Science.gov

Sample records for global potential energy

  1. Global Potential of Energy Efficiency Standards and Labeling Programs

    SciTech Connect

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under

  2. Global interior eddy available potential energy diagnosed from Argo floats

    NASA Astrophysics Data System (ADS)

    Roullet, Guillaume; Capet, Xavier; Maze, Guillaume

    2014-03-01

    By combining all Argo profiles for the period 2002 to present, a cumulative density function is constructed on a 3-D grid of the global ocean. This function quantifies the statistics of isopycnals: time-averaged density, root-mean square of isopycnal displacement, and eddy available potential energy (EAPE). EAPE is the analogue of the eddy kinetic energy, but for the potential energy reservoir. Because it is essentially tied to the spatial structure and magnitude of mesoscale activity, EAPE is an important quantity that should be useful to evaluate eddy resolving/permitting model turbulence and circulation. Among other striking features are the turbulent behavior of Pacific and southern Atlantic Tsuchiya jets and subsurface EAPE maxima in some parts of the ocean, particularly in the Southern Ocean.

  3. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  4. Evaluation of global onshore wind energy potential and generation costs.

    PubMed

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power. PMID:22715929

  5. Accurate global potential energy surface for the H + OH+ collision

    NASA Astrophysics Data System (ADS)

    Gannouni, M. A.; Jaidane, N. E.; Halvick, P.; Stoecklin, T.; Hochlaf, M.

    2014-05-01

    We mapped the global three-dimensional potential energy surface (3D-PES) of the water cation at the MRCI/aug-cc-pV5Z including the basis set superposition (BSSE) correction. This PES covers the molecular region and the long ranges close to the H + OH+(X3Σ-), the O + H2+(X2Σg+), and the hydrogen exchange channels. The quality of the PES is checked after comparison to previous experimental and theoretical results of the spectroscopic constants of H2O+(tilde X2B1) and of the diatomic fragments, the vibronic spectrum, the dissociation energy, and the barrier to linearity for H2O+(tilde X2B1). Our data nicely approach those measured and computed previously. The long range parts reproduce quite well the diatomic potentials. In whole, a good agreement is found, which validates our 3D-PES.

  6. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1992-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  7. A global potential energy surface for ArH2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1993-01-01

    We describe a simple analytic representation of the ArH2 potential energy surface which well reproduces the results of extensive ab initio electronic structure calculations. The analytic representation smoothly interpolates between the dissociated H2 and strong bonding limits. In the fitting process, emphasis is made on accurately reproducing regions of the potential expected to be important for high temperature (ca. 3000 K) collision processes. Overall, the anisotropy and H2 bond length dependence of the analytic representation well reproduce the input data.

  8. Global Expression for Representing Diatomic Potential-Energy Curves

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Schlosser, Herbert; Smith, John R.

    1991-01-01

    A three-parameter expression that gives an accurate fit to diatomic potential curves over the entire range of separation for charge transfers between 0 and 1. It is based on a generalization of the universal binding-energy relation of Smith et al. (1989) with a modification that describes the crossover from a partially ionic state to the neutral state at large separations. The expression is tested by comparison with first-principles calculations of the potential curves ranging from covalently bonded to ionically bonded. The expression is also used to calculate spectroscopic constants form a curve fit to the first-principles curves. A comparison is made with experimental values of the spectroscopic constants.

  9. The global technical potential of bio-energy in 2050 considering sustainability constraints.

    PubMed

    Haberl, Helmut; Beringer, Tim; Bhattacharya, Sribas C; Erb, Karl-Heinz; Hoogwijk, Monique

    2010-12-01

    Bio-energy, that is, energy produced from organic non-fossil material of biological origin, is promoted as a substitute for non-renewable (e.g., fossil) energy to reduce greenhouse gas (GHG) emissions and dependency on energy imports. At present, global bio-energy use amounts to approximately 50 EJ/yr, about 10% of humanity's primary energy supply. We here review recent literature on the amount of bio-energy that could be supplied globally in 2050, given current expectations on technology, food demand and environmental targets ('technical potential'). Recent studies span a large range of global bio-energy potentials from ≈30 to over 1000 EJ/yr. In our opinion, the high end of the range is implausible because of (1) overestimation of the area available for bio-energy crops due to insufficient consideration of constraints (e.g., area for food, feed or nature conservation) and (2) too high yield expectations resulting from extrapolation of plot-based studies to large, less productive areas. According to this review, the global technical primary bio-energy potential in 2050 is in the range of 160-270 EJ/yr if sustainability criteria are considered. The potential of bio-energy crops is at the lower end of previously published ranges, while residues from food production and forestry could provide significant amounts of energy based on an integrated optimization ('cascade utilization') of biomass flows.

  10. The Potential for Global Energy Crop Production from Intensification and Extensification Under Current and Global Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Gerber, J. S.; Mueller, N. D.; Ramankutty, N.; Foley, J. A.

    2010-12-01

    Various countries have mandated ethanol blending into transportation fuel and increase in biodiesel production over time. To grow the extra biofuel either an intensification to prevent further land cover changes or extensification that would result in land cover change would be imperative. In this paper we developed and applied the relationship between the yield of specific energy crops such as maize and sugarcane and management decisions such as fertilizer applications and irrigation to determine the potential to further intensify energy crop production at locations where they are currently grown. Specifically we show the potential for further increases in global and country specific biofuel production from circa 2005. For the extensification case we identify those locations that are currently used for other crops or not cultivated including forest and pasture land circa 2005 and use the year 2005 yield information of energy crops from analogous locations (such as locations with similar climate, soils and economic status) to determine the global yield under extensification conditions. Finally, both intensification and extensification could be affected by global climate changes. Thus, we provide information of global biofuel production potential from intensification and extensification under both the current climate as well as global climate change conditions using the IPCC AR4 GCM projections circa 2050.

  11. Quantum Dynamics of Vinylidene Photodetachment on an Accurate Global Acetylene-Vinylidene Potential Energy Surface.

    PubMed

    Guo, Lifen; Han, Huixian; Ma, Jianyi; Guo, Hua

    2015-08-01

    Vinylidene is a high-energy isomer of acetylene, and the rearrangement of bonds in the two species serves as a prototype for isomerization reactions. Here, a full-dimensional quantum mechanical study of the vinylidene vibration is carried out on a recently developed global acetylene-vinylidene potential energy surface by simulating the photodetachment dynamics of the vinylidene anion. Several low-lying vibrational levels of the anion were first determined on a new ab initio based potential energy surface, and their photoelectron spectra were obtained within the Condon approximation. The vibrational features of the vinylidene isomer are found to agree well with the experiment in both positions and intensities, validating the global acetylene-vinylidene potential energy surface.

  12. The PyPES library of high quality semi-global potential energy surfaces.

    PubMed

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-01

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib.

  13. The PyPES library of high quality semi-global potential energy surfaces.

    PubMed

    Sibaev, Marat; Crittenden, Deborah L

    2015-11-01

    In this article, we present a Python-based library of high quality semi-global potential energy surfaces for 50 polyatomic molecules with up to six atoms. We anticipate that these surfaces will find widespread application in the testing of new potential energy surface construction algorithms and nuclear ro-vibrational structure theories. To this end, we provide the ability to generate the energy derivatives required for Taylor series expansions to sixth order about any point on the potential energy surface in a range of common coordinate systems, including curvilinear internal, Cartesian, and normal mode coordinates. The PyPES package, along with FORTRAN, C, MATLAB and Mathematica wrappers, is available at http://sourceforge.net/projects/pypes-lib. PMID:26407838

  14. Global typology of urban energy use and potentials for an urbanization mitigation wedge

    PubMed Central

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.

    2015-01-01

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508

  15. A Global Analytical Representation of the Potential Energy Surface of the FHF(-) Anion.

    PubMed

    Cornaton, Yann; Marquardt, Roberto

    2016-08-01

    A global analytical representation of the potential energy hypersurface of the lowest adiabatic electronic state of the FHF(-) anion is derived from ab initio calculations at the coupled cluster level of theory with full single and double and perturbative triple excitations using explicitly correlated atomic basis functions. The new compact function of interatomic distances combines covalent short-range and long-range electrostatic interaction forms and assesses accurately both the lowest reaction channels between the F(-) and HF fragments, with reaction enthalpies to within 1 kJ mol(-1), as well as vibrational terms to within 1.5 cm(-1) deviation from experimental values.

  16. A Global Analytical Representation of the Potential Energy Surface of the FHF(-) Anion.

    PubMed

    Cornaton, Yann; Marquardt, Roberto

    2016-08-01

    A global analytical representation of the potential energy hypersurface of the lowest adiabatic electronic state of the FHF(-) anion is derived from ab initio calculations at the coupled cluster level of theory with full single and double and perturbative triple excitations using explicitly correlated atomic basis functions. The new compact function of interatomic distances combines covalent short-range and long-range electrostatic interaction forms and assesses accurately both the lowest reaction channels between the F(-) and HF fragments, with reaction enthalpies to within 1 kJ mol(-1), as well as vibrational terms to within 1.5 cm(-1) deviation from experimental values. PMID:27400137

  17. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1985-01-01

    Two parallel sets of analyses, which in one case included and in the other omitted data observed by satellite based and other FGGE special observing systems are examined. The results of our previous work is extended in two separate, but not unrelated, ways. First, from these two parallel analyses, which are labeled FGGE (full FGGE system) and NOSAT (satellite omitted), it was discovered that the two sets of fields were quite close over much of the globe. Locally the influence of satellite based systems led to some differences, particularly over the Southern Hemisphere Oceans. The diabatic heating fields generated by the GLA FGGE analysis was also examined. From these fields, one can ascertain the role of total diabatic heating and of the various diabatic heating components in the atmospheric energy cycle, in particular in the generation of available potential energy.

  18. Generation of available potential energy and the energy cycle during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Salstein, D. A.; Rosen, R. D.

    1986-01-01

    Two major themes were pursued during this research period. The first of these involved examining the impacts of satellite-based data and the forecast model used by the Goddard Laboratory for Atmospheres (GLA) on general circulation statistics. For the other major topic, the diabatic heating fields produced by GLA were examined for one month during the FGGE First Special Observing Period. As part of that effort, the three-dimensional distribution of the four component heating fields were studied, namely those due to shortwave radiation, Q sub SW, longwave radiation, Q sub LW, sensible heating, Q sub S, and latent heating, Q sub L. These components were calculated as part of the GLA analysis/forecast system and archived every quarter day; from these archives cross products with temperature were computed to enable the direct calculation of certain terms of the large-scale atmospheric energy cycle, namely those involving the generation of available potential energy (APE). The decision to archive the diabatic heating components separately has enabled researchers to study the role of the various processes that drive the energy cycle of the atmosphere.

  19. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  20. Protein structure prediction and potential energy landscape analysis using continuous global minimization

    SciTech Connect

    Dill, K.A.; Phillips, A.T.; Rosen, J.B.

    1997-12-01

    Proteins require specific three-dimensional conformations to function properly. These {open_quotes}native{close_quotes} conformations result primarily from intramolecular interactions between the atoms in the macromolecule, and also intermolecular interactions between the macromolecule and the surrounding solvent. Although the folding process can be quite complex, the instructions guiding this process are specified by the one-dimensional primary sequence of the protein or nucleic acid: external factors, such as helper (chaperone) proteins, present at the time of folding have no effect on the final state of the protein. Many denatured proteins spontaneously refold into functional conformations once denaturing conditions are removed. Indeed, the existence of a unique native conformation, in which residues distant in sequence but close in proximity exhibit a densely packed hydrophobic core, suggests that this three-dimensional structure is largely encoded within the sequential arrangement of these specific amino acids. In any case, the native structure is often the conformation at the global minimum energy. In addition to the unique native (minimum energy) structure, other less stable structures exist as well, each with a corresponding potential energy. These structures, in conjunction with the native structure, make up an energy landscape that can be used to characterize various aspects of the protein structure. 22 refs., 10 figs., 2 tabs.

  1. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    SciTech Connect

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  2. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    PubMed

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  3. Communication: An accurate global potential energy surface for the ground electronic state of ozone

    SciTech Connect

    Dawes, Richard E-mail: hguo@unm.edu; Lolur, Phalgun; Li, Anyang; Jiang, Bin; Guo, Hua E-mail: hguo@unm.edu

    2013-11-28

    We report a new full-dimensional and global potential energy surface (PES) for the O + O{sub 2} → O{sub 3} ozone forming reaction based on explicitly correlated multireference configuration interaction (MRCI-F12) data. It extends our previous [R. Dawes, P. Lolur, J. Ma, and H. Guo, J. Chem. Phys. 135, 081102 (2011)] dynamically weighted multistate MRCI calculations of the asymptotic region which showed the widely found submerged reef along the minimum energy path to be the spurious result of an avoided crossing with an excited state. A spin-orbit correction was added and the PES tends asymptotically to the recently developed long-range electrostatic model of Lepers et al. [J. Chem. Phys. 137, 234305 (2012)]. This PES features: (1) excellent equilibrium structural parameters, (2) good agreement with experimental vibrational levels, (3) accurate dissociation energy, and (4) most-notably, a transition region without a spurious reef. The new PES is expected to allow insight into the still unresolved issues surrounding the kinetics, dynamics, and isotope signature of ozone.

  4. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH3

    NASA Astrophysics Data System (ADS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2008-12-01

    A global potential energy surface (PES) that includes short and long range terms has been determined for the NH3 molecule. The singles and doubles coupled-cluster method that includes a perturbational estimate of connected triple excitations and the internally contracted averaged coupled-pair functional electronic structure methods have been used in conjunction with very large correlation-consistent basis sets, including diffuse functions. Extrapolation to the one-particle basis set limit was performed and core correlation and scalar relativistic contributions were included directly, while the diagonal Born-Oppenheimer correction was added. Our best purely ab initio PES, denoted "mixed," is constructed from two PESs which differ in whether the ic-ACPF higher-order correlation correction was added or not. Rovibrational transition energies computed from the mixed PES agree well with experiment and the best previous theoretical studies, but most importantly the quality does not deteriorate even up to 10300cm-1 above the zero-point energy (ZPE). The mixed PES was improved further by empirical refinement using the most reliable J =0-2 rovibrational transitions in the HITRAN 2004 database. Agreement between high-resolution experiment and rovibrational transition energies computed from our refined PES for J =0-6 is excellent. Indeed, the root mean square (rms) error for 13 HITRAN 2004 bands for J =0-2 is 0.023cm-1 and that for each band is always ⩽0.06cm-1. For J =3-5 the rms error is always ⩽0.15cm-1. This agreement means that transition energies computed with our refined PES should be useful in the assignment of new high-resolution NH3 spectra and in correcting mistakes in previous assignments. Ideas for further improvements to our refined PES and for extension to other isotopolog are discussed.

  5. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH2(+).

    PubMed

    Li, Y Q; Zhang, P Y; Han, K L

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH2 (+) by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH(+)(X(1)Σ(+))+H((2)S)→C(+)((2)P)+H2(X(1)Σg (+)) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C(+)/H containing systems.

  6. Assessing the global potential and regional implications of promoting bio-energy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  7. Conceptional Considerations to Energy Balance and Global Warming Potential of Soil Bioengineering Structures

    NASA Astrophysics Data System (ADS)

    von der Thannen, Magdalena; Paratscha, Roman; Smutny, Roman; Lampalzer, Thomas; Strauss, Alfred; Rauch, Hans Peter

    2016-04-01

    Nowadays there is a high demand on engineering solutions considering not only technical aspects but also ecological and aesthetic values. In this context soil bioengineering techniques are often used as standalone solutions or in combination with conventional engineering structures. It is a construction technique that uses biological components for hydraulic and civil engineering solutions. In general it pursues the same objectives as conventional civil engineering structures. Currently the used assessment methods for soil bioengineering structures are referencing technically, ecologically and socio-economically. In a modern engineering approach additionally, environmental impacts and potential added values should be considered. The research project E-Protect aims at developing Environmental Life Cycle Assessment (LCA) models for this special field of alpine protective constructions. Both, the Cumulative Energy Demand (CED) and the Global Warming Potential (GWP) should be considered in an Environmental LCA over the whole life cycle of an engineering structure. The life cycle itself can be divided into three phases: the construction phase, the use phase and the end of life phase. The paper represents a concept to apply an Environmental LCA model for soil bioengineering structures. Beside the construction phase of these structures particular attention will be given to the use phase. It is not only important in terms of engineering effects but also plays an important role for positive carbon footprint due to the growing plants of soil bioengineering structures in contrast to conventional structures. Innovative Environmental LCA models will be applied to soil bioengineering structures which provide a new transparency for the responsible planners and stakeholders, by pointing out the total consumption of resources in all construction phases and components.

  8. Dynamics and energy exchanges between a linear oscillator and a nonlinear absorber with local and global potentials

    NASA Astrophysics Data System (ADS)

    Charlemagne, S.; Lamarque, C.-H.; Ture Savadkoohi, A.

    2016-08-01

    The dynamical behavior of a two degree-of-freedom system made up of a linear oscillator and a coupled nonlinear energy sink with nonlinear global and local potentials is studied. The nonlinear global potential of the energy sink performs direct interactions with the linear oscillator, while its local potential depends only on its own behavior during vibratory energy exchanges between two oscillators. A time multiple scale method around 1:1:1 resonance is used to detect slow invariant manifold of the system, its equilibrium and singular points. Detected equilibrium points permit us to predict periodic regime(s) while singular points can lead the system to strongly modulated responses characterized by persistent bifurcations. Several possible scenarios occurring during these strongly modulated regimes are highlighted. All analytical predictions are compared with those which are obtained by direct numerical integration of system equations.

  9. A global ab initio potential for HCN/HNC, exact vibrational energies, and comparison to experiment

    NASA Technical Reports Server (NTRS)

    Bentley, Joseph A.; Bowman, Joel M.; Gazdy, Bela; Lee, Timothy J.; Dateo, Christopher E.

    1992-01-01

    An ab initio (i.e., from first principles) calculation of vibrational energies of HCN and HNC is reported. The vibrational calculations were done with a new potential derived from a fit to 1124 ab initio electronic energies which were calculated using the highly accurate CCSD(T) coupled-cluster method in conjunction with a large atomic natural orbital basis set. The properties of this potential are presented, and the vibrational calculations are compared to experiment for 54 vibrational transitions, 39 of which are for zero total angular momentum, J = 0, and 15 of which are for J = 1. The level of agreement with experiment is unprecedented for a triatomic with two nonhydrogen atoms, and demonstrates the capability of the latest computational methods to give reliable predictions on a strongly bound triatomic molecule at very high levels of vibrational excitation.

  10. Global Energy Futures Model

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  11. A global potential energy surface and dipole moment surface for silane

    SciTech Connect

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter

    2015-12-28

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12{sup HL}, reproduces all four fundamental term values for {sup 28}SiH{sub 4} with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm{sup −1}. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si–H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν{sub 3} band, and the infrared spectrum for {sup 28}SiH{sub 4} including states up to J = 20 and vibrational band origins up to 5000 cm{sup −1} are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  12. A global potential energy surface and dipole moment surface for silane

    NASA Astrophysics Data System (ADS)

    Owens, Alec; Yurchenko, Sergei N.; Yachmenev, Andrey; Thiel, Walter

    2015-12-01

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12HL, reproduces all four fundamental term values for 28SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm-1. The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for 28SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm-1 are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  13. A global potential energy surface and dipole moment surface for silane.

    PubMed

    Owens, Alec; Yurchenko, Sergei N; Yachmenev, Andrey; Thiel, Walter

    2015-12-28

    A new nine-dimensional potential energy surface (PES) and dipole moment surface (DMS) for silane have been generated using high-level ab initio theory. The PES, CBS-F12(HL), reproduces all four fundamental term values for (28)SiH4 with sub-wavenumber accuracy, resulting in an overall root-mean-square error of 0.63 cm(-1). The PES is based on explicitly correlated coupled cluster calculations with extrapolation to the complete basis set limit, and incorporates a range of higher-level additive energy corrections to account for core-valence electron correlation, higher-order coupled cluster terms, and scalar relativistic effects. Systematic errors in computed intra-band rotational energy levels are reduced by empirically refining the equilibrium geometry. The resultant Si-H bond length is in excellent agreement with previous experimental and theoretical values. Vibrational transition moments, absolute line intensities of the ν3 band, and the infrared spectrum for (28)SiH4 including states up to J = 20 and vibrational band origins up to 5000 cm(-1) are calculated and compared with available experimental results. The DMS tends to marginally overestimate the strength of line intensities. Despite this, band shape and structure across the spectrum are well reproduced and show good agreement with experiment. We thus recommend the PES and DMS for future use.

  14. Life Cycle Assessment of the Energy Independence and Security Act of 2007: Ethanol - Global Warming Potential and Environmental Emissions

    SciTech Connect

    Heath, G. A.; Hsu, D. D.; Inman, D.; Aden, A.; Mann, M. K.

    2009-07-01

    The objective of this study is to use life cycle assessment (LCA) to evaluate the global warming potential (GWP), water use, and net energy value (NEV) associated with the EISA-mandated 16 bgy cellulosic biofuels target, which is assumed in this study to be met by cellulosic-based ethanol, and the EISA-mandated 15 bgy conventional corn ethanol target. Specifically, this study compares, on a per-kilometer-driven basis, the GWP, water use, and NEV for the year 2022 for several biomass feedstocks.

  15. A compact and accurate semi-global potential energy surface for malonaldehyde from constrained least squares regression

    SciTech Connect

    Mizukami, Wataru Tew, David P.; Habershon, Scott

    2014-10-14

    We present a new approach to semi-global potential energy surface fitting that uses the least absolute shrinkage and selection operator (LASSO) constrained least squares procedure to exploit an extremely flexible form for the potential function, while at the same time controlling the risk of overfitting and avoiding the introduction of unphysical features such as divergences or high-frequency oscillations. Drawing from a massively redundant set of overlapping distributed multi-dimensional Gaussian functions of inter-atomic separations we build a compact full-dimensional surface for malonaldehyde, fit to explicitly correlated coupled cluster CCSD(T)(F12*) energies with a root mean square deviations accuracy of 0.3%–0.5% up to 25 000 cm{sup −1} above equilibrium. Importance-sampled diffusion Monte Carlo calculations predict zero point energies for malonaldehyde and its deuterated isotopologue of 14 715.4(2) and 13 997.9(2) cm{sup −1} and hydrogen transfer tunnelling splittings of 21.0(4) and 3.2(4) cm{sup −1}, respectively, which are in excellent agreement with the experimental values of 21.583 and 2.915(4) cm{sup −1}.

  16. A compact and accurate semi-global potential energy surface for malonaldehyde from constrained least squares regression

    NASA Astrophysics Data System (ADS)

    Mizukami, Wataru; Habershon, Scott; Tew, David P.

    2014-10-01

    We present a new approach to semi-global potential energy surface fitting that uses the least absolute shrinkage and selection operator (LASSO) constrained least squares procedure to exploit an extremely flexible form for the potential function, while at the same time controlling the risk of overfitting and avoiding the introduction of unphysical features such as divergences or high-frequency oscillations. Drawing from a massively redundant set of overlapping distributed multi-dimensional Gaussian functions of inter-atomic separations we build a compact full-dimensional surface for malonaldehyde, fit to explicitly correlated coupled cluster CCSD(T)(F12*) energies with a root mean square deviations accuracy of 0.3%-0.5% up to 25 000 cm-1 above equilibrium. Importance-sampled diffusion Monte Carlo calculations predict zero point energies for malonaldehyde and its deuterated isotopologue of 14 715.4(2) and 13 997.9(2) cm-1 and hydrogen transfer tunnelling splittings of 21.0(4) and 3.2(4) cm-1, respectively, which are in excellent agreement with the experimental values of 21.583 and 2.915(4) cm-1.

  17. Theoretical characterization of the potential energy surface for H + N2 yields HN2. II - Computed points to define a global potential

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    A previous calculation for H + N2 (Walch et al., 1989) focused on the minimum energy path (MEP) region of the potential energy surface and on estimates of the lifetime of the HN2 species. In this paper, energies computed at geometries selected to permit a global representation of the potential energy surface (PES) are reported. As in the previous work, the calculations were performed using the complete active space self-consistent field/externally contracted configuration interaction method. The surface was characterized using the same basis set as in the previous paper except that an improved contraction of the H s-basis is used. Calculations with a larger basis set were carried out along an approximate MEP obtained with the smaller basis set. The new PES exhibits a sharp curvature, which was not present in the previous calculations, and has a slightly narrower and smaller barrier to dissociation. Saddle points for H atom exchange via collinear and T shaped HN2 complexes are also reported.

  18. Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran

    NASA Astrophysics Data System (ADS)

    Yousefi, Mohammad; Khoramivafa, Mahmud; Mondani, Farzad

    2014-08-01

    The main aim of this study was to determine and discuss the aggregate of energy use and greenhouse gas emission (CO2, N2O, and CH4) for sugar beet agroecosystems in western of Iran. For this propose data was collected by using questionnaires and face to face interview with 50 farmers. Results showed that total inputs and output energy were 49517.2 and 1095360.0 MJ ha-1, respectively. Energy use efficiency was 22.12. Total CO2, N2O and CH4 emissions due to chemical inputs were 2668.35, 22.92 and 3.49 kg, respectively. In sugar beet farms total global warming potential (GWPs) was 9847.77 kg CO2eq ha-1. In terms of CO2 equivalents, 27% of the GWPs come from CO2, 72% from N2O, and 1% from CH4. In this research input and output carbon were 29340.0 and 2678.6 kg C ha-1, respectively. Hence, carbon efficiency ratio was 10.95.

  19. The Global Energy Budget.

    ERIC Educational Resources Information Center

    Jax, Daniel W.

    1992-01-01

    Presents a lesson plan about greenhouse effect and global warming. Includes diagrams and graphs from which students are asked to make inferences. Provides background information about how energy enters and leaves the earth system, the energy budget, consequences of obstructing the energy balance, and the greenhouse effect. (three references) (MCO)

  20. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran.

    PubMed

    Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud

    2016-04-01

    The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate.

  1. Comparison greenhouse gas (GHG) emissions and global warming potential (GWP) effect of energy use in different wheat agroecosystems in Iran.

    PubMed

    Yousefi, Mohammad; Mahdavi Damghani, Abdolmajid; Khoramivafa, Mahmud

    2016-04-01

    The aims of this study were to determine energy requirement and global warming potential (GWP) in low and high input wheat production systems in western of Iran. For this purpose, data were collected from 120 wheat farms applying questionnaires via face-to-face interviews. Results showed that total energy input and output were 60,000 and 180,000 MJ ha(-1) in high input systems and 14,000 and 56,000 MJ ha(-1) in low input wheat production systems, respectively. The highest share of total input energy in high input systems recorded for electricity power, N fertilizer, and diesel fuel with 36, 18, and 13 %, respectively, while the highest share of input energy in low input systems observed for N fertilizer, diesel fuel, and seed with 32, 31, and 27 %. Energy use efficiency in high input systems (3.03) was lower than of low input systems (3.94). Total CO2, N2O, and CH4 emissions in high input systems were 1981.25, 31.18, and 1.87 kg ha(-1), respectively. These amounts were 699.88, 0.02, and 0.96 kg ha(-1) in low input systems. In high input wheat production systems, total GWP was 11686.63 kg CO2eq ha(-1) wheat. This amount was 725.89 kg CO2eq ha(-1) in low input systems. The results show that 1 ha of high input system will produce greenhouse effect 17 times of low input systems. So, high input production systems need to have an efficient and sustainable management for reducing environmental crises such as change climate. PMID:26690584

  2. The Global Energy Challenge

    ScienceCinema

    Crabtree, George

    2016-07-12

    The expected doubling of global energy demand by 2050 challenges our traditional patterns of energy production, distribution and use.   The continued use of fossil fuels raises concerns about supply, security, environment and climate.  New routes are needed for the efficient conversion of energy from chemical fuel, sunlight, and heat to electricity or hydrogen as an energy carrier and finally to end uses like transportation, lighting, and heating. Opportunities for efficient new energy conversion routes based on nanoscale materials will be presented, with emphasis on the sustainable energy technologies they enable.

  3. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system.

    PubMed

    Zhang, Chunfang; Fu, Mingkai; Shen, Zhitao; Ma, Haitao; Bian, Wensheng

    2014-06-21

    A new global ab initio potential energy surface (called ZMB-a) for the 1(1)A' state of the C((1)D)+H2 reactive system has been constructed. This is based upon ab initio calculations using the internally contracted multireference configuration interaction approach with the aug-cc-pVQZ basis set, performed at about 6300 symmetry unique geometries. Accurate analytical fits are generated using many-body expansions with the permutationally invariant polynomials, except that the fit of the deep well region is taken from our previous fit. The ZMB-a surface is unique in the accurate description of the regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The CIs between the 1(1)A' and 2(1)A' states cause two kinds of barriers on the ZMB-a surface: one is in the linear H-CH dissociation direction with a barrier height of 9.07 kcal/mol, which is much higher than those on the surfaces reported before; the other is in the C((1)D) collinearly attacking H2 direction with a barrier height of 12.39 kcal/mol. The ZMB-a surface basically reproduces our ab initio calculations in the vdW interaction regions, and supports a linear C-HH vdW complex in the entrance channel, and two vdW complexes in the exit channel, at linear CH-H and HC-H geometries, respectively.

  4. Accurate high level ab initio-based global potential energy surface and dynamics calculations for ground state of CH{sub 2}{sup +}

    SciTech Connect

    Li, Y. Q.; Zhang, P. Y.; Han, K. L.

    2015-03-28

    A global many-body expansion potential energy surface is reported for the electronic ground state of CH{sub 2}{sup +} by fitting high level ab initio energies calculated at the multireference configuration interaction level with the aug-cc-pV6Z basis set. The topographical features of the new global potential energy surface are examined in detail and found to be in good agreement with those calculated directly from the raw ab initio energies, as well as previous calculations available in the literature. In turn, in order to validate the potential energy surface, a test theoretical study of the reaction CH{sup +}(X{sup 1}Σ{sup +})+H({sup 2}S)→C{sup +}({sup 2}P)+H{sub 2}(X{sup 1}Σ{sub g}{sup +}) has been carried out with the method of time dependent wavepacket on the title potential energy surface. The total integral cross sections and the rate coefficients have been calculated; the results determined that the new potential energy surface can both be recommended for dynamics studies of any type and as building blocks for constructing the potential energy surfaces of larger C{sup +}/H containing systems.

  5. Theoretical characterization of the potential energy surface for the reversible reaction H + O2 yields HO2(asterisk) yields OH + O. III - Computed points to define a global potential energy surface

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Duchovic, Ronald J.

    1991-01-01

    Computed energies and geometries are reported which, combined with previously published calculations, permit a global representation of the potential energy surface for the reaction H + O2 yields HO2(asterisk) yields OH + O. These new calculations characterize the potential energy surface (PES) for all H atom angles of approach to O2 and for the region of the inner repulsive wall. The region of the T-shaped H-O2 exchange saddle point is connected with the constrained energy minimum (CEM) path, and a new collinear H-O2 exchange saddle point is characterized which lies only 9 kcal/mol above the H + O2 asymptote. A vibrational analysis which utilizes local cubic and quartic polynomial representations of the PES along the CEM path has been carried out. Optimal geometries, energies, and harmonic frequencies are reported along with anharmonic analyses for the O2 and OH asymptotes and for the HO2 minimum region of the PES.

  6. Energy and Global Ethics.

    ERIC Educational Resources Information Center

    Reader, Mark

    1979-01-01

    Author believes that the nuclear fuel cycle is damaging to our health, physical system, ecosystem, and social system. He recommends reversing the trend toward nuclear power and solving the energy crisis by creating a global society able to live in balance with its physical environment. Journal available from 7 Harwood Drive, Amherst, New York…

  7. Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory.

    PubMed

    Kazachenko, Sergey; Bulusu, Satya; Thakkar, Ajit J

    2013-06-14

    Putative global minima are reported for methanol clusters (CH3OH)n with n ≤ 15. The predictions are based on global optimization of three intermolecular potential energy models followed by local optimization and single-point energy calculations using two variants of dispersion-corrected density functional theory. Recurring structural motifs include folded and/or twisted rings, folded rings with a short branch, and stacked rings. Many of the larger structures are stabilized by weak C-H···O bonds.

  8. Global analytical ab initio ground-state potential energy surface for the C((1)D)+H2 reactive system.

    PubMed

    Zhang, Chunfang; Fu, Mingkai; Shen, Zhitao; Ma, Haitao; Bian, Wensheng

    2014-06-21

    A new global ab initio potential energy surface (called ZMB-a) for the 1(1)A' state of the C((1)D)+H2 reactive system has been constructed. This is based upon ab initio calculations using the internally contracted multireference configuration interaction approach with the aug-cc-pVQZ basis set, performed at about 6300 symmetry unique geometries. Accurate analytical fits are generated using many-body expansions with the permutationally invariant polynomials, except that the fit of the deep well region is taken from our previous fit. The ZMB-a surface is unique in the accurate description of the regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The CIs between the 1(1)A' and 2(1)A' states cause two kinds of barriers on the ZMB-a surface: one is in the linear H-CH dissociation direction with a barrier height of 9.07 kcal/mol, which is much higher than those on the surfaces reported before; the other is in the C((1)D) collinearly attacking H2 direction with a barrier height of 12.39 kcal/mol. The ZMB-a surface basically reproduces our ab initio calculations in the vdW interaction regions, and supports a linear C-HH vdW complex in the entrance channel, and two vdW complexes in the exit channel, at linear CH-H and HC-H geometries, respectively. PMID:24952535

  9. Energy and globalization

    NASA Astrophysics Data System (ADS)

    Birjandi, Hossein Saremi

    Before the Industrial Revolution, nations required no energy fuel. People relied on human, animal, and wind and waterpower for energy need. Energy (oil) has resettled populations, elected officials in the free world, or changed the governments of the energy rich countries by force. Energy fueled wars, played the major factor in the might of those who have it or more importantly the abilities to acquire it by force. This dissertation researches the primacy of oil as an energy source from the time of oil's discovery to the present times. Between 1945 and 1960, the use of oil and gas doubled as power was generated for industries as steel, cement, metalworking and more important of all filling station hoses into automobiles gas tanks, thus energy swept people and societies quite literally off their feet. One in every six jobs in the industrial world hired by the giant automotive industries. The big five American oil companies spurred on by special tax benefit, these companies grew to gigantic sizes by taking out the best part of the nation's oil. Then, for greater growth, they leaped overseas and built up an immensely profitable system, in alliance with Anglo-Dutch Shell and British Petroleum, known as seven sisters. On the other side of the world, the energy producing nations form an alliance mainly to protect themselves from downward price fluctuations of oil. The struggle for survival in the global energy market forced those countries to get together and form OPEC, which is referred as an "oil cartel".

  10. Innovation in Photovoltaic Science, Engineering, and Policy: A Potential Trillion-Dollar Global Industry for Sustainable Energy

    NASA Astrophysics Data System (ADS)

    Zheng, Cheng

    The solar photovoltaic (PV) technology was an expensive niche energy source only for satellite applications, hallmarked by the Bell Lab's launch of the Telstar satellite with PV cells in 1962. Over the past decades, the accumulation of vast amount of effort across various disciplines in science, engineering, and policy has enabled the phenomenal growth of the solar PV industry into a global enterprise with about 140 gigawatt (GW) of cumulative installations by the end of 2013. Further cost reduction through innovation holds the promise in deploying terawatt (TW)-scale solar PV systems globally in both developed and developing countries, meeting growing energy demand and mitigating climate change. Chapter 1 presents a big picture view of the unsustainable path, heavily relying on fossil fuels, in the current global energy landscape. The main body of the dissertation examines the solar PV technology from a holistic and interdisciplinary perspective: from the basic research, to innovations in manufacturing and installing PV modules, to the driving energy policies. Chapter 2 offers a fundamental understanding of the PV technology and a review on recent scientific advances in improving PV efficiency (W/m 2). Chapter 3 reviews the state-of-the-art process flow in manufacturing commercial PV modules. In the context of pursuing further reduction in manufacturing cost (/m2), the thin Si film concept and its recent research effort are reviewed. Aiming to explore novel ways to produce high-quality seed crystals for thin Si film deposition, the key findings of the laser crystallization experiment is presented in Chapter 4. The fundamental thermophysics of nucleation and crystal growth is first reviewed, which highlights the importance of temperature evolution and heat transport in modelling the ultrafast laser crystallization process. Laser crystallization of a range of Si nanostructures are then carried out to study the nucleation and crystal growth behavior under some novel

  11. Coal bed methane global market potential

    SciTech Connect

    Drazga, B.

    2007-01-16

    Worldwide increases in energy prices, as well as the increased potential for project financing derived from emissions credits, have renewed focus on coal bed methane (CBM) and coal mine methane (CMM) projects in coal-producing countries around the world. Globally, CBM utilization projects (in the operational, development, or planning stages) capture and utilize methane from gassy underground coal mines in at least 13 countries. The total methane emission reductions that could be achieved by these projects are approximately 135 billion cubic feet per year (equal to 14.8 million tons of carbon equivalent per year). This global activity level reflects a growing awareness of the technological practicality and the economic attractiveness of coal mine methane recovery and use. This report outlines the potential of the global CBM market. Contents: An overview of CBM; Challenges and issues; Technologies to generate power from CAM; Global CBM/CMM utilization; Country highlights; Ranking of countries with the largest CMM development potential (Australia, Canada, China, Germany, Mexico, Poland, Russia, Ukraine, United Kingdom, USA, Bulgaria, Czech Republic, France, India, Japan, Kazakhstan, South Africa); Planning CBM/CMM projects; Pre-feasibility and feasibility studies; Demonstration projects; Development plan and application process; Equity and debt; Carbon financing; Government sponsors; Private sponsors; Project risk reduction support; Examples of integrated project financing; Glossary.

  12. Global potential for wind-generated electricity

    PubMed Central

    Lu, Xi; McElroy, Michael B.; Kiviluoma, Juha

    2009-01-01

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines. PMID:19549865

  13. Global potential for wind-generated electricity.

    PubMed

    Lu, Xi; McElroy, Michael B; Kiviluoma, Juha

    2009-07-01

    The potential of wind power as a global source of electricity is assessed by using winds derived through assimilation of data from a variety of meteorological sources. The analysis indicates that a network of land-based 2.5-megawatt (MW) turbines restricted to nonforested, ice-free, nonurban areas operating at as little as 20% of their rated capacity could supply >40 times current worldwide consumption of electricity, >5 times total global use of energy in all forms. Resources in the contiguous United States, specifically in the central plain states, could accommodate as much as 16 times total current demand for electricity in the United States. Estimates are given also for quantities of electricity that could be obtained by using a network of 3.6-MW turbines deployed in ocean waters with depths <200 m within 50 nautical miles (92.6 km) of closest coastlines.

  14. Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials

    SciTech Connect

    Xu Chang; Li Baoan; Chen Liewen

    2010-11-15

    Based on the Hugenholtz-Van Hove theorem, it is shown that both the symmetry energy E{sub sym}({rho}) and its density slope L({rho}) at normal density {rho}{sub 0} are completely determined by the nucleon global optical potentials. The latter can be extracted directly from nucleon-nucleus scatterings, (p,n) charge-exchange reactions, and single-particle energy levels of bound states. Averaging all phenomenological isovector nucleon potentials constrained by world data available in the literature since 1969, the best estimates of E{sub sym}({rho}{sub 0})=31.3 MeV and L({rho}{sub 0})=52.7 MeV are simultaneously obtained. Moreover, the corresponding neutron-proton effective mass splitting in neutron-rich matter of isospin asymmetry {delta} is estimated to be (m{sub n}{sup *}-m{sub p}{sup *})/m=0.32{delta}.

  15. Global triplet potential energy surfaces for the N2(X1Σ) + O(3P) → NO(X2Π) + N(4S) reaction

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Varga, Zoltan; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G.

    2016-01-01

    This work presents two global triplet potential energy surfaces (PESs) for the high-energy reaction N2(X1Σ) + O(3P) → NO(X2Π) + N(4S)—in particular, for the lowest energy 3A' and 3A″ PESs. In order to obtain the energies needed for fitting analytic surfaces, we carried out multireference configuration interaction (MRCI) calculations based on wave functions obtained from state-averaged complete active space self-consistent field calculations for 2280 geometries for the three lowest 3A″ states and for 2298 geometries for the three lowest 3A' states. The lowest-energy 3A' and 3A″ states at each of these geometries were then improved by applying the dynamically scaled external correlation (DSEC) method to all MRCI points, and the resulting DSEC energies were used for construction of the ground-state PES for each symmetry. The many-body component of the DSEC energies for the three-dimensional 3A' and 3A″ PESs was then least-squares fitted in terms of permutationally invariant polynomials in mixed exponential-Gaussian bond order variables. The global and local minima as well as the transition structures of both the 3A' and the 3A″ analytic PES were explored. In agreement with previous work, we find that the reverse reaction is barrierless on the 3A″ surface along the minimum energy pathway. However, we have explored several new local minima and transition structures on the 3A' PES. Furthermore, based on the newly found minima and transition structures, two independent reaction mechanisms have been illustrated for the reaction path on the 3A' PES. The analytic surfaces may be used for dynamics calculations of electronically adiabatic reactive scattering and energy transfer.

  16. Global triplet potential energy surfaces for the N2(X(1)Σ) + O((3)P) → NO(X(2)Π) + N((4)S) reaction.

    PubMed

    Lin, Wei; Varga, Zoltan; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G

    2016-01-14

    This work presents two global triplet potential energy surfaces (PESs) for the high-energy reaction N2(X(1)Σ) + O((3)P) → NO(X(2)Π) + N((4)S)-in particular, for the lowest energy (3)A' and (3)A″ PESs. In order to obtain the energies needed for fitting analytic surfaces, we carried out multireference configuration interaction (MRCI) calculations based on wave functions obtained from state-averaged complete active space self-consistent field calculations for 2280 geometries for the three lowest (3)A″ states and for 2298 geometries for the three lowest (3)A' states. The lowest-energy (3)A' and (3)A″ states at each of these geometries were then improved by applying the dynamically scaled external correlation (DSEC) method to all MRCI points, and the resulting DSEC energies were used for construction of the ground-state PES for each symmetry. The many-body component of the DSEC energies for the three-dimensional (3)A' and (3)A″ PESs was then least-squares fitted in terms of permutationally invariant polynomials in mixed exponential-Gaussian bond order variables. The global and local minima as well as the transition structures of both the (3)A' and the (3)A″ analytic PES were explored. In agreement with previous work, we find that the reverse reaction is barrierless on the (3)A″ surface along the minimum energy pathway. However, we have explored several new local minima and transition structures on the (3)A' PES. Furthermore, based on the newly found minima and transition structures, two independent reaction mechanisms have been illustrated for the reaction path on the (3)A' PES. The analytic surfaces may be used for dynamics calculations of electronically adiabatic reactive scattering and energy transfer.

  17. Quasiclassical trajectory study of the C(¹D) + H₂ → CH + H reaction on a new global ab initio potential energy surface.

    PubMed

    Wu, Ying; Zhang, Chunfang; Cao, Jianwei; Bian, Wensheng

    2014-06-19

    Quasiclassical trajectory (QCT) calculations have been performed on a new global ab initio potential energy surface (PES) for the singlet ground state (1(1)A') of the CH2 reactive system. Our new PES can give a very good description of the well and asymptote regions, and particularly regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The integral cross sections, differential cross sections, and product rovibrational state distributions for the C((1)D) + H2 → CH + H reaction have been investigated in a wide range of collision energies. The present integral cross sections are much larger than the previous QCT results at low collision energies, which can be attributed to the differences of the PESs in the regions around the CIs and vdW complexes. The thermal rate coefficients in the temperature range 200-1500 K have also been calculated and very good agreement with experiment is obtained. PMID:24878310

  18. Quasiclassical trajectory study of the C(¹D) + H₂ → CH + H reaction on a new global ab initio potential energy surface.

    PubMed

    Wu, Ying; Zhang, Chunfang; Cao, Jianwei; Bian, Wensheng

    2014-06-19

    Quasiclassical trajectory (QCT) calculations have been performed on a new global ab initio potential energy surface (PES) for the singlet ground state (1(1)A') of the CH2 reactive system. Our new PES can give a very good description of the well and asymptote regions, and particularly regions around conical intersections (CIs) and of van der Waals (vdW) interactions. The integral cross sections, differential cross sections, and product rovibrational state distributions for the C((1)D) + H2 → CH + H reaction have been investigated in a wide range of collision energies. The present integral cross sections are much larger than the previous QCT results at low collision energies, which can be attributed to the differences of the PESs in the regions around the CIs and vdW complexes. The thermal rate coefficients in the temperature range 200-1500 K have also been calculated and very good agreement with experiment is obtained.

  19. Global Energy Issues and Alternate Fueling

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  20. Global view of energy

    SciTech Connect

    Kursunoglu, B.N.; Millunzi, A.C.; Perlmutter, A.

    1982-01-01

    This book contains selected papers presented at the fourth interdisciplinary international forum on the Geopolitics of Energy. Topics included: energy demand; energy modeling; urgency of world energy problems; nuclear fission; progress in nuclear fusion; financing energy investments; conservation of energy in developed countries; public safety - risks and benefits; and atmospheric carbon dioxide. A separate abstract was prepared for each of the 25 papers for inclusion in the Energy Data Base; all will appear in Energy Abstracts for Policy Analysis and five in Energy Research Abstracts (ERA). (RJC)

  1. Implementation of global energy sustainability

    SciTech Connect

    Grob, G.R.

    1998-02-01

    The term energy sustainability emerged from the UN Conference on Environment and Development in Rio 1992, when Agenda 21 was formulated and the Global Energy Charter proclaimed. Emission reductions, total energy costing, improved energy efficiency, and sustainable energy systems are the four fundamental principles of the charter. These principles can be implemented in the proposed financial, legal, technical, and education framework. Much has been done in many countries toward the implementation of the Global Energy Charter, but progress has not been fast enough to ease the disastrous effects of the too many ill-conceived energy systems on the environment, climate, and health. Global warming is accelerating, and pollution is worsening, especially in developing countries with their hunger for energy to meet the needs of economic development. Asian cities are now beating all pollution records, and greenhouse gases are visibly changing the climate with rising sea levels, retracting glaciers, and record weather disasters. This article presents why and how energy investments and research money have to be rechanneled into sustainable energy, rather than into the business-as-usual of depleting, unsustainable energy concepts exceeding one trillion dollars per year. This largest of all investment sectors needs much more attention.

  2. A New Global Potential Energy Surface for the Hydroperoxyl Radical, HO2: Reaction Coefficients for H + O2 and Vibrational Splittings for H Atom Transfer

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Arnold, James O. (Technical Monitor)

    1994-01-01

    A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  3. Mode-specific multi-channel dynamics of the F- + CHD2Cl reaction on a global ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Szabó, István; Czakó, Gábor

    2016-10-01

    We report a detailed quasiclassical trajectory study for the dynamics of the ground-state and CH/CD stretching-excited F- + CHD2Cl(vCH/CD = 0, 1) → Cl- + CHD2F, HF + CD2Cl-, and DF + CHDCl- SN2, proton-, and deuteron-abstraction reactions using a full-dimensional global ab initio analytical potential energy surface. The simulations show that (a) CHD2Cl(vCH/CD = 1), especially for vCH = 1, maintains its mode-specific excited character prior to interaction, (b) the SN2 reaction is vibrationally mode-specific, (c) double inversion can occur and is enhanced upon CH/CD stretching excitations, (d) in the abstraction reactions the HF channel is preferred and the vCH/CD = 1 excitations significantly promote the HF/DF channels, (e) back-side rebound, back-side stripping, and front-side stripping are the dominant direct abstraction mechanisms based on correlated scattering- and attack-angle distributions, (f) the exact classical vibrational energy-based Gaussian binning (1GB) provides realistic mode-specific polyatomic product state distributions, (g) in the abstraction reactions CH and CD stretchings are not pure spectator modes and mainly ground-state products are produced, thus most of the initial energy transfers into product translation, and (h) the HF and DF product molecules are rotationally cold without any significant dependence on the reactant's and HF/DF vibrational states.

  4. Full-dimensional global potential energy surfaces describing abstraction and exchange for the H + H2S reaction

    NASA Astrophysics Data System (ADS)

    Lu, Dandan; Li, Jun

    2016-07-01

    For the H + H2S system, ˜34 000 data points are sampled over a large configuration space including both abstraction and exchange channels, and calculated at the level of explicitly correlated unrestricted coupled cluster method with singles, doubles, and perturbative triples excitations with the augmented correlation-consistent polarized triple zeta basis set (UCCSD(T)-F12a/aug-cc-pVTZ). The data set was fit using the newly proposed permutation invariant polynomial-neural network (PIP-NN) method with three different vectors as the input: two redundant sets of PIPs, one with the maximum order four (PES-I) and one with the maximum order three (PES-II), and nine non-redundant PIPs (PES-III). All these PESs show small fitting errors and essentially the same performance in representing the title system. Various kinetics and dynamical properties are calculated using the tunneling corrected transition state theory and quasi-classical trajectory, and compared with available experimental results. At a collision energy of 10 kcal/mol, both the H2 and SH products are found to be internally cold, with ˜20% of H2 at its first vibrational excited state, while SH is essentially a spectator. The angular distributions of the products are mainly in backward with considerable contributions from sideway direction. In addition, analytical partial derivatives of any PIP-NN PES with respect to the coordinates of atoms are derived by making use of the monomial symmetrization algorithm [Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26-34 (2010)]. It can not only accelerate the evaluation of the derivatives, but also improve the energy convergence significantly.

  5. Full-dimensional global potential energy surfaces describing abstraction and exchange for the H + H2S reaction.

    PubMed

    Lu, Dandan; Li, Jun

    2016-07-01

    For the H + H2S system, ∼34 000 data points are sampled over a large configuration space including both abstraction and exchange channels, and calculated at the level of explicitly correlated unrestricted coupled cluster method with singles, doubles, and perturbative triples excitations with the augmented correlation-consistent polarized triple zeta basis set (UCCSD(T)-F12a/aug-cc-pVTZ). The data set was fit using the newly proposed permutation invariant polynomial-neural network (PIP-NN) method with three different vectors as the input: two redundant sets of PIPs, one with the maximum order four (PES-I) and one with the maximum order three (PES-II), and nine non-redundant PIPs (PES-III). All these PESs show small fitting errors and essentially the same performance in representing the title system. Various kinetics and dynamical properties are calculated using the tunneling corrected transition state theory and quasi-classical trajectory, and compared with available experimental results. At a collision energy of 10 kcal/mol, both the H2 and SH products are found to be internally cold, with ∼20% of H2 at its first vibrational excited state, while SH is essentially a spectator. The angular distributions of the products are mainly in backward with considerable contributions from sideway direction. In addition, analytical partial derivatives of any PIP-NN PES with respect to the coordinates of atoms are derived by making use of the monomial symmetrization algorithm [Z. Xie and J. M. Bowman, J. Chem. Theory Comput. 6, 26-34 (2010)]. It can not only accelerate the evaluation of the derivatives, but also improve the energy convergence significantly. PMID:27394104

  6. Energy resources and global development.

    PubMed

    Chow, Jeffrey; Kopp, Raymond J; Portney, Paul R

    2003-11-28

    In order to address the economic and environmental consequences of our global energy system, we consider the availability and consumption of energy resources. Problems arise from our dependence on combustible fuels, the environmental risks associated with their extraction, and the environmental damage caused by their emissions. Yet no primary energy source, be it renewable or nonrenewable, is free of environmental or economic limitations. As developed and developing economies continue to grow, conversion to and adoption of environmentally benign energy technology will depend on political and economic realities.

  7. Energy resources and global development

    SciTech Connect

    Jeffrey Chow; Raymond J. Kopp; Paul R. Portney

    2003-11-15

    In order to address the economic and environmental consequences of our global energy system, we consider the availability and consumption of energy resources. Problems arise from our dependence on combustible fuels, the environmental risks associated with their extraction, and the environmental damage caused by their emissions. Yet no primary energy source, be it renewable or nonrenewable, is free of environmental or economic limitations. As developed and developing economies continue to grow, conversion to and adoption of environmentally benign energy technology will depend on political and economic realities. 33 refs., 1 fig., 2 tabs.

  8. Energy resources and global development.

    PubMed

    Chow, Jeffrey; Kopp, Raymond J; Portney, Paul R

    2003-11-28

    In order to address the economic and environmental consequences of our global energy system, we consider the availability and consumption of energy resources. Problems arise from our dependence on combustible fuels, the environmental risks associated with their extraction, and the environmental damage caused by their emissions. Yet no primary energy source, be it renewable or nonrenewable, is free of environmental or economic limitations. As developed and developing economies continue to grow, conversion to and adoption of environmentally benign energy technology will depend on political and economic realities. PMID:14645838

  9. Potential effects on health of global warming

    SciTech Connect

    Haines, A. . Whittington Hospital); Parry, M. . Environmental Change Unit)

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important to monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.

  10. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  11. Space and energy: Global viewpoint

    NASA Astrophysics Data System (ADS)

    Koelle, D. E.

    1981-11-01

    The potential contributions from space technology to solving the future world energy problem are addressed. The basic problem is created by the depletion of the fossile fuels in the next century. The replacement of oil, gas and coal is only feasible by nuclear power and solar energy. In the first case space technology can contribute to making the terrestrial storage of radioactive waste much less dangerous and more acceptable by expediting the highly radioactive components (only 3%) into space. In the case of solar energy space technology can contribute large solar power stations in space, providing energy via microwaves to special rectenna sites.

  12. The global potential of bioenergy on abandoned agriculture lands.

    PubMed

    Campbell, J Elliott; Lobell, David B; Genova, Robert C; Field, Christopher B

    2008-08-01

    Converting forest lands into bioenergy agriculture could accelerate climate change by emitting carbon stored in forests, while converting food agriculture lands into bioenergy agriculture could threaten food security. Both problems are potentially avoided by using abandoned agriculture lands for bioenergy agriculture. Here we show the global potential for bioenergy on abandoned agriculture lands to be less than 8% of current primary energy demand, based on historical land use data, satellite-derived land cover data, and global ecosystem modeling. The estimated global area of abandoned agriculture is 385-472 million hectares, or 66-110% of the areas reported in previous preliminary assessments. The area-weighted mean production of above-ground biomass is 4.3 tons ha(-1) y(-1), in contrast to estimates of up to 10 tons ha(-1) y(-1) in previous assessments. The energy content of potential biomass grown on 100% of abandoned agriculture lands is less than 10% of primary energy demand for most nations in North America, Europe, and Asia, but it represents many times the energy demand in some African nations where grasslands are relatively productive and current energy demand is low.

  13. Global evaluation of biofuel potential from microalgae.

    PubMed

    Moody, Jeffrey W; McGinty, Christopher M; Quinn, Jason C

    2014-06-10

    In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m(3)·ha(-1)·y(-1), corresponding to biomass yields of 13 to 15 g·m(-2)·d(-1), are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions.

  14. Global evaluation of biofuel potential from microalgae

    PubMed Central

    Moody, Jeffrey W.; McGinty, Christopher M.; Quinn, Jason C.

    2014-01-01

    In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m3·ha−1·y−1, corresponding to biomass yields of 13 to 15 g·m−2·d−1, are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions. PMID:24912176

  15. Global evaluation of biofuel potential from microalgae.

    PubMed

    Moody, Jeffrey W; McGinty, Christopher M; Quinn, Jason C

    2014-06-10

    In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m(3)·ha(-1)·y(-1), corresponding to biomass yields of 13 to 15 g·m(-2)·d(-1), are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions. PMID:24912176

  16. Global dynamics in the singular logarithmic potential

    NASA Astrophysics Data System (ADS)

    Stoica, Cristina; Font, Andreea

    2003-07-01

    We present an analytical description of the motion in the singular logarithmic potential of the form Phi = ln surdx21/b2 + x22, a potential which plays an important role in the modelling of triaxial systems (such as elliptical galaxies) or bars in the centres of galaxy discs. In order to obtain information about the motion near the singularity, we resort to McGehee-type transformations and regularize the vector field. In the axis-symmetric case (b = 1), we offer a complete description of the global dynamics. In the non-axis-symmetric case (b < 1), we prove that all orbits, with the exception of a negligible set, are centrophobic and retrieve numerically partial aspects of the orbital structure.

  17. Global potential of dust devil occurrence

    NASA Astrophysics Data System (ADS)

    Jemmett-Smith, Bradley; Marsham, John; Knippertz, Peter; Gilkeson, Carl

    2014-05-01

    Mineral dust is a key constituent in the climate system. Airborne mineral dust forms the largest component of the global aerosol budget by mass and subsequently affects climate, weather and biogeochemical processes. There remains large uncertainty in the quantitative estimates of the dust cycle. Dry boundary-layer convection serves as an effective mechanism for dust uplift, typically through a combination of rotating dust devils and non-rotating larger and longer-lived convective plumes. These microscale dry-convective processes occur over length scales of several hundred metres or less. They are difficult to observe and model, and therefore their contribution to the global dust budget is highly uncertain. Using an analytical approach to extrapolate limited observations, Koch and Renno (2006) suggest that dust devils and plumes could contribute as much as 35%. Here, we use a new method for quantifying the potential of dust devil occurrence to provide an alternative perspective on this estimate. Observations have shown that dust devil and convective plume occurrence is favoured in hot arid regions under relatively weak background winds, large ground-to-air temperature gradients and deep dry convection. By applying such known constraints to operational analyses from the European Centre for Medium Range Weather Forecasts (ECMWF), we provide, to the best of the authors' knowledge, the first hourly estimates of dust devil occurrence including an analysis of sensitivity to chosen threshold uplift. The results show the expected diurnal variation and allow an examination of the seasonal cycle and day-to-day variations in the conditions required for dust devil formation. They confirm that desert regions are expected to have by far the highest frequency of dry convective vortices, with winds capable of dust uplift. This approach is used to test the findings of Koch and Renno (2006). Koch J., Renno N. (2006). The role of convective plumes and vortices on the global aerosol

  18. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X1Σ+g) → LiH(X1Σ+) + H reaction

    PubMed Central

    He, Di; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2016-01-01

    The global diabatic potential energy surfaces which are correlated with the ground state 1A′ and the excited state 2A′ of the Li(2p) + H2 reaction are presented in this study. The multi-reference configuration interaction method and large basis sets (aug-cc-pVQZ for H atom and cc-pwCVQZ for Li atom) were employed in the ab initio single-point energy calculations. The diabatic potential energies were generated by the diabatization scheme based on transition dipole moment operators. The neural network method was utilized to fit the matrix elements of the diabatic energy surfaces, and the root mean square errors were extremely small (3.69 meV for , 5.34 meV for and 5.06 meV for ). The topographical features of the diabatic potential energy surfaces were characterized and the surfaces were found to be sufficiently smooth for the dynamical calculation. The crossing seam of the conical intersections between the and surfaces were pinpointed. Based on this new analytical diabatic potential energy surfaces, time-dependent wave packet calculation were conducted to investigate the mechanism of the title reaction. At low collision energies, the product LiH molecule tends to forward scattering, while at high collision energies, the forward and backward scatterings exist simultaneously. PMID:27125781

  19. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X1Σ+g) → LiH(X1Σ+) + H reaction

    NASA Astrophysics Data System (ADS)

    He, Di; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2016-04-01

    The global diabatic potential energy surfaces which are correlated with the ground state 1A‧ and the excited state 2A‧ of the Li(2p) + H2 reaction are presented in this study. The multi-reference configuration interaction method and large basis sets (aug-cc-pVQZ for H atom and cc-pwCVQZ for Li atom) were employed in the ab initio single-point energy calculations. The diabatic potential energies were generated by the diabatization scheme based on transition dipole moment operators. The neural network method was utilized to fit the matrix elements of the diabatic energy surfaces, and the root mean square errors were extremely small (3.69 meV for , 5.34 meV for and 5.06 meV for ). The topographical features of the diabatic potential energy surfaces were characterized and the surfaces were found to be sufficiently smooth for the dynamical calculation. The crossing seam of the conical intersections between the and surfaces were pinpointed. Based on this new analytical diabatic potential energy surfaces, time-dependent wave packet calculation were conducted to investigate the mechanism of the title reaction. At low collision energies, the product LiH molecule tends to forward scattering, while at high collision energies, the forward and backward scatterings exist simultaneously.

  20. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X(1)Σ(+)g) → LiH(X(1)Σ(+)) + H reaction.

    PubMed

    He, Di; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2016-01-01

    The global diabatic potential energy surfaces which are correlated with the ground state 1A' and the excited state 2A' of the Li(2p) + H2 reaction are presented in this study. The multi-reference configuration interaction method and large basis sets (aug-cc-pVQZ for H atom and cc-pwCVQZ for Li atom) were employed in the ab initio single-point energy calculations. The diabatic potential energies were generated by the diabatization scheme based on transition dipole moment operators. The neural network method was utilized to fit the matrix elements of the diabatic energy surfaces, and the root mean square errors were extremely small (3.69 meV for , 5.34 meV for and 5.06 meV for ). The topographical features of the diabatic potential energy surfaces were characterized and the surfaces were found to be sufficiently smooth for the dynamical calculation. The crossing seam of the conical intersections between the and surfaces were pinpointed. Based on this new analytical diabatic potential energy surfaces, time-dependent wave packet calculation were conducted to investigate the mechanism of the title reaction. At low collision energies, the product LiH molecule tends to forward scattering, while at high collision energies, the forward and backward scatterings exist simultaneously.

  1. Penetration of hydrogen-based energy system and its potential for causing global environmental change: Scoping risk analysis based on life cycle thinking

    SciTech Connect

    Kikuchi, Ryunosuke . E-mail: kikuchi@mail.esac.pt

    2006-03-15

    A hydrogen-based economy seems superficially to be environmentally friendly, and many people have worked toward its realization. Today hydrogen is mainly produced by decarbonizing fossil fuels (e.g. natural gas), and in the future decarbonization of both fossil fuels and biomass will play a leading role in the production of hydrogen. The main purpose of this paper is to suggest the identification of potential environmental risks in terms of 'life cycle thinking' (which considers all aspects from production to utilization) with regard to the hydrogen-based economy to come. Hydrogen production by decarbonization results in CO{sub 2} emissions. The final destination of the recovered CO{sub 2} is uncertain. Furthermore, there is a possibility that hydrogen molecules will escape to the atmosphere, posing risks that could occasion global environmental changes such as depletion of stratospheric ozone, temperature change in the stratosphere and change of the hydrides cycle through global vaporization. Based on the results of simulation, requirements regarding the following items are proposed to minimize potential risks: hydrogen source, production and storage loss.

  2. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    NASA Technical Reports Server (NTRS)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  3. Alaska's renewable energy potential.

    SciTech Connect

    Not Available

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  4. Potential Dynamical Mechanisms Behind Global Mantle Events

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Loddoch, A.; Stein, C.

    2007-05-01

    By numerical models we have investigated three potential mechanisms behind global mantle events. Plumes, originating in the thermal boundary layers of the mantle convection system can exhibit a significant episodicity, once a strong temperature-dependence of the viscosity of the mantle material is taken into account. An increase of the viscosity with pressure, as sometimes believed to suppress plumes, acts in fact to focus buoyancy into a few strong upwellings, which are potentially able to generate events on global scale. Plumes originating self- consistently from a thermal boundary layer, transport mostly material from their source region, while they entrain only little material during ascent. Compositionally dense material at the Core-mantle boundary has been proposed to explain seismological observed anomalies. The stability of such heterogeneities against entrainment by the overlying mantle-flow is determined by a complex set of properties, rather than by the density difference alone. Model calculations, taking into account a combined dependence of viscosity on temperature, pressure and , as mostly neglected; on composition, demonstrate, that under such conditions the D", can function as an isolated reservoir form some time, that however the destruction of the compositionally distinct layer, shielding the Earth'core can take place rapidly., with a profound effect also on the surface heat flow.. Finally we observe that episodic mobilization events of the surface are dynamically plausible for appropriate rheologies. A combination of temperature- and stress-dependent viscosity leads to an intermittent type of temporal behavior, where periods showing no surface motion (stagnant lid) are interrupted by phases with strong plate motions at the top. It seems at least possible that plate motion is not a continuously operating process.

  5. Criteria for Global Nuclear Energy Development

    SciTech Connect

    Lawrence, Michael J.

    2002-07-01

    true for numerous nuclear programs even in developed countries with limited geologically suitable formations. Fortunately, several organizations are currently pursuing international solutions to the nuclear waste disposal problem. While the capability to deploy nuclear energy in a specific country may not be desirable for a number of reasons, we should not develop nuclear hardware that can only benefit and serve technically and economically advanced countries. The potential benefits of nuclear energy are global, and we should not unduly limit that potential by inattention today to the requirements necessary for global deployment. (authors)

  6. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  7. Evaluating the global energy balance of Titan

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-02-01

    To understand the weather and climate on Earth as well as on other planets and their moons, scientists need to know the global energy balance, the balance between energy coming in from solar radiation and thermal energy radiated back out of the planet. The energy balance can provide interesting information about a planet. For instance, Jupiter, Saturn, and Neptune emit more energy than they absorb, implying that these planets have an internal heat source. Earth, on the other hand, is in near equilibrium, with energy coming in approximately equaling energy going out, though a small energy imbalance can lead to global climate change.

  8. Global Energy: Supply, Demand, Consequences, Opportunities

    SciTech Connect

    Majumdar, Arun

    2008-08-14

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  9. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  10. Global Effects of Increased Use of Energy

    ERIC Educational Resources Information Center

    Weinberg, Alvin M.; Hammond, R. Philip

    1972-01-01

    This paper, which speculates on the effects of man's energy releases on world climate, concludes that global upsets are very unlikely if we are able to distribute the energy widely or into the sea. (AL)

  11. Global bioenergy potential from high-lignin agricultural residue

    PubMed Central

    Mendu, Venugopal; Shearin, Tom; Campbell, J. Elliott; Stork, Jozsef; Jae, Jungho; Crocker, Mark; Huber, George; DeBolt, Seth

    2012-01-01

    Almost one-quarter of the world's population has basic energy needs that are not being met. Efforts to increase renewable energy resources in developing countries where per capita energy availability is low are needed. Herein, we examine integrated dual use farming for sustained food security and agro-bioenergy development. Many nonedible crop residues are used for animal feed or reincorporated into the soil to maintain fertility. By contrast, drupe endocarp biomass represents a high-lignin feedstock that is a waste stream from food crops, such as coconut (Cocos nucifera) shell, which is nonedible, not of use for livestock feed, and not reintegrated into soil in an agricultural setting. Because of high-lignin content, endocarp biomass has optimal energy-to-weight returns, applicable to small-scale gasification for bioelectricity. Using spatial datasets for 12 principal drupe commodity groups that have notable endocarp byproduct, we examine both their potential energy contribution by decentralized gasification and relationship to regions of energy poverty. Globally, between 24 million and 31 million tons of drupe endocarp biomass is available per year, primarily driven by coconut production. Endocarp biomass used in small-scale decentralized gasification systems (15–40% efficiency) could contribute to the total energy requirement of several countries, the highest being Sri Lanka (8–30%) followed by Philippines (7–25%), Indonesia (4–13%), and India (1–3%). While representing a modest gain in global energy resources, mitigating energy poverty via decentralized renewable energy sources is proposed for rural communities in developing countries, where the greatest disparity between societal allowances exist. PMID:22355123

  12. A global view of energy

    SciTech Connect

    Kursunoglu, B.N.; Millunzi, A.C.; Perlmutter, A.

    1982-01-01

    This book is based on a series of international scientific forums on energy which focused on the geopolitics of energy. Topics considered included French energy policy, planning, the Persian Gulf, US energy choices, the developing countries, the role of coal, electric power, oil price shocks, fusion reactors, inertial fusion, nuclear fission, nuclear energy, health hazards, and the environmental impacts of carbon dioxide.

  13. Method Forecasts Global Energy Substitution

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1975

    1975-01-01

    Describes a model developed to forecast energy demands and determine trends in demand for primary fuels. The energy model essentially considers primary energy sources as competing commodities in a market. (MLH)

  14. Vibrational energies for the X1A1, A1B1, and B1A1 states of SiH2/SiD2 and related transition probabilities based on global potential energy surfaces.

    PubMed

    Tokue, Ikuo; Yamasaki, Katsuyoshi; Nanbu, Shinkoh

    2005-04-01

    Transition probabilities were evaluated for the X(1)A(1)-A(1)B(1) and A(1)B(1)-B(1)A(1) systems of SiH(2) and SiD(2) to analyze the X-->A-->B photoexcitation. The Franck-Condon factors (FCFs) and Einstein's B coefficients were computed by quantum vibrational calculations using the three-dimensional potential energy surfaces (PESs) of the SiH(2)(X(1)A(1),A(1)B(1),B(1)A(1)) electronic states and the electronic transition moments for the X-A, X-B, and A-B system. The global PESs were determined by the multireference configuration interaction calculations with the Davidson correction and the interpolant moving least-squares method combined with the Shepard interpolation. The obtained FCFs for the X-A and A-B systems exhibit that the bending mode is strongly enhanced in the excitation since the equilibrium bond angle greatly varies with the three states; the barrier to linearity is evaluated to be 21,900 cm(-1) for the X state, 6400 cm(-1) for the A state, and 230-240 cm(-1) for the B state. The theoretical lifetimes for the pure bending levels of the A and B states were calculated from the fluorescence decay rates for the A-X, B-A, and B-X emissions.

  15. Beyond offshoring: assess your company's global potential.

    PubMed

    Farrell, Diana

    2004-12-01

    In the past few years, companies have become aware that they can slash costs by offshoring: moving jobs to lower-wage locations. But this practice is just the tip of the iceberg in terms of how globalization can transform industries, according to research by the McKinsey Global Institute (MGI). The institute's yearlong study suggests that by streamlining their production processes and supply chains globally, rather than just nationally or regionally, companies can lower their costs-as we've seen in the consumer-electronics and PC industries. Companies can save as much as 70% of their total costs through globalization--50% from offshoring, 5% from training and business-task redesign, and 15% from process improvements. But they don't have to stop there. The cost reductions make it possible to lower prices and expand into new markets, attracting whole new classes of customers. To date, however, few businesses have recognized the full scope of performance improvements that globalization makes possible, much less developed sound strategies for capturing those opportunities. In this article, Diana Farrell, director of MGI, offers a step-by-step approach to doing both things. Among her suggestions: Assess where your industry falls along the globalization spectrum, because not all sectors of the economy face the same challenges and opportunities at the same time. Also, pay attention to production, regulatory, and organizational barriers to globalization. If any of these can be changed, size up the cost-saving (and revenue-generating) opportunities that will emerge for your company as a result of those changes. Farrell also defines the five stages of globalization-market entry, product specialization, value chain disaggregation, value chain reengineering, and the creation of new markets-and notes the different levers for cutting costs and creating value that companies can use in each phase. PMID:15605568

  16. DOE Global Energy Storage Database

    DOE Data Explorer

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  17. The Global Energy Balance of Titan

    NASA Technical Reports Server (NTRS)

    Li, Liming; Nixon, Conor A.; Achterberg, Richard K.; Smith, Mark A.; Gorius, Nicolas J. P.; Jiang, Xun; Conrath, Barney J.; Gierasch, Peter J.; Simon-Miller, Amy A.; Flasar, F. Michael; Baines, Kevin H.; Ingersoll, Andrew P.; West, Robert A.; Vasavada, Ashwin R.; Ewald, Shawn P.

    2011-01-01

    We report the first measurement of the global emitted power of Titan. Longterm (2004-2010) observations conducted by the Composite Infrared Spectrometer (CIRS) onboard Cassini reveal that the total emitted power by Titan is (2.84 plus or minus 0.01) x 10(exp 8) watts. Together with previous measurements of the global absorbed solar power of Titan, the CIRS measurements indicate that the global energy budget of Titan is in equilibrium within measurement error. The uncertainty in the absorbed solar energy places an upper limit on the energy imbalance of 5.3%.

  18. Accurate ab initio-based adiabatic global potential energy surface for the 2{sup 2}A″ state of NH{sub 2} by extrapolation to the complete basis set limit

    SciTech Connect

    Li, Y. Q.; Ma, F. C.; Sun, M. T.

    2013-10-21

    A full three-dimensional global potential energy surface is reported first time for the title system, which is important for the photodissociation processes. It is obtained using double many-body expansion theory and an extensive set of accurate ab initio energies extrapolated to the complete basis set limit. Such a work can be recommended for dynamics studies of the N({sup 2}D) + H{sub 2} reaction, a reliable theoretical treatment of the photodissociation dynamics and as building blocks for constructing the double many-body expansion potential energy surface of larger nitrogen/hydrogen containing systems. In turn, a preliminary theoretical study of the reaction N({sup 2}D)+H{sub 2}(X{sup 1}Σ{sub g}{sup +})(ν=0,j=0)→NH(a{sup 1}Δ)+H({sup 2}S) has been carried out with the method of quasi-classical trajectory on the new potential energy surface. Integral cross sections and thermal rate constants have been calculated, providing perhaps the most reliable estimate of the integral cross sections and the rate constants known thus far for such a reaction.

  19. Global mental health and neuroscience: potential synergies.

    PubMed

    Stein, Dan J; He, Yanling; Phillips, Anthony; Sahakian, Barbara J; Williams, John; Patel, Vikram

    2015-02-01

    Global mental health has emerged as an important specialty. It has drawn attention to the burden of mental illness and to the relative gap in mental health research and services around the world. Global mental health has raised the question of whether this gap is a developmental issue, a health issue, a human rights issue, or a combination of these issues-and it has raised awareness of the need to develop new approaches for building capacity, mobilising resources, and closing the research and treatment gap. Translational neuroscience has also advanced. It comprises an important conceptual approach to understanding the neurocircuitry and molecular basis of mental disorders, to rethinking how best to undertake research on the aetiology, assessment, and treatment of these disorders, with the ultimate aim to develop entirely new approaches to prevention and intervention. Some apparent contrasts exist between these fields; global mental health emphasises knowledge translation, moving away from the bedside to a focus on health systems, whereas translational neuroscience emphasises molecular neuroscience, focusing on transitions between the bench and bedside. Meanwhile, important opportunities exist for synergy between the two paradigms, to ensure that present opportunities in mental health research and services are maximised. Here, we review the approaches of global mental health and clinical neuroscience to diagnosis, pathogenesis, and intervention, and make recommendations for facilitating an integration of these two perspectives. PMID:26359754

  20. LHC Physics Potential versus Energy

    SciTech Connect

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  1. A global ab initio potential energy surface for the X{sup  2}A{sup ′} ground state of the Si + OH → SiO + H reaction

    SciTech Connect

    Dayou, Fabrice; Duflot, Denis; Rivero-Santamaría, Alejandro; Monnerville, Maurice

    2013-11-28

    We report the first global potential energy surface (PES) for the X{sup  2}A{sup ′} ground electronic state of the Si({sup 3}P) + OH(X{sup 2}Π) → SiO(X{sup 1}Σ{sub g}{sup +}) + H({sup 2}S) reaction. The PES is based on a large number of ab initio energies obtained from multireference configuration interaction calculations plus Davidson correction (MRCI+Q) using basis sets of quadruple zeta quality. Corrections were applied to the ab initio energies in the reactant channel allowing a proper description of long-range interactions between Si({sup 3}P) and OH(X{sup 2}Π). An analytical representation of the global PES has been developed by means of the reproducing kernel Hilbert space method. The reaction is found barrierless. Two minima, corresponding to the SiOH and HSiO isomers, and six saddle points, among which the isomerization transition state, have been characterized on the PES. The vibrational spectra of the SiOH/HSiO radicals have been computed from second-order perturbation theory and quantum dynamics methods. The structural, energetic, and spectroscopic properties of the two isomers are in good agreement with experimental data and previous high quality calculations.

  2. Role of Fusion Energy in a Sustainable Global Energy Strategy

    SciTech Connect

    Sheffield, J.

    2001-03-07

    Fusion can play an important role in sustainable global energy because it has an available and unlimited fuel supply and location not restricted by climate or geography. Further, it emits no greenhouse gases. It has no potential for large energy releases in an accident, and no need for more than about 100 years retention for radioactive waste disposal. Substantial progress in the realization of fusion energy has been made during the past 20 years of research. It is now possible to produce significant amounts of energy from controlled deuterium and tritium (DT) reactions in the laboratory. This has led to a growing confidence in our ability to produce burning plasmas with significant energy gain in the next generation of fusion experiments. As success in fusion facilities has underpinned the scientific feasibility of fusion, the high cost of next-step fusion facilities has led to a shift in the focus of international fusion research towards a lower cost development path and an attractive end product. The increasing data base from fusion research allows conceptual fusion power plant studies, of both magnetic and inertial confinement approaches to fusion, to translate commercial requirements into the design features that must be met if fusion is to play a role in the world's energy mix; and identify key R and D items; and benchmark progress in fusion energy development. This paper addresses the question, ''Is mankind closer or farther away from controlled fusion than a few decades ago?'' We review the tremendous scientific progress during the last 10 years. We use the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements of an attractive fusion system with present achievements and to identify remaining technical challenges for fusion. We discuss scenarios for fusion energy deployment in the

  3. Potential global jamming transition in aviation networks.

    PubMed

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2014-08-01

    In this paper, we propose a nonlinear transport model for an aviation network. The takeoff rate from an airport is characterized by the degree of ground congestion. Due to the effect of surface congestion, the performance of an airport deteriorates because of inefficient configurations of waiting aircraft on the ground. Using a simple transport model, we performed simulations on a United States airport network and found a global jamming transition induced by local surface congestion. From a physical perspective, the mechanism of the transition is studied analytically and the resulting aircraft distribution is discussed considering system dynamics. This study shows that the knowledge of the relationship between a takeoff rate and a congestion level on the ground is vital for efficient air traffic operations. PMID:25215781

  4. Potential global jamming transition in aviation networks.

    PubMed

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2014-08-01

    In this paper, we propose a nonlinear transport model for an aviation network. The takeoff rate from an airport is characterized by the degree of ground congestion. Due to the effect of surface congestion, the performance of an airport deteriorates because of inefficient configurations of waiting aircraft on the ground. Using a simple transport model, we performed simulations on a United States airport network and found a global jamming transition induced by local surface congestion. From a physical perspective, the mechanism of the transition is studied analytically and the resulting aircraft distribution is discussed considering system dynamics. This study shows that the knowledge of the relationship between a takeoff rate and a congestion level on the ground is vital for efficient air traffic operations.

  5. Relativity, potential energy, and mass

    NASA Astrophysics Data System (ADS)

    Hecht, Eugene

    2016-11-01

    This paper is an exploration of the concept of energy, illuminated by the transformative insights of the special theory of relativity. Focusing on potential energy (PE), it will be shown that PE as presently defined is in conflict with the tenets of special relativity. Even though PE remains an indispensable theoretical device its actual physicality is questionable. Moreover its ontological status is quite different from that of both kinetic energy and mass, a significant point that is not widely appreciated. We will establish that PE is a theoretical concept as opposed to an empirical one; it is a descriptor of mass-energy without a detectable physical presence of its own. PE is a measure of energy stored, it is not the energy stored.

  6. Renewable energy potential in Colombia

    NASA Astrophysics Data System (ADS)

    Correa Guzman, Jose Luis

    2008-12-01

    Renewable energy flows are very large in comparison with humankind's use of energy. In principle, all our energy needs, both now and into the future, can be met by energy from renewable sources. After many years trying to develop the alternative energy potential of Colombia, a major effort is principally being made since 2000 to explore and assess the renewable resources of the entire country. Until 2000, the availability of conventional energy sources in Colombia prevented renewable energy exploration from reaching a higher level. However, the extreme energy crisis of 1992 - 1993 alerted the authorities and the community to the necessity for exploring alternative energy sources. This energy study is a general approach to the current and future renewable energy scenario of Colombia. It was prepared in response to the increased interest around the world and in particular in Colombia to develop its non-fossil energy prospective. It, therefore, represents a working document giving an initial impression of the possible scale of the main renewables sources as a response to the concern about energy security and fossil fuel dependence problems. The assumptions made and calculations reported may therefore be subject to revision as more information becomes available. The aim of this dissertation is not only to improve the public understanding and discussion of renewable energy matters in Colombia but also to stimulate the development and application of renewable energy, wherever they have prospects of economic viability and environmental acceptability. To achieve such goal this paper reviews several renewable technologies, their availability, contribution and feasibility in Colombia.

  7. Global Energy and Aviation Concerns

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Daggett, Dave; Anast, Peter; Lowery, Nathan

    2006-01-01

    Renewable energy sources are usually diffuse and require large facilities. Biofuels work better, are more economical to produce for ground transportation, but sharply increase competition for food croplands. Noble laureate Richard Smalley (deceased-2005) conceptual 20 TWe power generation covers hundreds x hundreds of miles. Combined with Fuller s superconducting power grid system would enable renewable planetary energy. A solar-wind project in Australia will have a 7km diameter collector interfacing with a 1 km tower to extract 200 MW from wind turbines mounted at the base. GE Energy s 3.5MW Wind Turbine is large and placing this in perspective, it is as if one were rotating a Boeing 747-200; the blade diameter is that large. Wind turbines are rapidly gaining popularity in Europe and photovoltaic (PV) is expected to also expand rapidly. It becomes clear that we need (and still have time) to develop new sources of energy. Hf 178 bombarded by X-rays produces Gamma-rays for heating. The reaction stops when the X-rays stop; the half life is about 30 years and seems manageable vs 30 000 years. Water splitting needs to be perused as do ultra fast ultra intense laser applications in terms of fusion and new materials developments including new ways to strip and re-bind hydrogen into fuels. New methods and tools for development are being found in quantum mechanical applications to macro-systems and need to be developed into a set of new tool boxes for development of these new energy sources.

  8. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Levin, Eugene

    1993-01-01

    A new global potential energy surface (PES) is being generated for O(P-3) + H2 yields OH + H. This surface is being fit using the rotated Morse oscillator method, which was used to fit the previous POL-CI surface. The new surface is expected to be more accurate and also includes a much more complete sampling of bent geometries. A new study has been undertaken of the reaction N + O2 yields NO + O. The new studies have focused on the region of the surface near a possible minimum corresponding to the peroxy form of NOO. A large portion of the PES for this second reaction has been mapped out. Since state to state cross sections for the reaction are important in the chemistry of high temperature air, these studies will probably be extended to permit generation of a new global potential for reaction.

  9. Global flow of the Higgs potential in a Yukawa model

    NASA Astrophysics Data System (ADS)

    Borchardt, Julia; Gies, Holger; Sondenheimer, René

    2016-08-01

    We study the renormalization flow of the Higgs potential as a function of both field amplitude and energy scale. This overcomes limitations of conventional techniques that rely, e.g., on an identification of field amplitude and RG scale, or on local field expansions. Using a Higgs-Yukawa model with discrete chiral symmetry as an example, our global flows in field space clarify the origin of possible metastabilities, the fate of the pseudo-stable phase, and provide new information as regards the renormalization of the tunnel barrier. Our results confirm the relaxation of the lower bound for the Higgs mass in the presence of more general microscopic interactions (higher-dimensional operators) to a high quantitative accuracy.

  10. The potential of renewable energy

    NASA Astrophysics Data System (ADS)

    1990-03-01

    On June 27 and 28, 1989, the U.S. DOE national labs were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the labs. As a result of that meeting, interlabor teams were formed to produce analytic white papers on key topics, and a lead lab was designated for each core lab team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply; What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications. The results are presented of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy.

  11. Energies of Screened Coulomb Potentials.

    ERIC Educational Resources Information Center

    Lai, C. S.

    1979-01-01

    This article shows that, by applying the Hellman-Feynman theorem alone to screened Coulomb potentials, the first four coefficients in the energy series in powers of the perturbation parameter can be obtained from the unperturbed Coulomb system. (Author/HM)

  12. Hydrogen based global renewable energy network

    SciTech Connect

    Akai, Makoto

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  13. Global energy consumption and production in 2000

    NASA Astrophysics Data System (ADS)

    Allen, E. L.; Davison, C.; Dougher, R.; Edmonds, J. A.; Reilly, J.

    1981-02-01

    This study anticipates that global energy demand will continue to expand through 2000, although at a slower pace than in 1965 to 1978. Growth of supply is expected to be largely in conventional, nonrenewable fuels - coal, oil, uranium, and natural gas. Energy growth is also expected to slow down in terms of energy consumption per unit of output as a consequence of continuing efficiency improvements, which, in turn, result from higher energy prices. Slower rates of economic growth are expected in all groups of countries, developed and underdeveloped.

  14. California Industrial Energy Efficiency Potential

    SciTech Connect

    Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

    2005-06-01

    This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

  15. Global energy consumption for direct water use

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hejazi, M. I.; Kim, S. H.; Kyle, P.; Davies, E. G.; Miralles, D. G.; Teuling, R.; He, Y.; Niyogi, D.

    2015-12-01

    Despite significant efforts to quantify the mutual inter-dependence of the water and energy sectors, global energy for water (EFW) remains poorly understood, resulting in biases in energy accounting that directly affect water and energy management and policy. We firstly evaluate the global energy consumption for direct water use from 1973 to 2012 with sectoral, regional and process-level details. Over the 40-year period, we detected multiple shifts in EFW by county and region. For example, we find that India, the Middle East and China have surpassed the United States as the three largest consumers of EFW since 2003, mostly because of rapid growth in groundwater-based irrigation, desalination, and industrial and municipal water use, respectively. Globally, EFW accounts for 1-3% of total primary energy consumption in 2010, of which 52% is surface water, 36% is groundwater, and 12% is non-fresh water. The sectoral allocation of EFW includes municipal (45%), industrial (29%), and agricultural use (26%), and process-level contributions are from source/conveyance (41%), water purification (19%), water distribution (13%) and wastewater treatment (22%). Our evaluation suggests that the EFW may increase in importance in the future due to growth in population and income, and depletion of surface and shallow aquifer water resources in water-scarce regions. We are incorporating this element into an integrated assessment model (IAM) and linking it back to energy balance within that IAM. By doing this, we will then explore the impacts of EFW on the global energy market (e.g., changes in the share of groundwater use and desalination), and the uncertainty of future EFW under different shared social pathway (SSP) and representative concentration pathway (RCP) scenarios, and consequences on the emission of greenhouse gases as well. We expect these EFW induced impacts will be considerable, and will then have significant implications for adaptive management and policy making.

  16. Privatization and the globalization of energy markets

    SciTech Connect

    1996-10-01

    This report reviews recent global efforts to privatize energy resources and outlines the opportunities and challenges privatization has presented to U.S. and foreign multinational energy companies. The group of energy companies studied in this report includes the major U.S. petroleum companies and many foreign companies. The foreign companies reviewed include state-run energy enterprises, recently privatized energy enterprises, and foreign multinationals that have been privately held. The privatization of non-petroleum energy industries, such as electricity generation and transmission, natural gas transmission, and coal mining, are also discussed. Overseas investments made by electric companies, natural gas companies, and coal companies are included. The report is organized into six chapters: (1) economics of privatization; (2) petroleum privatization efforts among non-U.S. Organization for Economic Cooperation and Development nations; (3) petroleum privatization efforts in Latin America; (4) privatization in socialist and former socialist regimes; (5) privatization efforts in global electric power generation, transmission, and distribution industries; and (6) privatization and globalization of world coal.

  17. Global Energy and Water Budgets in MERRA

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Robertson, Franklin R.; Chen, Junye

    2010-01-01

    Reanalyses, retrospectively analyzing observations over climatological time scales, represent a merger between satellite observations and models to provide globally continuous data and have improved over several generations. Balancing the Earth s global water and energy budgets has been a focus of research for more than two decades. Models tend to their own climate while remotely sensed observations have had varying degrees of uncertainty. This study evaluates the latest NASA reanalysis, called the Modern Era Retrospective-analysis for Research and Applications (MERRA), from a global water and energy cycles perspective. MERRA was configured to provide complete budgets in its output diagnostics, including the Incremental Analysis Update (IAU), the term that represents the observations influence on the analyzed states, alongside the physical flux terms. Precipitation in reanalyses is typically sensitive to the observational analysis. For MERRA, the global mean precipitation bias and spatial variability are more comparable to merged satellite observations (GPCP and CMAP) than previous generations of reanalyses. Ocean evaporation also has a much lower value which is comparable to observed data sets. The global energy budget shows that MERRA cloud effects may be generally weak, leading to excess shortwave radiation reaching the ocean surface. Evaluating the MERRA time series of budget terms, a significant change occurs, which does not appear to be represented in observations. In 1999, the global analysis increments of water vapor changes sign from negative to positive, and primarily lead to more oceanic precipitation. This change is coincident with the beginning of AMSU radiance assimilation. Previous and current reanalyses all exhibit some sensitivity to perturbations in the observation record, and this remains a significant research topic for reanalysis development. The effect of the changing observing system is evaluated for MERRA water and energy budget terms.

  18. The potential of renewable energy

    SciTech Connect

    Not Available

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  19. Mapping the global geographic potential of Zika virus spread

    PubMed Central

    Samy, Abdallah M.; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A. Townsend

    2016-01-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear. PMID:27653360

  20. Mapping the global geographic potential of Zika virus spread

    PubMed Central

    Samy, Abdallah M.; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A. Townsend

    2016-01-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear.

  1. Mapping the global geographic potential of Zika virus spread.

    PubMed

    Samy, Abdallah M; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A Townsend

    2016-09-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear. PMID:27653360

  2. Mapping the global geographic potential of Zika virus spread.

    PubMed

    Samy, Abdallah M; Thomas, Stephanie M; Wahed, Ahmed Abd El; Cohoon, Kevin P; Peterson, A Townsend

    2016-09-01

    The Americas are presently experiencing the most serious known outbreak of Zika virus (ZIKV). Here, we present a novel set of analyses using environmental characteristics, vector mosquito distributions, and socioeconomic risk factors to develop the first map to detail global ZIKV transmission risk in multiple dimensions based on ecological niche models. Our model predictions were tested against independent evaluation data sets, and all models had predictive ability significantly better than random expectations. The study addresses urgent knowledge gaps regarding (1) the potential geographic scope of the current ZIKV epidemic, (2) the global potential for spread of ZIKV, and (3) drivers of ZIKV transmission. Our analysis of potential drivers of ZIKV distributions globally identified areas vulnerable in terms of some drivers, but not for others. The results of these analyses can guide regional education and preparedness efforts, such that medical personnel will be better prepared for diagnosis of potential ZIKV cases as they appear.

  3. Platts top 250 global energy company rankings

    SciTech Connect

    Mullen, T.; Leonard, M.

    2005-12-01

    Revenues and profits for many firms surged last year over previous years. The turnaround from last year's global survey is dramatic. Asset- and revenue-rich integrated oil and gas companies dominate the top rungs of the 2005 Platts Top 250 Global Energy Company Rankings. The following industry segments were analyzed: diversified utilities; exploration and production; electric utilities; gas utilities; integrated oil and gas companies; refining and marketing; independent power producers; coal and consumable fuel companies and storage and transfer companies; The total combined revenue for the coal and consumable fuels sector was $74.7 billion. Leaders in this sector were: Yanzhou Coal Mining Co., CONSOl Energy Inc., Peabody Energy Corp., PT Bumi Resources Tbk, Cameco Corp., and Arch Coal. 14 tabs.

  4. Global warming mitigation potential of biogas plants in India.

    PubMed

    Pathak, H; Jain, N; Bhatia, A; Mohanty, S; Gupta, Navindu

    2009-10-01

    Biogas technology, besides supplying energy and manure, provides an excellent opportunity for mitigation of greenhouse gas (GHG) emission and reducing global warming through substituting firewood for cooking, kerosene for lighting and cooking and chemical fertilizers. A study was undertaken to calculate (1) global warming mitigation potential (GMP) and thereby earning carbon credit of a family size biogas plant in India, (2) GMP of the existing and target biogas plants in the country and (3) atmospheric pollution reduction by a family size biogas plant. The GMP of a family size biogas plant was 9.7 t CO(2) equiv. year( - 1) and with the current price of US $10 t( - 1) CO(2) equiv., carbon credit of US $97 year( - 1) could be earned from such reduction in greenhouse gas emission under the clean development mechanism (CDM). A family size biogas plant substitutes 316 L of kerosene, 5,535 kg firewood and 4,400 kg cattle dung cake as fuels which will reduce emissions of NOx, SO(2), CO and volatile organic compounds to the atmosphere by 16.4, 11.3, 987.0 and 69.7 kg year( - 1), respectively. Presently 3.83 million biogas plants are operating in the country, which can mitigate global warming by 37 Mt CO(2) equiv. year( - 1). Government of India has a target of installing 12.34 million biogas plants by 2010. This target has a GMP of 120 Mt CO(2) equiv. year( - 1) and US $1,197 million as carbon credit under the CDM. However, if all the collectible cattle dung (225 Mt) produced in the country is used, 51.2 million family size biogas plants can be supported which will have a GMP of 496 Mt of CO(2) equiv. year( - 1) and can earn US $4,968 million as carbon credit. The reduction in global warming should encourage policy makers to promote biogas technology to combat climate change and integration of carbon revenues will help the farmers to develop biogas as a profitable activity.

  5. Assessment of Global Annual Atmospheric Energy Balance from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Stackhouse, Paul; Minnis, Patrick; Wielicki, Bruce A.; Hu, Yongxiang; Sun, Wenbo; Fan, Tai-Fang (Alice); Hinkelman, Laura

    2008-01-01

    Global atmospheric energy balance is one of the fundamental processes for the earth's climate system. This study uses currently available satellite data sets of radiative energy at the top of atmosphere (TOA) and surface and latent and sensible heat over oceans for the year 2000 to assess the global annual energy budget. Over land, surface radiation data are used to constrain assimilated results and to force the radiation, turbulent heat, and heat storage into balance due to a lack of observation-based turbulent heat flux estimations. Global annual means of the TOA net radiation obtained from both direct measurements and calculations are close to zero. The net radiative energy fluxes into the surface and the surface latent heat transported into the atmosphere are about 113 and 86 Watts per square meter, respectively. The estimated atmospheric and surface heat imbalances are about -8 9 Watts per square meter, values that are within the uncertainties of surface radiation and sea surface turbulent flux estimates and likely systematic biases in the analyzed observations. The potential significant additional absorption of solar radiation within the atmosphere suggested by previous studies does not appear to be required to balance the energy budget the spurious heat imbalances in the current data are much smaller (about half) than those obtained previously and debated at about a decade ago. Progress in surface radiation and oceanic turbulent heat flux estimations from satellite measurements significantly reduces the bias errors in the observed global energy budgets of the climate system.

  6. Comment on ``Long-Term Global Heating From Energy Use''

    NASA Astrophysics Data System (ADS)

    Fleming, James R.

    2008-12-01

    In a prominent article published in Tellus in 1969, Mikhail I. Budyko, with the Main Geophysical Observatory, Leningrad, Soviet Union, wrote that ``all the energy used by man is transformed into heat, the main portion of this energy being an additional source of heat as compared to the present radiation gain'' [Budyko, 1969, p. 618]. He pointed out that this heating was over and above any climate forcing from anthropogenic greenhouse gases and-since energy use was growing geometrically-it was likely to result in the retreat of the cryosphere, accompanied by excessive and potentially damaging global warming, perhaps in 200 years or less. Eric J. Chaisson, in Eos (``Long-Term Global Heating From Energy Use,'' 89(28), 253-254, 2008), does not acknowledge Budyko's research. Chaisson cites cosmic history and the history of the human species, but he provides no references to the conceptual history of the idea that human energy use could result in global heating. Budyko first published on the Earth's heat budget in 1948 and in 1998 received the Blue Planet Prize, sponsored by the Asahi Glass Foundation, for his lifetime accomplishments in quantitative climatology. His work on the energy budget of the Earth and anthropogenic influences really should have been cited (see a selection of key articles in the online National Science Digital Library, at http://wiki.nsdl.org/index.php/PALE:ClassicArticles/GlobalWarming).

  7. Convective Available Potential Energy of World Ocean

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ingersoll, A. P.; Thompson, A. F.

    2012-12-01

    Here, for the first time, we propose the concept of Ocean Convective Available Potential Energy (OCAPE), which is the maximum kinetic energy (KE) per unit seawater mass achievable by ocean convection. OCAPE occurs through a different mechanism from atmospheric CAPE, and involves the interplay of temperature and salinity on the equation of state of seawater. The thermobaric effect, which arises because the thermal coefficient of expansion increases with depth, is an important ingredient of OCAPE. We develop an accurate algorithm to calculate the OCAPE for a given temperature and salinity profile. We then validate our calculation of OCAPE by comparing it with the conversion of OCAPE to KE in a 2-D numerical model. We propose that OCAPE is an important energy source of ocean deep convection and contributes to deep water formation. OCAPE, like Atmospheric CAPE, can help predict deep convection and may also provide a useful constraint for modelling deep convection in ocean GCMs. We plot the global distribution of OCAPE using data from the World Ocean Atlas 2009 (WOA09) and see many important features. These include large values of OCAPE in the Labrador, Greenland, Weddell and Mediterranean Seas, which are consistent with our present observations and understanding, but also identify some new features like the OCAPE pattern in the Antarctic Circumpolar Current (ACC). We propose that the diagnosis of OCAPE can improve our understanding of global patterns of ocean convection and deep water formation as well as ocean stratification, the meridional overturning circulation and mixed layer processes. The background of this work is briefly introduced as below. Open-ocean deep convection can significantly modify water properties both at the ocean surface and throughout the water column (Gordon 1982). Open-ocean convection is also an important mechanism for Ocean Deep Water formation and the transport of heat, freshwater and nutrient (Marshall and Schott 1999). Open

  8. Modeling global and regional energy futures

    NASA Astrophysics Data System (ADS)

    Rethinaraj, T. S. Gopi

    A rigorous econometric calibration of a model of energy consumption is presented using a comprehensive time series database on energy consumption and other socioeconomic indicators. The future of nuclear power in the evolving distribution of various energy sources is also examined. An important consideration for the long-term future of nuclear power concerns the rate of decline of the fraction of energy that comes from coal, which has historically declined on a global basis about linearly as a function of the cumulative use of coal. The use of fluid fossil fuels is also expected to eventually decline as the more readily extractable deposits are depleted. The investigation here is restricted to examining a comparatively simple model of the dynamics of competition between nuclear and other competing energy sources. Using a defined tropical/temperate disaggregation of the world, region-specific modeling results are presented for population growth, GDP growth, energy use, and carbon use compatible with a gradual transition to energy sustainability. Results for the fractions of energy use from various sources by grouping nine commercial primary energy sources into pairs of competing fuel categories are presented in combination with the idea of experiential learning and resource depletion. Analysis based on this division provides estimates for future evolution of the fractional shares, annual use rates, cumulative use of individual energy sources, and the economic attractiveness of spent nuclear fuel reprocessing. This unified approach helps to conceptualize and understand the dynamics of evolution of importance of various energy resources over time.

  9. A Comprehensive View of Global Potential for Hydro-generated Electricity

    SciTech Connect

    Zhou, Yuyu; Hejazi, Mohamad I.; Smith, Steven J.; Edmonds, James A.; Li, Hongyi; Clarke, Leon E.; Calvin, Katherine V.; Thomson, Allison M.

    2015-09-01

    In this study, we assess global hydropower potential using runoff and stream flow data, along with turbine technology performance, cost assumptions, and environmental considerations. The results provide the first comprehensive quantification of global hydropower potential including gross, technical, economic, and exploitable estimates. Total global potential of gross, technical, economic, and exploitable hydropower are estimated to be approximately 128, 39, 32, and 27 petawatt hours per year, respectively. The economic and exploitable potential of hydropower are calculated at less than 9 cents/kWh. We find that hydropower has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region. Globally, hydropower can potentially supply about 1.5 times the total electricity demand in 2005. Estimated hydropower resources in a number of countries are sufficient to accommodate their demand for electricity in 2005, e.g., Brazil (5.6 times), Russia (4.6 times), and Canada (3.5 times). A sensitivity analysis indicates that hydropower estimates are not highly sensitive to five key parameters: design flow (varying by -2% to +1% at less than 9 cents/kWh), cost and financing options (by -7% to +6%), turbine efficiency (by -10% to +10%), stream flow (by -10% to +10%), and fixed charge rate (by -6% to 5%). This sensitivity analysis emphasizes the reliable role of hydropower for future energy systems, when compared to other renewable energy resources with larger uncertainty in their future potentials.

  10. Potential Energy Curves for CO

    NASA Technical Reports Server (NTRS)

    Tobias, Irwin; Fallon, Robert J.; Vanderslice, Joseph T.

    1960-01-01

    Potential energy curves for the Chi (sup 1) Epsilon (sup plus), alpha (sup 3) II (sub r), alpha prime (sup 3) epsilon (sup plus), d (sup 3) delta, e (sup 3) Epsilon (sup minus), Alpha (sup 1) II, and Beta (sup 1) Epsilon (sup plus), electronic states of the CO molecule have been calculated by the Rydberg-Klein-Rees method. The curve for the A III state will have to bend sharply in the range between 1.9 and 2.1 angstroms or it will have to pass through a maximum to reach the proper dissociation limit.

  11. Theoretical studies of potential energy surfaces.

    SciTech Connect

    Harding, L. B.

    2006-01-01

    The goal of this program is to calculate accurate potential energy surfaces for both reactive and nonreactive systems. To do this the electronic Schroedinger equation must be solved. Our approach starts with multiconfiguration self-consistent field (MCSCF) reference wave functions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Dynamical electron correlation effects are included via multireference, singles and doubles configuration interaction (MRCI) calculations. With this approach, we are able to provide chemically useful predictions of the energetics for many systems. A second aspect of this program is the development of techniques to fit multi-dimensional potential surfaces to convenient, global, analytic functions that can then be used in dynamics calculations.

  12. Assessing the Global Potential and Regional Implications of Promoting Bioenergy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  13. A nine-dimensional ab initio global potential energy surface for the H{sub 2}O{sup +} + H{sub 2} → H{sub 3}O{sup +} + H reaction

    SciTech Connect

    Li, Anyang; Guo, Hua

    2014-06-14

    An accurate full-dimensional global potential energy surface (PES) is developed for the title reaction. While the long-range interactions in the reactant asymptote are represented by an analytical expression, the interaction region of the PES is fit to more than 81 000 of ab initio points at the UCCSD(T)-F12b/AVTZ level using the permutation invariant polynomial neural network approach. Fully symmetric with respect to permutation of all four hydrogen atoms, the PES provides a faithful representation of the ab initio points, with a root mean square error of 1.8 meV or 15 cm{sup −1}. The reaction path for this exoergic reaction features an attractive and barrierless entrance channel, a submerged saddle point, a shallow H{sub 4}O{sup +} well, and a barrierless exit channel. The rate coefficients for the title reaction and kinetic isotope effect have been determined on this PES using quasi-classical trajectories, and they are in good agreement with available experimental data. It is further shown that the H{sub 2}O{sup +} rotational enhancement of reactivity observed experimentally can be traced to the submerged saddle point. Using our recently proposed Sudden Vector Projection model, we demonstrate that a rotational degree of freedom of the H{sub 2}O{sup +} reactant is strongly coupled with the reaction coordinate at this saddle point, thus unraveling the origin of the pronounced mode specificity in this reaction.

  14. Global potential of biospheric carbon management for climate mitigation.

    PubMed

    Canadell, Josep G; Schulze, E Detlef

    2014-01-01

    Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050.

  15. Global warming, energy use, and economic growth

    NASA Astrophysics Data System (ADS)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  16. Global energy shifts: Future possibilities in historical perspective

    NASA Astrophysics Data System (ADS)

    Podobnik, Bruce Michael

    2000-11-01

    This study adopts a macro-comparative, world-systems perspective in order to shed light on the dynamics that led to a global shift away from primary reliance on coal and towards over-reliance on petroleum. It is argued that the interaction of three global dynamics, those of geopolitical rivalry, commercial competition, and social unrest, undermined the nineteenth-century international coal system and paved the way for the consolidation of an international petroleum system in the twentieth century. Specifically, the historical analysis presented in this dissertation shows that: (1) intervention by state agents was absolutely crucial in the early development and later expansion of the international petroleum system; (2) private coal companies attempted to prevent the consolidation of an oil-based energy system, but these older companies were out-competed by newer, multinational petroleum corporations; and (3) waves of labor unrest in established coal industries played a key role in prompting a relatively rapid shift away from coal and towards petroleum. Indeed, a key conclusion of this study is that pressures exerted by such social movements as labor unions, nationalist movements, and environmental coalitions have played as important a role in influencing energy trajectories as the more commonly-recognized actions of governmental and corporate actors. By examining contemporary patterns of state and private investments in a cluster of new energy technologies, as well as the growing influence of environmental regulations it is argued that global dynamics are beginning to favor a shift towards new, more environmentally sustainable energy technologies. The fuel cell is highlighted as one new energy technology that is poised to enter into widespread diffusion in the coming decades, though potentials for expansions in wind, solar, small-scale hydro-electric, and modern biomass systems are also examined. Although significant hurdles must be overcome, this study concludes by

  17. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 a...

  18. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4...

  19. 76 FR 30325 - Application to Export Electric Energy; E-T Global Energy, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... Energy Regulatory Commission Application to Export Electric Energy; E-T Global Energy, LLC AGENCY: Office... Global Energy, LLC (E-T Global) has applied for authority to transmit electric energy from the United... authority to transmit electric energy from the United States to Mexico for five years as a power...

  20. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  1. Biomass energy: the scale of the potential resource.

    PubMed

    Field, Christopher B; Campbell, J Elliott; Lobell, David B

    2008-02-01

    Increased production of biomass for energy has the potential to offset substantial use of fossil fuels, but it also has the potential to threaten conservation areas, pollute water resources and decrease food security. The net effect of biomass energy agriculture on climate could be either cooling or warming, depending on the crop, the technology for converting biomass into useable energy, and the difference in carbon stocks and reflectance of solar radiation between the biomass crop and the pre-existing vegetation. The area with the greatest potential for yielding biomass energy that reduces net warming and avoids competition with food production is land that was previously used for agriculture or pasture but that has been abandoned and not converted to forest or urban areas. At the global scale, potential above-ground plant growth on these abandoned lands has an energy content representing approximately 5% of world primary energy consumption in 2006. The global potential for biomass energy production is large in absolute terms, but it is not enough to replace more than a few percent of current fossil fuel usage. Increasing biomass energy production beyond this level would probably reduce food security and exacerbate forcing of climate change. PMID:18215439

  2. Renewable: A key component of our global energy future

    SciTech Connect

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  3. The polypill: a potential global solution to cardiovascular disease.

    PubMed

    Nguyen, Caroline; Cheng-Lai, Angela

    2013-01-01

    Despite groundbreaking advances in health care, cardiovascular disease (CVD) remains the leading cause of death and disability worldwide, making it one of the most pressing global health issues to face the modern world. In 2002, Wald and Law proposed the concept of the polypill as a potential solution to this global health epidemic. The polypill represents a powerhouse pill that would consist of a combination of several key medications commonly prescribed for CVD prevention, such as a statin, diuretic, beta blocker, or angiotensin converting enzyme inhibitor, in one pill. It was suggested that it could be a novel, tactical measure in the approach to CVD prevention in that it greatly simplifies the healthcare delivery system. Not only does it increase medication compliance for those currently receiving health care, but it also has the potential to access those in underserved healthcare sectors of the world, primarily low- and middle-income countries, which have been identified as areas of highest CVD risk. A major drawback of the polypill is that there are limited data demonstrating its safety and efficacy in the prevention of cardiovascular morbidity and mortality. Thus far, research shows that the polypill has promise but needs to be approached with a few considerations, such as desired target patient population and formulation. This article will examine the published and ongoing studies associated with the polypill, outline the advantages and disadvantages of using the polypill as a global CVD prevention strategy, and discuss the design and availability of the polypill in the United States.

  4. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  5. The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies

    NASA Astrophysics Data System (ADS)

    Milne, Jennifer L.; Sassoon, Richard E.; Hung, Emilie; Bosshard, Paolo; Benson, Sally M.

    The Global Climate and Energy Project (GCEP), at Stanford University, invests in research with the potential to lead to energy technologies with lower greenhouse gas emissions than current energy technologies. GCEP is sponsored by four international companies, ExxonMobil, GE, Schlumberger, and Toyota and supports research programs in academic institutions worldwide. Research falls into the broad areas of carbon based energy systems, renewables, electrochemistry, and the electric grid. Within these areas research efforts are underway that are aimed at achieving break-throughs and innovations that greatly improve efficiency, performance, functionality and cost of many potential energy technologies of the future including solar, batteries, fuel cells, biofuels, hydrogen storage and carbon capture and storage. This paper presents a summary of some of GCEP's activities over the past 7 years with current research areas of interest and potential research directions in the near future.

  6. Global Nuclear Energy Partnership Waste Treatment Baseline

    SciTech Connect

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  7. Platts top 250 global energy company rankings

    SciTech Connect

    2006-11-15

    The third annual survey of global energy companies measures companies' financial performance using four metrics: asset worth, revenues, profits and return on invested capital. The following industry segments were analysed: coal and consumable fuel companies; diversified utilities; exploration and production; electric utilities; gas utilities; integrated oil and gas companies; refining and marketing; independent power producers and storage and transfer companies. Integrated oil and gas companies (IOGs) captured nine out of the top ten spots while IPPS struggled in 2005 as the sector on a whole lost money. The exploration and production segment showed financial stability while gas utilities saw their financials climb. The Exxon Mobile Corp. continued its reign of the number one spot.

  8. Energy, atmospheric chemistry, and global climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  9. Global Tobacco Surveillance System (GTSS): purpose, production, and potential.

    PubMed

    2005-01-01

    The World Health Organization (WHO), Centers for Disease Control and Prevention (CDC), and Canadian Public Health Association (CPHA) developed the Global Tobacco Surveillance System (GTSS) to assist all 192 WHO Member States in collecting data on youth and adult tobacco use. The flexible GTSS system includes common data items but allows countries to include important unique information at their discretion. It uses a common survey methodology, similar field procedures for data collection, and similar data management and processing techniques. The GTSS includes collection of data through three surveys: the Global Youth Tobacco Survey (GYTS) for youth, and the Global School Personnel Survey (GSPS) and the Global Health Professional Survey (GHPS) for adults. GTSS data potentially can be applied in four ways. First, countries and research partners can disseminate data through publications, presentations, and an active GTSS web site. Second, countries can use GTSS data to inform politicians about the tobacco problem in their country, leading to new policy decisions to prevent and control tobacco use. Third, GTSS can provide countries with valuable feedback to evaluate and improve Country National Action Plans or develop new plans. Fourth, in response to the WHO FCTC call for countries to use consistent methods and procedures in their surveillance efforts, GTSS offers such consistency in sampling procedures, core questionnaire items, training infield procedures, and analysis of data across all survey sites. The GTSS represents the most comprehensive tobacco surveillance system ever developed and implemented. As an example, this paper describes development of the GYTS and discusses potential uses of the data. Sample data were drawn from 38 sites in 24 countries in the African Region, 82 sites in 35 countries in the Americas Region, 20 sites in 17 countries and the Gaza Strip/West Bank region in the Eastern Mediterranean Region, 25 sites in 22 countries in the European

  10. The global potential of local peri-urban food production

    NASA Astrophysics Data System (ADS)

    Kriewald, Steffen; Garcia Cantu Ros, Anselmo; Sterzel, Till; Kropp, Jürgen P.

    2013-04-01

    One big challenge for the rest of the 21st century will be the massive urbanisation. It is expected that more than 7 out of 10 persons will live in a city by the year 2050. Crucial developments towards a sustainable future will therefore take place in cities. One important approach for a sustainable city development is to re-localize food production and to close urban nutrient cycles through better waste management. The re-location of food production avoids CO2 emissions from transportation of food to cities and can also generate income for inhabitants. Cities are by definition locations where fertility accumulates. As cities are often built along rivers, their soils are often fertile. Furthermore, labour force and the possibility of producing fertilizer from human fecal matter within the city promises sustainable nutrients cycles. Although urban and peri-urban agriculture can be found in many cities worldwide and already have a substantial contribution to food supply, it has not jet been comprehensibly structured by research. We combine several worldwide data sets to determine the supply of cities with regional food production, where regional is defined as a production that occurs very close to the consumption within the peri-urban area. Therefore, urban areas are not defined by administrative boundaries but by connected built-up urban areas, and peri-urban area by the surrounding area with the same size multiplied with a scaling parameter. Both together accumulate to an urban-bio-region (UBR). With regard to national food consumption, a linear program achieves the best possible yield on agricultural areas and allows the computation of the fraction of population, which can be nourished. Additionally, several climate scenarios and different dietary patterns were considered. To close the gap between single case studies and to provide a quantitative overview of the global potential of peri-urban food production we used high resolution land-use data Global Land Cover

  11. Ozone depletion and global warming potentials of CF3I

    SciTech Connect

    Solomon, S.; Burkholder, J.B.; Ravishankara, A.R.; Garcia, R.R. |

    1994-10-01

    Laboratory measurements of the infrared and near-ultraviolet absorption characteristics of CF3I (a potentially useful substitute for halons) are presented. Using these data together with a detailed photochemical model, it is shown that the lifetime of this gas in the sunlit atmosphere is less than a day. The chemistry of iodine in the stratosphere is evaluated, and it is shown that any iodine that reaches the stratosphere will be very effective for ozone destruction there. However, the extremely short lifetime of CF3I greatly limits its transport to the stratosphere when released at the surface, especially at midlatitudes, and the total anthropogenic surface release of CF3I is likely to be far less than that of natural iodocarbons such as CH3I on a global basis. It is highly probable that the steady-state ozone depletion potential (ODP) of CF3I for surface releases is less than 0.008 and more likely below 0.0001. Measured infrared absorption data are also combined with the lifetime to show that the 20-year global warming potential (GWP) of this gas is likely to be very small, less than 5. Therefore, this study suggests that neither the ODP nor the GWP of this gas represent significant obstacles to its use as a replacement for halons.

  12. Determining the global maximum biofuel production potential without conflicting with food and feed consumption

    NASA Astrophysics Data System (ADS)

    Pumkaew, Watcharapol

    This study tries to resolve the competition between food and biofuel by balancing the allocation between food and feed areas and biofuel areas for the entire world. The maximum energy production is calculated by determining the theoretical amount of energy that can be grown, once food and feed consumption is taken into account, based on the assumption that unprotected grass and woody lands and forest lands can be converted into cultivated lands. The total optimum land area for biofuel energy, 4,926.49 Mha, consists of corn, rapeseed, sugar beet, sugar cane, and grasses. When considering energy conversion efficiency, the maximum energy production is 520.5 EJ. Of this amount, 5.9 EJ can be identified with food and feed energy and 514.6 EJ can be identified with biofuel energy. This result is a theoretical value to illustrate the potential global land area for biofuel. The biofuel energy production per area of land in this study is calculated to be 0.12 EJ/Mha. With regards to the limitation in the degree of invasion by grass and woody land and forest land areas, if it is not more than 10 percent, the biofuel energy production can serve about 76 percent of energy demand for transportation in 2009. The total optimum land area is about 45 percent of global cultivated land area. Sensitivity analysis shows that the land area of corn, sweet sorghum, sugarcane, grass, and woody crops is sensitive to energy content. The land area of sweet sorghum and soybeans is sensitive to the land area for food and feed consumption. Also, the land area of corn, sugar beet, and sugarcane is sensitive to the potential crop land area. This study, done at the global level, can also apply in a local area by using local constraints.

  13. Exam Question Exchange: Potential Energy Surfaces.

    ERIC Educational Resources Information Center

    Alexander, John J., Ed.

    1988-01-01

    Presents three examination questions, graded in difficulty, that explore the topic of potential energy surfaces using a diagrammatic approach. Provides and discusses acceptable solutions including diagrams. (CW)

  14. Global potential of biospheric carbon management for climate mitigation.

    PubMed

    Canadell, Josep G; Schulze, E Detlef

    2014-01-01

    Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050. PMID:25407959

  15. A Comprehensive Plan for Global Energy Revolution

    NASA Astrophysics Data System (ADS)

    Blees, T.

    2009-05-01

    There is no dearth of information regarding the grave crises faced by humanity in the 21st century. There is also growing consensus that the wholesale burning of fossil fuels must come to an end, either because of climate change or other still-salient reasons such as air pollution or major conflicts over dwindling reserves of cheaply recoverable oil and gas resources. At the same time, global demographics predict with disquieting certainty a world with up to 9 or 10 billion souls by mid-century. The vast expansion of energy consumption that this population represents, along with further increases in already-unacceptable levels of atmospheric carbon dioxide from fossil fuel burning, demands that we quickly develop almost limitless sources of clean, economical power. What is sorely lacking in the public debate are realistic solutions. Expanding wind and solar generating capacity is an important near-term goal, but neither of these technologies represents a viable solution for generating base load power at the vast scales that will be required. Energy efficiency measures are likewise well-directed, but the combination of rising population along with increasingly energy-intensive economic activity by the large fraction of Earth's current population residing in developing nations suggests that absolute energy demand will continue to rise even with radically improved energy efficiency. Fortunately we have the technologies available to provide virtually unlimited clean energy, and to utilize and recycle our resources so that everyone can improve their standard of living. The Integral Fast Reactor (IFR), developed at the Argonne National Laboratory in the 80's and 90's and currently championed by General Electric, is a technology that fills the bill on every count, and then some. IFRs are safe, environmentally clean, economical, and free of conflict over fuel supply. IFRs can safely consume as fuel the nuclear waste from the current installed base of light-water reactors

  16. Potential impact of global climate change on malaria risk

    SciTech Connect

    Martens, W.J.M.; Rotmans, J. |; Niessen, L.W.; Jetten, T.H.; McMichael, A.J.

    1995-05-01

    The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due to expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. 33 refs., 5 figs., 1 tab.

  17. Potential Water and Energy Savings from Showerheads

    SciTech Connect

    Biermayer, Peter J.

    2005-09-28

    This paper estimates the benefits and costs of six water reduction scenarios. Benefits and costs of showerhead scenarios are ranked in this paper by an estimated water reduction percentage. To prioritize potential water and energy saving scenarios regarding showerheads, six scenarios were analyzed for their potential water and energy savings and the associated dollar savings to the consumer.

  18. Global hydropower potential during recent droughts and under changing climate

    NASA Astrophysics Data System (ADS)

    Van Vliet, Michelle T. H.; Sheffield, Justin; Wiberg, David; Wood, Eric F.

    2015-04-01

    There is a strong dependency of world's electricity sector on available water resources for hydropower generation. Recent droughts showed the vulnerability of the electricity sector to surface water constraints with reduced potentials for hydropower generation in different regions worldwide. Using a global modelling framework consisting of the VIC hydrological model and a hydropower model, we assess the impacts of recent droughts and future climate change on hydropower generation potentials worldwide. Our hydrological-electricity modelling framework was optimized and evaluated for 1981-2010, showing a realistic representation of observed streamflow and hydropower generation. We assessed the impacts of recent droughts and future climate change for more than 25,000 hydropower plants worldwide. Our results show that hydropower production potentials were significantly reduced during severe recent streamflow droughts (including e.g. summer of 2003 in Europe and 2007 in the United States). Model simulations with bias-corrected CMIP5 general circulation model output indicate that in several regions considerable reductions in hydropower production potentials are projected due to declines in streamflow during parts of the year. Considering these impacts and the long design life of power plant infrastructure, adaptation options should be included in today's planning and strategies to meet the growing electricity demand in the 21st century.

  19. Water savings potentials of irrigation systems: dynamic global simulation

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (< 30%) in South Asia and Sub-Saharan Africa and highest values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of

  20. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect

    Majumdar, Arun

    2008-07-29

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  1. A Global and Long-Range Picture of Energy Developments.

    ERIC Educational Resources Information Center

    Hafele, Wolf

    1980-01-01

    A discussion is presented of future global energy supply and demand problems and two benchmark scenarios showing that time will be the limiting constraint in adapting the energy supply infrastructure to changing resource availability. (Author/SA).

  2. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema

    Majumdar, Arun

    2016-07-12

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  3. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  4. Energy potential of modern landfills

    SciTech Connect

    Bogner, J.E.

    1990-01-01

    Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

  5. Ionospheric potential variability in global electric circuit models (Invited)

    NASA Astrophysics Data System (ADS)

    Mareev, E.; Volodin, E. M.; Kalinin, A.; Sllyunyaev, N.

    2013-12-01

    The ionospheric potential (IP) represents the electric voltage between the Earth's surface and the lower ionosphere and may be measured with a sufficient accuracy using the balloon soundings over the lowest 15-20 km. This parameter can serve as a global index relating the state of the global electric circuit (GEC) to the planetary climate. Exploring the GEC as a diagnostic tool for climate studies requires an accurate modeling of the IP stationary state and its dynamics, while a question of secular trend of the IP is still under discussion (Markson, 2007; Williams, 2009; Williams and Mareev, 2013). This paper addresses a possibility of correct calculation of the IP in 3D models of the GEC and its adequate parameterization to be used in General Circulation Models (GCM). Our approach is based on the use the integral representation for the contribution of charging currents, supporting the generators (in particular, electrified clouds) in the GEC, into the ionospheric potential (Kalinin et al., 2011; Mareeva et al., 2011). Simple enough analytical expressions for IP induced by the charging electric currents are suggested, including the contribution of the Austausch generator. We have developed also the spherical numerical model of the GEC and applied it for IP calculation for different-type cloud contribution into the circuit. A suggested IP parameterization is appropriate for the use in climate-model simulations (Mareev and Volodin, 2011). We use a high-resolution GCM of the atmosphere and ocean INMCM4.0 for the modeling the GEC. The main characteristics of the model are: atmosphere - 2x1.5 degrees in longitude and latitude, 21 levels; ocean - 1x0.5 degrees in longitude and latitude, 40 levels. We have taken into account quasi-stationary currents of electrified clouds as principal contributors into the DC global circuit. One of the most important aspects of this approach is an account for all the electrified clouds- both thunderstorms and electrified shower cloud. The

  6. The Ar-HCl potential energy surface from a global map-facilitated inversion of state-to-state rotationally resolved differential scattering cross sections and rovibrational spectral data

    NASA Astrophysics Data System (ADS)

    Geremia, J. M.; Rabitz, H.

    2001-11-01

    A recently developed global, nonlinear map-facilitated quantum inversion procedure is used to obtain the interaction potential for Ar-HCl(v=0) based on the rotationally resolved state-to-state inelastic cross sections of Lorenz, Westley, and Chandler [Phys. Chem. Chem. Phys. 2, 481 (2000)] as well as rovibrational spectral data. The algorithm adopted here makes use of nonlinear potential→observable maps to reveal the complete family of surfaces that reproduce the observed scattering and spectral data to within its experimental error. A nonlinear analysis is performed on the error propagation from the measured data to the recovered family of potentials. The family of potentials extracted from the inversion data is compared to the Hutson H6(4,3,0) surface [Phys. Chem. 96, 4237 (1992)], which was unable to fully account for the inelastic scattering data [Phys. Chem. Chem. Phys. 2, 481 (2000)]. There is excellent agreement with H6(4,3,0) in the attractive well, where Hutson's surface is considered most reliable. There is also good long-range agreement. However, it is shown that H6(4,3,0) predicts too soft a wall for the linear Ar-HCl configuration and significantly too steep a wall for linear Ar-ClH. These differences account for the systematically backscattered inelastic cross sections computed using the H6(4,3,0) surface. The new, nonlinear inversion results provide a global Ar-HCl interaction potential with reliable error bars that are consistent with all of the experimental data.

  7. KEYNOTE: Simulation, computation, and the Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Reis, Victor, Dr.

    2006-01-01

    Dr. Victor Reis delivered the keynote talk at the closing session of the conference. The talk was forward looking and focused on the importance of advanced computing for large-scale nuclear energy goals such as Global Nuclear Energy Partnership (GNEP). Dr. Reis discussed the important connections of GNEP to the Scientific Discovery through Advanced Computing (SciDAC) program and the SciDAC research portfolio. In the context of GNEP, Dr. Reis talked about possible fuel leasing configurations, strategies for their implementation, and typical fuel cycle flow sheets. A major portion of the talk addressed lessons learnt from ‘Science Based Stockpile Stewardship’ and the Accelerated Strategic Computing Initiative (ASCI) initiative and how they can provide guidance for advancing GNEP and SciDAC goals. Dr. Reis’s colorful and informative presentation included international proverbs, quotes and comments, in tune with the international flavor that is part of the GNEP philosophy and plan. He concluded with a positive and motivating outlook for peaceful nuclear energy and its potential to solve global problems. An interview with Dr. Reis, addressing some of the above issues, is the cover story of Issue 2 of the SciDAC Review and available at http://www.scidacreview.org This summary of Dr. Reis’s PowerPoint presentation was prepared by Institute of Physics Publishing, the complete PowerPoint version of Dr. Reis’s talk at SciDAC 2006 is given as a multimedia attachment to this summary.

  8. Recent decrease in typhoon destructive potential and global warming implications

    PubMed Central

    Lin, I-I; Chan, Johnny C.L.

    2015-01-01

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition ‘worsened' at the same time. The ‘worsened' atmospheric condition appears to effectively overpower the ‘better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling. PMID:25990561

  9. Predicting the global warming potential of agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Lehuger, S.; Gabrielle, B.; Larmanou, E.; Laville, P.; Cellier, P.; Loubet, B.

    2007-04-01

    Nitrous oxide, carbon dioxide and methane are the main biogenic greenhouse gases (GHG) contributing to the global warming potential (GWP) of agro-ecosystems. Evaluating the impact of agriculture on climate thus requires a capacity to predict the net exchanges of these gases in an integrated manner, as related to environmental conditions and crop management. Here, we used two year-round data sets from two intensively-monitored cropping systems in northern France to test the ability of the biophysical crop model CERES-EGC to simulate GHG exchanges at the plot-scale. The experiments involved maize and rapeseed crops on a loam and rendzina soils, respectively. The model was subsequently extrapolated to predict CO2 and N2O fluxes over an entire crop rotation. Indirect emissions (IE) arising from the production of agricultural inputs and from cropping operations were also added to the final GWP. One experimental site (involving a wheat-maize-barley rotation on a loamy soil) was a net source of GHG with a GWP of 350 kg CO2-C eq ha-1 yr-1, of which 75% were due to IE and 25% to direct N2O emissions. The other site (involving an oilseed rape-wheat-barley rotation on a rendzina) was a net sink of GHG for -250 kg CO2-C eq ha-1 yr-1, mainly due to a higher predicted C sequestration potential and C return from crops. Such modelling approach makes it possible to test various agronomic management scenarios, in order to design productive agro-ecosystems with low global warming impact.

  10. Global Change Simulations Affect Potential Methane Oxidation in Upland Soils

    NASA Astrophysics Data System (ADS)

    Blankinship, J. C.; Hungate, B. A.

    2004-12-01

    Atmospheric concentrations of methane (CH4) are higher now than they have ever been during the past 420,000 years. However, concentrations have remained stable since 1999. Emissions associated with livestock husbandry are unlikely to have changed, so some combination of reduced production in wetlands, more efficient capture by landfills, or increased consumption by biological CH4 oxidation in upland soils may be responsible. Methane oxidizing bacteria are ubiquitous in upland soils and little is known about how these bacteria respond to anthropogenic global change, and how they will influence - or already are influencing - the radiative balance of the atmosphere. Might ongoing and future global changes increase biological CH4 oxidation? Soils were sampled from two field experiments to assess changes in rates of CH4 oxidation in response to global change simulations. Potential activities of CH4 oxidizing bacterial communities were measured through laboratory incubations under optimal temperature, soil moisture, and atmospheric CH4 concentrations (~18 ppm, or 10x ambient). The ongoing 6-year multifactorial Jasper Ridge Global Change Experiment (JRGCE) simulates warming, elevated precipitation, elevated atmospheric CO2, elevated atmospheric N deposition, and increased wildfire frequency in an annual grassland in a Mediterranean-type climate in central California. The ongoing 1-year multifactorial Merriam Climate Change Experiment (MCCE) simulates warming, elevated precipitation, and reduced precipitation in four different types of ecosystems along an elevational gradient in a semi-arid climate in northern Arizona. The high desert grassland, pinyon-juniper woodland, ponderosa pine forest, and mixed conifer forest ecosystems range in annual precipitation from 100 to 1000 mm yr-1, and from productivity being strongly water limited to strongly temperature limited. Among JRGCE soils, elevated atmospheric CO2 increased potential CH4 oxidation rates (p=0.052) and wildfire

  11. Wave Energy Potential in the Latvian EEZ

    NASA Astrophysics Data System (ADS)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  12. Climate-change impact potentials as an alternative to global warming potentials

    NASA Astrophysics Data System (ADS)

    Kirschbaum, Miko U. F.

    2014-03-01

    For policy applications, such as for the Kyoto Protocol, the climate-change contributions of different greenhouse gases are usually quantified through their global warming potentials. They are calculated based on the cumulative radiative forcing resulting from a pulse emission of a gas over a specified time period. However, these calculations are not explicitly linked to an assessment of ultimate climate-change impacts. A new metric, the climate-change impact potential (CCIP), is presented here that is based on explicitly defining the climate-change perturbations that lead to three different kinds of climate-change impacts. These kinds of impacts are: (1) those related directly to temperature increases; (2) those related to the rate of warming; and (3) those related to cumulative warming. From those definitions, a quantitative assessment of the importance of pulse emissions of each gas is developed, with each kind of impact assigned equal weight for an overall impact assessment. Total impacts are calculated under the RCP6 concentration pathway as a base case. The relevant climate-change impact potentials are then calculated as the marginal increase of those impacts over 100 years through the emission of an additional unit of each gas in 2010. These calculations are demonstrated for CO2, methane and nitrous oxide. Compared with global warming potentials, climate-change impact potentials would increase the importance of pulse emissions of long-lived nitrous oxide and reduce the importance of short-lived methane.

  13. Global energetics of solar flares. I. Magnetic energies

    SciTech Connect

    Aschwanden, Markus J.; Xu, Yan; Jing, Ju E-mail: yan.xu@njit.edu

    2014-12-10

    We present the first part of a project on the global energetics of solar flares and coronal mass ejections that includes about 400 M- and X-class flares observed with Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). We calculate the potential (E{sub p} ), the nonpotential (E {sub np}) or free energies (E {sub free} = E {sub np} – E{sub p} ), and the flare-dissipated magnetic energies (E {sub diss}). We calculate these magnetic parameters using two different NLFFF codes: the COR-NLFFF code uses the line-of-sight magnetic field component B{sub z} from HMI to define the potential field, and the two-dimensional (2D) coordinates of automatically detected coronal loops in six coronal wavelengths from AIA to measure the helical twist of coronal loops caused by vertical currents, while the PHOT-NLFFF code extrapolates the photospheric three-dimensional (3D) vector fields. We find agreement between the two codes in the measurement of free energies and dissipated energies within a factor of ≲ 3. The size distributions of magnetic parameters exhibit powerlaw slopes that are approximately consistent with the fractal-diffusive self-organized criticality model. The magnetic parameters exhibit scaling laws for the nonpotential energy, E{sub np}∝E{sub p}{sup 1.02}, for the free energy, E{sub free}∝E{sub p}{sup 1.7} and E{sub free}∝B{sub φ}{sup 1.0}L{sup 1.5}, for the dissipated energy, E{sub diss}∝E{sub p}{sup 1.6} and E{sub diss}∝E{sub free}{sup 0.9}, and the energy dissipation volume, V∝E{sub diss}{sup 1.2}. The potential energies vary in the range of E{sub p} = 1 × 10{sup 31}-4 × 10{sup 33} erg, while the free energy has a ratio of E {sub free}/E{sub p} ≈ 1%-25%. The Poynting flux amounts to F {sub flare} ≈ 5 × 10{sup 8}-10{sup 10} erg cm{sup –2} s{sup –1} during flares, which averages to F {sub AR} ≈ 6 × 10{sup 6} erg cm{sup –2} s{sup –1} during the entire observation

  14. Global warming potentials; Part 7 of 7 supporting documents. Sector-specific issues and reporting methodologies supporting the general guidelines for voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992; Public review draft

    SciTech Connect

    Not Available

    1994-05-31

    This document provides methods to account for the different effects of different gases on the atmosphere. It discusses the rationale and uses for simplified measures to represent human-related effects on climate and provides a brief introduction to a major index, the global warming potential (GWP) index. Appendix 7.A analyzes the science underlying the development of indices for concerns about climate, which is still evolving, evaluates the usefulness of currently available indices, and presents the state of the art for numerical indices and their uncertainties. For concerns about climate, the Intergovernmental Panel on Climate Change (IPCC) has been instrumental in examining relative indices for comparing the radiative influences of greenhouse gases. The IPCC developed the concept of GWPs to provide a simple representation of the relative effects on climate resulting from a unit mass emission of a greenhouse gas. Alternative measures and variations on the definition of GWPs have also been considered and reported.

  15. Saturation wind power potential and its implications for wind energy

    PubMed Central

    Jacobson, Mark Z.; Archer, Cristina L.

    2012-01-01

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world’s all-purpose power from wind in a 2030 clean-energy economy. PMID:23019353

  16. Saturation wind power potential and its implications for wind energy.

    PubMed

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  17. Wind energy in China: Estimating the potential

    NASA Astrophysics Data System (ADS)

    Yuan, Jiahai

    2016-07-01

    Persistent and significant curtailment has cast concern over the prospects of wind power in China. A comprehensive assessment of the production of energy from wind has identified grid-integrated wind generation potential at 11.9–14% of China's projected energy demand by 2030.

  18. Economic Energy Savings Potential in Federal Buildings

    SciTech Connect

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  19. Status of fossil energy resources: A global perspective

    SciTech Connect

    Balat, M.

    2007-07-01

    This article deals with recently status of global fossil energy sources. Fossil energy sources have been split into three categories: oil,coal, and natural gas. Fossil fuels are highly efficient and cheap. Currently oil is the fastest primary energy source in the world (39% of world energy consumption). Coal will be a major source of energy for the world for the foreseeable future (24% of world energy consumption). In 2030, coal covers 45% of world energy needs. Natural gas is expected to be the fastest growing component of world energy consumption (23% of world energy consumption). Fossil fuel extraction and conversion to usable energy has several environmental impacts. They could be a major contributor to global warming and greenhouse gases and a cause of acid rain; therefore, expensive air pollution controls are required.

  20. Applying supersymmetry to energy dependent potentials

    SciTech Connect

    Yekken, R.; Lassaut, M.; Lombard, R.J.

    2013-11-15

    We investigate the supersymmetry properties of energy dependent potentials in the D=1 dimensional space. We show the main aspects of supersymmetry to be preserved, namely the factorization of the Hamiltonian, the connections between eigenvalues and wave functions of the partner Hamiltonians. Two methods are proposed. The first one requires the extension of the usual rules via the concept of local equivalent potential. In this case, the superpotential becomes depending on the state. The second method, applicable when the potential depends linearly on the energy, is similar to what has been already achieved by means of the Darboux transform. -- Highlights: •Supersymmetry extended to energy dependent potentials. •Generalization of the concept of superpotential. •An alternative method used for linear E-dependence leads to the same results as Darboux transform.

  1. Perfluorodecalin: global warming potential and first detection in the atmosphere

    NASA Astrophysics Data System (ADS)

    Shine, Keith P.; Gohar, Laila K.; Hurley, Michael D.; Marston, George; Martin, Damian; Simmonds, Peter G.; Wallington, Timothy J.; Watkins, Matt

    Perfluorodecalin (C 10F 18) has a range of medical uses that have led to small releases. Recently, it has been proposed as a carrier of vaccines, which could lead to significantly larger emissions. Since its emissions are controlled under the Kyoto Protocol, it is important that values for the global warming potential (GWP) are available. For a 50:50 mixture of the two isomers of perfluorodecalin, laboratory measurements, supplemented by theoretical calculations, give an integrated absorption cross-section of 3.91×10 -16 cm 2 molecule -1 cm -1 over the spectral region 0-1500 cm -1; calculations yield a radiative efficiency of 0.56 W m -2 ppbv -1 and a 100-year GWP, relative to carbon dioxide, of 7200 assuming a lifetime of 1000 years. We report the first atmospheric measurements of perfluorodecalin, at Bristol, UK and Mace Head, Ireland, where volume mixing ratios are about 1.5×10 -15. At these concentrations, it makes a trivial contribution to climate change, but on a per molecule basis it is a potent greenhouse gas, indicating the need for careful assessment of its possible future usage.

  2. Center Views Energy Problems on Global Basis

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1972

    1972-01-01

    The National Center for Energy Management and Power at the University of Pennsylvania is committed to advancing the technology of energy conversion and training people to manage effectively whatever form the energy industry assumes in the future, including measurement of the impact of developments on both producer and consumer. (DF)

  3. Global and regional potential for bioenergy from agricultural and forestry residue biomass

    SciTech Connect

    Gregg, Jay S.; Smith, Steven J.

    2010-02-11

    As co-products, agricultural and forestry residues represent a potential low cost, low carbon, source for bioenergy. A method is developed method for estimating the maximum sustainable amount of energy potentially available from agricultural and forestry residues by converting crop production statistics into associated residue, while allocating some of this resource to remain on the field to mitigate erosion and maintain soil nutrients. Currently, we estimate that the world produces residue biomass that could be sustainably harvested and converted into over 50 EJ yr-1 of energy. The top three countries where this resource is estimated to be most abundant are currently net energy importers: China, the United States (US), and India. The global potential from residue biomass is estimated to increase to approximately 80-95 EJ yr-1 by mid- to late- century, depending on physical assumptions such as of future crop yields and the amount of residue sustainably harvestable. The future market for biomass residues was simulated using the Object-Oriented Energy, Climate, and Technology Systems Mini Climate Assessment Model (ObjECTS MiniCAM). Utilization of residue biomass as an energy source is projected for the next century under different climate policy scenarios. Total global use of residue biomass is estimated to increase to 70-100 EJ yr-1 by mid- to late- century in a central case, depending on the presence of a climate policy and the economics of harvesting, aggregating, and transporting residue. Much of this potential is in developing regions of the world, including China, Latin America, Southeast Asia, and India.

  4. Separable representation of energy-dependent optical potentials

    NASA Astrophysics Data System (ADS)

    Hlophe, L.; Elster, Ch.

    2016-03-01

    Background: One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g., (d ,p ) reactions, should be used. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Methods: Momentum space Lippmann-Schwinger integral equations are solved with standard techniques to obtain the form factors for the separable representation. Results: Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n +48Ca ,n +208Pb , and p +208Pb are investigated for energies from 0 to 50 MeV with special emphasis on fulfilling reciprocity. Conclusions: We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the S matrix elements.

  5. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    SciTech Connect

    Habib, Komal; Schmidt, Jannick H.; Christensen, Per

    2013-09-15

    Highlights: • Five scenarios are compared based on different waste management systems from 1970 to 2010. • Technology development for incineration and vehicular exhaust system throughout the time period is considered. • Compared scenarios show continuous improvement regarding environmental performance of waste management system. • Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. • Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup −1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup −1} of MSWM.

  6. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  7. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  8. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Global Warming Potentials A Table A-1 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-1 to Subpart A of Part 98—Global Warming Potentials Name CAS No. Chemical formula Global...

  9. Energy conservation in Kenya: progress, potentials, problems

    SciTech Connect

    Schipper, L.; Hollander, J.M.; Milukas, M.; Alcamo, J.; Meyers, S.; Noll, S.

    1981-09-01

    A study was carried out of the flows of commercial energy in the economy of Kenya. Indications were sought of the extent to which energy conservation, (i.e., increase in efficiency of energy use) has reduced the ratio of energy inputs to economic outputs, in the post-1973 years. An assessment was made of the potential for energy conservation to reduce the growth of Kenyan energy use in the future and of significant barriers to increasing energy efficiency. Consideration was given to the role of government policy and of international assistance in fostering energy conservation in Kenya and other developing countries. The study was performed by analyzing available energy data and statistics from the largest oil companies, the Kenyan electric utility, and the government. These sources were supplemented by conducting personal interviews with personnel of nearly 50 commercial firms in Kenya. Direct consumption of fuel accounts for 94% of the commercial energy use in Kenya, while electricity accounts for 6%. The sectoral division of fuel use is: transportation 53%, industry 21%, energy production 11%, agriculture 9%, buildings and residences 5%, and construction 1%. For electricity the division is: buildings and residences 48%, industry 45%, energy production 4%, agriculture 2%, and construction 1%. Recent progress in conservation is reported.

  10. Global Budget of Gravity Wave Momentum and Energy Fluxes

    NASA Astrophysics Data System (ADS)

    Liu, H.

    2015-12-01

    Atmospheric gravity waves are known to play a key role in the middle and upper atmosphere. These waves carry momentum and energy fluxes as they propagate, and can deposit momentum and energy when waves dissipate due to either instability or background diffusion. The global budgets of gravity wave momentum fluxes have previously been estimated by using ground-based observations, and more recently deduced from satellite observations. There have been less reports on the global energy flux budget. In this study, we analyze the momentum and energy fluxes calculated from mesoscale-resolving Whole Atmosphere Community Climate Model (WACCM), including their global distribution, altitude dependence, and seasonal variation. The momentum fluxes and their spatial and seasonal variation are found to be in general agreement with satellite observations. With this verification of the momentum flux, the energy flux budget, in particular the altitude dependence of the total energy flux, is examined.

  11. GEWEX: The Global Energy and Water Cycle Experiment

    NASA Technical Reports Server (NTRS)

    Chahine, M.; Vane, D.

    1994-01-01

    GEWEX is one of the world's largest global change research programs. Its purpose is to observe and understand the hydrological cycle and energy fluxes in the atmosphere, at land surfaces and in the upper oceans.

  12. The potential impact of hydrogen energy use on the atmosphere

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  13. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    PubMed Central

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  14. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  15. Global and Regional Evaluation of Energy for Water.

    PubMed

    Liu, Yaling; Hejazi, Mohamad; Kyle, Page; Kim, Son H; Davies, Evan; Miralles, Diego G; Teuling, Adriaan J; He, Yujie; Niyogi, Dev

    2016-09-01

    Despite significant effort to quantify the interdependence of the water and energy sectors, global requirements of energy for water (E4W) are still poorly understood, which may result in biases in projections and consequently in water and energy management and policy. This study estimates water-related energy consumption by water source, sector, and process for 14 global regions from 1973 to 2012. Globally, E4W amounted to 10.2 EJ of primary energy consumption in 2010, accounting for 1.7%-2.7% of total global primary energy consumption, of which 58% pertains to fresh surface water, 30% to fresh groundwater, and 12% to nonfresh water, assuming median energy intensity levels. The sectoral E4W allocation includes municipal (45%), industrial (30%), and agricultural (25%), and main process-level contributions are from source/conveyance (39%), water purification (27%), water distribution (12%), and wastewater treatment (18%). While the United States was the largest E4W consumer from the 1970s until the 2000s, the largest consumers at present are the Middle East, India, and China, driven by rapid growth in desalination, groundwater-based irrigation, and industrial and municipal water use, respectively. The improved understanding of global E4W will enable enhanced consistency of both water and energy representations in integrated assessment models.

  16. Global and Regional Evaluation of Energy for Water.

    PubMed

    Liu, Yaling; Hejazi, Mohamad; Kyle, Page; Kim, Son H; Davies, Evan; Miralles, Diego G; Teuling, Adriaan J; He, Yujie; Niyogi, Dev

    2016-09-01

    Despite significant effort to quantify the interdependence of the water and energy sectors, global requirements of energy for water (E4W) are still poorly understood, which may result in biases in projections and consequently in water and energy management and policy. This study estimates water-related energy consumption by water source, sector, and process for 14 global regions from 1973 to 2012. Globally, E4W amounted to 10.2 EJ of primary energy consumption in 2010, accounting for 1.7%-2.7% of total global primary energy consumption, of which 58% pertains to fresh surface water, 30% to fresh groundwater, and 12% to nonfresh water, assuming median energy intensity levels. The sectoral E4W allocation includes municipal (45%), industrial (30%), and agricultural (25%), and main process-level contributions are from source/conveyance (39%), water purification (27%), water distribution (12%), and wastewater treatment (18%). While the United States was the largest E4W consumer from the 1970s until the 2000s, the largest consumers at present are the Middle East, India, and China, driven by rapid growth in desalination, groundwater-based irrigation, and industrial and municipal water use, respectively. The improved understanding of global E4W will enable enhanced consistency of both water and energy representations in integrated assessment models. PMID:27482620

  17. The global nephrology workforce: emerging threats and potential solutions!

    PubMed Central

    Sharif, Muhammad U.; Elsayed, Mohamed E.; Stack, Austin G.

    2016-01-01

    Amidst the rising tide of chronic kidney disease (CKD) burden, the global nephrology workforce has failed to expand in order to meet the growing healthcare needs of this vulnerable patient population. In truth, this shortage of nephrologists is seen in many parts of the world, including North America, Europe, Australia, New Zealand, Asia and the African continent. Moreover, expert groups on workforce planning as well as national and international professional organizations predict further reductions in the nephrology workforce over the next decade, with potentially serious implications. Although the full impact of this has not been clearly articulated, what is clear is that the delivery of care to patients with CKD may be threatened in many parts of the world unless effective country-specific workforce strategies are put in place and implemented. Multiple factors are responsible for this apparent shortage in the nephrology workforce and the underpinning reasons may vary across health systems and countries. Potential contributors include the increasing burden of CKD, aging workforce, declining interest in nephrology among trainees, lack of exposure to nephrology among students and residents, rising cost of medical education and specialist training, increasing cultural and ethnic disparities between patients and care providers, increasing reliance on foreign medical graduates, inflexible work schedules, erosion of nephrology practice scope by other specialists, inadequate training, reduced focus on scholarship and research funds, increased demand to meet quality of care standards and the development of new care delivery models. It is apparent from this list that the solution is not simple and that a comprehensive evaluation is required. Consequently, there is an urgent need for all countries to develop a policy framework for the provision of kidney disease services within their health systems, a framework that is based on accurate projections of disease burden, a

  18. Global Auroral Energy Deposition Compared with Magnetic Indices

    NASA Technical Reports Server (NTRS)

    Brittnacher, M. J.; Fillingim, M. O.; Elsen, R.; Parks, G. K.; Germany, G. A.; Spann, J. F., Jr.

    1997-01-01

    Measurement of the global rate of energy deposition in the ionosphere via auroral particle precipitation is one of the primary goals of the Polar UVI program and is an important component of the ISTP program. The instantaneous rate of energy deposition for the entire month of January 1997 has been calculated by applying models to the UVI images and is presented by Fillingim et al. in this session. Magnetic indices, such as Kp, AE, and Dst, which are sensitive to variations in magnetospheric current systems have been constructed from ground magnetometer measurements and employed as measures of activity. The systematic study of global energy deposition raises the possibility of constructing a global magnetospheric activity index explicitly based on particle precipitation to supplement magnetic indices derived from ground magnetometer measurements. The relationship between global magnetic activity as measured by these indices and the rate of total global energy loss due to precipitation is not known at present. We study the correlation of the traditional magnetic index of Kp for the month of January 1997 with the energy deposition derived from the UVI images. We address the question of whether the energy deposition through particle precipitation generally matches the Kp and AE indices, or the more exciting, but distinct, possibility that this particle-derived index may provide an somewhat independent measure of global magnetospheric activity that could supplement traditional magnetically-based activity indices.

  19. Potential energy function for the hydroperoxyl radical

    SciTech Connect

    Lemon, W.J.; Hase, W.L.

    1987-03-12

    A switching function formalism is used to derive an analytic potential energy surface for the O + OH in equilibrium HO/sub 2/ in equilibrium H + O/sub 2/ reactive system. Both experimental and ab initio data are used to derive parameters for the potential energy surface. Trajectory calculations for highly excited HO/sub 2/ are performed on this surface. From these trajectories quasi-periodic eigentrajectories are found for vibrational levels near the HO/sub 2/ dissociation threshold with small amounts of quanta in the OH stretch mode and large amounts of quanta in the OO stretch mode.

  20. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    SciTech Connect

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  1. Biomass resource potential using energy crops

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Martin, S.A.

    1993-09-01

    Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

  2. Global relativistic folding optical potential and the relativistic Green's function model

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Vignote, J. R.; Álvarez-Rodríguez, R.; Meucci, A.; Giusti, C.; Udías, J. M.

    2016-07-01

    Optical potentials provide critical input for calculations on a wide variety of nuclear reactions, in particular, for neutrino-nucleus reactions, which are of great interest in the light of the new neutrino oscillation experiments. We present the global relativistic folding optical potential (GRFOP) fits to elastic proton scattering data from 12C nucleus at energies between 20 and 1040 MeV. We estimate observables, such as the differential cross section, the analyzing power, and the spin rotation parameter, in elastic proton scattering within the relativistic impulse approximation. The new GRFOP potential is employed within the relativistic Green's function model for inclusive quasielastic electron scattering and for (anti)neutrino-nucleus scattering at MiniBooNE kinematics.

  3. A historical perspective of Global Warming Potential from Municipal Solid Waste Management.

    PubMed

    Habib, Komal; Schmidt, Jannick H; Christensen, Per

    2013-09-01

    The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP(100)), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO(2)-eq.tonne(-1) to net saving of 670 kg CO(2)-eq.tonne(-1) of MSWM.

  4. Potential flux landscapes determine the global stability of a Lorenz chaotic attractor under intrinsic fluctuations.

    PubMed

    Li, Chunhe; Wang, Erkang; Wang, Jin

    2012-05-21

    We developed a potential flux landscape theory to investigate the dynamics and the global stability of a chemical Lorenz chaotic strange attractor under intrinsic fluctuations. Landscape was uncovered to have a butterfly shape. For chaotic systems, both landscape and probabilistic flux are crucial to the dynamics of chaotic oscillations. Landscape attracts the system down to the chaotic attractor, while flux drives the coherent motions along the chaotic attractors. Barrier heights from the landscape topography provide a quantitative measure for the robustness of chaotic attractor. We also found that the entropy production rate and phase coherence increase as the molecular numbers increase. Power spectrum analysis of autocorrelation function provides another way to quantify the global stability of chaotic attractor. We further found that limit cycle requires more flux and energy to sustain than the chaotic strange attractor. Finally, by detailed analysis we found that the curl probabilistic flux may provide the origin of the chaotic attractor.

  5. Potential reduction of DSN uplink energy cost

    NASA Technical Reports Server (NTRS)

    Dolinsky, S.; Degroot, N. F.

    1982-01-01

    DSN Earth stations typically transmit more power than that required to meet minimum specifications for uplink performance. Energy and cost savings that could result from matching the uplink power to the amount required for specified performance are studied. The Galileo mission was selected as a case study. Although substantial reduction in transmitted energy is possible, potential savings in source energy (oil or electricity) savings are much less. This is because of the rising inefficiency in power conversion and radio frequency power generation that accompanies reduced power output.

  6. Privatization and the Globalization of Energy Markets

    EIA Publications

    1996-01-01

    Discusses recent efforts at privatization in petroleum, electricity, and coal, as well as the impetus that privatization has provided in fostering the evolution of the multinational and multidimensional energy company.

  7. Diabatic heating fields and the generation of available potential energy during FGGE

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.; Baker, Wayman E.; Kalnay, Eugenia

    1986-01-01

    Global diabatic heating is estimated using fields of directly computed heating components, in particular those due to shortwave radiation, longwave radiation, sensible heating, and latent heating produced every 6 hours. The role of average fields of diabatic heating in the generation of available potential energy is examined. It is observed that latent heating is most significant in generating available potential energy.

  8. Balancing energy supply and demand: a fifty-year global perspective

    SciTech Connect

    Basile, P.S.

    1981-07-01

    Two global scenarios project the energy futures for seven regions of the world to the year 2030. The economic and energy prospects of these regions vary, with different potentials and constraints. Some energy end-use markets can be more easily supplied than others. Different energy-supply options carry different economic, environmental, political, and institutional implications. Because energy systems are closely linked with our economies and our lives, definitive statements on energy futures must be greeted with skepticism. But by knowing some of the implications of various paths to the future, perhaps enough responsible decisions can be taken.

  9. Assessing the potential global extent of SWOT river discharge observations

    NASA Astrophysics Data System (ADS)

    Pavelsky, Tamlin M.; Durand, Michael T.; Andreadis, Konstantinos M.; Beighley, R. Edward; Paiva, Rodrigo C. D.; Allen, George H.; Miller, Zachary F.

    2014-11-01

    Despite its importance as a major element of the global hydrologic cycle, runoff remains poorly constrained except at the largest spatial scales due to limitations of the global stream gauge network and inadequate data sharing. Efforts using remote sensing to infer runoff from discharge estimates are limited by characteristics of present-day sensors. The proposed Surface Water and Ocean Topography (SWOT) mission, a joint project between the United States and France, aims to substantially improve space-based estimates of river discharge. However, the extent of rivers observable by SWOT, likely limited to those wider than 50-100 m, remains unknown. Here, we estimate the extent of SWOT river observability globally using a downstream hydraulic geometry (DHG) approach combining basin areas from the Hydro1k and Hydrosheds elevation products, discharge from the Global Runoff Data Centre (GRDC), and width estimates from a global width-discharge relationship. We do not explicitly consider SWOT-specific errors associated with layover and other phenomena in this analysis, although they have been considered in formulation of the 50-100 m width thresholds. We compare the extent of SWOT-observable rivers with GRDC and USGS gauge datasets, the most complete datasets freely available to the global scientific community. In the continental US, SWOT would match USGS river basin coverage only at large scales (>25,000 km2). Globally, SWOT would substantially improve on GRDC observation extent: SWOT observation of 100 m (50 m) rivers will allow discharge estimation in >60% of 50,000 km2 (10,000 km2) river basins. In contrast, the GRDC observes fewer than 30% (15%) of these basins. SWOT could improve characterization of global runoff processes, especially with a 50 m observability threshold, but in situ gauge data remains essential and must be shared more freely with the international scientific community.

  10. Potential energy surface of triplet N2O2

    NASA Astrophysics Data System (ADS)

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G.

    2016-01-01

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  11. Potential energy surface of triplet N2O2.

    PubMed

    Varga, Zoltan; Meana-Pañeda, Rubén; Song, Guoliang; Paukku, Yuliya; Truhlar, Donald G

    2016-01-14

    We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

  12. Potential energy savings from aquifer thermal energy storage

    SciTech Connect

    Anderson, M.R.; Weijo, R.O.

    1988-07-01

    Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

  13. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    PubMed

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  14. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    PubMed Central

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. PMID:23576836

  15. Kolmogorov's hypotheses and global energy spectrum of turbulence

    NASA Astrophysics Data System (ADS)

    Liao, Zi-Ju; Su, Wei-Dong

    2015-04-01

    We relate the justification of Kolmogorov's hypotheses on the local isotropy and small-scale universality in real turbulent flows to an observed universality of basis independence for the global energy spectrum and energy flux of small-scale turbulence. To readily examine the small-scale universality, an approach is suggested that investigates the global energy spectrum in a general spectral space for which the nonlinear interscale interaction may not be Fourier-triadic. Specific verifications are performed based on direct numerical simulations of turbulence in a spherical geometry and reexaminations of several existing results for turbulent channel flows.

  16. Comparison of global phenomenological and microscopic optical potentials for nuclear data predictions

    SciTech Connect

    Cai, C. ); Shen, Q.; Zhuo, Y. )

    1991-10-01

    In this paper the chi-square ({chi}{sup 2}) values, which represent the degree of agreement between the calculated total, nonelastic, and differential elastic cross sections and their experimental values, are calculated for seven kinds of optical potentials: the phenomenological optimal optical potential (OOP) for a specific element, the global phenomenological optical potentials given by Becchetti and Greenlees (BGP) and by Varner et al. (CH86) for a large number of target nuclei, and the microscopic optical potentials based on conventional Skyrme force (SII and SIII), generalized Skyrme force (GS2), and modified Skyrme force (SKa). Fourteen natural elements (each containing one to four isotopes) are calculated with 12 to 20 neutron incident energies, which are in the 0.1- to 24-MeV energy region for each element. The calculated average total chi-square values are {bar {chi}}{sub OOP}{sup 2} - 0.309, {bar {chi}}{sub BGP}{sup 2} = 0.807, {bar {chi}}{sub CH86}{sup 2} = 0.684, {bar {chi}}{sub GS2}{sup 2} = 0.600, {bar {chi}}{sub SKa}{sup 2} = 0.646, {bar {chi}}{sub SII}{sup 2} = 2.587, and {bar {chi}}{sub SIII}{sup 2} = 1.368. The conclusion is that the microscopic optical potential based on generalized and modified Skyrme force (GS2 and SKa), which has an analytical formalism without any free parameters, is useful in nuclear data calculation and evaluation.

  17. Impact of management strategies on the global warming potential at the cropping system level.

    PubMed

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact. PMID:24911772

  18. Impact of management strategies on the global warming potential at the cropping system level.

    PubMed

    Goglio, Pietro; Grant, Brian B; Smith, Ward N; Desjardins, Raymond L; Worth, Devon E; Zentner, Robert; Malhi, Sukhdev S

    2014-08-15

    Estimating the greenhouse gas (GHG) emissions from agricultural systems is important in order to assess the impact of agriculture on climate change. In this study experimental data supplemented with results from a biophysical model (DNDC) were combined with life cycle assessment (LCA) to investigate the impact of management strategies on global warming potential of long-term cropping systems at two locations (Breton and Ellerslie) in Alberta, Canada. The aim was to estimate the difference in global warming potential (GWP) of cropping systems due to N fertilizer reduction and residue removal. Reducing the nitrogen fertilizer rate from 75 to 50 kg N ha(-1) decreased on average the emissions of N2O by 39%, NO by 59% and ammonia volatilisation by 57%. No clear trend for soil CO2 emissions was determined among cropping systems. When evaluated on a per hectare basis, cropping systems with residue removal required 6% more energy and had a little change in GWP. Conversely, when evaluated on the basis of gigajoules of harvestable biomass, residue removal resulted in 28% less energy requirement and 33% lower GWP. Reducing nitrogen fertilizer rate resulted in 18% less GWP on average for both functional units at Breton and 39% less GWP at Ellerslie. Nitrous oxide emissions contributed on average 67% to the overall GWP per ha. This study demonstrated that small changes in N fertilizer have a minimal impact on the productivity of the cropping systems but can still have a substantial environmental impact.

  19. Globalization, Democracy, and Social Movements: The Educational Potential of Activism

    ERIC Educational Resources Information Center

    Hytten, Kathy

    2016-01-01

    In this essay, I explore the contemporary value of John Dewey's conception of democracy to addressing the challenges of neoliberal globalization. I begin by describing his vision of democracy as a way of life that requires habits of experimentalism, pluralism, and hope. I then suggest that contemporary forms of mobilization, resistance, and…

  20. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses

    NASA Astrophysics Data System (ADS)

    2016-09-01

    Ocean microbes drive biogeochemical cycling on a global scale. However, this cycling is constrained by viruses that affect community composition, metabolic activity, and evolutionary trajectories. Owing to challenges with the sampling and cultivation of viruses, genome-level viral diversity remains poorly described and grossly understudied, with less than 1% of observed surface-ocean viruses known. Here we assemble complete genomes and large genomic fragments from both surface- and deep-ocean viruses sampled during the Tara Oceans and Malaspina research expeditions, and analyse the resulting ‘global ocean virome’ dataset to present a global map of abundant, double-stranded DNA viruses complete with genomic and ecological contexts. A total of 15,222 epipelagic and mesopelagic viral populations were identified, comprising 867 viral clusters (defined as approximately genus-level groups). This roughly triples the number of known ocean viral populations and doubles the number of candidate bacterial and archaeal virus genera, providing a near-complete sampling of epipelagic communities at both the population and viral-cluster level. We found that 38 of the 867 viral clusters were locally or globally abundant, together accounting for nearly half of the viral populations in any global ocean virome sample. While two-thirds of these clusters represent newly described viruses lacking any cultivated representative, most could be computationally linked to dominant, ecologically relevant microbial hosts. Moreover, we identified 243 viral-encoded auxiliary metabolic genes, of which only 95 were previously known. Deeper analyses of four of these auxiliary metabolic genes (dsrC, soxYZ, P-II (also known as glnB) and amoC) revealed that abundant viruses may directly manipulate sulfur and nitrogen cycling throughout the epipelagic ocean. This viral catalog and functional analyses provide a necessary foundation for the meaningful integration of viruses into ecosystem models where

  1. Potential energy hypersurface and molecular flexibility

    NASA Astrophysics Data System (ADS)

    Koča, Jaroslav

    1993-02-01

    The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.

  2. Sparse representation for a potential energy surface

    NASA Astrophysics Data System (ADS)

    Seko, Atsuto; Takahashi, Akira; Tanaka, Isao

    2014-07-01

    We propose a simple scheme to estimate the potential energy surface (PES) for which the accuracy can be easily controlled and improved. It is based on model selection within the framework of linear regression using the least absolute shrinkage and selection operator (LASSO) technique. Basis functions are selected from a systematic large set of candidate functions. The sparsity of the PES significantly reduces the computational cost of evaluating the energy and force in molecular dynamics simulations without losing accuracy. The usefulness of the scheme for describing the elemental metals Na and Mg is clearly demonstrated.

  3. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    SciTech Connect

    Shah, Nihar K.; Wei, Max; Letschert, Virginie; Phadke, Amol A.

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  4. Status of global energy confinement studies

    SciTech Connect

    Kaye, S.M.; Bell, M.G. . Plasma Physics Lab.); Barnes, C.W. ); DeBoo, J.C.; Waltz, R. ); Greenwald, M.; Sigmar, D. . Plasma Fusion Center); Riedel, K. . Courant Inst. of Mathematical Sciences); Uckan, N. (Oak Ridge National L

    1990-02-01

    Empirical scaling expressions, reflecting the parametric dependence of the L-mode energy confinement time, have been used not only as benchmarks for tokamak operation and theories of energy transport, but for predicting the performance of proposed tokamak devices. Several scaling expressions based on data from small-and medium-sized devices have done well in predicting performance in larger devices, although great uncertainty exists in extrapolating yet farther, into the ignition regime. Several approaches exist for developing higher confidence scaling expressions. These include reducing the statistical uncertainty by identifying and filling in gaps in the present database, making use of more sophisticated statistical techniques, and developing scalings for confinement regimes within which future devices will operate. Confidence in the scaling expressions will be increased still if the expressions can be more directly tied to transport physics theory. This can be done through the use of dimensionless parameters, better describing the edge and core confinement regimes separately, and by incorporating transport models directly into the scaling expressions. 50 refs., 5 figs., 3 tabs.

  5. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Heaps, Charles W.; Mazziotti, David A.

    2016-04-01

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O ( N ) potential energy calculations, in contrast to O ( N 2 ) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O ( N ) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  6. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant.

  7. Pseudospectral Gaussian quantum dynamics: Efficient sampling of potential energy surfaces.

    PubMed

    Heaps, Charles W; Mazziotti, David A

    2016-04-28

    Trajectory-based Gaussian basis sets have been tremendously successful in describing high-dimensional quantum molecular dynamics. In this paper, we introduce a pseudospectral Gaussian-based method that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. As in other Gaussian basis methods, we begin with a basis set expansion using time-dependent Gaussian basis functions guided by classical mechanics. Unlike other Gaussian methods but characteristic of the pseudospectral and collocation methods, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. As a result, the integration for matrix elements is reduced to function evaluation. Pseudospectral Gaussian dynamics only requires O(N) potential energy calculations, in contrast to O(N(2)) evaluations in a variational calculation. The classical trajectories allow small basis sets to sample high-dimensional potentials. Applications are made to diatomic oscillations in a Morse potential and a generalized version of the Henon-Heiles potential in two, four, and six dimensions. Comparisons are drawn to full analytical evaluation of potential energy integrals (variational) and the bra-ket averaged Taylor (BAT) expansion, an O(N) approximation used in Gaussian-based dynamics. In all cases, the pseudospectral Gaussian method is competitive with full variational calculations that require a global, analytical, and integrable potential energy surface. Additionally, the BAT breaks down when quantum mechanical coherence is particularly strong (i.e., barrier reflection in the Morse oscillator). The ability to obtain variational accuracy using only the potential energy at discrete points makes the pseudospectral Gaussian method a promising avenue for on-the-fly dynamics, where electronic structure calculations become computationally significant. PMID:27131532

  8. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1994-01-01

    Quantum mechanical methods have been used to compute potential energy surfaces for chemical reactions. The reactions studied were among those believed to be important to the NASP and HSR programs and included the recombination of two H atoms with several different third bodies; the reactions in the thermal Zeldovich mechanism; the reactions of H atom with O2, N2, and NO; reactions involved in the thermal De-NO(x) process; and the reaction of CH(squared Pi) with N2 (leading to 'prompt NO'). These potential energy surfaces have been used to compute reaction rate constants and rates of unimolecular decomposition. An additional application was the calculation of transport properties of gases using a semiclassical approximation (and in the case of interactions involving hydrogen inclusion of quantum mechanical effects).

  9. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1990-01-01

    The objective was to obtain accurate potential energy surfaces (PES's) for a number of reactions which are important in the H/N/O combustion process. The interest in this is centered around the design of the SCRAM jet engine for the National Aerospace Plane (NASP), which was envisioned as an air-breathing hydrogen-burning vehicle capable of reaching velocities as large as Mach 25. Preliminary studies indicated that the supersonic flow in the combustor region of the scram jet engine required accurate reaction rate data for reactions in the H/N/O system, some of which was not readily available from experiment. The most important class of combustion reactions from the standpoint of the NASP project are radical recombinaton reactions, since these reactions result in most of the heat release in the combustion process. Theoretical characterizations of the potential energy surfaces for these reactions are presented and discussed.

  10. The global economic long-term potential of modern biomass in a climate-constrained world

    NASA Astrophysics Data System (ADS)

    Klein, David; Humpenöder, Florian; Bauer, Nico; Dietrich, Jan Philipp; Popp, Alexander; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann

    2014-07-01

    Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purpose-grown lignocellulosic biomass and ask the question how the supply prices of biomass depend on prices for greenhouse gas (GHG) emissions from the land-use sector. Using the spatially explicit global land-use optimization model MAgPIE, we construct bioenergy supply curves for ten world regions and a global aggregate in two scenarios, with and without a GHG tax. We find that the implementation of GHG taxes is crucial for the slope of the supply function and the GHG emissions from the land-use sector. Global supply prices start at 5 GJ-1 and increase almost linearly, doubling at 150 EJ (in 2055 and 2095). The GHG tax increases bioenergy prices by 5 GJ-1 in 2055 and by 10 GJ-1 in 2095, since it effectively stops deforestation and thus excludes large amounts of high-productivity land. Prices additionally increase due to costs for N2O emissions from fertilizer use. The GHG tax decreases global land-use change emissions by one-third. However, the carbon emissions due to bioenergy production increase by more than 50% from conversion of land that is not under emission control. Average yields required to produce 240 EJ in 2095 are roughly 600 GJ ha-1 yr-1 with and without tax.

  11. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia.

    PubMed

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth's temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia.

  12. Anesthetic gases and global warming: Potentials, prevention and future of anesthesia

    PubMed Central

    Gadani, Hina; Vyas, Arun

    2011-01-01

    Global warming refers to an average increase in the earth′s temperature, which in turn causes changes in climate. A warmer earth may lead to changes in rainfall patterns, a rise in sea level, and a wide range of impacts on plants, wildlife, and humans. Greenhouse gases make the earth warmer by trapping energy inside the atmosphere. Greenhouse gases are any gas that absorbs infrared radiation in the atmosphere and include: water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and hydrofluorocarbons (HFCs). Hazardous chemicals enter the air we breathe as a result of dozens of activities carried out during a typical day at a healthcare facility like processing lab samples, burning fossil fuels etc. We sometimes forget that anesthetic agents are also greenhouse gases (GHGs). Anesthetic agents used today are volatile halogenated ethers and the common carrier gas nitrous oxide known to be aggressive GHGs. With less than 5% of the total delivered halogenated anesthetic being metabolized by the patient, the vast majority of the anesthetic is routinely vented to the atmosphere through the operating room scavenging system. The global warming potential (GWP) of a halogenated anesthetic is up to 2,000 times greater than CO2. Global warming potentials are used to compare the strength of different GHGs to trap heat in the atmosphere relative to that of CO2. Here we discuss about the GWP of anesthetic gases, preventive measures to decrease the global warming effects of anesthetic gases and Xenon, a newer anesthetic gas for the future of anesthesia. PMID:25885293

  13. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    precipitation and runoff from melting snow on frozen or saturated soils (Figure 2). Annual water levels fluctuate widely due to climate variability in the Great Plains (Borchert 1950, Kantrud et al. 1989b). Climate affects the quality of habitat for breeding waterfowl by controlling regional water conditions--water depth, areal extent, and length of wet/dry cycles (Cowardin et al. 1988)--and vegetation patterns such as the cover ration (the ratio of emergent plant cover to open water). With increased levels of atmospheric carbon dioxide, climate models project warmer and, in some cases, drier conditions for the northern Great Plains (Karl et al. 1991, Manabe and Wetherald 1986, Mitchell 1983, Rind and Lebedeff 1984). In general, a warmer, drier climate could lower waterfowl production directly by increasing the frequency of dry basins and indirectly by producing less favorable cover rations (i.e., heavy emergent cover with few or no open-water areas). The possibility of diminished waterfowl production in a greenhouse climate comes at a time when waterfowl numbers have sharply declined for other reasons (Johnson and Shaffer 1987). Breeding habitat continues to be lost or altered by agriculture, grazing, burning, mowing, sedimentation, and drainage (Kantrud et al. 1989b). For example, it has been estimated that 60% of the wetland area in North Dakota has been drained (Tiner 1984). Pesticides entering wetlands from adjacent agricultural fields have been destructive to aquatic invertebrate populations and have significantly lowered duckling survival (Grue et al. 1988). In this article, we discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns, and waterflow habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model. The

  14. Search for dark energy potentials in quintessence

    NASA Astrophysics Data System (ADS)

    Muromachi, Yusuke; Okabayashi, Akira; Okada, Daiki; Hara, Tetsuya; Itoh, Yutaka

    2015-09-01

    The time evolution of the equation of state w for quintessence models with a scalar field as dark energy is studied up to the third derivative big (d^3w/da^3big ) with respect to the scale factor a, in order to predict future observations and specify the scalar potential parameters with the observables. The third derivative of w for general potential V is derived and applied to several types of potentials. They are the inverse power law big (V=M^{4+α }/Q^{α }big ), the exponential big (V=M^4exp {β M/Q}big ), the mixed big (V=M^{4+γ }exp {β M/Q}/Q^{γ }big ), the cosine big (V=M^4[cos (Q/f)+1]big ), and the Gaussian types big (V=M^4exp big {-Q^2/σ ^2big }big ), which are prototypical potentials for the freezing and thawing models. If the parameter number for a potential form is n, it is necessary to find at least n+2 independent observations to identify the potential form and the evolution of the scalar field (Q and dot {Q}). Such observations would be the values of Ω _Q, w, dw/da,ldots , dw^n/da^n. From these specific potentials, we can predict the n+1 and higher derivatives of w: dw^{n+1}/da^{n+1},ldots . Since four of the abovementioned potentials have two parameters, it is necessary to calculate the third derivative of w for them to estimate the predicted values. If they are tested observationally, it will be understood whether the dark energy can be described by a scalar field with this potential. At least it will satisfy the necessary conditions. Numerical analysis for d^3w/da^3 is performed with some specified parameters in the investigated potentials, except for the mixed one. It becomes possible to distinguish the potentials by accurately observing dw/da and d^2w/da^2 for some parameters.

  15. Potential Energy Curves of Hydrogen Fluoride

    NASA Technical Reports Server (NTRS)

    Fallon, Robert J.; Vanderslice, Joseph T.; Mason, Edward A.

    1960-01-01

    Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here.

  16. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  17. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect

    Krakowski, R.A.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  18. Global Auroral Energy Deposition Derived from Polar UVI Images

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M. J.; Elsen, R.; Parks, G. K.; Spann, J. F., Jr.; Germany, G. A.

    1997-01-01

    Quantitative measurement of the transfer of energy and momentum to the ionosphere from the solar wind is one of the main objectives of the ISTP program. Global measurement of auroral energy deposition derived from observations of the longer wavelength LBH band emissions made by the Ultraviolet Imager on the Polar spacecraft is one of the key elements in this satellite and ground-based instrument campaign. These "measurements" are inferred by combining information from consecutive images using different filters and have a time resolution on the average of three minutes and are made continuously over a 5 to 8 hour period during each 18 hour orbit of the Polar spacecraft. The energy deposition in the ionosphere from auroral electron precipitation augments are due to Joule heating associated with field aligned currents. Assuming conjugacy of energy deposition between the two hemispheres the total energy input to the ionosphere through electron precipitation can be determined at high time resolution. Previously, precipitating particle measurements along the tracks of low altitude satellites provided only local measurements and the global energy precipitation could be inferred through models but not directly measured. We use the UVI images for the entire month of January 1997 to estimate the global energy deposition at high time resolution. We also sort the energy deposition into sectors to find possible trends, for example, on the dayside and nightside, or the dawn and dusk sides.

  19. Space and energy - A global viewpoint

    NASA Astrophysics Data System (ADS)

    Koelle, D. E.

    Possible contributions by organizations involved with space technology to the alleviation of a projected catastrophic world energy crisis which may begin around the year 2000 are discussed. Space disposal of long-lived radionuclides from burnt-out reactor rods is suggested as a viable means to reducing the time required for the remaining fission products which would be geologically imbedded to decay to background levels in 20 yr. An additional cost to consumers of 0.1 cent/kWh is projected using a ballistic missile to remove all the high level wastes from the U.S. and European nuclear power plants. Satellite solar power systems are calculated to depend on a reduction in cost/kWh from 20-50 dollars to 0.50 cents and two orders of magnitude in transportation to attain economic viability.

  20. Eduction and outreach for the global energy challenge

    NASA Astrophysics Data System (ADS)

    Snieder, R.

    2008-12-01

    Energy is the life-blood of the modern world. According to the Energy Information Administration, global energy consumption is expected to grow by about 70% in the coming 25 years. Much of this growth is driven by developing countries, whose inhabitants seek a standard of living that more closely resembles that of the western world. Petroleum provides about 40% of the world-wide energy demand, and, although estimates vary, oil production is expected to peak in the relatively near-future. The combination of increased energy demand and declining petroleum supply can be a threat to political stability and is likely to lead to a shift towards coal and non-conventional oil. This will further increase CO2 emissions and thus accelerate global warming and life-altering regional climate changes. Many actions can be taken now to begin to reduce energy demand, diversify our energy portfolio, and reduce costs of energy supplies, with lower greenhouse gas emissions. This will not happen, however, without a plan and the willingness to implement such a plan. Public engagement and education in dealing with the pressing challenges and opportunities are the key to getting started now. In order to foster such engagement I have prepared the presentation "The Global Energy Challenge." This Powerpoint presentation is freely available and aims to be appealing and understandable for a broad audience. The comment-boxes in the Powerpoint presentation give ideas for a narrative. The presentation sketches the tension between increased energy demand, peak oil, the associated challenge in curbing climate change, and actions that we can take towards a sustainable energy system. The presentation gives ideas for positive action that teachers, students, businessmen, consumers, and citizens can take, and it conveys that the challenges related to our energy supply come with career opportunities, a point that is especially appealing to a young audience. I invite to help making a difference by

  1. Potential increasing dominance of heterotrophy in the global ocean

    NASA Astrophysics Data System (ADS)

    Kvale, K. F.; Meissner, K. J.; Keller, D. P.

    2015-07-01

    Autotrophy is largely resource-limited in the modern ocean. Paleo evidence indicates this was not necessarily the case in warmer climates, and modern observations as well as standard metabolic theory suggest continued ocean warming could shift global ecology towards heterotrophy, thereby reducing autotrophic nutrient limitation. Such a shift would entail strong nutrient recycling in the upper ocean and high rates of net primary production (NPP), yet low carbon export to the deep ocean and sediments. We demonstrate transition towards such a state in the early 22nd century as a response to business-as-usual representative concentration pathway forcing (RCP8.5) in an intermediate complexity Earth system model in three configurations; with and without an explicit calcifier phytoplankton class and calcite ballast model. In all models nutrient regeneration in the near-surface becomes an increasingly important driver of primary production. The near-linear relationship between changes in NPP and global sea surface temperature (SST) found over the 21st century becomes exponential above a 2-4{ }\\circ {{C}} global mean SST change. This transition to a more heterotrophic ocean agrees roughly with metabolic theory.

  2. Automated parameterization of intermolecular pair potentials using global optimization techniques

    NASA Astrophysics Data System (ADS)

    Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk

    2014-12-01

    In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.

  3. The Wind Energy Potential of Iceland

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Guðrún; Bjornsson, Halldór; Hahmann, Andrea N.; Jónasson, Kristján; Bay Hasager, Charlotte; Clausen, Niels-Erik

    2014-05-01

    While Iceland has an abundant wind energy resource, its use for electrical power production has so far been limited. Electricity in Iceland is generated primarily from hydro- and geothermal sources, and adding wind energy has so far not been considered practical or even necessary. However, wind energy is becoming a more viable option, as opportunities for new hydro- or geothermal power installations become limited. In order to obtain an estimate of the wind energy potential of Iceland, a wind atlas has been developed as part of the joint Nordic project 'Improved Forecast of Wind, Waves and Icing' (IceWind). Downscaling simulations performed with the Weather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3.6, with the lowest values indicative of near-exponential distributions at sheltered locations, and the highest values indicative of normal distributions at exposed locations in winter. Compared with summer, average power density in winter is increased throughout Iceland by a factor of 2.0 - 5.5. In any season, there are also considerable spatial differences in average wind power density. Relative to the average value within 10 km of the coast, power density across Iceland varies between 50 - 250%, excluding glaciers, or between 300 - 1500 W m-2 at 50 m above ground level in winter. At intermediate elevations of 500 - 1000 m above mean sea level, power density is independent of the distance to the coast. In addition to seasonal and spatial variability, differences in average wind speed and power density also exist for different wind directions. Along the coast in winter, power density of onshore winds is higher by 100 - 700 W m-2 than that of offshore winds. The regions with the highest average wind speeds are impractical for wind farms, due to the distances from road

  4. Potential energy surfaces of Polonium isotopes

    NASA Astrophysics Data System (ADS)

    Nerlo-Pomorska, B.; Pomorski, K.; Schmitt, C.; Bartel, J.

    2015-11-01

    The evolution of the potential energy landscape is analysed in detail for ten even-even polonium isotopes in the mass range 188\\lt A\\lt 220 as obtained within the macroscopic-microscopic approach, relying on the Lublin-Strasbourg drop model and the Yukawa-folded single-particle energies for calculating the microscopic shell and pairing corrections. A variant of the modified Funny-Hills nuclear shape parametrization is used to efficiently map possible fission paths. The approach explains the main features of the fragment partition as measured in low-energy fission along the polonium chain. The latter lies in a transitional region of the nuclear chart, and will be essential to consistently understand the evolution of fission properties from neutron-deficient mercury to heavy actinides. The ability of our method to predict fission observables over such an extended region looks promising.

  5. Photodissociation of methane: Exploring potential energy surfaces

    NASA Astrophysics Data System (ADS)

    van Harrevelt, Rob

    2006-09-01

    The potential energy surface for the first excited singlet state (S1) of methane is explored using multireference singles and doubles configuration interaction calculations, employing a valence triple zeta basis set. A larger valence quadruple zeta basis is used to calculate the vertical excitation energy and dissociation energies. All stationary points found on the S1 surface are saddle points and have imaginary frequencies for symmetry-breaking vibrations. By studying several two-dimensional cuts through the potential energy surfaces, it is argued that CH4 in the S1 state will distort to planar structures. Several conical intersection seams between the ground state surface S0 and the S1 surface have been identified at planar geometries. The conical intersections provide electronically nonadiabatic pathways towards products CH3(X˜A2″2)+H, CH2(ãA11)+H2, or CH2(X˜B13)+H +H. The present results thereby make it plausible that the CH3(X˜A2″2)+H and CH2(ãA11)+H2 channels are major dissociation channels, as has been observed experimentally.

  6. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  7. From Extraction to Renewal: A Global Campaign for Healthy Energy.

    PubMed

    Wang, Jennifer S; Euripidou, Rico; Armstrong, Fiona; Jensen, Génon K; Karliner, Josh; Guinto, Renzo R; Zhao, Ang; Narayanan, Divya; Orris, Peter

    2016-02-01

    A global movement is emerging in the health sector to engage in discourse and advocacy on the health impacts and health costs of energy choices--specifically the health harms of extractive, climate-disrupting energy sources such as coal and gas. Individuals and organizations in the health sector have begun to address climate and energy issues at multiple levels of engagement, including with others in the health sector, with pollution-affected communities, with policy makers, and with the media. We present recent examples of health sector advocacy and leadership on the health impacts of energy choices and opportunities for broadening and deepening the movement. PMID:26463262

  8. From Extraction to Renewal: A Global Campaign for Healthy Energy.

    PubMed

    Wang, Jennifer S; Euripidou, Rico; Armstrong, Fiona; Jensen, Génon K; Karliner, Josh; Guinto, Renzo R; Zhao, Ang; Narayanan, Divya; Orris, Peter

    2016-02-01

    A global movement is emerging in the health sector to engage in discourse and advocacy on the health impacts and health costs of energy choices--specifically the health harms of extractive, climate-disrupting energy sources such as coal and gas. Individuals and organizations in the health sector have begun to address climate and energy issues at multiple levels of engagement, including with others in the health sector, with pollution-affected communities, with policy makers, and with the media. We present recent examples of health sector advocacy and leadership on the health impacts of energy choices and opportunities for broadening and deepening the movement.

  9. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    PubMed

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  10. Potential effect of global warming on mosquito-borne arboviruses.

    PubMed

    Reeves, W C; Hardy, J L; Reisen, W K; Milby, M M

    1994-05-01

    If global warming occurs in California, daily mean temperatures may increase by 3 to 5 degrees C, precipitation patterns will change, and sea level may rise 1 m. Studies were done on effect of temperature changes on survival of Culex tarsalis Coquillett, the primary vector of western equine encephalomyelitis (WEE) and St. Louis encephalitis (SLE) viruses, in two regions where temperatures differed by 5 degrees C. Daily mortality of adult vectors increased by 1% for each 1 degree C increase in temperature. At 25 degrees C, only 5% of Cx. tarsalis survived for 8 or more days, the time required for extrinsic incubation of these viruses. Extrinsic incubation times for these viruses shortened when temperatures were increased from 18 to 25 degrees C. WEE virus infection was modulated and transmission decreased at 32 degrees C. If temperatures in the warmer region increase by 5 degrees C, WEE virus may disappear and SLE virus would persist. In the cooler region, a 5 degrees C increase would decrease vector survivorship and virus activity in midsummer. In North America, epidemics of WEE have prevailed above a 21 degrees C isotherm and those of SLE below this isotherm. With global warming, epidemics of these viruses could extend into currently unreceptive northern areas. WEE virus would disappear from more southern regions. Geographic distribution of vector, human, and animal populations could be altered. North America could become more receptive to invasion by tropical vectors and diseases.

  11. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign.

    PubMed

    González-García, Sara; Gasol, Carles M; Lozano, Raúl García; Moreira, María Teresa; Gabarrell, Xavier; Rieradevall i Pons, Joan; Feijoo, Gumersindo

    2011-12-01

    The main objective of this study was to determine the global warming potential of several wood products as an environmental criterion for their ecodesign. Two methodologies were combined: the quantification of greenhouse gas emissions (equivalent CO(2)) of several representative wood based products from the furniture sector and the integration of environmental aspects into product design. The products under assessment were classified in two groups: indoor products and outdoor products, depending on their location. "Indoor products" included a convertible cot/bed, a kitchen cabinet, an office table, a living room furniture, a headboard, youth room accessories and a wine crate, while the "Outdoor products" analysed were a ventilated wooden wall and a wooden playground. Spanish wood processing companies located in Galicia (NW Spain) and Catalonia (NE Spain) were analysed in detail. The life cycle of each product was carried out from a cradle-to-gate perspective according to Life Cycle Assessment (LCA) methodology, using global warming potential as the selected impact category. According to the results, metals, boards and energy use appeared to be the most contributing elements to the environmental impact of the different products under assessment, with total contributions ranging from 40% to 90%. Furthermore, eco-design strategies were proposed by means of the methodology known as Design for the Environment (DfE). Improvement strategies viable for implementation in the short term were considered and analysed in detail, accounting for remarkable reductions in the equivalent CO(2) emissions (up to 60%). These strategies would be focused on the use of renewable energies such as photovoltaic cells, the promotion of national fibres or changes in the materials used. Other alternatives to be implemented in the long term can be of potential interest for future developments. PMID:22000917

  12. Assessing the global warming potential of wooden products from the furniture sector to improve their ecodesign.

    PubMed

    González-García, Sara; Gasol, Carles M; Lozano, Raúl García; Moreira, María Teresa; Gabarrell, Xavier; Rieradevall i Pons, Joan; Feijoo, Gumersindo

    2011-12-01

    The main objective of this study was to determine the global warming potential of several wood products as an environmental criterion for their ecodesign. Two methodologies were combined: the quantification of greenhouse gas emissions (equivalent CO(2)) of several representative wood based products from the furniture sector and the integration of environmental aspects into product design. The products under assessment were classified in two groups: indoor products and outdoor products, depending on their location. "Indoor products" included a convertible cot/bed, a kitchen cabinet, an office table, a living room furniture, a headboard, youth room accessories and a wine crate, while the "Outdoor products" analysed were a ventilated wooden wall and a wooden playground. Spanish wood processing companies located in Galicia (NW Spain) and Catalonia (NE Spain) were analysed in detail. The life cycle of each product was carried out from a cradle-to-gate perspective according to Life Cycle Assessment (LCA) methodology, using global warming potential as the selected impact category. According to the results, metals, boards and energy use appeared to be the most contributing elements to the environmental impact of the different products under assessment, with total contributions ranging from 40% to 90%. Furthermore, eco-design strategies were proposed by means of the methodology known as Design for the Environment (DfE). Improvement strategies viable for implementation in the short term were considered and analysed in detail, accounting for remarkable reductions in the equivalent CO(2) emissions (up to 60%). These strategies would be focused on the use of renewable energies such as photovoltaic cells, the promotion of national fibres or changes in the materials used. Other alternatives to be implemented in the long term can be of potential interest for future developments.

  13. Foraging on the potential energy surface: a swarm intelligence-based optimizer for molecular geometry.

    PubMed

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel

    2012-11-21

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials. PMID:23181297

  14. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  15. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and ‑0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  16. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    PubMed Central

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-01-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and −0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration. PMID:27503002

  17. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12.

    PubMed

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-01-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration. PMID:27503002

  18. Multi-fidelity global design optimization including parallelization potential

    NASA Astrophysics Data System (ADS)

    Cox, Steven Edward

    The DIRECT global optimization algorithm is a relatively new space partitioning algorithm designed to determine the globally optimal design within a designated design space. This dissertation examines the applicability of the DIRECT algorithm to two classes of design problems: unimodal functions where small amplitude, high frequency fluctuations in the objective function make optimization difficult; and multimodal functions where multiple local optima are formed by the underlying physics of the problem (as opposed to minor fluctuations in the analysis code). DIRECT is compared with two other multistart local optimization techniques on two polynomial test problems and one engineering conceptual design problem. Three modifications to the DIRECT algorithm are proposed to increase the effectiveness of the algorithm. The DIRECT-BP algorithm is presented which alters the way DIRECT searches the neighborhood of the current best point as optimization progresses. The algorithm reprioritizes which points to analyze at each iteration. This is to encourage analysis of points that surround the best point but that are farther away than the points selected by the DIRECT algorithm. This increases the robustness of the DIRECT search and provides more information on the characteristics of the neighborhood of the point selected as the global optimum. A multifidelity version of the DIRECT algorithm is proposed to reduce the cost of optimization using DIRECT. By augmenting expensive high-fidelity analysis with cheap low-fidelity analysis, the optimization can be performed with fewer high-fidelity analyses. Two correction schemes are examined using high- and low-fidelity results at one point to correct the low-fidelity result at a nearby point. This corrected value is then used in place of a high-fidelity analysis by the DIRECT algorithm. In this way the number of high-fidelity analyses required is reduced and the optimization became less expensive. Finally the DIRECT algorithm is

  19. California's biomass and its energy potential

    SciTech Connect

    Lucarelli, F.B. Jr.

    1980-04-01

    The potentials for using California's biomass for energy have been assessed. The study relies on the recent work of Amory Lovins and Lawrence Berkeley Laboratory's (LBL) Distributed Energy System's Project to specify an energy future for Californians. These works identify transportation fuels as the most valuable energy conversion for biomass. Within this context, the extent of five categories of terrestial biomass is estimated, in addition to the environmental impacts and monetary cost of collecting and transporting each biomass category. Estimates of the costs of transforming biomass into different fuels as well as a survey of government's role in a biomass energy program are presented. The major findings are summarized below. (1) California's existing biomass resources are sufficient to provide only 20 percent of its future liquid fuel requirements. (2) Meeting the full transportation demand with biomass derived fuels will require the development of exotic biomass sources such as kelp farms and significant reductions in automobile travel in the State. (3) Under assumptions of moderate increases in gasoline prices and without major new government incentives, the cost of transforming biomass into transport fuels will be competitive with the price of gasoline on a Btu basis by the year 1990. (4) The environmental impacts of collecting most forms of biomass are beneficial and should reduce air pollution from agricultural burning and water pollution from feedlot and dairy farm runoff. Moreover, the collection of logging residues should improve timber stand productivity and the harvest of chaparral should reduce the risk of wildfire in the State. (5) The institutional context for implementing biomass energy projects is complex and fragmented.

  20. A Global Index for Tropical Cyclone Damage Potential

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; Done, J.; NCAR Regional Climate Research Group

    2011-12-01

    There is a growing need for timely information on the damage caused by hurricanes for immediate response and for industry and societal planning purposes. This has led to a number of specific indices being developed that estimate damage from standard hurricane information. In this talk we describe our approach to assessing the damage potential of tropical cyclones using a combination of physical reasoning and empirical assessment. An earlier index, the Willis Hurricane Index (WHI, Holland and Owens 2009), was developed for assessing damage to offshore structures from individual tropical cyclones. The WHI is applicable in climate simulations, operational forecasting and post-impact assessment and is being extended to coastal infrastructure in a separate study. Here we discuss a second index applicable to seasonal and basin-wide summaries, called the Cyclone Damage Potential (CDP). As with the WHI, this incorporates tropical cyclone intensity, size and translational speed into a single index that provides a first order assessment of damage potential. Actual damage assessment or prediction requires inclusion of an additional step to normalize the CDP to historical damage data and regional peculiarities, and an example will be provided. Two uses of the index will be demonstrated: summarizing seasonal damage potential for a region and its changes with time, and assessing the future variability and changes in cyclone damage potential.

  1. Global Citizenship, Global Health, and the Internationalization of Curriculum: A Study of Transformative Potential

    ERIC Educational Resources Information Center

    Hanson, Lori

    2010-01-01

    Social transformation models of internationalization suggest the need for radical reform to curricula to foster engaged global citizenship, yet little is written depicting how individual courses and their instructors might support such reform. This article stems from and explores philosophical, pedagogical, institutional, and curricular issues…

  2. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    NASA Astrophysics Data System (ADS)

    Schaefer, Bastian; Ghasemi, S. Alireza; Roy, Shantanu; Goedecker, Stefan; Goedecker Group Team

    Optimizations of atomic positions belong to the most frequently performed tasks in electronic structure calculations. Many simulations like global minimum searches or the identification of chemical reaction pathways can require the computation of hundreds or thousands of minimizations or saddle points. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. In this talk a recently published technique that allows to obtain significant curvature information of noisy potential energy surfaces is presented. This technique was used to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. With the help of benchmarks both the minimizer and the saddle finding approach were demonstrated to be superior to comparable existing methods.

  3. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    SciTech Connect

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  4. Stabilized quasi-Newton optimization of noisy potential energy surfaces.

    PubMed

    Schaefer, Bastian; Alireza Ghasemi, S; Roy, Shantanu; Goedecker, Stefan

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  5. Theoretical studies of potential energy surfaces

    SciTech Connect

    Harding, L.B.

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  6. Potential energy surfaces and reaction dynamics of polyatomic molecules

    SciTech Connect

    Chang, Yan-Tyng.

    1991-11-01

    A simple empirical valence bond (EVB) model approach is suggested for constructing global potential energy surfaces for reactions of polyatomic molecular systems. This approach produces smooth and continuous potential surfaces which can be directly utilized in a dynamical study. Two types of reactions are of special interest, the unimolecular dissociation and the unimolecular isomerization. For the first type, the molecular dissociation dynamics of formaldehyde on the ground electronic surface is investigated through classical trajectory calculations on EVB surfaces. The product state distributions and vector correlations obtained from this study suggest very similar behaviors seen in the experiments. The intramolecular hydrogen atom transfer in the formic acid dimer is an example of the isomerization reaction. High level ab initio quantum chemistry calculations are performed to obtain optimized equilibrium and transition state dimer geometries and also the harmonic frequencies.

  7. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  8. World Energy Projection System Plus (WEPS ): Global Activity Module

    EIA Publications

    2016-01-01

    The World Energy Projection System Plus (WEPS ) is a comprehensive, mid?term energy forecasting and policy analysis tool used by EIA. WEPS projects energy supply, demand, and prices by country or region, given assumptions about the state of various economies, international energy markets, and energy policies. The Global Activity Module (GLAM) provides projections of economic driver variables for use by the supply, demand, and conversion modules of WEPS . GLAM’s baseline economic projection contains the economic assumptions used in WEPS to help determine energy demand and supply. GLAM can also provide WEPS with alternative economic assumptions representing a range of uncertainty about economic growth. The resulting economic impacts of such assumptions are inputs to the remaining supply and demand modules of WEPS .

  9. Assessment of wind energy potential in Poland

    NASA Astrophysics Data System (ADS)

    Starosta, Katarzyna; Linkowska, Joanna; Mazur, Andrzej

    2014-05-01

    The aim of the presentation is to show the suitability of using numerical model wind speed forecasts for the wind power industry applications in Poland. In accordance with the guidelines of the European Union, the consumption of wind energy in Poland is rapidly increasing. According to the report of Energy Regulatory Office from 30 March 2013, the installed capacity of wind power in Poland was 2807MW from 765 wind power stations. Wind energy is strongly dependent on the meteorological conditions. Based on the climatological wind speed data, potential energy zones within the area of Poland have been developed (H. Lorenc). They are the first criterion for assessing the location of the wind farm. However, for exact monitoring of a given wind farm location the prognostic data from numerical model forecasts are necessary. For the practical interpretation and further post-processing, the verification of the model data is very important. Polish Institute Meteorology and Water Management - National Research Institute (IMWM-NRI) runs an operational model COSMO (Consortium for Small-scale Modelling, version 4.8) using two nested domains at horizontal resolutions of 7 km and 2.8 km. The model produces 36 hour and 78 hour forecasts from 00 UTC, for 2.8 km and 7 km domain resolutions respectively. Numerical forecasts were compared with the observation of 60 SYNOP and 3 TEMP stations in Poland, using VERSUS2 (Unified System Verification Survey 2) and R package. For every zone the set of statistical indices (ME, MAE, RMSE) was calculated. Forecast errors for aerological profiles are shown for Polish TEMP stations at Wrocław, Legionowo and Łeba. The current studies are connected with a topic of the COST ES1002 WIRE-Weather Intelligence for Renewable Energies.

  10. Role of Fusion Energy in a Sustainable Global Energy Strategy

    SciTech Connect

    Meier, W; Najmabadi, F; Schmidt, J; Sheffield, J

    2001-03-07

    Fusion energy is one of only a few truly long-term energy options. Since its inception in the 1950s, the vision of the fusion energy research program has been to develop a viable means of harnessing the virtually unlimited energy stored in the nuclei of light atoms--the primary fuel deuterium is present as one part in 6,500 of all hydrogen. This vision grew out of the recognition that the immense power radiated by the sun is fueled by nuclear fusion in its hot core. Such high temperatures are a prerequisite for driving significant fusion reactions. The fascinating fourth state of matter at high temperatures is known as plasma. It is only in this fourth state of matter that the nuclei of two light atoms can fuse, releasing the excess energy that was needed to separately bind each of the original two nuclei. Because the nuclei of atoms carry a net positive electric charge, they repel each other. Hydrogenic nuclei, such as deuterium and tritium, must be heated to approximately 100 million degrees Celsius to overcome this electric repulsion and fuse. There have been dramatic recent advances in both the scientific understanding of fusion plasmas and in the generation of fusion power in the laboratory. Today, there is little doubt that fusion energy production is feasible. For this reason, the general thrust of fusion research has focused on configuration improvements leading to an economically competitive product. The risk of conflicts arising from energy shortages and supply cutoffs, as well as the risk of severe environmental impacts from existing methods of energy production, are among the reasons to pursue these opportunities [1]. In this paper we review the tremendous scientific progress in fusion during the last 10 years. We utilize the detailed engineering design activities of burning plasma experiments as well as conceptual fusion power plant studies to describe our visions of attractive fusion power plants. We use these studies to compare technical requirements

  11. Potential energy surfaces of superheavy nuclei

    SciTech Connect

    Bender, M.; Rutz, K.; Maruhn, J.A.; Greiner, W.; Reinhard, P.-G. Rutz, K.; Maruhn, J.A.; Greiner, W.

    1998-10-01

    We investigate the structure of the potential energy surfaces of the superheavy nuclei {sub 158}{sup 258}Fm{sub 100}, {sub 156}{sup 264}Hs{sub 108}, {sub 166}{sup 278}112, {sub 184}{sup 298}114, and {sub 172}{sup 292}120 within the framework of self-consistent nuclear models, i.e., the Skyrme-Hartree-Fock approach and the relativistic mean-field model. We compare results obtained with one representative parametrization of each model which is successful in describing superheavy nuclei. We find systematic changes as compared to the potential energy surfaces of heavy nuclei in the uranium region: there is no sufficiently stable fission isomer any more, the importance of triaxial configurations to lower the first barrier fades away, and asymmetric fission paths compete down to rather small deformation. Comparing the two models, it turns out that the relativistic mean-field model gives generally smaller fission barriers. {copyright} {ital 1998} {ital The American Physical Society}

  12. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole.

    PubMed

    Li, Shaohong L; Xu, Xuefei; Hoyer, Chad E; Truhlar, Donald G

    2015-09-01

    Diabatization of potential energy surfaces is a technique that enables convenient molecular dynamics simulations of electronically nonadiabatic processes, but diabatization itself is nonunique and can be inconvenient; the best methods to achieve diabatization are still under study. Here, we present the diabatization of two electronic states of thioanisole in the S-CH3 bond stretching and C-C-S-C torsion two-dimensional nuclear coordinate space containing a conical intersection. We use two systematic methods: the (orbital-dependent) 4-fold way and the (orbital-free) Boys localization diabatization method. These very different methods yield strikingly similar diabatic potential energy surfaces that cross at geometries where the adiabatic surfaces are well separated and do not exhibit avoided crossings, and the contours of the diabatic gap and diabatic coupling are similar for the two methods. The validity of the diabatization is supported by comparing the nonadiabatic couplings calculated from the diabatic matrix elements to those calculated by direct differentiation of the adiabatic states.

  13. Potential effects of global warming on calving caribou

    SciTech Connect

    Eastland, W.G.; White, R.G.

    1992-03-01

    Calving grounds of barren-ground caribou (Rangifer tarandus) are often in the portion of their range that remains covered by snow late into spring. The authors propose that global warming would alter the duration of snow cover on the calving grounds and the rate of snowmelt, and thus affect caribou population dynamics. The rationale for this hypothesis is based upon the following arguments. For females of the Porcupine Herd, one of the few forages available before and during early calving are the inflorescences of cotton grass (Eriophorum vaginatum), which are very digestible, high in nitrogen and phosphorus, and low in phenols and acid-detergent fiber. The nutritional levels of the inflorescences are highest in the early stages of phenology and decline rapidly until they are lowest at seed set, about 2 weeks after being exposed from snow cover. The high nutritional level of cotton grass inflorescences is important to post-paturient caribou attempting to meet nutritional requirements of lactation while minimizing associated weight loss. The pattern of weight regain in summer is important to herd productivity as female body weight at mating influences conception in late summer and calving success in spring. Therefore, temporal changes in snowmelt may have major effects on nutritional regimes of the female.

  14. A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project

    PubMed Central

    Lynd, Lee Rybeck; Aziz, Ramlan Abdul; de Brito Cruz, Carlos Henrique; Chimphango, Annie Fabian Abel; Cortez, Luis Augusto Barbosa; Faaij, Andre; Greene, Nathanael; Keller, Martin; Osseweijer, Patricia; Richard, Tom L.; Sheehan, John; Chugh, Archana; van der Wielen, Luuk; Woods, Jeremy; van Zyl, Willem Heber

    2011-01-01

    The global sustainable bioenergy (GSB) project was formed in 2009 with the goal of providing guidance with respect to the feasibility and desirability of sustainable, bioenergy-intensive futures. Stage 1 of this project held conventions with a largely common format on each of the world's continents, was completed in 2010, and is described in this paper. Attended by over 400 persons, the five continental conventions featured presentations, breakout sessions, and drafting of resolutions that were unanimously passed by attendees. The resolutions highlight the potential of bioenergy to make a large energy supply contribution while honouring other priorities, acknowledge the breadth and complexity of bioenergy applications as well as the need to take a systemic approach, and attest to substantial intra- and inter-continental diversity with respect to needs, opportunities, constraints and current practice relevant to bioenergy. The following interim recommendations based on stage 1 GSB activities are offered: — Realize that it may be more productive, and also more correct, to view the seemingly divergent assessments of bioenergy as answers to two different questions rather than the same question. Viewed in this light, there is considerably more scope for reconciliation than might first be apparent, and it is possible to be informed rather than paralysed by divergent assessments.— Develop established and advanced bioenergy technologies such that each contributes to the other's success. That is, support and deploy in the near-term meritorious, established technologies in ways that enhance rather than impede deployment of advanced technologies, and support and deploy advanced technologies in ways that expand rather than contract opportunities for early adopters and investors.— Be clear in formulating policies what mix of objectives are being targeted, measure the results of these policies against these objectives and beware of unintended consequences

  15. The integrated global temperature change potential (iGTP) and relationships between emission metrics

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Aamaas, Borgar; Berntsen, Terje; Fuglestvedt, Jan S.

    2011-12-01

    The Kyoto Protocol compares greenhouse gas emissions (GHGs) using the global warming potential (GWP) with a 100 yr time-horizon. The GWP was developed, however, to illustrate the difficulties in comparing GHGs. In response, there have been many critiques of the GWP and several alternative emission metrics have been proposed. To date, there has been little focus on understanding the linkages between, and interpretations of, different emission metrics. We use an energy balance model to mathematically link the absolute GWP, absolute global temperature change potential (AGTP), absolute ocean heat perturbation (AOHP), and integrated AGTP. For pulse emissions, energy conservation requires that AOHP = AGWP - iAGTP/λ and hence AGWP and iAGTP are closely linked and converge as AOHP decays to zero. When normalizing the metrics with CO2 (GWP, GTP, and iGTP), we find that the iGTP and GWP are similar numerically for a wide range of GHGs and time-horizons, except for very short-lived species. The similarity between the iGTPX and GWPX depends on how well a pulse emission of CO2 can substitute for a pulse emission of X across a range of time-horizons. The ultimate choice of emission metric(s) and time-horizon(s) depends on policy objectives. To the extent that limiting integrated temperature change over a specific time-horizon is consistent with the broader objectives of climate policy, our analysis suggests that the GWP represents a relatively robust, transparent and policy-relevant emission metric.

  16. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  17. Current Status and Future Potential of Energy Derived from Chinese Agricultural Land: A Review

    PubMed Central

    Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction. PMID:25874229

  18. Current status and future potential of energy derived from Chinese agricultural land: a review.

    PubMed

    Zhai, Ningning; Mao, Chunlan; Feng, Yongzhong; Zhang, Tong; Xing, Zhenjie; Wang, Yanhong; Zou, Shuzhen; Yin, Dongxue; Han, Xinhui; Ren, Guangxin; Yang, Gaihe

    2015-01-01

    Energy crisis is receiving attention with regard to the global economy and environmental sustainable development. Developing new energy resources to optimize the energy supply structure has become an important measure to prevent energy shortage as well as achieving energy conservation and emission reduction in China. This study proposed the concept of energy agriculture and constructed an energy agricultural technical support system based on the analysis of energy supply and demand and China's foreign dependence on energy resources, combined with the function of agriculture in the energy field. Manufacturing technology equipment and agricultural and forestry energy, including crop or forestry plants and animal feces, were used in the system. The current status and future potential of China's marginal land resources, energy crop germplasm resources, and agricultural and forestry waste energy-oriented resources were analyzed. Developing the function of traditional agriculture in food production may promote China's social, economic, and environmental sustainable development and achieve energy saving and emission reduction.

  19. Energy potential of sugarcane and sweet sorghum

    SciTech Connect

    Elawad, S.H.; Gascho, G.J.; Shih, S.F.

    1980-01-01

    The potential of sugarcane and sweet sorghum as raw materials for the production of ethanol and petrochemical substitutes is discussed. Both crops belong to the grass family and are classified as C/sub 4/ malateformers which have the highest rate of photosynthesis among terrestrial plants. Large amounts of biomass are required to supply a significant fraction of US energy consumption. Biomass production could be substantially increased by including tops and leaves, adopting narrow row spacing and improving cultural practices. This presents challenges for cultivating, harvesting, and hauling the biomass to processing centers. Large plants and heavy capital investment are essential for energy production. Ethanol and ammonia are the most promising candidates of a biomass program. If sugarcane were to be used for biomass production, breeding programs should be directed for more fermentable sugars and fiber. Energy research on sweet sorghum should be done with syrup varieties. Sweet sorghum needs to be incorporated with other crops because of its short growing season. The disposal of stillage from an extensive ethanol industry may pose environmental problems.

  20. Induced Seismicity Potential of Energy Technologies

    NASA Astrophysics Data System (ADS)

    Hitzman, Murray

    2013-03-01

    Earthquakes attributable to human activities-``induced seismic events''-have received heightened public attention in the United States over the past several years. Upon request from the U.S. Congress and the Department of Energy, the National Research Council was asked to assemble a committee of experts to examine the scale, scope, and consequences of seismicity induced during fluid injection and withdrawal associated with geothermal energy development, oil and gas development, and carbon capture and storage (CCS). The committee's report, publicly released in June 2012, indicates that induced seismicity associated with fluid injection or withdrawal is caused in most cases by change in pore fluid pressure and/or change in stress in the subsurface in the presence of faults with specific properties and orientations and a critical state of stress in the rocks. The factor that appears to have the most direct consequence in regard to induced seismicity is the net fluid balance (total balance of fluid introduced into or removed from the subsurface). Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and withdrawn, such as most oil and gas development projects, appear to produce fewer seismic events than projects that do not maintain fluid balance. Major findings from the study include: (1) as presently implemented, the process of hydraulic fracturing for shale gas recovery does not pose a high risk for inducing felt seismic events; (2) injection for disposal of waste water derived from energy technologies does pose some risk for induced seismicity, but very few events have been documented over the past several decades relative to the large number of disposal wells in operation; and (3) CCS, due to the large net volumes of injected fluids suggested for future large-scale carbon storage projects, may have potential for inducing larger seismic events.

  1. Global Energy Technology Strategy: Addressing Climate Change Phase 2 Findings from an international Public-Private Sponsored Research Program

    SciTech Connect

    Edmonds, James A.; Wise, Marshall A.; Dooley, James J.; Kim, Son H.; Smith, Steven J.; Runci, Paul J.; Clarke, Leon E.; Malone, Elizabeth L.; Stokes, Gerald M.

    2007-05-01

    This book examines the role of global energy technology in addressing climate change. The book considers the nature of the climate change challenge and the role of energy in the issue. It goes on to consider the implications for the evolution of the global energy system and the potential value of technology availability, development and deployment. Six technology systems are identified for special consideration: CO2 capture and storage, Biotechnology, Hydrogen systems, Nuclear energy, Wind and solar energy, and End-use energy technologies. In addition, consideration is given to the role of non-CO2 gases in climate change as well as the potential of technology development and deployment to reduce non-CO2 emissions. Present trends in energy R&D are examined and potentially fruitful avenues for research. The book concludes with a set of key findings.

  2. Theoretical studies of potential energy surfaces and computational methods.

    SciTech Connect

    Shepard, R.

    2006-01-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces (PES) involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. Most of our work focuses on general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of molecular geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  3. Theoretical studies of potential energy surfaces and computational methods

    SciTech Connect

    Shepard, R.

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  4. A comparison of Type III metric radio bursts and global solar potential field models

    NASA Technical Reports Server (NTRS)

    Jackson, B. V.; Levine, R. H.

    1981-01-01

    Evidence of coronal magnetic fields from polarized metric type III radio bursts is compared with (1) global potential field models, (2) direct averages of the observed photospheric magnetic field, and (3) H-alpha synoptic charts. The comparison clearly indicates both that the principal aspects of type III burst radiation are understood and that global potential field models are a significantly more accurate representation of coronal magnetic field structure than either the large-scale photospheric field or H-alpha synoptic charts.

  5. A historical perspective of Global Warming Potential from Municipal Solid Waste Management.

    PubMed

    Habib, Komal; Schmidt, Jannick H; Christensen, Per

    2013-09-01

    The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP(100)), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO(2)-eq.tonne(-1) to net saving of 670 kg CO(2)-eq.tonne(-1) of MSWM. PMID:23769238

  6. Communication: Certifying the potential energy landscape

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Hauenstein, Jonathan D.; Wales, David J.

    2013-05-01

    It is highly desirable for numerical approximations to stationary points for a potential energy landscape to lie in the corresponding quadratic convergence basin. However, it is possible that an approximation may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the actual stationary point when further optimization is attempted. Proving that a numerical approximation will quadratically converge to the associated stationary point is termed certification. Here, we apply Smale's α-theory to stationary points, providing a certification serving as a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed. As a practical example, employing recently developed certification algorithms, we show how the α-theory can be used to certify all the known minima and transition states of Lennard-Jones LJN atomic clusters for N = 7, …, 14.

  7. Certification and the potential energy landscape

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Hauenstein, Jonathan D.; Wales, David J.

    2014-06-01

    Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the corresponding stationary point when further optimization is attempted. In some cases, these non-solutions could be misleading. Proving that a numerical approximation will quadratically converge to a stationary point is termed certification. In this report, we provide details of how Smale's α-theory can be used to certify numerically obtained stationary points of a potential energy landscape, providing a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed.

  8. Tensor decomposition in potential energy surface representations.

    PubMed

    Ostrowski, Lukas; Ziegler, Benjamin; Rauhut, Guntram

    2016-09-14

    In order to reduce the operation count in vibration correlation methods, e.g., vibrational configuration interaction (VCI) theory, a tensor decomposition approach has been applied to the analytical representations of multidimensional potential energy surfaces (PESs). It is shown that a decomposition of the coefficients within the individual n-mode coupling terms in a multimode expansion of the PES is feasible and allows for convenient contractions of one-dimensional integrals with these newly determined factor matrices. Deviations in the final VCI frequencies of a set of small molecules were found to be negligible once the rank of the factors matrices is chosen appropriately. Recommendations for meaningful ranks are provided and different algorithms are discussed. PMID:27634247

  9. Certification and the potential energy landscape

    SciTech Connect

    Mehta, Dhagash; Hauenstein, Jonathan D.; Wales, David J.

    2014-06-14

    Typically, there is no guarantee that a numerical approximation obtained using standard nonlinear equation solvers is indeed an actual solution, meaning that it lies in the quadratic convergence basin. Instead, it may lie only in the linear convergence basin, or even in a chaotic region, and hence not converge to the corresponding stationary point when further optimization is attempted. In some cases, these non-solutions could be misleading. Proving that a numerical approximation will quadratically converge to a stationary point is termed certification. In this report, we provide details of how Smale's α-theory can be used to certify numerically obtained stationary points of a potential energy landscape, providing a mathematical proof that the numerical approximation does indeed correspond to an actual stationary point, independent of the precision employed.

  10. Studies of global energy confinement in TFTR supershots

    SciTech Connect

    Strachan, J.D.

    1993-08-01

    The global energy confinement time, {tau}{sub E}, from TFTR supershot plasmas has been correlated with the hydrogen recycling and the pressure anisotropy. An expression for the global confinement was obtained that describes its value at the time of peak neutron emission for all TFTR supershots obtained in the 1990 campaign, and simultaneously describes the time evolution of {tau}{sub E} for an extensive subset of the 1990 data. The obtained expression is probably not unique and it can be written with different variables. An analysis of the energy balance for many of these supershots indicates that the primary effect of larger {tau}{sub E} is that the central particle diffusivity is lower.

  11. Computed potential energy surfaces for chemical reactions

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  12. The Wind Energy Potential of Kurdistan, Iran.

    PubMed

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms.

  13. The Wind Energy Potential of Kurdistan, Iran

    PubMed Central

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  14. Thermophotovoltaic energy conversion: Technology and market potential

    NASA Astrophysics Data System (ADS)

    Ostrowski, Leon J.; Pernisz, Udo C.; Fraas, Lewis M.

    1996-02-01

    This report contains material displayed on poster panels during the Conference. The purpose of the contribution was to present a summary of the business overview of thermophotovoltaic generation of electricity and its market potential. The market analysis has shown that the TPV market, while currently still in an early nucleation phase, is evolving into a range of small niche markets out of which larger-size opportunities can emerge. Early commercial applications on yachts and recreational vehicles which require a quiet and emission-free compact electrical generator fit the current TPV technology and economics. Follow-on residential applications are attractive since they can combine generation of electricity with space and hot water heating in a co-generation system. Development of future markets in transportation, both private and communal or industrial, will be driven by legislation requiring emission-free vehicles, and by a reduction in TPV systems cost. As a result of ``moving down the learning curve,'' growing power and consumer markets are predicted to come into reach of TPV systems, a development favored by high overall energy conversion efficiency due to high radiation energy density and to high electric conversion efficiency available with photovoltaic cells.

  15. The Wind Energy Potential of Kurdistan, Iran.

    PubMed

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000-2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997-2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  16. Global energy conservation in nonlinear spherical characteristic evolutions

    NASA Astrophysics Data System (ADS)

    Barreto, W.

    2014-04-01

    Associated to the unique 4-parametric subgroup of translations, normal to the Bondi-Metzner-Sachs group, there exists a generator of the temporal translation asymptotic symmetry. Such a descriptor of the motion along the conformal orbit near null infinity is propagated to finite regions. This allows us to observe the global energy conservation even in extreme situations near the critical behavior of the massless scalar field collapse in spherical symmetry.

  17. Advancing the right to health through global organizations: The potential role of a Framework Convention on Global Health.

    PubMed

    Friedman, Eric A; Gostin, Lawrence O; Buse, Kent

    2013-06-14

    Organizations, partnerships, and alliances form the building blocks of global governance. Global health organizations thus have the potential to play a formative role in determining the extent to which people are able to realize their right to health. This article examines how major global health organizations, such as WHO, the Global Fund to Fight AIDS, TB and Malaria, UNAIDS, and GAVI approach human rights concerns, including equality, accountability, and inclusive participation. We argue that organizational support for the right to health must transition from ad hoc and partial to permanent and comprehensive. Drawing on the literature and our knowledge of global health organizations, we offer good practices that point to ways in which such agencies can advance the right to health, covering nine areas: 1) participation and representation in governance processes; 2) leadership and organizational ethos; 3) internal policies; 4) norm-setting and promotion; 5) organizational leadership through advocacy and communication; 6) monitoring and accountability; 7) capacity building; 8) funding policies; and 9) partnerships and engagement. In each of these areas, we offer elements of a proposed Framework Convention on Global Health (FCGH), which would commit state parties to support these standards through their board membership and other interactions with these agencies. We also explain how the FCGH could incorporate these organizations into its overall financing framework, initiate a new forum where they collaborate with each other, as well as organizations in other regimes, to advance the right to health, and ensure sufficient funding for right to health capacity building. We urge major global health organizations to follow the leadership of the UN Secretary-General and UNAIDS to champion the FCGH. It is only through a rights-based approach, enshrined in a new Convention, that we can expect to achieve health for all in our lifetimes.

  18. Energy resource potential of natural gas hydrates

    USGS Publications Warehouse

    Collett, T.S.

    2002-01-01

    The discovery of large gas hydrate accumulations in terrestrial permafrost regions of the Arctic and beneath the sea along the outer continental margins of the world's oceans has heightened interest in gas hydrates as a possible energy resource. However, significant to potentially insurmountable technical issues must be resolved before gas hydrates can be considered a viable option for affordable supplies of natural gas. The combined information from Arctic gas hydrate studies shows that, in permafrost regions, gas hydrates may exist at subsurface depths ranging from about 130 to 2000 m. The presence of gas hydrates in offshore continental margins has been inferred mainly from anomalous seismic reflectors, known as bottom-simulating reflectors, that have been mapped at depths below the sea floor ranging from about 100 to 1100 m. Current estimates of the amount of gas in the world's marine and permafrost gas hydrate accumulations are in rough accord at about 20,000 trillion m3. Disagreements over fundamental issues such as the volume of gas stored within delineated gas hydrate accumulations and the concentration of gas hydrates within hydrate-bearing strata have demonstrated that we know little about gas hydrates. Recently, however, several countries, including Japan, India, and the United States, have launched ambitious national projects to further examine the resource potential of gas hydrates. These projects may help answer key questions dealing with the properties of gas hydrate reservoirs, the design of production systems, and, most important, the costs and economics of gas hydrate production.

  19. Energy conversion of biomass in coping with global warming

    SciTech Connect

    Yokoyama, Shin-ya; Ogi, Tomoko; Minowa, Tomoaki

    1993-12-31

    The main purpose of the present paper is to propose energy conversion technologies of biomass in coping with global warming. Among thermochemical conversion, liquid fuel production by high pressure process is mainly introduced. Biomass is a term used to describe materials of biological origin, either purpose-grown or arising as by-products, residues or wastes from forestry, agriculture and food processing. Such biomass is a renewable energy sources dependent on solar energy. Through photosynthesis, plants converts carbon dioxide into organic materials used in their growth. Energy can be recovered from the plant materials by several processes, the simplest way is burning in air. As far as biomass is used in this way, there is no atmospheric accumulation of carbon dioxide making no effect on the Greenhouse Effect, provided that the cycle of regrowth and burning is sustained.

  20. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels. PMID:24298077

  1. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  2. An ab initio method for locating potential energy minima

    SciTech Connect

    Bock, Nicolas; Peery, Travis; Venneri, Giulia; Chisolm, Eric; Wallace, Duane; Lizarraga, Raquel; Holmstrom, Erik

    2009-01-01

    We study the potential energy landscape underlying the motion of monatomic liquids by quenching from random initial configurations (stochastic configurations) to the nearest local minimum of the potential energy. We show that this procedure reveals the underlying potential energy surface directly. This is in contrast to the common technique of quenching from a molecular dynamics trajectory which does not allow a direct view of the underlying potential energy surface, but needs to be corrected for thermodynamic weighting factors.

  3. Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Horiuchi, W.; Takashina, M.; Yamamoto, Y.; Sakuragi, Y.

    2012-04-01

    We present a new global optical potential (GOP) for nucleus-nucleus systems, including neutron-rich and proton-rich isotopes, in the energy range of 50-400 MeV/u. The GOP is derived from the microscopic folding model with the complex G-matrix interaction CEG07 and the global density presented by the São Paulo group. The folding model accounts for realistic complex optical potentials of nucleus-nucleus systems well and reproduces the existing elastic scattering data for stable heavy-ion projectiles at incident energies above 50 MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of even-even isotopes, 8-22C, 12-24O, 16-38Ne, 20-40Mg, 22-48Si, 26-52S, 30-62Ar, and 34-70Ca, scattered by stable target nuclei of 12C, 16O, 28Si, 40Ca 58Ni, 90Zr, 120Sn, and 208Pb at incident energies of 50, 60, 70, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is represented, with a sufficient accuracy, by a linear combination of 10-range Gaussian functions. The expansion coefficients depend on the incident energy, the projectile and target mass numbers, and the projectile atomic number, while the range parameters depend only on the projectile and target mass numbers. The adequate mass region of the present GOP by the global density is inspected in comparison with FMP by realistic density. The full set of the range parameters and the coefficients for all the projectile-target combinations at each incident energy are provided on a permanent open-access website together with a fortran program for calculating the microscopic-basis GOP (MGOP) for a desired projectile nucleus by the spline interpolation over the incident energy and the target mass number.

  4. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    SciTech Connect

    Greene, David L

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil. Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.

  5. What is the maximum potential for CO2 sequestration by "stimulated" weathering on the global scale?

    PubMed

    Hartmann, Jens; Kempe, Stephan

    2008-12-01

    Natural chemical weathering of silicate rocks is a significant sink for soil and atmospheric CO(2). Previous work suggested that natural chemical weathering may be stimulated by applying finely ground silicate rocks to agricultural areas or forests [stimulated weathering (SW)]. However, it remained unknown if this technique is practical to sequester globally significant amounts of CO(2) under realistic conditions. Applying first estimates of "normal treatment" amounts from a literature review, we report here a theoretical global maximum potential of 65 10(6) t sequestered C a(-1) if SW would be applied homogenously on all agricultural and forested areas of the world. This is equivalent to 0.9% of anthropogenic CO(2) emissions (reference period 2000-2005). First, however, the assumed application of SW on most of the considered areas is not economically feasible because of logistic issues, and second the net-CO(2) sequestration is expected to amount to only a fraction of consumed CO(2) due to the energy demand of the application itself (currently ~11%). Unless progress in application procedures is provided, the recent realistic maximum net-CO(2)-consumption potential is expected to be much smaller than 0.1% of anthropogenic emissions, and the SW would thus not be one of the key techniques to reduce atmospheric CO(2) concentration. However, literature suggests that for some agricultural areas (croplands) and specifically for rice production areas in humid climates, this SW may be a feasible tool to support international efforts to sequester CO(2). SW may be cost effective for those areas if linked to the CO(2)-emission certificate trade in the future, and increases in crop production are taken into account.

  6. What is the maximum potential for CO2 sequestration by ``stimulated'' weathering on the global scale?

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Kempe, Stephan

    2008-12-01

    Natural chemical weathering of silicate rocks is a significant sink for soil and atmospheric CO2. Previous work suggested that natural chemical weathering may be stimulated by applying finely ground silicate rocks to agricultural areas or forests [stimulated weathering (SW)]. However, it remained unknown if this technique is practical to sequester globally significant amounts of CO2 under realistic conditions. Applying first estimates of “normal treatment” amounts from a literature review, we report here a theoretical global maximum potential of 65 106 t sequestered C a-1 if SW would be applied homogenously on all agricultural and forested areas of the world. This is equivalent to 0.9% of anthropogenic CO2 emissions (reference period 2000 2005). First, however, the assumed application of SW on most of the considered areas is not economically feasible because of logistic issues, and second the net-CO2 sequestration is expected to amount to only a fraction of consumed CO2 due to the energy demand of the application itself (currently ~11%). Unless progress in application procedures is provided, the recent realistic maximum net-CO2-consumption potential is expected to be much smaller than 0.1% of anthropogenic emissions, and the SW would thus not be one of the key techniques to reduce atmospheric CO2 concentration. However, literature suggests that for some agricultural areas (croplands) and specifically for rice production areas in humid climates, this SW may be a feasible tool to support international efforts to sequester CO2. SW may be cost effective for those areas if linked to the CO2-emission certificate trade in the future, and increases in crop production are taken into account.

  7. Global energy and water balances in the latest reanalyses

    NASA Astrophysics Data System (ADS)

    Kang, Suchul; Ahn, Joong-Bae

    2015-11-01

    The recently released Japanese 55-year Reanalysis (JRA- 55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique.

  8. GIS Assessment of Wind Energy Potential in California and Florida

    NASA Astrophysics Data System (ADS)

    Snow, R. K.; Snow, M. M.

    2008-05-01

    Energy efficiency coupled with renewable energy technologies can provide most of the U.S. carbon emissions reductions needed to contain atmospheric carbon concentrations at 450-500 parts per million, considered by many to be a tipping point in mitigating climate change. Among the leaders in the alternative energy sector is wind power, which is now one of the largest sources of new power generation in the U.S. creating jobs and revenue for rural communities while powering our economy with an emissions-free source of energy. In 2006, wind turbines capable of generating more than 2,400 megawatts of electricity were installed in the U.S. and by 2007 this number had risen to 3,000 megawatts. The U.S. generated 31 billion kilowatt-hours of wind power in 2007, which is enough electricity to power the equivalent of nearly 3 million average homes. It is estimated that generating the same amount of electricity would require burning 16 million tons of coal or 50 million barrels of oil. This study examines the wind power potential of sites near populated areas in Florida and California to determine the practicability of installing wind turbines at these locations. A GIS was developed in order to conduct a spatial analysis of these sites based on mean annual wind speed measured in meters per second and wind power density ratings measured in watts per square meter. The analysis indicates that coastal areas of Cocoa Beach, Key West, Hollywood, and West Palm Beach, respectively, possess the greatest potential for wind energy in Florida with mean annual wind speeds of 4.9 m/s and average wind power density ratings of 171 w/m2 peaking at Cocoa Beach followed by wind speeds of 4.64 m/s and wind power ratings of 115 w/m2 at Key West. California wind energy potential is even greater than that of Florida with Fairfield exhibiting mean annual wind speeds of 5.9 m/s and average wind power density ratings of 327 w/m2 followed by the Mojave and Palmdale areas with mean annual wind speeds of

  9. Determinants of the pace of global innovation in energy technologies.

    PubMed

    Bettencourt, Luís M A; Trancik, Jessika E; Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970-2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time.

  10. Determinants of the pace of global innovation in energy technologies.

    PubMed

    Bettencourt, Luís M A; Trancik, Jessika E; Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970-2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time. PMID:24155867

  11. Determinants of the Pace of Global Innovation in Energy Technologies

    PubMed Central

    Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970–2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time. PMID:24155867

  12. Transportation Energy Use and Conservation Potential

    ERIC Educational Resources Information Center

    Hirst, Eric

    1973-01-01

    Analyzes transportation energy consumption and energy intensiveness for inter-city freight and passenger traffic and urban passenger traffic with the definition of energy intensiveness as Btu per ton-mile or per passenger-mile. Indicates that public education is one of three ways to achieve the goals of energy conservation. (CC)

  13. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    SciTech Connect

    R.A. Wigeland

    2008-10-01

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  14. Global Energy and Water Balances in the Latest Reanalyses

    NASA Astrophysics Data System (ADS)

    Ahn, Joong-Bae; Kang, Suchul; Park, Hye-Jin

    2016-04-01

    The recently released Japanese 55-year Reanalysis (JRA-55) data are evaluated and compared with three other global reanalyses, namely Interim version of the next European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERRA-Interim), Modern Era Retrospective-Analysis for Research and Applications (MERRA) and Climate Forecast System Reanalysis (CFSR), in terms of global energy and water balances. All four reanalyses show an energy imbalance at TOA and surface. Especially, clouds in JRA-55 are optically weaker than those in the three other reanalyses, leading to excessive outgoing longwave radiation, which in turn causes negative net energy flux at TOA. Moreover, JRA-55 has a negative imbalance at surface and at TOA, which is attributed to systematic positive biases in latent heat flux over the ocean. As for the global water balance, all reanalyses present a similar spatial pattern of the difference between evaporation and precipitation (E-P). However, JRA-55 has a relatively strong negative (positive) E-P in the Intertropical Convergence Zone and South Pacific Convergence Zone (extratropical regions) due to overestimated precipitation (evaporation), in spite of the global net being close to zero. In time series analysis, especially in E-P, significant stepwise changes occur in MERRA, CFSR and ERA-Interim due to the changes occur in MERRA, CFRS and ERA-Interim due to the changes in the satellite observing system used in the data assimilation. Both MERRA and CFSR show a strong downward E-P shift in 1998, simultaneously with the start of the assimilation of AMSU-A sounding radiances. ERA-Interim exhibits an upward E-P shift in 1992 due to changes in observations from the SSM/I of new DMSP satellites. On the contrary, JRA-55 exhibits less trends and remains stable over time, which may be caused by newly available, homogenized observations and advances in data assimilation technique. Acknowledgements This work was funded by the Korea Meteorological

  15. Advanced Potential Energy Surfaces for Molecular Simulation.

    PubMed

    Albaugh, Alex; Boateng, Henry A; Bradshaw, Richard T; Demerdash, Omar N; Dziedzic, Jacek; Mao, Yuezhi; Margul, Daniel T; Swails, Jason; Zeng, Qiao; Case, David A; Eastman, Peter; Wang, Lee-Ping; Essex, Jonathan W; Head-Gordon, Martin; Pande, Vijay S; Ponder, Jay W; Shao, Yihan; Skylaris, Chris-Kriton; Todorov, Ilian T; Tuckerman, Mark E; Head-Gordon, Teresa

    2016-09-22

    Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields.

  16. Advanced Potential Energy Surfaces for Molecular Simulation.

    PubMed

    Albaugh, Alex; Boateng, Henry A; Bradshaw, Richard T; Demerdash, Omar N; Dziedzic, Jacek; Mao, Yuezhi; Margul, Daniel T; Swails, Jason; Zeng, Qiao; Case, David A; Eastman, Peter; Wang, Lee-Ping; Essex, Jonathan W; Head-Gordon, Martin; Pande, Vijay S; Ponder, Jay W; Shao, Yihan; Skylaris, Chris-Kriton; Todorov, Ilian T; Tuckerman, Mark E; Head-Gordon, Teresa

    2016-09-22

    Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms. We have now approached an era where multipole-based polarizable force fields can be routinely used to obtain computational results comparable to state-of-the-art density functional theory while reaching sampling statistics that are acceptable when compared to that obtained from simpler fixed partial charge force fields. PMID:27513316

  17. Separating the nature and nurture of the allocation of energy in response to global change.

    PubMed

    Applebaum, Scott L; Pan, T-C Francis; Hedgecock, Dennis; Manahan, Donal T

    2014-07-01

    Understanding and predicting biological stability and change in the face of rapid anthropogenic modifications of ecosystems and geosystems are grand challenges facing environmental and life scientists. Physiologically, organisms withstand environmental stress through changes in biochemical regulation that maintain homeostasis, which necessarily demands tradeoffs in the use of metabolic energy. Evolutionarily, in response to environmentally forced energetic tradeoffs, populations adapt based on standing genetic variation in the ability of individual organisms to reallocate metabolic energy. Combined study of physiology and genetics, separating "Nature and Nurture," is, thus, the key to understanding the potential for evolutionary adaptation to future global change. To understand biological responses to global change, we need experimentally tractable model species that have the well-developed physiological, genetic, and genomic resources necessary for partitioning variance in the allocation of metabolic energy into its causal components. Model species allow for discovery and for experimental manipulation of relevant phenotypic contrasts and enable a systems-biology approach that integrates multiple levels of analyses to map genotypic-to-phenotypic variation. Here, we illustrate how combined physiological and genetic studies that focus on energy metabolism in developmental stages of a model marine organism contribute to an understanding of the potential to adapt to environmental change. This integrative research program provides insights that can be readily incorporated into individual-based ecological models of population persistence under global change.

  18. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    PubMed

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission.

  19. The Challenges and Potential of Nuclear Energy for Addressing Climate Change

    SciTech Connect

    Kim, Son H.; Edmonds, James A.

    2007-10-24

    The response to climate change and the stabilization of atmospheric greenhouse gas concentrations has major implications for the global energy system. Stabilization of atmospheric carbon dioxide (CO2) concentrations requires a peak and an indefinite decline of global CO2 emissions. Nuclear energy, along with other technologies, has the potential to contribute to the growing demand for energy without emitting CO2. Nuclear energy is of particular interest because of its global prevalence and its current significant contribution, nearly 20%, to the world’s electricity supply. We have investigated the value of nuclear energy in addressing climate change, and have explored the potential challenges for the rapid and large-scale expansion of nuclear energy as a response to climate change. The scope of this study is long-term and the modeling time frame extends out a century because the nature of nuclear energy and climate change dictate that perspective. Our results indicate that the value of the nuclear technology option for addressing climate change is denominated in trillions of dollars. Several-fold increases to the value of the nuclear option can be expected if there is limited availability of competing carbon-free technologies, particularly fossil-fuel based technologies that can capture and sequester carbon. Challenges for the expanded global use of nuclear energy include the global capacity for nuclear construction, proliferation, uranium availability, and waste disposal. While the economic costs of nuclear fuel and power are important, non-economic issues transcend the issues of costs. In this regard, advanced nuclear technologies and new vision for the global use of nuclear energy are important considerations for the future of nuclear power and climate change.

  20. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet

    NASA Astrophysics Data System (ADS)

    Hoffert, Martin I.; Caldeira, Ken; Benford, Gregory; Criswell, David R.; Green, Christopher; Herzog, Howard; Jain, Atul K.; Kheshgi, Haroon S.; Lackner, Klaus S.; Lewis, John S.; Lightfoot, H. Douglas; Manheimer, Wallace; Mankins, John C.; Mauel, Michael E.; Perkins, L. John; Schlesinger, Michael E.; Volk, Tyler; Wigley, Tom M. L.

    2002-11-01

    Stabilizing the carbon dioxide-induced component of climate change is an energy problem. Establishment of a course toward such stabilization will require the development within the coming decades of primary energy sources that do not emit carbon dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand. Mid-century primary power requirements that are free of carbon dioxide emissions could be several times what we now derive from fossil fuels (~1013 watts), even with improvements in energy efficiency. Here we survey possible future energy sources, evaluated for their capability to supply massive amounts of carbon emission-free energy and for their potential for large-scale commercialization. Possible candidates for primary energy sources include terrestrial solar and wind energy, solar power satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil fuels from which carbon has been sequestered. Non-primary power technologies that could contribute to climate stabilization include efficiency improvements, hydrogen production, storage and transport, superconducting global electric grids, and geoengineering. All of these approaches currently have severe deficiencies that limit their ability to stabilize global climate. We conclude that a broad range of intensive research and development is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  1. Advanced technology paths to global climate stability: energy for a greenhouse planet.

    PubMed

    Hoffert, Martin I; Caldeira, Ken; Benford, Gregory; Criswell, David R; Green, Christopher; Herzog, Howard; Jain, Atul K; Kheshgi, Haroon S; Lackner, Klaus S; Lewis, John S; Lightfoot, H Douglas; Manheimer, Wallace; Mankins, John C; Mauel, Michael E; Perkins, L John; Schlesinger, Michael E; Volk, Tyler; Wigley, Tom M L

    2002-11-01

    Stabilizing the carbon dioxide-induced component of climate change is an energy problem. Establishment of a course toward such stabilization will require the development within the coming decades of primary energy sources that do not emit carbon dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand. Mid-century primary power requirements that are free of carbon dioxide emissions could be several times what we now derive from fossil fuels (approximately 10(13) watts), even with improvements in energy efficiency. Here we survey possible future energy sources, evaluated for their capability to supply massive amounts of carbon emission-free energy and for their potential for large-scale commercialization. Possible candidates for primary energy sources include terrestrial solar and wind energy, solar power satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil fuels from which carbon has been sequestered. Non-primary power technologies that could contribute to climate stabilization include efficiency improvements, hydrogen production, storage and transport, superconducting global electric grids, and geoengineering. All of these approaches currently have severe deficiencies that limit their ability to stabilize global climate. We conclude that a broad range of intensive research and development is urgently needed to produce technological options that can allow both climate stabilization and economic development. PMID:12411695

  2. Advanced technology paths to global climate stability: energy for a greenhouse planet.

    PubMed

    Hoffert, Martin I; Caldeira, Ken; Benford, Gregory; Criswell, David R; Green, Christopher; Herzog, Howard; Jain, Atul K; Kheshgi, Haroon S; Lackner, Klaus S; Lewis, John S; Lightfoot, H Douglas; Manheimer, Wallace; Mankins, John C; Mauel, Michael E; Perkins, L John; Schlesinger, Michael E; Volk, Tyler; Wigley, Tom M L

    2002-11-01

    Stabilizing the carbon dioxide-induced component of climate change is an energy problem. Establishment of a course toward such stabilization will require the development within the coming decades of primary energy sources that do not emit carbon dioxide to the atmosphere, in addition to efforts to reduce end-use energy demand. Mid-century primary power requirements that are free of carbon dioxide emissions could be several times what we now derive from fossil fuels (approximately 10(13) watts), even with improvements in energy efficiency. Here we survey possible future energy sources, evaluated for their capability to supply massive amounts of carbon emission-free energy and for their potential for large-scale commercialization. Possible candidates for primary energy sources include terrestrial solar and wind energy, solar power satellites, biomass, nuclear fission, nuclear fusion, fission-fusion hybrids, and fossil fuels from which carbon has been sequestered. Non-primary power technologies that could contribute to climate stabilization include efficiency improvements, hydrogen production, storage and transport, superconducting global electric grids, and geoengineering. All of these approaches currently have severe deficiencies that limit their ability to stabilize global climate. We conclude that a broad range of intensive research and development is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  3. Tropospheric energy cascades in a global circulation model

    NASA Astrophysics Data System (ADS)

    Brune, Sebastian; Becker, Erich

    2010-05-01

    The global horizontal kinetic energy (KE) spectrum and its budget are analyzed using results from a mechanistic GCM. The model has a standard spectral dynamical core with very high vertikal resolution up to the middle stratosphere (T330/L100). As a turbulence model we combine the Smagorinsky scheme with an energy conserving hyperdiffusion that is applied for the very smallest resolved scales. The simulation confirms a slope of the KE spectrum close to -3 in the synoptic regime where the KE is dominated by vortical modes. Towards the mesoscales the spectrum flattens and assumes a slope close to -5/3. Here divergent modes become increasingly important and even dominate the KE. Our complete analysis of the sinks and sources in the spectral KE budget reveals the overall energy fluxes through the spectrum. For the upper troposphere, the change of KE due to horizontal advection is negative for large synoptic scales. It is positive for the planetary scale, as expected, and for the mesoscales as well. This implies that the mesoscales, which include the dynamical sources of tropospheric gravity waves, are in fact sustained by the energy injection at the baroclinic scale (forward energy cascade). We find an enstrophy cascade in accordance with 2D turbulence, but zero downscaling of energy due to the vortical modes alone. In other words, the forward energy cascade in the synoptic and mesoscale regime is solely due to the divergent modes and their nonlinear interaction with the vortical modes. This picture, derived form a mechanistic model, not only lends further evidence for a generally forward energy cascade in the upper tropospheric away from the baroclinic scale. It also extends the picture proposed earlier by Tung and Orlando: The transition from a -3 to a -5/3 slope in the tropospheric macroturbulence spectrum reflects the fact, that the energy cascade due to the horizontally divergent (3D) modes is hidden behind the (2D) enstrophy cascade in the synoptic regime but

  4. Long-Term Global Heating From Energy Usage

    NASA Astrophysics Data System (ADS)

    Chaisson, Eric J.

    2008-07-01

    Even if civilization on Earth stops polluting the biosphere with greenhouse gases, humanity could eventually be awash in too much heat, namely, the dissipated heat by-product generated by any nonrenewable energy source. Apart from the Sun's natural aging-which causes an approximately 1% luminosity rise for each 108 years and thus about 1°C increase in Earth's surface temperature-well within 1000 years our technological society could find itself up against a fundamental limit to growth: an unavoidable global heating of roughly 3°C dictated solely by the second law of thermodynamics, a biogeophysical effect often ignored when estimating future planetary warming scenarios.

  5. Some results concerning the potential energy of interfaces with nonuniformly distributed surfactant

    NASA Astrophysics Data System (ADS)

    Schwartz, L. W.; Roy, R. V.

    2001-10-01

    A functional is presented for the stored energy content, or potential energy, of a nonuniform distribution of surfactant on a liquid interface. This is the energy available to drive fluid motion using surface-tension-gradient forces. The functional is shown to be non-negative. An energy evolution equation is derived for the motion of a thin liquid film, whose shape evolves under the combined influence of surface tension, viscous, and surfactant effects. Numerical calculations show the time history of these global energy components. Results are relevant to the flow behavior of wetting agents, soap films, foams, and emulsions with possible applications in the industrial and biological worlds.

  6. Global biomass production potentials exceed expected future demand without the need for cropland expansion.

    PubMed

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-01-01

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification. PMID:26558436

  7. Global biomass production potentials exceed expected future demand without the need for cropland expansion.

    PubMed

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-11-12

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.

  8. Global biomass production potentials exceed expected future demand without the need for cropland expansion

    PubMed Central

    Mauser, Wolfram; Klepper, Gernot; Zabel, Florian; Delzeit, Ruth; Hank, Tobias; Putzenlechner, Birgitta; Calzadilla, Alvaro

    2015-01-01

    Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification. PMID:26558436

  9. Higher dimensional Bondi energy with a globally specified background structure

    NASA Astrophysics Data System (ADS)

    Ishibashi, Akihiro

    2008-08-01

    A higher (even spacetime) dimensional generalization of the Bondi energy has recently been proposed (Hollands and Ishibashi 2005 J. Math. Phys. 46 022503) within the framework of conformal infinity and Hamiltonian formalism. The gauge condition employed in Hollands and Ishibashi to derive the Bondi-energy expression is, however, peculiar in the sense that cross sections of null infinity specified by that gauge are anisotropic and in fact non-compact. For this reason, that gauge is difficult to use for explicit computation of the Bondi energy in general, asymptotically flat radiative spacetimes. Also it is not clear, under that gauge condition, whether an apparent difference between the expressions of higher dimensional Bondi energy and the four-dimensional one is due to the choice of gauges or a qualitatively different nature of higher dimensional gravity from four-dimensional gravity. In this paper, we consider instead, the Gaussian null conformal gauge as one of the more natural gauge conditions that admit a global specification of background structure with compact, spherical cross sections of null infinity. Accordingly, we modify the previous definition of higher dimensional news tensor so that it becomes well defined in the Gaussian null conformal gauge and derive, for vacuum solutions, an expression for the Bondi energy momentum in the new gauge choice, which takes a universal form in arbitrary (even spacetime) dimensions greater than or equal to 4. KEK-Cosmo-3 KEK/TH/1213.

  10. Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate change, diets and yields

    PubMed Central

    Haberl, Helmut; Erb, Karl-Heinz; Krausmann, Fridolin; Bondeau, Alberte; Lauk, Christian; Müller, Christoph; Plutzar, Christoph; Steinberger, Julia K.

    2011-01-01

    There is a growing recognition that the interrelations between agriculture, food, bioenergy, and climate change have to be better understood in order to derive more realistic estimates of future bioenergy potentials. This article estimates global bioenergy potentials in the year 2050, following a “food first” approach. It presents integrated food, livestock, agriculture, and bioenergy scenarios for the year 2050 based on a consistent representation of FAO projections of future agricultural development in a global biomass balance model. The model discerns 11 regions, 10 crop aggregates, 2 livestock aggregates, and 10 food aggregates. It incorporates detailed accounts of land use, global net primary production (NPP) and its human appropriation as well as socioeconomic biomass flow balances for the year 2000 that are modified according to a set of scenario assumptions to derive the biomass potential for 2050. We calculate the amount of biomass required to feed humans and livestock, considering losses between biomass supply and provision of final products. Based on this biomass balance as well as on global land-use data, we evaluate the potential to grow bioenergy crops and estimate the residue potentials from cropland (forestry is outside the scope of this study). We assess the sensitivity of the biomass potential to assumptions on diets, agricultural yields, cropland expansion and climate change. We use the dynamic global vegetation model LPJmL to evaluate possible impacts of changes in temperature, precipitation, and elevated CO2 on agricultural yields. We find that the gross (primary) bioenergy potential ranges from 64 to 161 EJ y−1, depending on climate impact, yields and diet, while the dependency on cropland expansion is weak. We conclude that food requirements for a growing world population, in particular feed required for livestock, strongly influence bioenergy potentials, and that integrated approaches are needed to optimize food and bioenergy supply

  11. An effective way to address global environmental and energy problems

    NASA Astrophysics Data System (ADS)

    Andrienko, O.; Garelina, S.; Gysev, A.; Zakharyan, R.; Kazaryan, M.; Sachkov, V.

    2015-12-01

    This work scales the present globalism of ecological and energetic problems. The ecological problem is connected with environment pollution by polymeric waste. The energetic problem - with traditional approaches of modern energetic, in particular, use of fossil fuel for energy production and concentration of capacities for ensuring overall performance of global power supply systems that doesn't guarantee a sustainable development of power for long prospect, doesn't provide power safety of the country. The second part of work is devoted to a choice of the most effective solutions of the present global problems. The authors have proposed the plasma-chemical method of the polymer waste processing and developed a schematic diagram of the reactor. The paper contains the results of the theoretical calculation of the polymer waste processing products. The reagents, allowing to obtain hydrogen and other liquid products from polymer waste are selected. It is proposed to use rare elements for increasing the efficiency of hydrogen production from polymer waste. The results of the calculation of the efficiency of hydrogen production from polymer waste using molybdenum are revealed in the paper.

  12. Modelling of the Global Geopotential Energy & Stress Field

    NASA Astrophysics Data System (ADS)

    Schiffer, C.; Nielsen, S. B.

    2012-04-01

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid does not suppress only the deeper sources. The age-dependent signal of the oceanic lithosphere, for instance, is of long wave length and a prominent representative of in-plane stress, derived from the horizontal gradient of isostatic Geoid anomalies and responsible for the ridge push effect. Therefore a global lithospheric density model is required in order to isolate the shallow Geoid signal and calculate the stress pattern from isostatically compensated lithospheric sources. We use a linearized inverse method to fit a lithospheric reference model to observations such as topography and surface heat flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications.

  13. Classical trajectory studies of gas phase reaction dynamics and kinetics using ab initio potential energy surfaces

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard L.; Pattengill, Merle D.; Schwenke, David W.

    1989-01-01

    Strategies for constructing global potential energy surfaces from a limited number of accurate ab initio electronic energy calculations are discussed. Generally, these data are concentrated in small regions of configuration space (e.g., in the vicinity of saddle points and energy minima) and difficulties arise in generating a potential function that is globally well-behaved. Efficient computer codes for carrying out classical trajectory calculations on vector and parallel processors are also described. Illustrations are given from recent work on the following chemical systems: Ca + HF yields CaF + H, H + H + H2 yields H2 + H2, N + O2 yields NO + O and O + N2 yields NO + N. The dynamics and kinetics of metathesis, dissociation, recombination, energy transfer and complex formation processes will be discussed.

  14. Energy in America: Progress and Potential.

    ERIC Educational Resources Information Center

    American Petroleum Inst., Washington, DC.

    An overview of America's energy situation is presented with emphasis on recent progress, the risk of depending upon foreign oil, and policy choices. Section one reviews the energy problems of the 1970s, issues of the 1980s, concerns for the future, and choices that if made today could alleviate future problems. Section two examines past problems,…

  15. Energy conservation potential of surface modification technologies

    SciTech Connect

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  16. The Potential Energy of an Autoencoder.

    PubMed

    Kamyshanska, Hanna; Memisevic, Roland

    2015-06-01

    Autoencoders are popular feature learning models, that are conceptually simple, easy to train and allow for efficient inference. Recent work has shown how certain autoencoders can be associated with an energy landscape, akin to negative log-probability in a probabilistic model, which measures how well the autoencoder can represent regions in the input space. The energy landscape has been commonly inferred heuristically, by using a training criterion that relates the autoencoder to a probabilistic model such as a Restricted Boltzmann Machine (RBM). In this paper we show how most common autoencoders are naturally associated with an energy function, independent of the training procedure, and that the energy landscape can be inferred analytically by integrating the reconstruction function of the autoencoder. For autoencoders with sigmoid hidden units, the energy function is identical to the free energy of an RBM, which helps shed light onto the relationship between these two types of model. We also show that the autoencoder energy function allows us to explain common regularization procedures, such as contractive training, from the perspective of dynamical systems. As a practical application of the energy function, a generative classifier based on class-specific autoencoders is presented.

  17. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    SciTech Connect

    PARSA,Z.

    2000-04-07

    In this paper, high energy physics possibilities and future colliders are discussed. The {mu}{sup +} {mu}{sup {minus}} collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged.

  18. Thinking Globally, Siting Locally: Renewable Energy and Biodiversity in a 4C World

    NASA Astrophysics Data System (ADS)

    Allison, T.; Frumhoff, P. C.; Root, T.

    2012-12-01

    The continued rise of greenhouse gas emissions and limited progress toward a low-carbon global-energy economy puts increases of global average temperatures on a course to reach 3C - 4C within this century. Such temperature increases are projected to have devastating impacts on biodiversity and ecosystems in the United States, and globally. At an increase of 4C, for example, the Intergovernmental Panel on Climate Change (IPCC) estimates that ~ 50% of recognized species could be committed to extinction. Limiting the magnitude of warming well below these levels will require massive shifts in energy production, including the rapid and large-scale deployment of renewable energy. The National Renewable Energy Laboratory (NREL) estimates that generating 80% of US electricity from renewable energy by 2050 would reduce cumulative US emissions (2011-2050) from the power sector by more than 40 Gt C02e, or 41%, and reduce annual emissions from the US power sector by nearly 81% by 2050. But the expansion of renewable energy at this scale will have impacts on biodiversity and ecosystem function, affecting ~3 % of US land area for siting, transmission and storage. Concerns over impacts to vulnerable species and their habitats are a source of delay in and opposition to renewable energy siting, particularly for wind and concentrated solar. Efforts to expedite renewable energy expansion while protecting biodiversity need to factor in both the direct biodiversity risks of siting and transmission and the benefits of avoided emissions on reducing the global biodiversity risks of high magnitude warming. Toward this end, we describe a combination of research, outreach, and dialogue designed to help policymakers and stakeholders (1) promote efforts to strategically locate renewable energy projects where impacts to species potentially vulnerable to deployment and operation of renewable energy could be avoided or minimized; (2) recognize the inherent uncertainty in characterizing siting

  19. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  20. Is increased Nuclear Energy a practical response to Global Warming?

    NASA Astrophysics Data System (ADS)

    Stevens, Jeanne

    2007-05-01

    With the threat of global warming there has been renewed interest in nuclear energy as a carbon-free energy source. There are currently 15 nuclear power plants planned for completion in the U.S. by 2014. In the last 30 years, however, investment and public support for nuclear energy has been minimal. Some factors that led to this loss of interest - high economic costs, risk of accident and radiation exposure, and the challenges of storing nuclear waste - have been analyzed in several recent publications. Comparing the costs and risks of nuclear energy to the benefits in reduced carbon emissions is the goal of this report. Coal plants contribute the most carbon dioxide of all types of power plants. The method of this study is a direct comparison of coal plants and nuclear plants in four areas: the current cost per kWh, the predicted annual cost for health issues, the statistically predicted deaths, and the clean-up costs assuming each facility is as ``green'' as possible. A normalized cost/risk value is then calculated for each plant type. Discussion for how these values are likely to vary is included. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.C1.11

  1. French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products.

    PubMed

    Jard, G; Marfaing, H; Carrère, H; Delgenes, J P; Steyer, J P; Dumas, C

    2013-09-01

    Macroalgae are biomass resources that represent a valuable feedstock to be used entirely for human consumption or for food additives after some extractions (mainly colloids) and/or for energy production. In order to better develop the algal sector, it is important to determine the capacity of macroalgae to produce these added-values molecules for food and/or for energy industries on the basis of their biochemical characteristics. In this study, ten macroalgae obtained from French Brittany coasts (France) were selected. The global biochemical composition (proteins, lipids, carbohydrates, fibers), the presence and characteristics of added-values molecules (alginates, polyphenols) and the biochemical methane potential of these algae were determined. Regarding its biochemical composition, Palmaria palmata is interesting for food (rich in nutrients) and for anaerobic digestion (0.279 LCH4/gVS). Saccharina latissima could be used for alginate extraction (242 g/kgTS, ratio between mannuronic and guluronic acid M/G=1.4) and Sargassum muticum for polyphenol extraction (19.8 g/kgTS).

  2. French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products.

    PubMed

    Jard, G; Marfaing, H; Carrère, H; Delgenes, J P; Steyer, J P; Dumas, C

    2013-09-01

    Macroalgae are biomass resources that represent a valuable feedstock to be used entirely for human consumption or for food additives after some extractions (mainly colloids) and/or for energy production. In order to better develop the algal sector, it is important to determine the capacity of macroalgae to produce these added-values molecules for food and/or for energy industries on the basis of their biochemical characteristics. In this study, ten macroalgae obtained from French Brittany coasts (France) were selected. The global biochemical composition (proteins, lipids, carbohydrates, fibers), the presence and characteristics of added-values molecules (alginates, polyphenols) and the biochemical methane potential of these algae were determined. Regarding its biochemical composition, Palmaria palmata is interesting for food (rich in nutrients) and for anaerobic digestion (0.279 LCH4/gVS). Saccharina latissima could be used for alginate extraction (242 g/kgTS, ratio between mannuronic and guluronic acid M/G=1.4) and Sargassum muticum for polyphenol extraction (19.8 g/kgTS). PMID:23896436

  3. Systematic and efficient navigating potential energy surface: Data for silver doped gold clusters.

    PubMed

    Chaban, Vitaly V

    2016-06-01

    Locating global minimum of certain atomistic ensemble is known to be a highly challenging and resource consuming task. This dataset represents joint usage of the semi-empirical PM7 Hamiltonian, Broyden-Fletcher-Goldfarb-Shanno algorithm and basin hopping scheme to navigate a potential energy surface. The Au20 nanocluster was used for calibration as its global minimum structure is well-known. Furthermore, Au18Ag2 and Au15Ag5 were simulated for illustration of the algorithm performance. The work shows encouraging results and, particularly, underlines proper accuracy of PM7 as applied to this type of heavy metal systems. The reported dataset motivates to use the benchmarked method for studying potential energy surfaces of manifold systems and locate their global-minimum atomistic configurations.

  4. Structuring energy supply and demand networks in a general equilibrium model to simulate global warming control strategies

    SciTech Connect

    Hamilton, S.; Veselka, T.D.; Cirillo, R.R.

    1991-01-01

    Global warming control strategies which mandate stringent caps on emissions of greenhouse forcing gases can substantially alter a country's demand, production, and imports of energy products. Although there is a large degree of uncertainty when attempting to estimate the potential impact of these strategies, insights into the problem can be acquired through computer model simulations. This paper presents one method of structuring a general equilibrium model, the ENergy and Power Evaluation Program/Global Climate Change (ENPEP/GCC), to simulate changes in a country's energy supply and demand balance in response to global warming control strategies. The equilibrium model presented in this study is based on the principle of decomposition, whereby a large complex problem is divided into a number of smaller submodules. Submodules simulate energy activities and conversion processes such as electricity production. These submodules are linked together to form an energy supply and demand network. Linkages identify energy and fuel flows among various activities. Since global warming control strategies can have wide reaching effects, a complex network was constructed. The network represents all energy production, conversion, transportation, distribution, and utilization activities. The structure of the network depicts interdependencies within and across economic sectors and was constructed such that energy prices and demand responses can be simulated. Global warming control alternatives represented in the network include: (1) conservation measures through increased efficiency; and (2) substitution of fuels that have high greenhouse gas emission rates with fuels that have lower emission rates. 6 refs., 4 figs., 4 tabs.

  5. Advancement of Global-scale River Hydrodynamics Modelling and Its Potential Applications to Earth System Models

    NASA Astrophysics Data System (ADS)

    Yamazaki, D.

    2015-12-01

    Global river routine models have been developed for representing freshwater discharge from land to ocean in Earth System Models. At the beginning, global river models had simulated river discharge along a prescribed river network map by using a linear-reservoir assumption. Recently, in parallel with advancement of remote sensing and computational powers, many advanced global river models have started to represent floodplain inundation assuming sub-grid floodplain topography. Some of them further pursue physically-appropriate representation of river and floodplain dynamics, and succeeded to utilize "hydrodynamic flow equations" to realistically simulate channel/floodplain and upstream/downstream interactions. State-of-the-art global river hydrodynamic models can well reproduce flood stage (e.g. inundated areas and water levels) in addition to river discharge. Flood stage simulation by global river models can be potentially coupled with land surface processes in Earth System Models. For example, evaporation from inundated water area is not negligible for land-atmosphere interactions in arid areas (such as the Niger River). Surface water level and ground water level are correlated each other in flat topography, and this interaction could dominate wetting and drying of many small lakes in flatland and could also affect biogeochemical processes in these lakes. These land/surface water interactions had not been implemented in Earth System Models but they have potential impact on the global climate and carbon cycle. In the AGU presentation, recent advancements of global river hydrodynamic modelling, including super-high resolution river topography datasets, will be introduces. The potential applications of river and surface water modules within Earth System Models will be also discussed.

  6. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    SciTech Connect

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.

  7. Net global warming potential and greenhouse gas intensity affected by cropping sequence and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available about management practice effects on the net global warming potential (GWP) and greenhouse gas intensity (GHGI) under dryland cropping systems. We evaluated the effects of cropping sequences (conventional-tillage malt barley [Hordeum vulgaris L.]–fallow [CTB-F], no-ti...

  8. Do mitigation strategies reduce global warming potential in the northern U.S. Corn Belt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture is both an anthropogenic source of CO2, CH4, and N2O, and a sink for CO2 and CH4. Management can impact agriculture's net global warming potential (GWP) by changing source and/or sink. This study compared GWP among three crop management systems: business as usual (BAU), optimum greenhous...

  9. ECONOMIC OPPORTUNITIES FOR REDUCING NET GLOBAL WARMING POTENTIAL IN IRRIGATED CROPPING SYSTEMS IN NORTHEASTERN COLORADO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cropping systems field study initiated in 1999 was used in this analysis to evaluate the economic feasibility of achieving reductions in net global warming potential through changes in cropping system management. Crop yield and management information collected from 2000-2005 were used to estimate ...

  10. Potential impact of contrails on solar energy gain

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Rennhofer, M.; Baumgartner, D.; Gadermaier, J.; Wagner, J.; Laube, W.

    2014-08-01

    We investigated the effect of contrails on global shortwave radiation and on solar energy gain. The study was done for days with a high contrail persistence and looking at situations where the contrails were obstructing the sun. Measurements of cloudiness using a fish eye camera, diffuse and direct shortwave measurements and measurements of the short circuit current of three different types of photovoltaic (PV) modules were performed at the solar observatory Kanzelhöhe (1540 m a.s.l.) during a period of one year with a time resolution of one minute. Our results show that contrails moving between sun and observer/sensor may reduce the global radiation by up to 72%. A statistic of contrail persistence and influence of contrails on global irradiance and solar energy gain is presented. The losses in solar energy gain that were recorded may even be critical under some circumstances for PV system performance.

  11. Potential impact of contrails on solar energy gain

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Rennhofer, M.; Baumgartner, D. J.; Gadermaier, J.; Wagner, J. E.; Gehring, J. E.; Laube, W.

    2015-03-01

    The effect of contrails on global short-wave radiation (sum of direct and downward diffuse solar radiation) and on solar energy gain was investigated. The study was performed during days with high contrail persistence and focused on situations where the contrails were obstructing the sun. Measurements of cloudiness using a fish-eye camera, diffuse and direct short-wave measurements and measurements of the short circuit current of three different types of photovoltaic (PV) modules were performed at the Kanzelhöhe Observatory (1540 m a.s.l.) with a time resolution of 1 min over a period of 1 year. The results show that contrails moving between sun and observer/sensor may reduce the global radiation by up to 72%. An analysis of contrail persistence and the influence of contrails on global irradiance and solar energy gain is presented. The losses in solar energy gain that were recorded may be critical under specific circumstances.

  12. Review of economic and energy sector implications of adopting global climate change policies

    SciTech Connect

    Novak, M.H.

    1997-12-31

    This paper summarizes a number of studies examining potential economic impacts of global climate change policies. Implications for the United States as a whole, the U.S. energy sector, the U.S. economy, businesses and consumers, and world economies are considered. Impact assessments are performed of U.S. carbon emissions, carbon taxes, and carbon restrictions by comparing estimates from various organizations. The following conclusions were made from the economic studies: (1) the economic cost of carbon abatement is expensive; (2) the cost of unilateral action is very expensive with little quantifiable evidence that global emissions are reduced; (3) multilateral actions of developed countries are also very expensive, but there is quantifiable evidence of global emissions reductions; and (4) global actions have only been theoretically addressed. Paralleling these findings, the energy analyses show that the U.S. is technologically unprepared to give up fossil fuels. As a result: (1) carbon is not stabilized without a high tax, (2) stabilization of carbon is elusive, (3) technology is the only long-term answer, and (4) targeted programs may be appropriate to force technology development. 8 tabs.

  13. Optofluidic opportunities in global health, food, water and energy

    NASA Astrophysics Data System (ADS)

    Chen, Yih-Fan; JiangLj, Mm, Aj,; Vo Contributed Equally To This Paper., Li; Mancuso, Matthew; Jain, Aadhar; Oncescu, Vlad; Erickson, David

    2012-07-01

    Optofluidics is a rapidly advancing field that utilizes the integration of optics and microfluidics to provide a number of novel functionalities in microsystems. In this review, we discuss how this approach can potentially be applied to address some of the greatest challenges facing both the developing and developed world, including healthcare, food shortages, malnutrition, water purification, and energy. While medical diagnostics has received most of the attention to date, here we show that some other areas can also potentially benefit from optofluidic technology. Whenever possible we briefly describe how microsystems are currently used to address these problems and then explain why and how optofluidics can provide better solutions. The focus of the article is on the applications of optofluidic techniques in low-resource settings, but we also emphasize that some of these techniques, such as those related to food production, food safety assessment, nutrition monitoring, and energy production, could be very useful in well-developed areas as well.

  14. Global emissions of fluorinated greenhouse gases until 2050: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Purohit, Pallav; Hoglund-Isaksson, Lena

    2016-04-01

    The anthropogenic fluorinated (F-gases) greenhouse gas emissions have increased significantly in recent years and are estimated to rise further in response to increased demand for cooling services and the phase out of ozone-depleting substances (ODS) under the Montreal Protocol. F-gases (HFCs, PFCs and SF6) are potent greenhouse gases, with a global warming effect up to 22,800 times greater than carbon dioxide (CO2). This study presents estimates of current and future global emissions of F-gases, their technical mitigation potential and associated costs for the period 2005 to 2050. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic F-gases for 162 countries/regions, which are aggregated to produce global estimates. For each region, 18 emission source sectors with mitigation potentials and costs were identified. Global F-gas emissions are estimated at 0.7 Gt CO2eq in 2005 with an expected increase to about 3.6 Gt CO2eq in 2050. There are extensive opportunities to reduce emissions by over 95 percent primarily through replacement with existing low GWP substances. The initial results indicate that at least half of the mitigation potential is attainable at a cost of less than 20€ per t CO2eq, while almost 90 percent reduction is attainable at less than 100€ per t CO2eq. Currently, several policy proposals have been presented to amend the Montreal Protocol to substantially curb global HFC use. We analyze the technical potentials and costs associated with the HFC mitigation required under the different proposed Montreal Protocol amendments.

  15. Bone and the regulation of global energy balance

    PubMed Central

    Zhang, Qian; Riddle, Ryan C.; Clemens, Thomas L.

    2015-01-01

    The skeleton, populated by large numbers of osteoblasts and long-lived osteocytes, requires a constant supply of energy-rich molecules to fuel the synthesis, deposition, and mineralization of bone matrix during bone modeling and remodeling. When these energetic demands are not met, bone acquisition is suppressed. Recent findings suggest that key developmental signals emanating from WNT- low-density lipoprotein-related receptor 5 and Hypoxia-inducible factor pathways impact osteoblast bioenergetics to accommodate the energy requirements for bone cells to fulfill their function. In vivo studies in several mutant mouse strains have confirmed a link between bone cells and global metabolism, ultimately leading to the identification of hormonal interactions between the skeleton and other tissues. The hormones insulin and leptin affect postnatal bone acquisition, while osteocalcin produced by the osteoblast in turn stimulates insulin secretion by the pancreas. These observations have prompted additional questions regarding the nature of the mechanisms of fuel sensing and processing in the osteoblast and their contribution to overall energy utilization and homeostasis. Answers to such questions should advance our understanding of metabolic diseases and may ultimately improve management of affected patients. In this review we highlight recent studies in this field and offer a perspective on the evolutionary implications of bone as a metabolic endocrine organ. PMID:25597336

  16. ISTP Global Geospace Science. Energy transfer in geospace

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Solar-terrestrial physics concerns the study of the generation, flow, and dissipation of mass, momentum, and energy between the Sun and the Earth. Mass, momentum, and energy are carried by charged particles that compose the solar wind. When the solar wind reaches the Earth, some solar-wind particles enter the magnetosphere; this coupling between the solar wind and the Earth means that the solar wind can influence the Earth's upper atmosphere. As the first step in addressing the behavior of this solar-terrestrial system, the Global Geospace Science (GGS) Initiative will use the Wind and Polar satellites, provided by NASA, and the Geotail satellite provided by the Japanese Institute of Space and Astronautical Science (ISAS), to perform simultaneous and closely coordinated measurements of the key geospace regions and will add data from equatorial missions. Magnetic field and particle changes that occur when particles are energized during auroral events will be monitored. The intention behind the GGS Initiative is to understand the physical mechanisms and various regions controlling the transport of mass, momentum, and energy in geospace. A summary of the GGS Initiative is presented.

  17. Global stabilization of high-energy resonance for a nonlinear wideband electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    Masuda, Arata; Sato, Takeru

    2016-04-01

    This paper presents an experimental verification of a wideband nonlinear vibration energy harvester which has a globally stabilized high-energy resonating response. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. The resonance frequency band can be expanded by introducing a Duffing-type nonlinear resonator in order to enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear resonators often have multiple stable steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to provide the global stability to the highest-energy solution by destabilizing other unexpected lower-energy solutions by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this study, an experimental verification of this concept are carried out. An experimental prototype harvester is designed and fabricated and the performance of the proposed harvester is experimentally verified. It has been shown that the numerical and experimental results agreed very well, and the highest-energy solutions above the threshold value were successfully stabilized globally.

  18. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    SciTech Connect

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  19. Energy savings potential from energy-conserving irrigation systems

    SciTech Connect

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  20. Potential impacts of global warming on water resources in southern California.

    PubMed

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  1. Global wheat production potentials and management flexibility under the representative concentration pathways

    NASA Astrophysics Data System (ADS)

    Balkovic, Juraj; van der Velde, Marijn; Skalsky, Rastislav; Xiong, Wei; Folberth, Christian; Khabarov, Nikolay; Smirnov, Alexey

    2014-05-01

    Global wheat production is strongly linked with food security as wheat is one of the main sources of human nutrition. Increasing or stabilizing wheat yields in response to climate change is therefore imperative. To do so will require agricultural management interventions that have different levels of flexibility at regional level. Climate change is expected to worsen wheat growing conditions in many places and thus negatively impact on future management opportunities for sustainable intensification. We quantified, in a spatially explicit manner, global wheat yield developments under the envelope of Representative Concentration Pathways (RCP 2.6, 4.5, 6.0 and 8.5) under current and alternative fertilization and irrigation management to estimate future flexibility to cope with climate change impacts. A large-scale implementation of the EPIC model was integrated with the most recent information on global wheat cultivation currently available, and it was used to simulate regional and global wheat yields and production under historical climate and the RCP-driven and bias-corrected HadGEM2-ES climate projections. Fertilization and irrigation management scenarios were designed to project actual and exploitable (under current irrigation infrastructure) yields as well as the climate- and water-limited yield potentials. With current nutrient and water management, and across all RCPs, the global wheat production at the end of the century decreased from 50 to 100 Mt - with RCP2.6 having the lowest and RCP8.5 the highest impact. Despite the decrease in global wheat production potential on current cropland, the exploitable and climatic production gap of respectively 350 and 580 Mt indicates a considerable flexibility to counteract negative climate change impacts across all RCPs. Agricultural management could increase global wheat production by approximately 30% through intensified fertilization and 50% through improved fertilization and extended irrigation if nutrients or water

  2. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with

  3. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M.M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, reactive nitrogen oxides (NOx), volatile organic compounds and carbon monoxide). We calculate the global climate metrics: global warming potentials (GWPs) and global temperature change potentials (GTPs). For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs). The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions.

  4. Terrestrial Carbon Sequestration with Biochar: A Preliminary Assessment of its Global Potential

    NASA Astrophysics Data System (ADS)

    Amonette, J.; Lehmann, J.; Joseph, S.

    2007-12-01

    Biochar technology involves the capture of CO2 from the atmosphere by photosynthesis and its ultimate conversion to biochar by pyrolysis. Energy is obtained during the pyrolysis process and the charcoal, or biochar, which is considerably more stable than biomass, may then be incorporated into agricultural lands where it serves to increase the nutrient- and water-holding capacity of soil. With an estimated half-life in soil on the order of centuries to millenia, biochar offers a way of safely storing C for long periods of time while enhancing the productivity of terrestrial ecosystems. Moreover, biochar technology, like other biomass conversion approaches that include C sequestration options, offers a way to decrease the levels of CO2 in the atmosphere. That is, biochar technology is one of the few inherently "carbon-negative" sources of energy. These positive attributes are of little consequence, however, if the total contribution to sequestration is small compared to the need. In this paper, we provide a preliminary assessment of the potential contribution of biochar technology to the mitigation of climate change, and identify some research needs. Currently, the atmospheric C levels are increasing by about 4.1 Gt/yr, with 7.2 Gt/yr being put into the atmosphere by fossil fuel combustion and cement production, and 3.1 Gt/yr being removed from the atmosphere by the ocean (2.2 Gt/yr) and terrestrial processes (0.9 Gt/yr). The uptake by terrestrial processes can be increased significantly by management of the 60.6 Gt/yr of biomass C that is fixed by photosynthesis (i.e., net primary productivity), of which 59 Gt/yr is decomposed and 1.6 Gt/yr combusted. Biomass pyrolysis converts about 50% of the biomass C to char. Of the other 50% that is converted to bio-oil and bio-gas, the net energy production is about 62% efficient. Thus, pyrolysis of 1 Gt of biomass C would provide energy equivalent to about 0.3 Gt of fossil C and could be used to offset that amount of fossil C

  5. A Satellite View of Global Water and Energy Cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    The global water cycle describes liquid, solid and vapor water dynamics as it moves through the atmosphere, oceans and land. Life exists because of water, and civilization depends on adapting to the constraints imposed by water availability. The carbon, water and energy cycles are strongly interdependent - energy is moved through evaporation and condensation, and photosynthesis is closely related to transpiration. There are significant knowledge gaps about water storage, fluxes and dynamics - we currently do not really know how much water is stored in snowpacks, groundwater or reservoirs. The view from space offers a vision for water science advancement. This vision includes observation, understanding, and prediction advancements that will improve water management and to inform water-related infrastructure that planning to provide for human needs and to protect the natural environment. The water cycle science challenge is to deploy a series of coordinated earth observation satellites, and to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The accompanying societal challenge is to integrate this information along with water cycle physics, and ecosystems and societal considerations as a basis for enlightened water resource management and to protect life and property from effects of water cycle extremes. Better regional to global scale water-cycle observations and predictions need to be readily available to reduce loss of life and property caused by water-related hazards. To this end, the NASA Energy and Water cycle Study (NEWS) has been documenting the satellite view of the water cycle with a goal of enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. NEWS has fostered broad interdisciplinary collaborations to study experimental and operational satellite observations and has developed analysis tools for characterizing air

  6. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-12-01

    Sugarcane presents a tremendous potential as a renewable energy source for the non-oil producing countries of the Caribbean. The energy cane concept is sugarcane managed for maximum dry matter (total fermentable solids for alcohol fuel and combustible solids for electricity) rather than sucrose. The use of sugarcane as a renewable energy source can provide a solution, either partial or total, to the Caribbean energy problem. Sugar cane production and the use of this crop as a renewable energy source are described.

  7. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

    PubMed

    Li, Fengqing; Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Kwon, Tae-Sung; Park, Young-Seuk

    2014-04-01

    Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two-thirds of Odonata and one-third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming. PMID:24372690

  8. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

    PubMed

    Li, Fengqing; Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Kwon, Tae-Sung; Park, Young-Seuk

    2014-04-01

    Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two-thirds of Odonata and one-third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming.

  9. Modeling global macroclimatic constraints on ectotherm energy budgets

    SciTech Connect

    Grant, B.W.; Porter, W.P.

    1992-12-31

    The authors describe a mechanistic individual-based model of how global macroclimatic constraints affect the energy budgets of ectothermic animals. The model uses macroclimatic and biophysical characters of the habitat and organism and tenets of heat transfer theory to calculate hourly temperature availabilities over a year. Data on the temperature dependence of activity rate, metabolism, food consumption and food processing capacity are used to estimate the net rate of resource assimilation which is then integrated over time. They present a new test of this model in which they show that the predicted energy budget sizes for 11 populations of the lizard Sceloporus undulates are in close agreement with observed results from previous field studies. This demonstrates that model tests rae feasible and the results are reasonable. Further, since the model represents an upper bound to the size of the energy budget, observed residual deviations form explicit predictions about the effects of environmental constraints on the bioenergetics of the study lizards within each site that may be tested by future field and laboratory studies. Three major new improvements to the modeling are discussed. They present a means to estimate microclimate thermal heterogeneity more realistically and include its effects on field rates of individual activity and food consumption. Second, they describe an improved model of digestive function involving batch processing of consumed food. Third, they show how optimality methods (specifically the methods of stochastic dynamic programming) may be included to model the fitness consequences of energy allocation decisions subject to food consumption and processing constraints which are predicted from the microclimate and physiological modeling.

  10. Realizing the potential of nuclear energy. [Monograph

    SciTech Connect

    Walske, C.

    1982-01-01

    The future of nuclear power, just as the future of America, can be viewed with optimism. There is hope in America's record of overcoming obstacles, but growth is essential for that hope to be realized. Despite the downturn in energy demand made possible by conservation, we will need a 35% growth in total energy for new workers and production. Electricity generated by nuclear or coal can make US production more cost-competitive, and it can power mass-transit systems, electric heat pumps, and communications and information systems. Changes in electricity and gross national product (GNP) have been more closely in step since 1973 than have total energy and GNP. The nuclear power units now under construction will add 80,000 megawatts to the 56,000 now on line. It is important to note that, while utilities are cancelling plans for nuclear plants, they aren't ordering new coal plants, which shows the impact of the high cost of money. Interest rates must come down and public-relations efforts to sell electricity must improve to change the situation. Although capital shortages are real, waste disposal is a problem of perception that was politically induced because the government failed to provide a demonstration of safety as the French are doing. Streamlined regulatory and insurance procedures can help to justify optimism in the nuclear option. 4 figures. (DCK)

  11. Dengue fever epidemic potential as projected by general circulation models of global climate change.

    PubMed Central

    Patz, J A; Martens, W J; Focks, D A; Jetten, T H

    1998-01-01

    Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases. Images Figure 1 Figure 2 Figure 3 PMID:9452414

  12. Dengue fever epidemic potential as projected by general circulation models of global climate change.

    PubMed

    Patz, J A; Martens, W J; Focks, D A; Jetten, T H

    1998-03-01

    Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases. PMID:9452414

  13. Dengue fever epidemic potential as projected by general circulation models of global climate change.

    PubMed

    Patz, J A; Martens, W J; Focks, D A; Jetten, T H

    1998-03-01

    Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases.

  14. Covariant energy density functionals: The assessment of global performance across the nuclear landscape

    SciTech Connect

    Afanasjev, A. V.

    2015-10-15

    The assessment of the global performance of the state-of-the-art covariant energy density functionals and related theoretical uncertainties in the description of ground state observables has recently been performed. Based on these results, the correlations between global description of binding energies and nuclear matter properties of covariant energy density functionals have been studied in this contribution.

  15. Long-Term Global Trade-Offs Related to Nuclear Energy

    SciTech Connect

    Krakowski, R.A.

    1999-08-25

    An overall comparative assessment of different energy systems and their potential long-term role in contributing to a sustainable energy mix is examined through the use of a global, long-term Energy, Economics, Environment (E{sup 3}) model. This model is used to generate a set of surprise-free futures that encompass a range of economic potentialities. The focus of this study is nuclear energy (NE), and the range of possible futures embodies extrema of NE growth [a Basic Option (BO)] to an NE Phase Out (PO). These NE scenario extrema are expressed against a background that reflects E{sup 3} circumstances ranging from a Business-As-Usual (BAU) to one that is Ecologically Driven (ED), with the latter emphasizing price-induced reductions in greenhouse-gas (GHG) emissions associate with a mix of fossil energy sources. Hence, four ''views-of-the-future'' scenarios emerge to form the framework of this study: BAU/BO, BAU/PO, ED/BO, and ED/PO. Model results ranging from (regional and temporal) primary- and nuclear-energy demands, carbon-dioxide emissions, nuclear-material (plutonium) accumulations and attendant proliferation-risk implications, Gross National Product (GNP) impacts, and a range of technology requirements provide essential input to the subject assessment.

  16. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future. PMID:24893017

  17. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis

    PubMed Central

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G. John; Lillo, Francesco; De Villiers, F. André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species’ native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great

  18. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    PubMed

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain

  19. Impacts of Climate Change on the Global Invasion Potential of the African Clawed Frog Xenopus laevis.

    PubMed

    Ihlow, Flora; Courant, Julien; Secondi, Jean; Herrel, Anthony; Rebelo, Rui; Measey, G John; Lillo, Francesco; De Villiers, F André; Vogt, Solveig; De Busschere, Charlotte; Backeljau, Thierry; Rödder, Dennis

    2016-01-01

    By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.

  20. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future.

  1. Global Deployment of Geothermal Energy Using a New Characterization in GCAM 1.0

    SciTech Connect

    Hannam, Phil; Kyle, G. Page; Smith, Steven J.

    2009-09-01

    This report documents modeling of geothermal energy in GCAM 1.0 (formerly MiniCAM) from FY2008 to FY2009, from the inputs to the U.S. Climate Change Technology Program report (Clarke et al., 2008a) to the present representation, which will be used in future work. To demonstrate the newest representation, we describe the procedure and outcome of six model runs that illustrate the potential role of geothermal energy in the U.S. and global regions through different futures climate policy, development and deployment of engineered, or enhanced, geothermal systems (EGS), and availability of other low-cost, low-carbon electricity generation technologies such as nuclear energy and carbon capture and storage (CCS).

  2. Geothermal energy potential in the San Luis Valley, Colorado

    SciTech Connect

    Coe, B.A.

    1980-01-01

    The background of the area itself is investigated considering the geography, population, economy, attitudes of residents, and energy demands of the area. The requirements for geothermal energy development are considered, including socio-economic, institutional, and environmental conditions as well as some technical aspects. The current, proposed, and potential geothermal energy developments are described. The summary, conclusions, and methodology are included. (MHR)

  3. Preliminary evaluation of wind energy potential: Cook Inlet area, Alaska

    SciTech Connect

    Hiester, T.R.

    1980-06-01

    This report summarizes work on a project performed under contract to the Alaska Power Administration (APA). The objective of this research was to make a preliminary assessment of the wind energy potential for interconnection with the Cook Inlet area electric power transmission and distribution systems, to identify the most likely candidate regions (25 to 100 square miles each) for energy potential, and to recommend a monitoring program sufficient to quantify the potential.

  4. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    DOE PAGES

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, wemore » have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.« less

  5. Surveying a complex potential energy landscape: Overcoming broken ergodicity using basin-sampling

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    2013-10-01

    A new basin-sampling scheme is introduced to obtain equilibrium thermodynamic properties by combining results from global optimisation and parallel tempering calculations. Regular minimisation is used to obtain a two-dimensional density of states. A model anharmonic form is optimised using a multihistogram approach for potential energy bins corresponding to local minima, connecting the results obtained for low and high temperatures. This procedure provides accurate densities of states and thermodynamic properties for benchmark atomic clusters exhibiting broken ergodicity. It can also be used to calculate the potential energy density of local minima for distinct permutation-inversion isomers and distinct structures.

  6. Global analysis of isospin dependent microscopic nucleon-nucleus optical potentials in a Dirac-Brueckner-Hartree-Fock approach

    NASA Astrophysics Data System (ADS)

    Xu, Ruirui; Ma, Zhongyu; Zhang, Yue; Tian, Yuan; van Dalen, E. N. E.; Müther, H.

    2016-09-01

    Background: For the study of exotic nuclei it is important to have an optical model potential that is reliable not only for stable nuclei but can also be extrapolated to nuclear systems with exotic numbers of protons and neutrons. An efficient way to obtain such a potential is to develop a microscopic optical potential (MOP) based on a fundamental theory with a minimal number of free parameters, which are adjusted to describe stable nuclei all over the nuclide chart. Purpose: The choice adopted in the present work is to develop the MOP within a relativistic scheme which provides a natural and consistent relation between the spin-orbit part and the central part of the potential. The Dirac-Brueckner-Hartree-Fock (DBHF) approach provides such a microscopic relativistic scheme, which is based on a realistic nucleon-nucleon interaction and reproduces the saturation properties of symmetric nuclear matter without any adjustable parameter. Its solution using the projection technique within the subtracted T -matrix representation provides a reliable extension to asymmetric nuclear matter, which is important to describe the features of isospin asymmetric nuclei. The present work performs a global analysis of the isospin dependent nucleon-nucleus MOP based on the DBHF calculation in symmetric and asymmetric nuclear matter. Methods: The DBHF approach is used to evaluate the relativistic structure of the nucleon self-energies in nuclear matter at various densities and asymmetries. The Schrödinger equivalent potentials of finite nuclei are derived from these Dirac components by a local density approximation (LDA). The density distributions of finite nuclei are taken from the Hartree-Fock-Bogoliubov approach with Gogny D1S force. An improved LDA approach (ILDA) is employed to get a better prediction of the scattering observables. A χ2 assessment system based on the global simulated annealing algorithm is developed to optimize the very few free components in this study. Results

  7. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    NASA Astrophysics Data System (ADS)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  8. ENERGY INVESTMENTS UNDER CLIMATE POLICY: A COMPARISON OF GLOBAL MODELS

    SciTech Connect

    McCollum, David; Nagai, Yu; Riahi, Keywan; Marangoni, Giacomo; Calvin, Katherine V.; Pietzcker, Robert; Van Vliet, Jasper; van der Zwaan, Bob

    2013-11-01

    The levels of investment needed to mobilize an energy system transformation and mitigate climate change are not known with certainty. This paper aims to inform the ongoing dialogue and in so doing to guide public policy and strategic corporate decision making. Within the framework of the LIMITS integrated assessment model comparison exercise, we analyze a multi-IAM ensemble of long-term energy and greenhouse gas emissions scenarios. Our study provides insight into several critical but uncertain areas related to the future investment environment, for example in terms of where capital expenditures may need to flow regionally, into which sectors they might be concentrated, and what policies could be helpful in spurring these financial resources. We find that stringent climate policies consistent with a 2°C climate change target would require a considerable upscaling of investments into low-carbon energy and energy efficiency, reaching approximately $45 trillion (range: $30–$75 trillion) cumulative between 2010 and 2050, or about $1.1 trillion annually. This represents an increase of some $30 trillion ($10–$55 trillion), or $0.8 trillion per year, beyond what investments might otherwise be in a reference scenario that assumes the continuation of present and planned emissions-reducing policies throughout the world. In other words, a substantial "clean-energy investment gap" of some $800 billion/yr exists — notably on the same order of magnitude as present-day subsidies for fossil energy and electricity worldwide ($523 billion). Unless the gap is filled rather quickly, the 2°C target could potentially become out of reach.

  9. Protein-energy malnutrition impairs functional outcome in global ischemia.

    PubMed

    Bobyn, P Joan; Corbett, Dale; Saucier, Deborah M; Noyan-Ashraf, M Hossein; Juurlink, Bernhard H J; Paterson, Phyllis G

    2005-12-01

    We investigated whether protein-energy malnutrition (PEM) exacerbates brain injury in global ischemia. It was hypothesized that PEM would increase secondary brain damage by worsening ischemia-induced depletion of glutathione (GSH) and increasing oxidative stress. Adult male gerbils were fed an adequate protein (12.5%; C) or low protein (2%; PEM) diet for 4 weeks and subjected to 5 min of bilateral carotid artery occlusion (Ischemia) or sham surgery (Sham). At 12 h post-ischemia, GSH and markers of oxidative stress were measured in hippocampus and neocortex. The remaining gerbils were tested in the open field on days 3, 7, and 10, with viable hippocampal CA1 neurons assessed on day 10. Although the habituation of C-Ischemia gerbils in the open field was normal by day 7, PEM-Ischemia gerbils failed to habituate even by day 10 and spent greater time in the outer zone (P < 0.05). Mean (+/-SEM) total number of viable CA1 neurons at 10 days post-ischemia were C-Sham = 713 (13), C-Ischemia = 264 (48), PEM-Sham = 716 (12), and PEM-Ischemia = 286 (66). Although PEM did not increase CA1 neuron loss caused by ischemia, a subset (4/12) of PEM-Ischemia gerbils showed dramatic reactive gliosis accompanied by extensive neuronal loss. Hippocampal protein thiols were decreased by PEM and ischemia. Although the mechanism is yet to be established, the finding that PEM worsens functional outcome following global ischemia is clinically relevant since 16% of elderly are nutritionally compromised at the time of admission for stroke.

  10. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals.

    PubMed

    Mo, Annie X; Agosti, Jan M; Walson, Judd L; Hall, B Fenton; Gordon, Lance

    2014-01-01

    In March 2013, the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation co-sponsored a meeting entitled "Schistosomiasis Elimination Strategy and Potential Role of a Vaccine in Achieving Global Health Goals" to discuss the potential role of schistosomiasis vaccines and other tools in the context of schistosomiasis control and elimination strategies. It was concluded that although schistosomiasis elimination in some focal areas may be achievable through current mass drug administration programs, global control and elimination will face several significant scientific and operational challenges, and will require an integrated approach with other, additional interventions. These challenges include vector (snail) control; environmental modification; water, sanitation, and hygiene; and other future innovative tools such as vaccines. Defining a clear product development plan that reflects a vaccine strategy as complementary to the existing control programs to combat different forms of schistosomiasis will be important to develop a vaccine effectively.

  11. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  12. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    SciTech Connect

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  13. Periodic discrete energy for long-range potentials

    NASA Astrophysics Data System (ADS)

    Hardin, D. P.; Saff, E. B.; Simanek, B.

    2014-12-01

    We consider periodic energy problems in Euclidean space with a special emphasis on long-range potentials that cannot be defined through the usual infinite sum. One of our main results builds on more recent developments of Ewald summation to define the periodic energy corresponding to a large class of long-range potentials. Two particularly interesting examples are the logarithmic potential and the Riesz potential when the Riesz parameter is smaller than the dimension of the space. For these examples, we use analytic continuation methods to provide concise formulas for the periodic kernel in terms of the Epstein Hurwitz Zeta function. We apply our energy definition to deduce several properties of the minimal energy including the asymptotic order of growth and the distribution of points in energy minimizing configurations as the number of points becomes large. We conclude with some detailed calculations in the case of one dimension, which shows the utility of this approach.

  14. Potential for energy recovery from solid wastes

    SciTech Connect

    Velzy, C.O.

    1983-01-01

    This paper discusses the technologies, opportunities, and problems of energy-from-refuse systems. Topics considered include the direct combustion of as-received refuse, the mass-burn systems, the combustion of refuse-derived fuel, and the production of methane gas from the organic and cellulosic fraction of solid waste. A DOE-sponsored methane plant operated by Waste Management is now being evaluated at Pompano Beach, Florida. The Europeans have moved ahead so rapidly in the beneficial use of heat from the combustion of their solid waste because of the availability of a ready market for the heat in municipal facilities and/or town district heating systems. It is suggested that the use of the heat from the combustion of solid waste should be broadened to include district heating and cooling, complementary municipal functions (e.g. the disposal of sludges from wastewater treatment), integration in power generation facilities in uses other than direct production of power (e.g. boiler feedwater heating), and in industrial processing.

  15. The potential global market size and public health value of an HIV-1 vaccine in a complex global market.

    PubMed

    Marzetta, Carol A; Lee, Stephen S; Wrobel, Sandra J; Singh, Kanwarjit J; Russell, Nina; Esparza, José

    2010-07-01

    An effective HIV vaccine will be essential for the control of the HIV pandemic. This study evaluated the potential global market size and value of a hypothetical HIV vaccine and considered clade diversity, disease burden, partial prevention of acquisition, impact of a reduction in viral load resulting in a decrease in transmission and delay to treatment, health care system differences regarding access, and HIV screening and vaccination, across all public and private markets. Vaccine product profiles varied from a vaccine that would have no effect on preventing infection to a vaccine that would effectively prevent infection and reduce viral load. High disease burden countries (HDBC; HIV prevalence > or = 1%) were assumed to routinely vaccinate pre-sexually active adolescents (10 years old), whereas low disease burden countries (LDBC; HIV prevalence rate <1%) were assumed to routinely vaccinate higher risk populations only. At steady state, routine vaccination demand for vaccines that would prevent infection only was 22-61 million annual doses with a potential market value of $210 million to $2.7 billion, depending on the vaccine product profile. If one-time catch-up campaigns were included (11-14 years old for HDBC and higher risk groups for LDBC), the additional cumulative approximately 70-237 million doses were needed over a 10-year period with a potential market value of approximately $695 million to $13.4 billion, depending on the vaccine product profile. Market size and value varied across market segments with the majority of the value in high income countries and the majority of the demand in low income countries. However, the value of the potential market in low income countries is still significant with up to $550 million annually for routine vaccination only and up to $1.7 billion for a one-time only catch-up campaign in 11-14 years old. In the most detail to date, this study evaluated market size and value of a potential multi-clade HIV vaccine, accounting

  16. The NASA's Long-Term Global Solar Energy Resource: Current Solar Resource Variability and Future Improvements

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Cox, S. J.; Zhang, T.; Chandler, W.; Westberg, D.; Hoell, J. M.

    2011-12-01

    Considering the likelihood of global climate change and the global competition for energy resources, there is an increasing need to provide improved global Earth surface solar resource information. The improved long-term records are needed to better understand and quantify potential shifts in the solar resource with anticipated changes in climatic weather patterns. As part of the World Climate Research Programme's (WCRP) Global Energy and Water Cycle Experiment (GEWEX), NASA has an active Surface Radiation Budget project that has produced long-term global gridded estimates of the surface solar fluxes. These fluxes have been processed and made available to the solar energy community over the years through NASA's Surface meteorology and Solar Energy web site (SSE). This web site provides solar resource and accompanying meteorological variables specifically tailored to the renewable energy community spanning a 22 year period. The web application has been improved over time with usage growing nearly exponentially over the last few years. This paper presents the global and regional variability of the solar resource from the current data available at the SSE web application. The variability is compared for large different spatial scales and compared to other data sets where appropriate. We assess the interannual variability compared against surface sites and other satellite based data sets. These comparisons quantify the limits of usefulness of this data set. For instance, we find long-term linear trends that are dominated by satellite based artifacts in some areas, but agree well with surface measurements in others. Nevertheless, the extremes of solar variability are quantified and show agreement with surface observations good enough for most feasibility studies of solar energy systems. This presentation also contains a description of work currently on going to replace the current solar resource information available on SSE with a completely reprocessed version. The

  17. Energy Consumption and Renewable Energy Development Potential on Indian Lands

    EIA Publications

    2000-01-01

    Includes information on the electricity use and needs of Indian households and tribes, the comparative electricity rates that Indian households are paying, and the potential for renewable resources development of Indian lands.

  18. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space: Status and Potential for Carbon Cycle Research

    NASA Astrophysics Data System (ADS)

    Guanter, L.; Koehler, P.; Walther, S.; Zhang, Y.; Joiner, J.; Frankenberg, C.

    2015-12-01

    Gross primary production (GPP), or the amount of atmospheric CO2 fixed by vegetation through photosynthesis, represents the largest carbon flux between terrestrial ecosystems and the atmosphere. Despite its importance, large-scale estimates of GPP remain highly uncertain for some terrestrial ecosystems. In this context, measurements of sun-induced chlorophyll fluorescence (SIF), which is emitted in the 650-850nm spectral range by the photosynthetic apparatus of green plants, have the potential to provide a new view on vegetation photosynthesis. Global monitoring of SIF from space have been achieved in the last years by means of a number of atmospheric spectrometers, which have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission. This breakthorugh was followed by retrievals from the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B, which enable a continuous spatial sampling, and lately from ENVISAT/SCIAMACHY. This observational scenario is completed by the first SIF data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched by early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to GOSAT, GOME-2 and SCIAMACHY.In this contribution, we will provide an overview of global SIF monitoring and will illustrate the potential of SIF data to improve our knowledge of vegetation photosynthesis and GPP at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity at different ecosystems, highlighting the usefulness of SIF to constrain estimates of CO2 uptake by vegetation through photosynthesis.

  19. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  20. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  1. New approach to calculating the potential energy of colliding nuclei

    SciTech Connect

    Kurmanov, R. S.; Kosenko, G. I.

    2014-12-15

    The differential method proposed by the present authors earlier for the reduction of volume integrals in calculating the potential energy of a compound nucleus is generalized to the case of two interacting nuclei. The Coulomb interaction energy is obtained for the cases of a sharp and a diffuse boundary of nuclei, while the nuclear interaction energy is found only for nuclei with a sharp boundary, the finiteness of the nuclear-force range being taken into account. The present method of calculations permits reducing the time it takes to compute the potential energy at least by two orders of magnitude.

  2. Energy in an Interdependent World: A Global Development Studies Case Study.

    ERIC Educational Resources Information Center

    Collier, Anne B.

    Part of the Global Development Studies Institute series of model curricula, the teacher guide presents strategies for teaching about energy as a global issue. The unit, intended for students in grades 11-14, is designed for one semester. The overall objective is to promote awareness of and responsibility toward the global community through an…

  3. Energy landscapes and global thermodynamics for alanine peptides

    NASA Astrophysics Data System (ADS)

    Somani, Sandeep; Wales, David J.

    2013-09-01

    We compare different approaches for computing the thermodynamics of biomolecular systems. Techniques based on parallel replicas evolving via molecular dynamics or Monte Carlo simulations produce overlapping histograms for the densities of states. In contrast, energy landscape methods employ a superposition partition function constructed from local minima of the potential energy surface. The latter approach is particularly powerful for systems exhibiting broken ergodicity, and it is usually implemented using a harmonic normal mode approximation, which has not been extensively tested for biomolecules. The present contribution compares these alternative approaches for small alanine peptides modelled using the CHARMM and AMBER force fields. Densities of states produced from canonical sampling using multiple temperature replicas provide accurate reference data to evaluate the effect of the harmonic normal mode approximation in the superposition calculations. This benchmarking lays foundations for the application of energy landscape methods to larger biomolecules. It will also provide well characterised model systems for developing enhanced sampling methods, and for the treatment of anharmonicity corresponding to individual local minima.

  4. Re-examining Potential for Geothermal Energy in United States

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    New technological initiatives, along with potential policy and economic incentives, could help to bring about a resurgence in geothermal energy development in the United States, said several experts at a 22 May forum in Washington, D.C. The forum was sponsored by the House and Senate Renewable Energy and Energy Efficiency Caucuses, the Sustainable Energy Coalition, and the Environmental and Energy Study Institute. Among these initiatives is an ambitious program of the U.S. Department of Energy to expand existing geothermal energy fields and potentially create new fields through ``enhanced geothermal systems.'' In addition, a program of the Bush administration encourages geothermal development on some public lands, and current legislation would provide tax credits and other incentives for geothermal development.

  5. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata.

    PubMed

    Galdino, Tarcísio Visintin da Silva; Kumar, Sunil; Oliveira, Leonardo S S; Alfenas, Acelino C; Neven, Lisa G; Al-Sadi, Abdullah M; Picanço, Marcelo C

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625

  6. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata

    PubMed Central

    Oliveira, Leonardo S. S.; Alfenas, Acelino C.; Neven, Lisa G.; Al-Sadi, Abdullah M.

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625

  7. Global positioning system watches for estimating energy expenditure.

    PubMed

    Hongu, Nobuko; Orr, Barron J; Roe, Denise J; Reed, Rebecca G; Going, Scott B

    2013-11-01

    Global positioning system (GPS) watches have been introduced commercially, converting frequent measurements of time, location, speed (pace), and elevation into energy expenditure (EE) estimates. The purpose of this study was to compare EE estimates of 4 different GPS watches (Forerunner, Suunto, Polar, Adeo), at various walking speeds, with EE estimate from a triaxial accelerometer (RT3), which was used as a reference measure in this study. Sixteen healthy young adults completed the study. Participants wore 4 different GPS watches and an RT3 accelerometer and walked at 6-minute intervals on an outdoor track at 3 speeds (3, 5, and 7 km/hr). The statistical significance of differences in EE between the 3 watches was assessed using linear contrasts of the coefficients from the overall model. Reliability across trials for a given device was assessed using intraclass correlation coefficients as estimated in the mixed model. The GPS watches demonstrated lower reliability (intraclass correlation coefficient) across trials when compared with the RT3, particularly at the higher speed, 7 km/hr. Three GPS watches (Forerunner, Polar, and Suunto) significantly and consistently underestimated EE compared with the reference EE given by the RT3 accelerometer (average mean difference: Garmin, -50.5%; Polar, -41.7%; and Suunto, -41.7%; all p < 0.001). Results suggested that caution should be exercised when using commercial GPS watches to estimate EE in athletes during field-based testing and training.

  8. Global energy confinement scaling for neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.; Goldston, R.J.

    1984-10-01

    A total of 677 representative discharges from seven neutral-beam-heated tokamaks has been used to study the parametric scaling of global energy confinement time. Contributions to this data base were from ASDEX, DITE, D-III, ISX-B, PDX, PLT, and TFR, and were taken from results of gettered, L-mode type discharges. Assuming a power law dependence of tau/sub E/ on discharge parameters kappa, I/sub p/, B/sub t/, anti n/sub e/ P/sub tot/, a, and R/a, standard multiple linear regression techniques were used in two steps to determine the scaling. The results indicate that the discharges used in the study are well described by the scaling tau/sub E/ ..cap alpha.. kappa/sup 0.28/ B/sub T//sup -0.09/ I/sub p//sup 1.24/anti n/sub e//sup -0.26/ P/sub tot//sup -0.58/ a/sup 1.16/ (R/a)/sup 1.65/.

  9. A Frontier orbital energy approach to redox potentials

    NASA Astrophysics Data System (ADS)

    Conradie, Jeanet

    2015-09-01

    The prediction of the oxidation and reduction potentials of molecules is important in many research areas. A review of relationships obtained between frontier orbital energies (eV), the calculated ionization potentials (IP in eV), or adiabatic electron affinities (EA in eV) with the experimental oxidation and reduction potentials is presented, for selected series of β- diketones, rhodium-β-diketonato complexes, as well as metal-tris-β-diketonato complexes, with the metal Fe or Mn. The good linear relationships obtained for related series of complexes show that the oxidation and reduction potentials of these complexes can be predicted by their DFT-calculated energies.

  10. A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Hoell, James M.; Westberg, David; Whitlock, Charles H.

    2007-01-01

    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper.

  11. Genomic potential for arsenic efflux and methylation varies among global Prochlorococcus populations.

    PubMed

    Saunders, Jaclyn K; Rocap, Gabrielle

    2016-01-01

    The globally significant picocyanobacterium Prochlorococcus is the main primary producer in oligotrophic subtropical gyres. When phosphate concentrations are very low in the marine environment, the mol:mol availability of phosphate relative to the chemically similar arsenate molecule is reduced, potentially resulting in increased cellular arsenic exposure. To mediate accidental arsenate uptake, some Prochlorococcus isolates contain genes encoding a full or partial efflux detoxification pathway, consisting of an arsenate reductase (arsC), an arsenite-specific efflux pump (acr3) and an arsenic-related repressive regulator (arsR). This efflux pathway was the only previously known arsenic detox pathway in Prochlorococcus. We have identified an additional putative arsenic mediation strategy in Prochlorococcus driven by the enzyme arsenite S-adenosylmethionine methyltransferase (ArsM) which can convert inorganic arsenic into more innocuous organic forms and appears to be a more widespread mode of detoxification. We used a phylogenetically informed approach to identify Prochlorococcus linked arsenic genes from both pathways in the Global Ocean Sampling survey. The putative arsenic methylation pathway is nearly ubiquitously present in global Prochlorococcus populations. In contrast, the complete efflux pathway is only maintained in populations which experience extremely low PO4:AsO4, such as regions in the tropical and subtropical Atlantic. Thus, environmental exposure to arsenic appears to select for maintenance of the efflux detoxification pathway in Prochlorococcus. The differential distribution of these two pathways has implications for global arsenic cycling, as their associated end products, arsenite or organoarsenicals, have differing biochemical activities and residence times.

  12. Wind Energy Potential: Current representation and projections for the European domain

    NASA Astrophysics Data System (ADS)

    Davy, Richard; Gnatiuk, Natalia; Bobylev, Leonid; Pettersson, Lasse

    2016-04-01

    We have used the publically available CORDEX datasets to quantify the ability of a current regional climate model (SMHI-RCA4) to simulate the wind energy potential in the Black sea region using 5 different global climate models for the boundary conditions. The regional climate model results are compared to the ERA-Interim reanalyses over a common period, 1979-2005, and we use Taylor plots to demonstrate the effect of different global climate models on the regional climate simulations. Wind energy potential is calculated from the daily hub-height (120 m) wind speeds by extrapolating the available 10 m wind speeds using a power-law wind profile approximation. In general we find that the regional climate model produces stronger surface winds over the Black Sea region as compared to the ERA-Interim reanalysis, which we relate to the difference in model resolution. We also assess the projected changes to the wind energy potential in the CORDEX EUR-11 region from the current period to the near future (2021-2050), and to the late 21st century (2061-2090). We use a single model ensemble approach to assess the robustness of the projected changes, depending upon the choice of global climate model used for the boundary conditions. To understand the context of the changes in wind energy potential in the region, we include the changing climatology of the upper level (850 hPa) winds over these periods. This work was supported by the EU FP7 Project, Grant agreement No.: 287844. "Towards COast to COast NETworks of marine protected areas (from the shore to the high and deep sea), coupled with sea-based wind energy potential (CoCoNet)".

  13. Potential energy stored by planets and grand minima events

    NASA Astrophysics Data System (ADS)

    Cionco, Rodolfo G.

    2012-07-01

    Recently, Wolff & Patrone (2010), have developed a simple but very interesting model by which the movement of the Sun around the barycentre of the Solar system could create potential energy that could be released by flows pre-existing inside the Sun. The authors claim that it is the first mechanism showing how planetary movements can modify internal structure in the Sun that can be related to solar cycle. In this work we point out limitations of mentioned mechanism (which is based on interchange arguments), which could be inapplicable to a real star. Then, we calculate the temporal evolution of potential energy stored in zones of Sun's interior in which the potential energy could be most efficiently stored taking into account detailed barycentric Sun dynamics. We show strong variations of potential energy related to Maunder Minimum, Dalton Minimum and the maximum of Cycle 22, around 1990. We discuss briefly possible implications of this putative mechanism to solar cycle specially Grand Minima events.

  14. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  15. Emerging infectious diseases and pandemic potential: status quo and reducing risk of global spread.

    PubMed

    McCloskey, Brian; Dar, Osman; Zumla, Alimuddin; Heymann, David L

    2014-10-01

    Emerging infectious diseases are an important public health threat and infections with pandemic potential are a major global risk. Although much has been learned from previous events the evidence for mitigating actions is not definitive and pandemic preparedness remains a political and scientific challenge. A need exists to develop trust and effective meaningful collaboration between countries to help with rapid detection of potential pandemic infections and initiate public health actions. This collaboration should be within the framework of the International Health Regulations. Collaboration between countries should be encouraged in a way that acknowledges the benefits that derive from sharing biological material and establishing equitable collaborative research partnerships. The focus of pandemic preparedness should include upstream prevention through better collaboration between human and animal health sciences to enhance capacity to identify potential pathogens before they become serious human threats, and to prevent their emergence where possible. The one-health approach provides a means to develop this and could potentially enhance alignment of global health and trade priorities.

  16. Emerging infectious diseases and pandemic potential: status quo and reducing risk of global spread.

    PubMed

    McCloskey, Brian; Dar, Osman; Zumla, Alimuddin; Heymann, David L

    2014-10-01

    Emerging infectious diseases are an important public health threat and infections with pandemic potential are a major global risk. Although much has been learned from previous events the evidence for mitigating actions is not definitive and pandemic preparedness remains a political and scientific challenge. A need exists to develop trust and effective meaningful collaboration between countries to help with rapid detection of potential pandemic infections and initiate public health actions. This collaboration should be within the framework of the International Health Regulations. Collaboration between countries should be encouraged in a way that acknowledges the benefits that derive from sharing biological material and establishing equitable collaborative research partnerships. The focus of pandemic preparedness should include upstream prevention through better collaboration between human and animal health sciences to enhance capacity to identify potential pathogens before they become serious human threats, and to prevent their emergence where possible. The one-health approach provides a means to develop this and could potentially enhance alignment of global health and trade priorities. PMID:25189351

  17. Potential for using regional and global datasets for national scale ecosystem service modelling

    NASA Astrophysics Data System (ADS)

    Maxwell, Deborah; Jackson, Bethanna

    2016-04-01

    Ecosystem service models are increasingly being used by planners and policy makers to inform policy development and decisions about national-level resource management. Such models allow ecosystem services to be mapped and quantified, and subsequent changes to these services to be identified and monitored. In some cases, the impact of small scale changes can be modelled at a national scale, providing more detailed information to decision makers about where to best focus investment and management interventions that could address these issues, while moving toward national goals and/or targets. National scale modelling often uses national (or local) data (for example, soils, landcover and topographical information) as input. However, there are some places where fine resolution and/or high quality national datasets cannot be easily obtained, or do not even exist. In the absence of such detailed information, regional or global datasets could be used as input to such models. There are questions, however, about the usefulness of these coarser resolution datasets and the extent to which inaccuracies in this data may degrade predictions of existing and potential ecosystem service provision and subsequent decision making. Using LUCI (the Land Utilisation and Capability Indicator) as an example predictive model, we examine how the reliability of predictions change when national datasets of soil, landcover and topography are substituted with coarser scale regional and global datasets. We specifically look at how LUCI's predictions of where water services, such as flood risk, flood mitigation, erosion and water quality, change when national data inputs are replaced by regional and global datasets. Using the Conwy catchment, Wales, as a case study, the land cover products compared are the UK's Land Cover Map (2007), the European CORINE land cover map and the ESA global land cover map. Soils products include the National Soil Map of England and Wales (NatMap) and the European

  18. Global economic potential for reducing carbon dioxide emissions from mangrove loss

    PubMed Central

    Siikamäki, Juha; Sanchirico, James N.; Jardine, Sunny L.

    2012-01-01

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5′ grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO2. Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435

  19. Global economic potential for reducing carbon dioxide emissions from mangrove loss.

    PubMed

    Siikamäki, Juha; Sanchirico, James N; Jardine, Sunny L

    2012-09-01

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5' grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO(2). Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs. PMID:22847435

  20. Global economic potential for reducing carbon dioxide emissions from mangrove loss.

    PubMed

    Siikamäki, Juha; Sanchirico, James N; Jardine, Sunny L

    2012-09-01

    Mangroves are among the most threatened and rapidly disappearing natural environments worldwide. In addition to supporting a wide range of other ecological and economic functions, mangroves store considerable carbon. Here, we consider the global economic potential for protecting mangroves based exclusively on their carbon. We develop unique high-resolution global estimates (5' grid, about 9 × 9 km) of the projected carbon emissions from mangrove loss and the cost of avoiding the emissions. Using these spatial estimates, we derive global and regional supply curves (marginal cost curves) for avoided emissions. Under a broad range of assumptions, we find that the majority of potential emissions from mangroves could be avoided at less than $10 per ton of CO(2). Given the recent range of market price for carbon offsets and the cost of reducing emissions from other sources, this finding suggests that protecting mangroves for their carbon is an economically viable proposition. Political-economy considerations related to the ability of doing business in developing countries, however, can severely limit the supply of offsets and increases their price per ton. We also find that although a carbon-focused conservation strategy does not automatically target areas most valuable for biodiversity, implementing a biodiversity-focused strategy would only slightly increase the costs.

  1. Teaching Potential Energy Functions and Stability with Slap Bracelets

    NASA Astrophysics Data System (ADS)

    Van Hook, Stephen J.

    2005-10-01

    The slap bracelet, an inexpensive child's toy, makes it easy to engage students in hands-on exploration of potential energy curves as well as of stable, unstable, and meta-stable states. Rather than just observing the teacher performing a demonstration, the students can manipulate the equipment themselves and make their own observations, which are then pooled to focus a class discussion on potential energy functions and stability.

  2. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    SciTech Connect

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-02-15

    We describe the potential energy landscapes of elemental S{sub 8}, Se{sub 8}, and Te{sub 8} clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se{sub 8}. We also map the potential energy landscapes of heterogeneous Se{sub n}(S,Te){sub 8-n} clusters, which offer insights into the structure of heterogeneous chalcogen glasses.

  3. Urban ecosystem modeling and global change: potential for rational urban management and emissions mitigation.

    PubMed

    Chen, Shaoqing; Chen, Bin; Fath, Brian D

    2014-07-01

    Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, 'urban ecosystem modeling (UEM)' is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation.

  4. Low-energy structures of benzene clusters with a novel accurate potential surface.

    PubMed

    Bartolomei, M; Pirani, F; Marques, J M C

    2015-12-01

    The benzene-benzene (Bz-Bz) interaction is present in several chemical systems and it is known to be crucial in understanding the specificity of important biological phenomena. In this work, we propose a novel Bz-Bz analytical potential energy surface which is fine-tuned on accurate ab initio calculations in order to improve its reliability. Once the Bz-Bz interaction is modeled, an analytical function for the energy of the Bzn clusters may be obtained by summing up over all pair potentials. We apply an evolutionary algorithm (EA) to discover the lowest-energy structures of Bzn clusters (for n=2-25), and the results are compared with previous global optimization studies where different potential functions were employed. Besides the global minimum, the EA also gives the structures of other low-lying isomers ranked by the corresponding energy. Additional ab initio calculations are carried out for the low-lying isomers of Bz3 and Bz4 clusters, and the global minimum is confirmed as the most stable structure for both sizes. Finally, a detailed analysis of the low-energy isomers of the n = 13 and 19 magic-number clusters is performed. The two lowest-energy Bz13 isomers show S6 and C3 symmetry, respectively, which is compatible with the experimental results available in the literature. The Bz19 structures reported here are all non-symmetric, showing two central Bz molecules surrounded by 12 nearest-neighbor monomers in the case of the five lowest-energy structures.

  5. Potential production of energy cane for fuel in the Caribbean

    SciTech Connect

    Samuels, G.

    1984-08-01

    Sugarcane grown as energy cane presents a new potential to the Caribbean countries to provide their own energy needs and to reduce or eliminate fuel oil imports. The use of proper agronomic techniques can convert conventional sugarcane growing to a crop capable of giving energy feedstocks in the form of fiber for boiler fuel for electricity and fermentable solids for alcohol for motor fuel. Sugarcane can still be obtained from the energy cane for domestic consumption and export if desired. The aerable land now devoted to sugarcane can utilized for energy-cane production without causing any serious imbalance in food crop production.

  6. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  7. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  8. A new potential energy surface and microwave and infrared spectra of the He-OCS complex

    SciTech Connect

    Wang, Zhongquan Zhang, Chunzao; Sun, Chunyan; Feng, Eryin

    2014-11-07

    A new high quality potential energy surface for the He-OCS van der Waals complex was calculated using the CCSD(T) method and avqz+33221 basis set. It is found that the global minimum energy is −51.33 cm{sup −1} at R{sub e} = 6.30a{sub 0} and θ{sub e} = 110.0°, the shallower minimum is located at R = 8.50a{sub 0} and θ = 0° with well depth −32.26 cm{sup −1}. Using the fitted potential energy surface, we have calculated bound energy levels of the He-OCS, He-O{sup 13}CS, He-OC{sup 34}S, and {sup 3}He-OCS complexes. The theoretical results are all in better agreement compared to previous theoretical work.

  9. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth

  10. The global land and ocean mean energy balance

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris

    2016-04-01

    land, and 16 and 100 Wm-2 over oceans, for sensible and latent heat fluxes, respectively. Estimated uncertainties are on the order of 10 and 5 Wm-2 for most surface and TOA fluxes, respectively. Combining these surface budgets with satellite-determined TOA budgets (CERES-EBAF) results in an atmospheric solar absorption of 77 and 82 Wm-2 and a net atmospheric thermal emission of -165 and -190 Wm-2 over land and oceans, respectively. We further revisit the global mean energy balance by combining the area weighed land and ocean mean budgets. This study is published in: Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Clim. Dyn., Dyn., 44, 3393-3429, doi: 10.1007/s00382-014-2430-z.

  11. Achieving Land, Energy, and Environmental Compatibility: Utility-Scale Solar Energy Potential and Land-Use in California

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Field, C. B.

    2013-12-01

    Solar energy is an archetype renewable energy technology with great potential to reduce greenhouse gas emissions when substituted for carbon-intensive energy. Utility-scale solar energy (USSE; i.e., > 1 MW) necessitates large quantities of space making the efficient use of land for USSE development critical to realizing its full potential. However, studies elucidating the interaction between land-use and utility-scale solar energy (USSE) are limited. In this study, we assessed 1) the theoretical and technical potential of terrestrial-based USSE systems, and 2) land-use and land-cover change impacts from actual USSE installations (> 20 MW; planned, under construction, operating), using California as a case study due to its early adoption of renewable energy systems, unique constraints on land availability, immense energy demand, and vast natural resources. We used topo-climatic (e.g., slope, irradiance), infrastructural (e.g., proximity to transmission lines), and ecological constraints (e.g., threatened and endangered species) to determine highly favorable, favorable, and unfavorable locations for USSE and to assess its technical potential. We found that the theoretical potential of photovoltaic (PV) and concentrating solar power (CSP) in California is 26,097 and 29,422 kWh/m2/day, respectively. We identified over 150 planned, under construction, and operating USSE installations in California, ranging in size from 20 to 1,000 MW. Currently, 29% are located on shrub- and scrublands, 23% on cultivated crop land, 13% on pasture/hay areas, 11% on grassland/herbaceous and developed open space, and 7% in the built environment. Understanding current land-use decisions of USSE systems and assessing its future potential can be instructive for achieving land, energy, and environmental compatibility, especially for other global regions that share similar resource demands and limitations.

  12. DoD energy vulnerabilities: potential problems and observations

    SciTech Connect

    Freiwald, D A; Berger, M E; Roach, J F

    1982-08-01

    The Department of Defense is almost entirely dependent on civilian energy supplies to meet its needs in both peacetime and periods of heightened conflict. There are a number of potential vulnerabilities to the continual and timely supply of energy to both the civilian and military sectors. These include denial of the energy resources themselves, disruption of critical transportation networks, destruction of storage facilities, and interruption of electrical power. This report briefly reviews the present situation for provision of energy from the civilian sector to the military. General vulnerabilities of the existing energy supply system are identified, along with the potential for armed aggression (including terrorist and sabotage activities) against the energy network. Conclusions and some tentative observations are made as to a proper response to the existing vulnerabilities.

  13. Potential impact of human mitochondrial replacement on global policy regarding germline gene modification.

    PubMed

    Ishii, Tetsuya

    2014-08-01

    Previous discussions regarding human germline gene modification led to a global consensus that no germline should undergo genetic modification. However, the UK Human Fertilisation and Embryology Authority, having conducted at the UK Government's request a scientific review and a wide public consultation, provided advice to the Government on the pros and cons of Parliament's lifting a ban on altering mitochondrial DNA content of human oocytes and embryos, so as to permit the prevention of maternal transmission of mitochondrial diseases. In this commentary, relevant ethical and biomedical issues are examined and requirements for proceeding with this novel procedure are suggested. Additionally, potentially significant impacts of the UK legalization on global policy concerning germline gene modification are discussed in the context of recent advances in genome-editing technology. It is concluded that international harmonization is needed, as well as further ethical and practical consideration, prior to the legalization of human mitochondrial replacement.

  14. Potential impact of human mitochondrial replacement on global policy regarding germline gene modification.

    PubMed

    Ishii, Tetsuya

    2014-08-01

    Previous discussions regarding human germline gene modification led to a global consensus that no germline should undergo genetic modification. However, the UK Human Fertilisation and Embryology Authority, having conducted at the UK Government's request a scientific review and a wide public consultation, provided advice to the Government on the pros and cons of Parliament's lifting a ban on altering mitochondrial DNA content of human oocytes and embryos, so as to permit the prevention of maternal transmission of mitochondrial diseases. In this commentary, relevant ethical and biomedical issues are examined and requirements for proceeding with this novel procedure are suggested. Additionally, potentially significant impacts of the UK legalization on global policy concerning germline gene modification are discussed in the context of recent advances in genome-editing technology. It is concluded that international harmonization is needed, as well as further ethical and practical consideration, prior to the legalization of human mitochondrial replacement. PMID:24832374

  15. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  16. Role of nuclear energy to a future society of shortage of energy resources and global warming

    NASA Astrophysics Data System (ADS)

    Saito, Shinzo

    2010-03-01

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO 2 as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  17. Ab initio potential energy surface and bound states for the Kr-OCS complex.

    PubMed

    Feng, Eryin; Sun, Chunyan; Yu, Chunhua; Shao, Xi; Huang, Wuying

    2011-09-28

    The first ab initio potential energy surface of the Kr-OCS complex is developed using the coupled-cluster singles and doubles with noniterative inclusion of connected triples [CCSD(T)]. The mixed basis sets, aug-cc-pVTZ for the O, C, and S atom, and aug-cc-pVQZ-PP for the Kr atom, with an additional (3s3p2d1f) set of midbond functions are used. A potential model is represented by an analytical function whose parameters are fitted numerically to the single point energies computed at 228 configurations. The potential has a T-shaped global minimum and a local linear minimum. The global minimum occurs at R = 7.146 a(0), θ = 105.0° with energy of -270.73 cm(-1). Bound state energies up to J = 9 are calculated for three isotopomers (82)Kr-OCS, (84)Kr-OCS, and (86)Kr-OCS. Analysis of the vibrational wavefunctions and energies suggests the complex can exist in two isomeric forms: T-shaped and quasi-linear. The calculated transition frequencies and spectroscopic constants of the three isotopomers are in good agreement with the experimental values.

  18. Saint Paul Energy Park: the potential for district heating

    SciTech Connect

    Lee, C.; Kron, R.; Davis, H.

    1980-03-01

    The results of ANL's study of the energy and economic aspects of using district heating in the St. Paul Energy Park are summarized. The Energy Park is a 6 million ft/sup 2/ residential, commercial office, and light industrial complex to be built in the midway area of St. Paul, Minnesota. Space heating and cooling design loads for the park were calculated assuming that the ASHRAE's 90-75 energy-conserving construction standards would be used in constructing the park's buildings. Based in part on this assumption, ANL estimated the costs and energy use characteristics of six possible energy system options for supplying Energy Park's space heating, space cooling, and domestic hot water heating needs. The results indicate that in today's economy, a central heating and cooling plant with natural gas boilers and electrically driven centrifugal chillers with thermal storage has good potential for energy and economic savings and clearly merits further consideration.

  19. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    SciTech Connect

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  20. Gravitational potential as a source of earthquake energy

    USGS Publications Warehouse

    Barrows, L.; Langer, C.J.

    1981-01-01

    Some degree of tectonic stress within the earth originates from gravity acting upon density structures. The work performed by this "gravitational tectonics stress" must have formerly existed as gravitational potential energy contained in the stress-causing density structure. According to the elastic rebound theory (Reid, 1910), the energy of earthquakes comes from an elastic strain field built up by fairly continuous elastic deformation in the period between events. For earthquakes resulting from gravitational tectonic stress, the elastic rebound theory requires the transfer of energy from the gravitational potential of the density structures into an elastic strain field prior to the event. An alternate theory involves partial gravitational collapse of the stress-causing density structures. The earthquake energy comes directly from a net decrease in gravitational potential energy. The gravitational potential energy released at the time of the earthquake is split between the energy released by the earthquake, including work done in the fault zone and an increase in stored elastic strain energy. The stress associated with this elastic strain field should oppose further fault slip. ?? 1981.

  1. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    PubMed

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  2. Predicting Potential Global Distributions of Two Miscanthus Grasses: Implications for Horticulture, Biofuel Production, and Biological Invasions

    PubMed Central

    Hager, Heather A.; Sinasac, Sarah E.; Gedalof, Ze’ev; Newman, Jonathan A.

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models’ sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk. PMID:24945154

  3. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    NASA Technical Reports Server (NTRS)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  4. Non-classical role of potential energy in adiabatic quantum annealing

    NASA Astrophysics Data System (ADS)

    Das, Arnab

    2009-12-01

    Adiabatic quantum annealing is a paradigm of analog quantum computation, where a given computational job is converted to the task of finding the global minimum of some classical potential energy function and the search for the global potential minimum is performed by employing external kinetic quantum fluctuations and subsequent slow reduction (annealing) of them. In this method, the entire potential energy landscape (PEL) may be accessed simultaneously through a delocalized wave-function, in contrast to a classical search, where the searcher has to visit different points in the landscape (i.e., individual classical configurations) sequentially. Thus in such searches, the role of the potential energy might be significantly different in the two cases. Here we discuss this in the context of searching of a single isolated hole (potential minimum) in a golf-course type gradient free PEL. We show, that the quantum particle would be able to locate the hole faster if the hole is deeper, while the classical particle of course would have no scope to exploit the depth of the hole. We also discuss the effect of the underlying quantum phase transition on the adiabatic dynamics.

  5. Potential geothermal energy applications for Idaho Elks Rehabilitation Hospital

    SciTech Connect

    Austin, J.C.

    1981-11-01

    Several potential applications of geothermal energy for the Idaho Elks Rehabilitation Hospital are outlined. A brief background on the resource and distribution system, is provided; which hospital heating systems should be considered for potential geothermal retrofit is discussed; and technical and economic feasibility are addressed.

  6. Potential Coastal Pumped Hydroelectric Energy Storage Locations Identified using GIS-based Topographic Analysis

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Barnhart, C. J.; Benson, S. M.

    2013-12-01

    Large-scale electrical energy storage could accommodate variable, weather dependent energy resources such as wind and solar. Pumped hydroelectric energy storage (PHS) and compressed energy storage area (CAES) have life cycle energy and financial costs that are an order of magnitude lower than conventional electrochemical storage technologies. However PHS and CAES storage technologies require specific geologic conditions. Conventional PHS requires an upper and lower reservoir separated by at least 100 m of head, but no more than 10 km in horizontal distance. Conventional PHS also impacts fresh water supplies, riparian ecosystems, and hydrologic environments. A PHS facility that uses the ocean as the lower reservoir benefits from a smaller footprint, minimal freshwater impact, and the potential to be located near off shore wind resources and population centers. Although technologically nascent, today one coastal PHS facility exists. The storage potential for coastal PHS is unknown. Can coastal PHS play a significant role in augmenting future power grids with a high faction of renewable energy supply? In this study we employ GIS-based topographic analysis to quantify the coastal PHS potential of several geographic locations, including California, Chile and Peru. We developed automated techniques that seek local topographic minima in 90 m spatial resolution shuttle radar topography mission (SRTM) digital elevation models (DEM) that satisfy the following criteria conducive to PHS: within 10 km from the sea; minimum elevation 150 m; maximum elevation 1000 m. Preliminary results suggest the global potential for coastal PHS could be very significant. For example, in northern Chile we have identified over 60 locations that satisfy the above criteria. Two of these locations could store over 10 million cubic meters of water or several GWh of energy. We plan to report a global database of candidate coastal PHS locations and to estimate their energy storage capacity.

  7. Fusion at deep subbarrier energies: potential inversion revisited

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Rowley, N.

    2009-03-01

    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the 16O+144Sm and 16O+208Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.

  8. Fusion at deep subbarrier energies: potential inversion revisited

    SciTech Connect

    Hagino, K.; Rowley, N.

    2009-03-04

    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the {sup 16}O+{sup 144}Sm and {sup 16}O+{sup 208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.

  9. Investigating energy-saving potentials in the cloud.

    PubMed

    Lee, Da-Sheng

    2014-01-01

    Collecting webpage messages can serve as a sensor for investigating the energy-saving potential of buildings. Focusing on stores, a cloud sensor system is developed to collect data and determine their energy-saving potential. The owner of a store under investigation must register online, report the store address, area, and the customer ID number on the electric meter. The cloud sensor system automatically surveys the energy usage records by connecting to the power company website and calculating the energy use index (EUI) of the store. Other data includes the chain store check, company capital, location price, and the influence of weather conditions on the store; even the exposure frequency of store under investigation may impact the energy usage collected online. After collecting data from numerous stores, a multi-dimensional data array is constructed to determine energy-saving potential by identifying stores with similarity conditions. Similarity conditions refer to analyzed results that indicate that two stores have similar capital, business scale, weather conditions, and exposure frequency on web. Calculating the EUI difference or pure technical efficiency of stores, the energy-saving potential is determined. In this study, a real case study is performed. An 8-dimensional (8D) data array is constructed by surveying web data related to 67 stores. Then, this study investigated the savings potential of the 33 stores, using a site visit, and employed the cloud sensor system to determine the saving potential. The case study results show good agreement between the data obtained by the site visit and the cloud investigation, with errors within 4.17%. Among 33 the samples, eight stores have low saving potentials of less than 5%. The developed sensor on the cloud successfully identifies them as having low saving potential and avoids wasting money on the site visit. PMID:24561405

  10. Electrical energy and cost savings potential at DOD facilities

    SciTech Connect

    Konopacki, S.; Akbari, H.; Lister, L.; DeBaille, L.

    1996-06-01

    The US Department of Defense (DOD) has been mandated to reduce energy consumption and costs by 20% from 1985 to 2000 and by 30% from 1985 to 2005. Reduction of electrical energy consumption at DOD facilities requires a better understanding of energy consumption patterns and energy and financial savings potential. This paper utilizes two independent studies--EDA (End-Use Disaggregation Algorithm) and MEIP (Model Energy Installation Program)--and whole-installation electricity use data obtained from a state utility to estimate electrical energy conservation potential (ECP) and cost savings potential (CSP) at the Fort Hood, Texas, military installation and at DOD nationwide. At Fort Hood, the authors estimated an annual electricity savings of 62.2 GWh/yr (18%), a peak demand savings of 10.1 MW (14%), and an annual energy cost savings of $6.5 million per year. These savings could be attained with an initial investment of $41.1 million, resulting in a simple payback of 6.3 years. Across the DOD, they estimated an annual electricity savings of 4,900 GWh/yr, a peak demand savings of 694 MW, and an annual energy cost savings of $316 million per year. The estimated cost savings is 16% of the total nationwide DOD 1993 annual energy costs. These savings could be attained with an initial investment of $1.23 billion, resulting in a simple payback of 3.9 years.

  11. The Global Energy Budget -- A Student Exercise in Modeling

    NASA Astrophysics Data System (ADS)

    Mulder, Gregory

    2004-05-01

    What in the world does an Energy Czar have to worry about? In this session, we will explore an exercise where students are appointed "Energy Czar" of the planet. This modeling project shows past energy consumption patterns and allows students to manipulate the world's energy usage into the future. Students are asked to use their knowledge of current and future energy sources, as well as other variables important to the world's energy budget, to build the energy future of their dreams.

  12. The Global Energy Crisis: Today and Tomorrow. Developing Proactive Action Student Awareness and Understanding About Finite Fuels and Alternative Energy Sources in a Global Age.

    ERIC Educational Resources Information Center

    Peters, Richard O.

    Background information and a teaching strategy are provided to help students better understand the global energy crisis and learn to take action. An overview of the energy crisis includes a discussion of the unequal distribution of natural resources throughout the world, the finite nature of fossil fuels, and problems associated with the depletion…

  13. Potential of energy farms in the Dominican Republic

    SciTech Connect

    Newman, L.C.; Park, W.R.; Trehan, R.K.

    1980-12-01

    This report assesses the potential of biomass energy farms to supply feedstock for electrical energy needs in the Dominican Republic. That part of the dry forest area not used for agriculture production (1.3 million acres) is found to have a production potential of 200 MW to 1400 MW, depending upon the level of management and choice of species. A biomass energy farm design and conversion facility is described and the economics of operating a wood fired facility of 50 MW, 20 MW, 5 MW, and 2 MW is compared to 50 MW and 20 MW.

  14. A triangular element based on generalized potential energy concepts

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1976-01-01

    Stiffness equations are formulated for a doubly-curved triangular thin shell finite element. The strain energy component of the potential energy is first expressed in terms of displacements and displacement gradients with the aid of consistent deep shell strain-displacement equations. The element in-plane and normal displacement fields are approximated by complete cubic polynomials. These functions do not satisfy the interelement displacement admissibility conditions. Satisfaction is forced by the imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Some numerical results for a pinched cylinder, a cylindrical sphere, and a pinched sphere are examined.

  15. Interpreting global energy and emission scenarios: Methods for understanding and communicating policy insights

    NASA Astrophysics Data System (ADS)

    Hummel, Leslie

    Energy scenarios for the 21st century powerfully inform perceptions and expectations in the minds of energy investors, consumers, and policy-makers. Scenarios that stabilize global warming call for large-scale energy technology transitions, fueling debates about the relative roles for a range of technologies including nuclear power, carbon sequestration, biofuels, solar power, and efficient end-use devices. In the last decade, hundreds of scenarios have been published by more than a dozen research teams using different models, baselines and mitigation targets. Despite the efforts to summarize findings in a few major assessments, a gap in understanding remains at a critical science-policy juncture between scenario analysts and the audiences their work is designed to serve. Addressing the issue requires an interdisciplinary approach that incorporates knowledge and methods from the fields of energy engineering, economics, climate science, and policy analysis. This research applies two analytical techniques to investigate the effects of an imposed climate policy on the underlying energy system. The first disentangles the effect of a policy intervention on key demographic and technology drivers of fossil fuel use, and the second decomposes reductions in emissions by specific energy technology types. Because the techniques may be applied to any energy scenario with technology detail, this study demonstrates their application to ten sample stabilization scenarios from three leading models. Revealing the importance of data and assumptions overlooked or not well disclosed in the past, the results highlight an implausibly high pressure on energy supply innovations while the potential for energy efficiency improvements is systematically underestimated. The findings are significant to both scenario analysts and the decision-makers in public policy and private investment who are influenced by their work.

  16. Communication: Separable potential energy surfaces from multiplicative artificial neural networks

    SciTech Connect

    Koch, Werner Zhang, Dong H.

    2014-07-14

    We present a potential energy surface fitting scheme based on multiplicative artificial neural networks. It has the sum of products form required for efficient computation of the dynamics of multidimensional quantum systems with the multi configuration time dependent Hartree method. Moreover, it results in analytic potential energy matrix elements when combined with quantum dynamics methods using Gaussian basis functions, eliminating the need for a local harmonic approximation. Scaling behavior with respect to the complexity of the potential as well as the requested accuracy is discussed.

  17. Framework for State-Level Renewable Energy Market Potential Studies

    SciTech Connect

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  18. Potential Energy Landscape and Robustness of a Gene Regulatory Network: Toggle Switch

    PubMed Central

    Kim, Keun-Young; Wang, Jin

    2007-01-01

    Finding a multidimensional potential landscape is the key for addressing important global issues, such as the robustness of cellular networks. We have uncovered the underlying potential energy landscape of a simple gene regulatory network: a toggle switch. This was realized by explicitly constructing the steady state probability of the gene switch in the protein concentration space in the presence of the intrinsic statistical fluctuations due to the small number of proteins in the cell. We explored the global phase space for the system. We found that the protein synthesis rate and the unbinding rate of proteins to the gene were small relative to the protein degradation rate; the gene switch is monostable with only one stable basin of attraction. When both the protein synthesis rate and the unbinding rate of proteins to the gene are large compared with the protein degradation rate, two global basins of attraction emerge for a toggle switch. These basins correspond to the biologically stable functional states. The potential energy barrier between the two basins determines the time scale of conversion from one to the other. We found as the protein synthesis rate and protein unbinding rate to the gene relative to the protein degradation rate became larger, the potential energy barrier became larger. This also corresponded to systems with less noise or the fluctuations on the protein numbers. It leads to the robustness of the biological basins of the gene switches. The technique used here is general and can be applied to explore the potential energy landscape of the gene networks. PMID:17397255

  19. Global energy regulation in the solar wind-magnetosphere-ionosphere system

    NASA Technical Reports Server (NTRS)

    Sato, T.

    1985-01-01

    Some basic concepts which are essential in the understanding of global energy regulation in the solar wind-magnetosphere-ionosphere system are introduced. The importance of line-tying concept is particularly emphasized in connection with the solar wind energy, energy release in the magnetosphere and energy dissipation in the ionosphere.

  20. New Methods for Exploring QM:MM Potential Energy Landscapes

    NASA Astrophysics Data System (ADS)

    Hratchian, Hrant P.

    2010-06-01

    In recent years, the applicability of quantum chemical methods for large system studies has been greatly enhanced by the development of hybrid QM:MM techniques. Despite these advancements, exploring the associated potential energy surfaces continues to present two key challenges. First, the QM energy and derivative evaluations may be too costly for simulations; and second, the system size for many QM:MM cases are too large to effectively store or use second-order information, an approach often used in QM studies to allow for larger integration steps and fewer QM evaluations of the potential energy surface. Our most recent work is focused on overcoming both computational bottlenecks. Using surface fitting models together with direct Hessian-vector and diagonalization algorithms, we are developing models that can accurately and efficiently explore QM:MM potential energy landscapes for very large systems. Our current development status and results from initial applications will be described.

  1. Nonequilibrium molecular transport photoinduced by potential energy fluctuations

    NASA Astrophysics Data System (ADS)

    Dekhtyar, Marina L.; Rozenbaum, Viktor M.

    2011-01-01

    The mechanism of directed substrate-parallel motion of molecules caused by photoinduced potential energy fluctuations is investigated. Unlike simplistic models (e.g., an on-off ratchet), the approach suggested implies that the necessary asymmetry of the potential energy can arise not only from the asymmetry of the substrate potential but also from an asymmetric distribution of the fluctuating charge density in the molecule. The thus induced asymmetry of the potential energy governs the direction motion and enables, under certain conditions, its reversal at some frequencies of resonant laser pulses or temperature. These inferences are exemplified by the model charge distributions in the molecule and substrate, and the charge density fluctuations which are obtained by quantum chemical calculations for the realistic molecule of a substituted phenylpyrene compound on a model substrate.

  2. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    SciTech Connect

    Webber, Carrie A.; Brown, Richard E.

    1998-06-19

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  3. Prediction of Dyke Propagation using the Minimum Potential Energy Principle

    NASA Astrophysics Data System (ADS)

    Heimisson, Elías; Hooper, Andrew; Sigmundsson, Freysteinn

    2015-04-01

    An important aspect of eruption forecasting is the prediction and monitoring of dyke propagation. Eruptions occur where dykes propagate to the surface, with lava flows causing a major threat. When such eruption occur under ice, as is common in Iceland, they become explosive and often cause hazardous and destructive floods. Dykes have also been known to trigger explosive eruption when hot basaltic magma comes in contact with more developed volatile saturated magma. Such explosive eruptions pose a danger to both lives and property. At divergent plate boundaries new crust is formed primarily by dyke injections. These injections usually grow laterally away from a central volcano. Lateral growth of a dyke is expected to follow the minimum potential energy principle. Assuming a closed system, a dyke will tend to be emplaced such that it minimizes the total potential energy, ΦT, given by: ΦT = Φs + Φg (1) where Φs is the strain potential and Φg the gravitational energy potential. Assuming that the elastic medium behaves linearly the strain potential can be calculated by numerically integrating the strain energy density over a large volume. If the dyke is assumed to be propagating at a constant depth with respect to sea level the gravitational potential energy can be turned into a two dimensional integral. We do this by integrating the predicted vertical displacements multiplied by the local topographic load above a reference surface and the acceleration of gravity. We approximate strain and stress due to plate movements and then consider strain changes induced by the dyke formation. Opening of a dyke is energetically favourable when it releases strain energy built up at a divergent plate boundary, but once deviatoric stress in the crust adjacent to a segment is released it becomes favourable to propagate laterally. Dyke formation is associated with uplift on their flanks; the lower the topographic load over the flanks, the less energy it costs. For any given

  4. Global Climate Niche Estimates for Bioenergy Crops and Invasive Species of Agronomic Origin: Potential Problems and Opportunities

    PubMed Central

    Barney, Jacob N.; DiTomaso, Joseph M.

    2011-01-01

    The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9), herbaceous (3), and woody (4) bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum), the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia). Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30) and moderate (EI≥20) climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of the climate

  5. Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities.

    PubMed

    Barney, Jacob N; DiTomaso, Joseph M

    2011-03-09

    The global push towards a more biomass-based energy sector is ramping up efforts to adopt regionally appropriate high-yielding crops. As potential bioenergy crops are being moved around the world an assessment of the climatic suitability would be a prudent first step in identifying suitable areas of productivity and risk. Additionally, this assessment also provides a necessary step in evaluating the invasive potential of bioenergy crops, which present a possible negative externality to the bioeconomy. Therefore, we provide the first global climate niche assessment for the major graminaceous (9), herbaceous (3), and woody (4) bioenergy crops. Additionally, we contrast these with climate niche assessments for North American invasive species that were originally introduced for agronomic purposes as examples of well-intentioned introductions gone awry. With few exceptions (e.g., Saccharum officinarum, Pennisetum purpureum), the bioenergy crops exhibit broad climatic tolerance, which allows tremendous flexibility in choosing crops, especially in areas with high summer rainfall and long growing seasons (e.g., southeastern US, Amazon Basin, eastern Australia). Unsurprisingly, the invasive species of agronomic origin have very similar global climate niche profiles as the proposed bioenergy crops, also demonstrating broad climatic tolerance. The ecoregional evaluation of bioenergy crops and known invasive species demonstrates tremendous overlap at both high (EI≥30) and moderate (EI≥20) climate suitability. The southern and western US ecoregions support the greatest number of invasive species of agronomic origin, especially the Southeastern USA Plains, Mixed Woods Plains, and Mediterranean California. Many regions of the world have a suitable climate for several bioenergy crops allowing selection of agro-ecoregionally appropriate crops. This model knowingly ignores the complex biotic interactions and edaphic conditions, but provides a robust assessment of the climate

  6. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  7. Solar energy in California industry - Applications, characteristics and potential

    NASA Technical Reports Server (NTRS)

    Barbieri, R. H.; Pivirotto, D. S.

    1978-01-01

    Results of a survey to determine the potential applicability of solar thermal energy to industrial processes in California are presented. It is found that if the heat for all industrial processes at temperatures below 212 F were supplied by solar energy, total state energy consumption could be reduced by 100 trillion Btus (2%), while the use of solar energy in processes between 212 and 350 F could displace 500 trillion Btus. The issues and problems with which solar energy must contend are illustrated by a description of fluid milk processing operations. Solar energy application is found to be technically feasible for processes with thermal energy requirements below 212 F, with design, and degree of technical, economic and management feasibility being site specific. It is recommended that the state provide support for federal and industrial research, development and demonstration programs in order to stimulate acceptance of solar process heat application by industry.

  8. Global stabilization of high-energy response of a nonlinear wideband electromagnetic energy harvester

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kato, S.; Masuda, A.

    2016-09-01

    This paper presents a resonance-type vibration energy harvester with a Duffing-type nonlinear oscillator which is designed to perform effectively in a wide frequency band. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. Introducing a Duffing-type nonlinearity can expand the resonance frequency band and enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator may have coexisting multiple steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to give global stability to the high-energy orbit by destabilizing other unexpected low-energy orbits by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this paper, an improved control law that switches the load resistance according to a frequency-dependent threshold is proposed to ensure the oscillator to respond in the high-energy orbit without ineffective power consumption. Numerical study shows that the steady-state responses of the harvester with the proposed control low are successfully kept on the high-energy orbit without repeating activation of the excitationmode.

  9. Potential for energy conservation in the glass industry

    SciTech Connect

    Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

    1986-06-01

    While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

  10. Semi-infinite jellium: Thermodynamic potential, chemical potential, and surface energy

    NASA Astrophysics Data System (ADS)

    Kostrobij, P. P.; Markovych, B. M.

    2015-08-01

    A general expression for the thermodynamic potential of the model of semi-infinite jellium is obtained. By using this expression, the surface energy for the infinite barrier model is calculated. The behavior of the surface energy and of the chemical potential as functions of the Wigner-Seitz radius and the influence of the Coulomb interaction between electrons on the calculated values is studied. It is shown that taking into account the Coulomb interaction between electrons leads to growth of the surface energy. The surface energy is positive in the entire area of the Wigner-Seitz radius. It is shown that taking into account the Coulomb interaction between electrons leads to a decrease of the chemical potential.

  11. Potential energy landscapes for the 2D XY model: Minima, transition states, and pathways

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Hughes, Ciaran; Schröck, Mario; Wales, David J.

    2013-11-01

    We describe a numerical study of the potential energy landscape for the two-dimensional XY model (with no disorder), considering up to 100 spins and central processing unit and graphics processing unit implementations of local optimization, focusing on minima and saddles of index one (transition states). We examine both periodic and anti-periodic boundary conditions, and show that the number of stationary points located increases exponentially with increasing lattice size. The corresponding disconnectivity graphs exhibit funneled landscapes; the global minima are readily located because they exhibit relatively large basins of attraction compared to the higher energy minima as the lattice size increases.

  12. "Evolution Canyon," a potential microscale monitor of global warming across life.

    PubMed

    Nevo, Eviatar

    2012-02-21

    Climatic change and stress is a major driving force of evolution. The effects of climate change on living organisms have been shown primarily on regional and global scales. Here I propose the "Evolution Canyon" (EC) microscale model as a potential life monitor of global warming in Israel and the rest of the world. The EC model reveals evolution in action at a microscale involving biodiversity divergence, adaptation, and incipient sympatric speciation across life from viruses and bacteria through fungi, plants, and animals. The EC consists of two abutting slopes separated, on average, by 200 m. The tropical, xeric, savannoid, "African" south-facing slope (AS = SFS) abuts the forested "European" north-facing slope (ES = NFS). The AS receives 200-800% higher solar radiation than the ES. The ES represents the south European forested maquis. The AS and ES exhibit drought and shade stress, respectively. Major adaptations on the AS are because of solar radiation, heat, and drought, whereas those on the ES relate to light stress and photosynthesis. Preliminary evidence suggests the extinction of some European species on the ES and AS. In Drosophila, a 10-fold higher migration was recorded in 2003 from the AS to ES. I advance some predictions that could be followed in diverse species in EC. The EC microclimatic model is optimal to track global warming at a microscale across life from viruses and bacteria to mammals in Israel, and in additional ECs across the planet.

  13. A climatic analysis of selected boreal tree species, and potential responses to global climate change

    SciTech Connect

    Mackey, B.G.; Sims, R.A. )

    1993-12-01

    Global Circulation Models (GCMs) are mathematically-based predictors that typically operate at a relatively coarse level of resolution and project the likely response of biophysical systems under global warming scenarios. An important research problem is how best to represent GCM output at finer levels of resolution for regional forest management planning and other types of land use decision-making. This paper demonstrates, using a case example from northwestern Ontario, how an analytical geographic information system may integrate Global Circulation Model (GCM) output and forest stand level information (such as that derived from Forest Stand Simulator Models). Interpolations on forest survey plot data are made on a GIS climate surface derived from a 400m grid Digital Elevation Model (DEM) for the area. Temperature of the warmest quarter (TWQ) is used to represent thermal domains for three tree species (black spruce, red pine and large toothed aspen) in northwestern Ontario. Analyses were conducted in 4 stages: (1) response for the 3 species were defined for TWQ; (2) the climate data was spatially extended onto the DEM; (3) the Canadian Climate Centre GCM was used to construct a scenario for potential climate change (2x CO[sub 2] and 1.5x CO[sub 2] increases); and, (4) a maximum likelihood probability was applied to the TWQ functions for each species and resulting probabilities were mapped.

  14. GHG Mitigation Potential, Costs and Benefits in Global Forests: ADynamic Partial Equilibrium Approach

    SciTech Connect

    Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

    2005-03-22

    This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.

  15. Change of tropical cyclone heat potential in response to global warming

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Chen, Changlin; Wang, Guihua

    2016-04-01

    Tropical cyclone heat potential (TCHP) in the ocean can affect tropical cyclone intensity and intensification. In this paper, TCHP change under global warming is presented based on 35 models from CMIP5 (Coupled Model Intercomparison Project, Phase 5). As the upper ocean warms up, the TCHP of the global ocean is projected to increase by 140.6% in the 21st century under the RCP4.5 (+4.5 W m-2 Representative Concentration Pathway) scenario. The increase is particularly significant in the western Pacific, northwestern Indian and western tropical Atlantic oceans. The increase of TCHP results from the ocean temperature warming above the depth of the 26°C isotherm (D26), the deepening of D26, and the horizontal area expansion of SST above 26°C. Their contributions are 69.4%, 22.5% and 8.1%, respectively. Further, a suite of numerical experiments with an Ocean General Circulation Model (OGCM) is conducted to investigate the relative importance of wind stress and buoyancy forcing to the TCHP change under global warming. Results show that sea surface warming is the dominant forcing for the TCHP change, while wind stress and sea surface salinity change are secondary.

  16. Potential of Global Cropland Phytolith Carbon Sink from Optimization of Cropping System and Fertilization

    PubMed Central

    Song, Zhaoliang; Parr, Jeffrey F.; Guo, Fengshan

    2013-01-01

    The occlusion of carbon (C) by phytoliths, the recalcitrant silicified structures deposited within plant tissues, is an important persistent C sink mechanism for croplands and other grass-dominated ecosystems. By constructing a silica content-phytolith content transfer function and calculating the magnitude of phytolith C sink in global croplands with relevant crop production data, this study investigated the present and potential of phytolith C sinks in global croplands and its contribution to the cropland C balance to understand the cropland C cycle and enhance long-term C sequestration in croplands. Our results indicate that the phytolith sink annually sequesters 26.35±10.22 Tg of carbon dioxide (CO2) and may contribute 40±18% of the global net cropland soil C sink for 1961–2100. Rice (25%), wheat (19%) and maize (23%) are the dominant contributing crop species to this phytolith C sink. Continentally, the main contributors are Asia (49%), North America (17%) and Europe (16%). The sink has tripled since 1961, mainly due to fertilizer application and irrigation. Cropland phytolith C sinks may be further enhanced by adopting cropland management practices such as optimization of cropping system and fertilization. PMID:24066067

  17. Global metabolomics reveals potential urinary biomarkers of esophageal squamous cell carcinoma for diagnosis and staging

    PubMed Central

    Xu, Jing; Chen, Yanhua; Zhang, Ruiping; He, Jiuming; Song, Yongmei; Wang, Jingbo; Wang, Huiqing; Wang, Luhua; Zhan, Qimin; Abliz, Zeper

    2016-01-01

    We performed a metabolomics study using liquid chromatography-mass spectrometry (LC-MS) combined with multivariate data analysis (MVDA) to discriminate global urine profiles in urine samples from esophageal squamous cell carcinoma (ESCC) patients and healthy controls (NC). Our work evaluated the feasibility of employing urine metabolomics for the diagnosis and staging of ESCC. The satisfactory classification between the healthy controls and ESCC patients was obtained using the MVDA model, and obvious classification of early-stage and advanced-stage patients was also observed. The results suggest that the combination of LC-MS analysis and MVDA may have potential applications for ESCC diagnosis and staging. We then conducted LC-MS/MS experiments to identify the potential biomarkers with large contributions to the discrimination. A total of 83 potential diagnostic biomarkers for ESCC were screened out, and 19 potential biomarkers were identified; the variations between the differences in staging using these potential biomarkers were further analyzed. These biomarkers may not be unique to ESCCs, but instead result from any malignant disease. To further elucidate the pathophysiology of ESCC, we studied related metabolic pathways and found that ESCC is associated with perturbations of fatty acid β-oxidation and the metabolism of amino acids, purines, and pyrimidines. PMID:27725730

  18. Split kinetic energy method for quantum systems with competing potentials

    SciTech Connect

    Mineo, H.; Chao, Sheng D.

    2012-09-15

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into 'unperturbed' and 'perturbed' terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double {delta}-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: Black-Right-Pointing-Pointer A new basis set expansion method is proposed. Black-Right-Pointing-Pointer Split kinetic energy method is proposed to solve quantum eigenvalue problems. Black-Right-Pointing-Pointer Significant improvement has been obtained in converging to exact results. Black-Right-Pointing-Pointer Extension of such methods is promising and discussed.

  19. The metabolic energy cost of action potential velocity

    NASA Astrophysics Data System (ADS)

    Crotty, Patrick; Sangrey, Thomas; Levy, William

    2006-03-01

    Voltage changes in neurons and other active cells are caused by the passage of ions across the cell membrane. These ionic currents depend on the transmembrane ion concentration gradients, which in unmyelinated axons are maintained during rest and restored after electrical activity by an ATPase sodium-potassium exchanger in the membrane. The amount of ATP consumed by this exchanger can be taken as the metabolic energy cost of any electrical activity in the axon. We use this measure, along with biophysical models of voltage-gated sodium and potassium ion channels, to quantify the energy cost of action potentials propagating in squid giant axons. We find that the energy of an action potential can be naturally divided into three separate components associated with different aspects of the action potential. We calculate these energy components as functions of the ion channel densities and axon diameters and find that the component associated with the rising phase and velocity of the action potential achieves a minimum near the biological values of these parameters. This result, which is robust with respect to other parameters such as temperature, suggests that evolution has optimized the axon for the energy of the action potential wavefront.

  20. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  1. Potential ramifications of the global economic crisis on human-mediated dispersal of marine non-indigenous species.

    PubMed

    Floerl, Oliver; Coutts, Ashley

    2009-11-01

    The global economy is currently experiencing one of its biggest contractions on record. A sharp decline in global imports and exports since 2008 has affected global merchant vessel traffic, the principal mode of bulk commodity transport around the world. During the first quarter of 2009, 10% and 25% of global container and refrigerated vessels, respectively, were reported to be unemployed. A large proportion of these vessels are lying idle at anchor in the coastal waters of South East Asia, sometimes for periods of greater than 3 months. Whilst at anchor, the hulls of such vessels will develop diverse and extensive assemblages of marine biofouling species. Once back in service, these vessels are at risk of transporting higher-than-normal quantities of marine organisms between their respective global trading ports. We discuss the potential ramifications of the global economic crisis on the spread of marine non-indigenous species via global commercial shipping. PMID:19706355

  2. Tidal wetland conservation and restoration for flood mitigation in estuaries and deltas: examples and global potential

    NASA Astrophysics Data System (ADS)

    Temmerman, Stijn; Smolders, Sven; Stark, Jeroen; meire, patrick

    2014-05-01

    Low-lying and densely populated deltas and estuaries are world widely exposed to flood risks caused by storm surges. On the one hand, global change is increasing these flood risks through accelerating sea level rise and increasing storm intensity, but on the other hand, local-scale human impacts on deltas and estuaries are in many cases even more increasing the vulnerability to floods. Here we address the degradation and reclamation of tidal wetlands (i.e. salt marshes in the temperate zone and mangroves in the tropical zone) as a major source for increasing vulnerability to flooding of estuaries and deltas. Firstly, we present examples of flood mitigation by tidal wetland conservation and restoration, and secondly we explore the potentials and limitations for global application of this approach of ecosystem-based flood defense (see Temmerman et al. 2013). First, we use the Scheldt estuary (SW Netherlands and Belgium) as an example where historic wetland reclamation has importantly contributed to increasing flood risks, and where tidal marsh restoration on the previously reclaimed land is nowadays brought into large-scale practice as an essential part of the flood defense system. Based on data and hydrodynamic modelling, we show that large-scale historic marsh reclamation has largely reduced the water storage capacity of the estuary and has reduced the friction to propagating flood waves, resulting in an important landward increase of tidal and storm surge levels. Hydrodynamic model scenarios demonstrate how tidal and storm surge propagation through the estuary are affected by tidal marsh properties, including the surface area, elevation, vegetation and position of marshes along the estuary. We show that nowadays tidal wetland creation on previously reclaimed land is applied as an essential part of the flood defense system along the Scheldt estuary. Secondly, a global analysis is presented of the potential application of tidal wetlands in flood mitigation in

  3. Acousto-optically generated potential energy landscapes: potential mapping using colloids under flow.

    PubMed

    Juniper, Michael P N; Besseling, Rut; Aarts, Dirk G A L; Dullens, Roel P A

    2012-12-17

    Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.

  4. Optimizing potential energy functions for maximal intrinsic hyperpolarizability

    SciTech Connect

    Zhou Juefei; Szafruga, Urszula B.; Kuzyk, Mark G.; Watkins, David S.

    2007-11-15

    We use numerical optimization to study the properties of (1) the class of one-dimensional potential energy functions and (2) systems of point nuclei in two dimensions that yield the largest intrinsic hyperpolarizabilities, which we find to be within 30% of the fundamental limit. In all cases, we use a one-electron model. It is found that a broad range of optimized potentials, each of very different character, yield the same intrinsic hyperpolarizability ceiling of 0.709. Furthermore, all optimized potential energy functions share common features such as (1) the value of the normalized transition dipole moment to the dominant state, which forces the hyperpolarizability to be dominated by only two excited states and (2) the energy ratio between the two dominant states. All optimized potentials are found to obey the three-level ansatz to within about 1%. Many of these potential energy functions may be implementable in multiple quantum well structures. The subset of potentials with undulations reaffirm that modulation of conjugation may be an approach for making better organic molecules, though there appear to be many others. Additionally, our results suggest that one-dimensional molecules may have larger diagonal intrinsic hyperpolarizability {beta}{sub xxx}{sup int} than higher-dimensional systems.

  5. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

    PubMed

    Gunderson, Alex R; Stillman, Jonathon H

    2015-06-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures.

  6. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    NASA Astrophysics Data System (ADS)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  7. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    PubMed Central

    Gunderson, Alex R.; Stillman, Jonathon H.

    2015-01-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  8. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

    PubMed

    Gunderson, Alex R; Stillman, Jonathon H

    2015-06-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  9. Wind energy potential analysis in Al-Fattaih-Darnah

    NASA Astrophysics Data System (ADS)

    Tjahjana, Dominicus Danardono Dwi Prija; Salem, Abdelkarim Ali; Himawanto, Dwi Aries

    2016-03-01

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth's surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  10. A thirst for power: A global analysis of water consumption for energy production

    NASA Astrophysics Data System (ADS)

    Spang, Edward

    Producing energy resources requires significant quantities of freshwater. As an energy sector changes or expands, the mix of technologies deployed to produce fuels and electricity determines the associated burden on regional water resources. A number of reports exist that specify water consumption by discrete energy production technologies. This research synthesizes and expands this previous work by examining the global distribution of water consumption intensity of national-level energy portfolios. By defining and calculating indicators to quantify the relative water use intensity of national energy systems, it was possible to highlight potentially problematic areas of high water use intensity while also providing examples of water-efficient energy production. The results of the research show a high variability in the national water consumption of energy production (WCEP) for the 158 countries that were assessed. However, looking across the indicators for WCEP internationally, the countries that were heavily producing fossil fuel or biofuels demonstrated the greatest intensity of energy-based water consumption. The economic imperative to develop fossil fuels drives high water consumption in countries that already lack sufficient water supplies. Meanwhile, biofuels require so much water over their lifecycle per unit of produced energy that any modest commitment to producing biofuels has significant water consumption ramifications for the country. While these results are based on a comprehensive review of available data, future research in this area could be significantly enhanced through better data and widespread adoption of consistent reporting mechanisms. Additional opportunities to expand the field include increasing the resolution of the study regions, tracking these indicators over time, and exploring innovative policy approaches to managing national WCEP effectively. For nations facing the greatest limitations in the availability of local water and energy

  11. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    NASA Astrophysics Data System (ADS)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H.

    2016-08-01

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  12. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    PubMed

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  13. Collisionless Plasma Modeling in an Arbitrary Potential Energy Distribution

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    A new technique for calculating a collisionless plasma along a field line is presented. The primary feature of the new model is that it can handle an arbitrary (including nonmonotonic) potential energy distribution. This was one of the limiting constraints on the existing models in this class, and these constraints are generalized for an arbitrary potential energy composition. The formulation for relating current density to the field-aligned potential as well as formulas for density, temperature and energy flux calculations are presented for several distribution functions, ranging from a bi-Lorentzian with a loss cone to an isotropic Maxwellian. A comparison of these results with previous models shows that the formulation reduces.to the earlier models under similar assumptions.

  14. Communication: Fitting potential energy surfaces with fundamental invariant neural network.

    PubMed

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH3 and CH4 were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations. PMID:27544080

  15. Periodic, quasiperiodic, and chaotic potentials generated by electrochemical concentration cells: Local and global dynamics

    NASA Astrophysics Data System (ADS)

    Zeyer, K.-P.; Münster, A. F.; Hauser, M. J. B.; Schneider, F. W.

    1994-09-01

    We extend previous work describing the passive electrical coupling of two periodic chemical states to include quasiperiodic and chaotic states. Our setup resembles an electrochemical concentration cell (a battery) whose half cells [continuous-flow stirred tank reactors (CSTRs)] each contain the Belousov-Zhabotinsky (BZ) reaction. For a closed electrical circuit the two half cells are weakly coupled by an external variable resistance and by a constant low mass flow. This battery may produce either periodic, quasiperiodic, or chaotic alternating current depending on the dynamic BZ states chosen in the half cells. A lower fractal dimensionality is calculated from the electrical potential of a single chaotic CSTR than from the difference potential (relative potential) of the two chaotic half cell potentials. A similar situation is observed in model calculations of a chaotic spatiotemporal system (the driven Brusselator in one space dimension) where the dimensionality derived from a local time series is lower than the dimensionality of the global trajectory calculated from the Karhunen-Loeve coefficients.

  16. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, W. B.; Howard, F. S.; Swisher, J. H.

    1976-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - have been identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described. An awareness of probable shortages of strategic materials has been maintained in these suggested programs.

  17. Potential structural material problems in a hydrogen energy system

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.

    1975-01-01

    Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.

  18. Reference pressure changes and available potential energy in isobaric coordinates

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.

    1985-01-01

    A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.

  19. Finding reaction paths using the potential energy as reaction coordinate.

    PubMed

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-14

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Caratheodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Caratheodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point. PMID:18345872

  20. Finding reaction paths using the potential energy as reaction coordinate

    NASA Astrophysics Data System (ADS)

    Aguilar-Mogas, Antoni; Giménez, Xavier; Bofill, Josep Maria

    2008-03-01

    The intrinsic reaction coordinate curve (IRC), normally proposed as a representation of a reaction path, is parametrized as a function of the potential energy rather than the arc-length. This change in the parametrization of the curve implies that the values of the energy of the potential energy surface points, where the IRC curve is located, play the role of reaction coordinate. We use Carathéodory's relation to derive in a rigorous manner the proposed parametrization of the IRC path. Since this Carathéodory's relation is the basis of the theory of calculus of variations, then this fact permits to reformulate the IRC model from this mathematical theory. In this mathematical theory, the character of the variational solution (either maximum or minimum) is given through the Weierstrass E-function. As proposed by Crehuet and Bofill [J. Chem. Phys. 122, 234105 (2005)], we use the minimization of the Weierstrass E-function, as a function of the potential energy, to locate an IRC path between two minima from an arbitrary curve on the potential energy surface, and then join these two minima. We also prove, from the analysis of the Weierstrass E-function, the mathematical bases for the algorithms proposed to locate the IRC path. The proposed algorithm is applied to a set of examples. Finally, the algorithm is used to locate a discontinuous, or broken, IRC path, namely, when the path connects two first order saddle points through a valley-ridged inflection point.