro and lower ocean crust and mantle in Pacific tectonic windows, though there the possibility of more representative sections is greater due to their exposure in propagating rifts. Limited samples of the mantle from near the midpoints of ocean ridge segments at slow-spreading rifts are from anomalous crustal environments such as ultra-slow spreading ridges or failed rifts. These include abundant dunites, as opposed to samples from fracture zones, which contain only about 1% dunite. While this indicates focused mantle flow towards the midpoint of a ridge, it also shows that fracture zone peridotites are not fully representative of the oceanic upper mantle. Major classes of rocks common in ophiolites, such as fine to medium grained layered primitive olivine gabbros, troctolites, wherlites and dunites, sheeted dikes, and epidosites are rarely or even not exposed. Models of lower ocean crust stratigraphy drawn from deep sea sampling, certainly from slow spreading ridges, do not match those for major intact ophiolites. Thus the ophiolite hypothesis remains unconfirmed for the lower ocean crust and shallow mantle, and it is nearly impossible to accurately identify the ocean ridge environment of any one ophiolite. The one deep drill hole that exists in lower ocean crust, 1.5 km Hole 735B, has a bulk composition too fractionated to mass balance MORB back to a primary mantle melt composition. Thus, a large mass of primitive cumulates is missing and could be situated in the crust below the base of the hole or in the underlying mantle. This is an unresolved question that is critical to understanding the evolution of the most common magma on earth: MORB. Since lower ocean crust and mantle represent a major portion of the crust and the exchange of mass, heat and volatiles from the earth's interior to its exterior this leaves a major hole in our understanding of the global geochemical and tectonic cycle which can only be filled by deep drilling.
Meridionally propagating interannual-to-interdecadal variability in a linear ocean-atmosphere model
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.
1992-01-01
Meridional oscillation modes in a global, primitive-equation coupled ocean-atmosphere model have been analyzed in order to determine whether they contain such meridionally propagating modes as surface-pressure perturbations with years-to-decades oscillation periods. A two-layer global ocean model and a two-level global atmosphere model were then formulated. For realistic parameter values and basic states, meridional modes oscillating at periods of several years to several decades are noted to be present in the coupled ocean-atmosphere model; the oscillation periods, travel times, and meridional structures of surface pressure perturbations in one of the modes are found to be comparable to the corresponding characteristics of observed sea-level pressure perturbations.
Ocean deoxygenation in a warming world.
Keeling, Ralph E; Körtzinger, Arne; Gruber, Nicolas
2010-01-01
Ocean warming and increased stratification of the upper ocean caused by global climate change will likely lead to declines in dissolved O2 in the ocean interior (ocean deoxygenation) with implications for ocean productivity, nutrient cycling, carbon cycling, and marine habitat. Ocean models predict declines of 1 to 7% in the global ocean O2 inventory over the next century, with declines continuing for a thousand years or more into the future. An important consequence may be an expansion in the area and volume of so-called oxygen minimum zones, where O2 levels are too low to support many macrofauna and profound changes in biogeochemical cycling occur. Significant deoxygenation has occurred over the past 50 years in the North Pacific and tropical oceans, suggesting larger changes are looming. The potential for larger O2 declines in the future suggests the need for an improved observing system for tracking ocean 02 changes.
Polar ocean stratification in a cold climate.
Sigman, Daniel M; Jaccard, Samuel L; Haug, Gerald H
2004-03-04
The low-latitude ocean is strongly stratified by the warmth of its surface water. As a result, the great volume of the deep ocean has easiest access to the atmosphere through the polar surface ocean. In the modern polar ocean during the winter, the vertical distribution of temperature promotes overturning, with colder water over warmer, while the salinity distribution typically promotes stratification, with fresher water over saltier. However, the sensitivity of seawater density to temperature is reduced as temperature approaches the freezing point, with potential consequences for global ocean circulation under cold climates. Here we present deep-sea records of biogenic opal accumulation and sedimentary nitrogen isotopic composition from the Subarctic North Pacific Ocean and the Southern Ocean. These records indicate that vertical stratification increased in both northern and southern high latitudes 2.7 million years ago, when Northern Hemisphere glaciation intensified in association with global cooling during the late Pliocene epoch. We propose that the cooling caused this increased stratification by weakening the role of temperature in polar ocean density structure so as to reduce its opposition to the stratifying effect of the vertical salinity distribution. The shift towards stratification in the polar ocean 2.7 million years ago may have increased the quantity of carbon dioxide trapped in the abyss, amplifying the global cooling.
Rusch, Douglas B; Halpern, Aaron L; Sutton, Granger; Heidelberg, Karla B; Williamson, Shannon; Yooseph, Shibu; Wu, Dongying; Eisen, Jonathan A; Hoffman, Jeff M; Remington, Karin; Beeson, Karen; Tran, Bao; Smith, Hamilton; Baden-Tillson, Holly; Stewart, Clare; Thorpe, Joyce; Freeman, Jason; Andrews-Pfannkoch, Cynthia; Venter, Joseph E; Li, Kelvin; Kravitz, Saul; Heidelberg, John F; Utterback, Terry; Rogers, Yu-Hui; Falcón, Luisa I; Souza, Valeria; Bonilla-Rosso, Germán; Eguiarte, Luis E; Karl, David M; Sathyendranath, Shubha; Platt, Trevor; Bermingham, Eldredge; Gallardo, Victor; Tamayo-Castillo, Giselle; Ferrari, Michael R; Strausberg, Robert L; Nealson, Kenneth; Friedman, Robert; Frazier, Marvin; Venter, J. Craig
2007-01-01
The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed “fragment recruitment,” addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed “extreme assembly,” made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS. PMID:17355176
Toward an Improved Understanding of the Global Fresh Water Budget
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.
2005-01-01
The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest priorities for future improvements in global fresh water budget monitoring. The priorities are based on the potential of new approaches to provide improved measurement and modeling systems, and on the need to measure and understand the potential for a speed-up of the global water cycle under the effects of climate change.
NASA Astrophysics Data System (ADS)
Kendall, B.; Yang, S.; Lu, X.; Zhang, F.; Zheng, W.
2016-12-01
The U isotope system represents a relatively new paleoredox proxy that can help trace the evolution of global ocean redox chemistry, but has rarely been applied to the Mid-Proterozoic. We report U isotope data for marine black shales of the early Mesoproterozoic Velkerri Formation (Roper Group) and late Paleoproterozoic Wollogorang Formation (Tawallah Group) from the McArthur Basin, Northern Australia. An average authigenic δ238U of 0.13 ± 0.04‰ (1SD; relative to standard CRM145) was obtained for six euxinic shales from a 1 m interval that previously yielded a precise Re-Os depositional age of 1361 ± 21 Ma. After correcting for a U isotope fractionation of 0.60-0.85‰ between seawater and open-ocean euxinic sediments, we infer that coeval global seawater had a δ238U of -0.47‰ to -0.72‰, which is 0.1-0.3‰ lighter than modern seawater (-0.40 ± 0.03‰). A U isotope mass-balance model suggests that anoxic marine environments accounted for 25-50% of the global oceanic U sink at 1.36 Ga, which is 3-7 times greater than today. The model suggests that a significant proportion, potentially even a majority, of the seafloor was not covered by anoxic waters. Hence, we infer that a significant extent of the ocean floor was covered by O2-bearing waters at 1.36 Ga. The O2 concentrations of those waters were not necessarily high, and a large expanse of weakly to mildly oxygenated deep waters is consistent with the U isotope data. Uranium isotope data from a 1 m interval in the lower Velkerri Formation, deposited at 1417 ± 29 Ma based on Re-Os geochronology, yield a greater estimate for the extent of ocean anoxia. Hence, the upper Velkerri Formation may capture a transient episode of increased ocean oxygenation. Previous Re-Os isotope data from black shales of the ca. 1.73 Ga Paleoproterozoic Wollogorang Formation yielded an erroneously young date of 1359 ± 150 Ma because hydrothermal fluids percolated through the Tawallah Group rocks at ca. 1640 Ma. Higher δ238U is observed in samples closer to the base of the black shale unit where the greatest extent of open-system Re-Os isotope behavior was observed. Hence, post-depositional hydrothermal fluid flow can overprint the depositional δ238U of black shales and lead to erroneous interpretations of global ocean paleoredox conditions.
Consistency of Estimated Global Water Cycle Variations Over the Satellite Era
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Bosilovich, M. G.; Roberts, J. B.; Reichle, R. H.; Adler, R.; Ricciardulli, L.; Berg, W.; Huffman, G. J.
2013-01-01
Motivated by the question of whether recent indications of decadal climate variability and a possible "climate shift" may have affected the global water balance, we examine evaporation minus precipitation (E-P) variability integrated over the global oceans and global land from three points of view-remotely sensed retrievals / objective analyses over the oceans, reanalysis vertically-integrated moisture convergence (MFC) over land, and land surface models forced with observations-based precipitation, radiation and near-surface meteorology. Because monthly variations in area-averaged atmospheric moisture storage are small and the global integral of moisture convergence must approach zero, area-integrated E-P over ocean should essentially equal precipitation minus evapotranspiration (P-ET) over land (after adjusting for ocean and land areas). Our analysis reveals considerable uncertainty in the decadal variations of ocean evaporation when integrated to global scales. This is due to differences among datasets in 10m wind speed and near-surface atmospheric specific humidity (2m qa) used in bulk aerodynamic retrievals. Precipitation variations, all relying substantially on passive microwave retrievals over ocean, still have uncertainties in decadal variability, but not to the degree present with ocean evaporation estimates. Reanalysis MFC and P-ET over land from several observationally forced diagnostic and land surface models agree best on interannual variations. However, upward MFC (i.e. P-ET) reanalysis trends are likely related in part to observing system changes affecting atmospheric assimilation models. While some evidence for a low-frequency E-P maximum near 2000 is found, consistent with a recent apparent pause in sea-surface temperature (SST) rise, uncertainties in the datasets used here remain significant. Prospects for further reducing uncertainties are discussed. The results are interpreted in the context of recent climate variability (Pacific Decadal Oscillation, Atlantic Meridional Overturning), and efforts to distinguish these modes from longer-term trends.
Seafloor 2030 - Building a Global Ocean Map through International Collaboration
NASA Astrophysics Data System (ADS)
Ferrini, V. L.; Wigley, R. A.; Falconer, R. K. H.; Jakobsson, M.; Allen, G.; Mayer, L. A.; Schmitt, T.; Rovere, M.; Weatherall, P.; Marks, K. M.
2016-12-01
With more than 85% of the ocean floor unmapped, a huge proportion of our planet remains unexplored. Creating a comprehensive map of seafloor bathymetry remains a true global challenge that can only be accomplished through collaboration and partnership between governments, industry, academia, research organizations and non-government organizations. The objective of Seafloor 2030 is to comprehensively map the global ocean floor to resolutions that enable exploration and improved understanding of ocean processes, while informing maritime policy and supporting the management of natural marine resources for a sustainable Blue Economy. Seafloor 2030 is the outcome of the Forum for Future of Ocean Floor Mapping held in Monaco in June 2016, which was held under the auspices of GEBCO and the Nippon Foundation of Japan. GEBCO is the only international organization mandated to map the global ocean floor and is guided by the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission of UNESCO. The task of completely mapping the ocean floor will require new global coordination to ensure that both existing data are identified and that new mapping efforts are coordinated to help efficiently "map the gaps." Fundamental to achieving Seafloor 2030 will be greater access to data, tools and technology, particularly for developing and coastal nations. This includes bathymetric post-processing and analysis software, database technology, computing infrastructure and gridding techniques as well as the latest developments in seafloor mapping methods and emerging crowd-sourced bathymetry initiatives. The key to achieving this global bathymetric map is capacity building and education - including greater coordination between scientific research and industry and the effective engagement of international organizations such as the United Nations.
Ocean carbon and heat variability in an Earth System Model
NASA Astrophysics Data System (ADS)
Thomas, J. L.; Waugh, D.; Gnanadesikan, A.
2016-12-01
Ocean carbon and heat content are very important for regulating global climate. Furthermore, due to lack of observations and dependence on parameterizations, there has been little consensus in the modeling community on the magnitude of realistic ocean carbon and heat content variability, particularly in the Southern Ocean. We assess the differences between global oceanic heat and carbon content variability in GFDL ESM2Mc using a 500-year, pre-industrial control simulation. The global carbon and heat content are directly out of phase with each other; however, in the Southern Ocean the heat and carbon content are in phase. The global heat mutli-decadal variability is primarily explained by variability in the tropics and mid-latitudes, while the variability in global carbon content is primarily explained by Southern Ocean variability. In order to test the robustness of this relationship, we use three additional pre-industrial control simulations using different mesoscale mixing parameterizations. Three pre-industrial control simulations are conducted with the along-isopycnal diffusion coefficient (Aredi) set to constant values of 400, 800 (control) and 2400 m2 s-1. These values for Aredi are within the range of parameter settings commonly used in modeling groups. Finally, one pre-industrial control simulation is conducted where the minimum in the Gent-McWilliams parameterization closure scheme (AGM) increased to 600 m2 s-1. We find that the different simulations have very different multi-decadal variability, especially in the Weddell Sea where the characteristics of deep convection are drastically changed. While the temporal frequency and amplitude global heat and carbon content changes significantly, the overall spatial pattern of variability remains unchanged between the simulations.
NASA Astrophysics Data System (ADS)
Miloslavich, P.; Bax, N. J.; Simmons, S. E.; Appeltans, W.; Garcia, M.
2016-02-01
The Biology and Ecosystems Panel of GOOS aims to develop and coordinate efforts to implement a sustained and targeted global ocean observation system. This system will be driven by societal needs (including the Sustainable Development Goals), and identify Essential Ocean Variables (EOVs) to inform priority scientific and societal questions that will facilitate critical policy development and management decision-making on ocean and coastal resource sustainability and health. Mature EOVs need to have global relevance and the capacity for global measurement. Our goal is to implement at least one (set of) mature EOVs by 2019, and identify a further three (sets of) pilot EOVs with a clear pathway to maturity. Our initial work includes (1) identifying drivers and pressures of societal and scientific needs, and (2) identifying internationally agreed goals that need sustained global observations of ocean biological & ecosystem variables for a healthy ocean. We reviewed 24 major conventions/international organizations (including the CBD and 16 UN related) to identify the societal needs these organizations address through their goals, and to produce a set of overlapping objectives. Main drivers identified in these conventions were: knowledge (science/data access), development (sustainable economic growth), conservation (biodiversity & ecosystems), sustainable use (biodiversity & resources), environmental quality (health), capacity building (technology transfer), food security, threat prevention and impact mitigation (to different pressures) and improved management (integrated ecosystem approach). The main pressures identified were climate change, ocean acidification, extreme weather events, overfishing/ overexploitation, pollution/ eutrophication, mining, solid wastes. Our next step will be to develop consensus with the observing community about the EOVs that will meet these needs and support the expansion of these identified EOVs into successful global observing systems.
Global Ocean Forecast System (GOFS) Version 2.6. User’s Manual
2010-03-31
odimens.D, which takes the rivers.dat flow levels, inputs an SST and sea surface salinity (SSS) climatology from GDEM , and outputs the orivs_1.D...Center for Medium-range Weather Forecast GB GigaByte GDEM Global Digital Elevation Map GOFS Global Ocean Forecast System HPCMP High Performance
NASA Astrophysics Data System (ADS)
Batten, S.; Richardson, A.; Melrose, C.; Muxagata, E.; Hosie, G.; Verheye, H.; Hall, J.; Edwards, M.; Koubbi, P.; Abu-Alhaija, R.; Chiba, S.; Wilson, W.; Nagappa, R.; Takahashi, K.
2016-02-01
The Continuous Plankton Recorder (CPR) was first used in 1931 to routinely sample plankton and its continued deployment now sustains the longest-running, and spatially most extensive marine biological sampling programme in the world. Towed behind, for the most part commercial, ships it collects plankton samples from the surface waters that are subsequently analysed to provide taxonomically-resolved abundance data on a broad range of planktonic organisms from the size of coccolithophores to euphausiids. Plankton appear to integrate changes in the physical environment and by underpinning most marine food-webs, pass on this variability to higher trophic levels which have societal value. CPRs are deployed increasingly around the globe in discrete regional surveys that until recently interacted in an informal way. In 2011 the Global Alliance of CPR Surveys (GACS) was launched to bring these surveys together to collaborate more productively and address issues such as: methodological standardization, data integration, capacity building, and data analysis. Early products include a combined global database and regularly-released global marine ecological status reports. There are, of course, limitations to the exploitation of CPR data as well as the current geographic coverage. A current focus of GACS is integration of the data with models to meaningfully extrapolate across time and space. In this way the output could be used to provide more robust synoptic representations of key plankton variables. Recent years have also seen the CPR used as a platform in itself with the inclusion of additional sensors and water samplers that can sample the microplankton. The archive of samples has already been used for some molecular investigations and curation of samples is maintained for future studies. Thus the CPR is a key element of any regional to global ocean observing system of biodiversity.
Relating plastic in the ocean to ecological harm, a review of recent progress in risk analysis
NASA Astrophysics Data System (ADS)
Schuyler, Q. A.; Hardesty, B. D.; Wilcox, C.; van Sebille, E.; Mallos, N. J.; Leonard, G. H.
2016-02-01
Plastic pollution in the ocean is emerging as a global environmental concern. Estimates suggest that we dump on the order of 8.4 million tons of plastic in the ocean each year. This plastic reaches substantial concentrations, with at sea sampling measuring densities over 580,000 items per square kilometer. However, it is difficult to relate this exposure to resulting ecological impacts. Animals dying due to plastic ingestion or entanglement may not was ahsore, and sampling at sea is expensive and infrequent. Thus demonstrating a direct relationship between plastic in the envioronment and harm to marine wildlife is challenging. Here we review current progress on risk assessment for impacts to marine wildlife from plastic pollution. The analyses we review range from expert elicitation to integrated statistical and physical models. They range widely in scope, from estimates at the individual level to who taxa analysis. Some of the analyses reach only to exposure to the pressure, whie others carry through to estimate demographic impacts and even mortality due to ingestion of or entanglement in plastic debris in the ocean. We summarize the results of these studies, and provide a roadmap for future contributions toward estimating the actual ecological impact of plastic pollution.
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten
2015-11-01
Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.
Monier, Adam; Worden, Alexandra Z; Richards, Thomas A
2016-08-01
High-throughput diversity amplicon sequencing of marine microbial samples has revealed that members of the Mamiellophyceae lineage are successful phytoplankton in many oceanic habitats. Indeed, these eukaryotic green algae can dominate the picoplanktonic biomass, however, given the broad expanses of the oceans, their geographical distributions and the phylogenetic diversity of some groups remain poorly characterized. As these algae play a foundational role in marine food webs, it is crucial to assess their global distribution in order to better predict potential changes in abundance and community structure. To this end, we analyzed the V9-18S small subunit rDNA sequences deposited from the Tara Oceans expedition to evaluate the diversity and biogeography of these phytoplankton. Our results show that the phylogenetic composition of Mamiellophyceae communities is in part determined by geographical provenance, and do not appear to be influenced - in the samples recovered - by water depth, at least at the resolution possible with the V9-18S. Phylogenetic classification of Mamiellophyceae sequences revealed that the Dolichomastigales order encompasses more sequence diversity than other orders in this lineage. These results indicate that a large fraction of the Mamiellophyceae diversity has been hitherto overlooked, likely because of a combination of size fraction, sequencing and geographical limitations. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
A 7.5-Year Dataset of SSM/I-Derived Surface Turbulent Fluxes Over Global Oceans
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Adizzone, Joe; Nelkin, Eric; Starr, David OC. (Technical Monitor)
2001-01-01
The global air-sea turbulent fluxes are needed for driving ocean models and validating coupled ocean-atmosphere global models. A method was developed to retrieve surface air humidity from the radiances measured by the Special Sensor Microwave/Imager (SSM/I) Using both SSM/I-retrieved surface wind and air humidity, they computed daily turbulent fluxes over global oceans with a stability-dependent bulk scheme. Based on this method, we have produced Version 1 of Goddard Satellite-Based Surface Turbulent Fluxes (GSSTF) dataset from the SSM/I data and other data. It provides daily- and monthly-mean surface turbulent fluxes and some relevant parameters over global oceans for individual F8, F10, and F11 satellites covering the period July 1987-December 1994. It also provides 1988-94 annual- and monthly-mean climatologies of the same variables, using only F8 and F1 1 satellite data. It has a spatial resolution of 2.0 degrees x 2.5 degrees lat-long and is archived at the NASA/GSFC DAAC. The purpose of this paper is to present an updated assessment of the GSSTF 1.0 dataset.
A global inventory of small floating plastic debris
NASA Astrophysics Data System (ADS)
van Sebille, Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; van Franeker, Jan A.; Eriksen, Marcus; Siegel, David; Galgani, Francois; Lavender Law, Kara
2015-12-01
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.
The role stratification on Indian ocean mixing under global warming
NASA Astrophysics Data System (ADS)
Praveen, V.; Valsala, V.; Ravindran, A. M.
2017-12-01
The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.
Vertical Redistribution of Ocean Salt Content
NASA Astrophysics Data System (ADS)
Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.
2017-12-01
Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.
A global reference model of Curie-point depths based on EMAG2
Li, Chun-Feng; Lu, Yu; Wang, Jian
2017-01-01
In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW. PMID:28322332
Fontanilla, Ian Kendrich C; Sta Maria, Inna Mikaella P; Garcia, James Rainier M; Ghate, Hemant; Naggs, Fred; Wade, Christopher M
2014-01-01
The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.
Fontanilla, Ian Kendrich C.; Sta. Maria, Inna Mikaella P.; Garcia, James Rainier M.; Ghate, Hemant; Naggs, Fred; Wade, Christopher M.
2014-01-01
The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes. PMID:25203830
World Ocean Circulation Experiment
NASA Technical Reports Server (NTRS)
Clarke, R. Allyn
1992-01-01
The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.
Synthesis and Assimilation Systems - Essential Adjuncts to the Global Ocean Observing System
2011-02-16
34, Elisabeth Remy’, Anthony Rosati*3", Andreas Schiller’, Doug M. Smith’"’, Detlef Stammer ’, Nozomi Sugiura", Kevin E. Trenberth "*’, Yan...and Beyond ENSO. In these proceedings (Vol. 2). 10. Stammer D. & Co-Authors (2002). The Global Ocean Circulation During 1992-1997 Estimated from...GODAE. Oceanography 22(3), 128-143. 25. Stammer , D. & Co-Authors (2010). Ocean Information Provided through Ensemble Ocean Syntheses. In these
Quantitative mapping of rainfall rates over the oceans utilizing Nimbus-5 ESMR data
NASA Technical Reports Server (NTRS)
Rao, M. S. V.; Abbott, W. V.
1976-01-01
The electrically scanning microwave radiometer (ESMR) data from the Nimbus 5 satellite was used to deduce estimates of precipitation amount over the oceans. An atlas of the global oceanic rainfall was prepared and the global rainfall maps analyzed and related to available ground truth information as well as to large scale processes in the atmosphere. It was concluded that the ESMR system provides the most reliable and direct approach yet known for the estimation of rainfall over sparsely documented, wide oceanic regions.
The release of dissolved actinium to the ocean: A global comparison of different end-members
Geibert, W.; Charette, M.; Kim, G.; Moore, W.S.; Street, J.; Young, M.; Paytan, A.
2008-01-01
The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources. The average 227Ac activities of nearshore marine end-members range from 0.4??dpm m- 3 at the Gulf of Mexico to 3.0??dpm m- 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018??dpm 227Acex in the ocean, which corresponds to 37??moles, or 8.4??kg. This implies a flux of 127??dpm m-2 y- 1 from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 1015??dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included. Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution. ?? 2007 Elsevier B.V. All rights reserved.
Satellites for the study of ocean primary productivity
NASA Technical Reports Server (NTRS)
Smith, R. C.; Baker, K. S.
1983-01-01
The use of remote sensing techniques for obtaining estimates of global marine primary productivity is examined. It is shown that remote sensing and multiplatform (ship, aircraft, and satellite) sampling strategies can be used to significantly lower the variance in estimates of phytoplankton abundance and of population growth rates from the values obtained using the C-14 method. It is noted that multiplatform sampling strategies are essential to assess the mean and variance of phytoplankton biomass on a regional or on a global basis. The relative errors associated with shipboard and satellite estimates of phytoplankton biomass and primary productivity, as well as the increased statistical accuracy possible from the utilization of contemporaneous data from both sampling platforms, are examined. It is shown to be possible to follow changes in biomass and the distribution patterns of biomass as a function of time with the use of satellite imagery.
Mantle Volatiles and Global Carbon Flux and Budget
NASA Astrophysics Data System (ADS)
Zhang, Y.
2014-12-01
The global volcanic carbon flux to the surface of Earth is a fundamental parameter in understanding the global carbon cycle that includes deep carbon as well as the degassing history of the mantle. The flux has been estimated before (e.g., Marty and Tolstikhin, 1998). Recent progress has significantly revised some of the parameters used in the estimation, e.g., the oceanic 3He flux has been re-evaluated (Bianchi et al., 2010) to be only about half of the earlier widely-used estimate, and numerous subaerial volcanic degassing data are now available. In this report, a new attempt is made to assess the global carbon flux and budget. Rather than dividing the carbon flux by categories of MORB, Plumes and Arcs, we estimate the global carbon flux by considering oceanic and subaerial volcanism. The oceanic 3He flux is 527±102 mol/yr (Bianchi et al., 2010). Most of the flux is from spreading ridges with only minor contributions from submarine oceanic hotspots or arc volcanism. Hence, the mean CO2/3He ratio in MORB is applied to estimate oceanic flux of CO2. The subaerial CO2 flux is based on evaluation of different arc segments and is messier to compute. Literature estimates use estimated SO2 flux in the last tens of years combined with estimated CO2/SO2 degassing ratios (Hilton et al., 2002; Fischer, 2008). Assuming that the last tens of years are representative of recent geological times in terms of volcanic degassing, the estimated global CO2 flux still depends critically on a couple of arcs that are main contributors of the subaerial volcanic CO2 flux, and those seem to have been rather loosely constrained before. Using recently available data (although there are still holes), we derive a new global subaerial volcanic CO2 flux. By combining with oceanic volcanic CO2 flux, we obtain at a new global flux. The significance of the new estimate to the global volatile budget will be discussed.
NASA Technical Reports Server (NTRS)
Song, Y. Tony; Colberg, Frank
2011-01-01
Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.
Global Ocean Vertical Velocity From a Dynamically Consistent Ocean State Estimate
NASA Astrophysics Data System (ADS)
Liang, Xinfeng; Spall, Michael; Wunsch, Carl
2017-10-01
Estimates of the global ocean vertical velocities (Eulerian, eddy-induced, and residual) from a dynamically consistent and data-constrained ocean state estimate are presented and analyzed. Conventional patterns of vertical velocity, Ekman pumping, appear in the upper ocean, with topographic dominance at depth. Intense and vertically coherent upwelling and downwelling occur in the Southern Ocean, which are likely due to the interaction of the Antarctic Circumpolar Current and large-scale topographic features and are generally canceled out in the conventional zonally averaged results. These "elevators" at high latitudes connect the upper to the deep and abyssal oceans and working together with isopycnal mixing are likely a mechanism, in addition to the formation of deep and abyssal waters, for fast responses of the deep and abyssal oceans to the changing climate. Also, Eulerian and parameterized eddy-induced components are of opposite signs in numerous regions around the global ocean, particularly in the ocean interior away from surface and bottom. Nevertheless, residual vertical velocity is primarily determined by the Eulerian component, and related to winds and large-scale topographic features. The current estimates of vertical velocities can serve as a useful reference for investigating the vertical exchange of ocean properties and tracers, and its complex spatial structure ultimately permits regional tests of basic oceanographic concepts such as Sverdrup balance and coastal upwelling/downwelling.
The Worldwide Marine Radiocarbon Reservoir Effect: Definitions, Mechanisms, and Prospects
NASA Astrophysics Data System (ADS)
Alves, Eduardo Q.; Macario, Kita; Ascough, Philippa; Bronk Ramsey, Christopher
2018-03-01
When a carbon reservoir has a lower radiocarbon content than the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, that is, the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs, and the fate of atmospheric CO2, all of which impact Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.
The VIIRS Ocean Data Simulator Enhancements and Results
NASA Technical Reports Server (NTRS)
Robinson, Wayne D.; Patt, Fredrick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.
2011-01-01
The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.
The VIIRS ocean data simulator enhancements and results
NASA Astrophysics Data System (ADS)
Robinson, Wayne D.; Patt, Frederick S.; Franz, Bryan A.; Turpie, Kevin R.; McClain, Charles R.
2011-10-01
The VIIRS Ocean Science Team (VOST) has been developing an Ocean Data Simulator to create realistic VIIRS SDR datasets based on MODIS water-leaving radiances. The simulator is helping to assess instrument performance and scientific processing algorithms. Several changes were made in the last two years to complete the simulator and broaden its usefulness. The simulator is now fully functional and includes all sensor characteristics measured during prelaunch testing, including electronic and optical crosstalk influences, polarization sensitivity, and relative spectral response. Also included is the simulation of cloud and land radiances to make more realistic data sets and to understand their important influence on nearby ocean color data. The atmospheric tables used in the processing, including aerosol and Rayleigh reflectance coefficients, have been modeled using VIIRS relative spectral responses. The capabilities of the simulator were expanded to work in an unaggregated sample mode and to produce scans with additional samples beyond the standard scan. These features improve the capability to realistically add artifacts which act upon individual instrument samples prior to aggregation and which may originate from beyond the actual scan boundaries. The simulator was expanded to simulate all 16 M-bands and the EDR processing was improved to use these bands to make an SST product. The simulator is being used to generate global VIIRS data from and in parallel with the MODIS Aqua data stream. Studies have been conducted using the simulator to investigate the impact of instrument artifacts. This paper discusses the simulator improvements and results from the artifact impact studies.
Webb, Thomas J; Vanden Berghe, Edward; O'Dor, Ron
2010-08-02
Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean--the largest biome on Earth--is chronically under-represented in global databases of marine biodiversity. We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.
Vertical resolution of baroclinic modes in global ocean models
NASA Astrophysics Data System (ADS)
Stewart, K. D.; Hogg, A. McC.; Griffies, S. M.; Heerdegen, A. P.; Ward, M. L.; Spence, P.; England, M. H.
2017-05-01
Improvements in the horizontal resolution of global ocean models, motivated by the horizontal resolution requirements for specific flow features, has advanced modelling capabilities into the dynamical regime dominated by mesoscale variability. In contrast, the choice of the vertical grid remains a subjective choice, and it is not clear that efforts to improve vertical resolution adequately support their horizontal counterparts. Indeed, considering that the bulk of the vertical ocean dynamics (including convection) are parameterized, it is not immediately obvious what the vertical grid is supposed to resolve. Here, we propose that the primary purpose of the vertical grid in a hydrostatic ocean model is to resolve the vertical structure of horizontal flows, rather than to resolve vertical motion. With this principle we construct vertical grids based on their abilities to represent baroclinic modal structures commensurate with the theoretical capabilities of a given horizontal grid. This approach is designed to ensure that the vertical grids of global ocean models complement (and, importantly, to not undermine) the resolution capabilities of the horizontal grid. We find that for z-coordinate global ocean models, at least 50 well-positioned vertical levels are required to resolve the first baroclinic mode, with an additional 25 levels per subsequent mode. High-resolution ocean-sea ice simulations are used to illustrate some of the dynamical enhancements gained by improving the vertical resolution of a 1/10° global ocean model. These enhancements include substantial increases in the sea surface height variance (∼30% increase south of 40°S), the barotropic and baroclinic eddy kinetic energies (up to 200% increase on and surrounding the Antarctic continental shelf and slopes), and the overturning streamfunction in potential density space (near-tripling of the Antarctic Bottom Water cell at 65°S).
First order sea-level cycles and supercontinent break up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, P.L.; Angevine, C.L.
1985-01-01
The authors have developed a model that successfully predicts the approximate magnitude and timing of long term sea-level change without relying on short term increases in global spreading rates. The model involves the following key assumptions. (1) Ocean basins have two types of area/age distributions; Pacific ocean basins are rimmed by subduction zones and have triangular distributions; and Atlantic ocean basins which open at constant rates, have no subduction, and so have rectangular distributions. (2) The total area of the global ocean is constant so that the Pacific basin must close as the Atlantic opens. These assumptions approximate modern globalmore » ocean basin conditions. The model begins with supercontinent break up. As the Atlantic begins to open, the mean age of the global ocean decreases, the mean depth of the sea floor shallows, and sea level, therefore, rises. Once the Atlantic occupies more than 8 to 10% of the global ocean area, the mean age and depth of the ocean floor increases resulting in a sea-level fall. The model can be applied to the mid-Cretaceous sea-level high stand which followed break up of Pangea by 80 to 100 Ma. Based on average Atlantic opening rates, sea level rises to a peak of 44 m at 80 Ma after opening began and then falls by 84 m to the present. Thus the model is capable of explaining approximately half of the total magnitude of the post-mid-Cretaceous eustatic fall without invoking short-term changes in global spreading rates. In addition, the model predicts the observed time lag between supercontinent break up and sea-level high stand for both Mesozoic as well as early Paleozoic time.« less
NASA Astrophysics Data System (ADS)
Lougheed, Bryan; Metcalfe, Brett; Wacker, Lukas
2017-04-01
Marine sediment cores used in palaeoceanography form the basis of our current understanding of past global climate and ocean chemistry. Precision and accuracy of geochronological control in these sediment cores are crucial in unravelling the timing of rapid shifts in palaeoclimate and, ultimately, the interdependency of global climate mechanisms and their causality. Aware of the problems associated with bioturbation (the mixing of ocean sediments by benthic organisms) palaeoceanographers generally aim to retrieve sediment cores from locations with high sediment accumulation rates, thus minimising the influence of bioturbation as much as possible. However, the practice of concentrating only on areas of the ocean floor with high sedimentation accumulation rates has the potential to introduce a geographical bias into our understanding of global palaeoclimate. For example, global time averaged sediment accumulation rates for the ocean floor (excluding continental margins) indicate that vast areas of the ocean floor have sediment accumulation rates less than the recommended minimum advised sediment accumulation rates of 10 cm/ka or greater. Whilst many studies have focussed on quantifying the impact of bioturbation on our understanding of the past, few have attempted to overcome the problems associated with bioturbation. Recent pioneering developments in 14C AMS at the Laboratory of Ion Beam Physics at ETH Zürich have led to the development of the Mini Carbon Dating System (MICADAS). This compact 14C AMS system can be coupled to a carbonate handling system, thus enabling the direct AMS measurement of gaseous samples, i.e. without graphitisation, allowing for the analysis of carbonate samples of <100 μg. Likewise, while earlier isotope ratio mass spectrometry (IRMS) technology required a minimum of 100 μg of carbonate to produce a successful δ18O measurement, more recent advances in IRMS technology have made routine measurements of as little as 5 μg possible. Combining both analytical techniques enables palaeoclimate reconstructions that are independent of depth. Here, we present work on a low sedimentation core ( 2 cm/ka) core in the North Atlantic (core T86-10P, 37° 8.13' N, 29° 59.15' W) on single shells of the benthic species of foraminifera, Cibicidoides wuellerstorfi. Preliminary downcore single specimen 14C data display a large scatter in 14C ages for the various discrete 1 cm depth intervals analysed. In the case of depth intervals where three or more single specimens have been analysed, we find that the standard deviation in 14C age varies between 1210 and 9437 14C yr, with the mean variation for all such discrete depths being 3384 14C yr.
NASA Astrophysics Data System (ADS)
Richman, J. G.; Shriver, J. F.; Metzger, E. J.; Hogan, P. J.; Smedstad, O. M.
2017-12-01
The Oceanography Division of the Naval Research Laboratory recently completed a 23-year (1993-2015) coupled ocean-sea ice reanalysis forced by NCEP CFS reanalysis fluxes. The reanalysis uses the Global Ocean Forecast System (GOFS) framework of the HYbrid Coordinate Ocean Model (HYCOM) and the Los Alamos Community Ice CodE (CICE) and the Navy Coupled Ocean Data Assimilation 3D Var system (NCODA). The ocean model has 41 layers and an equatorial resolution of 0.08° (8.8 km) on a tri-polar grid with the sea ice model on the same grid that reduces to 3.5 km at the North Pole. Sea surface temperature (SST), sea surface height (SSH) and temperature-salinity profile data are assimilated into the ocean every day. The SSH anomalies are converted into synthetic profiles of temperature and salinity prior to assimilation. Incremental analysis updating of geostrophically balanced increments is performed over a 6-hour insertion window. Sea ice concentration is assimilated into the sea ice model every day. Following the lead of the Ocean Reanalysis Intercomparison Project (ORA-IP), the monthly mean upper ocean heat and salt content from the surface to 300 m, 700m and 1500 m, the mixed layer depth, the depth of the 20°C isotherm, the steric sea surface height and the Atlantic Meridional Overturning Circulation for the GOFS reanalysis and the Simple Ocean Data Assimilation (SODA 3.3.1) eddy-permitting reanalysis have been compared on a global uniform 0.5° grid. The differences between the two ocean reanalyses in heat and salt content increase with increasing integration depth. Globally, GOFS trends to be colder than SODA at all depth. Warming trends are observed at all depths over the 23 year period. The correlation of the upper ocean heat content is significant above 700 m. Prior to 2004, differences in the data assimilated lead to larger biases. The GOFS reanalysis assimilates SSH as profile data, while SODA doesn't. Large differences are found in the Western Boundary Currents, Southern Ocean and equatorial regions. In the Indian Ocean, the Equatorial Counter Current extends to far to the east and the subsurface flow in the thermocline is too weak in GOFS. The 20°C isotherm is biased 2 m shallow in SODA compared to GOFS, but the monthly anomalies in the depth are highly correlated.
Topex/Poseidon: A United States/France mission. Oceanography from space: The oceans and climate
NASA Technical Reports Server (NTRS)
1992-01-01
The TOPEX/POSEIDON space mission, sponsored by NASA and France's space agency, the Centre National d'Etudes Spatiales (CNES), will give new observations of the Earth from space to gain a quantitative understanding of the role of ocean currents in climate change. Rising atmospheric concentrations of carbon dioxide and other 'greenhouse gases' produced as a result of human activities could generate a global warming, followed by an associated rise in sea level. The satellite will use radar altimetry to measure sea-surface height and will be tracked by three independent systems to yield accurate topographic maps over the dimensions of entire ocean basins. The satellite data, together with the Tropical Ocean and Global Atmosphere (TOGA) program and the World Ocean Circulation Experiment (WOCE) measurements, will be analyzed by an international scientific team. By merging the satellite observations with TOGA and WOCE findings, the scientists will establish the extensive data base needed for the quantitative description and computer modeling of ocean circulation. The ocean models will eventually be coupled with atmospheric models to lay the foundation for predictions of global climate change.
Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Julie L.
The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less
Tropical Ocean and Global Atmosphere (TOGA) heat exchange project: A summary report
NASA Technical Reports Server (NTRS)
Liu, W. T.; Niiler, P. P.
1985-01-01
A pilot data center to compute ocean atmosphere heat exchange over the tropical ocean is prposed at the Jet Propulsion Laboratory (JPL) in response to the scientific needs of the Tropical Ocean and Global Atmosphere (TOGA) Program. Optimal methods will be used to estimate sea surface temperature (SET), surface wind speed, and humidity from spaceborne observations. A monthly summary of these parameters will be used to compute ocean atmosphere latent heat exchanges. Monthly fields of surface heat flux over tropical oceans will be constructed using estimations of latent heat exchanges and short wave radiation from satellite data. Verification of all satellite data sets with in situ measurements at a few locations will be provided. The data center will be an experimental active archive where the quality and quantity of data required for TOGA flux computation are managed. The center is essential to facilitate the construction of composite data sets from global measurements taken from different sensors on various satellites. It will provide efficient utilization and easy access to the large volume of satellite data available for studies of ocean atmosphere energy exchanges.
The role of clouds and oceans in global greenhouse warming. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffert, M.I.
1996-10-01
This research focuses on assessing connections between anthropogenic greenhouse gas emissions and global climatic change. it has been supported since the early 1990s in part by the DOE ``Quantitative Links`` Program (QLP). A three-year effort was originally proposed to the QLP to investigate effects f global cloudiness on global climate and its implications for cloud feedback; and to continue the development and application of climate/ocean models, with emphasis on coupled effects of greenhouse warming and feedbacks by clouds and oceans. It is well-known that cloud and ocean processes are major sources of uncertainty in the ability to predict climatic changemore » from humankind`s greenhouse gas and aerosol emissions. And it has always been the objective to develop timely and useful analytical tools for addressing real world policy issues stemming from anthropogenic climate change.« less
The Global Ocean Observing System: One perspective
NASA Technical Reports Server (NTRS)
Wilson, J. Ron
1992-01-01
This document presents a possible organization for a Global Ocean Observing System (GOOS) within the Intergovernmental Oceanographic Commission and the joint ocean programs with the World Meteorological Organization. The document and the organization presented here is not intended to be definitive, complete or the best possible organization for such an observation program. It is presented at this time to demonstrate three points. The first point to be made is that an international program office for GOOS along the lines of the WOCE and TOGA IPOs is essential. The second point is that national programs will have to continue to collect data at the scale of WOCE plus TOGA and more. The third point is that there are many existing groups and committees within the IOC and joint IOC/WMO ocean programs that can contribute essential experience to and form part of the basis of a Global Ocean Observing System. It is particularly important to learn from what has worked and what has not worked in the past if a successful ocean observing system is to result.
The Global Ocean Data Assimilation Experiment (GODAE)
NASA Astrophysics Data System (ADS)
Le Traon, P.; Smith, N.
The Global Ocean Data Assimilation Experiment (GODAE) will conduct its main demonstration phase from 2003 to 2005. From 2003 to 2005, operational and research institutions from Australia, Japan, United States, United Kingdom, France and Norway will be performing global oceanic data assimilation and ocean forecast in order to provide regular and comprehensive descriptions of ocean fields such as temperature, salinity and currents at high temporal and spatial resolution. A central objective of GODAE is to provide an integrated description that combines remote sensing data, in-situ data and models through data assimilation. Climate and seasonal forecasting, navy applications, marine safety, fisheries, the offshore industry and management of shelf/coastal areas are among the expected beneficiaries of GODAE. The integrated description of the ocean that GODAE will provide will also be highly beneficial to the research community. An overview of GODAE will be given; we will detail the GODAE objectives and strategy and the way it is implemented as an international experiment. Results from first pre-operational or prototype systems will finally be shown.
Global Ocean Prediction with the HYbrid Coordinate Ocean Model, HYCOM
NASA Astrophysics Data System (ADS)
Chassignet, E.
A broad partnership of institutions is collaborating in developing and demonstrating the performance and application of eddy-resolving, real-time global and Atlantic ocean prediction systems using the the HYbrid Coordinate Ocean Model (HYCOM). These systems will be transitioned for operational use by both the U.S. Navy at the Naval Oceanographic Office (NAVOCEANO), Stennis Space Center, MS, and the Fleet Numerical Meteorology and Oceanography Centre (FNMOC), Monterey, CA, and by NOAA at the National Centers for Environmental Prediction (NCEP), Washington, D.C. These systems will run efficiently on a variety of massively parallel computers and will include sophisticated data assimilation techniques for assimilation of satellite altimeter sea surface height and sea surface temperature as well as in situ temperature, salinity, and float displacement. The Partnership addresses the Global Ocean Data Assimilation Experiment (GODAE) goals of three-dimensional (3D) depiction of the ocean state at fine resolution in real-time and provision of boundary conditions for coastal and regional models. An overview of the effort will be presented.
Paleodust variability since the Last Glacial Maximum and implications for iron inputs to the ocean
NASA Astrophysics Data System (ADS)
Albani, S.; Mahowald, N. M.; Murphy, L. N.; Raiswell, R.; Moore, J. K.; Anderson, R. F.; McGee, D.; Bradtmiller, L. I.; Delmonte, B.; Hesse, P. P.; Mayewski, P. A.
2016-04-01
Changing climate conditions affect dust emissions and the global dust cycle, which in turn affects climate and biogeochemistry. In this study we use observationally constrained model reconstructions of the global dust cycle since the Last Glacial Maximum, combined with different simplified assumptions of atmospheric and sea ice processing of dust-borne iron, to provide estimates of soluble iron deposition to the oceans. For different climate conditions, we discuss uncertainties in model-based estimates of atmospheric processing and dust deposition to key oceanic regions, highlighting the large degree of uncertainty of this important variable for ocean biogeochemistry and the global carbon cycle. We also show the role of sea ice acting as a time buffer and processing agent, which results in a delayed and pulse-like soluble iron release into the ocean during the melting season, with monthly peaks up to ~17 Gg/month released into the Southern Oceans during the Last Glacial Maximum (LGM).
NASA Astrophysics Data System (ADS)
Russell, J. L.
2017-12-01
Floats deployed by oceanographers are giving us all ringside seats to the epic battle between the wind and the deep ocean around Antarctica which will determine the rate of global atmospheric warming over the next century. The poleward-shift and intensification of the Southern Hemisphere westerly winds has been shown to maintain the connection between the surface ocean and the atmosphere with the deep ocean even as the surface ocean warms. This "doorway" allows the vast deep ocean reservoir to play a significant role in the transient global climate response to increasing atmospheric greenhouse gases. Coupled climate and earth system models at low and high resolution all simulate poleward-shifted and intensified Southern Hemisphere surface westerly winds when subjected to an atmospheric carbon dioxide doubling. Comparisons of these simulations reveal how stratification, resolution and eddies affect the transient global climate response to increasing atmospheric greenhouse gases - and our collective fate.
NASA Astrophysics Data System (ADS)
Watson, Andrew J.; Lenton, Timothy M.; Mills, Benjamin J. W.
2017-08-01
The major biogeochemical cycles that keep the present-day Earth habitable are linked by a network of feedbacks, which has led to a broadly stable chemical composition of the oceans and atmosphere over hundreds of millions of years. This includes the processes that control both the atmospheric and oceanic concentrations of oxygen. However, one notable exception to the generally well-behaved dynamics of this system is the propensity for episodes of ocean anoxia to occur and to persist for 105-106 years, these ocean anoxic events (OAEs) being particularly associated with warm `greenhouse' climates. A powerful mechanism responsible for past OAEs was an increase in phosphorus supply to the oceans, leading to higher ocean productivity and oxygen demand in subsurface water. This can be amplified by positive feedbacks on the nutrient content of the ocean, with low oxygen promoting further release of phosphorus from ocean sediments, leading to a potentially self-sustaining condition of deoxygenation. We use a simple model for phosphorus in the ocean to explore this feedback, and to evaluate the potential for humans to bring on global-scale anoxia by enhancing P supply to the oceans. While this is not an immediate global change concern, it is a future possibility on millennial and longer time scales, when considering both phosphate rock mining and increased chemical weathering due to climate change. Ocean deoxygenation, once begun, may be self-sustaining and eventually could result in long-lasting and unpleasant consequences for the Earth's biosphere. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.
NASA Astrophysics Data System (ADS)
Minami, H.; Yamaguchi, K. E.; Naraoka, H.
2014-12-01
It has been widely believed that Great Oxidation Event (GOE: Holland, 1994) occurred at ~2.4-2.2 Ga ago. However, some previous studies have found evidence for oxic ocean and atmosphere from earlier rock records (e.g., Hoashi et al., 2009). In order to explore if such oxic environment was local or global and if there was redox heterogeneity in a sedimentary basin before the inferred GOE, using the 2.7 Ga pyrite-bearing drillcore black shales (deep-facies WRL1 and shallow-facies RHDH2A drillcores) from Pilbara, Western Australia, we separately quantified abundance of S-bearing species (SAVS (acid-volatile sulfide), Spy (pyrite), SSO4 (sulfate), Sorg (organic-S), and S0 (elemental S) and Fe-bearing species (Fecarb, Feox, and Femag) by using sequential extraction methods. These samples were previously used by Brocks et al. (1999), Yamaguchi (2002), Yamaguchi et al. (2005), and Eigenbrode and Freeman (2006). The shallow samples have high S contents and are interpreted to have deposited in relatively anoxic environment, but most of deep samples with elevated Fe contents deposited in relatively oxic environment. The DOP values and δ34Spy values are relatively higher in shallow samples, suggesting active bacterial sulfate reduction in reducing environment created due to near-complete consumption of dissolved O2by decomposition of organic matter produced by photosynthesizers living in the surface ocean. All of these observations consistently suggest that the shallower part was anoxic and deeper part was oxic in the 2.7 Ga ocean. The surface ocean would have been oxygenated due to activity of oxygenic photosynthesis. Such redox stratification of the ocean, i.e., development of mid-depth (shallow) OMZ in an essentially oxic ocean, is typically seen in highly productive regions in the modern ocean. Modern-style oceanic redox structure could have existed as far back as 2.7 Ga ago, much earlier than the inferred GOE at ~2.4-2.2 Ga. Brocks et al. (1999) Science 285, 1033-1036; Eigenbrode & Freeman (2006) PNAS 103, 15759-15764; Hoashi et al. (2009) Nature Geosc. 2, 301-306; Holland (1994) Early Life on Earth, Columbia Univ. Press; Yamaguchi (2002) Ph.D. dissertation, Penn State Univ.; Yamaguchi et al. (2005) Chem. Geol. 218, 135- 169.
Ahonen, H; Harcourt, R G; Stow, A J
2009-11-01
Loss of sharks and other upper-trophic marine predators has sparked worldwide concern for the stability of ocean ecosystems. The grey nurse (ragged-tooth or sand tiger) shark (Carcharias taurus) is Vulnerable on a global scale, Critically Endangered in Australia and presumed extinct in parts of its historical range. We used 193 muscle and fin samples collected from six extant populations to assess global mtDNA and microsatellite diversity and the degree of global population genetic structure. Control region mtDNA diversity was low in every population, and two populations (eastern Australia and Japan) contained only a single mtDNA haplotype. Genetic signatures of recent losses of genetic variation were not yet apparent at microsatellite loci, indicating that this low mtDNA variation is not a result of anthropogenic population declines. Population differentiation was substantial between each population pair except Brazil and South Africa, F(ST) values ranged from 0.050 to 0.699 and 0.100 to 1.00 for microsatellite and mitochondrial data respectively. Bayesian analysis clearly partitioned individuals into five of the populations from which they were sampled. Our data imply a low frequency of immigrant exchange among each of these regions and we suggest that each be recognized as a distinct evolutionary significant unit. In contrast to pelagic species such as whale shark and white shark that may cross ocean basins and where cooperative international efforts are necessary for conservation, grey nurse shark, like many coastal species, need to be managed regionally.
Climate, carbon cycling, and deep-ocean ecosystems.
Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S
2009-11-17
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.
NASA Astrophysics Data System (ADS)
Goswami, A.; Olson, P. L.; Hinnov, L. A.; Gnanadesikan, A.
2015-09-01
We present a method for reconstructing global ocean bathymetry that combines a standard plate cooling model for the oceanic lithosphere based on the age of the oceanic crust, global oceanic sediment thicknesses, plus generalized shelf-slope-rise structures calibrated at modern active and passive continental margins. Our motivation is to develop a methodology for reconstructing ocean bathymetry in the geologic past that includes heterogeneous continental margins in addition to abyssal ocean floor. First, the plate cooling model is applied to maps of ocean crustal age to calculate depth to basement. To the depth to basement we add an isostatically adjusted, multicomponent sediment layer constrained by sediment thickness in the modern oceans and marginal seas. A three-parameter continental shelf-slope-rise structure completes the bathymetry reconstruction, extending from the ocean crust to the coastlines. Parameters of the shelf-slope-rise structures at active and passive margins are determined from modern ocean bathymetry at locations where a complete history of seafloor spreading is preserved. This includes the coastal regions of the North, South, and central Atlantic, the Southern Ocean between Australia and Antarctica, and the Pacific Ocean off the west coast of South America. The final products are global maps at 0.1° × 0.1° resolution of depth to basement, ocean bathymetry with an isostatically adjusted multicomponent sediment layer, and ocean bathymetry with reconstructed continental shelf-slope-rise structures. Our reconstructed bathymetry agrees with the measured ETOPO1 bathymetry at most passive margins, including the east coast of North America, north coast of the Arabian Sea, and northeast and southeast coasts of South America. There is disagreement at margins with anomalous continental shelf-slope-rise structures, such as around the Arctic Ocean, the Falkland Islands, and Indonesia.
Hydrothermal impacts on trace element and isotope ocean biogeochemistry.
German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H
2016-11-28
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.
Hydrothermal impacts on trace element and isotope ocean biogeochemistry
Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.
2016-01-01
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265
NASA Astrophysics Data System (ADS)
Wang, Ruiliang; Zhang, Shuichang; Brassell, Simon; Wang, Jiaxue; Lu, Zhengyuan; Ming, Qingzhong; Wang, Xiaomei; Bian, Lizeng
2012-07-01
Stable carbon isotope composition (δ13C) of carbonate sediments and the molecular (biomarker) characteristics of a continuous Permian-Triassic (PT) layer in southern China were studied to obtain geochemical signals of global change at the Permian-Triassic boundary (PTB). Carbonate carbon isotope values shifted toward positive before the end of the Permian period and then shifted negative above the PTB into the Triassic period. Molecular carbon isotope values of biomarkers followed the same trend at and below the PTB and remained negative in the Triassic layer. These biomarkers were acyclic isoprenoids, ranging from C15 to C40, steranes (C27 dominates) and terpenoids that were all significantly more abundant in samples from the Permian layer than those from the Triassic layer. The Triassic layer was distinguished by the dominance of higher molecular weight (waxy) n-alkanes. Stable carbon isotope values of individual components, including n-alkanes and acyclic isoprenoids such as phytane, isop-C25, and squalane, are depleted in δ13C by up to 8-10‰ in the Triassic samples as compared to the Permian. Measured molecular and isotopic variations of organic matter in the PT layers support the generally accepted view of Permian oceanic stagnation followed by a massive upwelling of toxic deep waters at the PTB. A series of large-scale (global) outgassing events may be associated with the carbon isotope shift we measured. This is also consistent with the lithological evidence we observed of white thin-clay layers in this region. Our findings, in context with a generally accepted stagnant Permian ocean, followed by massive upwelling of toxic deep waters might be the major causes of the largest global mass extinction event that occurred at the Permian-Triassic boundary.
NASA Astrophysics Data System (ADS)
Ashford, Oliver S.; Davies, Andrew J.; Jones, Daniel O. B.
2014-12-01
Xenophyophores are a group of exclusively deep-sea agglutinating rhizarian protozoans, at least some of which are foraminifera. They are an important constituent of the deep-sea megafauna that are sometimes found in sufficient abundance to act as a significant source of habitat structure for meiofaunal and macrofaunal organisms. This study utilised maximum entropy modelling (Maxent) and a high-resolution environmental database to explore the environmental factors controlling the presence of Xenophyophorea and two frequently sampled xenophyophore species that are taxonomically stable: Syringammina fragilissima and Stannophyllum zonarium. These factors were also used to predict the global distribution of each taxon. Areas of high habitat suitability for xenophyophores were highlighted throughout the world's oceans, including in a large number of areas yet to be suitably sampled, but the Northeast and Southeast Atlantic Ocean, Gulf of Mexico and Caribbean Sea, the Red Sea and deep-water regions of the Malay Archipelago represented particular hotspots. The two species investigated showed more specific habitat requirements when compared to the model encompassing all xenophyophore records, perhaps in part due to the smaller number and relatively more clustered nature of the presence records available for modelling at present. The environmental variables depth, oxygen parameters, nitrate concentration, carbon-chemistry parameters and temperature were of greatest importance in determining xenophyophore distributions, but, somewhat surprisingly, hydrodynamic parameters were consistently shown to have low importance, possibly due to the paucity of well-resolved global hydrodynamic datasets. The results of this study (and others of a similar type) have the potential to guide further sample collection, environmental policy, and spatial planning of marine protected areas and industrial activities that impact the seafloor, particularly those that overlap with aggregations of these conspicuously large single-celled eukaryotes.
Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years.
Ballantyne, A P; Alden, C B; Miller, J B; Tans, P P; White, J W C
2012-08-02
One of the greatest sources of uncertainty for future climate predictions is the response of the global carbon cycle to climate change. Although approximately one-half of total CO(2) emissions is at present taken up by combined land and ocean carbon reservoirs, models predict a decline in future carbon uptake by these reservoirs, resulting in a positive carbon-climate feedback. Several recent studies suggest that rates of carbon uptake by the land and ocean have remained constant or declined in recent decades. Other work, however, has called into question the reported decline. Here we use global-scale atmospheric CO(2) measurements, CO(2) emission inventories and their full range of uncertainties to calculate changes in global CO(2) sources and sinks during the past 50 years. Our mass balance analysis shows that net global carbon uptake has increased significantly by about 0.05 billion tonnes of carbon per year and that global carbon uptake doubled, from 2.4 ± 0.8 to 5.0 ± 0.9 billion tonnes per year, between 1960 and 2010. Therefore, it is very unlikely that both land and ocean carbon sinks have decreased on a global scale. Since 1959, approximately 350 billion tonnes of carbon have been emitted by humans to the atmosphere, of which about 55 per cent has moved into the land and oceans. Thus, identifying the mechanisms and locations responsible for increasing global carbon uptake remains a critical challenge in constraining the modern global carbon budget and predicting future carbon-climate interactions.
Pelagic communities of the South West Indian Ocean seamounts: R/V Dr Fridtjof Nansen Cruise 2009-410
NASA Astrophysics Data System (ADS)
Rogers, A. D.; Alvheim, O.; Bemanaja, E.; Benivary, D.; Boersch-Supan, P.; Bornman, T. G.; Cedras, R.; Du Plessis, N.; Gotheil, S.; Høines, A.; Kemp, K.; Kristiansen, J.; Letessier, T.; Mangar, V.; Mazungula, N.; Mørk, T.; Pinet, P.; Pollard, R.; Read, J.; Sonnekus, T.
2017-02-01
The seamounts of the southern Indian Ocean remain some of the most poorly studied globally and yet have been subject to deep-sea fishing for decades and may face new exploitation through mining of seabed massive sulphides in the future. As an attempt to redress the knowledge deficit on deep-sea benthic and pelagic communities associated mainly with the seamounts of the South West Indian Ridge two cruises were undertaken to explore the pelagic and benthic ecology in 2009 and 2011 respectively. In this volume are presented studies on pelagic ecosystems around six seamounts, five on the South West Indian Ridge, including Atlantis Bank, Sapmer Seamount, Middle of What Seamount, Melville Bank and Coral Seamount and one un-named seamount on the Madagascar Ridge. In this paper, existing knowledge on the seamounts of the southwestern Indian Ocean is presented to provide context for the studies presented in this volume. An account of the overall aims, approaches and methods used primarily on the 2009 cruise are presented including metadata associated with sampling and some of the limitations of the study. Sampling during this cruise included physical oceanographic measurements, multibeam bathymetry, biological acoustics, and net sampling of phytoplankton, macrozooplankton and micronekton/nekton. The studies that follow reveal new data on the physical oceanography of this dynamic region of the oceans, and the important influence of water masses on the pelagic ecology associated with the seamounts of the South West Indian Ridge. New information on the pelagic fauna of the region fills an important biogeographic gap for the mid- to high-latitudes of the oceans of the southern hemisphere.
NASA Astrophysics Data System (ADS)
Shi, G.; Teng, J.; Ma, H.; Li, Y.; Sun, B.
2015-06-01
Metals and metalloids in continental precipitation have been widely observed, but the data over open oceans are still very limited. Investigation of metals and metalloids in marine precipitation is of great significance to understand global transport of these elements in the atmosphere and their input fluxes to the oceans. So shipboard sampling of precipitation was conducted during a Chinese National Antarctic Research Expedition campaign from Shanghai, China, to Zhongshan Station, East Antarctica, and 22 samples (including 17 rainfall and 5 snowfall events) were collected and analyzed for concentrations of Pb, Ni, Cr, Cu, Co, Hg, As, Cd, Sb, Se, Zn, Mn, and Ti. Results show that concentrations of both metals and metalloids vary considerably along the cruise, with higher concentrations at coastal sites and lower values on the south Indian Ocean. Although only soluble fractions were determined for elements, concentrations in this study are generally comparable to the reported values of marine rain. Enrichment factor analysis shows that most of metals and metalloids are enriched versus crustal sources, even in the samples collected from remote south Indian Ocean. In addition, metals and metalloids in precipitation are also very enriched above sea-salt abundance, indicating that impacts of sea-salt aerosols on their concentrations are negligible. Main sources of metals and metalloids were explored with the aid of multivariate statistical analyses. The results show that human emissions have far-reaching distribution, which may exert an important influence on the solubility of elements in precipitation. This investigation provides valuable information on spatial variation and possible sources of trace elements in precipitation over the open oceans corresponding to understudied region.
NASA Technical Reports Server (NTRS)
Frey, H.
1978-01-01
If early degassing of the Earth produced a global ocean several km deep overlying a global sialic crust, then late heavy bombardment of that crust by basin forming impacting bodies would have produced topography such that by 4 billion years ago dry continential landmasses would stand above sea level. From extrapolation of lunar crater statistics, at least 50% of an original global crust on the earth would have been converted into basins averaging 4 km deep after isostatic adjustment. These basins formed the sink into which such a global ocean would drain. If the ocean was initially 2 km deep, then approximately 50% of the early Earth would have stood above sea level when the late heavy bombardment came to a close.
NASA Astrophysics Data System (ADS)
Visbeck, M.; Fischer, A. S.; Le Traon, P. Y.; Mowlem, M. C.; Speich, S.; Larkin, K.
2015-12-01
There are an increasing number of global, regional and local processes that are in need of integrated ocean information. In the sciences ocean information is needed to support physical ocean and climate studies for example within the World Climate Research Programme and its CLIVAR project, biogeochemical issues as articulated by the GCP, IMBER and SOLAS projects of ICSU-SCOR and Future Earth. This knowledge gets assessed in the area of climate by the IPCC and biodiversity by the IPBES processes. The recently released first World Ocean Assessment focuses more on ecosystem services and there is an expectation that the Sustainable Development Goals and in particular Goal 14 on the Ocean and Seas will generate new demands for integrated ocean observing from Climate to Fish and from Ocean Resources to Safe Navigation and on a healthy, productive and enjoyable ocean in more general terms. In recognition of those increasing needs for integrated ocean information we have recently launched the Horizon 2020 AtlantOS project to promote the transition from a loosely-coordinated set of existing ocean observing activities to a more integrated, more efficient, more sustainable and fit-for-purpose Atlantic Ocean Observing System. AtlantOS takes advantage of the Framework for Ocean observing that provided strategic guidance for the design of the project and its outcome. AtlantOS will advance the requirements and systems design, improving the readiness of observing networks and data systems, and engaging stakeholders around the Atlantic. AtlantOS will bring Atlantic nations together to strengthen their complementary contributions to and benefits from the internationally coordinated Global Ocean Observing System (GOOS) and the Blue Planet Initiative of the Global Earth Observation System of Systems (GEOSS). AtlantOS will fill gaps of the in-situ observing system networks and will ensure that their data are readily accessible and useable. AtlantOS will demonstrate the utility of integrating in-situ and remotely sensed Earth observations to produce information products supporting a wide range of sectors. AtlantOS will support activities to share best practice, integrate data streams and promote the standardization of in-situ observations. AtlantOS will promote network integration, optimization and new technologies.
Evidence for a persistent microbial seed bank throughout the global ocean
Gibbons, Sean M.; Caporaso, J. Gregory; Pirrung, Meg; Field, Dawn; Knight, Rob; Gilbert, Jack A.
2013-01-01
Do bacterial taxa demonstrate clear endemism, like macroorganisms, or can one site’s bacterial community recapture the total phylogenetic diversity of the world’s oceans? Here we compare a deep bacterial community characterization from one site in the English Channel (L4-DeepSeq) with 356 datasets from the International Census of Marine Microbes (ICoMM) taken from around the globe (ranging from marine pelagic and sediment samples to sponge-associated environments). At the L4-DeepSeq site, increasing sequencing depth uncovers greater phylogenetic overlap with the global ICoMM data. This site contained 31.7–66.2% of operational taxonomic units identified in a given ICoMM biome. Extrapolation of this overlap suggests that 1.93 × 1011 sequences from the L4 site would capture all ICoMM bacterial phylogenetic diversity. Current technology trends suggest this limit may be attainable within 3 y. These results strongly suggest the marine biosphere maintains a previously undetected, persistent microbial seed bank. PMID:23487761
The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans.
Tully, Benjamin J; Graham, Elaina D; Heidelberg, John F
2018-01-16
Microorganisms play a crucial role in mediating global biogeochemical cycles in the marine environment. By reconstructing the genomes of environmental organisms through metagenomics, researchers are able to study the metabolic potential of Bacteria and Archaea that are resistant to isolation in the laboratory. Utilizing the large metagenomic dataset generated from 234 samples collected during the Tara Oceans circumnavigation expedition, we were able to assemble 102 billion paired-end reads into 562 million contigs, which in turn were co-assembled and consolidated in to 7.2 million contigs ≥2 kb in length. Approximately 1 million of these contigs were binned to reconstruct draft genomes. In total, 2,631 draft genomes with an estimated completion of ≥50% were generated (1,491 draft genomes >70% complete; 603 genomes >90% complete). A majority of the draft genomes were manually assigned phylogeny based on sets of concatenated phylogenetic marker genes and/or 16S rRNA gene sequences. The draft genomes are now publically available for the research community at-large.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
The eMLR(C*) Method to Determine Decadal Changes in the Global Ocean Storage of Anthropogenic CO2
NASA Astrophysics Data System (ADS)
Clement, Dominic; Gruber, Nicolas
2018-04-01
The determination of the decadal change in anthropogenic CO2 in the global ocean from repeat hydrographic surveys represents a formidable challenge, which we address here by introducing a seamless new method. This method builds on the extended multiple linear regression (eMLR) approach to identify the anthropogenic CO2 signal, but in order to improve the robustness of this method, we fit C∗ rather than dissolved inorganic carbon and use a probabilistic method for the selection of the predictors. In order to account for the multiyear nature of the surveys, we adjust all C∗ observations of a particular observing period to a common reference year by assuming a transient steady state. We finally use the eMLR models together with global gridded climatological distributions of the predictors to map the estimated change in anthropogenic CO2 to the global ocean. Testing this method with synthetic data generated from a hindcast simulation with an ocean model reveals that the method is able to reconstruct the change in anthropogenic CO2 with only a small global bias (<5%). Within ocean basins, the errors can be larger, mostly driven by changes in ocean circulation. Overall, we conclude from the model that the method has an accuracy of retrieving the column integrated change in anthropogenic CO2 of about ±10% at the scale of whole ocean basins. We expect that this uncertainty needs to be doubled to about ±20% when the change in anthropogenic CO2 is reconstructed from observations.
NASA Astrophysics Data System (ADS)
Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song
2018-05-01
The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.
Modelling the global distribution and risk of small floating plastic debris
NASA Astrophysics Data System (ADS)
van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N. A.; Sherman, P.; Hardesty, B. D.; van Franeker, J. A.; Eriksen, M.; Siegel, D.; Galgani, F.; Lavender Law, K. L.
2016-02-01
Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements collated to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste available to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean. We then use this global distribution of small floating plastic debris to (i) map out where in the ocean the risk to marine life (seabirds, plankton growth) is greatest and to (ii) show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres.
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.
2004-01-01
Airborne measurements of oxygenated volatile organic chemicals (OVOC), OH free radicals, and tracers of pollution were performed over the Pacific during Winter/Spring of 2001. Large concentrations of OVOC are present in the global troposphere and are expected to play an important role in atmospheric chemistry. Their total abundance (SIGMAOVOC) was nearly twice that of non-methane hydrocarbons (SIGMAC2-C8 NMHC). Throughout the troposphere, the OH reactivity of OVOC is comparable to that of methane and far exceeds that of NHMC. A comparison of these data with western Pacific observations collected some seven years earlier (Feb.-March, 1994) did not reveal significant differences. Analysis of the relative enhancement of selected OVOC with respect to CH3Cl and CO in twelve plumes originating from fires and sampled in the free troposphere (3-11 km) is used to assess their primary and secondary emissions from biomass combustion. The composition of these plumes also indicates a large shift of reactive nitrogen into the PAN reservoir thereby limiting ozone formation. These data are combined with other observations and interpreted with the help of a global 3-D model to assess OVOC global sources and sinks. We further interpret atmospheric observations with the help of an air-sea exchange model io show that oceans can be both net sorces and sinks. An extremely large oceanic reservoir of OVOC, that exceeds the atmospheric reservoir by more than an order of magnitude, can be inferred to be present. We conclude that OVOC sources are extremely large (150-500 TgC y-1) but remain poorly quantified. In many cases, measured concentrations are uncertain and incompatible with our present knowledge of atmospheric chemistry. Results based on observations from several field studies and critical gaps will be discussed.
A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean
NASA Astrophysics Data System (ADS)
Battaglia, Gianna; Steinacher, Marco; Joos, Fortunat
2016-05-01
The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72-1.05) Gt C yr-1, that is within the lower half of previously published estimates (0.4-1.8 Gt C yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.
NASA Astrophysics Data System (ADS)
Tissot, François L. H.; Dauphas, Nicolas
2015-10-01
The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of the variability of the 238U/235U ratio on Pb-Pb and U-Pb ages and provide analytical formulas to calculate age corrections as a function of the age and isotopic composition of the sample. The crustal ratio may be used in calculation of Pb-Pb and U-Pb ages of continental crust rocks and minerals when the U isotopic composition is unknown. In cosmochemistry, the search for 247Cm (t1/2 = 15.6 Myr), an extinct short-lived radionuclide that decays into 235U, is important for understanding how r-process nuclides were synthesized in stars and learning about the astrophysical context of solar system formation (Chen and Wasserburg, 1981; Wasserburg et al., 1996; Nittler and Dauphas, 2006; Brennecka et al., 2010b; Tissot et al., 2015). In both terrestrial and extraterrestrial samples, variations in the 238U/235U ratio affect Pb-Pb ages (and depending on the analytical protocols, U-Pb ages). Therefore, samples dated by these techniques need to have their U isotopic compositions measured (Stirling et al., 2005, 2006; Weyer et al., 2008; Amelin et al., 2010; Brennecka et al., 2010b; Brennecka and Wadhwa, 2012; Connelly et al., 2012; Goldmann et al., 2015) or uncertainties on the U isotopic composition should be propagated into age calculations. In low temperature aqueous geochemistry, U isotopic fractionation between U4+ and U6+ (driven in part by nuclear field shift effects; Bigeleisen, 1996; Schauble, 2007; Abe et al., 2008), makes U isotopes potential tracers of paleoredox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Kendall et al., 2013, 2015; Asael et al., 2013; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). The present paper aims at constraining some aspects of the global budget of uranium in the modern oceans using 238U/235U isotope variations, which involves characterizing the U isotopic composition of seawater and several reservoirs involved in the uranium oceanic budget. Uranium can exist in two oxidation states in terrestrial surface environments: U4+ is insoluble in seawater while U6+ is soluble (Langmuir, 1978). The contrasting behaviors of the two oxidation states of uranium explains why the disappearance of detrital uraninite after the Archean marks the rise of oxygen in Earth's atmosphere/hydrosphere (Ramdohr, 1958; Rasmussen and Buick, 1999; Frimmel, 2005). More recently, significant effort has focused on using U isotopes to constrain the past extents of anoxic/euxinic vs. oxic or suboxic sediments in modern and ancient oceans (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Asael et al., 2013; Kendall et al., 2013, 2015; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). A virtue of this system is that it can potentially reflect the global redox state of Earth's oceans. At the same time, several difficulties have been encountered in applying U isotopes as paleo-redox indicators. For example, detrital contributions can blur the authigenic signal and have to be corrected for (Asael et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), uranium isotopes can be affected by diagenesis and exchange with porewater (Romaniello et al., 2013; Andersen et al., 2014), and the exact isotopic fractionation factors relevant to various conditions of deposition are uncertain. While significant progress has already been made to address these difficulties (Asael et al., 2013; Romaniello et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), this system and others are missing some of the groundwork studies on modern environments that are needed to gain trust in their applications to ancient sediments.In the modern ocean, water-soluble uranium behaves conservatively (i.e., U concentration correlates linearly to water salinity, Ku et al., 1977; Owens et al., 2011) and has a long residence time of ∼400 kyr (Ku et al., 1977). The ocean is therefore a large repository of uranium, exceeding the total inventory of land-based deposits (Lu, 2014). The riverine input (40-46 Mmol/yr) is balanced by several sinks; including suboxic sediments, anoxic/euxinic sediments, carbonates, altered oceanic crust, salt marshes and Fe-Mn nodules. Barnes and Cochran (1990), Morford and Emerson (1999), Dunk et al. (2002), and Henderson and Anderson (2003) each proposed estimates for the oceanic uranium budget that differ substantially in the fluxes that they use. Uranium isotopes are sensitive to ocean redox conditions because uranium removal in anoxic/euxinic sediments imparts large uranium isotopic fractionation, so that the areal extent of this sink influences greatly the U isotopic composition of seawater relative to the riverine input. In the present paper, we report double-spike uranium isotopic measurements of 18 seawater samples, 18 continental crust lithologies, 7 individual minerals, 6 oyster samples, 3 modern evaporites samples, 2 lake water samples, 1 large river water sample and 1 coral sample. These measurements are supplemented by compilations of literature data. With this large data set (n = 444), we are able to constrain the flux of uranium into anoxic/euxinic sediments, as well as the global extent of anoxia in the modern ocean (percent of seafloor covered by anoxic/euxinic sediments). Our findings compare well with independent estimates and rule out the most recent U budget of Henderson and Anderson (2003).As part of our effort, we also present a data reduction method for double-spike measurements that is both comprehensive in the way the errors are propagated and simple to implement.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.
2013-01-01
MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.
The limited and localized flow of fresh groundwater to the world's oceans
NASA Astrophysics Data System (ADS)
Luijendijk, E.; Gleeson, T. P.; Moosdorf, N.
2017-12-01
Submarine groundwater discharge, the flow of fresh or saline groundwater to oceans [Burnett et al., 2003], may be a significant contributor to the water and chemical budgets of the world's oceans [Taniguchi et al., 2002] potentially buffering ocean acidification with groundwater alkalinity and is arguably the most uncertain component of the global groundwater budget [Alley et al., 2002]. The fresh component of submarine groundwater discharge is critical due to its high solute and nutrient load, and has been quantified locally and but only roughly estimated globally using significant assumptions. Here we show that that fresh submarine groundwater discharge is an insignificant water contributor to global oceans (0.05% of the total input) but that the freshwater discharge may still be an important chemical and nutrient contributor especially around distinct hotspots. The first spatially-explicit, physically-based global estimate of fresh submarine groundwater discharge was derived by combining density-dependent numerical groundwater models and a geospatial analysis of global coastal watersheds to robustly simulate the partitioning of onshore and offshore groundwater discharge. Although fresh submarine groundwater discharge is an insignificant part of fresh coastal groundwater discharge, results are consistent with previous estimates of significant recirculated seawater discharging as groundwater as well as quantifying the significant near-shore terrestrial discharge, a flux that has so far been overlooked in global hydrological studies and that affects coastal water budgets, evapotranspiration and ecosystems.
Morning-evening differences in global and regional oceanic precipitation as observed by the SSM/I
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1992-01-01
For the present preliminary analysis of oceanic rainfall statistics, global oceanic SSM/I data were simply scanned for pixels which exhibited a 37 GHz polarization difference (vertically polarized brightness temperatures minus horizontally polarized brightness temperatures) of less than 15 K. Such a low polarization difference over the open ocean is a completely unambiguous indication of moderate to intense precipitation. Co-located brightness temperatures from all seven channels of the SSM/I were saved for each pixel so identified. Bad scans and geographically mislocated block of data were objectively identified and removed from the resulting data base. We collected global oceanic rainfall data for two time periods, each one month in length. The first period (20 July-19 August 1987) coincides with the peak of the Northern Hemisphere summer. The second period (13 January-12 February 1988) coincides with the Northern Hemisphere winter.
An index to assess the health and benefits of the global ocean.
Halpern, Benjamin S; Longo, Catherine; Hardy, Darren; McLeod, Karen L; Samhouri, Jameal F; Katona, Steven K; Kleisner, Kristin; Lester, Sarah E; O'Leary, Jennifer; Ranelletti, Marla; Rosenberg, Andrew A; Scarborough, Courtney; Selig, Elizabeth R; Best, Benjamin D; Brumbaugh, Daniel R; Chapin, F Stuart; Crowder, Larry B; Daly, Kendra L; Doney, Scott C; Elfes, Cristiane; Fogarty, Michael J; Gaines, Steven D; Jacobsen, Kelsey I; Karrer, Leah Bunce; Leslie, Heather M; Neeley, Elizabeth; Pauly, Daniel; Polasky, Stephen; Ris, Bud; St Martin, Kevin; Stone, Gregory S; Sumaila, U Rashid; Zeller, Dirk
2012-08-30
The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human–ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human–ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36–86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.
First global WCRP shortwave surface radiation budget dataset
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; Dipasquale, R. C.; Moats, C. D.
1995-01-01
Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
First global WCRP shortwave surface radiation budget dataset
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Charlock, T. P.; Staylor, W. F.; Pinker, R. T.; Laszlo, I.; Ohmura, A.; Gilgen, H.; Konzelman, T.; DiPasquale, R. C.; Moats, C. D.
1995-01-01
Shortwave radiative fluxes that reach the Earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and rms values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
Predicting Seagrass Occurrence in a Changing Climate Using Random Forests
NASA Astrophysics Data System (ADS)
Aydin, O.; Butler, K. A.
2017-12-01
Seagrasses are marine plants that can quickly sequester vast amounts of carbon (up to 100 times more and 12 times faster than tropical forests). In this work, we present an integrated GIS and machine learning approach to build a data-driven model of seagrass presence-absence. We outline a random forest approach that avoids the prevalence bias in many ecological presence-absence models. One of our goals is to predict global seagrass occurrence from a spatially limited training sample. In addition, we conduct a sensitivity study which investigates the vulnerability of seagrass to changing climate conditions. We integrate multiple data sources including fine-scale seagrass data from MarineCadastre.gov and the recently available globally extensive publicly available Ecological Marine Units (EMU) dataset. These data are used to train a model for seagrass occurrence along the U.S. coast. In situ oceans data are interpolated using Empirical Bayesian Kriging (EBK) to produce globally extensive prediction variables. A neural network is used to estimate probable future values of prediction variables such as ocean temperature to assess the impact of a warming climate on seagrass occurrence. The proposed workflow can be generalized to many presence-absence models.
NASA Astrophysics Data System (ADS)
Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.
2016-02-01
I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.
NASA Astrophysics Data System (ADS)
Miller, J.; Dekens, P. S.; Weber, M. E.; Spiess, V.; France-Lanord, C.
2015-12-01
The International Ocean Discovery Program (IODP) Expedition 354 drilled 7 sites in the Bay of Bengal, providing a unique opportunity to improve our understanding of the link between glacial cycles, tropical oceanographic changes, and monsoon strength. Deep-sea sediment cores of the Bengal Fan fluctuate between sand, hemipelagic and terrestrial sediment layers. All but one of the sites (U1454) contain a layer of calcareous clay in the uppermost part of the core that is late Pleistocene in age. During Expedition 354 site U1452C was sampled at high resolution (every 2cm) by a broad group of collaborators with the goal of reconstructing monsoon strength and oceanographic conditions using a variety of proxies. The top 480 cm of site U1452C (8ºN, 87ºE, 3671m water depth) contains primarily nannofossil rich calcareous clay. The relatively high abundance of foraminifera will allow us to generate a high resolution record of sea surface temperature (SST) and sea surface salinity (SSS) using standard foraminifera proxies. We will present oxygen isotopes (δ18O) and Mg/Ca data of mixed layer planktonic foraminifera from the top 70cm of the core, representing the Holocene to the last glacial maximum. δ18O of planktonic foraminifera records global ice volume and local SST and SSS, while Mg/Ca of foraminifera is a proxy for SST. The paired Mg/Ca and δ18O measurements on the same samples of foraminifera, together with published estimates with global ocean δ18O, can be used to reconstruct both SST and local δ18O of seawater, which is a function of the evaporation/precipitation balance. In future work, the local SSS and SST during the LGM will be paired with terrestrial and other oceanic proxies to increase our understanding of how global climate is connected to monsoon strength.
NASA/GSFC Research Activities for the Global Ocean Carbon Cycle: A Prospectus for the 21st Century
NASA Technical Reports Server (NTRS)
Gregg, W. W.; Behrenfield, M. J.; Hoge, F. E.; Esaias, W. E.; Huang, N. E.; Long, S. R.; McClain, C. R.
2000-01-01
There are increasing concerns that anthropogenic inputs of carbon dioxide into the Earth system have the potential for climate change. In response to these concerns, the GSFC Laboratory for Hydrospheric Processes has formed the Ocean Carbon Science Team (OCST) to contribute to greater understanding of the global ocean carbon cycle. The overall goals of the OCST are to: 1) detect changes in biological components of the ocean carbon cycle through remote sensing of biooptical properties, 2) refine understanding of ocean carbon uptake and sequestration through application of basic research results, new satellite algorithms, and improved model parameterizations, 3) develop and implement new sensors providing critical missing environmental information related to the oceanic carbon cycle and the flux of CO2 across the air-sea interface. The specific objectives of the OCST are to: 1) establish a 20-year time series of ocean color, 2) develop new remote sensing technologies, 3) validate ocean remote sensing observations, 4) conduct ocean carbon cycle scientific investigations directly related to remote sensing data, emphasizing physiological, empirical and coupled physical/biological models, satellite algorithm development and improvement, and analysis of satellite data sets. These research and mission objectives are intended to improve our understanding of global ocean carbon cycling and contribute to national goals by maximizing the use of remote sensing data.
NASA Astrophysics Data System (ADS)
Hughes, Chris W.; Williams, Joanne; Blaker, Adam; Coward, Andrew; Stepanov, Vladimir
2018-02-01
We show how, by focusing on bottom pressure measurements particularly on the global continental slope, it is possible to avoid the "fog" of mesoscale variability which dominates most observables in the deep ocean. This makes it possible to monitor those aspects of the ocean circulation which are most important for global scale ocean variability and climate. We therefore argue that such measurements should be considered an important future component of the Global Ocean Observing System, to complement the present open-ocean and coastal elements. Our conclusions are founded on both theoretical arguments, and diagnostics from a fine-resolution ocean model that has realistic amplitudes and spectra of mesoscale variability. These show that boundary pressure variations are coherent over along-slope distances of tens of thousands of kilometres, for several vertical modes. We illustrate the value of this in the model Atlantic, by determining the time for boundary and equatorial waves to complete a circuit of the northern basin (115 and 205 days for the first and second vertical modes), showing how the boundary features compare with basin-scale theoretical models, and demonstrating the ability to monitor the meridional overturning circulation using these boundary measurements. Finally, we discuss applicability to the real ocean and make recommendations on how to make such measurements without contamination from instrumental drift.
NASA Astrophysics Data System (ADS)
von Känel, Lukas; Frölicher, Thomas L.; Gruber, Nicolas
2017-08-01
A surface cooling pattern in the equatorial Pacific associated with a negative phase of the Interdecadal Pacific Oscillation is the leading hypothesis to explain the smaller rate of global warming during 1998-2012, with these cooler than normal conditions thought to have accelerated the oceanic heat uptake. Here using a 30-member ensemble simulation of a global Earth system model, we show that in 10% of all simulated decades with a global cooling trend, the eastern equatorial Pacific actually warms. This implies that there is a 1 in 10 chance that decadal hiatus periods may occur without the equatorial Pacific being the dominant pacemaker. In addition, the global ocean heat uptake tends to slow down during hiatus decades implying a fundamentally different global climate feedback factor on decadal time scales than on centennial time scales and calling for caution inferring climate sensitivity from decadal-scale variability.
NASA Astrophysics Data System (ADS)
Suzuki, K.; Yamamoto, M.; Rosenheim, B. E.; Omori, T.; Polyak, L.; Nam, S. I.
2017-12-01
The Arctic Ocean underwent dramatic climate changes in the past. Variations in sea-ice extent and ocean current system in the Arctic cause changes in surface albedo and deep water formation, which have global climatic implications. However, Arctic paleoceanographic studies are lagging behind the other oceans due largely to chronostratigraphic difficulties. One of the reasons for this is a scant presence of material suitable for 14C dating in large areas of the Arctic seafloor. To enable improved age constraints for sediments impoverished in datable material, we apply ramped pyrolysis 14C method (Ramped PyrOx 14C, Rosenheim et al., 2008) to sedimentary records from the Chukchi-Alaska margin recovering Holocene to late-glacial deposits. Samples were divided into five fraction products by gradual heating sedimentary organic carbon from ambient laboratory temperature to 1000°C. The thermographs show a trimodal pattern of organic matter decomposition over temperature, and we consider that CO2 generated at the lowest temperature range was derived from autochthonous organic carbon contemporaneous with sediment deposition, similar to studies in the Antarctic margin and elsewhere. For verification of results, some of the samples treated for ramped pyrolysis 14C were taken from intervals dated earlier by AMS 14C using bivalve mollusks. Ultimately, our results allow a new appraisal of deglacial to Holocene deposition at the Chukchi-Alaska margin with potential to be applied to other regions of the Arctic Ocean.
Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses
NASA Astrophysics Data System (ADS)
Wang, Gongjie; Cheng, Lijing; Abraham, John; Li, Chongyin
2018-04-01
Inconsistent global/basin ocean heat content (OHC) changes were found in different ocean subsurface temperature analyses, especially in recent studies related to the slowdown in global surface temperature rise. This finding challenges the reliability of the ocean subsurface temperature analyses and motivates a more comprehensive inter-comparison between the analyses. Here we compare the OHC changes in three ocean analyses (Ishii, EN4 and IAP) to investigate the uncertainty in OHC in four major ocean basins from decadal to multi-decadal scales. First, all products show an increase of OHC since 1970 in each ocean basin revealing a robust warming, although the warming rates are not identical. The geographical patterns, the key modes and the vertical structure of OHC changes are consistent among the three datasets, implying that the main OHC variabilities can be robustly represented. However, large discrepancies are found in the percentage of basinal ocean heating related to the global ocean, with the largest differences in the Pacific and Southern Ocean. Meanwhile, we find a large discrepancy of ocean heat storage in different layers, especially within 300-700 m in the Pacific and Southern Oceans. Furthermore, the near surface analysis of Ishii and IAP are consistent with sea surface temperature (SST) products, but EN4 is found to underestimate the long-term trend. Compared with ocean heat storage derived from the atmospheric budget equation, all products show consistent seasonal cycles of OHC in the upper 1500 m especially during 2008 to 2012. Overall, our analyses further the understanding of the observed OHC variations, and we recommend a careful quantification of errors in the ocean analyses.
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing
2018-01-01
The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.
Oceanic tide maps and spherical harmonic coefficients from Geosat altimetry
NASA Technical Reports Server (NTRS)
Cartwright, D. E.; Ray, R. D.; Sanchez, B. V.
1991-01-01
Maps and tables for the global ocean tides, 69 degree N to 68 degree S, derived from two years of Geosat altimetry are presented. Global maps of local and Greenwich admittance of the (altimetric) ocean tide, and maps of amplitude and Greenwich phase lag of the ocean tide are shown for M(sub 2), S(sub 2), N(sub 2), O(sub 1), and K(sub 1). Larger scale maps of amplitude and phases are also shown for regional areas of special interest. Spherical harmonic coefficients of the ocean tide through degree and order 8 are tabulated for the six major constituents.
The NASA EV-2 CYGNSS Small Satellite Constellation Mission
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Gleason, S.; Jelenak, Z.; Katzberg, S. J.; Ridley, A. J.; Rose, R.; Scherrer, J.; Zavorotny, V.
2012-12-01
The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) is a spaceborne mission focused on tropical cyclone (TC) inner core process studies. CYGNSS attempts to resolve the principle deficiencies with current TC intensity forecasts, which lies in inadequate observations and modeling of the inner core. The inadequacy in observations results from two causes: 1) Much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the eye wall and inner rain bands. 2) The rapidly evolving (genesis and intensification) stages of the TC life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. CYGNSS is specifically designed to address these two limitations by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a constellation of satellites. The use of a dense constellation of nanosatellite results in spatial and temporal sampling properties that are markedly different from conventional imagers. Simulation studies will be presented which examine the sampling as functions of various orbit parameters of the constellation. Historical records of actual TC storm tracks are overlaid onto a simulated time series of the surface wind sampling enabled by the constellation. For comparison purposes, a similar analysis is conducted using the sampling properties of several past and present conventional spaceborne ocean wind scatterometers. Differences in the ability of the sensors to resolve the evolution of the TC inner core are examined. The spacecraft and constellation mission are described. The signal-to-noise ratio of the measured scattered signal and the resulting uncertainty in retrieved surface wind speed are also examined.
Terrestrial Observations from NOAA Operational Satellites.
Yates, H; Strong, A; McGinnis, D; Tarpley, D
1986-01-31
Important applications to oceanography, hydrology, and agriculture have been developed from operational satellites of the National Oceanic and Atmospheric Administration and are currently expanding rapidly. Areas of interest involving the oceans include sea surface temperature, ocean currents, and ocean color. Satellites can monitor various hydrological phenomena, including regional and global snow cover, river and sea ice extent, and areas of global inundation. Agriculturally important quantities derived from operational satellite observations include precipitation, daily temperature extremes, canopy temperatures, insolation, and snow cover. This overview describes the current status of each area.
Ostrander, Chadlin M.; Owens, Jeremy D.; Nielsen, Sune G.
2017-01-01
The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments—the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shales from Demerara Rise across Oceanic Anoxic Event 2 reveals evidence of expanded sediment-water interface deoxygenation ~43 ± 11 thousand years before the globally recognized carbon cycle perturbation. This evidence for rapid oxygen loss leading to an extreme ancient climatic event has timely implications for the modern ocean, which is already experiencing large-scale deoxygenation. PMID:28808684
Climate-driven basin-scale decadal oscillations of oceanic phytoplankton.
Martinez, Elodie; Antoine, David; D'Ortenzio, Fabrizio; Gentili, Bernard
2009-11-27
Phytoplankton--the microalgae that populate the upper lit layers of the ocean--fuel the oceanic food web and affect oceanic and atmospheric carbon dioxide levels through photosynthetic carbon fixation. Here, we show that multidecadal changes in global phytoplankton abundances are related to basin-scale oscillations of the physical ocean, specifically the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. This relationship is revealed in approximately 20 years of satellite observations of chlorophyll and sea surface temperature. Interaction between the main pycnocline and the upper ocean seasonal mixed layer is one mechanism behind this correlation. Our findings provide a context for the interpretation of contemporary changes in global phytoplankton and should improve predictions of their future evolution with climate change.
The Ocean State Report of the Copernicus Marine Environment Monitoring Service
NASA Astrophysics Data System (ADS)
von Schuckmann, Karina
2017-04-01
COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. The first Ocean State Report Copernicus Marine Environment Monitoring Service has been prepared, and is planned to appear at an annual basis (fall each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.
The Ocean State Report of the Copernicus Marine Environment Monitoring Service
NASA Astrophysics Data System (ADS)
von Schuckmann, K.
2016-12-01
COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. In fall 2016, the first Ocean State Report Copernicus Marine Environment Monitoring Service will be published, and is planned to appear at an annual basis (June each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.
Global assessment of ocean carbon export by combining satellite observations and food-web models
NASA Astrophysics Data System (ADS)
Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.
2014-03-01
The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
OceanSITES format and Ocean Observatory Output harmonisation: past, present and future
NASA Astrophysics Data System (ADS)
Pagnani, Maureen; Galbraith, Nan; Diggs, Stephen; Lankhorst, Matthias; Hidas, Marton; Lampitt, Richard
2015-04-01
The Global Ocean Observing System (GOOS) initiative was launched in 1991, and was the first step in creating a global view of ocean observations. In 1999 oceanographers at the OceanObs conference envisioned a 'global system of eulerian observatories' which evolved into the OceanSITES project. OceanSITES has been generously supported by individual oceanographic institutes and agencies across the globe, as well as by the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology (under JCOMMOPS). The project is directed by the needs of research scientists, but has a strong data management component, with an international team developing content standards, metadata specifications, and NetCDF templates for many types of in situ oceanographic data. The OceanSITES NetCDF format specification is intended as a robust data exchange and archive format specifically for time-series observatory data from the deep ocean. First released in February 2006, it has evolved to build on and extend internationally recognised standards such as the Climate and Forecast (CF) standard, BODC vocabularies, ISO formats and vocabularies, and in version 1.3, released in 2014, ACDD (Attribute Convention for Dataset Discovery). The success of the OceanSITES format has inspired other observational groups, such as autonomous vehicles and ships of opportunity, to also use the format and today it is fulfilling the original concept of providing a coherent set of data from eurerian observatories. Data in the OceanSITES format is served by 2 Global Data Assembly Centres (GDACs), one at Coriolis, in France, at ftp://ftp.ifremer.fr/ifremer/oceansites/ and one at the US NDBC, at ftp://data.ndbc.noaa.gov/data/oceansites/. These two centres serve over 26,800 OceanSITES format data files from 93 moorings. The use of standardised and controlled features enables the files held at the OceanSITES GDACs to be electronically discoverable and ensures the widest access to the data. The OceanSITES initiative has always been truly international, and in Europe the first project to include OceanSITES as part of its outputs was ANIMATE(2002-2005), where 3 moorings and 5 partners shared equipment, methods and analysis effort and produced their final outputs in OceanSITES format. Subsequent European projects, MERSEA(2004-2008) and EuroSITES (2008-2011) built on that early success and the current European project FixO3 encompasses 23 moorings and 29 partners, all of whom are committed to producing data in OceanSITES format. The global OceanSITES partnership continues to grow; in 2014 the Australian Integrated Marine Observing System ( IMOS) started delivering data to the OceanSITES FTP, and files and India, South Korea and Japan are also active members of the OceanSITES community. As illustrated in figure 1 the OceanSITES sites cover the entire globe, and the format has now matured enough to be taken up by other user groups. GO-SHIP, a global, ship-based hydrographic program, shares technical management with OceanSITES through JCOMMOPS, and has its roots in WOCE Hydrography. This program complements OceanSITES and directly contributes to the mooring data holdings by providing repeated CTD and bottle profiles at specific locations. GO-SHIP hydrographic data adds a source of timeseries profiles and are provided in the OceanSITES file structure to facilitate full data interoperability. GO-SHIP has worked closely with the OceanSITES program, and this interaction has produced an unexpected side benefit - all data in the GO-SHIP database will be offered the robust and CF-compliant OceanSITES format beginning in 2015. The MyOcean European ocean monitoring and forecasting project has been in existence since 2009, and has successfully used the OceanSITES format as a unifying paradigm. MyOcean daily receives hundreds of data files from across Europe, and distributes the data from drifter buoys, moorings and tide gauges in OceanSITES format. These in-situ data are essential for both model verification points and for assimilation into the models. The use of the OceanSITES format now exceeds the hopes and expectations of the original OceanObs vision in 1999 and the stewardship of the format development, extension and documentation is in the expert care of the international OceanSITES Data Management Team. PIC Figure 1
Three modes of interdecadal trends in sea surface temperature and sea surface height
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M.
2013-12-01
It might be thought that sea surface height and sea surface temperature would be tightly related. We show that this is not necessarily the case on a global scale. We analysed this relationship in a suite of coupled climate models run under 1860 forcing conditions. The models are low-resolution variants of the GFDL Earth System Model, reported in Galbraith et al. (J. Clim. 2011). 1. Correlated changes in global sea surface height and global sea surface temperature. This mode corresponds to opening and closing of convective chimneys in the Southern Ocean. As the Southern Ocean destratifies, sea ice formation is suppressed during the winter and more heat is taken up during the summer. This mode of variability is highly correlated with changes in the top of the atmosphere radiative budget and weakly correlated with changes in the deep ocean circulation. 2. Uncorrelated changes in global sea surface height and global sea surface temperature. This mode of variability is associated with interdecadal variabliity in tropical winds. Changes in the advective flux of heat to the surface ocean play a critical role in driving these changes, which also result in significant local changes in sea level. Changes sea ice over the Southern Ocean still result in changes in solar absorption, but these are now largely cancelled by changes in outgoing longwave radiation. 3. Anticorrelated changes in global sea surface height and global sea surface temperatures. By varying the lateral diffusion coefficient in the ocean model, we are able to enhance and suppress convection in the Southern and Northern Pacific Oceans. Increasing the lateral diffusion coefficients shifts the balance sources of deep water away from the warm salty deep water of the North Atlantic and towards cold fresh deep water from the other two regions. As a result, even though the planet as a whole warms, the deep ocean cools and sea level falls, with changes of order 30 cm over 500 years. The increase in solar absorption in polar regions is more than compensated by an increase in outgoing longwave radiation. Relationship between global SSH trend over a decade and (A) local SSH change over a decade (m/m). (B) Global SST change over a decade (m/K) (C) Portion of decadal SST change correlated with net radiation at the top of the atmosphere (m/K) (D) Portion of decadal SST change not correlated with net radiation at the top of the atmosphere.
Atmospheric and ocean sensing with GNSS
NASA Technical Reports Server (NTRS)
Yunck, Thomas P.; Hajj, George A.
2003-01-01
The 1980s and 1990s saw the Global Positioning System (GPS) transform space geodesy from an elite national enterprise to one open to the individual researcher. By adapting the tools from that endeavor we are learning to probe the atmosphere and the ocean surface in novel ways, including ground-based sensing of atmospheric moisture; space-based profiling of atmospheric refractivity by active limb sounding; and global ocean altimetry with reflected signals.
NASA Astrophysics Data System (ADS)
England, Matthew H.
2015-04-01
Various explanations have been proposed for the recent slowdown in global surface air temperature (SAT) rise, either involving enhanced ocean heat uptake or reduced radiation reaching Earth's surface. Among the mechanisms postulated involving enhanced ocean heat uptake, past work has argued for both a Pacific and Atlantic origin, with additional contributions from the Southern Ocean. Here we examine the mechanisms driving 'hiatus' periods originating out of the Atlantic Ocean. We show that while Atlantic-driven hiatuses are entirely plausible and consistent with known climate feedbacks associated with variability in the Atlantic Meridional Overturning Circulation (AMOC), the present climate state is configured to enhance global-average SAT, not reduce it. We show that Atlantic hiatuses are instead characterised by anomalously cool fresh oceanic conditions in the North Atlantic, with the atmosphere advecting the cool temperature signature zonally. Compared to the 1980s and 1990s, however, the mean climate since 2001 has been characterised by a warm saline North Atlantic, suggesting the AMOC cannot be implicated as a direct driver of the current hiatus. We further discuss the impacts of a warm tropical Atlantic on the unprecedented trade wind acceleration in the Pacific Ocean, and propose that this is the main way that the Atlantic has contributed to the present "false pause" in global warming.
Global ocean conveyor lowers extinction risk in the deep sea
Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Weinberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Melanie; Morrison, Cheryl L.; Correa, Matthias Lopez; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray
2014-01-01
General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth׳s largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium–thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.
Global ocean conveyor lowers extinction risk in the deep sea
NASA Astrophysics Data System (ADS)
Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Wienberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Mélanie; Morrison, Cheryl L.; López Correa, Matthias; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray
2014-06-01
General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth's largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.
Simulating PACE Global Ocean Radiances
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Rousseaux, Cecile S.
2017-01-01
The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P < 0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and a CDOC (r =0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250-800 nm. These unassimilated radiances were within 0.074 mW/sq cm/micron/sr of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of 10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PACE, ocean color, water-leaving radiances, biogeochemical model, radiative transfer model
Webb, Thomas J.; Vanden Berghe, Edward; O'Dor, Ron
2010-01-01
Background Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean – the largest biome on Earth – is chronically under-represented in global databases of marine biodiversity. Methodology/Principal Findings We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. Conclusions/Significance The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem. PMID:20689845
Allan, Richard P.; Mayer, Michael; Hyder, Patrick; Loeb, Norman G.; Roberts, Chris D.; Valdivieso, Maria; Edwards, John M.; Vidale, Pier‐Luigi
2017-01-01
Abstract The net surface energy flux is central to the climate system yet observational limitations lead to substantial uncertainty. A combination of satellite‐derived radiative fluxes at the top of atmosphere adjusted using the latest estimation of the net heat uptake of the Earth system, and the atmospheric energy tendencies and transports from the ERA‐Interim reanalysis are used to estimate surface energy flux globally. To consider snowmelt and improve regional realism, land surface fluxes are adjusted through a simple energy balance approach at each grid point. This energy adjustment is redistributed over the oceans to ensure energy conservation and maintain realistic global ocean heat uptake, using a weighting function to avoid meridional discontinuities. Calculated surface energy fluxes are evaluated through comparison to ocean reanalyses. Derived turbulent energy flux variability is compared with the Objectively Analyzed air‐sea Fluxes (OAFLUX) product, and inferred meridional energy transports in the global ocean and the Atlantic are also evaluated using observations. Uncertainties in surface fluxes are investigated using a variety of approaches including comparison with a range of atmospheric reanalysis products. Decadal changes in the global mean and the interhemispheric energy imbalances are quantified, and present day cross‐equator heat transports are reevaluated at 0.22 ± 0.15 PW (petawatts) southward by the atmosphere and 0.32 ± 0.16 PW northward by the ocean considering the observed ocean heat sinks. PMID:28804697
Comparisons of Monthly Oceanic Rainfall Derived from TMI and SSM/I
NASA Technical Reports Server (NTRS)
Chang, A. T. C.; Chiu, L. S.; Meng, J.; Wilheit, T. T.; Kummerow, C. D.
1999-01-01
A technique for estimating monthly oceanic rainfall rate using multi-channel microwave measurements has been developed. There are three prominent features of this algorithm. First, the knowledge of the form of the rainfall intensity probability density function used to augment the measurements. Second, utilizing a linear combination of the 19.35 and 22.235 GHz channels to de-emphasize the effect of water vapor. Third, an objective technique has been developed to estimate the rain layer thickness from the 19.35 and 22.235 GHz brightness temperature histograms. This technique is applied to the SSM/I data since 1987 to infer monthly rainfall for the Global Precipitation Climatology Project (GPCP). A modified version of this algorithm is now being applied to the TRMM Microwave Imager (TMI) data. TMI data with better spatial resolution and 24 hour sampling (vs. sun-synchronized sampling, which is limited to two narrow intervals of local solar time for DMSP satellites) prompt us to study the similarity and difference between these two rainfall estimates. Six months of rainfall data (January to June 1998) are used in this study. Means and standard deviations are calculated. Paired student t-tests are administrated to evaluate the differences between rainfall estimates from SSM/I and TMI data. Their differences are discussed in the context of global satellite rainfall estimation.
Watson, Andrew J; Lenton, Timothy M; Mills, Benjamin J W
2017-09-13
The major biogeochemical cycles that keep the present-day Earth habitable are linked by a network of feedbacks, which has led to a broadly stable chemical composition of the oceans and atmosphere over hundreds of millions of years. This includes the processes that control both the atmospheric and oceanic concentrations of oxygen. However, one notable exception to the generally well-behaved dynamics of this system is the propensity for episodes of ocean anoxia to occur and to persist for 10 5 -10 6 years, these ocean anoxic events (OAEs) being particularly associated with warm 'greenhouse' climates. A powerful mechanism responsible for past OAEs was an increase in phosphorus supply to the oceans, leading to higher ocean productivity and oxygen demand in subsurface water. This can be amplified by positive feedbacks on the nutrient content of the ocean, with low oxygen promoting further release of phosphorus from ocean sediments, leading to a potentially self-sustaining condition of deoxygenation. We use a simple model for phosphorus in the ocean to explore this feedback, and to evaluate the potential for humans to bring on global-scale anoxia by enhancing P supply to the oceans. While this is not an immediate global change concern, it is a future possibility on millennial and longer time scales, when considering both phosphate rock mining and increased chemical weathering due to climate change. Ocean deoxygenation, once begun, may be self-sustaining and eventually could result in long-lasting and unpleasant consequences for the Earth's biosphere.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Authors.
Lenton, Timothy M.; Mills, Benjamin J. W.
2017-01-01
The major biogeochemical cycles that keep the present-day Earth habitable are linked by a network of feedbacks, which has led to a broadly stable chemical composition of the oceans and atmosphere over hundreds of millions of years. This includes the processes that control both the atmospheric and oceanic concentrations of oxygen. However, one notable exception to the generally well-behaved dynamics of this system is the propensity for episodes of ocean anoxia to occur and to persist for 105–106 years, these ocean anoxic events (OAEs) being particularly associated with warm ‘greenhouse’ climates. A powerful mechanism responsible for past OAEs was an increase in phosphorus supply to the oceans, leading to higher ocean productivity and oxygen demand in subsurface water. This can be amplified by positive feedbacks on the nutrient content of the ocean, with low oxygen promoting further release of phosphorus from ocean sediments, leading to a potentially self-sustaining condition of deoxygenation. We use a simple model for phosphorus in the ocean to explore this feedback, and to evaluate the potential for humans to bring on global-scale anoxia by enhancing P supply to the oceans. While this is not an immediate global change concern, it is a future possibility on millennial and longer time scales, when considering both phosphate rock mining and increased chemical weathering due to climate change. Ocean deoxygenation, once begun, may be self-sustaining and eventually could result in long-lasting and unpleasant consequences for the Earth's biosphere. This article is part of the themed issue ‘Ocean ventilation and deoxygenation in a warming world’. PMID:28784709
Are the Clast Lithologies Contained in Lunar Breccia 64435 Mixtures of Anorthositic Magmas
NASA Technical Reports Server (NTRS)
Simon, J. I.; Mittlefehldt, D. W.; Peng, Z. X.; Nyquist, L. E.; Shih, C.-Y.; Yamaguchi, A.
2015-01-01
The anorthositic crust of the Moon is often used as the archtypical example of a primary planetary crust. The abundance and purity of anorthosite in the Apollo sample collection and remote sensing data are generally attributed to an early global magma ocean which produced widespread floating plagioclase cumulates (the ferroan anorthosites; FANs. Recent geochronology studies report evidence of young (less than 4.4 Ga) FAN ages, which suggest that either some may not be directly produced from the magma ocean or that the final solidification age of the magma ocean was younger than previous estimates. A greater diversity of anorthositic rocks have been identified among lunar meteorites as compared to returned lunar samples. Granted that these lithologies are often based on small clasts in lunar breccias and therefore may not represent their actual whole rock composition. Nevertheless, as suggested by the abundance of anorthositic clasts with Mg# [Mg/(Mg+Fe)] less than 0.80 and the difficulty of producing the extremely high plagioclase contents observed in Apollo samples and the remote sensing data, modification of the standard Lunar Magma Ocean (LMO) model may be in order. To ground truth mission science and to further test the LMO and other hypotheses for the formation of the lunar crust, additional coordinated petrology and geochronology studies of lunar anorthosites would be informative. Here we report new mineral chemistry and trace element geochemistry studies of thick sections of a composite of FAN-suite igneous clasts contained in the lunar breccia 64435 in order to assess the significance of this type of sample for petrogenetic studies of the Moon. This work follows recent isotopic studies of the lithologies in 64435 focusing on the same sample materials and expands on previous petrology studies who identified three lithologies in this sample and worked on thin sections.
The Distribution of Dissolved Iron in the West Atlantic Ocean
Rijkenberg, Micha J. A.; Middag, Rob; Laan, Patrick; Gerringa, Loes J. A.; van Aken, Hendrik M.; Schoemann, Véronique; de Jong, Jeroen T. M.; de Baar, Hein J. W.
2014-01-01
Iron (Fe) is an essential trace element for marine life. Extremely low Fe concentrations limit primary production and nitrogen fixation in large parts of the oceans and consequently influence ocean ecosystem functioning. The importance of Fe for ocean ecosystems makes Fe one of the core chemical trace elements in the international GEOTRACES program. Despite the recognized importance of Fe, our present knowledge of its supply and biogeochemical cycle has been limited by mostly fragmentary datasets. Here, we present highly accurate dissolved Fe (DFe) values measured at an unprecedented high intensity (1407 samples) along the longest full ocean depth transect (17500 kilometers) covering the entire western Atlantic Ocean. DFe measurements along this transect unveiled details about the supply and cycling of Fe. External sources of Fe identified included off-shelf and river supply, hydrothermal vents and aeolian dust. Nevertheless, vertical processes such as the recycling of Fe resulting from the remineralization of sinking organic matter and the removal of Fe by scavenging still dominated the distribution of DFe. In the northern West Atlantic Ocean, Fe recycling and lateral transport from the eastern tropical North Atlantic Oxygen Minimum Zone (OMZ) dominated the DFe-distribution. Finally, our measurements showed that the North Atlantic Deep Water (NADW), the major driver of the so-called ocean conveyor belt, contains excess DFe relative to phosphate after full biological utilization and is therefore an important source of Fe for biological production in the global ocean. PMID:24978190
NASA Astrophysics Data System (ADS)
Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.
2016-05-01
The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d-1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.
Santana-Casiano, J M; Fraile-Nuez, E; González-Dávila, M; Baker, E T; Resing, J A; Walker, S L
2016-05-09
The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 10(5) ± 1.1 10(5 )kg d(-1) which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%.
Santana-Casiano, J. M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E. T.; Resing, J. A.; Walker, S. L.
2016-01-01
The residual hydrothermalism associated with submarine volcanoes, following an eruption event, plays an important role in the supply of CO2 to the ocean. The emitted CO2 increases the acidity of seawater. The submarine volcano of El Hierro, in its degasification stage, provided an excellent opportunity to study the effect of volcanic CO2 on the seawater carbonate system, the global carbon flux, and local ocean acidification. A detailed survey of the volcanic edifice was carried out using seven CTD-pH-ORP tow-yo studies, localizing the redox and acidic changes, which were used to obtain surface maps of anomalies. In order to investigate the temporal variability of the system, two CTD-pH-ORP yo-yo studies were conducted that included discrete sampling for carbonate system parameters. Meridional tow-yos were used to calculate the amount of volcanic CO2 added to the water column for each surveyed section. The inputs of CO2 along multiple sections combined with measurements of oceanic currents produced an estimated volcanic CO2 flux = 6.0 105 ± 1.1 105 kg d−1 which is ~0.1% of global volcanic CO2 flux. Finally, the CO2 emitted by El Hierro increases the acidity above the volcano by ~20%. PMID:27157062
Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model
2010-01-01
Eddying General Circulation and Tides in a Global Ocean Model 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0602435N 6...STATEMENT Approved for public release, distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT This paper presents a five-year global ...running 25-h average to approximately separate tidal and non-tidal components of the near-bottom flow. In contrast to earlier high-resolution global
NASA Astrophysics Data System (ADS)
Johnson, G. C.; Chambers, D. P.
2013-12-01
Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.
NASA Astrophysics Data System (ADS)
Sato, T.; Miura, S.; Sun, W.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Heavner, M.
2006-12-01
The southeastern Alaska shows a large uplift rate as 30 mm/yr at most, which is considered to be closely related to the glacial isostatic adjustment (GIA) including two effects of the past and present-day ice melting (Larsen et al., 2004). So, this area is important to improve our knowledge of the viscoelastic property of the earth and to consider the global changes. Combing the displacement and gravity observations is useful to constrain the model computation results for GIA (Sato et al., 2006). In order to progress the previous work by the group of Univ. Alaska, Fairbanks (UAF), an observation project by Japan and USA groups was started in 2005 (Miura et al., this meeting). Under this project, June 2006, the continuous GPS measurements started (M. Kufman et al., this meeting) and the absolute gravity (AG) measurements were conducted (W. Sun et al., this meeting). Precise correction for the effect of ocean tide loading is one of the key to increase the observation accuracy of the GPS and gravity observations, especially for the AG measurement. Thanks for the satellite sea surface altimeters such as TOPEX/Poseidon and Jason-1, the accuracy of global ocean tide models based on these data has been much improved, and its accuracy is estimated at a level better than 1.3 cm as a RMS error of the vector differences of the 8 main tidal waves (Matsumoto et al., 2006). However, on the other hand, it is known that the southeastern Alaska is a place that shows a large discrepancy among the proposed global ocean tide models mainly due to a complex topography and bathymetry of the fjord area. In order to improve the accuracy of the ocean tide correction, we started the gravity tide observation at Juneau from June 2006. Two kinds of gravimeters are used for the observation. Sampling interval of the data is at every 1 min. We analyzed the 1 month data from the beginning of the observation and compared the tidal analysis results with the model tide including both effects of the solid and ocean tides. For this computation, we used the Love numbers and the loading Green function for the PREM earth model (Dziewonski & Anderson, 1981) and a global ocean tide model by Schwiderski (1980). Our comparison clearly indicates that a possibility to improve the accuracy of the model prediction by taking into account the actual tidal harmonics observed in the southeastern Alaska.
NASA Astrophysics Data System (ADS)
Jackson, M. G.; Dasgupta, R.
2008-12-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
NASA Astrophysics Data System (ADS)
Jackson, Matthew G.; Dasgupta, Rajdeep
2008-11-01
Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.
Cadmium in tissues of green turtles (Chelonia mydas): A global perspective for marine biota.
Fraga, Nairana Santos; Martins, Agnaldo Silva; Faust, Derek R; Sakai, Haruya; Bianchini, Adalto; da Silva, Cinthia Carneiro; Aguirre, A Alonso
2018-05-09
Cadmium (Cd) is a metal of toxicological interest because of its potential high toxicity to organisms and ability to biomagnify. Evaluating concentrations of Cd in organisms on a large spatial scale can provide insights to its global distribution. This study examined Cd concentrations in kidney and liver tissues of 137 specimens of green turtles (Chelonia mydas) collected in Australia, Brazil, Hawaii, Japan, and the continental United States (Gulf of Mexico). We used comparative analyses of kidney and liver of 35 individuals, of which seven turtles from each locality belong to the same size class for comparison purposes between their ocean of origin. Cd was detected in all samples, with the highest bioconcentration in kidneys. Specimens originating from the Pacific Ocean had significantly higher mean Cd levels in liver (13.24 μg/g) and kidney (34.17 μg/g) than the specimens collected in the Atlantic Ocean with lower mean values in liver (1.00 μg/g) and kidney (4.04 μg/g). Furthermore, Cd concentrations in turtle tissues were generally greater than concentrations found in other marine organisms, for example dolphins. This result was unexpected because dolphins occupy a higher trophic level than green turtles which are only herbivorous. A possible explanation is a change in feeding habits of green turtles, in which juveniles feed in near shore habitats, potentially resulting in greater Cd accumulation in juveniles compared to adults. This global distribution trend has also been observed in other marine organisms (e.g., insects, birds, and mammals) and indicates that global factors may be more important than regional factors in determining Cd concentrations of marine organisms. Global factors are more relevant than local factors in the distribution of cadmium in biota, using green turtle as a sentinel species. Copyright © 2018. Published by Elsevier B.V.
Howes, Ella L; Eagle, Robert A; Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT scanning.
Gattuso, Jean-Pierre; Bijma, Jelle
2017-01-01
Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT scanning. PMID:28125590
Microbial life in cold, hydrologically active oceanic crustal fluids
NASA Astrophysics Data System (ADS)
Meyer, J. L.; Jaekel, U.; Girguis, P. R.; Glazer, B. T.; Huber, J. A.
2012-12-01
It is estimated that at least half of Earth's microbial biomass is found in the deep subsurface, yet very little is known about the diversity and functional roles of these microbial communities due to the limited accessibility of subseafloor samples. Ocean crustal fluids, which may have a profound impact on global nutrient cycles given the large volumes of water moving through the crustal aquifer, are particularly difficult to sample. Access to uncontaminated ocean crustal fluids is possible with CORK (Circulation Obviation Retrofit Kit) observatories, installed through the Integrated Ocean Drilling Program (IODP). Here we present the first microbiological characterization of the formation fluids from cold, oxygenated igneous crust at North Pond on the western flank of the Mid Atlantic Ridge. Fluids were collected from two CORKs installed at IODP boreholes 1382A and 1383C and include fluids from three different depth horizons within oceanic crust. Collection of borehole fluids was monitored in situ using an oxygen optode and solid-state voltammetric electrodes. In addition, discrete samples were analyzed on deck using a comparable lab-based system as well as a membrane-inlet mass spectrometer to quantify all dissolved volatiles up to 200 daltons. The instruments were operated in parallel and both in situ and shipboard geochemical measurements point to a highly oxidized fluid, revealing an apparent slight depletion of oxygen in subsurface fluids (~215μM) relative to bottom seawater (~245μM). We were unable to detect reduced hydrocarbons, e.g. methane. Cell counts indicated the presence of roughly 2 x 10^4 cells per ml in all fluid samples, and DNA was extracted and amplified for the identification of both bacterial and archaeal community members. The utilization of ammonia, nitrate, dissolved inorganic carbon, and acetate was measured using stable isotopes, and oxygen consumption was monitored to provide an estimate of the rate of respiration per cell per day. These results provide the first dataset describing the diversity of microbes present in cold, oxygenated ocean crustal fluids and the biogeochemical processes they mediate in the subseafloor.
NASA Astrophysics Data System (ADS)
Zhu, Ping; Wild, Martin
2016-04-01
The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.
NASA Astrophysics Data System (ADS)
Slattery, W.; Lunsford, S.; Diedrick, A.; Crane, C.
2015-12-01
The purpose of the Partners in Earth System Science summer and academic year professional development program for Ohio K-12 teachers is to build their understandings of the scientific observations, methods and resources that scientists use when studying past and present climate change. Participants then use these tools to develop inquiry-based activities to teach their K-12 students how the scientific method and data are used to understand the effects of global climate change. The summer portion of the program takes teachers from throughout Ohio to the Duke University Marine Laboratory in Beaufort, North Carolina. There they engage in a physical and biological exploration of the modern and ancient ocean. For example, they collect samples of sediment and test water samples collected from modern coastal environments and connect their findings with evidence of the fauna living in those environments. Then, using observations from the geological record of the Eocene through Pleistocene sediments exposed in eastern North Carolina and inferences from observations made from the modern ocean they seek to answer scientifically testable questions regarding the physical and biological characteristics of the ocean during Cenozoic climate change events. During the academic year participants connect with each other and project faculty online to support the development of inquiry based science activities for their K-12 students. These activities focus on how evidence and observations such as outcrop extent, sediment type and biological assemblages can be used to infer past climates. The activities are taught in participant's classrooms and discussed with other participants in an online discussion space. Assessment of both teachers and K-12 students document significant positive changes in science knowledge, their confidence in being able to do science and a clearer understanding of how oceans are impacted by global climate change.
NASA Astrophysics Data System (ADS)
Nebel, Oliver; Arculus, Richard J.; van Westrenen, Wim; Woodhead, Jon D.; Jenner, Frances E.; Nebel-Jacobsen, Yona J.; Wille, Martin; Eggins, Stephen M.
2013-07-01
Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with μ = 238U/204Pb), and exhibit unique Hf-Nd isotopic characteristics, defined as ΔɛHf, deviant from a terrestrial igneous rock array that includes all other OIB types. Here we combine new Hf isotope data with previous Nd-Pb isotope measurements to assess the coupled, time-integrated Hf-Nd-Pb isotope evolution of the most extreme HIMU location (Mangaia, French Polynesia). In comparison with global MORB and other OIB types, Mangaia samples define a unique trend in coupled Hf-Nd-Pb isotope co-variations (expressed in 207Pb/206Pb vs. ΔɛHf). In a model employing subducted, dehydrated oceanic crust, mixing between present-day depleted MORB mantle (DMM) and small proportions (˜5%) of a HIMU mantle endmember can re-produce the Hf-Nd-Pb isotope systematics of global HIMU basalts (sensu stricto; i.e., without EM-1/EM-2/FOZO components). An age range of 3.5 to <2 Ga is required for HIMU endmember(s) that mix with DMM to account for the observed present-day HIMU isotope compositions, suggesting a range of age distributions rather than a single component in the mantle. Our data suggest that mixing of HIMU mantle endmembers and DMM occurs in the mantle transition zone by entrainment in secondary plumes that rise at the edge of the Pacific Large Low Seismic Velocity Zone (LLSVP). These create either pure HIMU (sensu stricto) or HIMU affected by other enriched mantle endmembers (sensu lato). If correct, this requires isolation of parts of the mantle transition zone for >3 Gyr and implies that OIB chemistry can be used to test geodynamic models.
Shift in tuna catches due to ocean warming.
Monllor-Hurtado, Alberto; Pennino, Maria Grazia; Sanchez-Lizaso, José Luis
2017-01-01
Ocean warming is already affecting global fisheries with an increasing dominance of catches of warmer water species at higher latitudes and lower catches of tropical and subtropical species in the tropics. Tuna distributions are highly conditioned by sea temperature, for this reason and their worldwide distribution, their populations may be a good indicator of the effect of climate change on global fisheries. This study shows the shift of tuna catches in subtropical latitudes on a global scale. From 1965 to 2011, the percentage of tropical tuna in longliner catches exhibited a significantly increasing trend in a study area that included subtropical regions of the Atlantic and western Pacific Oceans and partially the Indian Ocean. This may indicate a movement of tropical tuna populations toward the poles in response to ocean warming. Such an increase in the proportion of tropical tuna in the catches does not seem to be due to a shift of the target species, since the trends in Atlantic and Indian Oceans of tropical tuna catches are decreasing. Our results indicate that as populations shift towards higher latitudes the catches of these tropical species did not increase. Thus, at least in the Atlantic and Indian Oceans, tropical tuna catches have reduced in tropical areas.
NASA Astrophysics Data System (ADS)
Boyer, T.; Sun, L.; Locarnini, R. A.; Mishonov, A. V.; Hall, N.; Ouellet, M.
2016-02-01
The World Ocean Database (WOD) contains systematically quality controlled historical and recent ocean profile data (temperature, salinity, oxygen, nutrients, carbon cycle variables, biological variables) ranging from Captain Cooks second voyage (1773) to this year's Argo floats. The US National Centers for Environmental Information (NCEI) also hosts the Global Temperature and Salinity Profile Program (GTSPP) Continuously Managed Database (CMD) which provides quality controlled near-real time ocean profile data and higher level quality controlled temperature and salinity profiles from 1990 to present. Both databases are used extensively for ocean and climate studies. Synchronization of these two databases will allow easier access and use of comprehensive regional and global ocean profile data sets for ocean and climate studies. Synchronizing consists of two distinct phases: 1) a retrospective comparison of data in WOD and GTSPP to ensure that the most comprehensive and highest quality data set is available to researchers without the need to individually combine and contrast the two datasets and 2) web services to allow the constantly accruing near-real time data in the GTSPP CMD and the continuous addition and quality control of historical data in WOD to be made available to researchers together, seamlessly.
Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2
NASA Astrophysics Data System (ADS)
Landschützer, Peter; Gruber, Nicolas; Bakker, Dorothee C. E.; Stemmler, Irene; Six, Katharina D.
2018-01-01
The increase of atmospheric CO2 (ref. 1) has been predicted to impact the seasonal cycle of inorganic carbon in the global ocean2,3, yet the observational evidence to verify this prediction has been missing. Here, using an observation-based product of the oceanic partial pressure of CO2 (pCO2) covering the past 34 years, we find that the winter-to-summer difference of the pCO2 has increased on average by 2.2 ± 0.4 μatm per decade from 1982 to 2015 poleward of 10° latitude. This is largely in agreement with the trend expected from thermodynamic considerations. Most of the increase stems from the seasonality of the drivers acting on an increasing oceanic pCO2 caused by the uptake of anthropogenic CO2 from the atmosphere. In the high latitudes, the concurrent ocean-acidification-induced changes in the buffer capacity of the ocean enhance this effect. This strengthening of the seasonal winter-to-summer difference pushes the global ocean towards critical thresholds earlier, inducing stress to ocean ecosystems and fisheries4. Our study provides observational evidence for this strengthening seasonal difference in the oceanic carbon cycle on a global scale, illustrating the inevitable consequences of anthropogenic CO2 emissions.
Spiraling pathways of global deep waters to the surface of the Southern Ocean.
Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert
2017-08-02
Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.
NASA Astrophysics Data System (ADS)
Sprintall, J.; Cowley, R.; Palmer, M. D.; Domingues, C. M.; Suzuki, T.; Ishii, M.; Boyer, T.; Goni, G. J.; Gouretski, V. V.; Macdonald, A. M.; Thresher, A.; Good, S. A.; Diggs, S. C.
2016-02-01
Historical ocean temperature profile observations provide a critical element for a host of ocean and climate research activities. These include providing initial conditions for seasonal-to-decadal prediction systems, evaluating past variations in sea level and Earth's energy imbalance, ocean state estimation for studying variability and change, and climate model evaluation and development. The International Quality controlled Ocean Database (IQuOD) initiative represents a community effort to create the most globally complete temperature profile dataset, with (intelligent) metadata and assigned uncertainties. With an internationally coordinated effort organized by oceanographers, with data and ocean instrumentation expertise, and in close consultation with end users (e.g., climate modelers), the IQuOD initiative will assess and maximize the potential of an irreplaceable collection of ocean temperature observations (tens of millions of profiles collected at a cost of tens of billions of dollars, since 1772) to fulfil the demand for a climate-quality global database that can be used with greater confidence in a vast range of climate change related research and services of societal benefit. Progress towards version 1 of the IQuOD database, ongoing and future work will be presented. More information on IQuOD is available at www.iquod.org.
Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe
2000-01-01
A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.
NASA Astrophysics Data System (ADS)
Antoine, David; André, Jean-Michel; Morel, André
A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.
NASA Astrophysics Data System (ADS)
Bergmann-Wolf, Inga; Dobslaw, Henryk
2016-04-01
Estimating global barystatic sea-level variations from monthly mean gravity fields delivered by the Gravity Recovery and Climate Experiment (GRACE) satellite mission requires additional information about geocenter motion. These variations are not available directly due to the mission implementation in the CM-frame and are represented by the degree-1 terms of the spherical harmonics expansion. Global degree-1 estimates can be determined with the method of Swenson et al. (2008) from ocean mass variability, the geometry of the global land-sea distribution, and GRACE data of higher degrees and orders. Consequently, a recursive relation between the derivation of ocean mass variations from GRACE data and the introduction of geocenter motion into GRACE data exists. In this contribution, we will present a recent improvement to the processing strategy described in Bergmann-Wolf et al. (2014) by introducing a non-homogeneous distribution of global ocean mass variations in the geocenter motion determination strategy, which is due to the effects of loading and self-attraction induced by mass redistributions at the surface. A comparison of different GRACE-based oceanographic products (barystatic signal for both the global oceans and individual basins; barotropic transport variations of major ocean currents) with degree-1 terms estimated with a homogeneous and non-homogeneous ocean mass representation will be discussed, and differences in noise levels in most recent GRACE solutions from GFZ (RL05a), CSR, and JPL (both RL05) and their consequences for the application of this method will be discussed. Swenson, S., D. Chambers and J. Wahr (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410 Bergmann-Wolf, I., L. Zhang and H. Dobslaw (2014), Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from GRACE, J. Geod. Sci., 4, 37-48
NASA Astrophysics Data System (ADS)
Kelley, Katherine A.; Kingsley, Richard; Schilling, Jean-Guy
2013-01-01
The global mid-ocean ridge system is peppered with localities where mantle plumes impinge on oceanic spreading centers. Here, we present new, high resolution and high precision data for 40 trace elements in 573 samples of variably plume-influenced mid-ocean ridge basalts from the Mid-Atlantic ridge, the Easter Microplate and Salas y Gomez seamounts, the Galápagos spreading center, and the Gulf of Aden, in addition to previously unpublished major element and isotopic data for these regions. Included in the data set are the unconventional trace elements Mo, Cd, Sn, Sb, W, and Tl, which are not commonly reported by most geochemical studies. We show variations in the ratios Mo/Ce, Cd/Dy, Sn/Sm, Sb/Ce, W/U, and Rb/Tl, which are expected not to fractionate significantly during melting or crystallization, as a function of proximity to plume-related features on these ridges. The Cd/Dy and Sn/Sm ratios show little variation with plume proximity, although higher Cd/Dy may signal increases in the role of garnet in the mantle source beneath some plumes. Globally, the Rb/Tl ratio closely approximates the La/SmN ratio, and thus provides a sensitive tracer of enriched mantle domains. The W/U ratio is not elevated at plume centers, but we find significant enrichments in W/U, and to a lesser extent the Mo/Ce and Sb/Ce ratios, at mid-ocean ridges proximal to plumes. Such enrichments may provide evidence of far-field entrainment of lower mantle material that has interacted with the core by deeply-rooted, upwelling mantle plumes.
A Roadmap for Antarctic and Southern Ocean Science for the Next Two Decades and Beyond
NASA Astrophysics Data System (ADS)
Kennicutt, M. C., II
2015-12-01
Abstract: Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
Understanding the robustness of Hadley cell response to wide variations in ocean heat transport
NASA Astrophysics Data System (ADS)
Rencurrel, M. C.; Rose, B. E. J.
2017-12-01
One important aspect of our climate system is the relationship between surface climate and the poleward energy transport in the atmosphere and ocean. Previous studies have shown that increases in poleward ocean heat transport (OHT) tend to warm the midlatitudes without strongly affecting tropical SSTs, resulting in a reduction in the equator-to-pole temperature gradient. This "tropical thermostat" effect depends crucially on a slowdown of the Hadley circulation (HC), with consequent changes in surface evaporation, atmospheric water vapor, and cloudiness. Here we extend previous studies by considering a wide range of spatial patterns of OHT, which we impose in a suite of slab-ocean aquaplanet GCM simulations. The forcing patterns are idealized but sample a variety of ocean circulation features. We find that the tropical thermostat and HC slowdown effects are relatively robust across all forcing patterns. A 1 PW increase in the amplitude of the prescribed OHT spatial pattern results in a global mean warming and a roughly 5 x 1010 kg/s decrease in HC mass flux, regardless of the detailed spatial structure of the imposed OHT. While the rate of HC slowdown is relatively robust, the mechanisms driving it are less so. Smaller, equator-to-subtropical scale OHT patterns are associated with greater reduced Gross Moist Stability (GMS) than the larger-scale OHT patterns. As the imposed OHT is limited equatorward, the HC becomes less efficient at transporting energy out of the tropics, implying that GMS has a modulating effect on the dynamical response of the cell. These experiments offer some new insights on the interplay between atmospheric dynamics and the radiative and hydrological aspects of global climate.
The future of spaceborne altimetry. Oceans and climate change: A long-term strategy
NASA Technical Reports Server (NTRS)
Koblinsky, C. J. (Editor); Gaspar, P. (Editor); Lagerloef, G. (Editor)
1992-01-01
The ocean circulation and polar ice sheet volumes provide important memory and control functions in the global climate. Their long term variations are unknown and need to be understood before meaningful appraisals of climate change can be made. Satellite altimetry is the only method for providing global information on the ocean circulation and ice sheet volume. A robust altimeter measurement program is planned which will initiate global observations of the ocean circulation and polar ice sheets. In order to provide useful data about the climate, these measurements must be continued with unbroken coverage into the next century. Herein, past results of the role of the ocean in the climate system is summarized, near term goals are outlined, and requirements and options are presented for future altimeter missions. There are three basic scientific objectives for the program: ocean circulation; polar ice sheets; and mean sea level change. The greatest scientific benefit will be achieved with a series of dedicated high precision altimeter spacecraft, for which the choice of orbit parameters and system accuracy are unencumbered by requirements of companion instruments.
Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon
NASA Technical Reports Server (NTRS)
Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.
2009-01-01
The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.
Cosmic meteor dust: potentially the dominant source of bio-available iron in the Southern Ocean
NASA Astrophysics Data System (ADS)
Dyrud, L. P.; Marsh, D. R.; Del Castillo, C. E.; Fentzke, J.; Lopez-Rosado, R.; Behrenfeld, M.
2012-12-01
Johnson, 2001 [Johnson, Kenneth. S. (2001), Iron supply and demand in the upper ocean: Is extraterrestrial dust a significant source of bioavailable iron?, Global Biogeochem. Cycles, 15(1), 61-63, doi:10.1029/2000GB001295], first suggested that meteoric particulate flux could be a significant source of bio-available iron, particularly in regions with little or no eolean sources, such as the Southern Ocean. While these calculations raised intriguing questions, there were many large unknowns in the input calculations between meteor flux and bio-available ocean molecular densities. There has been significant research in the intervening decade on related topics, such as the magnitude (~200 ktons per year) and composition of the meteoric flux, its atmospheric evaporation, transport, mesospheric formation of potentially soluble meteoric smoke, and extraterrestrial iron isotope identification. Paramount of these findings are recent NCAR WACCM atmosphere model results demonstrating that the majority of meteoric constituents are transported towards the winter poles and the polar vortex. This may lead to a focusing of meteoritic iron deposition towards the Southern Ocean. We present a proposed research plan involving Southern Ocean sample collection and analysis and atmospheric and biological modeling to determine both the current relevance of meteoric iron, and examine the past and future consequences of cosmic dust under a changing climate.
GLODAPv2 data exploration and extraction system
NASA Astrophysics Data System (ADS)
Krassovski, Misha; Kozyr, Alex; Boden, Thomas
2016-04-01
The Global Ocean Data Analysis Project (GLODAP) is a cooperative effort of investigators funded for ocean synthesis and modeling projects by the U.S. National Oceanic and Atmospheric Administration (NOAA), Department of Energy (DOE), and National Science Foundation (NSF). Cruises conducted as part of the WOCE, JGOFS, and NOAA Ocean-Atmosphere Carbon Exchange Study (OACES) over the decade of the 1990s generated oceanographic data of unparalleled quality and quantity. GLODAPv2 is a uniformly calibrated open-ocean data product containing inorganic carbon and carbon-relevant variables. This new product includes data from approximately one million individual seawater samples collected from over 700 cruises during the period 1972-2013. Extensive quality control and subsequent calibration were carried out for salinity, oxygen, nutrient, carbon dioxide, total alkalinity, pH, and chlorofluorocarbon data. The Carbon Dioxide Information and Analysis Center (CDIAC), serving as the primary DOE disseminator for climate data and information, developed database and web accessible systems that permit users worldwide to query and retrieve data from the GLODAPv2 collection. This presentation will showcase this new system, discuss technologies used to build the GLODAPv2 resource, and describe integration with a metadata search engine provided by CDIAC as well.
Anomalous Upwelling in Nan Wan: July 2008
2009-12-01
Head Ruth H. Preller 7300 Security, Code 1226 Office of Couns sl.Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 Public Affairs (Unclassified...State University (OSU) tidal forcing drives the tidal currents. A global weather forecast model (Navy Operational Global Atmospheric Prediction...system derives its open ocean boundary conditions from NRL global NCOM (Navy Co- astal Ocean Model) (Rhodes et al. 2002) that operates daily
NASA Astrophysics Data System (ADS)
Leggett, L. Mark W.; Ball, David A.
2018-02-01
The difference between the time series trend for temperature expected from the increasing level of atmospheric CO2 and that for the (more slowly rising) observed temperature has been termed the global surface temperature slowdown. In this paper, we characterise the single time series made from the subtraction of these two time series as the `global surface temperature gap'. We also develop an analogous atmospheric CO2 gap series from the difference between the level of CO2 and first-difference CO2 (that is, the change in CO2 from one period to the next). This paper provides three further pieces of evidence concerning the global surface temperature slowdown. First, we find that the present size of both the global surface temperature gap and the CO2 gap is unprecedented over a period starting at least as far back as the 1860s. Second, ARDL and Granger causality analyses involving the global surface temperature gap against the major candidate physical drivers of the ocean heat sink and biosphere evapotranspiration are conducted. In each case where ocean heat data was available, it was significant in the models: however, evapotranspiration, or its argued surrogate precipitation, also remained significant in the models alongside ocean heat. In terms of relative scale, the standardised regression coefficient for evapotranspiration was repeatedly of the same order of magnitude as—typically as much as half that for—ocean heat. The foregoing is evidence that, alongside the ocean heat sink, evapotranspiration is also likely to be making a substantial contribution to the global atmospheric temperature outcome. Third, there is evidence that both the ocean heat sink and the evapotranspiration process might be able to continue into the future to keep the temperature lower than the level-of-CO2 models would suggest. It is shown that this means there can be benefit in using the first-difference CO2 to temperature relationship shown in Leggett and Ball (Atmos Chem Phys 15(20):11571-11592, 2015) to forecast future global surface temperature.
Ocean Data from MODIS at the NASA Goddard DAAC
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory G.; Wharton, Stephen (Technical Monitor)
2000-01-01
Terra satellite carrying the Moderate Resolution Imaging Spectroradiometer (MODIS) was successfully launched on December 18, 1999. Some of the 36 different wavelengths that MODIS samples have never before been measured from space. New ocean data products, which have not been derived on a global scale before, are made available for research to the scientific community. For example, MODIS uses a new split window in the four-micron region for the better measurement of Sea Surface Temperature (SST), and provides the unprecedented ability (683 nm band) to measure chlorophyll fluorescence. At full ocean production, more than a thousand different ocean products in three major categories (ocean color, sea surface temperature, and ocean primary production) are archived at the NASA Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) at the rate of approx. 230GB/day. The challenge is to distribute such large volumes of data to the ocean community. It is achieved through a combination of public and restricted EOS Data Gateways, the GES DAAC Search and Order WWW interface, and an FTP site that contains samples of MODIS data. A new Search and Order WWW interface at http://acdisx.gsfc.nasa.gov/data/ developed at the GES DAAC is based on a hierarchical organization of data, will always return non-zero results. It has a very convenient geographical representation of five-minute data granule coverage for each day MODIS Data Support Team (MDST) continues the tradition of quality support at the GES DAAC for the ocean color data from the Coastal Zone Color Scanner (CZCS) and the Sea Viewing Wide Field-of-View Sensor (SeaWiFS) by providing expert assistance to users in accessing data products, information on visualization tools, documentation for data products and formats (Hierarchical Data Format-Earth Observing System (HDF-EOS)), information on the scientific content of products and metadata. Visit the MDST website at http://daac.gsfc.nasa.gov/CAMPAIGN DOCS/MODIS/index.html
The harzburgites-lherzolite cycle: depletion and refertilization processes
NASA Astrophysics Data System (ADS)
Dijkstra, A. H.
2011-12-01
Lherzolites or clinopyroxene-rich harzburgites sampled at the ocean floor are now generally interpreted as refractory harzburgites refertilized by melt-rock reaction or melt impregnation at the spreading center, rather than as relatively undepleted bulk upper mantle. The key evidence for a melt refertilization origin is often textural. Critically, the refertilization can mask the underlying very refractory character: oceanic peridotites prior to melt refertilization at the ridge are often too refractory to be simple mantle residues of bulk upper mantle that was melted at the ridge. This suggests that the upper mantle contains large domains that record prior melting histories. This is supported by ancient rhenium-depletion ages that are common in oceanic peridotites. In this presentation, I will discuss some key examples (e.g., Macquarie Island [1], Pindos, Totalp, Lanzarote) of refertilized oceanic peridotites, which all have recorded previous, ancient depletions. I will show the textural and geochemical evidence for melt refertilization. It has often been assumed that melt refertilization occurs by interaction with mantle melts. However, there is now evidence for melt refertilization through a reaction with eclogite-derived melts, probably at the base of the melting column underneath the ridge system. These eclogitic mantle heterogeneities themselves do not normally survive the melting underneath the spreading center, but their isotopic signature can be recognized in the reacted peridotites. In summary, we have moved away from the idea that oceanic mantle rocks are simple melting residues of homogeneous bulk upper mantle. The picture that emerges is a rich and complex one, suggesting that oceanic mantle rocks record dynamic histories of melting and refertilization. In particular, the melting event in refertilized peridotites can be much older than the age of the ridge system at which they are sampled. Many oceanic peridotites contain evidence for a Mesoproterozoic melting event of perhaps global significance. Regardless of the nature of these melting events, it is now clear that in their complex overprinting history, oceanic peridotites more and more resemble polygenetic metamorphic rocks.
Ryan, Peter G
2008-08-01
I compare plastic ingested by five species of seabirds sampled in the 1980s and again in 1999-2006. The numbers of ingested plastic particles have not changed significantly, but the proportion of virgin pellets has decreased 44-79% in all five species: great shearwater Puffinus gravis, white-chinned petrel Procellaria aequinoctialis, broad-billed prion Pachyptila vittata, white-faced storm petrel Pelagodroma marina and white-bellied storm petrel Fregetta grallaria. The populations sampled range widely in the South Atlantic and western Indian Oceans. The most marked reduction occurred in great shearwaters, where the average number of pellets per bird decreased from 10.5 to 1.6. This species migrates between the South and North Atlantic each year. Similar decreases in virgin pellets have been recorded in short-tailed shearwaters Puffinus tenuirostris in the Pacific Ocean and northern fulmars Fulmarus glacialis in the North Sea. More data are needed on the relationship between plastic loads in seabirds and the density of plastic at sea in their foraging areas, but the consistent decrease in pellets in birds suggests there has been a global change in the composition of small plastic debris at sea over the last two decades.
A global planktic foraminifer census data set for the Pliocene ocean
Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.
2016-01-01
This article presents data derived by the USGS Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project. PRISM has generated planktic foraminifer census data from core sites and outcrops around the globe since 1988. These data form the basis of a number of paleoceanographic reconstructions focused on the mid-Piacenzian Warm Period (3.264 to 3.025 million years ago). Data are presented as counts of individuals within 64 taxonomic categories for each locality. We describe sample acquisition and processing, age dating, taxonomy and archival storage of material. These data provide a unique, stratigraphically focused opportunity to assess the effects of global warming on marine plankton.
2004-01-01
international Argo practices. Data appropriate for research applications and for comparison with climate change models are not available for several...global ocean heat and fresh water storage and the detection and attribution of climate change . These presentations can be accessed at http...stresses on ocean ecosystems have serious consequences, and sometimes dramatic ones, such as coral reef bleaching . In the future, the impacts of a
Sentinel-3a: commissioning phase results of its optical payload
NASA Astrophysics Data System (ADS)
Nieke, J.; Mavrocordatos, C.
2017-09-01
The Sentinel-3 (S3) is a Global Land and Ocean Mission [1] currently in development as part of the European Commission's Copernicus programme (former: Global Monitoring for Environment and Security (GMES) [2]). The multi-instrument Sentinel-3 mission measures sea-surface topography, sea- and land-surface temperature, ocean colour and land colour to support ocean forecasting systems, as well as environmental and climate monitoring with near-real time data.
Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans
NASA Technical Reports Server (NTRS)
Remer, Lorraine A.; Kaufman, Yoram J.
2004-01-01
Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.
NASA Astrophysics Data System (ADS)
Lenton, Andrew; Matear, Richard J.; Keller, David P.; Scott, Vivian; Vaughan, Naomi E.
2018-04-01
Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr-1) over the period 2020-2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ˜ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020-2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses.
NASA Astrophysics Data System (ADS)
Valdivieso, Maria
2014-05-01
The GODAE OceanView and CLIVAR-GSOP ocean synthesis program has been assessing the degree of consistency between global air-sea flux data sets obtained from ocean or coupled reanalyses (Valdivieso et al., 2014). So far, fifteen global air-sea heat flux products obtained from ocean or coupled reanalyses have been examined: seven are from low-resolution ocean reanalyses (BOM PEODAS, ECMWF ORAS4, JMA/MRI MOVEG2, JMA/MRI MOVECORE, Hamburg Univ. GECCO2, JPL ECCOv4, and NCEP GODAS), five are from eddy-permitting ocean reanalyses developed as part of the EU GMES MyOcean program (Mercator GLORYS2v1, Reading Univ. UR025.3, UR025.4, UKMO GloSea5, and CMCC C-GLORS), and the remaining three are couple reanalyses based on coupled climate models (JMA/MRI MOVE-C, GFDL ECDA and NCEP CFSR). The global heat closure in the products over the period 1993-2009 spanned by all data sets is presented in comparison with observational and atmospheric reanalysis estimates. Then, global maps of ensemble spread in the seasonal cycle, and of the Signal to Noise Ratio of interannual flux variability over the 17-yr common period are shown to illustrate the consistency between the products. We have also studied regional variability in the products, particularly at the OceanSITES project locations (such as, for instance, the TAO/TRITON and PIRATA arrays in the Tropical Pacific and Atlantic, respectively). Comparisons are being made with other products such as OAFlux latent and sensible heat fluxes (Yu et al., 2008) combined with ISCCP satellite-based radiation (Zhang et al., 2004), the ship-based NOC2.0 product (Berry and Kent, 2009), the Large and Yeager (2009) hybrid flux dataset CORE.2, and two atmospheric reanalysis products, the ECMWF ERA-Interim reanalysis (referred to as ERAi, Dee et al., 2011) and the NCEP/DOE reanalysis R2 (referred to as NCEP-R2, Kanamitsu et al., 2002). Preliminary comparisons with the observational flux products from OceanSITES are also underway. References Berry, D.I. and E.C. Kent (2009), A New Air-Sea Interaction Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 10.1175/2008BAMS2639.1. Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/qj.828. Kanamitsu M., Ebitsuzaki W., Woolen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G. (2002), NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631-1643. Large, W. and Yeager, S. (2009), The global climatology of an interannually varying air-sea flux data set. Clim. Dynamics, Volume 33, pp 341-364 Valdivieso, M. and co-authors (2014): Heat fluxes from ocean and coupled reanalyses, Clivar Exchanges. Issue 64. Yu, L., X. Jin, and R. A. Weller (2008), Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report OAFlux Project (OA2008-01), Woods Hole Oceanographic Institution. Zhang, Y., WB Rossow, AA Lacis, V Oinas, MI Mishchenk (2004), Calculation of radiative fluxes from the surface to top of atmsophere based on ISCCP and other global data sets. Journal of Geophysical Research: Atmospheres (1984-2012) 109 (D19).
Tsunami Speed Variations in Density-stratified Compressible Global Oceans
NASA Astrophysics Data System (ADS)
Watada, S.
2013-12-01
Recent tsunami observations in the deep ocean have accumulated unequivocal evidence that tsunami traveltime delays compared with the linear long-wave tsunami simulations occur during tsunami propagation in the deep ocean. The delay is up to 2% of the tsunami traveltime. Watada et al. [2013] investigated the cause of the delay using the normal mode theory of tsunamis and attributed the delay to the compressibility of seawater, the elasticity of the solid earth, and the gravitational potential change associated with mass motion during the passage of tsunamis. Tsunami speed variations in the deep ocean caused by seawater density stratification is investigated using a newly developed propagator matrix method that is applicable to seawater with depth-variable sound speeds and density gradients. For a 4-km deep ocean, the total tsunami speed reduction is 0.45% compared with incompressible homogeneous seawater; two thirds of the reduction is due to elastic energy stored in the water and one third is due to water density stratification mainly by hydrostatic compression. Tsunami speeds are computed for global ocean density and sound speed profiles and characteristic structures are discussed. Tsunami speed reductions are proportional to ocean depth with small variations, except for in warm Mediterranean seas. The impacts of seawater compressibility and the elasticity effect of the solid earth on tsunami traveltime should be included for precise modeling of trans-oceanic tsunamis. Data locations where a vertical ocean profile deeper than 2500 m is available in World Ocean Atlas 2009. The dark gray area indicates the Pacific Ocean defined in WOA09. a) Tsunami speed variations. Red, gray and black bars represent global, Pacific, and Mediterranean Sea, respectively. b) Regression lines of the tsunami velocity reduction for all oceans. c)Vertical ocean profiles at grid points indicated by the stars in Figure 1.
GLOBAL ENVIRONMENTAL CHANGE ISSUES IN THE WESTERN INDIAN OCEAN REGION
Mounting evidence from both instrumental and proxy records shows global climate continues to change. nalysis of near-surface temperatures over land and oceans during the past 130 years shows marked warming during the first half of this century with relatively steady temperatures ...
75 FR 39529 - Ocean Transportation Intermediary License Applicants
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
...), Adam Karabashi, Secretary, Application Type: Add NVO Service and Trade Name Change Blue Ocean Shipping...: Trade Name Change Chemlogix Global LLC dba Vistalogix Global (OFF & NVO), 1777 Sentry Parkway West... Individual), John S. Hamilton, Manager/Chairman/CEO, Application Type: Trade Name Change CIL Freight Inc...
NASA Technical Reports Server (NTRS)
1978-01-01
Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.
Potential Increasing Dominance of Heterotrophy in the Global Ocean
NASA Astrophysics Data System (ADS)
Kvale, K.; Meissner, K. J.; Keller, D. P.
2016-02-01
Autotrophs are largely limited by resources in the modern ocean. However, standard metabolic theory suggests continued ocean warming could globally benefit heterotrophs, thereby reducing autotrophic nutrient limitation. The paleo record as well as modern observations offer evidence this has happened in the past and could happen again. Increasing dominance of heterotrophs would result in strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We describe the transition towards such a state in the early 22nd century as a response to business-as-usual Representative Concentration Pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations: with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2-4 °C global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory. Inclusion of small phytoplankton and calcifiers increase the model NPP:SST sensitivity because of their relatively higher nutrient affinity than general phytoplankton. Accounting for organic carbon "protected" from remineralization by carbonate ballast mitigates the exponential increase in NPP and provides an increasingly important pathway for deep carbon export with higher SST changes, despite simultaneous increasing carbonate dissolution rates due to ocean acidification.
Constraints on the thermosteric component of Last Interglacial sea level
NASA Astrophysics Data System (ADS)
Shackleton, S. A.; Severinghaus, J. P.; Petrenko, V. V.; Dyonisius, M.; Hmiel, B.
2016-12-01
With global temperatures 1 to 2°C above preindustrial, but sea level exceeding current levels by upwards of 8 meters, the Last Interglacial (LIG) period at 125 ka may provide valuable insight into Earth system constraints under future global warming. The relative contributions of thermal expansion and ice sheet loss to sea level rise over this period are of particular interest in seeking to improve sea level projections in the upcoming decades and beyond. Here we quantify this thermosteric component from a reconstruction of global ocean temperature over the LIG from atmospheric noble gases trapped in glacial ice. With no major sources or sinks outside of the ocean-atmosphere system, the relative changes in the atmospheric content of krypton, xenon, and nitrogen reflect changes in ocean gas storage. This storage is primarily governed by solubility and ocean temperature, making dKr/N2, dXe/N2, and dXe/Kr unique tracers of globally integrated oceanic heat content. However, processes within the firn can fractionate these gases, and firn effects on these tracers must be removed to derive an ocean temperature. We present high precision measurements of these gas ratios along with isotopes of argon, krypton, and xenon in firn air withdrawn from the snowpack at Summit, Greenland. We use these isotopes to identify sources of fractionation within the firn and quantify their effects on the noble gas tracers, enabling a reconstruction of Last Interglacial ocean temperature.
Trends in Ocean Irradiance using a Radiative Model Forced with Terra Aerosols and Clouds
NASA Technical Reports Server (NTRS)
Gregg, Watson; Casey, Nancy; Romanou, Anastasia
2010-01-01
Aerosol and cloud information from MODIS on Terra provide enhanced capability to understand surface irradiance over the oceans and its variability. These relationships can be important for ocean biology and carbon cycles. An established radiative transfer model, the Ocean-Atmosphere Spectral Irradiance Model (OASIM) is used to describe ocean irradiance variability on seasonal to decadal time scales. The model is forced with information on aerosols and clouds from the MODIS sensor on Terra and Aqua. A 7-year record (2000-2006) showed no trends in global ocean surface irradiance or photosynthetic available irradiance (PAR). There were significant (P<0.05) negative trends in the Mediterranean Sea, tropical Pacific) and tropical Indian Oceans, of -7.0, -5.0 and -2.7 W/sq m respectively. Global interannual variability was also modest. Regional interannual variability was quite large in some ocean basins, where monthly excursions from climatology were often >20 W/sq m. The trends using MODIS data contrast with results from OASIM using liquid water path estimates from the International Satellite Cloud Climatology Project (ISCCP). Here, a global trend of -2 W/sq m was observed, largely dues to a large negative trend in the Antarctic -12 W/sq m. These results suggest the importance of the choice of liquid water path data sets in assessments of medium-length trends in ocean surface irradiance. The choices also impact the evaluation of changes in ocean biogeochemistry.
NASA Astrophysics Data System (ADS)
Ishikawa, A.; Senda, R.; Suzuki, K.; Tani, K.; Ishii, T.
2015-12-01
Recent accumulation of Os isotope data obtained either from abyssal peridotites or from ocean island peridotite xenoliths has clearly demonstrated that the modern convecting mantle is substantially heterogeneous in Os-isotope composition. Unlike other radiogenic isotope heterogeneities observed in oceanic basalts, largely controlled by incorporation of recycled crustal materials, it seems likely that the observed range of Os-isotope compositions in oceanic peridotites directly reflect varying degrees of ancient melt extraction from peridotitic mantle. Hence, global variations of Os-isotope compositions in oceanic peridotites may provide an important piece of information in unraveling the geochemical and geodynamic evolution of the convecting mantle. Here we present the Os-isotope variations in peridotite-serpentinite recovered from the Pacific area because the number of data available is yet scarce when compared with data from other oceans (Atlantic, Arctic and Indian Ocean). Our primary purpose is to test whether mantle domains underlying four major oceans are distinct in terms of Os isotope variations, reflecting the pattern of mantle convection or mixing efficiency. We examined 187Os/188Os ratios and highly siderophile element concentrations in serpentinized harzburgite recovered from Hess Deep in the East Pacific Rise, a mantle section in the Taitao ophiolite, Chile (Schulte et al., 2009), serpentinized harzburgite bodies in the Izu-Ogasawara and Tonga forearc (Parkinson et al., 1998), peridotite xenoliths from the Pali-Kaau vent in O'ahu island, Hawaii (Bizimis et al., 2007), and low-temperature type peridotite xenoliths from Malaita, Solomon Islands (Ishikawa et al., 2011). The results demonstrate that samples from each area display very similar Os-isotope variations with a pronounced peak in 187Os/188Os = 0.125-0.128. Moreover, the relatively larger datasets obtained from Hess Deep, Taitao and Malaita clearly exhibit the presence of secondary peak in 187Os/188Os=0.117-0.119 (Re-depletion ages ~1.5 Ga). These characteristics are almost identical to the global population mainly comprised of data from other oceans. This suggests that small-scale heterogeneities created by ancient melt extraction are homogeneously distributed over large scales within the convecting mantle.
NASA Astrophysics Data System (ADS)
Johannesson, K. H.; Chevis, D.; Burdige, D. J.; Cable, J. E.; Martin, J. B.; Roy, M.
2008-12-01
Johannesson and Burdige [2007, EPSL 253, 129] suggested that submarine groundwater discharge (SGD) represents a substantial, unrecognized source of Nd to the oceans. Based on a globally averaged terrestrial SGD flux equal to 6 percent of the global river discharge and mean groundwater Nd concentrations obtained from the literature, we estimated a global SGD Nd flux that was within a factor of 2 of the previously proposed missing global Nd flux. To test our hypothesis that SGD is an important source of Nd to the oceans, rare earth element (REE) concentrations were measured in SGD samples collected beneath a coastal lagoon on the Florida Atlantic coast (Indian River Lagoon). Shale (PAAS)-normalized REE patterns for all SGD samples exhibit substantial enrichments in the heavy REEs (HREE) compared to the light REEs (LREE) as shown by their PAAS-normalized Yb/Nd ratios, which range from 5 to 73 (mean = 16). SGD from piezometers located 10 m and 22.5 m from shore exhibit PAAS-normalized REE plots that are most similar to the patterns of the overlying lagoon (surface) water. For example, mean PAAS-normalized Yb/Nd ratios for groundwaters sampled from the 10 m and 22.5 m piezometers are 6.7 and 8.3, which compare well with the PAAS- normalized Yb/Nd ratio of water column samples (8.7). In contrast, the mean PAAS-normalized Yb/Nd ratio of terrestrial-derived groundwater from the piezometer at the shoreline is 41. Neodymium concentrations of the SGD samples range from 230 to 2400 pmol/kg (mean = 507 pmol/kg), and thus are substantially higher than reported for open ocean seawater (typical Nd = 20 pmol/kg). Based on SGD fluxes previously determined with seepage meters, porewater Cl concentrations, and Rn-222 deficiencies of porewaters [Martin et al., 2007, Water Resour. Res. 43, W0544, doi: 10.1029/2006WR005266], we estimate daily inputs of Nd to the Indian River Lagoon of 50 to 2100 umoles for the terrestrial-derived component of SGD, and 171 mmoles for the marine component of SGD (81 to 3400 times greater). Residence times of Nd in the portion of the lagoon studied are estimated to range from 6 to more than 250 years based on the terrestrial-derived SGD flux of Nd, compared to 26 days using the marine-derived SGD flux of Nd. The substantially shorter residence time determined using the marine-derived SGD component compares well with the estimated flushing time for this portion of the estuary (~3 weeks). The similarity between SGD and lagoon water Nd concentrations and PAAS-normalized REE patterns, in conjunction with the larger, marine-derived SGD flux of Nd, strongly suggests that recirculation of lagoon water and subsequent SGD exerts the principal control on Nd concentrations in the lagoon. The elevated Nd concentration for deep groundwater (186 cmbsf) located 22.5 m from shore also agrees well with another study that reported recirculated, marine SGD as a source of REEs to coastal waters [Duncan and Shaw, 2003, Aquatic Geochem. 9, 233]. Thus, our observations demonstrate the importance of recirculated, marine SGD to these lagoon surface waters, and further support our hypothesis that SGD contributes substantial fluxes of Nd to the coastal oceans.
A global estimate of the full oceanic 13C Suess effect since the preindustrial
NASA Astrophysics Data System (ADS)
Eide, Marie; Olsen, Are; Ninnemann, Ulysses S.; Eldevik, Tor
2017-03-01
We present the first estimate of the full global ocean 13C Suess effect since preindustrial times, based on observations. This has been derived by first using the method of Olsen and Ninnemann (2010) to calculate 13C Suess effect estimates on sections spanning the world ocean, which were next mapped on a global 1° × 1° grid. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the subtropical gyres of the Northern Hemisphere, where δ13C of dissolved inorganic carbon has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The relationship between the 13C Suess effect and the concentration of anthropogenic carbon varies strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. Finally, we estimate a global ocean inventory of anthropogenic CO2 of 92 ± 46 Gt C. This provides an estimate that is almost independent of and consistent, within the uncertainties, with previous estimates.
NASA Astrophysics Data System (ADS)
Cheng, L.; Zhu, J.
2016-02-01
Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.
NASA Astrophysics Data System (ADS)
Wilcox, C.; van Sebille, E.
2016-02-01
Several global studies have attempted to estimate the standing stock of plastic debris in the oceans at the global scale. However, recent work estimating the amount lost from land on an annual basis suggests that the standing stock should be several orders of magnitude larger than the global estimates. We investigate the role of coastal deposition within the first few weeks after plastic enters the ocean and very near its sources, one of the hypothesized sinks for the missing plastic in this mass balance. We utilize a continental scale dataset of plastics collected along Australia's coast and in the offshore regions together with models of plastic release and transport based on Lagrangian tracking to investigate the role of local deposition in the coastal environment. Our models predict that the vast majority of positively buoyant plastic is deposited within a very short distance from its release point, with only a small fraction escaping into the open ocean. These predictions match our coastal and offshore observations, providing clear evidence that this mechanism of immediate coastal deposition is, at least in part, driving the apparent mismatch between coastal emissions and the standing stock in the ocean.
Characterisation of intact proteins in aquatic samples from the Florida Everglades
NASA Astrophysics Data System (ADS)
Jones, V.; Ruddell, C. J.; Wainwright, G.; Rees, H. H.; Jaffe, R.; Penkman, K. E. H.; Collins, C. J.; Wolff, G. A.
2003-04-01
Dissolved organic nitrogen (DON) is the largest reservoir of reduced nitrogen in the oceans. Limited knowledge of the molecular composition of DON hinders our understanding of its cycling. The need to comprehend the DON cycle is nowadays more imperative than ever, as there is evidence that concentrations of nitrate are decreasing, while concentrations of DON are increasing in the surface ocean, as an indirect effect of global warming and hence stratification of the water column (Karl et al., 2001). Proteins typically account for 5-10% of DON. Recently, it has been suggested that certain, bacterially-derived, proteins found in the ocean are not as labile as was originally thought (e.g. Tanoue et al., 1995) and may therefore form a crucial part of the long term DON cycle. Here, we have applied gel electrophoresis in combination with mass spectrometry and amino acid enantiomer (D/L) analysis, to characterise proteins from aquatic samples and consider their origin. Samples were collected in the Florida Everglades at locations selected to represent an array of ecosystems, ranging from marsh water to marine coastal environments. Application of gel electrophoresis in combination with mass spectrometry revealed that each sample had a complex and characteristic protein distribution. Some proteins were common to more than one site. The bacterial protein of 48 kDa, previously reported as ubiquitous in the open ocean (e.g. Tanoue et al., 1995), was only present at one sampling location strongly affected by offshore currents. Amino acid enantiomer (D/L) analysis revealed that the bacterial input to amino acid nitrogen was an order of magnitude smaller than that reported for open ocean samples (McCarthy et al., 1998), although a trend towards higher bacterial input was observed from freshwater to marine sampling locations. We suggest that this is due to the presence of additional sources of protein to the DON pool, such as the higher plant vegetation, in freshwater and coastal environments compared to the open ocean. References Karl, D., Bidigare, R.R., Letelier, R.M., 2001. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: The domain shift hypothesis. Deep-Sea Research II, 48: 1449-1470. McCarthy, M.D., Hedges, J.J. Benner, R., 1998. Major bacterial contribution to marine dissolved organic nitrogen. Science, 281: 231-234. Tanoue E., Sumie, N., Kamo, M., Tsurita, A, 1995. Bacterial membranes: Possible sources of major dissolved protein in seawater. Geochimica and Cosmochimica Acta, 59: 2643-2648
Sea surface temperature predictions using a multi-ocean analysis ensemble scheme
NASA Astrophysics Data System (ADS)
Zhang, Ying; Zhu, Jieshun; Li, Zhongxian; Chen, Haishan; Zeng, Gang
2017-08-01
This study examined the global sea surface temperature (SST) predictions by a so-called multiple-ocean analysis ensemble (MAE) initialization method which was applied in the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2). Different from most operational climate prediction practices which are initialized by a specific ocean analysis system, the MAE method is based on multiple ocean analyses. In the paper, the MAE method was first justified by analyzing the ocean temperature variability in four ocean analyses which all are/were applied for operational climate predictions either at the European Centre for Medium-range Weather Forecasts or at NCEP. It was found that these systems exhibit substantial uncertainties in estimating the ocean states, especially at the deep layers. Further, a set of MAE hindcasts was conducted based on the four ocean analyses with CFSv2, starting from each April during 1982-2007. The MAE hindcasts were verified against a subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) Project. Comparisons suggested that MAE shows better SST predictions than CFSRR over most regions where ocean dynamics plays a vital role in SST evolutions, such as the El Niño and Atlantic Niño regions. Furthermore, significant improvements were also found in summer precipitation predictions over the equatorial eastern Pacific and Atlantic oceans, for which the local SST prediction improvements should be responsible. The prediction improvements by MAE imply a problem for most current climate predictions which are based on a specific ocean analysis system. That is, their predictions would drift towards states biased by errors inherent in their ocean initialization system, and thus have large prediction errors. In contrast, MAE arguably has an advantage by sampling such structural uncertainties, and could efficiently cancel these errors out in their predictions.
Ocean processes at the Antarctic continental slope.
Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker
2014-07-13
The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.
The self-consistent dynamic pole tide in global oceans
NASA Technical Reports Server (NTRS)
Dickman, S. R.
1985-01-01
The dynamic pole tide is characterized in a self-consistent manner by means of introducing a single nondifferential matrix equation compatible with the Liouville equation, modelling the ocean as global and of uniform depth. The deviations of the theory from the realistic ocean, associated with the nonglobality of the latter, are also given consideration, with an inference that in realistic oceans long-period modes of resonances would be increasingly likely to exist. The analysis of the nature of the pole tide and its effects on the Chandler wobble indicate that departures of the pole tide from the equilibrium may indeed be minimal.
Observations of Ocean Primary Productivity Using MODIS
NASA Technical Reports Server (NTRS)
Esaias, Wayne E.; Abbott, Mark R.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Measuring the magnitude and variability of oceanic net primary productivity (NPP) represents a key advancement toward our understanding of the dynamics of marine ecosystems and the role of the ocean in the global carbon cycle. MODIS observations make two new contributions in addition to continuing the bio-optical time series begun with Orbview-2's SeaWiFS sensor. First, MODIS provides weekly estimates of global ocean net primary productivity on weekly and annual time periods, and annual empirical estimates of carbon export production. Second, MODIS provides additional insight into the spatial and temporal variations in photosynthetic efficiency through the direct measurements of solar-stimulated chlorophyll fluorescence. The two different weekly productivity indexes (first developed by Behrenfeld & Falkowski and by Yoder, Ryan and Howard) are used to derive daily productivity as a function of chlorophyll biomass, incident daily surface irradiance, temperature, euphotic depth, and mixed layer depth. Comparisons between these two estimates using both SeaWiFS and MODIS data show significant model differences in spatial distribution after allowance for the different integration depths. Both estimates are strongly dependence on the accuracy of the chlorophyll determination. In addition, an empirical approach is taken on annual scales to estimate global NPP and export production. Estimates of solar stimulated fluorescence efficiency from chlorophyll have been shown to be inversely related to photosynthetic efficiency by Abbott and co-workers. MODIS provides the first global estimates of oceanic chlorophyll fluorescence, providing an important proof of concept. MODIS observations are revealing spatial patterns of fluorescence efficiency which show expected variations with phytoplankton photo-physiological parameters as measured during in-situ surveys. This has opened the way for research into utilizing this information to improve our understanding of oceanic NPP variability. Deriving the ocean bio-optical properties places severe demands on instrument performance (especially band to band precision) and atmospheric correction. Improvements in MODIS instrument characterization and calibration over the first 16 mission months have greatly improved the accuracy of the chlorophyll input fields and FLH, and therefore the estimates of NPP and fluorescence efficiency. Annual estimates now show the oceanic NPP accounts for 40-50% of the global total NPP, with significant interannual variations related to large scale ocean processes. Spatial variations in ocean NPP, and exported production, have significant effects on exchange of CO2 between the ocean and atmosphere. Further work is underway to improve both the primary productivity model functions, and to refine our understanding of the relationships between fluorescence efficiency and NPP estimates. We expect that the MODIS instruments will prove extremely useful in assessing the time dependencies of oceanic carbon uptake and effects of iron enrichment, within the global carbon cycle.
The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses
NASA Astrophysics Data System (ADS)
Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie
2017-04-01
As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant, larvae dispersion etc… These Eulerian and Lagrangian validation approach can be applied for real time or offline assessment of ocean velocity products. In real time, the main limitation is our capability to detect drifter drogue's loss, causing erroneous assessment. Several methods, by comparison to wind entrainment effect or other velocity estimates like from satellite altimetry, are used. These Eulerian and Lagrangian surface velocity validation methods are planned to be adopted by the GODAE OceanView operational community in order to offer independent verification of surface current forecast.
An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project
NASA Astrophysics Data System (ADS)
Masina, Simona; Storto, Andrea; Ferry, Nicolas; Valdivieso, Maria; Haines, Keith; Balmaseda, Magdalena; Zuo, Hao; Drevillon, Marie; Parent, Laurent
2017-08-01
A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993-2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state.
NASA Astrophysics Data System (ADS)
Peterson, C.; Lisiecki, L. E.
2016-12-01
Across the deglaciation, atmospheric CO2 and global temperatures rise while the deep ocean ventilates carbon to the atmosphere and terrestrial biosphere. As the terrestrial biosphere expands, the mean global ocean δ13C signature increases in response. How well constrained is the global mean benthic δ13C from 20-6 ka? Are the atmosphere and terrestrial biosphere signals in benthic δ13C coupled across the deglaciation? Improved understanding of deglacial carbon cycle interactions can help close the gap between data-based and model-based estimates of global mean benthic δ13C and deep ocean carbon storage changes. Here we present a 118-record compilation of Cibicides wuellerstorfi δ13C time series that span 20-6 kyr. The δ13C records with a resolution better than 3 kyr and gaps between data smaller than 4 kyr are aligned to age models that are constrained by planktic 14C ages (Stern and Lisiecki, 2014). The δ13C records are stacked within nine regions. Then these regional stacks are combined using volume-weighted averages to create intermediate, deep and whole ocean δ13C stacks. The δ13C gradient between the intermediate and deep stacks covaries with atmospheric CO2 change. Meanwhile the deglacial global ocean mean δ13C rise tracks the expansion of the global terrestrial biosphere from 19-6 ka. From this volume-weighted global δ13C stack, the LGM-Holocene mean δ13C change is 0.35±0.10‰ similar to previous estimates (Curry et al., 1988; Duplessy et al., 1988; Peterson et al., 2015; Gebbie et al., 2015). The δ13C stacks and this 4D δ13C compilation are ideal for model-data comparisons and time-stepping 3D visualizations.
NASA Astrophysics Data System (ADS)
Dierssen, Heidi M.; Randolph, Kaylan
The oceans cover over 70% of the earth's surface and the life inhabiting the oceans play an important role in shaping the earth's climate. Phytoplankton, the microscopic organisms in the surface ocean, are responsible for half of the photosynthesis on the planet. These organisms at the base of the food web take up light and carbon dioxide and fix carbon into biological structures releasing oxygen. Estimating the amount of microscopic phytoplankton and their associated primary productivity over the vast expanses of the ocean is extremely challenging from ships. However, as phytoplankton take up light for photosynthesis, they change the color of the surface ocean from blue to green. Such shifts in ocean color can be measured from sensors placed high above the sea on satellites or aircraft and is called "ocean color remote sensing." In open ocean waters, the ocean color is predominantly driven by the phytoplankton concentration and ocean color remote sensing has been used to estimate the amount of chlorophyll a, the primary light-absorbing pigment in all phytoplankton. For the last few decades, satellite data have been used to estimate large-scale patterns of chlorophyll and to model primary productivity across the global ocean from daily to interannual timescales. Such global estimates of chlorophyll and primary productivity have been integrated into climate models and illustrate the important feedbacks between ocean life and global climate processes. In coastal and estuarine systems, ocean color is significantly influenced by other light-absorbing and light-scattering components besides phytoplankton. New approaches have been developed to evaluate the ocean color in relationship to colored dissolved organic matter, suspended sediments, and even to characterize the bathymetry and composition of the seafloor in optically shallow waters. Ocean color measurements are increasingly being used for environmental monitoring of harmful algal blooms, critical coastal habitats (e.g., seagrasses, kelps), eutrophication processes, oil spills, and a variety of hazards in the coastal zone.
Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes
NASA Astrophysics Data System (ADS)
Lough, A. J. M.; Klar, J. K.; Homoky, W. B.; Comer-Warner, S. A.; Milton, J. A.; Connelly, D. P.; James, R. H.; Mills, R. A.
2017-04-01
Iron is a scarce but essential micronutrient in the oceans that limits primary productivity in many regions of the surface ocean. The mechanisms and rates of Fe supply to the ocean interior are still poorly understood and quantified. Iron isotope ratios of different Fe pools can potentially be used to trace sources and sinks of the global Fe biogeochemical cycle if these boundary fluxes have distinct signatures. Seafloor hydrothermal vents emit metal rich fluids from mid-ocean ridges into the deep ocean. Iron isotope ratios have the potential to be used to trace the input of hydrothermal dissolved iron to the oceans if the local controls on the fractionation of Fe isotopes during plume dispersal in the deep ocean are understood. In this study we assess the behaviour of Fe isotopes in a Southern Ocean hydrothermal plume using a sampling program of Total Dissolvable Fe (TDFe), and dissolved Fe (dFe). We demonstrate that δ56Fe values of dFe (δ56dFe) within the hydrothermal plume change dramatically during early plume dispersal, ranging from -2.39 ± 0.05‰ to -0.13 ± 0.06‰ (2 SD). The isotopic composition of TDFe (δ56TDFe) was consistently heavier than dFe values, ranging from -0.31 ± 0.03‰ to 0.78 ± 0.05‰, consistent with Fe oxyhydroxide precipitation as the plume samples age. The dFe present in the hydrothermal plume includes stabilised dFe species with potential to be transported to the deep ocean. We estimate that stable dFe exported from the plume will have a δ56Fe of -0.28 ± 0.17‰. Further, we show that the proportion of authigenic iron-sulfide and iron-oxyhydroxide minerals precipitating in the buoyant plume exert opposing controls on the resultant isotope composition of dissolved Fe passed into the neutrally buoyant plume. We show that such controls yield variable dissolved Fe isotope signatures under the authigenic conditions reported from modern vent sites elsewhere, and so ought to be considered during iron isotope reconstructions of past hydrothermalism from ocean sediment records.
Oceanic mantle rocks reveal evidence for an ancient, 1.2-1.3 Ga global melting event
NASA Astrophysics Data System (ADS)
Dijkstra, A. H.; Sergeev, D.; McTaminey, L.; Dale, C. W.; Meisel, T. C.
2011-12-01
It is now increasingly being recognized that many oceanic peridotites are refertilized harzburgites, and that the refertilization often masks an extremely refractory character of the original mantle rock 'protolith'. Oceanic peridotites are, when the effects of melt refertilization are undone, often too refractory to be simple mantle melting residues after the extraction of mid-ocean ridge basalts at a spreading center. Rhenium-osmium isotope analysis is a powerful method to look through the effects of refertilization and to obtain constraints on the age of the melting that produced the refractory mantle protolith. Rhenium-depletion model ages of such anomalously refractory oceanic mantle rocks - found as abyssal peridotites or as mantle xenoliths on ocean islands - are typically >1 Ga, i.e., much older than the ridge system at which they were emplaced. In my contribution I will show results from two case studies of refertilized anciently depleted mantle rocks (Macquarie Island 'abyssal' peridotites and Lanzarote mantle xenoliths). Interestingly, very refractory oceanic mantle rocks from sites all around the world show recurring evidence for a Mesoproterozoic (~1.2-1.3 Ga) melting event [1]. Therefore, oceanic mantle rocks seem to preserve evidence for ancient melting events of global significance. Alternatively, such mantle rocks may be samples of rafts of ancient continental lithospheric mantle. Laser-ablation osmium isotope 'dating' of large populations of individual osmium-bearing alloys from mantle rocks is the key to better constrain the nature and significance of these ancient depletion events. Osmium-bearing alloys form when mantle rocks are melted to high-degrees. We have now extracted over >250 detrital osmium alloys from placer gold occurrences in the river Rhine. These alloys are derived from outcrops of ophiolitic mantle rocks in the Alps, which include blocks of mantle rocks emplaced within the Tethys Ocean, and ultramafic lenses of unknown (Precambrian?) age in the pre-Alpine Massifs. Populations of model ages of these Rhine alloys show prominent peaks at 0.5 and 1.2-1.3 Ga. The 1.2-1.3 Mesoproterozoic age peak recorded by the Rhine Os alloy population does also occur in Os alloy age distributions of other ophiolites worldwide, generally as a subsidiary peak [2]. In summary, osmium isotope model ages from mantle rocks and mantle-derived individual osmium alloys worldwide collectively point to a Mesoproterozoic, 1.2-1.3 Ga high-degree mantle melting event of global significance. This event may be related to a slab-avalanche or whole-mantle overturn event in Mesoproterozoic times. [1] Dijkstra et al. (2010) J. Petrology 51, 469-493 [2] Pearson et al. (2007) Nature 449, 202-205
Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling
NASA Technical Reports Server (NTRS)
Gregg, Watson
2004-01-01
Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.
A daily global mesoscale ocean eddy dataset from satellite altimetry.
Faghmous, James H; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin
2015-01-01
Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993-2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System.
Acidification at the Surface in the East Sea: A Coupled Climate-carbon Cycle Model Study
NASA Astrophysics Data System (ADS)
Park, Young-Gyu; Seol, Kyung-Hee; Boo, Kyung-On; Lee, Johan; Cho, Chunho; Byun, Young-Hwa; Seo, Seongbong
2018-05-01
This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.
A daily global mesoscale ocean eddy dataset from satellite altimetry
Faghmous, James H.; Frenger, Ivy; Yao, Yuanshun; Warmka, Robert; Lindell, Aron; Kumar, Vipin
2015-01-01
Mesoscale ocean eddies are ubiquitous coherent rotating structures of water with radial scales on the order of 100 kilometers. Eddies play a key role in the transport and mixing of momentum and tracers across the World Ocean. We present a global daily mesoscale ocean eddy dataset that contains ~45 million mesoscale features and 3.3 million eddy trajectories that persist at least two days as identified in the AVISO dataset over a period of 1993–2014. This dataset, along with the open-source eddy identification software, extract eddies with any parameters (minimum size, lifetime, etc.), to study global eddy properties and dynamics, and to empirically estimate the impact eddies have on mass or heat transport. Furthermore, our open-source software may be used to identify mesoscale features in model simulations and compare them to observed features. Finally, this dataset can be used to study the interaction between mesoscale ocean eddies and other components of the Earth System. PMID:26097744