Sample records for global reference model

  1. Improvements in the Global Reference Atmospheric Model and comparisons with a global 3-D numerical model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Chimonas, George; Cunnold, D. M.

    1989-01-01

    The status of the Global Reference Atmospheric Model (GRAM) and the Mars Global Reference Atmospheric Model (MARS-GRAM) is reviewed. The wavelike perturbations observed in the Viking 1 and 2 surface pressure data, in the Mariner 9 IR spectroscopy data, and in the Viking 1 and 2 lander entry profiles were studied and the results interpreted.

  2. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  3. The Pursuit of Word Meanings

    PubMed Central

    Stevens, Jon Scott; Gleitman, Lila R.; Trueswell, John C.; Yang, Charles

    2016-01-01

    We evaluate here the performance of four models of cross-situational word learning; two global models, which extract and retain multiple referential alternatives from each word occurrence; and two local models, which extract just a single referent from each occurrence. One of these local models, dubbed Pursuit, uses an associative learning mechanism to estimate word-referent probability but pursues and tests the best referent-meaning at any given time. Pursuit is found to perform as well as global models under many conditions extracted from naturalistic corpora of parent child-interactions, even though the model maintains far less information than global models. Moreover, Pursuit is found to best capture human experimental findings from several relevant cross-situational word-learning experiments, including those of Yu and Smith (2007), the paradigm example of a finding believed to support fully global cross-situational models. Implications and limitations of these results are discussed, most notably that the model characterizes only the earliest stages of word learning, when reliance on the co-occurring referent world is at its greatest. PMID:27666335

  4. Venus Global Reference Atmospheric Model Status and Planned Updates

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Dwyer Cianciolo, A. M.

    2017-05-01

    Details the current status of Venus Global Reference Atmospheric Model (Venus-GRAM). Provides new sources of data and upgrades that need to be incorporated to maintain credibility and identifies options and features that could increase capability.

  5. Definition and Proposed Realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael

    2017-05-01

    Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.

  6. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    NASA Astrophysics Data System (ADS)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  7. Phoenix model

    EPA Science Inventory

    Phoenix (formerly referred to as the Second Generation Model or SGM) is a global general equilibrium model designed to analyze energy-economy-climate related questions and policy implications in the medium- to long-term. This model disaggregates the global economy into 26 industr...

  8. The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 1: Technical/users manual

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.

    1991-01-01

    A technical description of the NASA/MSFC Global Reference Atmospheric Model 1990 version (GRAM-90) is presented with emphasis on the additions and new user's manual descriptions of the program operation aspects of the revised model. Some sample results for the new middle atmosphere section and comparisons with results from a three dimensional circulation model are provided. A programmer's manual with more details for those wishing to make their own GRAM program adaptations is also presented.

  9. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  10. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  11. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available parameters to enable the user to generate special output. Appendix G gives an example and guidance on incorporating GRAM07 as a subroutine in other programs such as trajectory codes or orbital propagation routines.

  12. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study.

    PubMed

    Souza, J P; Betran, A P; Dumont, A; de Mucio, B; Gibbs Pickens, C M; Deneux-Tharaux, C; Ortiz-Panozo, E; Sullivan, E; Ota, E; Togoobaatar, G; Carroli, G; Knight, H; Zhang, J; Cecatti, J G; Vogel, J P; Jayaratne, K; Leal, M C; Gissler, M; Morisaki, N; Lack, N; Oladapo, O T; Tunçalp, Ö; Lumbiganon, P; Mori, R; Quintana, S; Costa Passos, A D; Marcolin, A C; Zongo, A; Blondel, B; Hernández, B; Hogue, C J; Prunet, C; Landman, C; Ochir, C; Cuesta, C; Pileggi-Castro, C; Walker, D; Alves, D; Abalos, E; Moises, Ecd; Vieira, E M; Duarte, G; Perdona, G; Gurol-Urganci, I; Takahiko, K; Moscovici, L; Campodonico, L; Oliveira-Ciabati, L; Laopaiboon, M; Danansuriya, M; Nakamura-Pereira, M; Costa, M L; Torloni, M R; Kramer, M R; Borges, P; Olkhanud, P B; Pérez-Cuevas, R; Agampodi, S B; Mittal, S; Serruya, S; Bataglia, V; Li, Z; Temmerman, M; Gülmezoglu, A M

    2016-02-01

    To generate a global reference for caesarean section (CS) rates at health facilities. Cross-sectional study. Health facilities from 43 countries. Thirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10,045,875 women giving birth from 43 countries for model testing. We hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. These models generated probabilities of CS that could be compared with the observed CS rates. We devised a three-step approach to generate the global benchmark of CS rates at health facilities: creation of a multi-country reference population, building mathematical models, and testing these models. Area under the ROC curves, diagnostic odds ratio, expected CS rate, observed CS rate. According to the different versions of the model, areas under the ROC curves suggested a good discriminatory capacity of C-Model, with summary estimates ranging from 0.832 to 0.844. The C-Model was able to generate expected CS rates adjusted for the case-mix of the obstetric population. We have also prepared an e-calculator to facilitate use of C-Model (www.who.int/reproductivehealth/publications/maternal_perinatal_health/c-model/en/). This article describes the development of a global reference for CS rates. Based on maternal characteristics, this tool was able to generate an individualised expected CS rate for health facilities or groups of health facilities. With C-Model, obstetric teams, health system managers, health facilities, health insurance companies, and governments can produce a customised reference CS rate for assessing use (and overuse) of CS. The C-Model provides a customized benchmark for caesarean section rates in health facilities and systems. © 2015 World Health Organization; licensed by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  13. The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 2: Program/data listings

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.

    1991-01-01

    A new (1990) version of the NASA/MSFC Global Reference Atmospheric Model (GRAM-90) was completed and the program and key data base listing are presented. GRAM-90 incorporate extensive new data, mostly collected under the Middle Atmosphere Program, to produce a completely revised middle atmosphere model (20 to 120 km). At altitudes greater than 120 km, GRAM-90 uses the NASA Marshall Engineering Thermosphere model. Complete listings of all program and major data bases are presented. Also, a test case is included.

  14. Mapping the global football field: a sociological model of transnational forces within the world game.

    PubMed

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  15. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  16. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  17. Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.

  18. Venus Global Reference Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.

    2017-01-01

    Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.

  19. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  20. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-01-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather / VISION | About EMC EMC > GLOBAL BRANCH > GFS > HOME Home Implementations Documentation References Products Model Guidance Performance Developers VLab GLOBAL FORECAST SYSTEM Global Data

  2. The rank correlated SLW model of gas radiation in non-uniform media

    NASA Astrophysics Data System (ADS)

    Solovjov, Vladimir P.; Andre, Frederic; Lemonnier, Denis; Webb, Brent W.

    2017-08-01

    A comprehensive theoretical development of possible reference approaches in modelling of radiation transfer in non-uniform gaseous media is developed within the framework of the Generalized SLW Model. The notion of absorption spectrum ;correlation; adopted currently for global methods in gas radiation is critically revisited and replaced by a less restrictive concept of rank correlated spectrum. Within this framework it is shown that eight different reference approaches are possible, of which only three have been reported in the literature. Among the approaches presented is a novel Rank Correlated SLW Model, which is distinguished by the fact that i) it does not require the specification of a reference gas thermodynamic state, and ii) it preserves the emission term in the spectrally integrated Radiative Transfer Equation. Construction of this reference model requires only two absorption line blackbody distribution functions, and subdivision into gray gases can be performed using standard quadratures. Consequently, this new reference approach appears to have significant advantages over all other methods, and is, in general, a significant improvement in the global modelling of gas radiation. All reference approaches are summarized in the present work, and their use in radiative transfer prediction is demonstrated for simple example cases. Further, a detailed rigorous theoretical development of the improved methods is provided.

  3. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  4. A global dataset of crowdsourced land cover and land use reference data.

    PubMed

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-06-13

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

  5. A global dataset of crowdsourced land cover and land use reference data

    PubMed Central

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F.; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-01-01

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general. PMID:28608851

  6. Impact of seasonal and postglacial surface displacement on global reference frames

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; King, Matt; Memin, Anthony; Shabala, Stanislav; Watson, Christopher

    2014-05-01

    The calculation of actual station positions requires several corrections which are partly recommended by the International Earth Rotation and Reference Systems Service (IERS) Conventions (e.g., solid Earth tides and ocean tidal loading) as well as other corrections, e.g. accounting for hydrology and atmospheric loading. To investigate the pattern of omitted non-linear seasonal motion we estimated empirical harmonic models for selected stations within a global solution of suitable Very Long Baseline Interferometry (VLBI) sessions as well as mean annual models by stacking yearly time series of station positions. To validate these models we compare them to displacement series obtained from the Gravity Recovery and Climate Experiment (GRACE) data and to hydrology corrections determined from global models. Furthermore, we assess the impact of the seasonal station motions on the celestial reference frame as well as on Earth orientation parameters derived from real and also artificial VLBI observations. In the second part of the presentation we apply vertical rates of the ICE-5G_VM2_2012 vertical land movement grid on vertical station velocities. We assess the impact of postglacial uplift on the variability in the scale given different sampling of the postglacial signal in time and hence on the uncertainty in the scale rate of the estimated terrestrial reference frame.

  7. Deep water tsunami simulation at global scale using an elastoacoustic approach

    NASA Astrophysics Data System (ADS)

    Salazar Monroy, E. F.; Ramirez-Guzman, L.; Bielak, J.; Sanchez-Sesma, F. J.

    2017-12-01

    In this work, we present the results for the first stage of a tsunami global simulation project using an elastoacoustic approach. The solid-fluid interaction, which is only valid on a global scale and far distances from the coast, is modelled using a finite element scheme for a 2D geometry. Comparing analytic and numerical solutions, we observe a good fit for a homogeneous domain - with an extension of 20 km - using 15 points per wavelength. Subsequently, we performed 2D realizations taking a section from a global 3D model and projecting the Tohoku-Oki source obtained by the USGS. The 3D Global model uses the ETOPO1 and the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981). We analysed 3 cross sections, defined using DART buoys as a reference for each section (i.e., initial and final profile point). Surface water elevation obtained with this coupling strategy is constrained at low frequencies (0.2 Hz). We expect that this coupling strategy could approximate the model to high frequencies and realistic scenarios considering other geometries (i.e., 3D) and a complete domain (i.e., surface and deep).

  8. Improved reference models for middle atmosphere ozone

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    1989-01-01

    Improvements are provided for the ozone reference model which is to be incorporated in the COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide considerable information on the global ozone distribution, including ozone vertical structure as a function of month and latitude from approximately 25 to 90 km, combining data from five recent satellite experiments (Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 SAGE, Solar Mesosphere Explorer (SME) UVS, and SME IR). The improved models are described and use reprocessed AE-2 SAGE data (sunset) and extend the use of SAGE data from 1981 to the period 1981-1983. Comparisons are shown between the ozone reference model and various nonsatellite measurements at different levels in the middle atmosphere.

  9. Mars Global Reference Atmospheric Model (Mars-GRAM): Release No. 2 - Overview and applications

    NASA Technical Reports Server (NTRS)

    James, B.; Johnson, D.; Tyree, L.

    1993-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM), a science and engineering model for empirically parameterizing the temperature, pressure, density, and wind structure of the Martian atmosphere, is described with particular attention to the model's newest version, Mars-GRAM, Release No. 2 and to the improvements incorporated into the Release No. 2 model as compared with the Release No. 1 version. These improvements include (1) an addition of a new capability to simulate local-scale Martian dust storms and the growth and decay of these storms; (2) an addition of the Zurek and Haberle (1988) wave perturbation model, for simulating tidal perturbation effects; and (3) a new modular version of Mars-GRAM, for incorporation as a subroutine into other codes.

  10. Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.

    2010-01-01

    The poster provides an overview of techniques to improve the Mars Global Reference Atmospheric Model (Mars-GRAM) sensitivity. It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for TES MapYear = 0 and large optical depth values such as tau = 3 is less than realistic. A preliminary fix has been made to Mars-GRAM by adding a density factor value that was determined for tau = 0.3, 1 and 3.

  11. A Revised Thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM Version 3.4)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.; James, B. F.

    1996-01-01

    This report describes the newly-revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart. The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM). The new thermospheric model includes revised dependence on the 10.7 cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are: (1) realistic variations of temperature and density with latitude and time of day, (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients, and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include: (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the 'ORBIT' subroutine.

  12. The gravity field observations and products at IGFS

    NASA Astrophysics Data System (ADS)

    Barzaghi, Riccardo; Vergos, George; Bonvalot, Sylvain; Barthelmes, Franz; Reguzzoni, Mirko; Wziontek, Hartmut; Kelly, Kevin

    2017-04-01

    The International Gravity Field Service (IGFS) is a service of the International Association of Geodesy (IAG) that was established in 2003 at the IAG/IUGG General Assembly in Sapporo (Japan). This service aims at coordinating the actions of the IAG services related to the Earth gravity field, i.e. the Bureau Gravimétrique International (BGI), the International Service for the Geoid (ISG), the International Geodynamics and Earth Tides Service (IGETS), the International Center for Global Earth Models (ICGEM) and the International Digital Elevation Model Service (IDEMS). Also, via its Central Bureau hosted at the Aristotle University of Thessaloniki (Greece), IGFS provides a link to the Global Geodetic Observing System (GGOS) bureaus in order to communicate their requirements and recommendations to the IGFS-Centers. In this work, a presentation is given on the recent activities of the service, namely those related to the contributions to the implementation of: the International Height Reference System/Frame; the Global Geodetic Reference System/Frame; the new Global Absolute Gravity Reference System/Frame. Particularly, the impact that these activities have in improving the estimation of the Earth's gravity field, either at global and local scale, is highlighted also in the framework of GGOS.

  13. Support time-dependent transformations for surveying and GIS : current status and upcoming challenges

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, H.; Lercier, D.; Vielliard, S.; Mein, N.; Briggs, G.

    2016-12-01

    The support of time-dependent transformations for surveying and GIS is becoming a critical issue. We need to convert positions from the realizations of the International Terrestrial Reference Frame to any national reference frame. This problem is easy to solve when all of the required information is available. But it becomes really complicated in a worldwide context. We propose an overview of the current ITRF-aligned reference frames and we describe a global solution to support time-dependent transformations between them and the International Terrestrial Reference Frame. We focus on the uncertainties of station velocities used. In a first approximation, we use a global tectonic plate model to calculate point velocities. We show the impact of the velocity model on the coordinate accuracies. Several countries, particularly in active regions, are developing semi-dynamic reference frames. These frames include local displacement models updated regularly and/or after major events (such as earthquakes). Their integration into surveying or GIS applications is an upcoming challenge. We want to encourage the geodetic community to develop and use standard formats.

  14. The NASA/MSFC global reference atmospheric model: MOD 3 (with spherical harmonic wind model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Fletcher, G. R.; Gramling, F. E.; Pace, W. B.

    1980-01-01

    Improvements to the global reference atmospheric model are described. The basic model includes monthly mean values of pressure, density, temperature, and geostrophic winds, as well as quasi-biennial and small and large scale random perturbations. A spherical harmonic wind model for the 25 to 90 km height range is included. Below 25 km and above 90 km, the GRAM program uses the geostrophic wind equations and pressure data to compute the mean wind. In the altitudes where the geostrophic wind relations are used, an interpolation scheme is employed for estimating winds at low latitudes where the geostrophic wind relations being to mesh down. Several sample wind profiles are given, as computed by the spherical harmonic model. User and programmer manuals are presented.

  15. A surface spherical harmonic expansion of gravity anomalies on the ellipsoid

    NASA Astrophysics Data System (ADS)

    Claessens, S. J.; Hirt, C.

    2015-10-01

    A surface spherical harmonic expansion of gravity anomalies with respect to a geodetic reference ellipsoid can be used to model the global gravity field and reveal its spectral properties. In this paper, a direct and rigorous transformation between solid spherical harmonic coefficients of the Earth's disturbing potential and surface spherical harmonic coefficients of gravity anomalies in ellipsoidal approximation with respect to a reference ellipsoid is derived. This transformation cannot rigorously be achieved by the Hotine-Jekeli transformation between spherical and ellipsoidal harmonic coefficients. The method derived here is used to create a surface spherical harmonic model of gravity anomalies with respect to the GRS80 ellipsoid from the EGM2008 global gravity model. Internal validation of the model shows a global RMS precision of 1 nGal. This is significantly more precise than previous solutions based on spherical approximation or approximations to order or , which are shown to be insufficient for the generation of surface spherical harmonic coefficients with respect to a geodetic reference ellipsoid. Numerical results of two applications of the new method (the computation of ellipsoidal corrections to gravimetric geoid computation, and area means of gravity anomalies in ellipsoidal approximation) are provided.

  16. Evaluation of Global Observations-Based Evapotranspiration Datasets and IPCC AR4 Simulations

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Seneviratne, S. I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J. B.; Guo, Z.; hide

    2011-01-01

    Quantification of global land evapotranspiration (ET) has long been associated with large uncertainties due to the lack of reference observations. Several recently developed products now provide the capacity to estimate ET at global scales. These products, partly based on observational data, include satellite ]based products, land surface model (LSM) simulations, atmospheric reanalysis output, estimates based on empirical upscaling of eddycovariance flux measurements, and atmospheric water balance datasets. The LandFlux-EVAL project aims to evaluate and compare these newly developed datasets. Additionally, an evaluation of IPCC AR4 global climate model (GCM) simulations is presented, providing an assessment of their capacity to reproduce flux behavior relative to the observations ]based products. Though differently constrained with observations, the analyzed reference datasets display similar large-scale ET patterns. ET from the IPCC AR4 simulations was significantly smaller than that from the other products for India (up to 1 mm/d) and parts of eastern South America, and larger in the western USA, Australia and China. The inter-product variance is lower across the IPCC AR4 simulations than across the reference datasets in several regions, which indicates that uncertainties may be underestimated in the IPCC AR4 models due to shared biases of these simulations.

  17. The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    1999-01-01

    The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).

  18. Background stratospheric aerosol and polar stratospheric cloud reference models

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Wang, P.-H.; Pitts, M. C.

    1993-01-01

    A global aerosol climatology is evolving from the NASA satellite experiments SAM II, SAGE I, and SAGE II. In addition, polar stratospheric cloud (PSC) data have been obtained from these experiments over the last decade. An undated reference model of the optical characteristics of the background aerosol is described and a new aerosol reference model derived from the latest available data is proposed. The aerosol models are referenced to the height above the tropopause. The impact of a number of volcanic eruptions is described. In addition, a model describing the seasonal, longitudinal, and interannual variations in PSCs is presented.

  19. Use of the 4D-Global Reference Atmosphere Model (GRAM) for space shuttle descent design

    NASA Technical Reports Server (NTRS)

    Mccarty, S. M.

    1987-01-01

    The method of using the Global Reference Atmosphere Model (GRAM) mean and dispersed atmospheres to study skipout/overshoot requirements, to characterize mean and worst case vehicle temperatures, study control requirements, and verify design was discussed. Landing sites in these analyses range from 65 N to 30 S, while orbit inclinations vary from 20 deg to 98 deg. The primary concern was that they cannot use as small vertical steps in the reentry calculation as desired because the model predicts anomalously large density shear rates for very small vertical step sizes. The winds predicted by the model are not satisfactory. This is probably because they are geostrophic winds and because the model has an error in the computation of winds in the equatorial regions.

  20. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07) Applications for the NASA Constellation Program

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    Engineering models of the atmosphere are used extensively by the aerospace community for design issues related to vehicle ascent and descent. The Earth Global Reference Atmosphere Model version 2007 (Earth-GRAM07) is the latest in this series and includes a number of new features. Like previous versions, Earth-GRAM07 provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0 km to 27 km, thermodynamics and winds are based on the National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. For altitudes between 20 km and 120 km, the model uses data from the Middle Atmosphere Program (MAP). Above 120 km, EarthGRAM07 now provides users with a choice of three thermosphere models: the Marshall Engineering Thermosphere (MET-2007) model; the Jacchia-Bowman 2006 thermosphere model (JB2006); and the Naval Research Labs Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRL MSIS E-OO) with the associated Harmonic Wind Model (HWM-93). In place of these datasets, Earth-GRAM07 has the option of using the new 2006 revised Range Reference Atmosphere (RRA) data, the earlier (1983) RRA data, or the user may also provide their own data as an auxiliary profile. Refinements of the perturbation model are also discussed which include wind shears more similar to those observed at the Kennedy Space Center than the previous version Earth-GRAM99.

  1. Uncertainty Propagation of Non-Parametric-Derived Precipitation Estimates into Multi-Hydrologic Model Simulations

    NASA Astrophysics Data System (ADS)

    Bhuiyan, M. A. E.; Nikolopoulos, E. I.; Anagnostou, E. N.

    2017-12-01

    Quantifying the uncertainty of global precipitation datasets is beneficial when using these precipitation products in hydrological applications, because precipitation uncertainty propagation through hydrologic modeling can significantly affect the accuracy of the simulated hydrologic variables. In this research the Iberian Peninsula has been used as the study area with a study period spanning eleven years (2000-2010). This study evaluates the performance of multiple hydrologic models forced with combined global rainfall estimates derived based on a Quantile Regression Forests (QRF) technique. In QRF technique three satellite precipitation products (CMORPH, PERSIANN, and 3B42 (V7)); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset are being utilized in this study. A high-resolution, ground-based observations driven precipitation dataset (named SAFRAN) available at 5 km/1 h resolution is used as reference. Through the QRF blending framework the stochastic error model produces error-adjusted ensemble precipitation realizations, which are used to force four global hydrological models (JULES (Joint UK Land Environment Simulator), WaterGAP3 (Water-Global Assessment and Prognosis), ORCHIDEE (Organizing Carbon and Hydrology in Dynamic Ecosystems) and SURFEX (Stands for Surface Externalisée) ) to simulate three hydrologic variables (surface runoff, subsurface runoff and evapotranspiration). The models are forced with the reference precipitation to generate reference-based hydrologic simulations. This study presents a comparative analysis of multiple hydrologic model simulations for different hydrologic variables and the impact of the blending algorithm on the simulated hydrologic variables. Results show how precipitation uncertainty propagates through the different hydrologic model structures to manifest in reduction of error in hydrologic variables.

  2. Probing Mantle Heterogeneity Across Spatial Scales

    NASA Astrophysics Data System (ADS)

    Hariharan, A.; Moulik, P.; Lekic, V.

    2017-12-01

    Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.

  3. Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Wang, F.; Bai, J.; Li, Z.

    2018-04-01

    The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  4. Policy Internationalization, National Variety and Governance: Global Models and Network Power in Higher Education States

    ERIC Educational Resources Information Center

    King, Roger

    2010-01-01

    This article analyzes policy convergence and the adoption of globalizing models by higher education states, a process we describe, following Thatcher (2007), as policy internationalization. This refers to processes found in many policy domains and which increasingly are exemplified in tertiary education systems too. The focus is on governmental…

  5. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Woodrum, A. W.

    1989-01-01

    GRAM series of four-dimensional atmospheric model validated by years of data. GRAM program, still available. More current are Gram 86, which includes atmospheric data from 1986 and runs on DEC VAX, and GRAM 88, which runs on IBM 3084. Program generates altitude profiles of atmospheric parameters along any simulated trajectory through atmosphere, and also useful for global circulation and diffusion studies.

  6. Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.

    NASA Technical Reports Server (NTRS)

    Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; hide

    2017-01-01

    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

  7. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2005-01-01

    The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. An improvement in the accuracy of radial global velocities would have a very positive impact on a large number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. A set of GPS error sources relevant to this project are those related to the combination of the positions and velocities of a set of globally distributed stations as determined &om the analysis of GPS data, including possible methods of combining and defining terrestrial reference frames. This is were our research activities during this reporting period have concentrated. During this reporting period, we have researched two topics: (1) The effect of errors on the GPS satellite antenna models (or lack thereof) on global GPS vertical position and velocity estimates; (2) The effect of reference W e definition and practice on estimates of the geocenter variations.

  8. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  9. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration

    NASA Astrophysics Data System (ADS)

    Shiri, Jalal; Nazemi, Amir Hossein; Sadraddini, Ali Ashraf; Landeras, Gorka; Kisi, Ozgur; Fard, Ahmad Fakheri; Marti, Pau

    2013-02-01

    SummaryAccurate estimation of reference evapotranspiration is important for irrigation scheduling, water resources management and planning and other agricultural water management issues. In the present paper, the capabilities of generalized neuro-fuzzy models were evaluated for estimating reference evapotranspiration using two separate sets of weather data from humid and non-humid regions of Spain and Iran. In this way, the data from some weather stations in the Basque Country and Valencia region (Spain) were used for training the neuro-fuzzy models [in humid and non-humid regions, respectively] and subsequently, the data from these regions were pooled to evaluate the generalization capability of a general neuro-fuzzy model in humid and non-humid regions. The developed models were tested in stations of Iran, located in humid and non-humid regions. The obtained results showed the capabilities of generalized neuro-fuzzy model in estimating reference evapotranspiration in different climatic zones. Global GNF models calibrated using both non-humid and humid data were found to successfully estimate ET0 in both non-humid and humid regions of Iran (the lowest MAE values are about 0.23 mm for non-humid Iranian regions and 0.12 mm for humid regions). non-humid GNF models calibrated using non-humid data performed much better than the humid GNF models calibrated using humid data in non-humid region while the humid GNF model gave better estimates in humid region.

  10. Watershed Education for Sustainable Development.

    ERIC Educational Resources Information Center

    Stapp, William B.

    2000-01-01

    Presents information on the Global Rivers Environmental Education Network (GREEN), which is a global communication system for analyzing watershed usage and monitoring the quality and quantity of river water. Describes GREEN's watershed educational model and strategies and international development. (Contains 67 references.) (Author/YDS)

  11. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2004-01-01

    The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.

  12. Examination of global correlations in ground deformation for terrestrial reference frame estimation

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Argus, D. F.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2016-12-01

    The KALman filter for REFerence frames (KALREF, Wu et al. 2015) has been developed to produce terrestrial reference frame (TRF) solutions. TRFs consist of precise position coordinates and velocity vectors of terrestrial reference sites (with the geocenter as the origin) along with the Earth orientation parameters, and they are produced by combining decades worth of space geodetic data using site tie data. To perform the combination, KALREF relies on stochastic models of the geophysical processes that are causing the Earth's surface to deform and reference sites to be displaced. We are investigating application of the GRACE data to improve the KALREF stochastic models by determining spatial statistics of the deformation of the Earth's surface caused by mass loading. A potential target of improvement is the non-uniform distribution of the geodetic observation sites, which can introduce bias in TRF estimates of the geocenter. The global and relatively uniform coverage of the GRACE measurements is expected to be free of such bias and allow us to improve physical realism of the stochastic model. For such a goal, we examine the spatial correlations in ground deformation derived from several GRACE data sets.[Wu et al. 2015: Journal of Geophysical Research (Solid Earth) 120:3775-3802

  13. Extensive middle atmosphere (20-120 KM) modification in the Global Reference Atmospheric Model (GRAM-90)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, Dale

    1990-01-01

    The Global Reference Atmospheric Model (GRAM) is currently available in the 'GRAM-88' version (Justus, et al., 1986; 1988), which includes relatively minor upgrades and changes from the 'MOD-3' version (Justus, et al., 1980). Currently a project is underway to use large amounts of data, mostly collected under the Middle Atmosphere Program (MAP) to produce a major upgrade of the program planned for release as the GRAM-90 version. The new data and program revisions will particularly affect the 25-90 km height range. Sources of data and preliminary results are described here in the form of cross-sectional plots.

  14. Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  15. Unification of height systems in the frame of GGOS

    NASA Astrophysics Data System (ADS)

    Sánchez, Laura

    2015-04-01

    Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.

  16. GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.

  17. The global reference atmospheric model, mod 2 (with two scale perturbation model)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Hargraves, W. R.

    1976-01-01

    The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.

  18. Global plate motion frames: Toward a unified model

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Müller, R. Dietmar; van der Voo, Rob; Steinberger, Bernhard; Gaina, Carmen

    2008-09-01

    Plate tectonics constitutes our primary framework for understanding how the Earth works over geological timescales. High-resolution mapping of relative plate motions based on marine geophysical data has followed the discovery of geomagnetic reversals, mid-ocean ridges, transform faults, and seafloor spreading, cementing the plate tectonic paradigm. However, so-called "absolute plate motions," describing how the fragments of the outer shell of the Earth have moved relative to a reference system such as the Earth's mantle, are still poorly understood. Accurate absolute plate motion models are essential surface boundary conditions for mantle convection models as well as for understanding past ocean circulation and climate as continent-ocean distributions change with time. A fundamental problem with deciphering absolute plate motions is that the Earth's rotation axis and the averaged magnetic dipole axis are not necessarily fixed to the mantle reference system. Absolute plate motion models based on volcanic hot spot tracks are largely confined to the last 130 Ma and ideally would require knowledge about the motions within the convecting mantle. In contrast, models based on paleomagnetic data reflect plate motion relative to the magnetic dipole axis for most of Earth's history but cannot provide paleolongitudes because of the axial symmetry of the Earth's magnetic dipole field. We analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot, and global moving hot spot), discuss their uncertainties, and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a "hybrid" model for the time period from the assembly of Pangea (˜320 Ma) to the present. For the last 100 Ma we use a moving hot spot reference frame that takes mantle convection into account, and we connect this to a pre-100 Ma global paleomagnetic frame adjusted 5° in longitude to smooth the reference frame transition. Using plate driving force arguments and the mapping of reconstructed large igneous provinces to core-mantle boundary topography, we argue that continental paleolongitudes can be constrained with reasonable confidence.

  19. Improved reference models for middle atmosphere ozone

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Pitts, M. C.; Chen, C.

    1990-01-01

    This paper describes the improvements introduced into the original version of ozone reference model of Keating and Young (1985, 1987) which is to be incorporated in the next COSPAR International Reference Atmosphere (CIRA). The ozone reference model will provide information on the global ozone distribution (including the ozone vertical structure as a function of month and latitude from 25 to 90 km) combining data from five recent satellite experiments: the Nimbus 7 LIMS, Nimbus 7 SBUV, AE-2 Stratospheric Aerosol Gas Experiment (SAGE), Solar Mesosphere Explorer (SME) UV Spectrometer, and SME 1.27 Micron Airglow. The improved version of the reference model uses reprocessed AE-2 SAGE data (sunset) and extends the use of SAGE data from 1981 to the 1981-1983 time period. Comparisons are presented between the results of this ozone model and various nonsatellite measurements at different levels in the middle atmosphere.

  20. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.

    PubMed

    Greenberg, Ido; Shkolnisky, Yoel

    2017-11-01

    We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  2. Modeling The effect of elevated CO2 and climate change on reference evapotranspiration in the semi-arid Great Plains

    USDA-ARS?s Scientific Manuscript database

    Changes in evapotranspiration demand due to global warming will have profound impact on irrigation water demand and agricultural productivity. In this study, effects of possible future anthropogenic climate change on reference evapotranspiration (ETo) was evaluated. The Penman-Monteith equation was ...

  3. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  4. The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Cheng, Y.; Bei, J.

    2017-12-01

    China Geodetic Coordinate System 2000 (CGCS2000) was first officially declared as the national standard coordinate system on July 1, 2008. This reference frame was defined in the ITRF97 frame at epoch 2000.0 and included 2600 GPS geodetic control points. The paper discusses differences between China Geodetic Coordinate System 2000 (CGCS2000) and later updated ITRF versions, such as ITRF2014,in terms of technical implementation and maintenance. With the development of the Beidou navigation satellite system, especially third generation of BDS with signal global coverage in the future, and with progress of space geodetic technology, it is possible for us to establish a global millimeter-level reference frame based on space geodetic technology including BDS. The millimeter reference frame implementation concerns two factors: 1) The variation of geocenter motion estimation, and 2) the site nonlinear motion modeling. In this paper, the geocentric inversion methods are discussed and compared among results derived from various technical methods. Our nonlinear site movement modeling focuses on singular spectrum analysis method, which is of apparent advantages over earth physical effect modeling. All presented in the paper expected to provide reference to our future CGCS2000 maintenance.

  5. The Pursuit of Word Meanings

    ERIC Educational Resources Information Center

    Stevens, Jon Scott; Gleitman, Lila R.; Trueswell, John C.; Yang, Charles

    2017-01-01

    We evaluate here the performance of four models of cross-situational word learning: two global models, which extract and retain multiple referential alternatives from each word occurrence; and two local models, which extract just a single referent from each occurrence. One of these local models, dubbed "Pursuit," uses an associative…

  6. A nonparametric statistical technique for combining global precipitation datasets: development and hydrological evaluation over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Abul Ehsan Bhuiyan, Md; Nikolopoulos, Efthymios I.; Anagnostou, Emmanouil N.; Quintana-Seguí, Pere; Barella-Ortiz, Anaïs

    2018-02-01

    This study investigates the use of a nonparametric, tree-based model, quantile regression forests (QRF), for combining multiple global precipitation datasets and characterizing the uncertainty of the combined product. We used the Iberian Peninsula as the study area, with a study period spanning 11 years (2000-2010). Inputs to the QRF model included three satellite precipitation products, CMORPH, PERSIANN, and 3B42 (V7); an atmospheric reanalysis precipitation and air temperature dataset; satellite-derived near-surface daily soil moisture data; and a terrain elevation dataset. We calibrated the QRF model for two seasons and two terrain elevation categories and used it to generate ensemble for these conditions. Evaluation of the combined product was based on a high-resolution, ground-reference precipitation dataset (SAFRAN) available at 5 km 1 h-1 resolution. Furthermore, to evaluate relative improvements and the overall impact of the combined product in hydrological response, we used the generated ensemble to force a distributed hydrological model (the SURFEX land surface model and the RAPID river routing scheme) and compared its streamflow simulation results with the corresponding simulations from the individual global precipitation and reference datasets. We concluded that the proposed technique could generate realizations that successfully encapsulate the reference precipitation and provide significant improvement in streamflow simulations, with reduction in systematic and random error on the order of 20-99 and 44-88 %, respectively, when considering the ensemble mean.

  7. Application of a global reference for fetal-weight and birthweight percentiles in predicting infant mortality.

    PubMed

    Ding, G; Tian, Y; Zhang, Y; Pang, Y; Zhang, J S; Zhang, J

    2013-12-01

    To determine whether the recently published A global reference for fetal-weight and birthweight percentiles (Global Reference) improves small- (SGA), appropriate- (AGA), and large-for-gestational-age (LGA) definitions in predicting infant mortality. Population-based cohort study. The US Linked Livebirth and Infant Death records between 1995 and 2004. Singleton births with birthweight >500 g born at 24-41 weeks of gestation. We compared infant mortality rates of SGA, AGA, and LGA infants classified by three different references: the Global Reference; a commonly used birthweight reference; and Hadlock's ultrasound reference. Infant mortality rates. Among 33 997 719 eligible liveborn singleton births, 25% of preterm and 9% of term infants were classified differently for SGA, AGA, and LGA by the Global Reference and the birthweight reference. The Global Reference indicated higher mortality rates in preterm SGA and preterm LGA infants than the birthweight reference. The mortality rate was considerably higher in infants classified as preterm SGA by the Global Reference but not by the birthweight reference, compared with the corresponding infants classified by the birthweight reference but not by the Global Reference (105.7 versus 12.9 per 1000, RR 8.17, 95% CI 7.38-9.06). Yet, the differences in mortality rates were much smaller in term infants than in preterm infants. Black infants had a particularly higher mortality rate than other races in AGA and LGA preterm and term infants. In respect to the commonly used birthweight reference, the Global Reference increases the identification of infant deaths by improved classification of abnormal newborn size at birth, and these advantages were more obvious in preterm than in term infants. © 2013 RCOG.

  8. Global radiation maps and their modulation by clouds. - An assessment of limitations and deficiencies in global modelling

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Stubenrauch, Claudia; Raschke, Erhard

    2010-05-01

    Satellite sensed solar and infrared broadband radiation maps at the top of the atmosphere (ToA) usually serve as reference and constrains to global modelling. Complimentary radiation maps at the surface are less certain, as they require accurate knowledge about atmospheric and environmental properties. Despite differences among multi-decadal data-projects of ISCCP, the SRB and the CERES, their diversity is small in comparison to efforts in global modelling. Based on simulations for the IPCC fourth assessment, clear biases on a regional and seasonal basis are identified and illustrate deficiencies in the representation of clouds. These deficiencies are explored in the context of available cloud data from passive and active remote sensing from space.

  9. Mars Global Reference Atmospheric Model (Mars-GRAM 3.34): Programmer's Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.; Johnson, Dale L.

    1996-01-01

    This is a programmer's guide for the Mars Global Reference Atmospheric Model (Mars-GRAM 3.34). Included are a brief history and review of the model since its origin in 1988 and a technical discussion of recent additions and modifications. Examples of how to run both the interactive and batch (subroutine) forms are presented. Instructions are provided on how to customize output of the model for various parameters of the Mars atmosphere. Detailed descriptions are given of the main driver programs, subroutines, and associated computational methods. Lists and descriptions include input, output, and local variables in the programs. These descriptions give a summary of program steps and 'map' of calling relationships among the subroutines. Definitions are provided for the variables passed between subroutines through common lists. Explanations are provided for all diagnostic and progress messages generated during execution of the program. A brief outline of future plans for Mars-GRAM is also presented.

  10. Updated Reference Model for Heat Generation in the Lithosphere

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2017-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  11. Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    2000-01-01

    This report presents Mars Global Reference Atmospheric Model 2000 Version (Mars-GRAM 2000) and its new features. All parameterizations for temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and L(sub s) have been replaced by input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 170 km. A modified Stewart thermospheric model is still used for higher altitudes and for dependence on solar activity. "Climate factors" to tune for agreement with GCM data are no longer needed. Adjustment of exospheric temperature is still an option. Consistent with observations from Mars Global Surveyor, a new longitude-dependent wave model is included with user input to specify waves having 1 to 3 wavelengths around the planet. A simplified perturbation model has been substituted for the earlier one. An input switch allows users to select either East or West longitude positive. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  12. Teach for All: Storytelling "Shared Solutions" and Scaling Global Reform

    ERIC Educational Resources Information Center

    Ahmann, Chloe

    2015-01-01

    "Teach For All" is a global network of state-based organizations that translate "Teach For America's" market model of school reform into moral projects of nation-building abroad. Referring to this challenge as one of "scaling" the organization, its leaders elaborate a theory of change that hinges on replicability: in…

  13. Implementation of the MEGAN (v2.1) biogenic emission model in the ECHAM6-HAMMOZ chemistry climate model

    NASA Astrophysics Data System (ADS)

    Henrot, Alexandra-Jane; Stanelle, Tanja; Schröder, Sabine; Siegenthaler, Colombe; Taraborrelli, Domenico; Schultz, Martin G.

    2017-02-01

    A biogenic emission scheme based on the Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther et al., 2012) has been integrated into the ECHAM6-HAMMOZ chemistry climate model in order to calculate the emissions from terrestrial vegetation of 32 compounds. The estimated annual global total for the reference simulation is 634 Tg C yr-1 (simulation period 2000-2012). Isoprene is the main contributor to the average emission total, accounting for 66 % (417 Tg C yr-1), followed by several monoterpenes (12 %), methanol (7 %), acetone (3.6 %), and ethene (3.6 %). Regionally, most of the high annual emissions are found to be associated with tropical regions and tropical vegetation types. In order to evaluate the implementation of the biogenic model in ECHAM-HAMMOZ, global and regional biogenic volatile organic compound (BVOC) emissions of the reference simulation were compared to previous published experiment results with MEGAN. Several sensitivity simulations were performed to study the impact of different model input and parameters related to the vegetation cover and the ECHAM6 climate. BVOC emissions obtained here are within the range of previous published estimates. The large range of emission estimates can be attributed to the use of different input data and empirical coefficients within different setups of MEGAN. The biogenic model shows a high sensitivity to the changes in plant functional type (PFT) distributions and associated emission factors for most of the compounds. The global emission impact for isoprene is about -9 %, but reaches +75 % for α-pinene when switching from global emission factor maps to PFT-specific emission factor distributions. The highest sensitivity of isoprene emissions is calculated when considering soil moisture impact, with a global decrease of 12.5 % when the soil moisture activity factor is included in the model parameterization. Nudging ECHAM6 climate towards ERA-Interim reanalysis has an impact on the biogenic emissions, slightly lowering the global total emissions and their interannual variability.

  14. Combining Distributed and Shared Memory Models: Approach and Evolution of the Global Arrays Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieplocha, Jarek; Harrison, Robert J.; Kumar, Mukul

    2002-07-29

    Both shared memory and distributed memory models have advantages and shortcomings. Shared memory model is much easier to use but it ignores data locality/placement. Given the hierarchical nature of the memory subsystems in the modern computers this characteristic might have a negative impact on performance and scalability. Various techniques, such as code restructuring to increase data reuse and introducing blocking in data accesses, can address the problem and yield performance competitive with message passing[Singh], however at the cost of compromising the ease of use feature. Distributed memory models such as message passing or one-sided communication offer performance and scalability butmore » they compromise the ease-of-use. In this context, the message-passing model is sometimes referred to as?assembly programming for the scientific computing?. The Global Arrays toolkit[GA1, GA2] attempts to offer the best features of both models. It implements a shared-memory programming model in which data locality is managed explicitly by the programmer. This management is achieved by explicit calls to functions that transfer data between a global address space (a distributed array) and local storage. In this respect, the GA model has similarities to the distributed shared-memory models that provide an explicit acquire/release protocol. However, the GA model acknowledges that remote data is slower to access than local data and allows data locality to be explicitly specified and hence managed. The GA model exposes to the programmer the hierarchical memory of modern high-performance computer systems, and by recognizing the communication overhead for remote data transfer, it promotes data reuse and locality of reference. This paper describes the characteristics of the Global Arrays programming model, capabilities of the toolkit, and discusses its evolution.« less

  15. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  16. Additions to Mars Global Reference Atmospheric Model (MARS-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie

    1992-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification was also made which allows heights to go 'below' local terrain height and return 'realistic' pressure, density, and temperature, and not the surface values, as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local 'valley' areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch versions of Mars-GRAM are presented.

  17. Additions to Mars Global Reference Atmospheric Model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1991-01-01

    Three major additions or modifications were made to the Mars Global Reference Atmospheric Model (Mars-GRAM): (1) in addition to the interactive version, a new batch version is available, which uses NAMELIST input, and is completely modular, so that the main driver program can easily be replaced by any calling program, such as a trajectory simulation program; (2) both the interactive and batch versions now have an option for treating local-scale dust storm effects, rather than just the global-scale dust storms in the original Mars-GRAM; and (3) the Zurek wave perturbation model was added, to simulate the effects of tidal perturbations, in addition to the random (mountain wave) perturbation model of the original Mars-GRAM. A minor modification has also been made which allows heights to go below local terrain height and return realistic pressure, density, and temperature (not the surface values) as returned by the original Mars-GRAM. This feature will allow simulations of Mars rover paths which might go into local valley areas which lie below the average height of the present, rather coarse-resolution, terrain height data used by Mars-GRAM. Sample input and output of both the interactive and batch version of Mars-GRAM are presented.

  18. Travel time tomography with local image regularization by sparsity constrained dictionary learning

    NASA Astrophysics Data System (ADS)

    Bianco, M.; Gerstoft, P.

    2017-12-01

    We propose a regularization approach for 2D seismic travel time tomography which models small rectangular groups of slowness pixels, within an overall or `global' slowness image, as sparse linear combinations of atoms from a dictionary. The groups of slowness pixels are referred to as patches and a dictionary corresponds to a collection of functions or `atoms' describing the slowness in each patch. These functions could for example be wavelets.The patch regularization is incorporated into the global slowness image. The global image models the broad features, while the local patch images incorporate prior information from the dictionary. Further, high resolution slowness within patches is permitted if the travel times from the global estimates support it. The proposed approach is formulated as an algorithm, which is repeated until convergence is achieved: 1) From travel times, find the global slowness image with a minimum energy constraint on the pixel variance relative to a reference. 2) Find the patch level solutions to fit the global estimate as a sparse linear combination of dictionary atoms.3) Update the reference as the weighted average of the patch level solutions.This approach relies on the redundancy of the patches in the seismic image. Redundancy means that the patches are repetitions of a finite number of patterns, which are described by the dictionary atoms. Redundancy in the earth's structure was demonstrated in previous works in seismics where dictionaries of wavelet functions regularized inversion. We further exploit redundancy of the patches by using dictionary learning algorithms, a form of unsupervised machine learning, to estimate optimal dictionaries from the data in parallel with the inversion. We demonstrate our approach on densely, but irregularly sampled synthetic seismic images.

  19. Global Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnamoorthy, Sriram; Daily, Jeffrey A.; Vishnu, Abhinav

    2015-11-01

    Global Arrays (GA) is a distributed-memory programming model that allows for shared-memory-style programming combined with one-sided communication, to create a set of tools that combine high performance with ease-of-use. GA exposes a relatively straightforward programming abstraction, while supporting fully-distributed data structures, locality of reference, and high-performance communication. GA was originally formulated in the early 1990’s to provide a communication layer for the Northwest Chemistry (NWChem) suite of chemistry modeling codes that was being developed concurrently.

  20. MicroRNA Expression in Formalin-fixed Paraffin-embedded Cancer Tissue: Identifying Reference MicroRNAs and Variability.

    PubMed

    Boisen, Mogens Karsbøl; Dehlendorff, Christian; Linnemann, Dorte; Schultz, Nicolai Aagaard; Jensen, Benny Vittrup; Høgdall, Estrid Vilma Solyom; Johansen, Julia Sidenius

    2015-12-29

    Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. High-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering. We created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50% reduction over 20 years) but not in CRC. Formalin fixation for 2-6 days decreased miRNA expression 30-65%. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results. We identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE tissue samples. Formalin fixation decreased miRNA expression considerably, while the effect of increasing sample age was estimated to be negligible in a clinical setting.

  1. A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seokhyeon; Parinussa, Robert M.; Liu, Yi. Y.; Johnson, Fiona M.; Sharma, Ashish

    2015-08-01

    A method for combining two microwave satellite soil moisture products by maximizing the temporal correlation with a reference data set has been developed. The method was applied to two global soil moisture data sets, Japan Aerospace Exploration Agency (JAXA) and Land Parameter Retrieval Model (LPRM), retrieved from the Advanced Microwave Scanning Radiometer 2 observations for the period 2012-2014. A global comparison revealed superior results of the combined product compared to the individual products against the reference data set of ERA-Interim volumetric water content. The global mean temporal correlation coefficient of the combined product with this reference was 0.52 which outperforms the individual JAXA (0.35) as well as the LPRM (0.45) product. Additionally, the performance was evaluated against in situ observations from the International Soil Moisture Network. The combined data set showed a significant improvement in temporal correlation coefficients in the validation compared to JAXA and minor improvements for the LPRM product.

  2. Global retrieval of soil moisture and vegetation properties using data-driven methods

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, Nemesio; Richaume, Philippe; Kerr, Yann

    2017-04-01

    Data-driven methods such as neural networks (NNs) are a powerful tool to retrieve soil moisture from multi-wavelength remote sensing observations at global scale. In this presentation we will review a number of recent results regarding the retrieval of soil moisture with the Soil Moisture and Ocean Salinity (SMOS) satellite, either using SMOS brightness temperatures as input data for the retrieval or using SMOS soil moisture retrievals as reference dataset for the training. The presentation will discuss several possibilities for both the input datasets and the datasets to be used as reference for the supervised learning phase. Regarding the input datasets, it will be shown that NNs take advantage of the synergy of SMOS data and data from other sensors such as the Advanced Scatterometer (ASCAT, active microwaves) and MODIS (visible and infra red). NNs have also been successfully used to construct long time series of soil moisture from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and SMOS. A NN with input data from ASMR-E observations and SMOS soil moisture as reference for the training was used to construct a dataset sharing a similar climatology and without a significant bias with respect to SMOS soil moisture. Regarding the reference data to train the data-driven retrievals, we will show different possibilities depending on the application. Using actual in situ measurements is challenging at global scale due to the scarce distribution of sensors. In contrast, in situ measurements have been successfully used to retrieve SM at continental scale in North America, where the density of in situ measurement stations is high. Using global land surface models to train the NN constitute an interesting alternative to implement new remote sensing surface datasets. In addition, these datasets can be used to perform data assimilation into the model used as reference for the training. This approach has recently been tested at the European Centre for Medium-Range Weather Forecasts (ECMWF). Finally, retrievals using radiative transfer models can also be used as a reference SM dataset for the training phase. This approach was used to retrieve soil moisture from ASMR-E, as mentioned above, and also to implement the official European Space Agency (ESA) SMOS soil moisture product in Near-Real-Time. We will finish with a discussion of the retrieval of vegetation parameters from SMOS observations using data-driven methods.

  3. Testing MODFLOW-LGR for simulating flow around buried Quaternary valleys - synthetic test cases

    NASA Astrophysics Data System (ADS)

    Vilhelmsen, T. N.; Christensen, S.

    2009-12-01

    In this study the Local Grid Refinement (LGR) method developed for MODFLOW-2005 (Mehl and Hill, 2005) is utilized to describe groundwater flow in areas containing buried Quaternary valley structures. The tests are conducted as comparative analysis between simulations run with a globally refined model, a locally refined model, and a globally coarse model, respectively. The models vary from simple one layer models to more complex ones with up to 25 model layers. The comparisons of accuracy are conducted within the locally refined area and focus on water budgets, simulated heads, and simulated particle traces. Simulations made with the globally refined model are used as reference (regarded as “true” values). As expected, for all test cases the application of local grid refinement resulted in more accurate results than when using the globally coarse model. A significant advantage of utilizing MODFLOW-LGR was that it allows increased numbers of model layers to better resolve complex geology within local areas. This resulted in more accurate simulations than when using either a globally coarse model grid or a locally refined model with lower geological resolution. Improved accuracy in the latter case could not be expected beforehand because difference in geological resolution between the coarse parent model and the refined child model contradicts the assumptions of the Darcy weighted interpolation used in MODFLOW-LGR. With respect to model runtimes, it was sometimes found that the runtime for the locally refined model is much longer than for the globally refined model. This was the case even when the closure criteria were relaxed compared to the globally refined model. These results are contradictory to those presented by Mehl and Hill (2005). Furthermore, in the complex cases it took some testing (model runs) to identify the closure criteria and the damping factor that secured convergence, accurate solutions, and reasonable runtimes. For our cases this is judged to be a serious disadvantage of applying MODFLOW-LGR. Another disadvantage in the studied cases was that the MODFLOW-LGR results proved to be somewhat dependent on the correction method used at the parent-child model interface. This indicates that when applying MODFLOW-LGR there is a need for thorough and case-specific considerations regarding choice of correction method. References: Mehl, S. and M. C. Hill (2005). "MODFLOW-2005, THE U.S. GEOLOGICAL SURVEY MODULAR GROUND-WATER MODEL - DOCUMENTATION OF SHARED NODE LOCAL GRID REFINEMENT (LGR) AND THE BOUNDARY FLOW AND HEAD (BFH) PACKAGE " U.S. Geological Survey Techniques and Methods 6-A12

  4. Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001): Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Johnson, D. L.

    2001-01-01

    This document presents Mars Global Reference Atmospheric Model 2001 Version (Mars-GRAM 2001) and its new features. As with the previous version (mars-2000), all parameterizations fro temperature, pressure, density, and winds versus height, latitude, longitude, time of day, and season (Ls) use input data tables from NASA Ames Mars General Circulation Model (MGCM) for the surface through 80-km altitude and the University of Arizona Mars Thermospheric General Circulation Model (MTGCM) for 80 to 70 km. Mars-GRAM 2001 is based on topography from the Mars Orbiter Laser Altimeter (MOLA) and includes new MGCM data at the topographic surface. A new auxiliary program allows Mars-GRAM output to be used to compute shortwave (solar) and longwave (thermal) radiation at the surface and top of atmosphere. This memorandum includes instructions on obtaining Mars-GRAN source code and data files and for running the program. It also provides sample input and output and an example for incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code.

  5. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  6. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models

    PubMed Central

    Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-01-01

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods. PMID:28672795

  7. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models.

    PubMed

    Osada, Edward; Sośnica, Krzysztof; Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-06-24

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods.

  8. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang

    2017-02-01

    Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.

  9. Towards a first realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Sanchez, Laura; Ihde, Johannes; Pail, Roland; Gruber, Thomas; Barzaghi, Riccardo; Marti, Urs; Agren, Jonas; Sideris, Michael; Novak, Pavel

    2017-04-01

    The IAG Resolution No. 1 released during the IUGG 2015 General Assembly outlines five conventions for the definition of the International Height Reference System (IHRS). The definition is given in terms of potential parameters: the vertical coordinates are geopotential numbers referring to an equipotential surface of the Earth's gravity field realized by the conventional value W0 = 62 636 853.4 m2s-2. The spatial reference of the position P for the potential W(P) = W(X) is given by coordinates X of the International Terrestrial Reference Frame (ITRF). This Resolution also states that parameters, observations, and data shall be related to the mean tidal system/mean crust. At present, the main challenge is the realization of the IHRS; i.e., the establishment of the International Height Reference Frame (IHRF). It is expected that the IHRF follows the same structure as the ITRF: a global network with regional and national densifications, whose geopotential numbers referring to the global IHRS are known. According to the GGOS objectives, the target accuracy of these global geopotential numbers is 1 x 10-2 m2s-2. In practice, the precise realization of the IHRS is limited by different aspects; for instance, no unified standards or methods for the determination of the potential values W(P); application of different conventions for the gravity field modelling and the estimation of the position vectors X; inhomogeneous distribution of the geodetic infrastructure; restricted accessibility to terrestrial gravity data to increase the GGM resolution; insufficient modelling of geodynamic phenomena, etc. This may restrict the expected accuracy of 1 x 10-2 m2s-2 to some orders lower (from 10 x 10-2 m2s-2 to 100 x 10-2 m2s-2). This contribution discusses the required steps to outline a sustainable realization of the IHRS.

  10. The calculated influence of atmospheric conditions on solar cell ISC under direct and global solar irradiances

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L.

    1987-01-01

    Calculations of the influence of atmospheric conditions on solar cell short-circuit current (Isc) are made using a recently developed computer model for solar spectral irradiance distribution. The results isolate the dependence of Isc on changes in the spectral irradiance distribution without the direct influence of the total irradiance level. The calculated direct normal irradiance and percent diffuse irradiance are given as a reference to indicate the expected irradiance levels. This method can be applied to the calibration of photovoltaic reference cells. Graphic examples are provided for amorphous silicon and monocrystalline silicon solar cells under direct normal and global normal solar irradiances.

  11. History, Structure and Agency in Global Health Governance

    PubMed Central

    Gill, Stephen; Benatar, Solomon R.

    2017-01-01

    Ilona Kickbusch’s thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the "development of sustainability." PMID:28812808

  12. Global Reference Atmosphere Model (GRAM)

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Blocker, Rhonda; Justus, C. G.

    1993-01-01

    4D model provides atmospheric parameter values either automatically at positions along linear path or along any set of connected positions specified by user. Based on actual data, GRAM provides thermal wind shear for monthly mean winds, percent deviation from standard atmosphere, mean vertical wind, and perturbation data for each position.

  13. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  14. SIRGAS: the core geodetic infrastructure in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Brunini, C.; Drewes, H.; Mackern, V.; da Silva, A.

    2013-05-01

    Studying, understanding, and modelling geophysical phenomena, such as global change and geodynamics, require geodetic reference frames with (1) an order of accuracy higher than the magnitude of the effects we want to study, (2) consistency and reliability worldwide (the same accuracy everywhere), and (3) a long-term stability (the same order of accuracy at any time). The definition, realisation, maintenance, and wide-utilisation of the International Terrestrial Reference System (ITRS) are oriented to guarantee a globally unified geometric reference frame with reliability at the mm-level, i.e. the International Terrestrial Reference Frame (ITRF). The densification of the global ITRF in Latin America and The Caribbean is given by SIRGAS (Sistema de Referencia Geocéntrico para Las Américas), primary objective of which is to provide the most precise coordinates in the region. Therefore, SIRGAS is the backbone for all regional projects based on the generation, use, and analysis of geo-referenced data at national as well as at international level. Besides providing the reference for a wide range of scientific applications such as the monitoring of Earth's crust deformations, vertical movements, sea level variations, atmospheric studies, etc., SIRGAS is also the platform for practical applications such as engineering projects, digital administration of geographical data, geospatial data infrastructures, etc. According to this, the present contribution describes the main features of SIRGAS, giving special care to those challenges faced to continue providing the best possible, long-term stable and high-precise reference frame for Latin America and the Caribbean.

  15. Towards an purely data driven view on the global carbon cycle and its spatiotemporal variability

    NASA Astrophysics Data System (ADS)

    Zscheischler, Jakob; Mahecha, Miguel; Reichstein, Markus; Avitabile, Valerio; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Jung, Martin; Landschützer, Peter; Laruelle, Goulven; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Regnier, Pierre; Rödenbeck, Christian; Cuesta, Rosa Maria Roman; Valentini, Ricardo

    2015-04-01

    Constraining carbon (C) fluxes between the Earth's surface and the atmosphere at regional scale via observations is essential for understanding the Earth's carbon budget and predicting future atmospheric C concentrations. Carbon budgets have often been derived based on merging observations, statistical models and process-based models, for example in the Global Carbon Project (GCP). However, it would be helpful to derive global C budgets and fluxes at global scale as independent as possible from model assumptions to obtain an independent reference. Long-term in-situ measurements of land and ocean C stocks and fluxes have enabled the derivation of a new generation of data driven upscaled data products. Here, we combine a wide range of in-situ derived estimates of terrestrial and aquatic C fluxes for one decade. The data were produced and/or collected during the FP7 project GEOCARBON and include surface-atmosphere C fluxes from the terrestrial biosphere, fossil fuels, fires, land use change, rivers, lakes, estuaries and open ocean. By including spatially explicit uncertainties in each dataset we are able to identify regions that are well constrained by observations and areas where more measurements are required. Although the budget cannot be closed at the global scale, we provide, for the first time, global time-varying maps of the most important C fluxes, which are all directly derived from observations. The resulting spatiotemporal patterns of C fluxes and their uncertainties inform us about the needs for intensifying global C observation activities. Likewise, we provide priors for inversion exercises or to identify regions of high (and low) uncertainty of integrated C fluxes. We discuss the reasons for regions of high observational uncertainties, and for biases in the budget. Our data synthesis might also be used as empirical reference for other local and global C budgeting exercises.

  16. Nasadem Global Elevation Model: Methods and Progress

    NASA Astrophysics Data System (ADS)

    Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; Nguyen, Q.; Rosen, P.; Shimada, J.; Simard, M.; Tung, W.

    2016-06-01

    NASADEM is a near-global elevation model that is being produced primarily by completely reprocessing the Shuttle Radar Topography Mission (SRTM) radar data and then merging it with refined ASTER GDEM elevations. The new and improved SRTM elevations in NASADEM result from better vertical control of each SRTM data swath via reference to ICESat elevations and from SRTM void reductions using advanced interferometric unwrapping algorithms. Remnant voids will be filled primarily by GDEM3, but with reduction of GDEM glitches (mostly related to clouds) and therefore with only minor need for secondary sources of fill.

  17. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration’s Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ∼100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world. While the study revealed the potential of GDAS ETo for large-scale hydrological applications, site-specific use of GDAS ETo in complex hydro-climatic regions such as coastal areas and rugged terrain may require the application of bias correction and/or disaggregation of the GDAS ETo using downscaling techniques.

  18. "Technical note. Harmonization of the multi-scale multi-model activities HTAP, AQMEII and MICS-Asia: simulations, emission inventories, boundary conditions and output formats." For submission to ACP Special Issue on "Global and regional assessment of intercontinental transport of air pollution: results from HTAP, AQMEII and MICS"

    EPA Science Inventory

    The ACP Special Issue is being organized to draw together analysis of a set of cooperative modeling experiments (referred to as HTAP2). The purpose of this technical note is to provide a common description of the experimental design and set up for HTAP2 that can be referred to b...

  19. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  20. Global continental and ocean basin reconstructions since 200 Ma

    NASA Astrophysics Data System (ADS)

    Seton, M.; Müller, R. D.; Zahirovic, S.; Gaina, C.; Torsvik, T.; Shephard, G.; Talsma, A.; Gurnis, M.; Turner, M.; Maus, S.; Chandler, M.

    2012-07-01

    Global plate motion models provide a spatial and temporal framework for geological data and have been effective tools for exploring processes occurring at the earth's surface. However, published models either have insufficient temporal coverage or fail to treat tectonic plates in a self-consistent manner. They usually consider the motions of selected features attached to tectonic plates, such as continents, but generally do not explicitly account for the continuous evolution of plate boundaries through time. In order to explore the coupling between the surface and mantle, plate models are required that extend over at least a few hundred million years and treat plates as dynamic features with dynamically evolving plate boundaries. We have constructed a new type of global plate motion model consisting of a set of continuously-closing topological plate polygons with associated plate boundaries and plate velocities since the break-up of the supercontinent Pangea. Our model is underpinned by plate motions derived from reconstructing the seafloor-spreading history of the ocean basins and motions of the continents and utilizes a hybrid absolute reference frame, based on a moving hotspot model for the last 100 Ma, and a true-polar wander corrected paleomagnetic model for 200 to 100 Ma. Detailed regional geological and geophysical observations constrain plate boundary inception or cessation, and time-dependent geometry. Although our plate model is primarily designed as a reference model for a new generation of geodynamic studies by providing the surface boundary conditions for the deep earth, it is also useful for studies in disparate fields when a framework is needed for analyzing and interpreting spatio-temporal data.

  1. Untangling Consequential Futures: Discovering Self-Consistent Regional and Global Multi-Sector Change Scenarios

    NASA Astrophysics Data System (ADS)

    Lamontagne, J. R.; Reed, P. M.

    2017-12-01

    Impacts and adaptations to global change largely occur at regional scales, yet they are shaped globally through the interdependent evolution of the climate, energy, agriculture, and industrial systems. It is important for regional actors to account for the impacts of global changes on their systems in a globally consistent but regionally relevant way. This can be challenging because emerging global reference scenarios may not reflect regional challenges. Likewise, regionally specific scenarios may miss important global feedbacks. In this work, we contribute a scenario discovery framework to identify regionally-specific decision relevant scenarios from an ensemble of scenarios of global change. To this end, we generated a large ensemble of time evolving regional, multi-sector global change scenarios by a full factorial sampling of the underlying assumptions in the emerging shared socio-economic pathways (SSPs), using the Global Change Assessment Model (GCAM). Statistical and visual analytics were then used to discover which SSP assumptions are particularly consequential for various regions, considering a broad range of time-evolving metrics that encompass multiple spatial scales and sectors. In an illustrative examples, we identify the most important global change narratives to inform water resource scenarios for several geographic regions using the proposed scenario discovery framework. Our results highlight the importance of demographic and agricultural evolution compared to technical improvements in the energy sector. We show that narrowly sampling a few canonical reference scenarios provides a very narrow view of the consequence space, increasing the risk of tacitly ignoring major impacts. Even optimistic scenarios contain unintended, disproportionate regional impacts and intergenerational transfers of consequence. Formulating consequential scenarios of deeply and broadly uncertain futures requires a better exploration of which quantitative measures of consequences are important, for whom are they important, where, and when. To this end, we have contributed a large database of climate change futures that can support `backwards' scenario generation techniques, that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.

  2. Thermal radiation transfer calculations in combustion fields using the SLW model coupled with a modified reference approach

    NASA Astrophysics Data System (ADS)

    Darbandi, Masoud; Abrar, Bagher

    2018-01-01

    The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.

  3. A bilayer Double Semion model with symmetry-enriched topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, L., E-mail: lauraort@ucm.es; Martin-Delgado, M.A.

    2016-12-15

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topological Order with a global spin–flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trivial braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariantmore » under the flavour symmetry and the well-known spin flip symmetry.« less

  4. GPS-Only Terrestrial Reference Frame Based on a Global Reprocessing

    NASA Astrophysics Data System (ADS)

    Dietrich, R.; Rothacher, M.; Ruelke, A.; Fritsche, M.; Steigenberger, P.

    2007-12-01

    The realization of the International Terrestrial Reference System (ITRS) with highest accuracy and stability is fundamental and crucial for applications in geodesy, geodynamics, geophysics and global change. In a joint effort TU Dresden and TU Munich/GFZ Potsdam reprocessed a global GPS network of more than 200 stations. As a contribution to an ITRS realization daily normal equations from 1994 to 2005 were rigorously combined in order to determine a global GPS-only reference frame (PDR05/Potsdam-Dresden-Reprocessing Reference Frame). We present a realization of the global terrestrial reference system which follows the center of mass approach in consideration of the load-induced deformation of the Earth's crust due to the redistribution of surface masses. The stability of our reference frame will be evaluated based on the obtained long-term trends of station coordinates, the load-induced deformation estimates and the homogeneous time series of station positions. We will compare our solution with other recent terrestrial reference system realizations and give some conclusions for future realizations of the ITRS.

  5. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data

    NASA Astrophysics Data System (ADS)

    Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim

    2018-05-01

    The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.

  6. Reference aquaplanet climate in the Community Atmosphere Model, Version 5

    DOE PAGES

    Medeiros, Brian; Williamson, David L.; Olson, Jerry G.

    2016-03-18

    In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less

  7. Assessment of clear sky radiative fluxes in CMIP5 climate models using surface observations from BSRN

    NASA Astrophysics Data System (ADS)

    Wild, M.; Hakuba, M. Z.; Folini, D.; Ott, P.; Long, C. N.

    2017-12-01

    Clear sky fluxes in the latest generation of Global Climate Models (GCM) from CMIP5 still vary largely particularly at the Earth's surface, covering in their global means a range of 16 and 24 Wm-2 in the surface downward clear sky shortwave (SW) and longwave radiation, respectively. We assess these fluxes with monthly clear sky reference climatologies derived from more than 40 Baseline Surface Radiation Network (BSRN) sites based on Long and Ackermann (2000) and Hakuba et al. (2015). The comparison is complicated by the fact that the monthly SW clear sky BSRN reference climatologies are inferred from measurements under true cloud-free conditions, whereas the GCM clear sky fluxes are calculated continuously at every timestep solely by removing the clouds, yet otherwise keeping the prevailing atmospheric composition (e.g. water vapor, temperature, aerosols) during the cloudy conditions. This induces the risk of biases in the GCMs just due to the additional sampling of clear sky fluxes calculated under atmospheric conditions representative for cloudy situations. Thereby, a wet bias may be expected in the GCMs compared to the observational references, which may induce spurious low biases in the downward clear sky SW fluxes. To estimate the magnitude of these spurious biases in the available monthly mean fields from 40 CMIP5 models, we used their respective multi-century control runs, and searched therein for each month and each BSRN station the month with the lowest cloud cover. The deviations of the clear sky fluxes in this month from their long-term means have then be used as indicators of the magnitude of the abovementioned sampling biases and as correction factors for an appropriate comparison with the BSRN climatologies, individually applied for each model and BSRN site. The overall correction is on the order of 2 Wm-2. This revises our best estimate for the global mean surface downward SW clear sky radiation, previously at 249 Wm-2 infered from the GCM clear sky flux fields and their biases compared to the BSRN climatologies, now to 247 Wm-2 including this additional correction. 34 out of 40 CMIP5 GCMs exceed this reference value. With a global mean surface albedo of 13 % and net TOA SW clear sky flux of 287 Wm-2 from CERES-EBAF this results in a global mean clear sky surface and atmospheric SW absorption of 214 and 73 Wm-2, respectively.

  8. Venus Global Reference Atmospheric Model Status and Planned Updates

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Dwyer Cianciolo, A. M.

    2017-01-01

    The Venus Global Reference Atmospheric Model (Venus-GRAM) was originally developed in 2004 under funding from NASA's In Space Propulsion (ISP) Aerocapture Project to support mission studies at the planet. Many proposals, including NASA New Frontiers and Discovery, as well as other studies have used Venus-GRAM to design missions and assess system robustness. After Venus-GRAM's release in 2005, several missions to Venus have generated a wealth of additional atmospheric data, yet few model updates have been made to Venus-GRAM. This paper serves to address three areas: (1) to present the current status of Venus-GRAM, (2) to identify new sources of data and other upgrades that need to be incorporated to maintain Venus-GRAM credibility and (3) to identify additional Venus-GRAM options and features that could be included to increase its capability. This effort will de-pend on understanding the needs of the user community, obtaining new modeling data and establishing a dedicated funding source to support continual up-grades. This paper is intended to initiate discussion that can result in an upgraded and validated Venus-GRAM being available to future studies and NASA proposals.

  9. A GIS tool for modelling annual diffuse infiltration on a plot scale

    NASA Astrophysics Data System (ADS)

    España, Salvador; Alcalá, Francisco J.; Vallejos, Ángela; Pulido-Bosch, Antonio

    2013-04-01

    ArcB is a GIS tool for modelling annual diffuse infiltration (RP) from precipitation (P) on a plot scale that uses ArcObjects as the programming language to incorporate equations and boundary conditions for the water-balance consistency. Because detailed weather, soil, and vegetation data are often missing, ArcB uses well-known non-global models such as Hargreaves for daily potential evapotranspiration and Budyko for annual actual evapotranspiration (EA), as well as the SCS Curve Number procedure for 24-h plot runoff (RO). Annual RP is quantified as the difference in annual P, EA, and RO. Because the use of non-global models for EA may induce suboptimal RP results, ArcB allows corrections of EA estimates by comparisons with data from a reference station. In a semiarid heterogeneous region in south-eastern Spain, the uncertainty of RO and RP was lowered to 4% and 2%, respectively, when correcting EA. ArcObjects is a versatile programming language which allows advanced users to incorporate more complex formulations for more accurate results as detailed data is acquired and to develop routines for calibration when reference data exist.

  10. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  11. Global precipitation measurements for validating climate models

    NASA Astrophysics Data System (ADS)

    Tapiador, F. J.; Navarro, A.; Levizzani, V.; García-Ortega, E.; Huffman, G. J.; Kidd, C.; Kucera, P. A.; Kummerow, C. D.; Masunaga, H.; Petersen, W. A.; Roca, R.; Sánchez, J.-L.; Tao, W.-K.; Turk, F. J.

    2017-11-01

    The advent of global precipitation data sets with increasing temporal span has made it possible to use them for validating climate models. In order to fulfill the requirement of global coverage, existing products integrate satellite-derived retrievals from many sensors with direct ground observations (gauges, disdrometers, radars), which are used as reference for the satellites. While the resulting product can be deemed as the best-available source of quality validation data, awareness of the limitations of such data sets is important to avoid extracting wrong or unsubstantiated conclusions when assessing climate model abilities. This paper provides guidance on the use of precipitation data sets for climate research, including model validation and verification for improving physical parameterizations. The strengths and limitations of the data sets for climate modeling applications are presented, and a protocol for quality assurance of both observational databases and models is discussed. The paper helps elaborating the recent IPCC AR5 acknowledgment of large observational uncertainties in precipitation observations for climate model validation.

  12. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com; Ometto, Aldo Roberto; Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP

    Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, thismore » paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the development or adaptation of regional methodological procedures for Brazil. - Highlights: • A discussion is made on performing regionalized impact assessments using spatial differentiation in LCA. • A review is made of 20 characterization models for land use impacts in Life Cycle Impact Assessment. • Four characterization models are recommended according to different land use impact pathways for application in Brazil.« less

  13. The first geocenter estimation results using GPS measurements

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S. C.

    1990-01-01

    The center of mass of the Earth is the natural and unambiguous origin of a geocentric satellite dynamical system. A geocentric reference frame assumes that the origin of its coordinate axes is at the geocenter, in which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of Earth can be formulated. In practice, however, a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. A fast and accurate method of determining origin offset from the geocenter is highly desirable. Global Positioning System (GPS) measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the first Central and South America (Casa Uno) global GPS experiment were studied to demonstrate the ability of recovering the geocenter location with present-day GPS satellites and receivers.

  14. Theory and Realization of Global Terrestrial Reference Systems

    NASA Technical Reports Server (NTRS)

    Ma, C.; Bolotin, S.; Gipson, J.; Gordon, D.; Le Bail, K.; MacMillan, D.

    2010-01-01

    Comparison of realizations of the terrestrial reference frame. IGN and DGFI both generated realizations of the terrestrial reference frame under the auspices of the IERS from combination of the same space geodetic data. We examined both results for VLBI sites using the full geodetic VLBI data set with respect to site positions and velocities and time series of station positions, baselines and Earth orientation parameters. One of the difficulties encountered was matching episodic breaks and periods of non-linear motion of the two realizations with the VLBI models. Our analysis and conclusions will be discussed.

  15. Proposed reference models for nitrous oxide and methane in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Taylor, F. W.; Dudhia, A.; Rodgers, C. D.

    1989-01-01

    Data from the Stratospheric and Mesospheric Sounder (SAMS) on the Nimbus 7 satellite, for the period from Jan. 1979 - Dec. 1981, are used to prepare a reference model for the long-lived trace gases, methane and nitrous oxide, in the stratosphere. The model is presented in tabular form on seventeen pressure surfaces from 20 to 0.1 mb, in 10 degree latitude bins from 50S to 70N, and for each month of the year. The means by which the data quality and interannual variability, and some of the more interesting globally and seasonally variable features of the data are discussed briefly.

  16. A new governance space for health

    PubMed Central

    Kickbusch, Ilona; Szabo, Martina Marianna Cassar

    2014-01-01

    Global health refers to ‘those health issues which transcend national boundaries and governments and call for actions on the global forces and global flows that determine the health of people’. (Kickbusch 2006) Governance in this trans-national and cross-cutting arena can be analyzed along three political spaces: global health governance, global governance for health, and governance for global health. It is argued that the management of the interface between these three political spaces of governance in the global public health domain is becoming increasingly important in order to move the global health agenda forward. Global health governance refers mainly to those institutions and processes of governance which are related to an explicit health mandate, such as the World Health Organization; global governance for health refers mainly to those institutions and processes of global governance which have a direct and indirect health impact, such as the United Nations, World Trade Organization or the Human Rights Council; governance for global health refers to the institutions and mechanisms established at the national and regional level to contribute to global health governance and/or to governance for global health – such as national global health strategies or regional strategies for global health. It can also refer to club strategies, such as agreements by a group of countries such as the BRICS. In all three political spaces, the involvement of a multitude of state and non-state actors has become the norm – that is why issues of legitimacy, accountability and transparency have moved to the fore. The transnational nature of global health will require the engagement of all actors to produce global public goods for health (GPGH) and to ensure a rules-based and reliably financed global public health domain. PMID:24560259

  17. A new governance space for health.

    PubMed

    Kickbusch, Ilona; Szabo, Martina Marianna Cassar

    2014-01-01

    Global health refers to 'those health issues which transcend national boundaries and governments and call for actions on the global forces and global flows that determine the health of people'. (Kickbusch 2006) Governance in this trans-national and cross-cutting arena can be analyzed along three political spaces: global health governance, global governance for health, and governance for global health. It is argued that the management of the interface between these three political spaces of governance in the global public health domain is becoming increasingly important in order to move the global health agenda forward. Global health governance refers mainly to those institutions and processes of governance which are related to an explicit health mandate, such as the World Health Organization; global governance for health refers mainly to those institutions and processes of global governance which have a direct and indirect health impact, such as the United Nations, World Trade Organization or the Human Rights Council; governance for global health refers to the institutions and mechanisms established at the national and regional level to contribute to global health governance and/or to governance for global health--such as national global health strategies or regional strategies for global health. It can also refer to club strategies, such as agreements by a group of countries such as the BRICS. In all three political spaces, the involvement of a multitude of state and non-state actors has become the norm--that is why issues of legitimacy, accountability and transparency have moved to the fore. The transnational nature of global health will require the engagement of all actors to produce global public goods for health (GPGH) and to ensure a rules-based and reliably financed global public health domain.

  18. The Global Flood Model

    NASA Astrophysics Data System (ADS)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage, the core specifications and reference version of the GFM will be licensed free. - for commercial use, users (such as software companies, engineering companies and business or risk management consultancies) will pay an annual fee, contributing to upkeep and maintenance. The GFM demonstrator will be shown and discussed. The initiative is seeking active involvement of the academic community.

  19. Comparisons of Radiative Flux Distributions from Satellite Observations and Global Models

    NASA Astrophysics Data System (ADS)

    Raschke, Ehrhard; Kinne, Stefan; Wild, Martin; Stackhouse, Paul; Rossow, Bill

    2014-05-01

    Radiative flux distributions at the top of the atmosphere (TOA) and at the surface are compared between typical data from satellite observations and from global modeling. Averages of CERES, ISCCP and SRB data-products (for the same 4-year period) represent satellite observations. Central values of IPCC-4AR output (over a 12-year period) represent global modeling. At TOA, differences are dominated by differences for cloud-effects, which are extracted from the differences between all-sky and clear-sky radiative flux products. As satellite data are considered as TOA reference, these differences document the poor representation of clouds in global modeling, especially for low altitude clouds over oceans. At the surface the differences, caused by the different cloud treatment are overlaid by a general offset. Satellite products suggest a ca 15Wm-2 stronger surface net-imbalance (and with it stronger precipitation). Since surface products of satellite and modeling are based on simulations and many assumptions, this difference has remained an open issue. BSRN surface monitoring is too short and too sparsely distributed for clear answers to provide a reliable basis for validation.

  20. Hydrological Excitations of Polar Motion Derived from Different Variables of Fgoals - g2 Climate Model

    NASA Astrophysics Data System (ADS)

    Winska, M.

    2016-12-01

    The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.

  1. Long-run evolution of the global economy: 2. Hindcasts of innovation and growth

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2015-03-01

    Long-range climate forecasts rely upon integrated assessment models that link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework, outlined in Part 1, that is based on physical principles rather than explicitly resolved societal dynamics. Relative to a reference model of persistence in trends, model hindcasts that are initialized with data from 1950 to 1960 reproduce trends in global economic production and energy consumption between 2000 and 2010 with a skill score greater than 90%. In part, such high skill appears to be because civilization has responded to an impulse of fossil fuel discovery in the mid-twentieth century. Forecasting the coming century will be more of a challenge because the effect of the impulse appears to have nearly run its course. Nonetheless, the model offers physically constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  2. Weighting the Parameters, a Response to Bancel׳s "Searching for Global Consciousness: A Seventeen Year Exploration".

    PubMed

    Nelson, Roger

    This brief report is a response to the article by Peter Bancel entitled "Searching for Global Consciousness: A Seventeen Year Exploration" in which he compares a goal orientation (GO) model with a field-like model he refers to as global consciousness (GC). He first attempts to exclude the latter, and then presents selected tests that compare the models. While the article appears to provide support for Bancel׳s conclusion that GC cannot explain the data and must be supplanted by GO, there are good reasons to believe this conclusion is premature at best. I address the vulnerable assumptions underlying Bancel׳s rejection of GC, and then provide multiple examples of parametric structure in the data, which cannot be attributed to GO, but are amenable to explanation by field-like models. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Production of synthetic winds for the Global Reference Atmosphere Model (GRAM)

    DOT National Transportation Integrated Search

    2010-12-15

    The Aerospace Corporation was tasked by the Volpe National Transportation systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), in developing a method based on Princip...

  4. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  5. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model

    NASA Astrophysics Data System (ADS)

    Brown, Steven; Bilitza, Dieter; Yiǧit, Erdal

    2018-06-01

    A new monthly ionospheric index, IGNS, is presented to improve the representation of the solar cycle variation of the ionospheric F2 peak plasma frequency, foF2. IGNS is calculated using a methodology similar to the construction of the "global effective sunspot number", IG, given by Liu et al. (1983) but selects ionosonde observations based on hemispheres. We incorporated the updated index into the International Reference Ionosphere (IRI) model and compared the foF2 model predictions with global ionospheric observations. We also investigated the influence of the underlying foF2 model on the IG index. IRI has two options for foF2 specification, the CCIR-66 and URSI-88 foF2 models. For the first time, we have calculated IG using URSI-88 and assessed the impact on model predictions. Through a retrospective model-data comparison, results show that the inclusion of the new monthly IGNS index in place of the current 12-month smoothed IG index reduce the foF2 model prediction errors by nearly a factor of two. These results apply to both day-time and nightime predictions. This is due to an overall improved prediction of foF2 seasonal and solar cycle variations in the different hemispheres.

  6. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Ping; Bilitza, Dieter; Liu, Jann-Yenq; Caton, Ronald; Chang, Loren C.; Yeh, Wen-Hao

    2017-09-01

    Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.

  7. Domain size sensitivities of landfalling eastern Pacific atmospheric rivers

    NASA Astrophysics Data System (ADS)

    McClenny, E. E.; Ullrich, P. A.; Grotjahn, R.; Guan, B.; Waliser, D. E.

    2017-12-01

    Atmospheric rivers (ARs) concentrate a majority of mid-latitude latent heat transport into narrow bands. ARs making landfall along the North American coast typically originate in the waters surrounding Hawaii. We explore here the effects of explicitly simulating this "genesis region" on AR characteristics. We do this using two models and three domains centered on the North American coast. The Weather Research and Forecast (WRF) model, forced by National Center for Environmental Prediction Final Reanalysis data, provides a representative regional model. The simulation domains include: 1. Just off the coastline (100-130W), 2. The coastline to the Pacific just east of Hawaii (100-155W), and 3. The coastline to the Pacific west of Hawaii (100-180W). The Variable Resolution Community Earth System Model simulates ARs while preserving global interactions. In this global model, "domain" refers to the mesh refinement region, each of which corresponds to one of the three previously described WRF domains. We compare ARs from the wet season (October-April) for water years 2009-2017 in the test models against those found in the Modern Era Retrospective Reanalysis 2 (MERRA2). We objectively detect events with the global AR detection algorithm introduced in Guan and Waliser (2015). Comparisons between all model configurations and the reference MERRA2 data will be assessed by characteristics including landfall location (meridional distributions, including quartile ranges and standard deviations of landfalls across the coast), as well as vapor flux and precipitation (in terms of both the contribution of ARs to the larger regional climatology and any differences in the intensity of individual AR events across runs).

  8. Reference evapotranspiration forecasting based on local meteorological and global climate information screened by partial mutual information

    NASA Astrophysics Data System (ADS)

    Fang, Wei; Huang, Shengzhi; Huang, Qiang; Huang, Guohe; Meng, Erhao; Luan, Jinkai

    2018-06-01

    In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant predictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient input selection technique is crucial for decreasing model data requirements. Then, the interconnection between global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional predictors to comprise information regarding ET0, which ought to be provided by meteorological data unavailable. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets. The teleconnection analysis identifies the correlation between Nino 1 + 2 and regional ET0, indicating influences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1 + 2 as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models (MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and incorporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting models suitable for data-scarce regions.

  9. Ionospheric error contribution to GNSS single-frequency navigation at the 2014 solar maximum

    NASA Astrophysics Data System (ADS)

    Orus Perez, Raul

    2017-04-01

    For single-frequency users of the global satellite navigation system (GNSS), one of the main error contributors is the ionospheric delay, which impacts the received signals. As is well-known, GPS and Galileo transmit global models to correct the ionospheric delay, while the international GNSS service (IGS) computes precise post-process global ionospheric maps (GIM) that are considered reference ionospheres. Moreover, accurate ionospheric maps have been recently introduced, which allow for the fast convergence of the real-time precise point position (PPP) globally. Therefore, testing of the ionospheric models is a key issue for code-based single-frequency users, which constitute the main user segment. Therefore, the testing proposed in this paper is straightforward and uses the PPP modeling applied to single- and dual-frequency code observations worldwide for 2014. The usage of PPP modeling allows us to quantify—for dual-frequency users—the degradation of the navigation solutions caused by noise and multipath with respect to the different ionospheric modeling solutions, and allows us, in turn, to obtain an independent assessment of the ionospheric models. Compared to the dual-frequency solutions, the GPS and Galileo ionospheric models present worse global performance, with horizontal root mean square (RMS) differences of 1.04 and 0.49 m and vertical RMS differences of 0.83 and 0.40 m, respectively. While very precise global ionospheric models can improve the dual-frequency solution globally, resulting in a horizontal RMS difference of 0.60 m and a vertical RMS difference of 0.74 m, they exhibit a strong dependence on the geographical location and ionospheric activity.

  10. Foundations for a multiscale collaborative Earth model

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Peter, Daniel; Sager, Korbinian; Simutė, Saulė; Ermert, Laura; Krischer, Lion; Fichtner, Andreas

    2016-01-01

    We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage of the CSEM development, the broad global updates mostly act to remove artefacts from the assembly of the initial CSEM. During the future evolution of the CSEM, the reference data set will be used to account for the influence of small-scale refinements on large-scale global structure. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof of concept, future refinements and additions will require community involvement, which is welcome at this stage already.

  11. Global Geopotential Modelling from Satellite-to-Satellite Tracking,

    DTIC Science & Technology

    1981-10-01

    measured range-rate sampled at regular intervals. The expansion of the potential has been truncated at degree n = 331, because little information on...averaging interval is 4 s , and sampling takes place every 4 s ; if residual data are used, with respect to a reference model of specified accuracy, complete...LEGFDN, MODEL, andNVAR... .. ....... 93 B-4 Sample Output .. .. .. .... ..... ..... ..... 94 Appendix C: Detailed Listings Degree by Degree

  12. Localisation, Globalisation and SMEs in European Tourism: The "Virtual Enterprise" Model of Intervention.

    ERIC Educational Resources Information Center

    Davenport, Elisabeth

    2000-01-01

    Discussion of the effect of globalization on SMEs (small and medium enterprises) in Europe focuses on a case study of a current European Commission (EC) project, Net Quality, which is based on the virtual enterprise as an intervention model that may encourage small businesses to cooperate in strategic ventures. (Contains 29 references.)…

  13. Model reference tracking control of an aircraft: a robust adaptive approach

    NASA Astrophysics Data System (ADS)

    Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan

    2017-05-01

    This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.

  14. Ellipsoidal Harmonic Vertical Deflections. Global and Regional Modeling of The Horizontal Derivative of The Terrestrial Garvity Field

    NASA Astrophysics Data System (ADS)

    Grafarend, E. W.; Ardalan, A.; Finn, G.

    In terms of elliptic coordinates of Jacobi type (longitude, latitude, semi-minor axis) the horizontal derivative is computed as a linear operator acting on an ellipsoidal har- monic disturbing/incremental gravitational potential. Such disturbing potential is de- fined with respect to the Somigliana-Pizzetti Reference Potential, the potential field of a level ellipsoid, and the International Reference Ellipsoid/WGS84 or World Geode- tic Datum 2000/WGD2000. Case studies of those vertical deflections on a global as well as regional scale are presented which take advantage of SEGEN (Special Ellipsoidal Gravity Earth Normal: ellipsoidal harmonics expansion 130321 coeffi- cients: http://www.uni-stuttgart.de/gi/research/paper/coefficients/coefficients.zip) and of CENT (precise centrifugal potential)

  15. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are solved as constant emissions over the entire time period. The Kalman Filter also produces emission uncertainties which quantify the ability of the observing network to constrain different processes. The sensitivity of the inversion to different observing sites and model sampling strategies is also tested. In general, the inversion reduces coal and gas emissions, and increases rice and biomass burning emissions relative to the reference case. Increases in both tropical and northern wetland emissions are found to have dominated the strong atmospheric methane increase in 1998. Northern wetlands are the best constrained processes, while tropical regions are poorly constrained and will require additional observations in the future for significant uncertainty reduction. The results of this study also suggest that interannual varying transport like NCEP and high-frequency measurements should be used when solving for methane emissions at monthly time resolution. Better estimates of global OH fluctuations are also necessary to fully describe the interannual behavior of methane observations.

  16. Analyzing Global Components in Developmental Dyscalculia and Dyslexia.

    PubMed

    Filippo, Gloria Di; Zoccolotti, Pierluigi

    2018-01-01

    The study examined whether developmental deficits in reading and numerical skills could be expressed in terms of global factors by reference to the rate and amount (RAM) and difference engine (DEM) models. From a sample of 325 fifth grade children, we identified 5 children with dyslexia, 16 with dyscalculia, 7 with a "mixed pattern," and 49 control children. Children were asked to read aloud words presented individually that varied for frequency and length and to respond (either vocally or manually) to a series of simple number tasks (addition, subtraction, number reading, and number comparisons). Reaction times were measured. Results indicated that the deficit of children with dyscalculia and children with a mixed pattern on numerical tasks could be explained by a single global factor, similarly to the reading deficit shown by children with dyslexia. As predicted by the DEM, increases in task difficulty were accompanied by a corresponding increase in inter-individual variability for both the reading and numerical tasks. These relationships were constant across the four groups of children but differed in terms of slope and intercept on the x -axis, indicating that two different general rules underlie performance in reading and numerical skills. The study shows for the first time that, as previously shown for reading, also numerical performance can be explained with reference to a global factor. The advantage of this approach is that it takes into account the over-additivity effect, i.e., the presence of larger group differences in the case of more difficult conditions over and above the characteristics of the experimental conditions. It is concluded that reference to models such as the RAM and DEM can be useful in delineating the characteristics of the dyscalculic deficit as well as in the description of co-morbid disturbances, as in the case of dyslexia and dyscalculia.

  17. An integrated model of water resources optimization allocation based on projection pursuit model - Grey wolf optimization method in a transboundary river basin

    NASA Astrophysics Data System (ADS)

    Yu, Sen; Lu, Hongwei

    2018-04-01

    Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.

  18. Uncertainty of the 20th century sea-level rise due to vertical land motion errors

    NASA Astrophysics Data System (ADS)

    Santamaría-Gómez, Alvaro; Gravelle, Médéric; Dangendorf, Sönke; Marcos, Marta; Spada, Giorgio; Wöppelmann, Guy

    2017-09-01

    Assessing the vertical land motion (VLM) at tide gauges (TG) is crucial to understanding global and regional mean sea-level changes (SLC) over the last century. However, estimating VLM with accuracy better than a few tenths of a millimeter per year is not a trivial undertaking and many factors, including the reference frame uncertainty, must be considered. Using a novel reconstruction approach and updated geodetic VLM corrections, we found the terrestrial reference frame and the estimated VLM uncertainty may contribute to the global SLC rate error by ± 0.2 mmyr-1. In addition, a spurious global SLC acceleration may be introduced up to ± 4.8 ×10-3 mmyr-2. Regional SLC rate and acceleration errors may be inflated by a factor 3 compared to the global. The difference of VLM from two independent Glacio-Isostatic Adjustment models introduces global SLC rate and acceleration biases at the level of ± 0.1 mmyr-1 and 2.8 ×10-3 mmyr-2, increasing up to 0.5 mm yr-1 and 9 ×10-3 mmyr-2 for the regional SLC. Errors in VLM corrections need to be budgeted when considering past and future SLC scenarios.

  19. Spatial database for a global assessment of undiscovered copper resources: Chapter Z in Global mineral resource assessment

    USGS Publications Warehouse

    Dicken, Connie L.; Dunlap, Pamela; Parks, Heather L.; Hammarstrom, Jane M.; Zientek, Michael L.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.

    2016-07-13

    As part of the first-ever U.S. Geological Survey global assessment of undiscovered copper resources, data common to several regional spatial databases published by the U.S. Geological Survey, including one report from Finland and one from Greenland, were standardized, updated, and compiled into a global copper resource database. This integrated collection of spatial databases provides location, geologic and mineral resource data, and source references for deposits, significant prospects, and areas permissive for undiscovered deposits of both porphyry copper and sediment-hosted copper. The copper resource database allows for efficient modeling on a global scale in a geographic information system (GIS) and is provided in an Esri ArcGIS file geodatabase format.

  20. On the global well-posedness theory for a class of PDE models for criminal activity

    NASA Astrophysics Data System (ADS)

    Rodríguez, N.

    2013-10-01

    We study a class of ‘reaction-advection-diffusion’ system of partial differential equations, which can be taken as basic models for criminal activity. This class of models are based on routine activity theory and other theories, such as the ‘repeat and near-repeat victimization effect’ and were first introduced in Short et al. (2008) [11]. In these models the criminal density is advected by a velocity field that depends on a scalar field, which measures the appeal to commit a crime. We refer to this scalar field as the attractiveness field. We prove local well-posedness of solutions for the general class of models. Furthermore, we prove global well-posedness of solutions to a fully-parabolic system with a velocity field that depends logarithmically on the attractiveness field. Our final result is the global well-posedness of solutions the fully-parabolic system with velocity field that depends linearly on the attractiveness field for small initial mass.

  1. Shuttle derived atmospheric density model. Part 1: Comparisons of the various ambient atmospheric source data with derived parameters from the first twelve STS entry flights, a data package for AOTV atmospheric development

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Troutman, P. A.

    1984-01-01

    The ambient atmospheric parameter comparisons versus derived values from the first twelve Space Shuttle Orbiter entry flights are presented. Available flights, flight data products, and data sources utilized are reviewed. Comparisons are presented based on remote meteorological measurements as well as two comprehensive models which incorporate latitudinal and seasonal effects. These are the Air Force 1978 Reference Atmosphere and the Marshall Space Flight Center Global Reference Model (GRAM). Atmospheric structure sensible in the Shuttle flight data is shown and discussed. A model for consideration in Aero-assisted Orbital Transfer Vehicle (AOTV) trajectory analysis, proposed to modify the GRAM data to emulate Shuttle experiments.

  2. The Determination of Earth Orientation by VLBI and GNSS: Principles and Results

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole

    2017-10-01

    The Earth Orientation Parameters (EOP) connect the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS). These parameters, i.e., Universal Time, UT1, and pole coordinates in the ITRS and in the GCRS, describe the irregularities of the Earth's rotation. They are mainly determined by two modern astro-geodetic techniques, VLBI (Very Long Baseline Radio Interferometry) on extragalactic radio sources, which is used to realize and maintain the International Celestial Reference System (ICRS), and Global Navigation Satellite System (GNSS), especially GPS (Global Positioning System), which has an important contribution to the realization of the ITRS. The aim of this presentation is twofold: to present the modern bases for the consider- ation of Earth orientation and to discuss how the principles of VLBI and GPS give access to the measure of different components of the EOP variations, especially UT1. The accuracy that can be achieved is based on the improved concepts, definitions, and models that have been adopted by IAU/IUGG resolutions on reference systems and Earth's rotation, as well as on the refined strategy of the observations.

  3. Characteristics and habitat of deep vs. shallow slow slip events

    NASA Astrophysics Data System (ADS)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2016-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  4. Assessment of Current Estimates of Global and Regional Mean Sea Level from the TOPEX/Poseidon, Jason-1, and OSTM 17-Year Record

    NASA Technical Reports Server (NTRS)

    Beckley, Brian D.; Ray, Richard D.; Lemoine, Frank G.; Zelensky, N. P.; Holmes, S. A.; Desal, Shailen D.; Brown, Shannon; Mitchum, G. T.; Jacob, Samuel; Luthcke, Scott B.

    2010-01-01

    The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the International Terrestrial Reference Frame (ITRF) used to produce the precision orbits at different times cause systematic inconsistencies to appear in the multimission time-frame between TOPEX and Jason-1, and can affect the intermission calibration of these data. In an effort to adhere to cross mission consistency, we have generated the full time series of orbits for TOPEX/Poseidon (TP), Jason-1, and OSTM based on recent improvements in the satellite force models, reference systems, and modeling strategies. The recent release of the entire revised Jason-1 Geophysical Data Records, and recalibration of the microwave radiometer correction also require the further re-examination of inter-mission consistency issues. Here we present an assessment of these recent improvements to the accuracy of the 17 -year sea surface height time series, and evaluate the subsequent impact on global and regional mean sea level estimates.

  5. Strategic Mobility 21. Service Oriented Architecture (SOA) Reference Model - Global Transportation Management System Architecture

    DTIC Science & Technology

    2009-10-07

    SECTION A. BUSINESS ENVIRONMENT 1 INTRODUCTION The Strategic Mobility 21 (SM21) program is currently in the process of developing the Joint...Platform ( BPP ) which enables the ability to rapidly compose new business processes and expand the core TMS feature-set to adapt to the challenges...Reference: Strategic Mobility 21 Contract N00014-06-C-0060 Dear Paul, In accordance with the requirements of referenced contract, we are pleased to

  6. Fusion of range camera and photogrammetry: a systematic procedure for improving 3-D models metric accuracy.

    PubMed

    Guidi, G; Beraldin, J A; Ciofi, S; Atzeni, C

    2003-01-01

    The generation of three-dimensional (3-D) digital models produced by optical technologies in some cases involves metric errors. This happens when small high-resolution 3-D images are assembled together in order to model a large object. In some applications, as for example 3-D modeling of Cultural Heritage, the problem of metric accuracy is a major issue and no methods are currently available for enhancing it. The authors present a procedure by which the metric reliability of the 3-D model, obtained through iterative alignments of many range maps, can be guaranteed to a known acceptable level. The goal is the integration of the 3-D range camera system with a close range digital photogrammetry technique. The basic idea is to generate a global coordinate system determined by the digital photogrammetric procedure, measuring the spatial coordinates of optical targets placed around the object to be modeled. Such coordinates, set as reference points, allow the proper rigid motion of few key range maps, including a portion of the targets, in the global reference system defined by photogrammetry. The other 3-D images are normally aligned around these locked images with usual iterative algorithms. Experimental results on an anthropomorphic test object, comparing the conventional and the proposed alignment method, are finally reported.

  7. Assimilation of HF Radar Observations in the Chesapeake-Delaware Bay Region Using the Navy Coastal Ocean Model (NCOM) and the Four-Dimensional Variational (4DVAR) Method

    DTIC Science & Technology

    2015-01-01

    6. Zhang WG, Wilkin JL, Arango HG. Towards an integrated observation and modeling system in the New York Bight using variational methods. Part 1...1992;7:262- 72. ---- -- - ---------------------------- References 391 17. Rosmond TE, Teixeria J, Pcng M, Hogan TF, Pauley R. Navy operational global

  8. Four dimensional studies in earth space

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1972-01-01

    A system of reference which is directly related to observations, is proposed for four-dimensional studies in earth space. Global control network and polar wandering are defined. The determination of variations in the earth's gravitational field with time also forms part of such a system. Techniques are outlined for the unique definition of the motion of the geocenter, and the changes in the location of the axis of rotation of an instantaneous earth model, in relation to values at some epoch of reference. The instantaneous system referred to is directly related to a fundamental equation in geodynamics. The reference system defined would provide an unambiguous frame for long period studies in earth space, provided the scale of the space were specified.

  9. Global robust output regulation control for cascaded nonlinear systems using the internal model principle

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Bo; Zhao, Yan; Wu, Yu-Qiang

    2014-04-01

    This article considers the global robust output regulation problem via output feedback for a class of cascaded nonlinear systems with input-to-state stable inverse dynamics. The system uncertainties depend not only on the measured output but also all the unmeasurable states. By introducing an internal model, the output regulation problem is converted into a stabilisation problem for an appropriately augmented system. The designed dynamic controller could achieve the global asymptotic tracking control for a class of time-varying reference signals for the system output while keeping all other closed-loop signals bounded. It is of interest to note that the developed control approach can be applied to the speed tracking control of the fan speed control system. The simulation results demonstrate its effectiveness.

  10. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti.

    PubMed

    Monaghan, A J; Sampson, K M; Steinhoff, D F; Ernst, K C; Ebi, K L; Jones, B; Hayden, M H

    2018-02-01

    The mosquito Aedes (Ae). aegypti transmits the viruses that cause dengue and chikungunya, two globally-important vector-borne diseases. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to Ae. aegypti . Occurrence patterns for Ae. aegypti for 2061-2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Population growth is quantified using gridded global population projections consistent with two Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Change scenarios are compared to a 1950-2000 reference period. A global land area of 56.9 M km 2 is climatically suitable for Ae. aegypti during the reference period, and is projected to increase by 8% (RCP4.5) to 13% (RCP8.5) by 2061-2080. The annual average number of people exposed globally to Ae. aegypti for the reference period is 3794 M, a value projected to statistically significantly increase by 298-460 M (8-12%) by 2061-2080 if only climate change is considered, and by 4805-5084 M (127-134%) for SSP3 and 2232-2483 M (59-65%) for SSP5 considering both climate and population change (lower and upper values of each range represent RCP4.5 and RCP8.5 respectively). Thus, taking the lower-emissions RCP4.5 pathway instead of RCP8.5 may mitigate future human exposure to Ae. aegypti globally, but the effect of population growth on exposure will likely be larger. Regionally, Australia, Europe and North America are projected to have the largest percentage increases in human exposure to Ae. aegypti considering only climate change.

  11. Utilization of Global Reference Atmosphere Model (GRAM) for shuttle entry

    NASA Technical Reports Server (NTRS)

    Joosten, Kent

    1987-01-01

    At high latitudes, dispersions in values of density for the middle atmosphere from the Global Reference Atmosphere Model (GRAM) are observed to be large, particularly in the winter. Trajectories have been run from 28.5 deg to 98 deg. The critical part of the atmosphere for reentry is 250,000 to 270,000 ft. 250,000 ft is the altitude where the shuttle trajectory levels out. For ascending passes the critical region occurs near the equator. For descending entries the critical region is in northern latitudes. The computed trajectory is input to the GRAM, which computes means and deviations of atmospheric parameters at each point along the trajectory. There is little latitude dispersion for the ascending passes; the strongest source of deviations is seasonal; however, very wide seasonal and latitudinal deviations are exhibited for the descending passes at all orbital inclinations. For shuttle operations the problem is control to maintain the correct entry corridor and avoid either aerodynamic skipping or excessive heat loads.

  12. Global energy and water cycle experiment (GEWEX) continental-scale international project (GCIP); reference data sets CD-ROM

    USGS Publications Warehouse

    Rea, Alan; Cederstrand, Joel R.

    1994-01-01

    The data sets on this compact disc are a compilation of several geographic reference data sets of interest to the global-change research community. The data sets were chosen with input from the Global Energy and Water Cycle Experiment (GEWEX) Continental-Scale International Project (GCIP) Data Committee and the GCIP Hydrometeorology and Atmospheric Subpanels. The data sets include: locations and periods of record for stream gages, reservoir gages, and meteorological stations; a 500-meter-resolution digital elevation model; grid-node locations for the Eta numerical weather-prediction model; and digital map data sets of geology, land use, streams, large reservoirs, average annual runoff, average annual precipitation, average annual temperature, average annual heating and cooling degree days, hydrologic units, and state and county boundaries. Also included are digital index maps for LANDSAT scenes, and for the U.S. Geological Survey 1:250,000, 1:100,000, and 1:24,000-scale map series. Most of the data sets cover the conterminous United States; the digital elevation model also includes part of southern Canada. The stream and reservoir gage and meteorological station files cover all states having area within the Mississippi River Basin plus that part of the Mississippi River Basin lying within Canada. Several data-base retrievals were processed by state, therefore many sites outside the Mississippi River Basin are included.

  13. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Løvholt, F.; Harbitz, C. B.; Polet, J.; Lorito, S.; Basili, R.; Volpe, M.; Romano, F.; Selva, J.; Piatanesi, A.; Davies, G.; Griffin, J.; Baptista, M. A.; Omira, R.; Babeyko, A. Y.; Power, W. L.; Salgado Gálvez, M.; Behrens, J.; Yalciner, A. C.; Kanoglu, U.; Pekcan, O.; Ross, S.; Parsons, T.; LeVeque, R. J.; Gonzalez, F. I.; Paris, R.; Shäfer, A.; Canals, M.; Fraser, S. A.; Wei, Y.; Weiss, R.; Zaniboni, F.; Papadopoulos, G. A.; Didenkulova, I.; Necmioglu, O.; Suppasri, A.; Lynett, P. J.; Mokhtari, M.; Sørensen, M.; von Hillebrandt-Andrade, C.; Aguirre Ayerbe, I.; Aniel-Quiroga, Í.; Guillas, S.; Macias, J.

    2016-12-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  14. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.

    2017-12-01

    The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  15. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Løvholt, Finn

    2017-04-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  16. MQAPRank: improved global protein model quality assessment by learning-to-rank.

    PubMed

    Jing, Xiaoyang; Dong, Qiwen

    2017-05-25

    Protein structure prediction has achieved a lot of progress during the last few decades and a greater number of models for a certain sequence can be predicted. Consequently, assessing the qualities of predicted protein models in perspective is one of the key components of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, which could be roughly divided into three categories: single methods, quasi-single methods and clustering (or consensus) methods. Although these methods achieve much success at different levels, accurate protein model quality assessment is still an open problem. Here, we present the MQAPRank, a global protein model quality assessment program based on learning-to-rank. The MQAPRank first sorts the decoy models by using single method based on learning-to-rank algorithm to indicate their relative qualities for the target protein. And then it takes the first five models as references to predict the qualities of other models by using average GDT_TS scores between reference models and other models. Benchmarked on CASP11 and 3DRobot datasets, the MQAPRank achieved better performances than other leading protein model quality assessment methods. Recently, the MQAPRank participated in the CASP12 under the group name FDUBio and achieved the state-of-the-art performances. The MQAPRank provides a convenient and powerful tool for protein model quality assessment with the state-of-the-art performances, it is useful for protein structure prediction and model quality assessment usages.

  17. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames.

    PubMed

    Knierim, James J; Neunuebel, Joshua P; Deshmukh, Sachin S

    2014-02-05

    The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between 'where' versus 'what' needs revision. We propose a refinement of this model, which is more complex than the simple spatial-non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.

  18. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local–global reference frames

    PubMed Central

    Knierim, James J.; Neunuebel, Joshua P.; Deshmukh, Sachin S.

    2014-01-01

    The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between ‘where’ versus ‘what’ needs revision. We propose a refinement of this model, which is more complex than the simple spatial–non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience. PMID:24366146

  19. Representation of fine scale atmospheric variability in a nudged limited area quasi-geostrophic model: application to regional climate modelling

    NASA Astrophysics Data System (ADS)

    Omrani, H.; Drobinski, P.; Dubos, T.

    2009-09-01

    In this work, we consider the effect of indiscriminate nudging time on the large and small scales of an idealized limited area model simulation. The limited area model is a two layer quasi-geostrophic model on the beta-plane driven at its boundaries by its « global » version with periodic boundary condition. This setup mimics the configuration used for regional climate modelling. Compared to a previous study by Salameh et al. (2009) who investigated the existence of an optimal nudging time minimizing the error on both large and small scale in a linear model, we here use a fully non-linear model which allows us to represent the chaotic nature of the atmosphere: given the perfect quasi-geostrophic model, errors in the initial conditions, concentrated mainly in the smaller scales of motion, amplify and cascade into the larger scales, eventually resulting in a prediction with low skill. To quantify the predictability of our quasi-geostrophic model, we measure the rate of divergence of the system trajectories in phase space (Lyapunov exponent) from a set of simulations initiated with a perturbation of a reference initial state. Predictability of the "global", periodic model is mostly controlled by the beta effect. In the LAM, predictability decreases as the domain size increases. Then, the effect of large-scale nudging is studied by using the "perfect model” approach. Two sets of experiments were performed: (1) the effect of nudging is investigated with a « global » high resolution two layer quasi-geostrophic model driven by a low resolution two layer quasi-geostrophic model. (2) similar simulations are conducted with the two layer quasi-geostrophic LAM where the size of the LAM domain comes into play in addition to the first set of simulations. In the two sets of experiments, the best spatial correlation between the nudge simulation and the reference is observed with a nudging time close to the predictability time.

  20. The EGM2008 Global Gravitational Model

    NASA Astrophysics Data System (ADS)

    Pavlis, N. K.; Holmes, S. A.; Kenyon, S. C.; Factor, J. K.

    2008-12-01

    The development of a new Earth Gravitational Model (EGM) to degree 2160 has been completed. This model, designated EGM2008, is the product of the final re-iteration of our modelling and estimation approach. Our multi-year effort has produced several Preliminary Gravitational Models (PGM) of increasingly improved performance. One of these models (PGM2007A) was provided for evaluation to an independent Evaluation Working Group, sponsored by the International Association of Geodesy (IAG). In an effort to address certain shortcomings of PGM2007A, we have considered the feedback that we received from this Working Group. As part of this effort, EGM2008 incorporates an improved version of our 5'x5' global gravity anomaly database and has benefited from the latest GRACE based satellite-only solutions (e.g., ITG- GRACE03S). EGM2008 incorporates an improved ocean-wide set of altimetry-derived gravity anomalies that were estimated using PGM2007B (a variant of PGM2007A) and its associated Dynamic Ocean Topography (DOT) model as reference models in a "Remove-Compute-Restore" fashion. For the Least Squares Collocation estimation of our final global 5'x5' area-mean gravity anomaly database, we have used consistently PGM2007B as our reference model to degree 2160. We have developed and used a formulation that predicts area-mean gravity anomalies that are effectively band-limited to degree 2160, thereby minimizing aliasing effects during the harmonic analysis process. We have also placed special emphasis on the refinement and "calibration" of the error estimates that accompany our final combination solution EGM2008. We present the main aspects of the model's development and evaluation. This evaluation was accomplished primarily through the comparison of various model derived quantities with independent data and models (e.g., geoid undulations derived from GPS positioning and spirit levelling, astronomical deflections of the vertical, etc.). We will also present comparisons of our model-implied Dynamic Ocean Topography with other contemporary estimates (e.g., from ECCO).

  1. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, C. G.

    2008-01-01

    Engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL)1. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: a) TES Mapping Years 1 and 2, with Mars-GRAM data coming from MGCM model results driven by observed TES dust optical depth; and b) TES Mapping Year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. From the surface to 80 km altitude, Mars-GRAM is based on NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Mars-GRAM 2005 has been validated2 against Radio Science data, and both nadir and limb data from the Thermal Emission Spectrometer (TES)

  2. Global Well-Posedness and Decay Rates of Strong Solutions to a Non-Conservative Compressible Two-Fluid Model

    NASA Astrophysics Data System (ADS)

    Evje, Steinar; Wang, Wenjun; Wen, Huanyao

    2016-09-01

    In this paper, we consider a compressible two-fluid model with constant viscosity coefficients and unequal pressure functions {P^+neq P^-}. As mentioned in the seminal work by Bresch, Desjardins, et al. (Arch Rational Mech Anal 196:599-629, 2010) for the compressible two-fluid model, where {P^+=P^-} (common pressure) is used and capillarity effects are accounted for in terms of a third-order derivative of density, the case of constant viscosity coefficients cannot be handled in their settings. Besides, their analysis relies on a special choice for the density-dependent viscosity [refer also to another reference (Commun Math Phys 309:737-755, 2012) by Bresch, Huang and Li for a study of the same model in one dimension but without capillarity effects]. In this work, we obtain the global solution and its optimal decay rate (in time) with constant viscosity coefficients and some smallness assumptions. In particular, capillary pressure is taken into account in the sense that {Δ P=P^+ - P^-=fneq 0} where the difference function {f} is assumed to be a strictly decreasing function near the equilibrium relative to the fluid corresponding to {P^-}. This assumption plays an key role in the analysis and appears to have an essential stabilization effect on the model in question.

  3. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.

    PubMed

    Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2017-03-03

    In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2-3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling.

  4. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations

    PubMed Central

    Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2017-01-01

    In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2–3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling. PMID:28273814

  5. Global Reference Atmospheric Model and Trace Constituents

    NASA Technical Reports Server (NTRS)

    Justus, C.; Johnson, D.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of the Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR Intemationa1 Reference Atmosphere (CIRA). MAP data in GRAM are augmented by a specially-derived longitude variation climatology. Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH, and CO2. Water vapor in GRAM is based on a combination of GUACA, Air Force Geophysics Laboratory (AFGL), and NASA Langley Research Center climatologies. Other constituents below 120 km are based on a combination of AFGL and h4AP/CIRA climatologies. This report presents results of comparisons between GRAM Constituent concentrations and those provided by the Naval Research Laboratory (NRL) climatology of Summers (NRL,/MR/7641-93-7416, 1993). GRAM and NRL concentrations were compared for seven species (CH4, CO, CO2, H2O, N2O, O2, and O3) for months January, April, July, and October, over height range 0-115 km, and latitudes -90deg to + 90deg at 10deg increments. Average GRAM-NRL correlations range from 0.878 (for CO) to 0.975 (for O3), with an average over all seven species of 0.936 (standard deviation 0.049).

  6. Subjective Social Status and Well-Being: The Role of Referent Abstraction.

    PubMed

    Haught, Heather M; Rose, Jason; Geers, Andrew; Brown, Jill A

    2015-01-01

    Subjective social status (SSS) has been shown to predict well-being and mental health, above and beyond objective social status (OSS). However, little is known about the factors that moderate this relationship. Two studies explored whether the link between SSS and well-being varied depending upon the referent used for comparison in SSS judgments. Participants judged their well-being and SSS in comparison to referents that varied in abstraction. A confirmatory factor analysis on SSS judgments yielded two factors: (a) SSS perceptions toward global referents and (b) SSS perceptions toward local referents. SSS relative to a global referent was a better predictor of depression (Studies 1 and 2), life satisfaction (Studies 1 and 2), and self-esteem (Study 2) than SSS relative to a local referent. These findings have theoretical implications for understanding how people differentiate between local vs. global referents and practical implications for status-related health disparities.

  7. History, Structure and Agency in Global Health Governance Comment on "Global Health Governance Challenges 2016 - Are We Ready?"

    PubMed

    Gill, Stephen; Benatar, Solomon R

    2016-08-29

    Ilona Kickbusch's thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the "development of sustainability." © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  8. Observation Data Model Core Components, its Implementation in the Table Access Protocol Version 1.1

    NASA Astrophysics Data System (ADS)

    Louys, Mireille; Tody, Doug; Dowler, Patrick; Durand, Daniel; Michel, Laurent; Bonnarel, Francos; Micol, Alberto; IVOA DataModel Working Group; Louys, Mireille; Tody, Doug; Dowler, Patrick; Durand, Daniel

    2017-05-01

    This document defines the core components of the Observation data model that are necessary to perform data discovery when querying data centers for astronomical observations of interest. It exposes use-cases to be carried out, explains the model and provides guidelines for its implementation as a data access service based on the Table Access Protocol (TAP). It aims at providing a simple model easy to understand and to implement by data providers that wish to publish their data into the Virtual Observatory. This interface integrates data modeling and data access aspects in a single service and is named ObsTAP. It will be referenced as such in the IVOA registries. In this document, the Observation Data Model Core Components (ObsCoreDM) defines the core components of queryable metadata required for global discovery of observational data. It is meant to allow a single query to be posed to TAP services at multiple sites to perform global data discovery without having to understand the details of the services present at each site. It defines a minimal set of basic metadata and thus allows for a reasonable cost of implementation by data providers. The combination of the ObsCoreDM with TAP is referred to as an ObsTAP service. As with most of the VO Data Models, ObsCoreDM makes use of STC, Utypes, Units and UCDs. The ObsCoreDM can be serialized as a VOTable. ObsCoreDM can make reference to more complete data models such as Characterisation DM, Spectrum DM or Simple Spectral Line Data Model (SSLDM). ObsCore shares a large set of common concepts with DataSet Metadata Data Model (Cresitello-Dittmar et al. 2016) which binds together most of the data model concepts from the above models in a comprehensive and more general frame work. This current specification on the contrary provides guidelines for implementing these concepts using the TAP protocol and answering ADQL queries. It is dedicated to global discovery.

  9. The 1995 revision of the joint US/UK geomagnetic field models - I. Secular variation

    USGS Publications Warehouse

    Macmillan, S.; Barraclough, D.R.; Quinn, J.M.; Coleman, R.J.

    1997-01-01

    We present the methods used to derive mathematical models of global secular variation of the main geomagnetic field for the period 1985 to 2000. These secular-variation models are used in the construction of the candidate US/UK models for the Definitive Geomagnetic Reference Field at 1990, the International Geomagnetic Reference Field for 1995 to 2000, and the World Magnetic Model for 1995 to 2000 (see paper II, Quinn et al., 1997). The main sources of data for the secular-variation models are geomagnetic observatories and repeat stations. Over the areas devoid of these data secular-variation information is extracted from aeromagnetic and satellite data. We describe how secular variation is predicted up to the year 2000 at the observatories and repeat stations, how the aeromagnetic and satellite data are used, and how all the data are combined to produce the required models.

  10. Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor.

    PubMed

    Reed, Sasha C; Yang, Xiaojuan; Thornton, Peter E

    2015-10-01

    324 I. 324 II. 325 III. 326 IV. 327 328 References 328 SUMMARY: Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO2 exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate-carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate-carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling efforts and provide suggestions for how to move forward. No claim to original US government works New Phytologist © 2015 New Phytologist Trust.

  11. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor

    NASA Astrophysics Data System (ADS)

    Huang, Liangke; Jiang, Weiping; Liu, Lilong; Chen, Hua; Ye, Shirong

    2018-05-01

    In ground-based global positioning system (GPS) meteorology, atmospheric weighted mean temperature, T_m , plays a very important role in the progress of retrieving precipitable water vapor (PWV) from the zenith wet delay of the GPS. Generally, most of the existing T_m models only take either latitude or altitude into account in modeling. However, a great number of studies have shown that T_m is highly correlated with both latitude and altitude. In this study, a new global grid empirical T_m model, named as GGTm, was established by a sliding window algorithm using global gridded T_m data over an 8-year period from 2007 to 2014 provided by TU Vienna, where both latitude and altitude variations are considered in modeling. And the performance of GGTm was assessed by comparing with the Bevis formula and the GPT2w model, where the high-precision global gridded T_m data as provided by TU Vienna and the radiosonde data from 2015 are used as reference values. The results show the significant performance of the new GGTm model against other models when compared with gridded T_m data and radiosonde data, especially in the areas with great undulating terrain. Additionally, GGTm has the global mean RMS_{PWV} and RMS_{PWV} /PWV values of 0.26 mm and 1.28%, respectively. The GGTm model, fed only by the day of the year and the station coordinates, could provide a reliable and accurate T_m value, which shows the possible potential application in real-time GPS meteorology, especially for the application of low-latitude areas and western China.

  12. Reference level winds from balloon platforms

    NASA Technical Reports Server (NTRS)

    Lally, Vincent E.

    1985-01-01

    The superpressure balloon was developed to provide a method of obtaining global winds at all altitudes from 5 to 30 km. If a balloon could be made to fly for several weeks at a constant altitude, and if it could be tracked accurately on its global circuits, the balloon would provide a tag for the air parcel in which it was embedded. The Lagrangian data on the atmospheric circulation would provide a superior data input to the numerical model. The Global Atmospheric Research Program (GARP) was initiated in large part based on the promise of this technique coupled with free-floating ocean buoys and satellite radiometers. The initial name proposed by Charney for GARP was SABABURA 'SAtellite BAlloon BUoy RAdiometric system' (Charney, 1966). However, although the superpressure balloon exceeded its designers' expectations for flight duration in the stratosphere (longest flight duration of 744 days), flight duration below 10 km was limited by icing in super-cooled clouds to a few days. The balloon was relegated to a secondary role during the GARP Special Observing Periods. The several major superpressure balloon programs for global wind measurement are described as well as those new developments which make the balloon once again an attractive vehicle for measurement of global winds as a reference and bench-mark system for future satellite systems.

  13. Global Trends and Variability in Integrated Water Vapor from Ground-Based GPS Data and Climate Models

    NASA Astrophysics Data System (ADS)

    Bock, O.; Parracho, A. C.; Bastin, S.; Hourdin, F.

    2016-12-01

    A high-quality, consistent, global, long-term dataset of integrated water vapor (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) inter-comparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are inter-compared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.

  14. Evaluation of automated global mapping of Reference Soil Groups of WRB2015

    NASA Astrophysics Data System (ADS)

    Mantel, Stephan; Caspari, Thomas; Kempen, Bas; Schad, Peter; Eberhardt, Einar; Ruiperez Gonzalez, Maria

    2017-04-01

    SoilGrids is an automated system that provides global predictions for standard numeric soil properties at seven standard depths down to 200 cm, currently at spatial resolutions of 1km and 250m. In addition, the system provides predictions of depth to bedrock and distribution of soil classes based on WRB and USDA Soil Taxonomy (ST). In SoilGrids250m(1), soil classes (WRB, version 2006) consist of the RSG and the first prefix qualifier, whereas in SoilGrids1km(2), the soil class was assessed at RSG level. Automated mapping of World Reference Base (WRB) Reference Soil Groups (RSGs) at a global level has great advantages. Maps can be updated in a short time span with relatively little effort when new data become available. To translate soil names of older versions of FAO/WRB and national classification systems of the source data into names according to WRB 2006, correlation tables are used in SoilGrids. Soil properties and classes are predicted independently from each other. This means that the combinations of soil properties for the same cells or soil property-soil class combinations do not necessarily yield logical combinations when the map layers are studied jointly. The model prediction procedure is robust and probably has a low source of error in the prediction of RSGs. It seems that the quality of the original soil classification in the data and the use of correlation tables are the largest sources of error in mapping the RSG distribution patterns. Predicted patterns of dominant RSGs were evaluated in selected areas and sources of error were identified. Suggestions are made for improvement of WRB2015 RSG distribution predictions in SoilGrids. Keywords: Automated global mapping; World Reference Base for Soil Resources; Data evaluation; Data quality assurance References 1 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, et al. (2016) SoilGrids250m: global gridded soil information based on Machine Learning. Earth System Science Data (ESSD), in review. 2 Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. doi:10.1371/journal.pone.0105992

  15. Data interoperabilty between European Environmental Research Infrastructures and their contribution to global data networks

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Zhao, Z.; Hardisty, A.; Hellström, M.; Chin, Y.; Magagna, B.; Asmi, A.; Papale, D.; Pfeil, B.; Atkinson, M.

    2017-12-01

    Environmental Research Infrastructures (ENVRIs) are expected to become important pillars not only for supporting their own scientific communities, but also a) for inter-disciplinary research and b) for the European Earth Observation Program Copernicus as a contribution to the Global Earth Observation System of Systems (GEOSS) or global thematic data networks. As such, it is very important that data-related activities of the ENVRIs will be well integrated. This requires common policies, models and e-infrastructure to optimise technological implementation, define workflows, and ensure coordination, harmonisation, integration and interoperability of data, applications and other services. The key is interoperating common metadata systems (utilising a richer metadata model as the `switchboard' for interoperation with formal syntax and declared semantics). The metadata characterises data, services, users and ICT resources (including sensors and detectors). The European Cluster Project ENVRIplus has developed a reference model (ENVRI RM) for common data infrastructure architecture to promote interoperability among ENVRIs. The presentation will provide an overview of recent progress and give examples for the integration of ENVRI data in global integration networks.

  16. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization.

    PubMed

    Unemo, Magnus; Golparian, Daniel; Sánchez-Busó, Leonor; Grad, Yonatan; Jacobsson, Susanne; Ohnishi, Makoto; Lahra, Monica M; Limnios, Athena; Sikora, Aleksandra E; Wi, Teodora; Harris, Simon R

    2016-11-01

    Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, quality-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic, genetic and reference genome characteristics of the 2016 WHO gonococcal reference strains intended for quality assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide. The 2016 WHO reference strains (n = 14) constitute the eight 2008 WHO reference strains and six novel strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n = 23), serovar, prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing. The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished references genomes (n = 14) were presented. The 2016 WHO gonococcal reference strains are intended for internal and external quality assurance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection, molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis, transcriptomics, proteomics and other molecular technologies and data analysis. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Van Lanen, H. A. J.

    2015-03-01

    Hydrological drought characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a result of climate change. The magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is uncertain. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three general circulation models for the SRES A2 emission scenario (GCM forced models), and the WATCH Forcing Data set (reference model). The threshold level method was applied to investigate drought occurrence, duration and severity. Results for the control period (1971-2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate models' results after post-processing produce realistic outcomes for global drought analyses. For the near future (2021-2050) and far future (2071-2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D) climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry (B) climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the drought analysis for the control period showed that projections of hydrological drought characteristics are most uncertain. On a global scale the increase in hydrological drought duration and severity in multiple regions will lead to a higher impact of drought events, which should motivate water resource managers to timely anticipate the increased risk of more severe drought in groundwater and streamflow and to design pro-active measures.

  18. Climate change impacts on freshwater fish, coral reefs, and related ecosystem services in the United States

    EPA Science Inventory

    We analyzed the potential physical and economic impacts of climate change on freshwater fisheries and coral reefs in the United States, examining a reference scenario and two policy scenarios that limit global greenhouse gas (GHG) emissions. We modeled shifts in suitable habitat ...

  19. Changes in Sea Levels around the British Isles Revisited (Invited)

    NASA Astrophysics Data System (ADS)

    Teferle, F. N.; Hansen, D. N.; Bingley, R. M.; Williams, S. D.; Woodworth, P. L.; Gehrels, W. R.; Bradley, S. L.; Stocchi, P.

    2009-12-01

    Recently a number of new and/or updated sources for estimates of vertical land movements for the British Isles have become available allowing the relative and average changes in sea levels for this region to be revisited. The geodetic data set stems from a combination of re-processed continuous Global Positioning System (GPS) measurements from stations in the British Isles and from a global reference frame network, and absolute gravity (AG) measurements from two stations in the British Isles. The geologic data set of late Holocene sea level indicators has recently been updated, now applying corrections for the 20th century sea level rise, syphoning effect and late Holocene global ice melt, and expanded to Northern Ireland and Ireland. Several new model predictions of the glacial isostatic adjustment (GIA) process active in this region form the modelling data set of vertical land movements for the British Isles. Correcting the updated revised local reference (RLR) trends from the Permanent Service for Mean Sea Level (PSMSL) with these vertical land movement data sets, regional and averaged changes in sea levels around the British Isles have been investigated. Special focus is thereby also given to the coastal areas that have recently been identified within the UK Climate Projections 2009.

  20. Dental education in a flat world: advocating for increased global collaboration and standardization.

    PubMed

    Donaldson, Martin E; Gadbury-Amyot, Cynthia C; Khajotia, Sharukh S; Nattestad, Anders; Norton, Neil S; Zubiaurre, Laureen A; Turner, Sharon P

    2008-04-01

    Globalization is a broad term referring to the increasing connectivity, integration, and interdependence of economies, societies, technologies, cultures, and political and ecological spheres across the world. This position paper was developed by a working group of the 2007 American Dental Education Association (ADEA) Leadership Institute. The authors explore the effect that globalization has had on dentistry and dental education to date and hypothesize what dental education could look like in the years ahead. While the paper is written from a North American perspective, some of the authors bring international expertise and experience to the topic of global dental education in a flat world. Specific issues and barriers addressed in this position paper include variations in accreditation and licensure requirements in dental education throughout the world; the historical development of dental education models (odontology and stomatology) and the need for congruency of these models in the global environment; the competency-based model of education and its relevance to development and implementation of global dental competencies; and the slow adoption of technological advances in dental education for promoting collaborations and encouraging resource sharing among countries. These challenges are discussed as they affect the implementation of a standardized global dental education that can lead to improved access to oral health care services and better oral and overall health for the citizens of the world.

  1. Blending Pan-European and local hydrological models for water resource assessment in Mediterranean areas: lessons learnt from a mountainous catchment

    NASA Astrophysics Data System (ADS)

    José Polo, María; José Pérez-Palazón, María; Saénz de Rodrigáñez, Marta; Pimentel, Rafael; Arheimer, Berit

    2017-04-01

    Global hydrological models provide scientists and technicians with distributed data over medium to large areas from which assessment of water resource planning and use can be easily performed. However, scale conflicts between global models' spatial resolution and the local significant spatial scales in heterogeneous areas usually pose a constraint for the direct use and application of these models' results. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform developed under the Copernicus Climate Change Service (C3S) offers a wide range of both climate and hydrological indicators obtained on a global scale with different time and spatial resolutions. Among the different study cases supporting the SWICCA demonstration of local impact assessment, the Sierra Nevada study case (South Spain) is a representative example of mountainous coastal catchments in the Mediterranean region. This work shows the lessons learnt during the study case development to derive local impact indicator tailored to suit the local end-users of water resource in this snow-dominated area. Different approaches were followed to select the most accurate method to downscale the global data and variables to the local level in a highly abrupt topography, in a sequential step approach. 1) SWICCA global climate variable downscaling followed by river flow simulation from a local hydrological model in selected control points in the catchment, together with 2) SWICCA global river flow values downscaling to the control points followed by corrections with local transfer functions were both tested against the available local river flow series of observations during the reference period. This test was performed for the different models and the available spatial resolutions included in the SWICCA platform. From the results, the second option, that is, the use of SWICCA river flow variables, performed the best approximations, once the local transfer functions were applied to the global values and an additional correction was performed based on the relative anomalies obtained instead of the absolute values. This approach was used to derive the future projections of selected local indicators for each end-user in the area under different climate change scenarios. Despite the spatial scale conflicts, the SWICCA river flow indicators (simulated by the E-HYPEv3.1.2 model) succeeded in approximating the observations during the reference period 1970-2000 when provided on a catchment scale, once local transfer functions and further anomaly correction were performed. Satisfactory results were obtained on a monthly scale for river flow in the main stream of the watershed, and on a daily scale for the headwater streams. The accessibility to the hydrological model WiMMed, which includes a snow module, locally validated in the study area has been crucial to downscale the SWICCA results and prove their usefulness.

  2. Downscaling global precipitation for local applications - a case for the Rhine basin

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, Frederiek; van Verseveld, Willem; Schellekens, Jaap

    2017-04-01

    Within the EU FP7 project eartH2Observe a global Water Resources Re-analysis (WRR) is being developed. This re-analysis consists of meteorological and hydrological water balance variables with global coverage, spanning the period 1979-2014 at 0.25 degrees resolution (Schellekens et al., 2016). The dataset can be of special interest in regions with limited in-situ data availability, yet for local scale analysis particularly in mountainous regions, a resolution of 0.25 degrees may be too coarse and downscaling the data to a higher resolution may be required. A downscaling toolbox has been made that includes spatial downscaling of precipitation based on the global WorldClim dataset that is available at 1 km resolution as a monthly climatology (Hijmans et al., 2005). The input of the down-scaling tool are either the global eartH2Observe WRR1 and WRR2 datasets based on the WFDEI correction methodology (Weedon et al., 2014) or the global Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2016). Here we present a validation of the datasets over the Rhine catchment by means of a distributed hydrological model (wflow, Schellekens et al., 2014) using a number of precipitation scenarios. (1) We start by running the model using the local reference dataset derived by spatial interpolation of gauge observations. Furthermore we use (2) the MSWEP dataset at the native 0.25-degree resolution followed by (3) MSWEP downscaled with the WorldClim dataset and final (4) MSWEP downscaled with the local reference dataset. The validation will be based on comparison of the modeled river discharges as well as rainfall statistics. We expect that down-scaling the MSWEP dataset with the WorldClim data to higher resolution will increase its performance. To test the performance of the down-scaling routine we have added a run with MSWEP data down-scaled with the local dataset and compare this with the run based on the local dataset itself. - Beck, H. E. et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-236, accepted for final publication. - Hijmans, R.J. et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. - Schellekens, J. et al., 2016. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, under review. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Weedon, G.P. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.

  3. Multi-water-bag models of ion temperature gradient instability in cylindrical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulette, David; Besse, Nicolas

    2013-05-15

    Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less

  4. A Paleolatitude Calculator for Paleoclimate Studies

    PubMed Central

    van Hinsbergen, Douwe J. J.; de Groot, Lennart V.; van Schaik, Sebastiaan J.; Spakman, Wim; Bijl, Peter K.; Sluijs, Appy; Langereis, Cor G.; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth’s spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed. PMID:26061262

  5. A Paleolatitude Calculator for Paleoclimate Studies.

    PubMed

    van Hinsbergen, Douwe J J; de Groot, Lennart V; van Schaik, Sebastiaan J; Spakman, Wim; Bijl, Peter K; Sluijs, Appy; Langereis, Cor G; Brinkhuis, Henk

    2015-01-01

    Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.

  6. The GRAM-3 model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.

    1987-01-01

    The Global Reference Atmosphere Model (GRAM) is under continuous development and improvement. GRAM data were compared with Middle Atmosphere Program (MAP) predictions and with shuttle data. An important note: Users should employ only step sizes in altitude that give vertical density gradients consistent with shuttle-derived density data. Using too small a vertical step size (finer then 1 km) will result in what appears to be unreasonably high values of density shears but what in reality is noise in the model.

  7. The International Gravity Field Service (IGFS): Present Day Activities And Future Plans

    NASA Astrophysics Data System (ADS)

    Barzaghi, R.; Vergos, G. S.

    2016-12-01

    IGFS is a unified "umbrella" IAG service that coordinates the servicing of the geodetic and geophysical community with gravity field related data, software and information. The combined data of the IGFS entities will include global geopotential models, terrestrial, airborne, satellite and marine gravity observations, Earth tide data, GPS/levelling data, digital models of terrain and bathymetry, as well as ocean gravity field and geoid from satellite altimetry. The IGFS structure is based on the Gravity Services, the "operating arms" of IGFS. These Services related to IGFS are: BGI (Bureau Gravimetrique International), Toulouse, France ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy IGETS (International Geodynamics and Earth Tides Service), EOST, Strasbourg, France ICGEM (International Center for Global Earth Models), GFZ, Potsdam, Germany IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA The Central Bureau, hosted at the Aristotle Thessaloniki University, is in charge for all the interactions among the services and the other IAG bodies, particularly GGOS. In this respect, connections with the GGOS Bureaus of Products and Standards and of Networks and Observations have been recently strengthened in order to align the Gravity services to the GGOS standards. IGFS is also strongly involved in the most relevant projects related to the gravity field such as the establishment of the new Global Absolute Gravity Reference System and of the International Height Reference System. These projects, along with the organization of Geoid Schools devoted to methods for gravity and geoid estimate, will play a central role in the IGFS future actions in the framework of GGOS.

  8. Global Core Plasma Model

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.; Craven, Paul D.; Comfort, Richard H.

    1999-01-01

    Over 40 years of ground and spacecraft plasmaspheric measurements have resulted in many statistical descriptions of plasmaspheric properties. In some cases, these properties have been represented as analytical descriptions that are valid for specific regions or conditions. For the most part, what has not been done is to extend regional empirical descriptions or models to the plasmasphere as a whole. In contrast, many related investigations depend on the use of representative plasmaspheric conditions throughout the inner magnetosphere. Wave propagation, involving the transport of energy through the magnetosphere, is strongly affected by thermal plasma density and its composition. Ring current collisional and wave particle losses also strongly depend on these quantities. Plasmaspheric also plays a secondary role in influencing radio signals from the Global Positioning System satellites. The Global Core Plasma Model (GCPM) is an attempt to assimilate previous empirical evidence and regional models for plasmaspheric density into a continuous, smooth model of thermal plasma density in the inner magnetosphere. In that spirit, the International Reference Ionosphere is currently used to complete the low altitude description of density and composition in the model. The models and measurements on which the GCPM is currently based and its relationship to IRI will be discussed.

  9. Imaging Global Electron Content backwards in time more than 160 years ago

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Veselovsky, I. S.

    2014-02-01

    The Global Electron Content, GEC, represents the total number of electrons in the spherical layer over the Earth restricted by orbit of Global Positioning Satellite system (20,200 km). GEC is produced from Global Ionospheric Map of Total Electron Content, GIM-TEC, transformed to the electron density varying with height using the International Reference Ionosphere and Plasmasphere model, IRI-Plas. The climatologic GEC model is developed from GIM-TEC maps for a period 1999-2012 including the solar activity, annual and semiannual cycles as the most important factors affecting daily GEC variation. The proxy Rzp of the international sunspot numbers, Ri, is used as a measure of solar activity composed of 3 day smoothed Ri, 7 day and 81 day backwards mean of Ri scaled to the range of 1-40 proxy units, p.u. The root mean square error of the GEC climatologic model is found to vary from 8% to 13% of GEC. Taking advantage of a long history of sunspot numbers, the climatologic GEC model is applied for GEC reconstruction backwards in time for more than 160 years ago since 1850. The extended set of GEC values provides the numerical representation of the ionosphere and plasmasphere electron content coherent with variations of solar activity as a potential proxy index driving the ionosphere models.

  10. The Ionosphere Real-Time Assimilative Model, IRTAM - A Status Report

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Galkin, Ivan; Huang, Xueqin; Vesnin, Artem; Bilitza, Dieter

    2014-05-01

    Ionospheric models are generally unable to correctly predict the effects of space weather events on the ionosphere. Taking advantage of today's real-time availability of measured electron density profiles of the bottomside ionosphere, we have developed a technique "IRTAM" to specify real-time foF2 and hmF2 global maps. The measured data arrive at the Lowell GIRO Data Center (LGDC) from some ~70 ionosonde stations of the Global Ionosphere Radio Observatory (GIRO) [Reinisch and Galkin, 2011], usually at a 15 min cadence, and are ingested in LGDC's databases (http://ulcar.uml.edu/DIDBase/). We use the International Reference Ionosphere (IRI) electron density model [Bilitza et al., 2011] as the background model. It is an empirical monthly median model that critically depends on the correct values of the F2 layer peak height hmF2 and density NmF2 (or critical frequency foF2). The IRI model uses the so-called CCIR (or URSI) coefficients for the specification of the median foF2 and hmF2 maps. IRTAM assimilates the measured GIRO data in IRI by "adjusting" the CCIR coefficients on-the-fly. The updated maps of foF2 and hmF2 for the last 24 hours before now-time are continuously displayed on http://giro.uml.edu/RTAM [Galkin et al., 2012]. The "adjusted" bottomside profiles can be extended to the topside by using the new Vary-Chap topside profile model [Nsumei et al., 2012] which extends the profile from hmF2 to the plasmasphere. References Bilitza D., L.-A. McKinnell, B. Reinisch, and T. Fuller-Rowell (2011), The International Reference Ionosphere (IRI) today and in the future, J. Geodesy, 85:909-920, DOI 10.1007/s00190-010-0427-x Galkin, I. A., B. W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Sci., 47, RS0L07, doi:10.1029/2011RS004952. Nsumei, P., B. W. Reinisch, X. Huang, and D. Bilitza (2012), New Vary-Chap profile of the topside ionosphere electron density distribution for use with the IRI Model and the GIRO real time data, Radio Sci., doi:10.1029/2012RS004989. Reinisch, B. W. and I. A. Galkin (2011), Global Ionospheric Radio Observatory (GIRO), Earth, Planets and Space, 63(4), 377-381.

  11. Towards generalised reference condition models for environmental assessment: a case study on rivers in Atlantic Canada.

    PubMed

    Armanini, D G; Monk, W A; Carter, L; Cote, D; Baird, D J

    2013-08-01

    Evaluation of the ecological status of river sites in Canada is supported by building models using the reference condition approach. However, geography, data scarcity and inter-operability constraints have frustrated attempts to monitor national-scale status and trends. This issue is particularly true in Atlantic Canada, where no ecological assessment system is currently available. Here, we present a reference condition model based on the River Invertebrate Prediction and Classification System approach with regional-scale applicability. To achieve this, we used biological monitoring data collected from wadeable streams across Atlantic Canada together with freely available, nationally consistent geographic information system (GIS) environmental data layers. For the first time, we demonstrated that it is possible to use data generated from different studies, even when collected using different sampling methods, to generate a robust predictive model. This model was successfully generated and tested using GIS-based rather than local habitat variables and showed improved performance when compared to a null model. In addition, ecological quality ratio data derived from the model responded to observed stressors in a test dataset. Implications for future large-scale implementation of river biomonitoring using a standardised approach with global application are presented.

  12. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  13. ESSG-based global spatial reference frame for datasets interrelation

    NASA Astrophysics Data System (ADS)

    Yu, J. Q.; Wu, L. X.; Jia, Y. J.

    2013-10-01

    To know well about the highly complex earth system, a large volume of, as well as a large variety of, datasets on the planet Earth are being obtained, distributed, and shared worldwide everyday. However, seldom of existing systems concentrates on the distribution and interrelation of different datasets in a common Global Spatial Reference Frame (GSRF), which holds an invisble obstacle to the data sharing and scientific collaboration. Group on Earth Obeservation (GEO) has recently established a new GSRF, named Earth System Spatial Grid (ESSG), for global datasets distribution, sharing and interrelation in its 2012-2015 WORKING PLAN.The ESSG may bridge the gap among different spatial datasets and hence overcome the obstacles. This paper is to present the implementation of the ESSG-based GSRF. A reference spheroid, a grid subdvision scheme, and a suitable encoding system are required to implement it. The radius of ESSG reference spheroid was set to the double of approximated Earth radius to make datasets from different areas of earth system science being covered. The same paramerters of positioning and orienting as Earth Centred Earth Fixed (ECEF) was adopted for the ESSG reference spheroid to make any other GSRFs being freely transformed into the ESSG-based GSRF. Spheroid degenerated octree grid with radius refiment (SDOG-R) and its encoding method were taken as the grid subdvision and encoding scheme for its good performance in many aspects. A triple (C, T, A) model is introduced to represent and link different datasets based on the ESSG-based GSRF. Finally, the methods of coordinate transformation between the ESSGbased GSRF and other GSRFs were presented to make ESSG-based GSRF operable and propagable.

  14. The globalization of football: a study in the glocalization of the 'serious life'.

    PubMed

    Giulianotti, Richard; Robertson, Roland

    2004-12-01

    Sport, in particular football, constitutes one of the most dynamic, sociologically illuminating domains of globalization. This paper examines the globalization of football with particular reference to Robertson's theorizations of global processes. We examine football's cultural globalization through the concept of 'glocalization', which highlights the interdependence of local and global processes within the game's identities and institutions. We address economic globalization in football by considering the world's leading clubs as 'glocal' transnational corporations. We assess the political globalization of football with reference to the possible enhancement of democracy within the game's international governance. We conclude by affirming the utility of sport in advancing our empirical and theoretical understanding of globalization processes.

  15. A New Global Geodetic Strain Rate Model

    NASA Astrophysics Data System (ADS)

    Kreemer, C.; Blewitt, G.; Klein, E. C.; Shen, Z.; Wang, M.; Estey, L.; Wier, S.

    2013-12-01

    As part of the Global Earthquake Model (GEM) effort to improve global seismic hazard models, we present a new global geodetic strain rate model. This model (GSRM v. 2) is a vast improvement on the previous model from 2004 (v. 1.2). The model is still based on a finite-element type approach and has deforming cells in between the assumed rigid plates. The new model contains ~144,700 cells of 0.25° by 0.2° dimension. We redefined the geometries of the deforming zones based on the definitions of Bird (2003) and Chamot-Rooke and Rabaute (2006). We made some adjustments to the grid geometry at places where seismicity and/or GPS velocities suggested either the presence of deforming areas or a rigid block where those previous studies did not. GSRM v.2 includes 50 plates and blocks, including many not considered by Bird (2003). The new GSRM model is based on over 20,700 horizontal geodetic velocities at over 17,000 unique locations. The GPS velocity field consists of a 1) Over 6500 velocities derived by the University of Nevada, Reno, for CGPS stations for which >2.5 years of RINEX data are available until April 2013, 2) ~1200 velocities for China from a new analysis of all data from the Crustal Movement Network of China (CMONOC), and 3) about 13,000 velocities from 212 studies published in the literature or made otherwise available to us. Velocities from all studies were combined into the same reference frame by a 6-parameter transformation using velocities at collocated stations. We model co-seismic jumps while estimating velocities, ignore periods of post-seismic deformation, and exclude time-series that reflect magmatic and anthropogenic activity. GPS velocities were used to estimate angular velocities for 36 of the 50 rigid plates and blocks (the rest being taken from the literature), and these were used as boundary conditions in the strain rate calculations. For the strain rate calculations we used the method of Haines and Holt. In order to fit the data equally well in slowly and rapidly deforming areas, we first calculated a very smooth model by setting the a priori variances of the strain rate components very low. We then used this model as a proxy for the a priori standard deviations of the final model, at least for the areas that are well constrained by the GPS data. We will show examples of the strain rate and velocity field results. We will also highlight how and where the results can be viewed and accessed through a dedicated webportal (gsrm2.unavco.org). New GPS velocities (in any reference frame) can be uploaded to a new tool and displayed together with velocities used in GSRM v.2 in 53 reference frames (http://facility.unavco.org/data/maps/GPSVelocityViewer/GSRMViewer.html) .

  16. Analyzing Global Components in Developmental Dyscalculia and Dyslexia

    PubMed Central

    Filippo, Gloria Di; Zoccolotti, Pierluigi

    2018-01-01

    The study examined whether developmental deficits in reading and numerical skills could be expressed in terms of global factors by reference to the rate and amount (RAM) and difference engine (DEM) models. From a sample of 325 fifth grade children, we identified 5 children with dyslexia, 16 with dyscalculia, 7 with a “mixed pattern,” and 49 control children. Children were asked to read aloud words presented individually that varied for frequency and length and to respond (either vocally or manually) to a series of simple number tasks (addition, subtraction, number reading, and number comparisons). Reaction times were measured. Results indicated that the deficit of children with dyscalculia and children with a mixed pattern on numerical tasks could be explained by a single global factor, similarly to the reading deficit shown by children with dyslexia. As predicted by the DEM, increases in task difficulty were accompanied by a corresponding increase in inter-individual variability for both the reading and numerical tasks. These relationships were constant across the four groups of children but differed in terms of slope and intercept on the x-axis, indicating that two different general rules underlie performance in reading and numerical skills. The study shows for the first time that, as previously shown for reading, also numerical performance can be explained with reference to a global factor. The advantage of this approach is that it takes into account the over-additivity effect, i.e., the presence of larger group differences in the case of more difficult conditions over and above the characteristics of the experimental conditions. It is concluded that reference to models such as the RAM and DEM can be useful in delineating the characteristics of the dyscalculic deficit as well as in the description of co-morbid disturbances, as in the case of dyslexia and dyscalculia. PMID:29515490

  17. Implications of potential future grand solar minimum for ozone layer and climate

    NASA Astrophysics Data System (ADS)

    Arsenovic, Pavle; Rozanov, Eugene; Anet, Julien; Stenke, Andrea; Schmutz, Werner; Peter, Thomas

    2018-03-01

    Continued anthropogenic greenhouse gas (GHG) emissions are expected to cause further global warming throughout the 21st century. Understanding the role of natural forcings and their influence on global warming is thus of great interest. Here we investigate the impact of a recently proposed 21st century grand solar minimum on atmospheric chemistry and climate using the SOCOL3-MPIOM chemistry-climate model with an interactive ocean element. We examine five model simulations for the period 2000-2199, following the greenhouse gas concentration scenario RCP4.5 and a range of different solar forcings. The reference simulation is forced by perpetual repetition of solar cycle 23 until the year 2199. This reference is compared with grand solar minimum simulations, assuming a strong decline in solar activity of 3.5 and 6.5 W m-2, respectively, that last either until 2199 or recover in the 22nd century. Decreased solar activity by 6.5 W m-2 is found to yield up to a doubling of the GHG-induced stratospheric and mesospheric cooling. Under the grand solar minimum scenario, tropospheric temperatures are also projected to decrease compared to the reference. On the global scale a reduced solar forcing compensates for at most 15 % of the expected greenhouse warming at the end of the 21st and around 25 % at the end of the 22nd century. The regional effects are predicted to be significant, in particular in northern high-latitude winter. In the stratosphere, the reduction of around 15 % of incoming ultraviolet radiation leads to a decrease in ozone production by up to 8 %, which overcompensates for the anticipated ozone increase due to reduced stratospheric temperatures and an acceleration of the Brewer-Dobson circulation. This, in turn, leads to a delay in total ozone column recovery from anthropogenic halogen-induced depletion, with a global ozone recovery to the pre-ozone hole values happening only upon completion of the grand solar minimum.

  18. GIM-TEC adaptive ionospheric weather assessment and forecast system

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.

    2013-09-01

    The Ionospheric Weather Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the Global Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical global maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the global maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the global W-index map establishing categories of the ionospheric weather from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the global ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.

  19. Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.

    PubMed

    Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh

    2009-01-01

    This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.

  20. Deep supervised dictionary learning for no-reference image quality assessment

    NASA Astrophysics Data System (ADS)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  1. Space-based augmentation for global navigation satellite systems.

    PubMed

    Grewal, Mohinder S

    2012-03-01

    This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.

  2. Analysis of the Diurnal Variation of the Global Electric Circuit Obtained From Different Numerical Models

    NASA Astrophysics Data System (ADS)

    Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.

    2017-12-01

    This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.

  3. Non-linear motions in reprocessed GPS station position time series

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gendt, Gerd

    2010-05-01

    Global Positioning System (GPS) data of about 400 globally distributed stations obtained at time span from 1998 till 2007 were reprocessed using GFZ Potsdam EPOS (Earth Parameter and Orbit System) software within International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Pilot Project and IGS Data Reprocessing Campaign with the purpose to determine weekly precise coordinates of GPS stations located at or near tide gauges. Vertical motions of these stations are used to correct the vertical motions of tide gauges for local motions and to tie tide gauge measurements to the geocentric reference frame. Other estimated parameters include daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. The solution GT1 derived is based on using absolute phase center variation model, ITRF2005 as a priori reference frame, and other new models. The solution contributed also to ITRF2008. The time series of station positions are analyzed to identify non-linear motions caused by different effects. The paper presents the time series of GPS station coordinates and investigates apparent non-linear motions and their influence on GPS station height rates.

  4. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  5. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  6. Global trends and variability in integrated water vapour from ground-based GPS data and atmospheric models

    NASA Astrophysics Data System (ADS)

    Bock, Olivier; Parracho, Ana; Bastin, Sophie; Hourdin, Frededic; Mellul, Lidia

    2016-04-01

    A high-quality, consistent, global, long-term dataset of integrated water vapour (IWV) was produced from Global Positioning System (GPS) measurements at more than 400 sites over the globe among which 120 sites have more than 15 years of data. The GPS delay data were converted to IWV using surface pressure and weighted mean temperature estimates from ERA-Interim reanalysis. A two-step screening method was developed to detect and remove outliers in the IWV data. It is based on: 1) GPS data processing information and delay formal errors, and 2) intercomparison with ERA-Interim reanalysis data. The GPS IWV data are also homogenized to correct for offsets due to instrumental changes and other unknown factors. The differential homogenization method uses ERA-Interim IWV as a reference. The resulting GPS data are used to document the mean distribution, the global trends and the variability of IWV over the period 1995-2010, and are analysed in coherence with precipitation and surface temperature data (from observations and ERA-Interim reanalysis). These data are also used to assess global climate model simulations extracted from the IPCC AR5 archive. Large coherent spatial patterns of moistening and drying are evidenced but significant discrepancies are also seen between GPS measurements, reanalysis and climate models in various regions. In terms of variability, the monthly mean anomalies are intercompared. The temporal correlation between GPS and the climate model simulations is overall quite small but the spatial variation of the magnitude of the anomalies is globally well simulated. GPS IWV data prove to be useful to validate global climate model simulations and highlight deficiencies in their representation of the water cycle.

  7. Global thermal models of the lithosphere

    NASA Astrophysics Data System (ADS)

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.

  8. Mid-Twenty-First-Century Changes in Global Wave Energy Flux: Single-Model, Single-Forcing and Single-Scenario Ensemble Projections

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Lemos, Gil; Dobrynin, Mikhail; Behrens, Arno; Staneva, Joanna; Miranda, Pedro

    2017-04-01

    The knowledge of ocean surface wave energy fluxes (or wave power) is of outmost relevance since wave power has a direct impact in coastal erosion, but also in sediment transport and beach nourishment, and ship, as well as in coastal and offshore infrastructures design. Changes in the global wave energy flux pattern can alter significantly the impact of waves in continental shelf and coastal areas. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit under the auspices of the COWCLIP (coordinated ocean wave climate projections) project, and received some attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (fifth assessment report). In the present study the impact of a warmer climate in the near future global wave energy flux climate is investigated through a 4-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is reduced, leaving only room for the climate change signal. The four ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1976 to 2005. The projected changes in the global wave energy flux climate are analyzed for the 2031-2060 period.

  9. Global astrometry with OSI

    NASA Astrophysics Data System (ADS)

    Loiseau, Sacha; Malbet, Fabien; Yu, Jeffrey W.

    1995-06-01

    We present a method for performing global astrometry with the proposed Orbiting Stellar Interferometer. Because it is dedicated to wide-angle astrometry, OSI has the intrinsic capabilities to achieve global astrometry, even though it doesn't measure directly relative angles between pairs of stars, such as HIPPARCOS. In this paper, a time-independent model is shown, leading to a coherent solution for the positions of reference stars on the whole sky. With an initial measurement accuracy of 10 micro-arcseconds, corresponding to an accuracy of 340 picometers in the knowledge of the delay-line position of the observing interferometer, the consistent least-squares solution gives an accuracy by which the astrometric parameters can be obtained around 2 - 3 micro-arcseconds.

  10. Impacts on Global Agriculture of Stratospheric Sulfate Injection

    NASA Astrophysics Data System (ADS)

    Robock, A.; Xia, L.

    2014-12-01

    Impacts on global food supply are one of the most important concerns in the discussion of stratospheric sulfate geoengineering. Stratospheric sulfate injection could reduce surface temperature, precipitation, and insolation, which could affect agricultural production. We use output from climate model simulations using the two most "realistic" scenarios from the Geoengineering Model Intercomparison Project, G3 and G4. G3 posits balancing the increasing radiative forcing from the RCP4.5 business-as-usual scenario with stratospheric sulfate aerosols from 2020 through 2070. The G4 scenario also uses RCP4.5, but models simulate the stratospheric injection of 5 Tg SO2 per year from 2020 to 2070. In total, there are three modeling groups which have completed G3 and four for G4. We use two crop models, the global gridded Decision Support System for Agrotechnology Transfer (gDSSAT) crop model and the crop model in the NCAR Community Land Model (CLM-crop), to predict global maize yield changes. Without changing agricultural technology, we find that compared to the reference run forced by the RCP4.5 scenario, maize yields could increase in both G3 and G4 due to both the cooling effect of stratospheric sulfate injection and the CO2 fertilization effect, with the cooling effect contributing more to the increased productivity. However, the maize yield changes are not much larger than natural variability under G3, since the temperature reduction is smaller in G3 than in G4. Both crop models show similar results.

  11. Continental scale data assimilation of discharge and its effect on flow predictions

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; van Dijk, Albert

    2017-04-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) and Europe into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  12. Continental scale data assimilation of discharge and its effect on flow predictions across the contiguous US (CONUS)

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Schellekens, J.; van Dijk, A.; Molenaar, R.

    2016-12-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  13. Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation

    NASA Astrophysics Data System (ADS)

    Chanard, Kristel; Fleitout, Luce; Calais, Eric; Barbot, Sylvain; Avouac, Jean-Philippe

    2018-03-01

    We discuss the constraints on short-term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300-4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 1017 Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average.

  14. TIGO: a geodetic observatory for the improvement of the global reference frame

    NASA Astrophysics Data System (ADS)

    Schlueter, Wolfgang; Hase, Hayo; Boeer, Armin

    1999-12-01

    The Bundesamt fuer Kartographie und Geodaesie (BKG) will provide a major contribution to the improvement and maintenance of the global reference frames: ICRF (International Celestial Reference Frame), ITRF (International Terrestrial Reference Frame) with the operation of TIGO (Transportable Integrated Geodetic Observatory). TIGO is designed as a transportable geodetic observatory which consists of all relevant geodetic space techniques for a fundamental station (including VLBI, SLR, GPS). The transportability of the observatory enables to fill up gaps in the International Space Geodetic Network and to optimize the contribution to the global reference frames. TIGO should operate for a period of 2 to 3 years (at minimum) at one location. BKG is looking for a cooperation with countries willing to contribute to the ITRF and to support the operation of TIGO.

  15. Assembling GHERG: Could "academic crowd-sourcing" address gaps in global health estimates?

    PubMed

    Rudan, Igor; Campbell, Harry; Marušić, Ana; Sridhar, Devi; Nair, Harish; Adeloye, Davies; Theodoratou, Evropi; Chan, Kit Yee

    2015-06-01

    In recent months, the World Health Organization (WHO), independent academic researchers, the Lancet and PLoS Medicine journals worked together to improve reporting of population health estimates. The new guidelines for accurate and transparent health estimates reporting (likely to be named GATHER), which are eagerly awaited, represent a helpful move that should benefit the field of global health metrics. Building on this progress and drawing from a tradition of Child Health Epidemiology Reference Group (CHERG)'s successful work model, we would like to propose a new initiative - "Global Health Epidemiology Reference Group" (GHERG). We see GHERG as an informal and entirely voluntary international collaboration of academic groups who are willing to contribute to improving disease burden estimates and respect the principles of the new guidelines - a form of "academic crowd-sourcing". The main focus of GHERG will be to identify the "gap areas" where not much information is available and/or where there is a lot of uncertainty present about the accuracy of the existing estimates. This approach should serve to complement the existing WHO and IHME estimates and to represent added value to both efforts.

  16. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015.

    PubMed

    Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C

    2018-01-09

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  17. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.

    2018-01-01

    We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.

  18. The Impacts of a 2-Degree Rise in Global Temperatures upon Gas-Phase Air Pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Josse, Béatrice; Marecal, Virginie; Lacressonnière, Gwendoline; Vautard, Robert; Gauss, Michael; Engardt, Magnuz; Nyiri, Agnes; Siour, Guillaume

    2014-05-01

    The 15th session of the Conference of Parties (COP 15) in 2009 ratified the Copenhagen Accord, which "recognises the scientific view that" global temperature rise should be held below 2 degrees C above pre-industrial levels in order to limit the impacts of climate change. Due to the fact that a 2-degree limit has been frequently referred to by policy makers in the context of the Copenhagen Accord and many other high-level policy statements, it is important that the impacts of this 2-degree increase in temperature are adequately analysed. To this end, the European Union sponsored the project IMPACT2C, which uses a multi-disciplinary international team to assess a wide variety of impacts of a 2-degree rise in global temperatures. For example, this future increase in temperature is expected to have a significant influence upon meteorological conditions such as temperature, precipitation, and wind direction and intensity; which will in turn affect the production, deposition, and distribution of air pollutants. For the first part of the air quality analysis within the IMPACT2C project, the impact of meteorological forcings on gas phase air pollutants over Europe was studied using four offline atmospheric chemistry transport models. Two sets of meteorological forcings were used for each model: reanalysis of past observation data and global climate model output. Anthropogenic emissions of ozone precursors for the year 2005 were used for all simulations in order to isolate the impact of meteorology and assess the robustness of the results across the different models. The differences between the simulations that use reanalysis of past observation data and the simulations that use global climate model output show how global climate models modify climate hindcasts by boundary conditions inputs: information that is necessary in order to interpret simulations of future climate. The baseline results were assessed by comparison with AirBase (Version 7) measurement data, and were then used as a reference for an analysis of future climate scenarios upon European air quality. The future scenarios included two types of emission data for the year 2050: one set of emission data corresponding to a current legislation scenario and another corresponding to a scenario with a maximum feasible reduction in emissions. The future scenarios were run for the time period that corresponds to a 2-degree increase in global temperatures; a time period that varies depending on which global climate model is used. In order to calculate the effect of climate change on emission reduction scenarios, the "climate penalty", the future simulations were compared to a simulation using the same future emissions but with current (2005) climate. Results show that climate change will have consequential impacts with regards to the production and geographical distribution of ozone and nitrogen oxides.

  19. Mixture models for protein structure ensembles.

    PubMed

    Hirsch, Michael; Habeck, Michael

    2008-10-01

    Protein structure ensembles provide important insight into the dynamics and function of a protein and contain information that is not captured with a single static structure. However, it is not clear a priori to what extent the variability within an ensemble is caused by internal structural changes. Additional variability results from overall translations and rotations of the molecule. And most experimental data do not provide information to relate the structures to a common reference frame. To report meaningful values of intrinsic dynamics, structural precision, conformational entropy, etc., it is therefore important to disentangle local from global conformational heterogeneity. We consider the task of disentangling local from global heterogeneity as an inference problem. We use probabilistic methods to infer from the protein ensemble missing information on reference frames and stable conformational sub-states. To this end, we model a protein ensemble as a mixture of Gaussian probability distributions of either entire conformations or structural segments. We learn these models from a protein ensemble using the expectation-maximization algorithm. Our first model can be used to find multiple conformers in a structure ensemble. The second model partitions the protein chain into locally stable structural segments or core elements and less structured regions typically found in loops. Both models are simple to implement and contain only a single free parameter: the number of conformers or structural segments. Our models can be used to analyse experimental ensembles, molecular dynamics trajectories and conformational change in proteins. The Python source code for protein ensemble analysis is available from the authors upon request.

  20. Global 3-D ionospheric electron density reanalysis based on multisource data assimilation

    NASA Astrophysics Data System (ADS)

    Yue, Xinan; Schreiner, William S.; Kuo, Ying-Hwa; Hunt, Douglas C.; Wang, Wenbin; Solomon, Stanley C.; Burns, Alan G.; Bilitza, Dieter; Liu, Jann-Yenq; Wan, Weixing; Wickert, Jens

    2012-09-01

    We report preliminary results of a global 3-D ionospheric electron density reanalysis demonstration study during 2002-2011 based on multisource data assimilation. The monthly global ionospheric electron density reanalysis has been done by assimilating the quiet days ionospheric data into a data assimilation model constructed using the International Reference Ionosphere (IRI) 2007 model and a Kalman filter technique. These data include global navigation satellite system (GNSS) observations of ionospheric total electron content (TEC) from ground-based stations, ionospheric radio occultations by CHAMP, GRACE, COSMIC, SAC-C, Metop-A, and the TerraSAR-X satellites, and Jason-1 and 2 altimeter TEC measurements. The output of the reanalysis are 3-D gridded ionospheric electron densities with temporal and spatial resolutions of 1 h in universal time, 5° in latitude, 10° in longitude, and ˜30 km in altitude. The climatological features of the reanalysis results, such as solar activity dependence, seasonal variations, and the global morphology of the ionosphere, agree well with those in the empirical models and observations. The global electron content derived from the international GNSS service global ionospheric maps, the observed electron density profiles from the Poker Flat Incoherent Scatter Radar during 2007-2010, and foF2 observed by the global ionosonde network during 2002-2011 are used to validate the reanalysis method. All comparisons show that the reanalysis have smaller deviations and biases than the IRI-2007 predictions. Especially after April 2006 when the six COSMIC satellites were launched, the reanalysis shows significant improvement over the IRI predictions. The obvious overestimation of the low-latitude ionospheric F region densities by the IRI model during the 23/24 solar minimum is corrected well by the reanalysis. The potential application and improvements of the reanalysis are also discussed.

  1. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0)

    DOE PAGES

    Ali, Ashehad A.; Xu, Chonggang; Rogers, Alistair; ...

    2016-02-12

    Although plant photosynthetic capacity as determined by the maximum carboxylation rate (i.e., V c,max25) and the maximum electron transport rate (i.e., J max25) at a reference temperature (generally 25 °C) is known to vary considerably in space and time in response to environmental conditions, it is typically parameterized in Earth system models (ESMs) with tabulated values associated with plant functional types. In this study, we have developed a mechanistic model of leaf utilization of nitrogen for assimilation (LUNA) to predict photosynthetic capacity at the global scale under different environmental conditions. We adopt an optimality hypothesis to nitrogen allocation among lightmore » capture, electron transport, carboxylation and respiration. The LUNA model is able to reasonably capture the measured spatial and temporal patterns of photosynthetic capacity as it explains ~55 % of the global variation in observed values of V c,max25 and ~65 % of the variation in the observed values of J max25. Model simulations with LUNA under current and future climate conditions demonstrate that modeled values of V c,max25 are most affected in high-latitude regions under future climates. In conclusion, ESMs that relate the values of V c,max25 or J max25 to plant functional types only are likely to substantially overestimate future global photosynthesis.« less

  2. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  3. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE PAGES

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.; ...

    2016-03-01

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  4. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    NASA Technical Reports Server (NTRS)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; hide

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work plan, and has been the subject of ongoing work by AgMIP since its creation.

  5. Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Burning Sources, version 2017

    NASA Astrophysics Data System (ADS)

    Sherwood, Owen A.; Schwietzke, Stefan; Arling, Victoria A.; Etiope, Giuseppe

    2017-08-01

    The concentration of atmospheric methane (CH4) has more than doubled over the industrial era. To help constrain global and regional CH4 budgets, inverse (top-down) models incorporate data on the concentration and stable carbon (δ13C) and hydrogen (δ2H) isotopic ratios of atmospheric CH4. These models depend on accurate δ13C and δ2H end-member source signatures for each of the main emissions categories. Compared with meticulous measurement and calibration of isotopic CH4 in the atmosphere, there has been relatively less effort to characterize globally representative isotopic source signatures, particularly for fossil fuel sources. Most global CH4 budget models have so far relied on outdated source signature values derived from globally nonrepresentative data. To correct this deficiency, we present a comprehensive, globally representative end-member database of the δ13C and δ2H of CH4 from fossil fuel (conventional natural gas, shale gas, and coal), modern microbial (wetlands, rice paddies, ruminants, termites, and landfills and/or waste) and biomass burning sources. Gas molecular compositional data for fossil fuel categories are also included with the database. The database comprises 10 706 samples (8734 fossil fuel, 1972 non-fossil) from 190 published references. Mean (unweighted) δ13C signatures for fossil fuel CH4 are significantly lighter than values commonly used in CH4 budget models, thus highlighting potential underestimation of fossil fuel CH4 emissions in previous CH4 budget models. This living database will be updated every 2-3 years to provide the atmospheric modeling community with the most complete CH4 source signature data possible. Database digital object identifier (DOI): https://doi.org/10.15138/G3201T.

  6. Interpolation of the Radial Velocity Data from Coastal HF Radars

    DTIC Science & Technology

    2013-01-01

    practical applications and may help to solve many environmental problems caused by human activity. References [1] Alvera -Azcarate A., A. Barth, M. Rixen...surface temperature, Ocean Modelling, 9,325-346. [2] Alvera -Azcarate, A., A. Barth,. J.-M. Beckers, and R. H. Weisber, 2007: Multivari- ate...predictions from the global Navy Coastal Ocean Model (NCOM) dur- ing 1998-2001,7. Atmos. Oceanic TechnoL, 21(12), 1876-1894. [4] Barth, A., Alvera

  7. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit temperature increase and pH and dissolved oxygen decrease relative to the reference scenario without cumulative CO2 emissions overshoot. Furthermore, our results show that the higher the level of overshoot, the lower the reversibility of changes in the marine environment.

  8. Self-reference and predictive, normative and prescriptive approaches in applications of systems thinking in social sciences—(Survey)

    NASA Astrophysics Data System (ADS)

    Mesjasz, Czesław

    2000-05-01

    Cybernetics, systems thinking or systems theory, have been viewed as instruments of enhancing predictive, normative and prescriptive capabilities of the social sciences, beginning from microscale-management and ending with various reference to the global system. Descriptions, explanations and predictions achieved thanks to various systems ideas were also viewed as supportive for potential governance of social phenomena. The main aim of the paper is to examine what could be the possible applications of modern systems thinking in predictive, normative and prescriptive approaches in modern social sciences, beginning from management theory and ending with global studies. Attention is paid not only to "classical" mathematical systems models but also to the role of predictive, normative and prescriptive interpretations of analogies and metaphors associated with application of the classical ("first order cybernetics") and modern ("second order cybernetics", "complexity theory") systems thinking in social sciences.

  9. Forecasting eruption size: what we know, what we don't know

    NASA Astrophysics Data System (ADS)

    Papale, Paolo

    2017-04-01

    Any eruption forecast includes an evaluation of the expected size of the forthcoming eruption, usually expressed as the probability associated to given size classes. Such evaluation is mostly based on the previous volcanic history at the specific volcano, or it is referred to a broader class of volcanoes constituting "analogues" of the one under specific consideration. In any case, use of knowledge from past eruptions implies considering the completeness of the reference catalogue, and most importantly, the existence of systematic biases in the catalogue, that may affect probability estimates and translate into biased volcanic hazard forecasts. An analysis of existing catalogues, with major reference to the catalogue from the Smithsonian Global Volcanism Program, suggests that systematic biases largely dominate at global, regional and local scale: volcanic histories reconstructed at individual volcanoes, often used as a reference for volcanic hazard forecasts, are the result of systematic loss of information with time and poor sample representativeness. That situation strictly requires the use of techniques to complete existing catalogues, as well as careful consideration of the uncertainties deriving from inadequate knowledge and model-dependent data elaboration. A reconstructed global eruption size distribution, obtained by merging information from different existing catalogues, shows a mode in the VEI 1-2 range, <0.1% incidence of eruptions with VEI 7 or larger, and substantial uncertainties associated with individual VEI frequencies. Even larger uncertainties are expected to derive from application to individual volcanoes or classes of analogue volcanoes, suggesting large to very large uncertainties associated to volcanic hazard forecasts virtually at any individual volcano worldwide.

  10. Numerical Predictions of Damage and Failure in Carbon Fiber Reinforced Laminates Using a Thermodynamically-Based Work Potential Theory

    NASA Technical Reports Server (NTRS)

    Pineda, Evan Jorge; Waas, Anthony M.

    2013-01-01

    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.

  11. Evaluation of observation-driven evaporation algorithms: results of the WACMOS-ET project

    NASA Astrophysics Data System (ADS)

    Miralles, Diego G.; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Michel, Dominik; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego

    2015-04-01

    Terrestrial evaporation (ET) links the continental water, energy and carbon cycles. Understanding the magnitude and variability of ET at the global scale is an essential step towards reducing uncertainties in our projections of climatic conditions and water availability for the future. However, the requirement of global observational data of ET can neither be satisfied with our sparse global in-situ networks, nor with the existing satellite sensors (which cannot measure evaporation directly from space). This situation has led to the recent rise of several algorithms dedicated to deriving ET fields from satellite data indirectly, based on the combination of ET-drivers that can be observed from space (e.g. radiation, temperature, phenological variability, water content, etc.). These algorithms can either be based on physics (e.g. Priestley and Taylor or Penman-Monteith approaches) or be purely statistical (e.g., machine learning). However, and despite the efforts from different initiatives like GEWEX LandFlux (Jimenez et al., 2011; Mueller et al., 2013), the uncertainties inherent in the resulting global ET datasets remain largely unexplored, partly due to a lack of inter-product consistency in forcing data. In response to this need, the ESA WACMOS-ET project started in 2012 with the main objectives of (a) developing a Reference Input Data Set to derive and validate ET estimates, and (b) performing a cross-comparison, error characterization and validation exercise of a group of selected ET algorithms driven by this Reference Input Data Set and by in-situ forcing data. The algorithms tested are SEBS (Su et al., 2002), the Penman- Monteith approach from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008), the MPI-MTE model (Jung et al., 2010) and GLEAM (Miralles et al., 2011). In this presentation we will show the first results from the ESA WACMOS-ET project. The performance of the different algorithms at multiple spatial and temporal scales for the 2005-2007 reference period will be disclosed. The skill of these algorithms to close the water balance over the continents will be assessed by comparisons to runoff data. The consistency in forcing data will allow to (a) evaluate the skill of these five algorithms in producing ET over particular ecosystems, (b) facilitate the attribution of the observed differences to either algorithms or driving data, and (c) set up a solid scientific basis for the development of global long-term benchmark ET products. Project progress can be followed on our website http://wacmoset.estellus.eu. REFERENCES Fisher, J. B., Tu, K.P., and Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901-919, 2008. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102, 2011. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951-954, 2010. Miralles, D.G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453-469, 2011. Mu, Q., Zhao, M. & Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800, 2011. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi- dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720, 2013. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-99, 2002.

  12. Evaluating Mars Science Laboratory Landing Sites with the Mars Global Reference Atmospheric Model (Mars-GRAM 2005)

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Justus, C. G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM) is an engineering-level atmospheric model widely used for diverse mission applications. Mars-GRAM s perturbation modeling capability is commonly used, in a Monte-Carlo mode, to perform high fidelity engineering end-to-end simulations for entry, descent, and landing (EDL) [1]. From the surface to 80 km altitude, Mars-GRAM is based on the NASA Ames Mars General Circulation Model (MGCM). Mars-GRAM and MGCM use surface topography from Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA), with altitudes referenced to the MOLA areoid, or constant potential surface. Traditional Mars-GRAM options for representing the mean atmosphere along entry corridors include: (1) Thermal Emission Spectrometer (TES) mapping years 1 and 2, with Mars-GRAM data coming from NASA Ames Mars General Circulation Model (MGCM) results driven by observed TES dust optical depth or (2) TES mapping year 0, with user-controlled dust optical depth and Mars-GRAM data interpolated from MGCM model results driven by selected values of globally-uniform dust optical depth. Mars-GRAM 2005 has been validated [2] against Radio Science data, and both nadir and limb data from TES [3]. There are several new features included in Mars-GRAM 2005. The first is the option to use input data sets from MGCM model runs that were designed to closely simulate conditions observed during the first two years of TES observations at Mars. The TES Year 1 option includes values from April 1999 through January 2001. The TES Year 2 option includes values from February 2001 through December 2002. The second new feature is the option to read and use any auxiliary profile of temperature and density versus altitude. In exercising the auxiliary profile Mars-GRAM option, values from the auxiliary profile replace data from the original MGCM databases. Some examples of auxiliary profiles include data from TES nadir or limb observations and Mars mesoscale model output at a particular location and time. The final new feature is the addition of two Mars-GRAM parameters that allow standard deviations of Mars-GRAM perturbations to be adjusted. The parameter rpscale can be used to scale density perturbations up or down while rwscale can be used to scale wind perturbations.

  13. Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for green water flows.

    PubMed

    Núñez, Montserrat; Pfister, Stephan; Roux, Philippe; Antón, Assumpció

    2013-01-01

    This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). This was an issue that LCA had not tackled before. The approach, which is applied during the life cycle inventory phase (LCI), consists of quantifying the net change in the evapo(transpi)ration of the production system compared to the natural reference situation. Potential natural vegetation (PNV) is used as the natural reference situation. In order to apply the method, we estimated PNV evapotranspiration adapted to local biogeographic conditions, on global dry lands, where soil-water consumption impacts can be critical. Values are reported at different spatial aggregation levels: 10-arcmin global grid, ecoregions (501 units), biomes (14 units), countries (124 units), continents, and a global average, to facilitate the assessment for different spatial information detail levels available in the LCI. The method is intended to be used in rain-fed agriculture and rainwater harvesting contexts, which includes direct soil moisture uptake by plants and rainwater harvested and then reused in production systems. The paper provides the necessary LCI method and data for further development of impact assessment models and characterization factors to evaluate the environmental effects of the net change in evapo(transpi)ration.

  14. Effects of non-tidal atmospheric loading on a Kalman filter-based terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Abbondanza, C.; Altamimi, Z.; Chin, T. M.; Collilieux, X.; Dach, R.; Heflin, M. B.; Gross, R. S.; König, R.; Lemoine, F. G.; MacMillan, D. S.; Parker, J. W.; van Dam, T. M.; Wu, X.

    2013-12-01

    The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS global networks used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, the effect of non-tidal atmospheric loading (NTAL) corrections on the TRF is assessed adopting a Remove/Restore approach: (i) Focusing on the a-posteriori approach, the NTAL model derived from the National Center for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations. (ii) Adopting a Kalman-filter based approach, a linear TRF is estimated combining the 4 SG solutions free from NTAL displacements. (iii) Linear fits to the NTAL displacements removed at step (i) are restored to the linear reference frame estimated at (ii). The velocity fields of the (standard) linear reference frame in which the NTAL model has not been removed and the one in which the model has been removed/restored are compared and discussed.

  15. Prospects for improving the representation of coastal and shelf seas in global ocean models

    NASA Astrophysics Data System (ADS)

    Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard

    2017-02-01

    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions < 500 m deep, but this increases to ˜ 70 % for a 1/72° model, so resolving scales globally requires substantially finer resolution than the current state of the art.We quantify the benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally refined model and that of multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1/4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5 km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1/72° global model by 2026. However, we also note that a 1/12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to ˜ 1.5 km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges.

  16. Benchmarking carbon fluxes of the ISIMIP2a biome models

    DOE PAGES

    Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui; ...

    2017-03-28

    The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). Here, we evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO 2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena andmore » F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.« less

  17. Benchmarking carbon fluxes of the ISIMIP2a biome models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Jinfeng; Ciais, Philippe; Wang, Xuhui

    The purpose of this study is to evaluate the eight ISIMIP2a biome models against independent estimates of long-term net carbon fluxes (i.e. Net Biome Productivity, NBP) over terrestrial ecosystems for the recent four decades (1971–2010). Here, we evaluate modeled global NBP against 1) the updated global residual land sink (RLS) plus land use emissions (E LUC) from the Global Carbon Project (GCP), presented as R + L in this study by Le Quéré et al (2015), and 2) the land CO 2 fluxes from two atmospheric inversion systems: Jena CarboScope s81_v3.8 and CAMS v15r2, referred to as F Jena andmore » F CAMS respectively. The model ensemble-mean NBP (that includes seven models with land-use change) is higher than but within the uncertainty of R + L, while the simulated positive NBP trend over the last 30 yr is lower than that from R + L and from the two inversion systems. ISIMIP2a biome models well capture the interannual variation of global net terrestrial ecosystem carbon fluxes. Tropical NBP represents 31 ± 17% of global total NBP during the past decades, and the year-to-year variation of tropical NBP contributes most of the interannual variation of global NBP. According to the models, increasing Net Primary Productivity (NPP) was the main cause for the generally increasing NBP. Significant global NBP anomalies from the long-term mean between the two phases of El Niño Southern Oscillation (ENSO) events are simulated by all models (p < 0.05), which is consistent with the R + L estimate (p = 0.06), also mainly attributed to NPP anomalies, rather than to changes in heterotrophic respiration (Rh). The global NPP and NBP anomalies during ENSO events are dominated by their anomalies in tropical regions impacted by tropical climate variability. Multiple regressions between R + L, F Jena and F CAMS interannual variations and tropical climate variations reveal a significant negative response of global net terrestrial ecosystem carbon fluxes to tropical mean annual temperature variation, and a non-significant response to tropical annual precipitation variation. According to the models, tropical precipitation is a more important driver, suggesting that some models do not capture the roles of precipitation and temperature changes adequately.« less

  18. An Economic Aspect of the AVOID Programme: Analysis Using the AIM/CGE Model

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ken'ichi; Masui, Toshihiko

    2010-05-01

    This presentation purposes to show the results of the analysis that the AIM/CGE [Global] model contributed to Work Stream 1 of the AVOID programme. Three economic models participate in this WS to analyze the economic aspects of defined climate policies, and the AIM/CGE [Global] model is one of them. The reference scenario is SRES A1B and five policy scenarios (2016.R2.H, 2016.R4.L, 2016.R5.L, 2030.R2.H, and 2030.R5.L) are considered. The climate policies are expressed as emissions pathways of several gases such as greenhouse gases and aerosols. The AIM/CGE [Global] model is a recursive dynamic global CGE model with 21 industrial sectors and 24 world regions. These definitions are based on the GTAP6 database and it is used as the economic data of the base year. Some important characteristics of this model can be summarized as follows: power generation by various sources (from non-renewables to renewables) are considered; CCS technology is modeled; biomass energy (both traditional and purpose-grown) production and consumption are included; not only CO2 emissions but also other gases are considered; international markets are modeled for international trade of some fossil fuels; relationships between the costs and resource reserves of fossil fuels are modeled. The model is run with 10-year time steps until 2100. For the reference case, there are no constraints and the model is run based on the drivers (assumptions on GDP and population for A1B) and AEEI. The reference case does not have the same emissions pathways as the prescribed emissions for A1B in AVOID. For scenario cases, the model is run under emissions constraints. In particular, for each policy scenario, the constraint on each gas in each 10-year step is derived. The percentage reduction in emissions that occurs between the AVOID A1B scenario and the particular policy scenario, for each gas in each 10-year period is first calculated, and then these percentage reductions are applied to the AIM reference case to derive the constraints for each gas over the 21st century. The main results provided to AVOID were carbon prices and GDP for each scenario case. About the carbon prices, the results show that the higher the emissions reduction rate and the earlier the peak, the higher the carbon prices will be, and the prices tend to be higher over time (536/tCO2 in 2100 for 2016.R5.L). These trends are quite different from those of the E3MG model which assumes constant carbon tax for each scenario (232/tCO2 in 2100 for 2016.R5.L). In addition, the higher carbon prices are necessary in the AIM/CGE model than the E3MG model, especially in the latter half of the century. About the GDP trends, the results indicate that negative GDP changes occur for all scenarios cases, and higher GDP damage is observed as the reduction rate becomes higher and the peak comes earlier (-7.04% in 2100 for 2016.R5.L). These trends are extremely different from those of the E3MG model which shows positive GDP effects (+4.89% in 2100 for 2016.R5.L). The differences of the results among the two models are caused by (1) technological change assumptions, (2) revenue recycling methodology, (3) timing of emissions cuts, and (4) modeling approaches. We expect to have a more detailed discussion at the session.

  19. Civilization, Big History, and Human Survival

    ERIC Educational Resources Information Center

    Rodrigue, Barry H.

    2010-01-01

    A problem that history teachers in the United States face is that they lack an appropriate reference point from which to address many of today's global issues. The source of this problem is an antiquated model of society, still taught in the universities, that largely reflects the society that existed a century ago. For the last decade, the author…

  20. Structural Limitations of Model Reference Adaptive Controllers

    DTIC Science & Technology

    1989-04-01

    Global Uncertainty CkpVps)I4(s) kWVh(s) In [3) a design rule similar the one studied heme Dps(ms+Cs)V~)Ds = s (4) (ectly the samne when n-m--l) was...Ir represent the under the uncertainty indicated by ES and Eu. output of this structured singular value analysis, p: is an Defint 6: The Design

  1. Future Projections of Air Temperature and Precipitation for the CORDEX-MENA Domain by Using RegCM4.3.5

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent

    2015-04-01

    In this study, the projected changes for the periods of 2016 - 2035, 2046 - 2065, and 2081 - 2100 in the seasonal averages of air temperature and precipitation variables with respect to the reference period of 1981 - 2000 were examined for the Middle East and North Africa region. In this context, Regional Climate Model (RegCM4.3.5) of ICTP (International Centre for Theoretical Physics) was run by using two different global climate models. MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology and HadGEM2 of the Met Office Hadley Centre were dynamically downscaled to 50 km for the CORDEX-MENA domain. The projections were realized according to the RCP4.5 and the RCP8.5 emission scenarios of the IPCC (Intergovernmental Panel of Climate Change).

  2. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    NASA Astrophysics Data System (ADS)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  3. Foundational Data Products for Europa: A Planetary Spatial Data Infrastructure Example

    NASA Astrophysics Data System (ADS)

    Archinal, B. A.; Laura, J.; Becker, T. L.; Bland, M. T.; Kirk, R. L.

    2017-12-01

    Any Spatial Data Infrastructure (SDI), including a Planetary SDI (PSDI [1]), includes primary components such as "policy, access network, technical standards, people (including partnerships), and data" [2]. Data is largely categorized into critical foundational products and framework data products. Of data themes [3] previously identified for the U. S. National SDI, we identify [4] three types of products that are foundational to a PSDI: geodetic coordinate reference systems, elevation information, and orthomosaics. We previously listed examples of such products for the Moon (ibid.). Here, we list the current state of these three foundational products for Europa, a key destination in the outer Solar System. Geodetic coordinate reference systems for Europa are based on photogrammetric control networks generated from processing of Voyager and Galileo images, the most recent being that created by M. Davies and T. Colvin at The RAND Corporation in the late 1990s. The Voyager and Galileo images provide insufficient stereo coverage to derive a detailed global topographic model, but various global ellipsoidal shape models have been derived using e.g. the RAND network or limb profile data. The best-known global mosaic of Europa is a controlled orthomosaic produced by the U.S. Geological Survey [5], based on the RAND network and triaxial ellipsoid shape model. Near future needs include comparing the resolution and accuracy of these products with estimates for newer products that might supersede them, including released or unreleased regional products (such as digital terrain models or mosaics) and products that could be made by processing of extant data. Understanding these PSDI fundamental needs will also improve assessing and prioritizing products that are planned for by the upcoming NASA Europa Clipper mission. This effort is not only useful for Europa science, but is also a first step toward developing such summaries for all Solar System bodies with relevant data, which collectively will serve as a foundation of an entire PSDI. References: [1] Laura et al., ISPRS J. Geo-Info., 6, #181. [2] Rajabifard and Williamson, in Williamson and Rajabifard, eds., ISPRS-WG IV/8, Hong Kong, China, Ch. 6, 2001. [3] OMB Circular A-16 Supp. Guidance. [4] LPS XLVIII, #2286. [5] USGS map I-2757.

  4. Progress and Challenges in Developing Reference Data Layers for Human Population Distribution and Built Infrastructure

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Yetman, G.; de Sherbinin, A. M.

    2015-12-01

    Understanding the interactions between environmental and human systems, and in particular supporting the applications of Earth science data and knowledge in place-based decision making, requires systematic assessment of the distribution and dynamics of human population and the built human infrastructure in conjunction with environmental variability and change. The NASA Socioeconomic Data and Applications Center (SEDAC) operated by the Center for International Earth Science Information Network (CIESIN) at Columbia University has had a long track record in developing reference data layers for human population and settlements and is expanding its efforts on topics such as intercity roads, reservoirs and dams, and energy infrastructure. SEDAC has set as a strategic priority the acquisition, development, and dissemination of data resources derived from remote sensing and socioeconomic data on urban land use change, including temporally and spatially disaggregated data on urban change and rates of change, the built infrastructure, and critical facilities. We report here on a range of past and ongoing activities, including the Global Human Settlements Layer effort led by the European Commission's Joint Research Centre (JRC), the Global Exposure Database for the Global Earthquake Model (GED4GEM) project, the Global Roads Open Access Data Working Group (gROADS) of the Committee on Data for Science and Technology (CODATA), and recent work with ImageCat, Inc. to improve estimates of the exposure and fragility of buildings, road and rail infrastructure, and other facilities with respect to selected natural hazards. New efforts such as the proposed Global Human Settlement indicators initiative of the Group on Earth Observations (GEO) could help fill critical gaps and link potential reference data layers with user needs. We highlight key sectors and themes that require further attention, and the many significant challenges that remain in developing comprehensive, high quality, up-to-date, and well maintained reference data layers on population and built infrastructure. The need for improved indicators of sustainable development in the context of the post-2015 development framework provides an opportunity to link data efforts directly with international development needs and investments.

  5. Evaluation of various LandFlux evapotranspiration algorithms using the LandFlux-EVAL synthesis benchmark products and observational data

    NASA Astrophysics Data System (ADS)

    Michel, Dominik; Hirschi, Martin; Jimenez, Carlos; McCabe, Mathew; Miralles, Diego; Wood, Eric; Seneviratne, Sonia

    2014-05-01

    Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which can not be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). Currently, a multi-decadal global reference heat flux data set for ET at the land surface is being developed within the LandFlux initiative of the Global Energy and Water Cycle Experiment (GEWEX). This LandFlux v0 ET data set comprises four ET algorithms forced with a common radiation and surface meteorology. In order to estimate the agreement of this LandFlux v0 ET data with existing data sets, it is compared to the recently available LandFlux-EVAL synthesis benchmark product. Additional evaluation of the LandFlux v0 ET data set is based on a comparison to in situ observations of a weighing lysimeter from the hydrological research site Rietholzbach in Switzerland. These analyses serve as a test bed for similar evaluation procedures that are envisaged for ESA's WACMOS-ET initiative (http://wacmoset.estellus.eu). Reference: Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10): 3707-3720.

  6. Morphology of the winter anomaly in NmF2 and Total Electron Content

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Ratovsky, Konstantin; Yasyukevich, Anna; Klimenko, Maksim; Klimenko, Vladimir; Chirik, Nikolay

    2017-04-01

    We analyzed the winter anomaly manifestation in the F2 peak electron density (NmF2) and Total Electron Content (TEC) based on the observation data and model calculation results. For the analysis we used 1998-2015 TEC Global Ionospheric Maps (GIM) and NmF2 ground-based ionosonde observation data from and COSMIC, CHAMP and GRACE radio occultation data. We used Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere (GSM TIP) and International Reference Ionosphere model (IRI-2012). Based on the observation data and model calculation results we constructed the maps of the winter anomaly intensity in TEC and NmF2 for the different solar and geomagnetic activity levels. The winter anomaly intensity was found to be higher in NmF2 than in TEC according to both observation and modeling. In this report we show the similarity and difference in winter anomaly as revealed in experimental data and model results.

  7. A bilayer Double Semion Model with Symmetry-Enriched Topological Order

    NASA Astrophysics Data System (ADS)

    Ortiz, Laura; Martin-Delgado, Miguel Angel

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topolgical Order with a global spin-flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trival braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariant under the flavour symmetry and the well-known spin flip symmetry. We acknowledge financial support from the Spanish MINECO Grants FIS2012-33152, FIS2015-67411, and the CAM research consortium QUITEMAD+, Grant No. S2013/ICE-2801. The research of M.A.M.-D. has been supported in part by the U.S. Army Research Office throu.

  8. In need of combined topography and bathymetry DEM

    NASA Astrophysics Data System (ADS)

    Kisimoto, K.; Hilde, T.

    2003-04-01

    In many geoscience applications, digital elevation models (DEMs) are now more commonly used at different scales and greater resolution due to the great advancement in computer technology. Increasing the accuracy/resolution of the model and the coverage of the terrain (global model) has been the goal of users as mapping technology has improved and computers get faster and cheaper. The ETOPO5 (5 arc minutes spatial resolution land and seafloor model), initially developed in 1988 by Margo Edwards, then at Washington University, St. Louis, MO, has been the only global terrain model for a long time, and it is now being replaced by three new topographic and bathymetric DEMs, i.e.; the ETOPO2 (2 arc minutes spatial resolution land and seafloor model), the GTOPO30 land model with a spatial resolution of 30 arc seconds (c.a. 1km at equator) and the 'GEBCO 1-MINUTE GLOBAL BATHYMETRIC GRID' ocean floor model with a spatial resolution of 1 arc minute (c.a. 2 km at equator). These DEMs are products of projects through which compilation and reprocessing of existing and/or new datasets were made to meet user's new requirements. These ongoing efforts are valuable and support should be continued to refine and update these DEMs. On the other hand, a different approach to create a global bathymetric (seafloor) database exists. A method to estimate the seafloor topography from satellite altimetry combined with existing ships' conventional sounding data was devised and a beautiful global seafloor database created and made public by W.H. Smith and D.T. Sandwell in 1997. The big advantage of this database is the uniformity of coverage, i.e. there is no large area where depths are missing. It has a spatial resolution of 2 arc minute. Another important effort is found in making regional, not global, seafloor databases with much finer resolutions in many countries. The Japan Hydrographic Department has compiled and released a 500m-grid topography database around Japan, J-EGG500, in 1999. Although the coverage of this database is only a small portion of the Earth, the database has been highly appreciated in the academic community, and accepted in surprise by the general public when the database was displayed in 3D imagery to show its quality. This database could be rather smoothly combined with the finer land DEM of 250m spatial resolution (Japan250m.grd, K. Kisimoto, 2000). One of the most important applications of this combined DEM of topography and bathymetry is tsunami modeling. Understanding of the coastal environment, management and development of the coastal region are other fields in need of these data. There is, however, an important issue to consider when we create a combined DEM of topography and bathymetry in finer resolutions. The problem arises from the discrepancy of the standard datum planes or reference levels used for topographic leveling and bathymetric sounding. Land topography (altitude) is defined by leveling from the single reference point determined by average mean sea level, in other words, land height is measured from the geoid. On the other hand, depth charts are made based on depth measured from locally determined reference sea surface level, and this value of sea surface level is taken from the long term average of the lowest tidal height. So, to create a combined DEM of topography and bathymetry in very fine scale, we need to avoid this inconsistency between height and depth across the coastal region. Height and depth should be physically continuous relative to a single reference datum across the coast within such new high resolution DEMs. (N.B. Coast line is not equal to 'altitude-zero line' nor 'depth-zero line'. It is defined locally as the long term average of the highest tide level.) All of this said, we still need a lot of work on the ocean side. Global coverage with detailed bathymetric mapping is still poor. Seafloor imaging and other geophysical measurements/experiments should be organized and conducted internationally and interdisciplinary ways more than ever. We always need greater technological advancement and application of this technology in marine sciences, and more enthusiastic minds of seagoing researchers as well. Recent seafloor mapping technology/quality both in bathymetry and imagery is very promising and even favorably compared with the terrain mapping. We discuss and present on recent achievement and needs on the seafloor mapping using several most up-to-date global- and regional- DEMs available for science community at the poster session.

  9. Hardware architecture for projective model calculation and false match refining using random sample consensus algorithm

    NASA Astrophysics Data System (ADS)

    Azimi, Ehsan; Behrad, Alireza; Ghaznavi-Ghoushchi, Mohammad Bagher; Shanbehzadeh, Jamshid

    2016-11-01

    The projective model is an important mapping function for the calculation of global transformation between two images. However, its hardware implementation is challenging because of a large number of coefficients with different required precisions for fixed point representation. A VLSI hardware architecture is proposed for the calculation of a global projective model between input and reference images and refining false matches using random sample consensus (RANSAC) algorithm. To make the hardware implementation feasible, it is proved that the calculation of the projective model can be divided into four submodels comprising two translations, an affine model and a simpler projective mapping. This approach makes the hardware implementation feasible and considerably reduces the required number of bits for fixed point representation of model coefficients and intermediate variables. The proposed hardware architecture for the calculation of a global projective model using the RANSAC algorithm was implemented using Verilog hardware description language and the functionality of the design was validated through several experiments. The proposed architecture was synthesized by using an application-specific integrated circuit digital design flow utilizing 180-nm CMOS technology as well as a Virtex-6 field programmable gate array. Experimental results confirm the efficiency of the proposed hardware architecture in comparison with software implementation.

  10. A New Global Empirical Model of the Electron Temperature with the Inclusion of the Solar Activity Variations for IRI

    NASA Technical Reports Server (NTRS)

    Truhlik, V.; Triskova, L.

    2012-01-01

    A data-base of electron temperature (T(sub e)) comprising of most of the available LEO satellite measurements in the altitude range from 350 to 2000 km has been used for the development of a new global empirical model of T(sub e) for the International Reference Ionosphere (IRI). For the first time this will include variations with solar activity. Variations at five fixed altitude ranges centered at 350, 550, 850, 1400, and 2000 km and three seasons (summer, winter, and equinox) were represented by a system of associated Legendre polynomials (up to the 8th order) in terms of magnetic local time and the earlier introduced in vdip latitude. The solar activity variations of T(sub e) are represented by a correction term of the T(sub e) global pattern and it has been derived from the empirical latitudinal profiles of T(sub e) for day and night (Truhlik et al., 2009a). Comparisons of the new T(sub e) model with data and with the IRI 2007 Te model show that the new model agrees well with the data generally within standard deviation limits and that the model performs better than the current IRI T(sub e) model.

  11. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  12. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2018-02-01

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 × 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmental Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation's performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.

  13. Evaluation of bone formation in calcium phosphate scaffolds with μCT-method validation using SEM.

    PubMed

    Lewin, S; Barba, A; Persson, C; Franch, J; Ginebra, M-P; Öhman-Mägi, C

    2017-10-05

    There is a plethora of calcium phosphate (CaP) scaffolds used as synthetic substitutes to bone grafts. The scaffold performance is often evaluated from the quantity of bone formed within or in direct contact with the scaffold. Micro-computed tomography (μCT) allows three-dimensional evaluation of bone formation inside scaffolds. However, the almost identical x-ray attenuation of CaP and bone obtrude the separation of these phases in μCT images. Commonly, segmentation of bone in μCT images is based on gray scale intensity, with manually determined global thresholds. However, image analysis methods, and methods for manual thresholding in particular, lack standardization and may consequently suffer from subjectivity. The aim of the present study was to provide a methodological framework for addressing these issues. Bone formation in two types of CaP scaffold architectures (foamed and robocast), obtained from a larger animal study (a 12 week canine animal model) was evaluated by μCT. In addition, cross-sectional scanning electron microscopy (SEM) images were acquired as references to determine thresholds and to validate the result. μCT datasets were registered to the corresponding SEM reference. Global thresholds were then determined by quantitatively correlating the different area fractions in the μCT image, towards the area fractions in the corresponding SEM image. For comparison, area fractions were also quantified using global thresholds determined manually by two different approaches. In the validation the manually determined thresholds resulted in large average errors in area fraction (up to 17%), whereas for the evaluation using SEM references, the errors were estimated to be less than 3%. Furthermore, it was found that basing the thresholds on one single SEM reference gave lower errors than determining them manually. This study provides an objective, robust and less error prone method to determine global thresholds for the evaluation of bone formation in CaP scaffolds.

  14. Modeling the Acceleration of Global Surface Temperture

    NASA Astrophysics Data System (ADS)

    Jones, B.

    2017-12-01

    A mathematical projection focusing on the changing rate of acceleration of Global Surface Temperatures. Using historical trajectory and informed expert near-term prediction, it is possible to extend this further forward drawing a reference arc of acceleration. Presented here is an example of this technique based on data found in the Summary of Findings of A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011 and that same team's stated prediction to 2050. With this, we can project a curve showing future acceleration: Decade (midpoint) Change in Global Land Temp Degrees C Known Slope Projected Trend 1755 0.000 1955 0.600 0.0030 2005 1.500 0.0051 2045 3.000 0.0375 2095 5.485 0.0497 2145 8.895 0.0682 2195 13.488 0.0919 Observations: Slopes are getting steeper and doing so faster in an "acceleration of the acceleration" or an "arc of acceleration". This is consistent with the non-linear accelerating feedback loops of global warming. Such projected temperatures threaten human civilization and human life. This `thumbnail' projection is consistent with the other long term predictions based on anthropogenic greenhouse gases. This projection is low when compared to those whose forecasts include greenhouse gases released from thawing permafrost and clathrate hydrates. A reference line: This curve should be considered a point of reference. In the near term and absent significant drawdown of greenhouse gases, my "bet" for this AGU session is that future temperatures will generally be above this reference curve. For example, the decade ending 2020 - more than 1.9C and the decade ending 2030 - more than 2.3C - again measured from the 1750 start point. *Caveat: The long term curve and prediction assumes that mankind does not move quickly away from high cost fossil fuels and does not invent, mobilize and take actions drawing down greenhouse gases. Those seeking a comprehensive action plan are directed to drawdown.org

  15. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  16. Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, M.; Desai, S. D.; Butala, M. D.; Komjathy, A.

    2013-12-01

    This work evaluates various approaches to compute the second order ionospheric correction (SOIC) to Global Positioning System (GPS) measurements. When estimating the reference frame using GPS, applying this correction is known to primarily affect the realization of the origin of the Earth's reference frame along the spin axis (Z coordinate). Therefore, the Z translation relative to the International Terrestrial Reference Frame 2008 is used as the metric to evaluate various published approaches to determining the slant total electron content (TEC) for the SOIC: getting the slant TEC from GPS measurements, and using the vertical total electron content (TEC) given by a Global Ionospheric Model (GIM) to transform it to slant TEC via a mapping function. All of these approaches agree to 1 mm if the ionospheric shell height needed in GIM-based approaches is set to 600 km. The commonly used shell height of 450 km introduces an offset of 1 to 2 mm. When the SOIC is not applied, the Z axis translation can be reasonably modeled with a ratio of +0.23 mm/TEC units of the daily median GIM vertical TEC. Also, precise point positioning (PPP) solutions (positions and clocks) determined with and without SOIC differ by less than 1 mm only if they are based upon GPS orbit and clock solutions that have consistently applied or not applied the correction, respectively. Otherwise, deviations of few millimeters in the north component of the PPP solutions can arise due to inconsistencies with the satellite orbit and clock products, and those deviations exhibit a dependency on solar cycle conditions.

  17. Extending the reanalysis to the ionosphere based on ground and LEO based GNSS observations

    NASA Astrophysics Data System (ADS)

    Yue, X.; Schreiner, W. S.; Kuo, Y.

    2012-12-01

    We report preliminary results of a global 3-D ionospheric electron density reanalysis during 2002-2011 based on multi-source data assimilation. The monthly global ionospheric electron density reanalysis has been done by assimilating the quiet days ionospheric data into a data assimilation model constructed using the International Reference Ionosphere (IRI) 2007 model and a Kalman filter technique. These data include global navigation satellite system (GNSS) observations of ionospheric total electron content (TEC) from ground based stations, ionospheric radio occultations by CHAMP, GRACE, COSMIC, SAC-C, Metop-A, and the TerraSAR-X satellites, and Jason-1 and 2 altimeter TEC measurements. The output of the reanalysis are 3-D gridded ionospheric electron densities with temporal and spatial resolutions of 1 hr in universal time, 5o in latitude, 10o in longitude, and ~ 30 km in altitude. The climatological features of the reanalysis results, such as solar activity dependence, seasonal variations, and the global morphology of the ionosphere, agree well with those in the empirical models and observations. The global electron content (GEC) derived from the international GNSS service (IGS) global ionospheric maps (GIM), the observed electron density profiles from the Poker Flat Incoherent Scatter Radar (PFISR) during 2007-2010, and foF2 observed by the global ionosonde network during 2002-2011 are used to validate the reanalysis method. All comparisons show that the reanalysis have smaller deviations and biases than the IRI-2007 predictions. Especially after April 2006 when the six COSMIC satellites were launched, the reanalysis shows significant improvement over the IRI predictions. The obvious overestimation of the low-latitude ionospheric F-region densities by the IRI model during the 23/24 solar minimum is corrected well by the reanalysis. The potential application and improvements of the reanalysis are also discussed.

  18. Seismic Wave Velocity in Earth's Shallow Core

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Eaton, D. W.

    2008-12-01

    Studies of the outer core indicate that it is composed of liquid Fe and Ni alloyed with a ~10% fraction of light elements such as O, S or Si. Recently, unusual features, such as sediment accumulation, immiscible fluid layers or stagnant convection, have been predicted in the shallow core region. Secular cooling and compositional buoyancy drive vigorous convection that sustains the geodynamo, although critical details of light-element composition and thermal regime remain uncertain. Seismic velocity models can provide important constraints on the light element composition, however global reference models, such as Preliminary Reference Earth Model (PREM), IASP91 and AK135 vary significantly in the 200 km below the core-mantle boundary. Past studies of the outermost core velocity structure have been hampered by traveltime uncertainties due to lowermost mantle heterogeneities. The recently published Empirical Transfer Function (ETF) method has been shown to reduce the uncertainty using a waveform stacking approach to improve global observations of SmKS teleseismic waves. Here, we apply the ETF method to achieve a precise top-of-core velocity measurement of 8.05 ± 0.03 km/s. This new model accords well with PREM. Since PREM is based on the adiabatic form of the Adams-Williamson equation, it assumes a well mixed (i.e. homogeneous) composition. This result suggests a lack of heterogeneity in the outermost core due to layering or stagnant convection.

  19. Overall properties of the Gaia DR1 reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration for the future Gaia-ICRF link. The cause of the rather small global rotation between TGAS and Tycho-2 proper motion systems is unclear and needs further investigation. The possible residual rotation in Gaia DR1 reference frame inferred from the Galactic kinematic analysis should be noted and examined in future data release.

  20. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    NASA Astrophysics Data System (ADS)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  1. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    PubMed

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  2. A global reference model of Curie-point depths based on EMAG2

    NASA Astrophysics Data System (ADS)

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-03-01

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.

  3. A global reference model of Curie-point depths based on EMAG2.

    PubMed

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-03-21

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C) -1 for the ocean and K = ~2.5 W(m°C) -1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m 2 , leading to a global heat loss ranging from ~34.6 to 36.6 TW.

  4. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-08-15

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the correction applied to published data from a particular streamgage to produce elevation data referenced to a specified vertical datum.Offsets were applied to water-level data from surveyed streamgages to further evaluate the accuracy and utility of updated reference mark elevations presented in this report. Daily mean water levels from active streamgages surveyed in this study were converted to water-surface elevations referenced to the Canadian Geodetic Vertical Datum of 2013. Graphical comparisons of water-surface elevations for streamgages in Namakan Reservoir, Rainy Lake, and selected rivers are presented (referencing the Canadian Geodetic Vertical Datum of 2013). Offsets presented in this report can be used in the evaluation of rule curves and in flood damage curves that fully assess the benefits of one regulation approach over another. In addition, offsets may be used to calibrate hydraulic models developed for four narrows that connect lakes of Namakan Reservoir, refine digital elevation models, and support modeling studies designed to assess the effects of rule curves on aquatic vegetation, benthic invertebrates, northern pike, and walleye.

  5. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    This report includes a brief overview of porphyry copper deposits in Mexico, a description of the assessment process used, a summary of results, and appendixes. Appendixes A through K contain summary information for each tract, as follows: location, the geologic feature assessed, the rationale for tract delineation, tables and descriptions of known deposits and significant prospects, exploration history, model selection, rationale for the estimates, assessment results, and references. The accompanying digital map files (shapefiles) provide permissive tract outlines, assessment results, and data for deposits and prospects in a GIS format (appendix L).

  6. Data needs and data bases for climate studies

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine

    1986-01-01

    Two complementary global digital data bases of vegetation and land use, compiled at 1 deg resolution from published sources for use in climate studies, are discussed. The data bases were implemented, in several individually tailored formulations, in a series of climate related applications including: land-surface prescriptions in three-dimensional general circulation models, global biogeochemical cycles (CO2, methane), critical-area mapping for satellite monitoring of land-cover change, and large-scale remote sensing of surface reflectance. The climate applications are discussed with reference to data needs, and data availability from traditional and remote sensing sources.

  7. The NASA/MSFC Global Reference Atmospheric Model-1995 version (GRAM-95)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Jeffries, W. R., III; Yung, S. P.; Johnson, D. L.

    1995-01-01

    The latest version of the Global Reference Atmospheric Model (GRAM-95) is presented and discussed. GRAM-95 uses the new Global Upper Air Climatic Atlas (GUACA) CD-ROM data set, for 0- to 27-km altitudes. As with earlier versions, GRAM-95 provides complete geographical and altitude coverage for each month of the year. Individual years 1985 to 1991 and a period-of-record (1980 to 1991) can be simulated for the GUACA height range. GRAM-95 uses a specially developed data set, based on Middle Atmosphere Program (MAP) data, for the 20- to 120-km height range, and the NASA Marshall Engineering Thermosphere (MET) model for heights above 90 km. Fairing techniques assure a smooth transition in the overlap height ranges (20 to 27 km and 90 to 120 km). In addition to the traditional GRAM variables of pressure, density, temperature and wind components, GRAM-95 now includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He, and H). A new, variable-scale perturbation model provides both large-scale and small-scale deviations from mean values for the thermodynamic variables and horizontal and vertical wind components. The perturbation model includes new features that simulate intermittency (patchiness) in turbulence and small-scale perturbation fields. The density perturbations and density gradients (density shears) computed by the new model compare favorably in their statistical characteristics with observed density perturbations and density shears from 32 space shuttle reentry profiles. GRAM-95 provides considerable improvement in wind estimates from the new GUACA data set, compared to winds calculated from the geostrophic wind relations previously used in the 0- to 25-km height range. The GRAM-95 code has been put into a more modular form, easier to incorporate as subroutines in other programs (e.g., trajectory codes). A complete user's guide for running the program, plus sample input and output, is provided.

  8. Global multi-dimensional modeling of ionospheric electron density using GNSS measurements and IRI model

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Schuh, H.; Schmidt, M. G.

    2012-12-01

    In the last decades Global Navigation Satellite System (GNSS) has turned into a promising tool for probing the ionosphere. The classical input data for developing Global Ionosphere Maps (GIM) is obtained from the dual-frequency GNSS observations. Simultaneous observations of GNSS code or carrier phase at each frequency is used to form a geometric-free linear combination which contains only the ionospheric refraction term and the differential inter-frequency hardware delays. To relate the ionospheric observable to the electron density, a model is used that represents an altitude-dependent distribution of the electron density. This study aims at developing a global multi-dimensional model of the electron density using simulated GNSS observations from about 150 International GNSS Service (IGS) ground stations. Due to the fact that IGS stations are in-homogenously distributed around the world and the accuracy and reliability of the developed models are considerably lower in the area not well covered with IGS ground stations, the International Reference Ionosphere (IRI) model has been used as a background model. The correction term is estimated by applying spherical harmonics expansion to the GNSS ionospheric observable. Within this study this observable is related to the electron density using different functions for the bottom-side and top-side ionosphere. The bottom-side ionosphere is represented by an alpha-Chapman function and the top-side ionosphere is represented using the newly proposed Vary-Chap function.aximum electron density, IRI background model (elec/m3), day 202 - 2010, 0 UT eight of maximum electron density, IRI background model (km), day 202 - 2010, 0 UT

  9. Multiplicative Versus Additive Filtering for Spacecraft Attitude Determination

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2003-01-01

    The absence of a globally nonsingular three-parameter representation of rotations forces attitude Kalman filters to estimate either a singular or a redundant attitude representation. We compare two filtering strategies using simplified kinematics and measurement models. Our favored strategy estimates a three-parameter representation of attitude deviations from a reference attitude specified by a higher- dimensional nonsingular parameterization. The deviations from the reference are assumed to be small enough to avoid any singularity or discontinuity of the three-dimensional parameterization. We point out some disadvantages of the other strategy, which directly estimates the four-parameter quaternion representation.

  10. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.

    PubMed

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-02-08

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  11. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    PubMed Central

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-01-01

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197

  12. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    USGS Publications Warehouse

    Ji, Lei; Senay, Gabriel B.; Verdin, James P.

    2015-01-01

    There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

  13. Can we use ground-based measurements of HCFCs and HFCs to derive their emissions, lifetimes, and the global OH abundance?

    NASA Astrophysics Data System (ADS)

    Liang, Q.; Chipperfield, M.; Daniel, J. S.; Burkholder, J. B.; Rigby, M. L.; Velders, G. J. M.

    2015-12-01

    The hydroxyl radical (OH) is the major oxidant in the atmosphere. Reaction with OH is the primary removal process for many non-CO2greenhouse gases (GHGs), ozone-depleting substances (ODSs) and their replacements, e.g. hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). Traditionally, the global OH abundance is inferred using the observed atmospheric rate of change for methyl chloroform (MCF). Due to the Montreal Protocol regulation, the atmospheric abundance of MCF has been decreasing rapidly to near-zero values. It is becoming critical to find an alternative reference compound to continue to provide quantitative information for the global OH abundance. Our model analysis using the NASA 3-D GEOS-5 Chemistry Climate Model suggests that the inter-hemispheric gradients (IHG) of the HCFCs and HFCs show a strong linear correlation with their global emissions. Therefore it is possible to use (i) the observed IHGs of HCFCs and HFCs to estimate their global emissions, and (ii) use the derived emissions and the observed long-term trend to calculate their lifetimes and to infer the global OH abundance. Preliminary analysis using a simple global two-box model (one box for each hemisphere) and information from the global 3-D model suggests that the quantitative relationship between IHG and global emissions varies slightly among individual compounds depending on their lifetime, their emissions history and emission fractions from the two hemispheres. While each compound shows different sensitivity to the above quantities, the combined suite of the HCFCs and HFCs provides a means to derive global OH abundance and the corresponding atmospheric lifetimes of long-lived gases with respect to OH (tOH). The fact that the OH partial lifetimes of these compounds are highly correlated, with the ratio of tOH equal to the reverse ratio of their OH thermal reaction rates at 272K, provides an additional constraint that can greatly reduce the uncertainty in the OH abundance and tOH estimates. We will use the observed IHGs and long-term trends of three major HCFCs and six major HFCs in the two-box model to derive their global emissions and atmospheric lifetimes as well as the global OH abundance. The derived global OH abundance between 2000 and 2014 will be compared with that derived using MCF for consistency.

  14. Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns

    NASA Astrophysics Data System (ADS)

    Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Giang, Amanda; Selin, Noelle E.; Zhong, Hui; Zhao, Yu; Olivier, Jos G. J.; Guizzardi, Diego; Crippa, Monica; Schaaf, Edwin; Dentener, Frank

    2018-07-01

    Speciated mercury gridded emissions inventories together with chemical transport models and concentration measurements are essential when investigating both the effectiveness of mitigation measures and the mercury cycle in the environment. Since different mercury species have contrasting behaviour in the atmosphere, their proportion in anthropogenic emissions could determine the spatial impacts. In this study, the time series from 1970 to 2012 of the EDGARv4.tox2 global mercury emissions inventory are described; the total global mercury emission in 2010 is 1772 tonnes. Global grid-maps with geospatial distribution of mercury emissions at a 0.1° × 0.1° resolution are provided for each year. Compared to the previous tox1 version, tox2 provides updates for more recent years and improved emissions in particular for agricultural waste burning, power generation and artisanal and small-scale gold mining (ASGM) sectors. We have also developed three retrospective emissions scenarios based on different hypotheses related to the proportion of mercury species in the total mercury emissions for each activity sector; improvements in emissions speciation are seen when using information primarily from field measurements. We evaluated them using the GEOS-Chem 3-D mercury model in order to explore the influence of speciation shifts, to reactive mercury forms in particular, on regional wet deposition patterns. The reference scenario S1 (EDGARv4.tox2_S1) uses speciation factors from the Arctic Monitoring and Assessment Programme (AMAP); scenario S2 ("EPA_power") uses factors from EPA's Information Collection Request (ICR); and scenario S3 ("Asia_filedM") factors from recent scientific publications. In the reference scenario, the sum of reactive mercury emissions (Hg-P and Hg2+) accounted for 25.3% of the total global emissions; the regions/countries that have shares of reactive mercury emissions higher than 6% in total global reactive mercury are China+ (30.9%), India+ (12.5%) and the United States (9.9%). In 2010, the variations of reactive mercury emissions amongst the different scenarios are in the range of -19.3 t/yr (China+) to 4.4 t/yr (OECD_Europe). However, at the sector level, the variation could be different, e.g., for the iron and steel industry in China reaches 15.4 t/yr. Model evaluation at the global level shows a variation of approximately ±10% in wet deposition for the three emissions scenarios. An evaluation of the impact of mercury speciation within nested grid sensitivity simulations is performed for the United States and modelled wet deposition fluxes are compared with measurements. These studies show that using the S2 and S3 emissions of reactive mercury, can improve wet deposition estimates near sources.

  15. Shuttle derived atmospheric density model. Part 2: STS atmospheric implications for AOTV trajectory analysis, a proposed GRAM perturbation density model

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Troutman, P. A.

    1984-01-01

    A perturbation model to the Marshall Space Flight Center (MSFC) Global Reference Atmosphere Model (GRAM) was developed for use in the Aeroassist Orbital Transfer Vehicle (AOTV) trajectory and analysis. The model reflects NASA Space Shuttle experience over the first twelve entry flights. The GRAM was selected over the Air Force 1978 Reference Model because of its more general formulation and wider use throughout NASA. The add-on model, a simple scaling with altitude to reflect density structure encountered by the Shuttle Orbiter was selected principally to simplify implementation. Perturbations, by season, can be utilized to minimize the number of required simulations, however, exact Shuttle flight history can be exercised using the same model if desired. Such a perturbation model, though not meteorologically motivated, enables inclusion of High Resolution Accelerometer Package (HiRAP) results in the thermosphere. Provision is made to incorporate differing perturbations during the AOTV entry and exit phases of the aero-asist maneuver to account for trajectory displacement (geographic) along the ground track.

  16. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    USGS Publications Warehouse

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie A.; Reed, Sasha C.; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-01-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  17. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less

  18. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    NASA Astrophysics Data System (ADS)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-10-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  19. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    DOE PAGES

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; ...

    2017-10-23

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO 2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is tomore » compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO 2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.« less

  20. Safety assessment of plant varieties using transcriptomics profiling and a one-class classifier.

    PubMed

    van Dijk, Jeroen P; de Mello, Carla Souza; Voorhuijzen, Marleen M; Hutten, Ronald C B; Arisi, Ana Carolina Maisonnave; Jansen, Jeroen J; Buydens, Lutgarde M C; van der Voet, Hilko; Kok, Esther J

    2014-10-01

    An important part of the current hazard identification of novel plant varieties is comparative targeted analysis of the novel and reference varieties. Comparative analysis will become much more informative with unbiased analytical approaches, e.g. omics profiling. Data analysis estimating the similarity of new varieties to a reference baseline class of known safe varieties would subsequently greatly facilitate hazard identification. Further biological and eventually toxicological analysis would then only be necessary for varieties that fall outside this reference class. For this purpose, a one-class classifier tool was explored to assess and classify transcriptome profiles of potato (Solanum tuberosum) varieties in a model study. Profiles of six different varieties, two locations of growth, two year of harvest and including biological and technical replication were used to build the model. Two scenarios were applied representing evaluation of a 'different' variety and a 'similar' variety. Within the model higher class distances resulted for the 'different' test set compared with the 'similar' test set. The present study may contribute to a more global hazard identification of novel plant varieties. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement

    NASA Astrophysics Data System (ADS)

    King, Matt A.; Keshin, Maxim; Whitehouse, Pippa L.; Thomas, Ian D.; Milne, Glenn; Riva, Riccardo E. M.

    2012-07-01

    The only vertical land movement signal routinely corrected for when estimating absolute sea-level change from tide gauge data is that due to glacial isostatic adjustment (GIA). We compare modeled GIA uplift (ICE-5G + VM2) with vertical land movement at ˜300 GPS stations located near to a global set of tide gauges, and find regionally coherent differences of commonly ±0.5-2 mm/yr. Reference frame differences and signal due to present-day mass trends cannot reconcile these differences. We examine sensitivity to the GIA Earth model by fitting to a subset of the GPS velocities and find substantial regional sensitivity, but no single Earth model is able to reduce the disagreement in all regions. We suggest errors in ice history and neglected lateral Earth structure dominate model-data differences, and urge caution in the use of modeled GIA uplift alone when interpreting regional- and global- scale absolute (geocentric) sea level from tide gauge data.

  2. Engineering-Level Model Atmospheres for Titan and Neptune

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Engineering-level atmospheric models for Titan and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications in missions to the outer planets. Analogous to highly successful Global Reference Atmospheric Models for Earth (GRAM, Justus et al., 2000) and Mars (Mars-GRAM, Justus and Johnson, 2001, Justus et al., 2002) the new models are called Titan-GRAM and Neptune-GRAM. Like GRAM and Mars-GRAM, an important feature of Titan-GRAM and Neptune-GRAM is their ability to simulate quasi-random perturbations for Monte- Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design.

  3. The Enduring Effects of a United World College (UWC) Education as Seen through a Graduate's Eyes

    ERIC Educational Resources Information Center

    Tsumagari, Maki Ito

    2010-01-01

    Over the last 50 years, the United World Colleges (UWC), which consist of 13 pre-university educational institutions across the world, have become a distinctive global education brand. UWC is frequently referred to as the only example of a purely ideology-driven international education model based on the school's adherence to certain key…

  4. Global and regional kinematics with GPS

    NASA Technical Reports Server (NTRS)

    King, Robert W.

    1994-01-01

    The inherent precision of the doubly differenced phase measurement and the low cost of instrumentation made GPS the space geodetic technique of choice for regional surveys as soon as the constellation reached acceptable geometry in the area of interest: 1985 in western North America, the early 1990's in most of the world. Instrument and site-related errors for horizontal positioning are usually less than 3 mm, so that the dominant source of error is uncertainty in the reference frame defined by the satellites orbits and the tracking stations used to determine them. Prior to about 1992, when the tracking network for most experiments was globally sparse, the number of fiducial sites or the level at which they could be tied to an SLR or VLBI reference frame usually, set the accuracy limit. Recently, with a global network of over 30 stations, the limit is set more often by deficiencies in models for non-gravitational forces acting on the satellites. For regional networks in the northern hemisphere, reference frame errors are currently about 3 parts per billion (ppb) in horizontal position, allowing centimeter-level accuracies over intercontinental distances and less than 1 mm for a 100 km baseline. The accuracy of GPS measurements for monitoring height variations is generally 2-3 times worse than for horizontal motions. As for VLBI, the primary source of error is unmodeled fluctuations in atmospheric water vapor, but both reference frame uncertainties and some instrument errors are more serious for vertical than horizontal measurements. Under good conditions, daily repeatabilities at the level of 10 mm rms were achieved. This paper will summarize the current accuracy of GPS measurements and their implication for the use of SLR to study regional kinematics.

  5. LPJmL4 - a dynamic global vegetation model with managed land - Part 1: Model description

    NASA Astrophysics Data System (ADS)

    Schaphoff, Sibyll; von Bloh, Werner; Rammig, Anja; Thonicke, Kirsten; Biemans, Hester; Forkel, Matthias; Gerten, Dieter; Heinke, Jens; Jägermeyr, Jonas; Knauer, Jürgen; Langerwisch, Fanny; Lucht, Wolfgang; Müller, Christoph; Rolinski, Susanne; Waha, Katharina

    2018-04-01

    This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates - internally consistently - the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL, we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.

  6. Problems encountered when defining Arctic amplification as a ratio

    PubMed Central

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  7. Problems encountered when defining Arctic amplification as a ratio.

    PubMed

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-07-27

    In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.

  8. Towards a global accurate model for horizontal and vertical elastic response of the Earth to seasonal hydrology derived from GRACE

    NASA Astrophysics Data System (ADS)

    Chanard, K.; Fleitout, L.; Calais, E.; Barbot, S.; Avouac, J. P.

    2016-12-01

    Elastic deformation of the Earth induced by seasonal variations in hydrology is now well established. We compute the vertical and horizontal deformation induced by large variations of continental water storage at a set of 195 globally distributed continuous Global Positioning System (cGPS) stations. Seasonal loading is derived from the Gravity and Recovery Climate experiment (GRACE) equivalent water height data, where we first account for non observable degree-1 components using previous results (Swenson et al., 2010). While the vertical displacements are well predicted by the model, the horizontal components are systematically underpredicted and out-of- phase with the observations. This global result confirms previous difficulties to predict horizontal seasonal site positions at a regional scale. We discuss possible contributions to this misfit (thermal expansion, draconitic effects, etc.) and show a dramatic improvement when we derive degree-one deformation plus reference frame differences between model and observations. The fit in phase and amplitude of the seasonal deformation model to the horizontal GPS measurements is improved and the fit to the vertical component is not affected. However, the amplitude of global seasonal horizontal displacement remains slightly underpredicted. We explore several hypothesis including the validity of a purely elastic model derived from seismic estimates at an annual time scale. We show that mantle volume variations due to mineral phase transitions may play a role in the seasonal deformation and, as a by-product, use this seasonal deformation to provide a lower bound of the transient astenospheric viscosity. Our study aims at providing an accurate model for horizontal and vertical seasonal deformation of the Earth induced by variations in surface hydrology derived from GRACE.

  9. Earth Global Reference Atmospheric Model (Earth-GRAM) GRAM Virtual Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM? Provide monthly mean and standard deviation for any point in atmosphere; Monthly, Geographic, and Altitude Variation. Earth-GRAM is a C++ software package; Currently distributed as Earth-GRAM 2016. Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents. Used by engineering community because of ability to create dispersions inatmosphere at a rapid runtime; Often embedded in trajectory simulation software. Not a forecast model. Does not readily capture localized atmospheric effects.

  10. Development and Verification of a Physical Cloud-Moisture Model for Use in General Circulation Models

    DTIC Science & Technology

    1991-01-31

    referred as 3 the greenhouse effect . Since the grc 1’-ise and albedo effects are different in sign as well as magnitude, the existence of clouds may have...cloud amounts, is balanced by the greenhouse effect either globally or zonally. However, similar studies carried out by Ohring 3and Clapp (1980), Hartman...satellites, showed that the albedo effect is much greater than the greenhouse effect from changes in cloud amounts; i.e., the net radiation 3at TOA

  11. Fatigue Technology Assessment and Strategies for Fatigue Avoidance in Marine Structures

    DTIC Science & Technology

    1992-06-01

    time history. xii MODELING ERROR (Xme) : Typically defined as the ratio of actual behavior of the structure to the one predicted by the model. It is...and temperature changes may be important to fatigue in a local component, these loadings are not a major concern in the global behavior of typical...Reference 3.1) to assess fracture behavior in a low toughness HAZ indicated that a small low- toughness area in the HAZ can be masked by the higher

  12. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  13. Small data global solutions for the Camassa–Choi equations

    NASA Astrophysics Data System (ADS)

    Harrop-Griffiths, Benjamin; Marzuola, Jeremy L.

    2018-05-01

    We consider solutions to the Cauchy problem for an internal-wave model derived by Camassa–Choi (1996 J. Fluid Mech. 313 83–103). This model is a natural generalization of the Benjamin–Ono and intermediate long wave equations for weak transverse effects as in the case of the Kadomtsev–Petviashvili equations for the Korteweg-de Vries equation. For that reason they are often referred to as the KP-ILW or the KP–Benjamin–Ono equations regarding finite or infinite depth respectively. We prove the existence and long-time dynamics of global solutions from small, smooth, spatially localized initial data on . The techniques applied here involve testing by wave packet techniques developed by Ifrim and Tataru in (2015 Nonlinearity 28 2661–75 2016 Bull. Soc. Math. France 144 369–94).

  14. Precipitation Retrievals in typhoon domain combining of FY3C MWHTS Observations and WRF Predicted Models

    NASA Astrophysics Data System (ADS)

    Jieying, HE; Shengwei, ZHANG; Na, LI

    2017-02-01

    A passive sub-millimeter precipitation retrievals algorithm is provided based on Microwave Humidity and Temperature Sounder (MWHTS) onboard the Chinese Feng Yun 3C (FY-3C) satellite. Using the validated global reference physical model NCEP/WRF/VDISORT), NCEP data per 6 hours are downloaded to run the Weather Research and Forecast model WRF, and derive the typical precipitation data from the whole world. The precipitation retrieval algorithm can operate either on land or on seawater for global. To simply the calculation procedure and save the training time, principle component analysis (PCA) was adapted to filter out the redundancy caused by scanning angle and surface effects, as well as system noise. According to the comparison and validation combing with other precipitation sources, it is demonstrated that the retrievals are reliable for surface precipitation rate higher than 0.1 mm/h at 15km resolution.

  15. Regime-based evaluation of cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model's equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

  16. Online, automatic, ionospheric maps: IRI-PLAS-MAP

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Sezen, U.; Gulyaeva, T. L.; Cilibas, O.

    2015-04-01

    Global and regional behavior of the ionosphere is an important component of space weather. The peak height and critical frequency of ionospheric layer for the maximum ionization, namely, hmF2 and foF2, and the total number of electrons on a ray path, Total Electron Content (TEC), are the most investigated and monitored values of ionosphere in capturing and observing ionospheric variability. Typically ionospheric models such as International Reference Ionosphere (IRI) can provide electron density profile, critical parameters of ionospheric layers and Ionospheric electron content for a given location, date and time. Yet, IRI model is limited by only foF2 STORM option in reflecting the dynamics of ionospheric/plasmaspheric/geomagnetic storms. Global Ionospheric Maps (GIM) are provided by IGS analysis centers for global TEC distribution estimated from ground-based GPS stations that can capture the actual dynamics of ionosphere and plasmasphere, but this service is not available for other ionospheric observables. In this study, a unique and original space weather service is introduced as IRI-PLAS-MAP from http://www.ionolab.org

  17. Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae.

    PubMed

    Che Omar, Sarena; Bentley, Michael A; Morieri, Giulia; Preston, Gail M; Gurr, Sarah J

    2016-01-01

    The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG_Ef1, which demonstrated low M values across heterogeneous tissues. By contrast, metabolic pathway genes MGG_Fad (FAD binding domain-containing protein) and MGG_Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) performed poorly, due to their lack of expression stability across samples.

  18. Methods for estimating comparable prevalence rates of food insecurity experienced by adults in 147 countries and areas

    NASA Astrophysics Data System (ADS)

    Nord, Mark; Cafiero, Carlo; Viviani, Sara

    2016-11-01

    Statistical methods based on item response theory are applied to experiential food insecurity survey data from 147 countries, areas, and territories to assess data quality and develop methods to estimate national prevalence rates of moderate and severe food insecurity at equal levels of severity across countries. Data were collected from nationally representative samples of 1,000 adults in each country. A Rasch-model-based scale was estimated for each country, and data were assessed for consistency with model assumptions. A global reference scale was calculated based on item parameters from all countries. Each country's scale was adjusted to the global standard, allowing for up to 3 of the 8 scale items to be considered unique in that country if their deviance from the global standard exceeded a set tolerance. With very few exceptions, data from all countries were sufficiently consistent with model assumptions to constitute reasonably reliable measures of food insecurity and were adjustable to the global standard with fair confidence. National prevalence rates of moderate-or-severe food insecurity assessed over a 12-month recall period ranged from 3 percent to 92 percent. The correlations of national prevalence rates with national income, health, and well-being indicators provide external validation of the food security measure.

  19. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE PAGES

    Kim, John B.; Monier, Erwan; Sohngen, Brent; ...

    2017-03-28

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  20. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    NASA Astrophysics Data System (ADS)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  1. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, John B.; Monier, Erwan; Sohngen, Brent

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medeiros, Brian; Williamson, David L.; Olson, Jerry G.

    In this study, fundamental characteristics of the aquaplanet climate simulated by the Community Atmosphere Model, Version 5.3 (CAM5.3) are presented. The assumptions and simplifications of the configuration are described. A 16 year long, perpetual equinox integration with prescribed SST using the model’s standard 18 grid spacing is presented as a reference simulation. Statistical analysis is presented that shows similar aquaplanet configurations can be run for about 2 years to obtain robust climatological structures, including global and zonal means, eddy statistics, and precipitation distributions. Such a simulation can be compared to the reference simulation to discern differences in the climate, includingmore » an assessment of confidence in the differences. To aid such comparisons, the reference simulation has been made available via earthsystemgrid.org. Examples are shown comparing the reference simulation with simulations from the CAM5 series that make different microphysical assumptions and use a different dynamical core.« less

  3. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2015-07-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees/orders are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the third-order partial derivatives of the magnetic potential field in the local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields and also the third-order partial derivatives of the magnetic potential field at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (GFZ Reference Internal Magnetic Model, version 0.0) with spherical harmonic degrees 16-90. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the magnetic potential field.

  4. Simulations of Seismic Wave Propagation on Mars

    DOE PAGES

    Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; ...

    2017-03-23

    In this paper, we present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust. For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE against the 2D axisymmetric wave propagation solver AxiSEM at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on raymore » theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. Finally, we conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.« less

  5. Simulations of Seismic Wave Propagation on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan

    In this paper, we present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust. For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE against the 2D axisymmetric wave propagation solver AxiSEM at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on raymore » theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. Finally, we conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.« less

  6. Process-based modelling of phosphorus transformations and retention in global rivers

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Mogollon, Jose; Beusen, Arthur; Bouwman, Lex

    2016-04-01

    Phosphorus (P) plays a major role in the biogeochemical functioning of aquatic systems. It typically acts as the limiting nutrient for primary productivity in freshwater bodies, and thus the increase in anthropogenic P loads during the XXth century has fuelled the eutrophication of these systems. Total P retention in global rivers has also escalated over this timeframe as demonstrated via a global model that implements the spiralling method at a spatial resolution of 0.5° (IMAGE-GNM, Beusen et al., 2015). Here, we refine this coupled hydrological - nutrient model by including mechanistic biogeochemical interactions that govern the P cycle. Special attention is paid to the representation of particle processes (i.e. particle loading, sedimentation and erosion), which play a major role in P transport and accumulation in aquatic systems. Our preliminary results are compared to measurements of suspended sediments, total P and orthophosphates in selected river basins. Initial model results show that P concentrations are particularly sensitive to particulate load distribution in the river network within a grid cell. This novel modelling approach will eventually allow a better assessment of the amounts of different forms of P (organic P, soluble reactive P, and particulate inorganic P), of P transformation rates and retention in inland waters. References Beusen, A.H.W., Van Beek, L.P.H., Bouwman, A.F., Mogollón, J.M., Middelburg, J.J. 2015. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water - description of the IMAGE-GNM and analysis of performance. Geosci. Model Dev. 8, 4045-4067

  7. Generation of High Resolution Global DSM from ALOS PRISM

    NASA Astrophysics Data System (ADS)

    Takaku, J.; Tadono, T.; Tsutsui, K.

    2014-04-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried on the Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. The sensor consists of three independent panchromatic radiometers for viewing forward, nadir, and backward in 2.5 m ground resolution producing a triplet stereoscopic image along its track. The sensor had observed huge amount of stereo images all over the world during the mission life of the satellite from 2006 through 2011. We have semi-automatically processed Digital Surface Model (DSM) data with the image archives in some limited areas. The height accuracy of the dataset was estimated at less than 5 m (rms) from the evaluation with ground control points (GCPs) or reference DSMs derived from the Light Detection and Ranging (LiDAR). Then, we decided to process the global DSM datasets from all available archives of PRISM stereo images by the end of March 2016. This paper briefly reports on the latest processing algorithms for the global DSM datasets as well as their preliminary results on some test sites. The accuracies and error characteristics of datasets are analyzed and discussed on various fields by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data and Shuttle Radar Topography Mission (SRTM) data, as well as the GCPs and the reference airborne LiDAR/DSM.

  8. Global reference frame: Intercomparison of results (SLR, VLBI and GPS)

    NASA Technical Reports Server (NTRS)

    Ma, Chopo; Watkins, Michael M.; Heflin, M.

    1994-01-01

    The terrestrial reference frame (TRF) is realized by a set of positions and velocities derived from a combination of the three space geodetic techniques, SLR, VLBI and GPS. The standard International TRF is constructed by the International Earth Rotation Service in such a way that it is stable with time and the addition of new data. An adopted model for overall plate motion, NUVEL-1 NNR, defines the conceptual reference frame in which all the plates are moving. In addition to the measurements made between reference points within the space geodetic instruments, it is essential to have accurate, documented eccentricity measurements from the instrument reference points to ground monuments. Proper local surveys between the set of ground monuments at a site are also critical for the use of the space geodetic results. Eccentricities and local surveys are, in fact, the most common and vexing sources of error in the use of the TRF for such activities as collocation and intercomparison.

  9. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less

  10. General relativistic satellite astrometry. II. Modeling parallax and proper motion

    NASA Astrophysics Data System (ADS)

    de Felice, F.; Bucciarelli, B.; Lattanzi, M. G.; Vecchiato, A.

    2001-07-01

    The non-perturbative general relativistic approach to global astrometry introduced by de Felice et al. (\\cite{defetal}) is here extended to account for the star motions on the Schwarzschild celestial sphere. A new expression of the observables, i.e. angular distances among stars, is provided, which takes into account the effects of parallax and proper motions. This dynamical model is then tested on an end-to-end simulation of the global astrometry mission GAIA. The results confirm the findings of our earlier work, which applied to the case of a static (angular coordinates only) sphere. In particular, measurements of large arcs among stars (each measurement good to ~ 100 mu arcsec, as expected for V ~ 17 mag stars) repeated over an observing period comparable to the mission lifetime foreseen for GAIA, can be modeled to yield estimates of positions, parallaxes, and annual proper motions good to ~ 15 mu arcsec. This second round of experiments confirms, within the limitations of the simulation and the assumptions of the current relativistic model, that the space-born global astrometry initiated with Hipparcos can be pushed down to the 10-5 arcsec accuracy level proposed with the GAIA mission. Finally, the simplified case we have solved can be used as reference for testing the limiting behavior of more realistic models as they become available.

  11. A New Global Model Of Plates Motion Over The Mantle For The Last 300MA: Link Between Mantle Structures, Volcanism and Plate Tectonics.

    NASA Astrophysics Data System (ADS)

    Jean, B.; Sophie, V. D. G.; Greff-Lefftz, M.; Frizon de Lamotte, D.; Lescanne, M.; Leparmentier, F.

    2017-12-01

    We compare several models of hot spot reference frames published in the litterature retracing the kinematics of the lithosphere over the mantle for the last 120Ma. We then propose a new model between 130 and 300Ma, based on the comparison of various surface indicators (geological, thermal data from boreholes and compilation of global surface volcanism), a reassessment of hot spots classification and paleomagnetic data. We discuss the implication of our model on the location and timing of several types of surface volcanism (subductions, intracontinental volcanism, rifting and LIPS, kimberlites) that we link to deep structures interpreted from tomographic images. A clear degree two permanent organization of mantle convection during this period of time is obvious, and the subduction rate appears to be episodic. We finally deduce from our model mantle TPW (True Polar Wander), the shifting of the entire mantle relative to the earth's spin axis over the last 300 million years. The inferred global motion of the mantle deduced occurs around a Euler pole which axis is close to the earth equator but varies significantly in longitude with respect to time showing complex tridimensional mass reorganizations in the mantle, probably linked to both LLSVPs and slabs effect.

  12. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States Climate Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 x 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmentalmore » Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation’s performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.« less

  13. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    NASA Astrophysics Data System (ADS)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  14. Mars global reference atmosphere model (Mars-GRAM)

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, Bonnie F.

    1992-01-01

    Mars-GRAM is an empirical model that parameterizes the temperature, pressure, density, and wind structure of the Martian atmosphere from the surface through thermospheric altitudes. In the lower atmosphere of Mars, the model is built around parameterizations of height, latitudinal, longitudinal, and seasonal variations of temperature determined from a survey of published measurements from the Mariner and Viking programs. Pressure and density are inferred from the temperature by making use of the hydrostatic and perfect gas laws relationships. For the upper atmosphere, the thermospheric model of Stewart is used. A hydrostatic interpolation routine is used to insure a smooth transition from the lower portion of the model to the Stewart thermospheric model. Other aspects of the model are discussed.

  15. Earth Global Reference Atmospheric Model 2007 (Earth-GRAM07)

    NASA Technical Reports Server (NTRS)

    Leslie, Fred W.; Justus, C. G.

    2008-01-01

    GRAM is a Fortran software package that can run on a variety of platforms including PC's. GRAM provides values of atmospheric quantities such as temperature, pressure, density, winds, constituents, etc. GRAM99 covers all global locations, all months, and heights from the surface to approx. 1000 km). Dispersions (perturbations) of these parameters are also provided and are spatially and temporally correlated. GRAM can be run in a stand-alone mode or called as a subroutine from a trajectory program. GRAM07 is diagnostic, not prognostic (i.e., it describes the atmosphere, but it does not forecast). The source code is distributed free-of-charge to eligible recipients.

  16. A strawman SLR program plan for the 1990s

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1994-01-01

    A series of programmatic and technical goals for the satellite laser ranging (SLR) network are presented. They are: (1) standardize the performance of the global SLR network; (2) improve the geographic distribution of stations; (3) reduce costs of field operations and data processing; (4) expand the 24 hour temporal coverage to better serve the growing constellation of satellites; (5) improve absolute range accuracy to 2 mm at key stations; (6) improve satellite force, radiative propagation, and station motion models and investigate alternative geodetic analysis techniques; (7) support technical intercomparison and the Terrestrial Reference Frame through global collocations; (8) investigate potential synergisms between GPS and SLR.

  17. Tower-scale performance of four observation-based evapotranspiration algorithms within the WACMOS-ET project

    NASA Astrophysics Data System (ADS)

    Michel, Dominik; Miralles, Diego; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego

    2015-04-01

    Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts have recently aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which cannot be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). The WACMOS-ET project (http://wacmoset.estellus.eu) started in the year 2012 and constitutes an ESA contribution to the GEWEX initiative LandFlux. It focuses on advancing the development of ET estimates at global, regional and tower scales. WACMOS-ET aims at developing a Reference Input Data Set exploiting European Earth Observations assets and deriving ET estimates produced by a set of four ET algorithms covering the period 2005-2007. The algorithms used are the SEBS (Su et al., 2002), Penman-Monteith from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008) and GLEAM (Miralles et al., 2011). The algorithms are run with Fluxnet tower observations, reanalysis data (ERA-Interim), and satellite forcings. They are cross-compared and validated against in-situ data. In this presentation the performance of the different ET algorithms with respect to different temporal resolutions, hydrological regimes, land cover types (including grassland, cropland, shrubland, vegetation mosaic, savanna, woody savanna, needleleaf forest, deciduous forest and mixed forest) are evaluated at the tower-scale in 24 pre-selected study regions on three continents (Europe, North America, and Australia). References: Fisher, J. B., Tu, K.P., and Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ. 112, 901-919, 2008. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102, 2011. 
 Miralles, D.G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453-469, 2011. 
 Mu, Q., Zhao, M. & Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800, 2011. 
 Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17, 3707-3720. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720, 2013. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-99, 2002.

  18. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health

    NASA Astrophysics Data System (ADS)

    West, J. Jason; Smith, Steven J.; Silva, Raquel A.; Naik, Vaishali; Zhang, Yuqiang; Adelman, Zachariah; Fry, Meridith M.; Anenberg, Susan; Horowitz, Larry W.; Lamarque, Jean-Francois

    2013-10-01

    Actions to reduce greenhouse gas (GHG) emissions often reduce co-emitted air pollutants, bringing co-benefits for air quality and human health. Past studies typically evaluated near-term and local co-benefits, neglecting the long-range transport of air pollutants, long-term demographic changes, and the influence of climate change on air quality. Here we simulate the co-benefits of global GHG reductions on air quality and human health using a global atmospheric model and consistent future scenarios, via two mechanisms: reducing co-emitted air pollutants, and slowing climate change and its effect on air quality. We use new relationships between chronic mortality and exposure to fine particulate matter and ozone, global modelling methods and new future scenarios. Relative to a reference scenario, global GHG mitigation avoids 0.5+/-0.2, 1.3+/-0.5 and 2.2+/-0.8 million premature deaths in 2030, 2050 and 2100. Global average marginal co-benefits of avoided mortality are US$50-380 per tonne of CO2, which exceed previous estimates, exceed marginal abatement costs in 2030 and 2050, and are within the low range of costs in 2100. East Asian co-benefits are 10-70 times the marginal cost in 2030. Air quality and health co-benefits, especially as they are mainly local and near-term, provide strong additional motivation for transitioning to a low-carbon future.

  19. Understanding global fire dynamics by classifying and comparing spatial models of vegetation and fire

    Treesearch

    Robert E. Keane; Geoffrey J. Cary; Ian D. Davies; Michael D. Flannigan; Robert H. Gardner; Sandra Lavorel; James M. Lenihan; Chao Li; T. Scott Rupp

    2007-01-01

    Wildland fire is a major disturbance in most ecosystems worldwide (Crutzen and Goldammer 1993). The interaction of fire with climate and vegetation over long time spans, often referred to as the fire regime (Agee 1993; Clark 1993; Swetnam and Baisan 1996; Swetnam 1997), has major effects on dominant vegetation, ecosystem carbon budget, and biodiversity (Gardner et aL...

  20. Application of two regression-based methods to estimate the effects harvest on forest structure using Landsat data

    Treesearch

    Sean P. Healey; Zhiqiang Yang; Warren B. Cohen; D. John Pierce

    2006-01-01

    Although partial harvests are common in many forest types globally, there has been little assessment of the potential to map the intensity of these harvests using Landsat data. We modeled basal area removal and percent cover change in a study area in central Washington (northwestern USA) using biennial Landsat imagery and reference data from historical aerial photos...

  1. Identification of reliable gridded reference data for statistical downscaling methods in Alberta

    NASA Astrophysics Data System (ADS)

    Eum, H. I.; Gupta, A.

    2017-12-01

    Climate models provide essential information to assess impacts of climate change at regional and global scales. However, statistical downscaling methods have been applied to prepare climate model data for various applications such as hydrologic and ecologic modelling at a watershed scale. As the reliability and (spatial and temporal) resolution of statistically downscaled climate data mainly depend on a reference data, identifying the most reliable reference data is crucial for statistical downscaling. A growing number of gridded climate products are available for key climate variables which are main input data to regional modelling systems. However, inconsistencies in these climate products, for example, different combinations of climate variables, varying data domains and data lengths and data accuracy varying with physiographic characteristics of the landscape, have caused significant challenges in selecting the most suitable reference climate data for various environmental studies and modelling. Employing various observation-based daily gridded climate products available in public domain, i.e. thin plate spline regression products (ANUSPLIN and TPS), inverse distance method (Alberta Townships), and numerical climate model (North American Regional Reanalysis) and an optimum interpolation technique (Canadian Precipitation Analysis), this study evaluates the accuracy of the climate products at each grid point by comparing with the Adjusted and Homogenized Canadian Climate Data (AHCCD) observations for precipitation, minimum and maximum temperature over the province of Alberta. Based on the performance of climate products at AHCCD stations, we ranked the reliability of these publically available climate products corresponding to the elevations of stations discretized into several classes. According to the rank of climate products for each elevation class, we identified the most reliable climate products based on the elevation of target points. A web-based system was developed to allow users to easily select the most reliable reference climate data at each target point based on the elevation of grid cell. By constructing the best combination of reference data for the study domain, the accurate and reliable statistically downscaled climate projections could be significantly improved.

  2. Comparison of Selected Geopotential Models in Terms of the GOCE Orbit Determination Using Simulated GPS Observations

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej

    2016-12-01

    This work contains a comparative study of the performance of six geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, such models as ULUX_CHAMP2013S, ITG-GRACE 2010S, EIGEN-51C, EIGEN5S, EGM2008, EGM96, were adopted. Different sets of pseudo-range simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. The solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the solutions was slightly enhanced. Different arc lengths were taken for the computation.

  3. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    NASA Astrophysics Data System (ADS)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During the 6th Session of the UN-GGIM in August 2016 the role of DGGS in the context of the GSGF was formally acknowledged. This paper proposes to highlight the synergies and role of DGGS in the Global Statistical Geospatial Framework and to show examples of the use of DGGS to combine geospatial statistics with traditional geoscientific data.

  4. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    PubMed

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  5. A global reference model of Curie-point depths based on EMAG2

    PubMed Central

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-01-01

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW. PMID:28322332

  6. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Sezen, U.; Poustovalova, L. V.

    2018-07-01

    In view of the recent recalibration of the sunspot number time series SSN2, a need has arisen to re-evaluate solar and ionospheric indices in the International Reference Ionosphere, IRI, and its extension to the Plasmasphere, IRI-Plas models, which are developed using the predecessor SSN1 index. To improve efficiency of the model, eight solar proxy indices are introduced in IRI-Plas system: the daily measured solar emissions, the Ottawa 10.7-cm radio flux F10.7 and the H Lyman-α line at 121.6 nm; the core-to-wing ratio of the magnesium ion h and k lines at 279.56 and 280.27 nm, MgII index; sunspot number SSN1 observed before 05.2015 and modelled afterwards; re-calibrated SSN2 sunspots time series; the ionosonde foF2-based global IG-index and the Global Electron Content, GEC, index, the new ionospheric TEC-noon index based on GPS-derived Total Electron Content measurements at 288 IGS stations for 1994-2018. The regression relations are deduced between the different solar and ionospheric proxy indices smoothed by 12-month sliding window. The IG, TEC and GEC saturation or amplification effect is observed towards the solar maximum. The SSN1 and F10.7 data serve as a default IRI-Plas input while the rest indices are scaled to SSN1 units envisaged by the F2 layer peak maps. Relevant subroutines are incorporated in IRI-Plas system for automatic conversion of user's predefined index to other related indices which are applied by the different model procedures.

  7. Results from the ESA-funded project 'Height System Unification with GOCE'

    NASA Astrophysics Data System (ADS)

    Sideris, M. G.; Rangelova, E. V.; Gruber, T.; Rummel, R. F.; Woodworth, P. L.; Hughes, C. W.; Ihde, J.; Liebsch, G.; Schäfer, U.; Rülke, A.; Gerlach, C.; Haagmans, R.

    2013-12-01

    The paper summarizes the main results of a project, supported by the European Space Agency, whose main goal is to identify the impact of GOCE gravity field models on height system unification. In particular, the Technical University Munich, the University of Calgary and the National Oceanography Centre in Liverpool, together with the Bavarian Academy of Sciences, the Federal German Agency for Cartography and Geodesy, and the Geodetic Surveys of Canada, USA and Mexico, have investigated the role of GOCE-derived gravity and geoid models for regional and global height datum connection. GOCE provides three important components of height unification: highly accurate potential differences (geopotential numbers), a global geoid- or quasi-geoid-based reference surface for elevations that is independent of inaccuracies and inconsistencies of local and regional data, and a consistent way to refer to the same datum all the relevant gravimetric, topographic and oceanographic data. We introduce briefly the methodology that has been applied in order to unify height system in North America, North Atlantic Ocean and Europe, and present results obtained using the available GOCE-derived satellite-only geopotential models, and their combination with terrestrial data and ocean models. The effects of various factors, such as data noise, omission errors, indirect bias terms, ocean models and temporal variations, on height datum unification are also presented, highlighting their magnitude and importance in the estimation of offsets between vertical datums. Based on the experiences gained in this project, a general roadmap has been developed for height datum unification in regions with good, as well as poor, coverage in gravity and geodetic height and tide gauge control stations.

  8. A three-dimensional multivariate representation of atmospheric variability

    NASA Astrophysics Data System (ADS)

    Žagar, Nedjeljka; Jelić, Damjan; Blaauw, Marten; Jesenko, Blaž

    2016-04-01

    A recently developed MODES software has been applied to the ECMWF analyses and forecasts and to several reanalysis datasets to describe the global variability of the balanced and inertio-gravity (IG) circulation across many scales by considering both mass and wind field and the whole model depth. In particular, the IG spectrum, which has only recently become observable in global datasets, can be studied simultaneously in the mass field and wind field and considering the whole model depth. MODES is open-access software that performs the normal-mode function decomposition of the 3D global datasets. Its application to the ERA Interim dataset reveals several aspects of the large-scale circulation after it has been partitioned into the linearly balanced and IG components. The global energy distribution is dominated by the balanced energy while the IG modes contribute around 8% of the total wave energy. However, on subsynoptic scales IG energy dominates and it is associated with the main features of tropical variability on all scales. The presented energy distribution and features of the zonally-averaged and equatorial circulation provide a reference for the intercomparison of several reanalysis datasets and for the validation of climate models. Features of the global IG circulation are compared in ERA Interim, MERRA and JRA reanalysis datasets and in several CMIP5 models. Since October 2014 the operational medium-range forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been analyzed by MODES daily and an online archive of all the outputs is available at http://meteo.fmf.uni-lj.si/MODES. New outputs are made available daily based on the 00 UTC run and subsequent 12-hour forecasts up to 240-hour forecast. In addition to the energy spectra and horizontal circulation on selected levels for the balanced and IG components, the equatorial Kelvin waves are presented in time and space as the most energetic tropical IG modes propagating vertically and along the equator from its main generation regions in the upper troposphere over the Indian and Pacific region. The validation of the 10-day ECMWF forecasts with analyses in the modal space suggests a lack of variability in the tropics in the medium range. Reference: Žagar, N. et al., 2015: Normal-mode function representation of global 3-D data sets: open-access software for the atmospheric research community. Geosci. Model Dev., 8, 1169-1195, doi:10.5194/gmd-8-1169-2015 Žagar, N., R. Buizza, and J. Tribbia, 2015: A three-dimensional multivariate modal analysis of atmospheric predictability with application to the ECMWF ensemble. J. Atmos. Sci., 72, 4423-4444 The MODES software is available from http://meteo.fmf.uni-lj.si/MODES.

  9. Mars Global Reference Atmospheric Model (Mars-GRAM) and Database for Mission Design

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model, while above 80 km it is based on Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topography from Mars Global Surveyor Mars Orbiting Laser Altimeter. Validation studies are described comparing Mars-GRAM with Mars Global Surveyor Radio Science and Thermal Emission Spectrometer data. RS data from 2480 profiles were used, covering latitudes 75 deg S to 72 deg N, surface to approximately 40 km, for seasons ranging from areocentric longitude of Sun (Ls) = 70-160 deg and 265-310 deg. RS data spanned a range of local times, mostly 0-9 hours and 18-24 hours. For interests in aerocapture and precision landing, comparisons concentrated on atmospheric density. At a fixed height of 20 km, RS density varied by about a factor of 2.5 over ranges of latitudes and Ls values observed. Evaluated at matching positions and times, these figures show average RSMars-GRAM density ratios were generally 1+/-)0.05, except at heights above approximately 25 km and latitudes above approximately 50 deg N. Average standard deviation of RSMars-GRAM density ratio was 6%. TES data were used covering surface to approximately 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). Depending on season, TES data covered latitudes 85 deg S to 85 deg N. Most TES data were concentrated near local times 2 hours and 14 hours. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (greater than 45 deg N), or at most altitudes in the southern hemisphere at Ls approximately 90 and 180 deg. Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approximately 2.5% for all data, or approximately 1-4%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 hours and 7.1% for local time 14 hours. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about three times the standard deviation of TES data about the TES mean value at a given position and season.

  10. Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies

    PubMed Central

    deCamp, Allan; Hraber, Peter; Bailer, Robert T.; Seaman, Michael S.; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K.; Zolla-Pazner, Susan; LaBranche, Celia C.; Mascola, John R.; Korber, Bette T.

    2014-01-01

    ABSTRACT Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine. PMID:24352443

  11. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies.

    PubMed

    deCamp, Allan; Hraber, Peter; Bailer, Robert T; Seaman, Michael S; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K; Zolla-Pazner, Susan; LaBranche, Celia C; Mascola, John R; Korber, Bette T; Montefiori, David C

    2014-03-01

    Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.

  12. Increasing risk over time of weather-related hazards to the European population: a data-driven prognostic study.

    PubMed

    Forzieri, Giovanni; Cescatti, Alessandro; E Silva, Filipe Batista; Feyen, Luc

    2017-08-01

    The observed increase in the effects on human beings of weather-related disasters has been largely attributed to the rise in population exposed, with a possible influence of global warming. Yet, future risks of weather-related hazards on human lives in view of climate and demographic changes have not been comprehensively investigated. We assessed the risk of weather-related hazards to the European population in terms of annual numbers of deaths in 30 year intervals relative to the reference period (1981-2010) up to the year 2100 (2011-40, 2041-70, and 2071-100) by combining disaster records with high-resolution hazard and demographic projections in a prognostic modelling framework. We focused on the hazards with the greatest impacts-heatwaves and cold waves, wildfires, droughts, river and coastal floods, and windstorms-and evaluated their spatial and temporal variations in intensity and frequency under a business-as-usual scenario of greenhouse gas emissions. We modelled long-term demographic dynamics through a territorial modelling platform to represent the evolution of human exposure under a corresponding middle-of-the-road socioeconomic scenario. We appraised human vulnerability to weather extremes on the basis of more than 2300 records collected from disaster databases during the reference period and assumed it to be static under a scenario of no adaptation. We found that weather-related disasters could affect about two-thirds of the European population annually by the year 2100 (351 million people exposed per year [uncertainty range 126 million to 523 million] during the period 2071-100) compared with 5% during the reference period (1981-2010; 25 million people exposed per year). About 50 times the number of fatalities occurring annually during the reference period (3000 deaths) could occur by the year 2100 (152 000 deaths [80 500-239 800]). Future effects show a prominent latitudinal gradient, increasing towards southern Europe, where the premature mortality rate due to weather extremes (about 700 annual fatalities per million inhabitants [482-957] during the period 2071-100 vs 11 during the reference period) could become the greatest environmental risk factor. The projected changes are dominated by global warming (accounting for more than 90% of the rise in risk to human beings), mainly through a rise in the frequency of heatwaves (about 2700 heat-related fatalities per year during the reference period vs 151 500 [80 100-239 000] during the period 2071-100). Global warming could result in rapidly rising costs of weather-related hazards to human beings in Europe unless adequate adaptation measures are taken. Our results could aid in prioritisation of regional investments to address the unequal burden of effects on human beings of weather-related hazards and differences in adaptation capacities. European Commission. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  13. LifeWatch - a Large-scale eScience Infrastructure to Assist in Understanding and Managing our Planet's Biodiversity

    NASA Astrophysics Data System (ADS)

    Hernández Ernst, Vera; Poigné, Axel; Los, Walter

    2010-05-01

    Understanding and managing the complexity of the biodiversity system in relation to global changes concerning land use and climate change with their social and economic implications is crucial to mitigate species loss and biodiversity changes in general. The sustainable development and exploitation of existing biodiversity resources require flexible and powerful infrastructures offering, on the one hand, the access to large-scale databases of observations and measures, to advanced analytical and modelling software, and to high performance computing environments and, on the other hand, the interlinkage of European scientific communities among each others and with national policies. The European Strategy Forum on Research Infrastructures (ESFRI) selected the "LifeWatch e-science and technology infrastructure for biodiversity research" as a promising development to construct facilities to contribute to meet those challenges. LifeWatch collaborates with other selected initiatives (e.g. ICOS, ANAEE, NOHA, and LTER-Europa) to achieve the integration of the infrastructures at landscape and regional scales. This should result in a cooperating cluster of such infrastructures supporting an integrated approach for data capture and transmission, data management and harmonisation. Besides, facilities for exploration, forecasting, and presentation using heterogeneous and distributed data and tools should allow the interdisciplinary scientific research at any spatial and temporal scale. LifeWatch is an example of a new generation of interoperable research infrastructures based on standards and a service-oriented architecture that allow for linkage with external resources and associated infrastructures. External data sources will be established data aggregators as the Global Biodiversity Information Facility (GBIF) for species occurrences and other EU Networks of Excellence like the Long-Term Ecological Research Network (LTER), GMES, and GEOSS for terrestrial monitoring, the MARBEF network for marine data, and the Consortium for European Taxonomic Facilities (CETAF) and its European Distributed Institute for Taxonomy (EDIT) for taxonomic data. But also "smaller" networks and "volunteer scientists" may send data (e.g. GPS supported species observations) to a LifeWatch repository. Autonomous operating wireless environmental sensors and other smart hand-held devices will contribute to increase data capture activities. In this way LifeWatch will directly underpin the development of GEOBON, the biodiversity component if GEOSS, the Global Earth observation System. To overcome all major technical difficulties imposed by the variety of currently and future technologies, protocols, data formats, etc., LifeWatch will define and use common open interfaces. For this purpose, the LifeWatch Reference Model was developed during the preparatory phase specifying the service-oriented architecture underlying the ICT-infrastructure. The Reference Model identifies key requirements and key architectural concepts to support workflows for scientific in-silico experiments, tracking of provenance, and semantic enhancement, besides meeting the functional requirements mentioned before. It provides guidelines for the specification and implementation of services and information models, defining as well a number of generic services and models. Another key issue addressed by the Reference Model is that the cooperation of many developer teams residing in many European countries has to be organized to obtain compatible results in that conformance with the specifications and policies of the Reference Model will be required. The LifeWatch Reference Model is based on the ORCHESTRA Reference Model for geospatial-oriented architectures and services networks that provides a generic framework and has been endorsed as best practice by the Open Geospatial Consortium (OGC). The LifeWatch Infrastructure will allow (interdisciplinary) scientific researchers to collaborate by creating e-Laboratories or by composing e-Services which can be shared and jointly developed. For it a long-term vision for the LifeWatch Biodiversity Workbench Portal has been developed as a one-stop application for the LifeWatch infrastructure based on existing and emerging technologies. There the user can find all available resources such as data, workflows, tools, etc. and access LifeWatch applications that integrate different resource and provides key capabilities like resource discovery and visualisation, creation of workflows, creation and management of provenance, and the support of collaborative activities. While LifeWatch developers will construct components for solving generic LifeWatch tasks, users may add their own facilities to fulfil individual needs. Examples for application of the LifeWatch Reference Model and the LifeWatch Biodiversity Workbench Portal will be given.

  14. Research study on neutral thermodynamic atmospheric model. [for space shuttle mission and abort trajectory

    NASA Technical Reports Server (NTRS)

    Hargraves, W. R.; Delulio, E. B.; Justus, C. G.

    1977-01-01

    The Global Reference Atmospheric Model is used along with the revised perturbation statistics to evaluate and computer graph various atmospheric statistics along a space shuttle reference mission and abort trajectory. The trajectory plots are height vs. ground range, with height from ground level to 155 km and ground range along the reentry trajectory. Cross sectional plots, height vs. latitude or longitude, are also generated for 80 deg longitude, with heights from 30 km to 90 km and latitude from -90 deg to +90 deg, and for 45 deg latitude, with heights from 30 km to 90 km and longitudes from 180 deg E to 180 deg W. The variables plotted are monthly average pressure, density, temperature, wind components, and wind speed and standard deviations and 99th inter-percentile range for each of these variables.

  15. Global Oncology; Harvard Global Health Catalyst summit lecture notes

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Nguyen, Paul

    2017-08-01

    The material presented in this book is at the cutting-edge of global oncology and provides highly illuminating examples, addresses frequently asked questions, and provides information and a reference for future work in global oncology care, research, education, and outreach.

  16. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets

    PubMed Central

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951–1980) exceeding 3σ (σ is based on the local internal variability) are defined as “extremely hot”. The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, “extremely hot” summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, “extremely hot” summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by “extremely hot” summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low. PMID:26090931

  17. Ozone impacts of gas-aerosol uptake in global chemistry transport models

    NASA Astrophysics Data System (ADS)

    Stadtler, Scarlet; Simpson, David; Schröder, Sabine; Taraborrelli, Domenico; Bott, Andreas; Schultz, Martin

    2018-03-01

    The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated. Our results are loosely consistent with results from earlier studies, although the magnitude of changes induced by N2O5 reaction is at the low end of estimates, which seems to fit a trend, whereby the more recent the study the lower the impacts of these reactions.

  18. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  19. Regime-Based Evaluation of Cloudiness in CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Jin, Daeho; Oraiopoulos, Lazaros; Lee, Dong Min

    2016-01-01

    The concept of Cloud Regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating for each gridcell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product (long-term average total cloud amount [TCA]), cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our findings support previous studies showing that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite their shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer (MODIS) cloud observations evaluated against ISCCP as if they were another model output. Lastly, cloud simulation performance is contrasted with each model's equilibrium climate sensitivity (ECS) in order to gain insight on whether good cloud simulation pairs with particular values of this parameter.

  20. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  1. Dissonance and harmony between global and regional-scale seismic anisotropy and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Becker, T. W.

    2017-12-01

    Huge numbers of SKS splitting observations and improved surface-wave based models of azimuthal anisotropy have advanced our understanding of how convection is recorded in mantle fabrics in the upper mantle. However, we are still debating the relative importance of frozen to actively forming olivine fabrics, subduction zone anisotropy lacks a clear reference model, and regional marine studies yield conflicting evidence as to what exactly is going on at the base of the plates and below. Here, I review the degree of agreement between regional and global observations of seismic anisotropy and how well those may be matched by first-order mantle convection models. Updated bean counting can help contextualize the spatial scales of alignment, and I discuss several examples of the relative roles of plate shear to mantle density anomalies and frozen-in structure for oceanic and continental plates. Resolution of seismological models is globally uneven, but there are some locales where such exercises may yield information on the relative strength of asthenosphere and mantle. Another long-standing question is how olivine fabrics record flow under different stress and volatile conditions. I illustrate how different petrological assumptions might be used to reconcile observations of azimuthal dependency of wave speeds for both Love and Rayleigh waves, and how this could improve our models of the upper mantle, much in the spirit of Montagner's vectorial tomography. This is but one approach to improve the regional realism of global geodynamic background models to understand where in space and time dissonance arises, and if a harmonious model may yet be constructed given our assumptions about the workings of the mantle.

  2. The 5'×5' global geoid model GGM2016

    NASA Astrophysics Data System (ADS)

    Shen, WenBin; Han, Jiancheng

    2016-04-01

    We provide an updated 5'×5' global geoid model GGM2016, which is determined based on the shallow layer method (Shen 2006). We choose an inner surface S below the EGM2008 geoid, and the layer bounded by the inner surface S and the Earth's geographical surface E is referred to as the shallow layer. The Earth's geographical surface E is determined by the digital topographic model DTM2006.0 combining with the DNSC2008 mean sea surface. We determine the 3D shallow layer model (SLM) using the refined crust density model CRUST1.0-5min, which is an improved 5'×5' density model of the CRUST1.0 with taking into account the corrections of the areas covered by ice sheets and the land-ocean crossing regions. Based on the SLM and the gravity field EGM2008 defined outside the Earth's geographical surface E, we determine the gravity field EGM2008S defined in the region outside the inner surface S, extending the gravity field's definition domain from the domain outside E to the domain outside S. Based on the geodetic equation W(P)=W0, where W0 is the geopotential constant on the geoid, we determine a 5'×5' global geoid model GGM2016, which provides both the 5'×5' grid values and spherical harmonic coefficient expressions. Comparisons show that the GGM2016 fits the globally available GPS/leveling points better than the EGM2008 geoid. This study is supported by National 973 Project China (grant Nos. 2013CB733301 and 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41429401, 41128003, 41021061).

  3. Isothermality of the gas in the Coma cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, J.P.; Yamashita, K.; Okumura, Y.

    1988-04-01

    The high-quality X-ray spectrum of the Coma cluster observed by the Japanese satelite Tenma in conjunction with imaging data from the Einstein Observatory was used to explore the temperature distribution of the cluster gas. It is found that pure polytropic models are inadequate to describe this temperature distribution. Instead, a hybrid model is proposed consisting of a central isothermal region surrounded by a polytropic distribution. It is shown that as much as 75 percent of the global emission may come from the isothermal component. 30 references.

  4. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  5. Evaluation of Precipitation Indices for Global Crop Modeling and Definition of Drought Response Function to Yields

    NASA Astrophysics Data System (ADS)

    Kaneko, D.

    2017-12-01

    Climate change initiates abnormal meteorological disasters. Drought causes climate instability, thus producing poor harvests because of low rates of photosynthesis and sterile pollination. This research evaluates drought indices regarding precipitation and includes this data in global geophysical crop models that concern with evaporation, stomata opening, advection-effects from sea surface temperature anomalies, photosynthesis, carbon partitioning, crop yields, and crop production. Standard precipitation index (SPI) is a useful tool because of related variable not used in the stomata model. However, SPI is not an adequate tool for drought in irrigated fields. Contrary to expectations, the global comparisons of spatial characteristics between stomata opening/evapotranspiration and SPI for monitoring continental crop extremes produced serious defects and obvious differences between evapotranspiration and the small stomata-opening phenomena. The reason for this is that SPI does not include surface air temperature in its analysis. The Penman equation (Epen) describes potential evaporation better than SPI for recent hot droughts caused by climate change. However, the distribution of precipitation is a necessary condition for crop monitoring because it affirms the trend of the dry results computed by crop models. Consequently, the author uses global precipitation data observed by microwave passive sensors on TRMM and GCOM-W satellites. This remote sensing data conveniently supplies spatial distributions of global and seasonal precipitation. The author has designed a model to measure the effects of drought on crop yield and the degree of stomata closure related to the photosynthesis rate. To determine yield effects, the drought injury function is defined by integrating stomata closure during the two seasons from flowering to pollination. The stomata, defined by ratio between Epen and Eac, reflect the effects of drought and irrigation. Stomata-closure model includes the factors of soil moisture or irrigation effects inside the actual evapotranspiration computed using a complimentary model. The evaluation of precipitation indices provides necessary but not sufficient conditions for drought. They supply reference information for the trend/accuracy of an injury response function.

  6. Application of two regression-based methods to estimate the effects of partial harvest on forest structure using Landsat data.

    Treesearch

    S.P. Healey; Z. Yang; W.B. Cohen; D.J. Pierce

    2006-01-01

    Although partial harvests are common in many forest types globally, there has been little assessment of the potential to map the intensity of these harvests using Landsat data. We modeled basal area removal and percentage cover change in a study area in central Washington (northwestern USA) using biennial Landsat imagery and reference data from historical aerial photos...

  7. Global Online Freedom Act of 2013

    THOMAS, 113th Congress

    Rep. Smith, Christopher H. [R-NJ-4

    2013-02-04

    House - 02/25/2013 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  8. Interactive Web Interface to the Global Strain Rate Map Project

    NASA Astrophysics Data System (ADS)

    Meertens, C. M.; Estey, L.; Kreemer, C.; Holt, W.

    2004-05-01

    An interactive web interface allows users to explore the results of a global strain rate and velocity model and to compare them to other geophysical observations. The most recent model, an updated version of Kreemer et al., 2003, has 25 independent rigid plate-like regions separated by deformable boundaries covered by about 25,000 grid areas. A least-squares fit was made to 4900 geodetic velocities from 79 different geodetic studies. In addition, Quaternary fault slip rate data are used to infer geologic strain rate estimates (currently only for central Asia). Information about the style and direction of expected strain rate is inferred from the principal axes of the seismic strain rate field. The current model, as well as source data, references and an interactive map tool, are located at the International Lithosphere Program (ILP) "A Global Strain Rate Map (ILP II-8)" project website: http://www-world-strain-map.org. The purpose of the ILP GSRM project is to provide new information from this, and other investigations, that will contribute to a better understanding of continental dynamics and to the quantification of seismic hazards. A unique aspect of the GSRM interactive Java map tool is that the user can zoom in and make custom views of the model grid and results for any area of the globe selecting strain rate and style contour plots and principal axes, observed and model velocity fields in specified frames of reference, and geologic fault data. The results can be displayed with other data sets such Harvard CMT earthquake focal mechanisms, stress directions from the ILP World Stress Map Project, and topography. With the GSRM Java map tool, the user views custom maps generated by a Generic Mapping Tool (GMT) server. These interactive capabilities greatly extend what is possible to present in a published paper. A JavaScript version, using pre-constructed maps, as well as a related information site have also been created for broader education and outreach access. The GSRM map tool will be demonstrated and latest model GSRM 1.1 results, containing important new data for Asia, Iran, western Pacific, and Southern California, will be presented.

  9. On the use of a physically-based baseflow timescale in land surface models.

    NASA Astrophysics Data System (ADS)

    Jost, A.; Schneider, A. C.; Oudin, L.; Ducharne, A.

    2017-12-01

    Groundwater discharge is an important component of streamflow and estimating its spatio-temporal variation in response to changes in recharge is of great value to water resource planning, and essential for modelling accurate large scale water balance in land surface models (LSMs). First-order representation of groundwater as a single linear storage element is frequently used in LSMs for the sake of simplicity, but requires a suitable parametrization of the aquifer hydraulic behaviour in the form of the baseflow characteristic timescale (τ). Such a modelling approach can be hampered by the lack of available calibration data at global scale. Hydraulic groundwater theory provides an analytical framework to relate the baseflow characteristics to catchment descriptors. In this study, we use the long-time solution of the linearized Boussinesq equation to estimate τ at global scale, as a function of groundwater flow length and aquifer hydraulic diffusivity. Our goal is to evaluate the use of this spatially variable and physically-based τ in the ORCHIDEE surface model in terms of simulated river discharges across large catchments. Aquifer transmissivity and drainable porosity stem from GLHYMPS high-resolution datasets whereas flow length is derived from an estimation of drainage density, using the GRIN global river network. ORCHIDEE is run in offline mode and its results are compared to a reference simulation using an almost spatially constant topographic-dependent τ. We discuss the limits of our approach in terms of both the relevance and accuracy of global estimates of aquifer hydraulic properties and the extent to which the underlying assumptions in the analytical method are valid.

  10. Saturn Dynamo Model (Invited)

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G. A.

    2010-12-01

    There has been considerable interest during the past few years about the banded zonal winds and global magnetic field on Saturn (and Jupiter). Questions regarding the depth to which the intense winds extend below the surface and the role they play in maintaining the dynamo continue to be debated. The types of computer models employed to address these questions fall into two main classes: general circulation models (GCMs) based on hydrostatic shallow-water assumptions from the atmospheric and ocean modeling communities and global non-hydrostatic deep convection models from the geodynamo and solar dynamo communities. The latter class can be further divided into Boussinesq models, which do not account for density stratification, and anelastic models, which do. Recent efforts to convert GCMs to deep circulation anelastic models have succeeded in producing fluid flows similar to those obtained from the original deep convection anelastic models. We describe results from one of the original anelastic convective dynamo simulations and compare them to a recent anelastic dynamo benchmark for giant gas planets. This benchmark is based on a polytropic reference state that spans five density scale heights with a radius and rotation rate similar to those of our solar system gas giants. The resulting magnetic Reynolds number is about 3000. Better spatial resolution will be required to produce more realistic predictions that capture the effects of both the density and electrical conductivity stratifications and include enough of the turbulent kinetic energy spectrum. Important additional physics may also be needed in the models. However, the basic models used in all simulation studies of the global dynamics of giant planets will hopefully first be validated by doing these simpler benchmarks.

  11. "Competing Conceptions of Globalization" Revisited: Relocating the Tension between World-Systems Analysis and Globalization Analysis

    ERIC Educational Resources Information Center

    Clayton, Thomas

    2004-01-01

    In recent years, many scholars have become fascinated by a contemporary, multidimensional process that has come to be known as "globalization." Globalization originally described economic developments at the world level. More specifically, scholars invoked the concept in reference to the process of global economic integration and the seemingly…

  12. Constructing the [Parochial] Global Citizen

    ERIC Educational Resources Information Center

    Salter, Peta; Halbert, Kelsey

    2017-01-01

    Cultural exchange is privileged in many higher education programs across the globe. The Australian government's New Colombo Plan refers to a "Third Wave" of globalisation which foregrounds global interrelatedness through developing student capabilities to live, work and contribute to global communities and aims to make the global an…

  13. After Globalization: The Emerging Politics of Education.

    ERIC Educational Resources Information Center

    Marginson, Simon

    1998-01-01

    Globalization, referring to the formation of world systems, embraces finance and trade; communications and information technologies; migration and tourism; global societies; linguistic, cultural, and ideological convergence; and signs and images. Globalization does not negate the nation-state, but it changes its circumstances and makes education…

  14. Flight motor set 360L001 (STS-26R). (Reconstructed dynamic loads analysis)

    NASA Technical Reports Server (NTRS)

    Call, V. B.

    1989-01-01

    A transient analysis was performed to correlate the predicted versus measured behavior of the Redesigned Solid Rocket Booster (RSRB) during Flight 360L001 (STS-26R) liftoff. Approximately 9 accelerometers, 152 strain gages, and 104 girth gages were bonded to the motors during this event. Prior to Flight 360L001, a finite element model of the RSRB was analyzed to predict the accelerations, strains, and displacements measured by this developmental flight instrumentation (DFI) within an order of magnitude. Subsequently, an analysis has been performed which uses actual Flight 360L001 liftoff loading conditions, and makes more precise predictions for the RSRB structural behavior. Essential information describing the analytical model, analytical techniques used, correlation of the predicted versus measured RSRB behavior, and conclusions, are presented. A detailed model of the RSRB was developed and correlated for use in analyzing the motor behavior during liftoff loading conditions. This finite element model, referred to as the RSRB global model, uses super-element techniques to model all components of the RSRB. The objective of the RSRB global model is to accurately predict deflections and gap openings in the field joints to an accuracy of approximately 0.001 inch. The model of the field joint component was correlated to Referee and Joint Environment Simulation (JES) tests. The accuracy of the assembled RSRB global model was validated by correlation to static-fire tests such DM-8, DM-9, QM-7, and QM-8. This validated RSRB global model was used to predict RSRB structural behavior and joint gap opening during Flight 360L001 liftoff. The results of a transient analysis of the RSRB global model with imposed liftoff loading conditions are presented. Rockwell used many gage measurements to reconstruct the load parameters which were imposed on the RSRB during the Flight 360L001 liftoff. Each load parameter, and its application, is described. Also presented are conclusions and recommendations based on the analysis of this load case and the resulting correlation between predicted and measured RSRB structural behavior.

  15. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    NASA Astrophysics Data System (ADS)

    Capote, R.; Herman, M.; Obložinský, P.; Young, P. G.; Goriely, S.; Belgya, T.; Ignatyuk, A. V.; Koning, A. J.; Hilaire, S.; Plujko, V. A.; Avrigeanu, M.; Bersillon, O.; Chadwick, M. B.; Fukahori, T.; Ge, Zhigang; Han, Yinlu; Kailas, S.; Kopecky, J.; Maslov, V. M.; Reffo, G.; Sin, M.; Soukhovitskii, E. Sh.; Talou, P.

    2009-12-01

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released in January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and γ-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from 51V to 239Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.

  16. RIPL - Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Oblozinsky, P.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through (http://www-nds.iaea.org/RIPL-3/). This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less

  17. RIPL-Reference Input Parameter Library for Calculation of Nuclear Reactions and Nuclear Data Evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capote, R.; Herman, M.; Capote,R.

    We describe the physics and data included in the Reference Input Parameter Library, which is devoted to input parameters needed in calculations of nuclear reactions and nuclear data evaluations. Advanced modelling codes require substantial numerical input, therefore the International Atomic Energy Agency (IAEA) has worked extensively since 1993 on a library of validated nuclear-model input parameters, referred to as the Reference Input Parameter Library (RIPL). A final RIPL coordinated research project (RIPL-3) was brought to a successful conclusion in December 2008, after 15 years of challenging work carried out through three consecutive IAEA projects. The RIPL-3 library was released inmore » January 2009, and is available on the Web through http://www-nds.iaea.org/RIPL-3/. This work and the resulting database are extremely important to theoreticians involved in the development and use of nuclear reaction modelling (ALICE, EMPIRE, GNASH, UNF, TALYS) both for theoretical research and nuclear data evaluations. The numerical data and computer codes included in RIPL-3 are arranged in seven segments: MASSES contains ground-state properties of nuclei for about 9000 nuclei, including three theoretical predictions of masses and the evaluated experimental masses of Audi et al. (2003). DISCRETE LEVELS contains 117 datasets (one for each element) with all known level schemes, electromagnetic and {gamma}-ray decay probabilities available from ENSDF in October 2007. NEUTRON RESONANCES contains average resonance parameters prepared on the basis of the evaluations performed by Ignatyuk and Mughabghab. OPTICAL MODEL contains 495 sets of phenomenological optical model parameters defined in a wide energy range. When there are insufficient experimental data, the evaluator has to resort to either global parameterizations or microscopic approaches. Radial density distributions to be used as input for microscopic calculations are stored in the MASSES segment. LEVEL DENSITIES contains phenomenological parameterizations based on the modified Fermi gas and superfluid models and microscopic calculations which are based on a realistic microscopic single-particle level scheme. Partial level densities formulae are also recommended. All tabulated total level densities are consistent with both the recommended average neutron resonance parameters and discrete levels. GAMMA contains parameters that quantify giant resonances, experimental gamma-ray strength functions and methods for calculating gamma emission in statistical model codes. The experimental GDR parameters are represented by Lorentzian fits to the photo-absorption cross sections for 102 nuclides ranging from {sup 51}V to {sup 239}Pu. FISSION includes global prescriptions for fission barriers and nuclear level densities at fission saddle points based on microscopic HFB calculations constrained by experimental fission cross sections.« less

  18. Vulnerability Assessment of Shelters in the Eastern Caribbean: Retrofitting Terms of Reference for Consultants, Standards, [and] Global Estimates.

    ERIC Educational Resources Information Center

    Gibbs, Tony

    Dozens of natural disaster shelters (mostly schools) in five Caribbean islands were assessed as to their vulnerability and the needed retrofitting to upgrade them. This report provides retrofit consultants with terms of reference and building design criteria for withstanding various natural disasters, as well as estimated global costs of various…

  19. Cultural Implications of a Global Context: The Need for the Reference Librarian To Ask Again "Who Is My Client?".

    ERIC Educational Resources Information Center

    McSwiney, Carolyn

    Globalization provides the contextual framework for cultural changes in the library user group. In order to be more effective, and realistically, more client-focused, the reference librarian is challenged to ask again "Who is my client?" in this changing context. This paper presents a positive and practical response to cultural change…

  20. Research Synthesis Methods in an Age of Globalized Risks: Lessons from the Global Burden of Foodborne Disease Expert Elicitation.

    PubMed

    2016-02-01

    We live in an age that increasingly calls for national or regional management of global risks. This article discusses the contributions that expert elicitation can bring to efforts to manage global risks and identifies challenges faced in conducting expert elicitation at this scale. In doing so it draws on lessons learned from conducting an expert elicitation as part of the World Health Organizations (WHO) initiative to estimate the global burden of foodborne disease; a study commissioned by the Foodborne Disease Epidemiology Reference Group (FERG). Expert elicitation is designed to fill gaps in data and research using structured, transparent methods. Such gaps are a significant challenge for global risk modeling. Experience with the WHO FERG expert elicitation shows that it is feasible to conduct an expert elicitation at a global scale, but that challenges do arise, including: defining an informative, yet feasible geographical structure for the elicitation; defining what constitutes expertise in a global setting; structuring international, multidisciplinary expert panels; and managing demands on experts' time in the elicitation. This article was written as part of a workshop, "Methods for Research Synthesis: A Cross-Disciplinary Approach" held at the Harvard Center for Risk Analysis on October 13, 2013. © 2016 Society for Risk Analysis.

  1. Ground Truth Studies - A hands-on environmental science program for students, grades K-12

    NASA Technical Reports Server (NTRS)

    Katzenberger, John; Chappell, Charles R.

    1992-01-01

    The paper discusses the background and the objectives of the Ground Truth Studies (GTSs), an activity-based teaching program which integrates local environmental studies with global change topics, utilizing remotely sensed earth imagery. Special attention is given to the five key concepts around which the GTS programs are organized, the pilot program, the initial pilot study evaluation, and the GTS Handbook. The GTS Handbook contains a primer on global change and remote sensing, aerial and satellite images, student activities, glossary, and an appendix of reference material. Also described is a K-12 teacher training model. International participation in the program is to be initiated during the 1992-1993 school year.

  2. Mental health nursing and the politics of recovery: a global reflection.

    PubMed

    Barker, Phil J; Buchanan-Barker, Poppy

    2011-10-01

    The concept of recovery increasingly dominates mental health policy and practice agendas in most Western countries. However, the many, often conflicting, definitions of recovery have led to theoretical and practical confusion. More importantly, the concept clashes with some of the established assumptions of psychiatric/mental health nursing, especially the traditional notion that the person is "ill" and requires "treatment" or some other active "intervention." The implications of recovery for the further development of person-centered care, especially within a globalized form of mental health nursing, are discussed with specific reference to the Tidal Model, an international midrange theory of mental health nursing. Copyright © 2011. Published by Elsevier Inc.

  3. Nonlinear climate sensitivity and its implications for future greenhouse warming.

    PubMed

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-11-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing-referred to as specific equilibrium climate sensitivity ( S )-is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth's future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.

  4. Nonlinear climate sensitivity and its implications for future greenhouse warming

    PubMed Central

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-01-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462

  5. Numerical analysis of a main crack interactions with micro-defects/inhomogeneities using two-scale generalized/extended finite element method

    NASA Astrophysics Data System (ADS)

    Malekan, Mohammad; Barros, Felício B.

    2017-12-01

    Generalized or extended finite element method (G/XFEM) models the crack by enriching functions of partition of unity type with discontinuous functions that represent well the physical behavior of the problem. However, this enrichment functions are not available for all problem types. Thus, one can use numerically-built (global-local) enrichment functions to have a better approximate procedure. This paper investigates the effects of micro-defects/inhomogeneities on a main crack behavior by modeling the micro-defects/inhomogeneities in the local problem using a two-scale G/XFEM. The global-local enrichment functions are influenced by the micro-defects/inhomogeneities from the local problem and thus change the approximate solution of the global problem with the main crack. This approach is presented in detail by solving three different linear elastic fracture mechanics problems for different cases: two plane stress and a Reissner-Mindlin plate problems. The numerical results obtained with the two-scale G/XFEM are compared with the reference solutions from the analytical, numerical solution using standard G/XFEM method and ABAQUS as well, and from the literature.

  6. The engram formation and the global oscillations of CA3.

    PubMed

    Ventriglia, Francesco

    2008-12-01

    The investigation on the conditions which cause global population oscillatory activities in neural fields, originated some years ago with reference to a kinetic theory of neural systems, as been further deepened in this paper. In particular, the genesis of sharp waves and of some rhythmic activities, such as theta and gamma rhythms, of the hippocampal CA3 field, behaviorally important for their links to learning and memory, has been analyzed with more details. To this aim, the modeling-computational framework previously devised for the study of activities in large neural fields, has been enhanced in such a way that a greater number of biological features, extended dendritic trees-in particular, could be taken into account. By using that methodology, a two-dimensional model of the entire CA3 field has been described and its activity, as it results from the several external inputs impinging on it, has been simulated. As a consequence of these investigations, some hypotheses have been elaborated about the possible function of global oscillatory activities of neural populations of Hippocampus in the engram formation.

  7. An International Strategy for Human Exploration of the Moon: The International Space Exploration Coordination Group (ISECG) Reference Architecture for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Junichiro, Kawaguchi; Piedboeuf, Jean-Claude; Schade, Britta; Lorenzoni, Andrea; Curtis, Jeremy; Hae-Dong, Kim

    2010-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy: The Framework for Coordination developed by fourteen space agencies and released in May 2007. Several ISECG participating space agencies have been studying concepts for human exploration of the moon that allow individual and collective goals and objectives to be met. This 18 month study activity culminated with the development of the ISECG Reference Architecture for Human Lunar Exploration. The reference architecture is a series of elements delivered over time in a flexible and evolvable campaign. This paper will describe the reference architecture and how it will inform near-term and long-term programmatic planning within interested agencies. The reference architecture is intended to serve as a global point of departure conceptual architecture that enables individual agency investments in technology development and demonstration, International Space Station research and technology demonstration, terrestrial analog studies, and robotic precursor missions to contribute towards the eventual implementation of a human lunar exploration scenario which reflects the concepts and priorities established to date. It also serves to create opportunities for partnerships that will support evolution of this concept and its eventual realization. The ISECG Reference Architecture for Human Lunar Exploration (commonly referred to as the lunar gPoD) reflects the agency commitments to finding an effective balance between conducting important scientific investigations of and from the moon, as well as demonstrating and mastering the technologies and capabilities to send humans farther into the Solar System. The lunar gPoD begins with a robust robotic precursor phase that demonstrates technologies and capabilities considered important for the success of the campaign. Robotic missions will inform the human missions and buy down risks. Human exploration will start with a thorough scientific investigation of the polar region while allowing the ability to demonstrate and validate the systems needed to take humans on more ambitious lunar exploration excursions. The ISECG Reference Architecture for Human Lunar Exploration serves as a model for future cooperation and is documented in a summary report and a comprehensive document that also describes the collaborative international process that led to its development. ISECG plans to continue with architecture studies such as this to examine an open transportation architecture and other destinations, with expanded participation from ISECG agencies, as it works to inform international partnerships and advance the Global Exploration Strategy.

  8. Global Positioning System surveys of storm-surge sensors deployed during Hurricane Ike, Seadrift, Texas, to Lake Charles, Louisiana, 2008

    USGS Publications Warehouse

    Payne, Jason; Woodward, Brenda K.; Storm, John B.

    2009-01-01

    The U.S. Geological Survey installed a network of pressure sensors at 65 sites along the Gulf Coast from Seadrift, Texas, northeast to Lake Charles, Louisiana, to record the timing, areal extent, and magnitude of inland storm surge and coastal flooding caused by Hurricane Ike in September 2008. A Global Positioning System was used to obtain elevations of reference marks near each sensor. A combination of real-time kinematic (RTK) and static Global Positioning System surveys were done to obtain elevations of reference marks. Leveling relative to reference marks was done to obtain elevations of sensor orifices above the reference marks. This report summarizes the Global Positioning System data collected and processed to obtain reference mark and storm-sensor-orifice elevations for 59 storm-surge sensors recovered from the original 65 installed as a necessary prelude to computation of storm-surge elevations. National Geodetic Survey benchmarks were used for RTK surveying. Where National Geodetic Survey benchmarks were not within 12 kilometers of a sensor site, static surveying was done. Additional control points for static surveying were in the form of newly established benchmarks or reestablished existing benchmarks. RTK surveying was used to obtain positions and elevations of reference marks for 29 sensor sites. Static surveying was used to obtain positions and elevations of reference marks for 34 sensor sites; four sites were surveyed using both methods. Multiple quality checks on the RTK-survey and static-survey data were applied. The results of all quality checks indicate that the desired elevation accuracy for the surveys of this report, less than 0.1-meter error, was achieved.

  9. Development of a 5 MW reference gearbox for offshore wind turbines: 5 MW reference gearbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nejad, Amir Rasekhi; Guo, Yi; Gao, Zhen

    2015-07-27

    This paper presents detailed descriptions, modeling parameters and technical data of a 5MW high-speed gearbox developed for the National Renewable Energy Laboratory offshore 5MW baseline wind turbine. The main aim of this paper is to support the concept studies and research for large offshore wind turbines by providing a baseline gearbox model with detailed modeling parameters. This baseline gearbox follows the most conventional design types of those used in wind turbines. It is based on the four-point supports: two main bearings and two torque arms. The gearbox consists of three stages: two planetary and one parallel stage gears. The gearmore » ratios among the stages are calculated in a way to obtain the minimum gearbox weight. The gearbox components are designed and selected based on the offshore wind turbine design codes and validated by comparison to the data available from large offshore wind turbine prototypes. All parameters required to establish the dynamic model of the gearbox are then provided. Moreover, a maintenance map indicating components with high to low probability of failure is shown. The 5 MW reference gearbox can be used as a baseline for research on wind turbine gearboxes and comparison studies. It can also be employed in global analysis tools to represent a more realistic model of a gearbox in a coupled analysis.« less

  10. The Acceleration of the Barycenter of Solar System Obtained from VLBI Observations and Its Impact on the ICRS

    NASA Astrophysics Data System (ADS)

    Xu, M. H.

    2016-03-01

    Since 1998 January 1, instead of the traditional stellar reference system, the International Celestial Reference System (ICRS) has been realized by an ensemble of extragalactic radio sources that are located at hundreds of millions of light years away (if we accept their cosmological distances), so that the reference frame realized by extragalactic radio sources is assumed to be space-fixed. The acceleration of the barycenter of solar system (SSB), which is the origin of the ICRS, gives rise to a systematical variation in the directions of the observed radio sources. This phenomenon is called the secular aberration drift. As a result, the extragalactic reference frame fixed to the space provides a reference standard for detecting the secular aberration drift, and the acceleration of the barycenter with respect to the space can be determined from the observations of extragalactic radio sources. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. This thesis begins with the basic background and the general frame of this work. A brief review of the realization of the CRF based on the kinematical and the dynamical methods is presented in Chapter 2, along with the definition of the CRF and its relationship with the inertial reference frame. Chapter 3 is divided into two parts. The first part describes various effects that modify the geometric direction of an object, especially the parallax, the aberration, and the proper motion. Then the derivative model and the principle of determination of the acceleration are introduced in the second part. The VLBI data analysis method, including VLBI data reduction (solving the ambiguity, identifying the clock break, and determining the ionospheric effect), theoretical delay model, parameterization, and datum definition, is discussed in detail in Chapter 4. The estimation of the acceleration by more than 30-year VLBI observations and the results are then described in Chapter 5. The evaluation and the robust check of our results by different solutions and the comparison to that from another research group are performed. The error sources for the estimation of the acceleration, such as the secular parallax caused by the velocity of the barycenter in space, are quantitatively studied by simulation and data analysis in Chapter 6. The two main impacts of the acceleration on the CRF, the apparent proper motion with the magnitude of the μ as\\cdot yr^{-1} level and the global rotation in the CRF due to the un-uniformed distribution of radio sources on the sky, are discussed in Chapter 7. The definition and the realization of the epoch CRF are presented as well. The future work concerning the explanation of the estimated acceleration and potential research on several main problems in modern astrometry are discussed in the last chapter.

  11. Inequality measures perform differently in global and local assessments: An exploratory computational experiment

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Sheng

    2015-11-01

    Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.

  12. An Overview of the Naval Research Laboratory Ocean Surface Flux (NFLUX) System

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Barron, C. N.

    2016-02-01

    The Naval Research Laboratory (NRL) ocean surface flux (NFLUX) system is an end-to-end data processing and assimilation system used to provide near-real time satellite-based surface heat flux fields over the global ocean. Swath-level air temperature (TA), specific humidity (QA), and wind speed (WS) estimates are produced using multiple polynomial regression algorithms with inputs from satellite sensor data records from the Special Sensor Microwave Imager/Sounder, the Advanced Microwave Sounding Unit-A, the Advanced Technology Microwave Sounder, and the Advanced Microwave Scanning Radiometer-2 sensors. Swath-level WS estimates are also retrieved from satellite environmental data records from WindSat, the MetOp scatterometers, and the Oceansat scatterometer. Swath-level solar and longwave radiative flux estimates are produced utilizing the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG). Primary inputs to the RRTMG include temperature and moisture profiles and cloud liquid and ice water paths from the Microwave Integrated Retrieval System. All swath-level satellite estimates undergo an automated quality control process and are then assimilated with atmospheric model forecasts to produce 3-hourly gridded analysis fields. The turbulent heat flux fields, latent and sensible heat flux, are determined from the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithms using inputs of TA, QA, WS, and a sea surface temperature model field. Quality-controlled in situ observations over a one-year time period from May 2013 through April 2014 form the reference for validating ocean surface state parameter and heat flux fields. The NFLUX fields are evaluated alongside the Navy's operational global atmospheric model, the Navy Global Environmental Model (NAVGEM). NFLUX is shown to have smaller biases and lower or similar root mean square errors compared to NAVGEM.

  13. Radiative flux and forcing parameterization error in aerosol-free clear skies

    DOE PAGES

    Pincus, Robert; Mlawer, Eli J.; Oreopoulos, Lazaros; ...

    2015-07-03

    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m 2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentiallymore » unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.« less

  14. Detailed clinical models: representing knowledge, data and semantics in healthcare information technology.

    PubMed

    Goossen, William T F

    2014-07-01

    This paper will present an overview of the developmental effort in harmonizing clinical knowledge modeling using the Detailed Clinical Models (DCMs), and will explain how it can contribute to the preservation of Electronic Health Records (EHR) data. Clinical knowledge modeling is vital for the management and preservation of EHR and data. Such modeling provides common data elements and terminology binding with the intention of capturing and managing clinical information over time and location independent from technology. Any EHR data exchange without an agreed clinical knowledge modeling will potentially result in loss of information. Many attempts exist from the past to model clinical knowledge for the benefits of semantic interoperability using standardized data representation and common terminologies. The objective of each project is similar with respect to consistent representation of clinical data, using standardized terminologies, and an overall logical approach. However, the conceptual, logical, and the technical expressions are quite different in one clinical knowledge modeling approach versus another. There currently are synergies under the Clinical Information Modeling Initiative (CIMI) in order to create a harmonized reference model for clinical knowledge models. The goal for the CIMI is to create a reference model and formalisms based on for instance the DCM (ISO/TS 13972), among other work. A global repository of DCMs may potentially be established in the future.

  15. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for CMIP5 RCP simulations. Biogeosciences Discuss 2014, 11:7151-7188. Bond-Lamberty, B et al: Coupling earth system and integrated assessment models: The problem of steady state. Geosci. Model Dev. Discuss 2014, 7: 1499-1524, doi:10.5194/gmdd-7-1499-2014.

  16. Social influence on selection behaviour: Distinguishing local- and global-driven preferential attachment

    PubMed Central

    Pan, Xue; Liu, Kecheng

    2017-01-01

    Social influence drives human selection behaviours when numerous objects competing for limited attentions, which leads to the ‘rich get richer’ dynamics where popular objects tend to get more attentions. However, evidences have been found that, both the global information of the whole system and the local information among one’s friends have significant influence over the one’s selection. Consequently, a key question raises that, it is the local information or the global information more determinative for one’s selection? Here we compare the local-based influence and global-based influence. We show that, the selection behaviour is mainly driven by the local popularity of the objects while the global popularity plays a supplementary role driving the behaviour only when there is little local information for the user to refer to. Thereby, we propose a network model to describe the mechanism of user-object interaction evolution with social influence, where the users perform either local-driven or global-driven preferential attachments to the objects, i.e., the probability of an objects to be selected by a target user is proportional to either its local popularity or global popularity. The simulation suggests that, about 75% of the attachments should be driven by the local popularity to reproduce the empirical observations. It means that, at least in the studied context where users chose businesses on Yelp, there is a probability of 75% for a user to make a selection according to the local popularity. The proposed model and the numerical findings may shed some light on the study of social influence and evolving social systems. PMID:28406984

  17. Social influence on selection behaviour: Distinguishing local- and global-driven preferential attachment.

    PubMed

    Pan, Xue; Hou, Lei; Liu, Kecheng

    2017-01-01

    Social influence drives human selection behaviours when numerous objects competing for limited attentions, which leads to the 'rich get richer' dynamics where popular objects tend to get more attentions. However, evidences have been found that, both the global information of the whole system and the local information among one's friends have significant influence over the one's selection. Consequently, a key question raises that, it is the local information or the global information more determinative for one's selection? Here we compare the local-based influence and global-based influence. We show that, the selection behaviour is mainly driven by the local popularity of the objects while the global popularity plays a supplementary role driving the behaviour only when there is little local information for the user to refer to. Thereby, we propose a network model to describe the mechanism of user-object interaction evolution with social influence, where the users perform either local-driven or global-driven preferential attachments to the objects, i.e., the probability of an objects to be selected by a target user is proportional to either its local popularity or global popularity. The simulation suggests that, about 75% of the attachments should be driven by the local popularity to reproduce the empirical observations. It means that, at least in the studied context where users chose businesses on Yelp, there is a probability of 75% for a user to make a selection according to the local popularity. The proposed model and the numerical findings may shed some light on the study of social influence and evolving social systems.

  18. (Un)certainty in climate change impacts on global energy consumption

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; De Cian, E.; Sue Wing, I.

    2017-12-01

    Climate change is expected to have an influence on the energy sector, especially on energy demand. For many locations, this change in energy demand is a balance between increase of demand for space cooling and a decrease of space heating demand. We perform a large-scale uncertainty analysis to characterize climate change risk on energy consumption as driven by climate and socioeconomic uncertainty. We combine a dynamic econometric model1 with multiple realizations of temperature projections from all 21 CMIP5 models (from the NASA Earth Exchange Global Daily Downscaled Projections2) under moderate (RCP4.5) and vigorous (RCP8.5) warming. Global spatial population projections for five SSPs are combined with GDP projections to construct scenarios for future energy demand driven by socioeconomic change. Between the climate models, we find a median global increase in climate-related energy demand of around 24% by 2050 under RCP8.5 with an interquartile range of 18-38%. Most climate models agree on increases in energy demand of more than 25% or 50% in tropical regions, the Southern USA and Southern China (see Figure). With respect to socioeconomic scenarios, we find wide variations between the SSPs for the number of people in low-income countries who are exposed to increases in energy demand. Figure attached: Number of models that agree on total climate-related energy consumption to increase or decrease by more than 0, 10, 25 or 50% by 2050 under RCP8.5 and SSP5 as result of the CMIP5 ensemble of temperature projections. References1. De Cian, E. & Sue Wing, I. Global Energy Demand in a Warming Climate. (FEEM, 2016). 2. Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16, 3309-3314 (2012).

  19. The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science

    PubMed Central

    Bruskiewich, Richard; Senger, Martin; Davenport, Guy; Ruiz, Manuel; Rouard, Mathieu; Hazekamp, Tom; Takeya, Masaru; Doi, Koji; Satoh, Kouji; Costa, Marcos; Simon, Reinhard; Balaji, Jayashree; Akintunde, Akinnola; Mauleon, Ramil; Wanchana, Samart; Shah, Trushar; Anacleto, Mylah; Portugal, Arllet; Ulat, Victor Jun; Thongjuea, Supat; Braak, Kyle; Ritter, Sebastian; Dereeper, Alexis; Skofic, Milko; Rojas, Edwin; Martins, Natalia; Pappas, Georgios; Alamban, Ryan; Almodiel, Roque; Barboza, Lord Hendrix; Detras, Jeffrey; Manansala, Kevin; Mendoza, Michael Jonathan; Morales, Jeffrey; Peralta, Barry; Valerio, Rowena; Zhang, Yi; Gregorio, Sergio; Hermocilla, Joseph; Echavez, Michael; Yap, Jan Michael; Farmer, Andrew; Schiltz, Gary; Lee, Jennifer; Casstevens, Terry; Jaiswal, Pankaj; Meintjes, Ayton; Wilkinson, Mark; Good, Benjamin; Wagner, James; Morris, Jane; Marshall, David; Collins, Anthony; Kikuchi, Shoshi; Metz, Thomas; McLaren, Graham; van Hintum, Theo

    2008-01-01

    The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making. PMID:18483570

  20. Irrigation as a Potential Driver for Anomalous Glacier Behavior in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    de Kok, Remco J.; Tuinenburg, Obbe A.; Bonekamp, Pleun N. J.; Immerzeel, Walter W.

    2018-02-01

    Many glaciers in the northwest of High Mountain Asia (HMA) show an almost zero or positive mass balance, despite the global trend of melting glaciers. This phenomenon is often referred to as the "Karakoram anomaly," although strongest positive mass balances can be found in the Kunlun Shan mountain range, northeast of the Karakoram. Using a regional climate model, in combination with a moisture-tracking model, we show that the increase in irrigation intensity in the lowlands surrounding HMA, particularly in the Tarim basin, can locally counter the effects of global warming on glaciers in Kunlun Shan, and parts of Pamir and northern Tibet, through an increase in summer snowfall and decrease in net radiance. Irrigation can thus affect the regional climate in a way that favors glacier growth, and future projections of glacier melt, which may impact millions of inhabitants surrounding HMA, will need to take into account predicted changes in irrigation intensity.

  1. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  2. Estimating the Geocenter from GNSS Observations

    NASA Astrophysics Data System (ADS)

    Dach, Rolf; Michael, Meindl; Beutler, Gerhard; Schaer, Stefan; Lutz, Simon; Jäggi, Adrian

    2014-05-01

    The satellites of the Global Navigation Satellite Systems (GNSS) are orbiting the Earth according to the laws of celestial mechanics. As a consequence, the satellites are sensitive to the coordinates of the center of mass of the Earth. The coordinates of the (ground) tracking stations are referring to the center of figure as the conventional origin of the reference frame. The difference between the center of mass and center of figure is the instantaneous geocenter. Following this definition the global GNSS solutions are sensitive to the geocenter. Several studies demonstrated strong correlations of the GNSS-derived geocenter coordinates with parameters intended to absorb radiation pressure effects acting on the GNSS satellites, and with GNSS satellite clock parameters. One should thus pose the question to what extent these satellite-related parameters absorb (or hide) the geocenter information. A clean simulation study has been performed to answer this question. The simulation environment allows it in particular to introduce user-defined shifts of the geocenter (systematic inconsistencies between the satellite's and station's reference frames). These geocenter shifts may be recovered by the mentioned parameters - provided they were set up in the analysis. If the geocenter coordinates are not estimated, one may find out which other parameters absorb the user-defined shifts of the geocenter and to what extent. Furthermore, the simulation environment also allows it to extract the correlation matrix from the a posteriori covariance matrix to study the correlations between different parameter types of the GNSS analysis system. Our results show high degrees of correlations between geocenter coordinates, orbit-related parameters, and satellite clock parameters. These correlations are of the same order of magnitude as the correlations between station heights, troposphere, and receiver clock parameters in each regional or global GNSS network analysis. If such correlations are accepted in a GNSS analysis when estimating station coordinates, geocenter coordinates must be considered as mathematically estimable in a global GNSS analysis. The geophysical interpretation may of course become difficult, e.g., if insufficient orbit models are used.

  3. Non-singular spherical harmonic expressions of geomagnetic vector and gradient tensor fields in the local north-oriented reference frame

    NASA Astrophysics Data System (ADS)

    Du, J.; Chen, C.; Lesur, V.; Wang, L.

    2014-12-01

    General expressions of magnetic vector (MV) and magnetic gradient tensor (MGT) in terms of the first- and second-order derivatives of spherical harmonics at different degrees and orders, are relatively complicated and singular at the poles. In this paper, we derived alternative non-singular expressions for the MV, the MGT and also the higher-order partial derivatives of the magnetic field in local north-oriented reference frame. Using our newly derived formulae, the magnetic potential, vector and gradient tensor fields at an altitude of 300 km are calculated based on a global lithospheric magnetic field model GRIMM_L120 (version 0.0) and the main magnetic field model of IGRF11. The corresponding results at the poles are discussed and the validity of the derived formulas is verified using the Laplace equation of the potential field.

  4. Performance of the High Sensitivity Open Source Multi-GNSS Assisted GNSS Reference Server.

    NASA Astrophysics Data System (ADS)

    Sarwar, Ali; Rizos, Chris; Glennon, Eamonn

    2015-06-01

    The Open Source GNSS Reference Server (OSGRS) exploits the GNSS Reference Interface Protocol (GRIP) to provide assistance data to GPS receivers. Assistance can be in terms of signal acquisition and in the processing of the measurement data. The data transfer protocol is based on Extensible Mark-up Language (XML) schema. The first version of the OSGRS required a direct hardware connection to a GPS device to acquire the data necessary to generate the appropriate assistance. Scenarios of interest for the OSGRS users are weak signal strength indoors, obstructed outdoors or heavy multipath environments. This paper describes an improved version of OSGRS that provides alternative assistance support from a number of Global Navigation Satellite Systems (GNSS). The underlying protocol to transfer GNSS assistance data from global casters is the Networked Transport of RTCM (Radio Technical Commission for Maritime Services) over Internet Protocol (NTRIP), and/or the RINEX (Receiver Independent Exchange) format. This expands the assistance and support model of the OSGRS to globally available GNSS data servers connected via internet casters. A variety of formats and versions of RINEX and RTCM streams become available, which strengthens the assistance provisioning capability of the OSGRS platform. The prime motivation for this work was to enhance the system architecture of the OSGRS to take advantage of globally available GNSS data sources. Open source software architectures and assistance models provide acquisition and data processing assistance for GNSS receivers operating in weak signal environments. This paper describes test scenarios to benchmark the OSGRSv2 performance against other Assisted-GNSS solutions. Benchmarking devices include the SPOT satellite messenger, MS-Based & MS-Assisted GNSS, HSGNSS (SiRFstar-III) and Wireless Sensor Networks Assisted-GNSS. Benchmarked parameters include the number of tracked satellites, the Time to Fix First (TTFF), navigation availability and accuracy. Three different configurations of Multi-GNSS assistance servers were used, namely Cloud-Client-Server, the Demilitarized Zone (DMZ) Client-Server and PC-Client-Server; with respect to the connectivity location of client and server. The impact on the performance based on server and/or client initiation, hardware capability, network latency, processing delay and computation times with their storage, scalability, processing and load sharing capabilities, were analysed. The performance of the OSGRS is compared against commercial GNSS, Assisted-GNSS and WSN-enabled GNSS devices. The OSGRS system demonstrated lower TTFF and higher availability.

  5. A Newly Reanalyzed Dataset of GPS-determined Antarctic Vertical Rates

    NASA Astrophysics Data System (ADS)

    Thomas, I.; King, M.; Clarke, P. J.; Penna, N. T.; Lavallee, D. A.; Whitehouse, P.

    2010-12-01

    Accurate and precise measurements of vertical crustal motion offer useful constraints on glacial isostatic adjustment (GIA) models. Here we present a newly reprocessed data set of GPS-determined vertical rates for Antarctica. We give details of the global reanalysis of 15-years of GPS data, the overarching aim of which is to achieve homogeneous station coordinate time series, and hence surface velocities, for GPS receivers that are in regions of GIA interest in Antarctica. The means by which the reference frame is realized is crucial to obtaining accurate rates. Considerable effort has been spent on achieving a good global distribution of GPS stations, using data from IGS and other permanently recording stations, as well as a number of episodic campaigns in Antarctica. Additionally, we have focused on minimizing the inevitable imbalance in the number of sites in the northern and southern hemispheres. We align our daily non-fiducial solutions to ITRF2005, i.e. a CM frame. We present the results of investigations into the reference frame realization, and also consider a GPS-derived realization of the frame, and its effect on the vertical velocities. Vertical velocities are obtained for approximately 40 Antarctic locations. We compare our GPS derived Antarctic vertical rates with those predicted by the Ivins and James and ICE-5G models, after converting to a CE frame. We also compare to previously published GPS rates. Our GPS velocities are being used to help tune, and bound errors of, a new GIA model also presented in this session.

  6. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179

  7. The eMLR(C*) Method to Determine Decadal Changes in the Global Ocean Storage of Anthropogenic CO2

    NASA Astrophysics Data System (ADS)

    Clement, Dominic; Gruber, Nicolas

    2018-04-01

    The determination of the decadal change in anthropogenic CO2 in the global ocean from repeat hydrographic surveys represents a formidable challenge, which we address here by introducing a seamless new method. This method builds on the extended multiple linear regression (eMLR) approach to identify the anthropogenic CO2 signal, but in order to improve the robustness of this method, we fit C∗ rather than dissolved inorganic carbon and use a probabilistic method for the selection of the predictors. In order to account for the multiyear nature of the surveys, we adjust all C∗ observations of a particular observing period to a common reference year by assuming a transient steady state. We finally use the eMLR models together with global gridded climatological distributions of the predictors to map the estimated change in anthropogenic CO2 to the global ocean. Testing this method with synthetic data generated from a hindcast simulation with an ocean model reveals that the method is able to reconstruct the change in anthropogenic CO2 with only a small global bias (<5%). Within ocean basins, the errors can be larger, mostly driven by changes in ocean circulation. Overall, we conclude from the model that the method has an accuracy of retrieving the column integrated change in anthropogenic CO2 of about ±10% at the scale of whole ocean basins. We expect that this uncertainty needs to be doubled to about ±20% when the change in anthropogenic CO2 is reconstructed from observations.

  8. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  9. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  10. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects.

    PubMed

    Ziegler, G; Ridgway, G R; Dahnke, R; Gaser, C

    2014-08-15

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Individualized Gaussian process-based prediction and detection of local and global gray matter abnormalities in elderly subjects

    PubMed Central

    Ziegler, G.; Ridgway, G.R.; Dahnke, R.; Gaser, C.

    2014-01-01

    Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18–94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. PMID:24742919

  12. Impact of RNA Degradation on Viral Diagnosis: An Understated but Essential Step for the Successful Establishment of a Diagnosis Network

    PubMed Central

    Relova, Damarys; Acevedo, Ana M.; Coronado, Liani; Perera, Carmen L.

    2018-01-01

    The current global conditions, which include intensive globalization, climate changes, and viral evolution among other factors, have led to an increased emergence of viruses and new viral diseases; RNA viruses are key drivers of this evolution. Laboratory networks that are linked to central reference laboratories are required to conduct both active and passive environmental surveillance of this complicated global viral environment. These tasks require a continuous exchange of strains or field samples between different diagnostic laboratories. The shipment of these samples on dry ice represents both a biological hazard and a general health risk. Moreover, the requirement to ship on dry ice could be hampered by high costs, particularly in underdeveloped countries or regions located far from each other. To solve these issues, the shipment of RNA isolated from viral suspensions or directly from field samples could be a useful way to share viral genetic material. However, extracted RNA stored in aqueous solutions, even at −70 °C, is highly prone to degradation. The current study evaluated different RNA storage conditions for safety and feasibility for future use in molecular diagnostics. The in vitro RNA-transcripts obtained from an inactivated highly pathogenic avian influenza (HPAI) H5N1 virus was used as a model. The role of secondary structures in the protection of the RNA was also explored. Of the conditions evaluated, the dry pellet matrix was best able to protect viral RNA under extreme storage conditions. This method is safe, cost-effective and assures the integrity of RNA samples for reliable molecular diagnosis. This study aligns with the globally significant “Global One Health” paradigm, especially with respect to the diagnosis of emerging diseases that require confirmation by reference laboratories. PMID:29415432

  13. Assessment of the effect of three-dimensional mantle density heterogeneity on earth rotation in tidal frequencies.

    PubMed

    Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia

    2016-11-01

    In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference Earth Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the earth's surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free earth rotation may provide useful constraints to construct the Reference Earth Model (REM), which is the next major objective in global geophysics research beyond PREM.

  14. A single-station empirical model for TEC over the Antarctic Peninsula using GPS-TEC data

    NASA Astrophysics Data System (ADS)

    Feng, Jiandi; Wang, Zhengtao; Jiang, Weiping; Zhao, Zhenzhen; Zhang, Bingbing

    2017-02-01

    Compared with regional or global total electron content (TEC) empirical models, single-station TEC empirical models may exhibit higher accuracy in describing TEC spatial and temporal variations for a single station. In this paper, a new single-station empirical total electron content (TEC) model, called SSM-month, for the O'Higgins Station in the Antarctic Peninsula is proposed by using Global Positioning System (GPS)-TEC data from 01 January 2004 to 30 June 2015. The diurnal variation of TEC in the O'Higgins Station may have changing features in different months, sometimes even in opposite forms, because of ionospheric phenomena, such as the Mid-latitude Summer Nighttime Anomaly (MSNA). To avoid the influence of different diurnal variations, the concept of monthly modeling is proposed in this study. The SSM-month model, which is established by month (including 12 submodels that correspond to the 12 months), can effectively describe the diurnal variation of TEC in different months. Each submodel of the SSM-month model exhibits good agreement with GPS-TEC input data. Overall, the SSM-month model fits the input data with a bias of 0.03 TECU (total electron content unit, 1 TECU = 1016 el m-2) and a standard deviation of 2.78 TECU. This model, which benefits from the modeling method, can effectively describe the MSNA phenomenon without implementing any modeling correction. TEC data derived from Center for Orbit Determination in Europe global ionosphere maps (CODE GIMs), International Reference Ionosphere 2012 (IRI2012), and NeQuick are compared with the SSM-month model in the years of 2001 and 2015-2016. Result shows that the SSM-month model exhibits good consistency with CODE GIMs, which is better than that of IRI2012 and NeQuick, in the O'Higgins Station on the test days.

  15. Modeling Aerosol Microphysical and Radiative Effects on Clouds and Implications for the Effects of Black and Brown Carbon on Clouds

    NASA Astrophysics Data System (ADS)

    Ten Hoeve, J. E.; Jacobson, M. Z.

    2010-12-01

    Satellite observational studies have found an increase in cloud fraction (CF) and cloud optical depth (COD) with increasing aerosol optical depth (AOD) followed by a decreasing CF/COD with increasing AOD at higher AODs over the Amazon Basin. The shape of this curve is similar to that of a boomerang, and thus the effect has been dubbed the "boomerang effect.” The increase in CF/COD with increasing AOD at low AODs is ascribed to the first and second indirect effects and is referred to as a microphysical effect of aerosols on clouds. The decrease in CF/COD at higher AODs is ascribed to enhanced warming of clouds due to absorbing aerosols, either as inclusions in drops or interstitially between drops. This is referred to as a radiative effect. To date, the interaction of the microphysical and radiative effects has not been simulated with a regional or global computer model. Here, we simulate the boomerang effect with the nested global-through-urban climate, air pollution, weather forecast model, GATOR-GCMOM, for the Amazon biomass burning season of 2006. We also compare the model with an extensive set of data, including satellite data from MODIS, TRMM, and CALIPSO, in situ surface observations, upper-air data, and AERONET data. Biomass burning emissions are obtained from the Global Fire Emissions Database (GFEDv2), and are combined with MODIS land cover data along with biomass burning emission factors. A high-resolution domain, nested within three increasingly coarser domains, is employed over the heaviest biomass burning region within the arc of deforestation. Modeled trends in cloud properties with aerosol loading compare well with MODIS observed trends, allowing causation of these observed correlations, including of the boomerang effect, to be determined by model results. The impact of aerosols on various cloud parameters, such as cloud optical thickness, cloud fraction, cloud liquid water/ice content, and precipitation, are shown through differences between simulations that include and exclude biomass burning emissions. This study suggests by cause and effect through numerical modeling that aerosol radiative effects counteract microphysical effects at high AODs, a result previously shown by correlation alone. As such, computer models that exclude treatment of cloud radiative effects are likely to overpredict the indirect effects of aerosols on clouds and underestimate the warming due to aerosols containing black carbon.

  16. Tuning without over-tuning: parametric uncertainty quantification for the NEMO ocean model

    NASA Astrophysics Data System (ADS)

    Williamson, Daniel B.; Blaker, Adam T.; Sinha, Bablu

    2017-04-01

    In this paper we discuss climate model tuning and present an iterative automatic tuning method from the statistical science literature. The method, which we refer to here as iterative refocussing (though also known as history matching), avoids many of the common pitfalls of automatic tuning procedures that are based on optimisation of a cost function, principally the over-tuning of a climate model due to using only partial observations. This avoidance comes by seeking to rule out parameter choices that we are confident could not reproduce the observations, rather than seeking the model that is closest to them (a procedure that risks over-tuning). We comment on the state of climate model tuning and illustrate our approach through three waves of iterative refocussing of the NEMO (Nucleus for European Modelling of the Ocean) ORCA2 global ocean model run at 2° resolution. We show how at certain depths the anomalies of global mean temperature and salinity in a standard configuration of the model exceeds 10 standard deviations away from observations and show the extent to which this can be alleviated by iterative refocussing without compromising model performance spatially. We show how model improvements can be achieved by simultaneously perturbing multiple parameters, and illustrate the potential of using low-resolution ensembles to tune NEMO ORCA configurations at higher resolutions.

  17. Estimating top-of-atmosphere thermal infrared radiance using MERRA-2 atmospheric data

    NASA Astrophysics Data System (ADS)

    Kleynhans, Tania; Montanaro, Matthew; Gerace, Aaron; Kanan, Christopher

    2017-05-01

    Thermal infrared satellite images have been widely used in environmental studies. However, satellites have limited temporal resolution, e.g., 16 day Landsat or 1 to 2 day Terra MODIS. This paper investigates the use of the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data product, produced by NASA's Global Modeling and Assimilation Office (GMAO) to predict global topof-atmosphere (TOA) thermal infrared radiance. The high temporal resolution of the MERRA-2 data product presents opportunities for novel research and applications. Various methods were applied to estimate TOA radiance from MERRA-2 variables namely (1) a parameterized physics based method, (2) Linear regression models and (3) non-linear Support Vector Regression. Model prediction accuracy was evaluated using temporally and spatially coincident Moderate Resolution Imaging Spectroradiometer (MODIS) thermal infrared data as reference data. This research found that Support Vector Regression with a radial basis function kernel produced the lowest error rates. Sources of errors are discussed and defined. Further research is currently being conducted to train deep learning models to predict TOA thermal radiance

  18. Efficient and robust model-to-image alignment using 3D scale-invariant features.

    PubMed

    Toews, Matthew; Wells, William M

    2013-04-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Reforestation in a high-CO2 world -- Higher mitigation potential than expected, lower adaptation potential than hoped for

    NASA Astrophysics Data System (ADS)

    Sonntag, Sebastian; Pongratz, Julia; Reick, Christian H.; Schmidt, Hauke

    2016-06-01

    We assess the potential and possible consequences for the global climate of a strong reforestation scenario for this century. We perform model experiments using the Max Planck Institute Earth System Model (MPI-ESM), forced by fossil-fuel CO2 emissions according to the high-emission scenario Representative Concentration Pathway (RCP) 8.5, but using land use transitions according to RCP4.5, which assumes strong reforestation. Thereby, we isolate the land use change effects of the RCPs from those of other anthropogenic forcings. We find that by 2100 atmospheric CO2 is reduced by 85 ppm in the reforestation model experiment compared to the reference RCP8.5 model experiment. This reduction is higher than previous estimates and is due to increased forest cover in combination with climate and CO2 feedbacks. We find that reforestation leads to global annual mean temperatures being lower by 0.27 K in 2100. We find large annual mean warming reductions in sparsely populated areas, whereas reductions in temperature extremes are also large in densely populated areas.

  20. Efficient and Robust Model-to-Image Alignment using 3D Scale-Invariant Features

    PubMed Central

    Toews, Matthew; Wells, William M.

    2013-01-01

    This paper presents feature-based alignment (FBA), a general method for efficient and robust model-to-image alignment. Volumetric images, e.g. CT scans of the human body, are modeled probabilistically as a collage of 3D scale-invariant image features within a normalized reference space. Features are incorporated as a latent random variable and marginalized out in computing a maximum a-posteriori alignment solution. The model is learned from features extracted in pre-aligned training images, then fit to features extracted from a new image to identify a globally optimal locally linear alignment solution. Novel techniques are presented for determining local feature orientation and efficiently encoding feature intensity in 3D. Experiments involving difficult magnetic resonance (MR) images of the human brain demonstrate FBA achieves alignment accuracy similar to widely-used registration methods, while requiring a fraction of the memory and computation resources and offering a more robust, globally optimal solution. Experiments on CT human body scans demonstrate FBA as an effective system for automatic human body alignment where other alignment methods break down. PMID:23265799

  1. Impact of global warming on the typhoon intensities during 2015

    NASA Astrophysics Data System (ADS)

    Kang, N. Y.; Yang, S. H.; Elsner, J.; Chun, Y.

    2017-12-01

    The climate of 2015 was characterized by a strong El Nino, global warmth, and record setting tropical cyclone (TC) intensity for western North Pacific typhoons. In this study, the highest TC intensity in 32 years (1984-2015) is shown to be a consequence of above normal TC activity—following natural internal variation—and greater efficiency of intensity. The efficiency of intensity (EINT) is termed the `blasting effect' and refers to typhoon intensification at the expense of occurrence. Statistical models show that the EINT is mostly due to the anomalous warmth in the environment as indicated by global mean sea-surface temperature. In comparison, the EINT due to El Nino is negligibly small. This implies that the record-setting intensity of 2015 might not have occurred without environmental warming and suggests that a year with even greater TC intensity is possible in the near future when above normal activity coincides with another record EINT due to continuous warming.

  2. UPC++ Programmer’s Guide (v1.0 2017.9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, D.

    UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  3. UPC++ Programmer’s Guide, v1.0-2018.3.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachan, J.; Baden, S.; Bonachea, Dan

    UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less

  4. Enhancing End-to-End Performance of Information Services Over Ka-Band Global Satellite Networks

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Glover, Daniel R.; Ivancic, William D.; vonDeak, Thomas C.

    1997-01-01

    The Internet has been growing at a rapid rate as the key medium to provide information services such as e-mail, WWW and multimedia etc., however its global reach is limited. Ka-band communication satellite networks are being developed to increase the accessibility of information services via the Internet at global scale. There is need to assess satellite networks in their ability to provide these services and interconnect seamlessly with existing and proposed terrestrial telecommunication networks. In this paper the significant issues and requirements in providing end-to-end high performance for the delivery of information services over satellite networks based on various layers in the OSI reference model are identified. Key experiments have been performed to evaluate the performance of digital video and Internet over satellite-like testbeds. The results of the early developments in ATM and TCP protocols over satellite networks are summarized.

  5. Assessing skill of a global bimonthly streamflow ensemble prediction system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.

    2011-12-01

    Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.

  6. Can Dynamic Global Vegetation Models Reproduce Satellite Observed Extreme Browning and Greening Events in Vegetation Productivity?

    NASA Astrophysics Data System (ADS)

    van Eck, C. M.; Morfopoulos, C.; Betts, R. A.; Chang, J.; Ciais, P.; Friedlingstein, P.; Regnier, P. A. G.

    2016-12-01

    The frequency and severity of extreme climate events such as droughts, extreme precipitation and heatwaves are expected to increase in our changing climate. These extreme climate events will have an effect on vegetation either by enhanced or reduced productivity. Subsequently, this can have a substantial impact on the terrestrial carbon sink and thus the global carbon cycle, especially as extreme climate events are expected to increase in frequency and severity. Connecting observational datasets with modelling studies provides new insights into these climate-vegetation interactions. This study aims to compare extremes in vegetation productivity as derived from observations with that of Dynamic Global Vegetation Models (DGVMs). In this case GIMMS-NDVI 3g is selected as the observational dataset and both JULES (Joint UK Land Environment Simulator) and ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) as the DGVMs. Both models are forced with PGFv2 Global Meteorological Forcing Dataset according to the ISI-MIP2 protocol for historical runs. Extremes in vegetation productivity are the focal point, which are identified as NDVI anomalies below the 10th percentile or above the 90th percentile during the growing season, referred to as browning or greening events respectively. The monthly NDVI dataset GIMMS-NDVI 3g is used to obtain the location in time and space of the vegetation extremes. The global GIMMS-NDVI 3g dataset has been subdivided into IPCC's SREX-regions for which the NDVI anomalies are calculated and the extreme thresholds are determined. With this information we can identify the location in time and space of the browning and greening events in remotely-sensed vegetation productivity. The same procedure is applied to the modelled Gross Primary Productivity (GPP) allowing a comparison between the spatial and temporal occurrence of the browning and greening events in the observational dataset and the models' output. The capacity of the models to catch observed extremes in vegetation productivity is assessed and compared. Factors contributing to observed and modelled vegetation browning/greening extremes are analysed. The results of this study provide a stepping stone to modelling future extremes in vegetation productivity.

  7. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sindelarova, K.; Granier, Claire; Bouarar, I.

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic VOCs available on a monthly basis for the time period of 1980 - 2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg(C) yr1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2 %. Several sensitivity model runs were performed to study the impact of different modelmore » input and model settings on isoprene estimates and resulted in differences of * 17% of the reference isoprene total. A greater impact was observed for sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene in ventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene and*-pinene showed a reasonable agreement with surface flux measurements in the Amazon andthe model was able to capture the seasonal variation of emissions in this region.« less

  8. The role of country-to-region assignments in global integrated modeling of energy, agriculture, land use, and climate

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Patel, P.; Calvin, K. V.

    2014-12-01

    Global integrated assessment models used for understanding the linkages between the future energy, agriculture, and climate systems typically represent between 8 and 30 geopolitical macro-regions, balancing the benefits of geographic resolution with the costs of additional data collection, processing, analysis, and computing resources. As these models are continually being improved and updated in order to address new questions for the research and policy communities, it is worth examining the consequences of the country-to-region mapping schemes used for model results. This study presents an application of a data processing system built for the GCAM integrated assessment model that allows any country-to-region assignments, with a minimum of four geopolitical regions and a maximum of 185. We test ten different mapping schemes, including the specific mappings used in existing major integrated assessment models. We also explore the impacts of clustering nations into regions according to the similarity of the structure of each nation's energy and agricultural sectors, as indicated by multivariate analysis. Scenarios examined include a reference scenario, a low-emissions scenario, and scenarios with agricultural and buildings sector climate change impacts. We find that at the global level, the major output variables (primary energy, agricultural land use) are surprisingly similar regardless of regional assignments, but at finer geographic scales, differences are pronounced. We suggest that enhancing geographic resolution is advantageous for analysis of climate impacts on the buildings and agricultural sectors, due to the spatial heterogeneity of these drivers.

  9. Three-dimensional ionospheric tomography reconstruction using the model function approach in Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Wang, Sicheng; Huang, Sixun; Xiang, Jie; Fang, Hanxian; Feng, Jian; Wang, Yu

    2016-12-01

    Ionospheric tomography is based on the observed slant total electron content (sTEC) along different satellite-receiver rays to reconstruct the three-dimensional electron density distributions. Due to incomplete measurements provided by the satellite-receiver geometry, it is a typical ill-posed problem, and how to overcome the ill-posedness is still a crucial content of research. In this paper, Tikhonov regularization method is used and the model function approach is applied to determine the optimal regularization parameter. This algorithm not only balances the weights between sTEC observations and background electron density field but also converges globally and rapidly. The background error covariance is given by multiplying background model variance and location-dependent spatial correlation, and the correlation model is developed by using sample statistics from an ensemble of the International Reference Ionosphere 2012 (IRI2012) model outputs. The Global Navigation Satellite System (GNSS) observations in China are used to present the reconstruction results, and measurements from two ionosondes are used to make independent validations. Both the test cases using artificial sTEC observations and actual GNSS sTEC measurements show that the regularization method can effectively improve the background model outputs.

  10. Sub-seasonal predictability of water scarcity at global and local scale

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  11. Scalar and Vector Spherical Harmonics for Assimilation of Global Datasets in the Ionosphere and Thermosphere

    NASA Astrophysics Data System (ADS)

    Miladinovich, D.; Datta-Barua, S.; Bust, G. S.; Ramirez, U.

    2017-12-01

    Understanding physical processes during storm time in the ionosphere-thermosphere (IT) system is limited, in part, due to the inability to obtain accurate estimates of IT states on a global scale. One reason for this inability is the sparsity of spatially distributed high quality data sets. Data assimilation is showing promise toward enabling global estimates by blending high quality observational data sets with established climate models. We are continuing development of an algorithm called Estimating Model Parameters for Ionospheric Reverse Engineering (EMPIRE) to enable assimilation of global datasets for storm time estimates of IT drivers. EMPIRE is a data assimilation algorithm that uses a Kalman filtering routine to ingest model and observational data. The EMPIRE algorithm is based on spherical harmonics which provide a spherically symmetric, smooth, continuous, and orthonormal set of basis functions suitable for a spherical domain such as Earth's IT region (200-600 km altitude). Once the basis function coefficients are determined, the newly fitted function represents the disagreement between observational measurements and models. We apply spherical harmonics to study the March 17, 2015 storm. Data sources include Fabry-Perot interferometer neutral wind measurements and global Ionospheric Data Assimilation 4 Dimensional (IDA4D) assimilated total electron content (TEC). Models include Weimer 2000 electric potential, International Geomagnetic Reference Field (IGRF) magnetic field, and Horizontal Wind Model 2014 (HWM14) neutral winds. We present the EMPIRE assimilation results of Earth's electric potential and thermospheric winds. We also compare EMPIRE storm time E cross B ion drift estimates to measured drifts produced from the Super Dual Auroral Radar Network (SuperDARN) and Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) measurement datasets. The analysis from these results will enable the generation of globally assimilated storm time IT state estimates for future studies. In particular, the ability to provide data assimilated estimation of the drivers of the IT system from high to low latitudes is a critical step toward forecasting the influence of geomagnetic storms on the near Earth space environment.

  12. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  13. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  14. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  15. Seasonal station variations in the Vienna VLBI terrestrial reference frame VieTRF16a

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; Madzak, Matthias

    2017-04-01

    The special analysis center of the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS) at TU Wien (VIE) routinely analyses the VLBI measurements and estimates its own Terrestrial Reference Frame (TRF) solutions. We present our latest solution VieTRF16a (1979.0 - 2016.5) computed with the software VieVS version 3.0. Several recent updates of the software have been applied, e.g., the estimation of annual and semi-annual station variations as global parameters. The VieTRF16a is determined in the form of the conventional model (station position and its linear velocity) simultaneously with the celestial reference frame and Earth orientation parameters. In this work, we concentrate on the seasonal station variations in the residual time series and compare our TRF with the three combined TRF solutions ITRF2014, DTRF2014 and JTRF2014.

  16. Progress in modelling agricultural impacts of and adaptations to climate change.

    PubMed

    Rötter, R P; Hoffmann, M P; Koch, M; Müller, C

    2018-06-01

    Modelling is a key tool to explore agricultural impacts of and adaptations to climate change. Here we report recent progress made especially referring to the large project initiatives MACSUR and AgMIP; in particular, in modelling potential crop impacts from field to global using multi-model ensembles. We identify two main fields where further progress is necessary: a more mechanistic understanding of climate impacts and management options for adaptation and mitigation; and focusing on cropping systems and integrative multi-scale assessments instead of single season and crops, especially in complex tropical and neglected but important cropping systems. Stronger linking of experimentation with statistical and eco-physiological crop modelling could facilitate the necessary methodological advances. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The NASA environmental models of Mars

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    1991-01-01

    NASA environmental models are discussed with particular attention given to the Mars Global Reference Atmospheric Model (Mars-GRAM) and the Mars Terrain simulator. The Mars-GRAM model takes into account seasonal, diurnal, and surface topography and dust storm effects upon the atmosphere. It is also capable of simulating appropriate random density perturbations along any trajectory path through the atmosphere. The Mars Terrain Simulator is a software program that builds pseudo-Martian terrains by layering the effects of geological processes upon one another. Output pictures of the constructed surfaces can be viewed from any vantage point under any illumination conditions. Attention is also given to the document 'Environment of Mars, 1988' in which scientific models of the Martian atmosphere and Martian surface are presented.

  18. Statistical considerations for harmonization of the global multicenter study on reference values.

    PubMed

    Ichihara, Kiyoshi

    2014-05-15

    The global multicenter study on reference values coordinated by the Committee on Reference Intervals and Decision Limits (C-RIDL) of the IFCC was launched in December 2011, targeting 45 commonly tested analytes with the following objectives: 1) to derive reference intervals (RIs) country by country using a common protocol, and 2) to explore regionality/ethnicity of reference values by aligning test results among the countries. To achieve these objectives, it is crucial to harmonize 1) the protocol for recruitment and sampling, 2) statistical procedures for deriving the RI, and 3) test results through measurement of a panel of sera in common. For harmonized recruitment, very lenient inclusion/exclusion criteria were adopted in view of differences in interpretation of what constitutes healthiness by different cultures and investigators. This policy may require secondary exclusion of individuals according to the standard of each country at the time of deriving RIs. An iterative optimization procedure, called the latent abnormal values exclusion (LAVE) method, can be applied to automate the process of refining the choice of reference individuals. For global comparison of reference values, test results must be harmonized, based on the among-country, pair-wise linear relationships of test values for the panel. Traceability of reference values can be ensured based on values assigned indirectly to the panel through collaborative measurement of certified reference materials. The validity of the adopted strategies is discussed in this article, based on interim results obtained to date from five countries. Special considerations are made for dissociation of RIs by parametric and nonparametric methods and between-country difference in the effect of body mass index on reference values. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Changes in Brain Network Efficiency and Working Memory Performance in Aging

    PubMed Central

    Stanley, Matthew L.; Simpson, Sean L.; Dagenbach, Dale; Lyday, Robert G.; Burdette, Jonathan H.; Laurienti, Paul J.

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory. PMID:25875001

  20. Changes in brain network efficiency and working memory performance in aging.

    PubMed

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  1. Regional and global modeling estimates of policy relevant background ozone over the United States

    NASA Astrophysics Data System (ADS)

    Emery, Christopher; Jung, Jaegun; Downey, Nicole; Johnson, Jeremiah; Jimenez, Michele; Yarwood, Greg; Morris, Ralph

    2012-02-01

    Policy Relevant Background (PRB) ozone, as defined by the US Environmental Protection Agency (EPA), refers to ozone concentrations that would occur in the absence of all North American anthropogenic emissions. PRB enters into the calculation of health risk benefits, and as the US ozone standard approaches background levels, PRB is increasingly important in determining the feasibility and cost of compliance. As PRB is a hypothetical construct, modeling is a necessary tool. Since 2006 EPA has relied on global modeling to establish PRB for their regulatory analyses. Recent assessments with higher resolution global models exhibit improved agreement with remote observations and modest upward shifts in PRB estimates. This paper shifts the paradigm to a regional model (CAMx) run at 12 km resolution, for which North American boundary conditions were provided by a low-resolution version of the GEOS-Chem global model. We conducted a comprehensive model inter-comparison, from which we elucidate differences in predictive performance against ozone observations and differences in temporal and spatial background variability over the US. In general, CAMx performed better in replicating observations at remote monitoring sites, and performance remained better at higher concentrations. While spring and summer mean PRB predicted by GEOS-Chem ranged 20-45 ppb, CAMx predicted PRB ranged 25-50 ppb and reached well over 60 ppb in the west due to event-oriented phenomena such as stratospheric intrusion and wildfires. CAMx showed a higher correlation between modeled PRB and total observed ozone, which is significant for health risk assessments. A case study during April 2006 suggests that stratospheric exchange of ozone is underestimated in both models on an event basis. We conclude that wildfires, lightning NO x and stratospheric intrusions contribute a significant level of uncertainty in estimating PRB, and that PRB will require careful consideration in the ozone standard setting process.

  2. A global sensitivity analysis of crop virtual water content

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for other crops. The sensitivity to the reference evapotranspiration is highly variable with the considered crop and ranges from positive values (for soybean), to negative values (for rice and maize) and near-zero values for wheat. This variability reflects the different yield response factors of crops, which expresses their tolerance to water stress.

  3. Development of an integrated chemical weather prediction system for environmental applications at meso to global scales: NMMB/BSC-CHEM

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.

    2009-09-01

    This contribution presents the ongoing developments of a new fully on-line chemical weather prediction system for meso to global scale applications. The modeling system consists of a mineral dust module and a gas-phase chemistry module coupled on-line to a unified global-regional atmospheric driver. This approach allows solving small scale processes and their interactions at local to global scales. Its unified environment maintains the consistency of all the physico-chemical processes involved. The atmospheric driver is the NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) developed at National Centers for Environmental Prediction (NCEP). It represents an evolution of the operational WRF-NMME model extending from meso to global scales. Its unified non-hydrostatic dynamical core supports regional and global simulations. The Barcelona Supercomputing Center is currently designing and implementing a chemistry transport model coupled online with the new global/regional NMMB. The new modeling system is intended to be a powerful tool for research and to provide efficient global and regional chemical weather forecasts at sub-synoptic and mesoscale resolutions. The online coupling of the chemistry follows the approach similar to that of the mineral dust module already coupled to the atmospheric driver, NMMB/BSC-DUST (Pérez et al., 2008). Chemical species are advected and mixed at the corresponding time steps of the meteorological tracers using the same numerical scheme. Advection is eulerian, positive definite and monotone. The chemical mechanism and chemistry solver is based on the Kinetic PreProcessor KPP (Damian et al., 2002) package with the main purpose of maintaining a wide flexibility when configuring the model. Such approach will allow using a simplified chemical mechanism for global applications or a more complete mechanism for high-resolution local or regional studies. Moreover, it will permit the implementation of a specific configuration for forecasting applications in regional or global domains. An emission process allows the coupling of different emission inventories sources such as RETRO, EDGAR and GEIA for the global domain, EMEP for Europe and HERMES for Spain. The photolysis scheme is based on the Fast-J scheme, coupled with physics of each model layer (e.g., aerosols, clouds, absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The dry deposition scheme follows the deposition velocity analogy for gases, enabling the calculation of deposition fluxes from airborne concentrations. No cloud-chemistry processes are included in the system yet (no wet deposition, scavenging and aqueous chemistry). The modeling system developments will be presented and first results of the gas-phase chemistry at global scale will be discussed. REFERENCES Janjic, Z.I., and Black, T.L., 2007. An ESMF unified model for a broad range of spatial and temporal scales, Geophysical Research Abstracts, 9, 05025. Pérez, C., Haustein, K., Janjic, Z.I., Jorba, O., Baldasano, J.M., Black, T.L., and Nickovic, S., 2008. An online dust model within the meso to global NMMB: current progress and plans. AGU Fall Meeting, San Francisco, A41K-03, 2008. Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G.R., 2002. The kinetic preprocessor KPP - A software environment for solving chemical kinetics. Comp. Chem. Eng., 26, 1567-1579. Sandu, A., and Sander, R., 2006. Technical note:Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. and Phys., 6, 187-195.

  4. Vineyard water status assessment using on-the-go thermal imaging and machine learning.

    PubMed

    Gutiérrez, Salvador; Diago, María P; Fernández-Novales, Juan; Tardaguila, Javier

    2018-01-01

    The high impact of irrigation in crop quality and yield in grapevine makes the development of plant water status monitoring systems an essential issue in the context of sustainable viticulture. This study presents an on-the-go approach for the estimation of vineyard water status using thermal imaging and machine learning. The experiments were conducted during seven different weeks from July to September in season 2016. A thermal camera was embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the canopy were measured for the development of side-specific and global models. Stem water potential was acquired and used as reference method. Additionally, reference temperatures Tdry and Twet were determined for the calculation of two thermal indices: the crop water stress index (CWSI) and the Jones index (Ig). Prediction models were built with and without considering the reference temperatures as input of the training algorithms. When using the reference temperatures, the best models casted determination coefficients R2 of 0.61 and 0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa), respectively. Nevertheless, when the reference temperatures were not considered in the training of the models, their performance statistics responded in the same way, returning R2 values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa and 0.184 MPa), respectively. The outcomes provided by the machine learning algorithms support the use of thermal imaging for fast, reliable estimation of a vineyard water status, even suppressing the necessity of supervised acquisition of reference temperatures. The new developed on-the-go method can be very useful in the grape and wine industry for assessing and mapping vineyard water status.

  5. Vineyard water status assessment using on-the-go thermal imaging and machine learning

    PubMed Central

    Gutiérrez, Salvador; Diago, María P.; Fernández-Novales, Juan

    2018-01-01

    The high impact of irrigation in crop quality and yield in grapevine makes the development of plant water status monitoring systems an essential issue in the context of sustainable viticulture. This study presents an on-the-go approach for the estimation of vineyard water status using thermal imaging and machine learning. The experiments were conducted during seven different weeks from July to September in season 2016. A thermal camera was embedded on an all-terrain vehicle moving at 5 km/h to take on-the-go thermal images of the vineyard canopy at 1.2 m of distance and 1.0 m from the ground. The two sides of the canopy were measured for the development of side-specific and global models. Stem water potential was acquired and used as reference method. Additionally, reference temperatures Tdry and Twet were determined for the calculation of two thermal indices: the crop water stress index (CWSI) and the Jones index (Ig). Prediction models were built with and without considering the reference temperatures as input of the training algorithms. When using the reference temperatures, the best models casted determination coefficients R2 of 0.61 and 0.58 for cross validation and prediction (RMSE values of 0.190 MPa and 0.204 MPa), respectively. Nevertheless, when the reference temperatures were not considered in the training of the models, their performance statistics responded in the same way, returning R2 values up to 0.62 and 0.65 for cross validation and prediction (RMSE values of 0.190 MPa and 0.184 MPa), respectively. The outcomes provided by the machine learning algorithms support the use of thermal imaging for fast, reliable estimation of a vineyard water status, even suppressing the necessity of supervised acquisition of reference temperatures. The new developed on-the-go method can be very useful in the grape and wine industry for assessing and mapping vineyard water status. PMID:29389982

  6. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    USGS Publications Warehouse

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  7. [Human-robot global Simulink modeling and analysis for an end-effector upper limb rehabilitation robot].

    PubMed

    Liu, Yali; Ji, Linhong

    2018-02-01

    Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant's functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists' experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients' movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.

  8. A stochastic global identification framework for aerospace structures operating under varying flight states

    NASA Astrophysics Data System (ADS)

    Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo

    2018-01-01

    In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing's aeroelastic response under the admissible flight states via a minimum number of estimated parameters compared to standard identification approaches. The obtained results demonstrate the high accuracy and effectiveness of the proposed global identification framework, thus constituting a first step towards the next generation of "fly-by-feel" aerospace vehicles with state awareness capabilities.

  9. Unification of Intercontinental Height Systems based on the Fixed Geodetic Boundary Value Problem - A Case Study in Spherical Approximation

    NASA Astrophysics Data System (ADS)

    Grombein, T.; Seitz, K.; Heck, B.

    2013-12-01

    In general, national height reference systems are related to individual vertical datums defined by specific tide gauges. The discrepancy of these vertical datums causes height system biases that range in an order of 1-2 m at a global scale. Continental height systems can be connected by spirit leveling and gravity measurements along the leveling lines as performed for the definition of the European Vertical Reference Frame. In order to unify intercontinental height systems, an indirect connection is needed. For this purpose, global geopotential models derived from recent satellite missions like GOCE provide an important contribution. However, to achieve a highly-precise solution, a combination with local terrestrial gravity data is indispensable. Such combinations result in the solution of a Geodetic Boundary Value Problem (GBVP). In contrast to previous studies, mostly related to the traditional (scalar) free GBVP, the present paper discusses the use of the fixed GBVP for height system unification, where gravity disturbances instead of gravity anomalies are applied as boundary values. The basic idea of our approach is a conversion of measured gravity anomalies to gravity disturbances, where unknown datum parameters occur that can be associated with height system biases. In this way, the fixed GBVP can be extended by datum parameters for each datum zone. By evaluating the GBVP at GNSS/leveling benchmarks, the unknown datum parameters can be estimated in a least squares adjustment. Beside the developed theory, we present numerical results of a case study based on the spherical fixed GBVP and boundary values simulated by the use of the global geopotential model EGM2008. In a further step, the impact of approximations like linearization as well as topographic and ellipsoidal effects is taken into account by suitable reduction and correction terms.

  10. Towards the impact of eddies on the response of the global ocean circulation to Southern Ocean gateway opening

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan; von der Heydt, Anna S.; Dijkstra, Henk A.

    2014-05-01

    During the past 65 Million (Ma) years, Earth's climate has undergone a major change from warm 'greenhouse' to colder 'icehouse' conditions with extensive ice sheets in the polar regions of both hemispheres. The Eocene-Oligocene (~34 Ma) and Oligocene-Miocene (~23 Ma) boundaries reflect major transitions in Cenozoic global climate change. Proposed mechanisms of these transitions include reorganization of ocean circulation due to critical gateway opening/deepening, changes in atmospheric CO2-concentration, and feedback mechanisms related to land-ice formation. A long-standing hypothesis is that the formation of the Antarctic Circumpolar Current due to opening/deepening of Southern Ocean gateways led to glaciation of the Antarctic continent. However, while this hypothesis remains controversial, its assessment via coupled climate model simulations depends crucially on the spatial resolution in the ocean component. More precisely, only high-resolution modeling of the turbulent ocean circulation is capable of adequately describing reorganizations in the ocean flow field and related changes in turbulent heat transport. In this study, for the first time results of a high-resolution (0.1° horizontally) realistic global ocean model simulation with a closed Drake Passage are presented. Changes in global ocean temperatures, heat transport, and ocean circulation (e.g., Meridional Overturning Circulation and Antarctic Coastal Current) are established by comparison with an open Drake Passage high-resolution reference simulation. Finally, corresponding low-resolution simulations are also analyzed. The results highlight the essential impact of the ocean eddy field in palaeoclimatic change.

  11. How well can we quantify dust deposition to the ocean?

    PubMed

    Anderson, R F; Cheng, H; Edwards, R L; Fleisher, M Q; Hayes, C T; Huang, K-F; Kadko, D; Lam, P J; Landing, W M; Lao, Y; Lu, Y; Measures, C I; Moran, S B; Morton, P L; Ohnemus, D C; Robinson, L F; Shelley, R U

    2016-11-28

    Deposition of continental mineral aerosols (dust) in the Eastern Tropical North Atlantic Ocean, between the coast of Africa and the Mid-Atlantic Ridge, was estimated using several strategies based on the measurement of aerosols, trace metals dissolved in seawater, particulate material filtered from the water column, particles collected by sediment traps and sediments. Most of the data used in this synthesis involve samples collected during US GEOTRACES expeditions in 2010 and 2011, although some results from the literature are also used. Dust deposition generated by a global model serves as a reference against which the results from each observational strategy are compared. Observation-based dust fluxes disagree with one another by as much as two orders of magnitude, although most of the methods produce results that are consistent with the reference model to within a factor of 5. The large range of estimates indicates that further work is needed to reduce uncertainties associated with each method before it can be applied routinely to map dust deposition to the ocean. Calculated dust deposition using observational strategies thought to have the smallest uncertainties is lower than the reference model by a factor of 2-5, suggesting that the model may overestimate dust deposition in our study area.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  12. How well can we quantify dust deposition to the ocean?

    PubMed Central

    Cheng, H.; Edwards, R. L.; Fleisher, M. Q.; Hayes, C. T.; Huang, K.-F.; Kadko, D.; Lam, P. J.; Landing, W. M.; Lao, Y.; Lu, Y.; Measures, C. I.; Moran, S. B.; Morton, P. L.; Ohnemus, D. C.; Robinson, L. F.; Shelley, R. U.

    2016-01-01

    Deposition of continental mineral aerosols (dust) in the Eastern Tropical North Atlantic Ocean, between the coast of Africa and the Mid-Atlantic Ridge, was estimated using several strategies based on the measurement of aerosols, trace metals dissolved in seawater, particulate material filtered from the water column, particles collected by sediment traps and sediments. Most of the data used in this synthesis involve samples collected during US GEOTRACES expeditions in 2010 and 2011, although some results from the literature are also used. Dust deposition generated by a global model serves as a reference against which the results from each observational strategy are compared. Observation-based dust fluxes disagree with one another by as much as two orders of magnitude, although most of the methods produce results that are consistent with the reference model to within a factor of 5. The large range of estimates indicates that further work is needed to reduce uncertainties associated with each method before it can be applied routinely to map dust deposition to the ocean. Calculated dust deposition using observational strategies thought to have the smallest uncertainties is lower than the reference model by a factor of 2–5, suggesting that the model may overestimate dust deposition in our study area. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035251

  13. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Grini, A.; Lee, H.

    2016-01-01

    Using an Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In the aggressive scenario, the model projects a cooling trend toward 2100 despite warming that persists in the high latitudes. Following SAI termination in 2100, a rapid global warming of 0.35 K yr-1 is simulated in the subsequent 10 years, and the global mean temperature returns to levels close to the reference state, though roughly 0.5 K cooler. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. In the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area.

  14. Uncertainties in United States agricultural N2O emissions: comparing forward model simulations to atmospheric N2O data.

    NASA Astrophysics Data System (ADS)

    Nevison, C. D.; Saikawa, E.; Dlugokencky, E. J.; Andrews, A. E.; Sweeney, C.

    2014-12-01

    Atmospheric N2O concentrations have increased from 275 ppb in the preindustrial to about 325 ppb in recent years, a ~20% increase with important implications for both anthropogenic greenhouse forcing and stratospheric ozone recovery. This increase has been driven largely by synthetic fertilizer production and other perturbations to the global nitrogen cycle associated with human agriculture. Several recent regional atmospheric inversion studies have quantified North American agricultural N2O emissions using top-down constraints based on atmospheric N2O data from the National Oceanic and Atmospheric Administration (NOAA) Global Greenhouse Gas Reference Network, including surface, aircraft and tall tower platforms. These studies have concluded that global N2O inventories such as EDGAR may be underestimating the true U.S. anthropogenic N2O source by a factor of 3 or more. However, simple back-of-the-envelope calculations show that emissions of this magnitude are difficult to reconcile with the basic constraints of the global N2O budget. Here, we explore some possible reasons why regional atmospheric inversions might overestimate the U.S. agricultural N2O source. First, the seasonality of N2O agricultural sources is not well known, but can have an important influence on inversion results, particularly when the inversions are based on data that are concentrated in the spring/summer growing season. Second, boundary conditions can strongly influence regional inversions but the boundary conditions used may not adequately account for remote influences on surface data such as the seasonal stratospheric influx of N2O-depleted air. We will present a set of forward model simulations, using the Community Land Model (CLM) and two atmospheric chemistry tracer transport models, MOZART and the Whole Atmosphere Community Climate Model (WACCM), that examine the influence of terrestrial emissions and atmospheric chemistry and dynamics on atmospheric variability in N2O at U.S. and global monitoring sites.

  15. Centimeter-Level Robust Gnss-Aided Inertial Post-Processing for Mobile Mapping Without Local Reference Stations

    NASA Astrophysics Data System (ADS)

    Hutton, J. J.; Gopaul, N.; Zhang, X.; Wang, J.; Menon, V.; Rieck, D.; Kipka, A.; Pastor, F.

    2016-06-01

    For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.

  16. A new Mars radiation environment model with visualization

    NASA Technical Reports Server (NTRS)

    De Angelis, G.; Clowdsley, M. S.; Singleterry, R. C.; Wilson, J. W.

    2004-01-01

    A new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (OCR) has been developed at the NASA Langley Research Center. Solar modulated primary particles rescaled for Mars conditions are transported through the Martian atmosphere, with temporal properties modeled with variable timescales, down to the surface, with altitude and backscattering patterns taken into account. The Martian atmosphere has been modeled by using the Mars Global Reference Atmospheric Model--version 2001 (Mars-GRAM 2001). The altitude to compute the atmospheric thickness profile has been determined by using a model for the topography based on the data provided by the Mars Orbiter Laser Altimeter (MOLA) instrument on board the Mars Global Surveyor (MGS) spacecraft. The Mars surface composition has been modeled based on averages over the measurements obtained from orbiting spacecraft and at various landing sites, taking into account the possible volatile inventory (e.g., CO2 ice, H2O ice) along with its time variation throughout the Martian year. Particle transport has been performed with the HZETRN heavy ion code. The Mars Radiation Environment Model has been made available worldwide through the Space Ionizing Radiation Effects and Shielding Tools (SIREST) website, a project of NASA Langley Research Center. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  17. Performance of Solar Proxy Options of IRI-Plas Model for Equinox Seasons

    NASA Astrophysics Data System (ADS)

    Sezen, Umut; Gulyaeva, Tamara L.; Arikan, Feza

    2018-02-01

    International Reference Ionosphere (IRI) is the most acclaimed climatic model of the ionosphere. Since 2009, the range of the IRI model has been extended to the Global Positioning System (GPS) orbital height of 20,000 km in the plasmasphere. The new model, which is called IRI extended to Plasmasphere (IRI-Plas), can input not only the ionosonde foF2 and hmF2 but also the GPS-total electron content (TEC). IRI-Plas has been provided at www.ionolab.org, where online computation of ionospheric parameters is accomplished through a user-friendly interface. The solar proxies that are available in IRI-Plas can be listed as sunspot number (SSN1), SSN2, F10.7, global electron content (GEC), TEC, IG, Mg II, Lyman-α, and GEC_RZ. In this study, ionosonde foF2 data are compared with IRI-Plas foF2 values with the Consultative Committee International Radio (CCIR) and International Union of Radio Science (URSI) model choices for each solar proxy, with or without the GPS-TEC input for the equinox months of October 2011 and March 2015. It has been observed that the best fitting model choices in Root Mean Square (RMS) and Normalized RMS (NRMS) sense are the Jet Propulsion Laboratory global ionospheric maps-TEC input with Lyman-α solar proxy option for both months. The input of TEC definitely lowers the difference between the model and ionosonde foF2 values. The IG and Mg II solar proxies produce similar model foF2 values, and they usually are the second and third best fits to the ionosonde foF2 for the midlatitude ionosphere. In high-latitude regions, Jet Propulsion Laboratory global ionospheric map-TEC inputs to IRI-Plas with Lyman-α, GEC_RZ, and TEC solar proxies are the best choices. In equatorial region, the best fitting solar proxies are IG, Lyman-α, and Mg II.

  18. Presentation a New Model to Measure National Power of the Countries

    NASA Astrophysics Data System (ADS)

    Hafeznia, Mohammad Reza; Hadi Zarghani, Seyed; Ahmadipor, Zahra; Roknoddin Eftekhari, Abdelreza

    In this research, based on the assessment of previous models for the evaluation of national power, a new model is presented to measure national power; it is much better than previous models. Paying attention to all the aspects of national power (economical, social, cultural, political, military, astro-space, territorial, scientific and technological and transnational), paying attention to the usage of 87 factors, stressing the usage of new and strategically compatible variables to the current time are some of the benefits of this model. Also using the Delphi method and referring to the opinions of experts about determining the role and importance of variables affecting national power, the option of drawing out the global power structure are some the other advantages that this model has compared to previous ones.

  19. Topside correction of IRI by global modeling of ionospheric scale height using COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Wu, M. J.; Guo, P.; Fu, N. F.; Xu, T. L.; Xu, X. S.; Jin, H. L.; Hu, X. G.

    2016-06-01

    The ionosphere scale height is one of the most significant ionospheric parameters, which contains information about the ion and electron temperatures and dynamics in upper ionosphere. In this paper, an empirical orthogonal function (EOF) analysis method is applied to process all the ionospheric radio occultations of GPS/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) from the year 2007 to 2011 to reconstruct a global ionospheric scale height model. This monthly medium model has spatial resolution of 5° in geomagnetic latitude (-87.5° ~ 87.5°) and temporal resolution of 2 h in local time. EOF analysis preserves the characteristics of scale height quite well in the geomagnetic latitudinal, anural, seasonal, and diurnal variations. In comparison with COSMIC measurements of the year of 2012, the reconstructed model indicates a reasonable accuracy. In order to improve the topside model of International Reference Ionosphere (IRI), we attempted to adopt the scale height model in the Bent topside model by applying a scale factor q as an additional constraint. With the factor q functioning in the exponent profile of topside ionosphere, the IRI scale height should be forced equal to the precise COSMIC measurements. In this way, the IRI topside profile can be improved to get closer to the realistic density profiles. Internal quality check of this approach is carried out by comparing COSMIC realistic measurements and IRI with or without correction, respectively. In general, the initial IRI model overestimates the topside electron density to some extent, and with the correction introduced by COSMIC scale height model, the deviation of vertical total electron content (VTEC) between them is reduced. Furthermore, independent validation with Global Ionospheric Maps VTEC implies a reasonable improvement in the IRI VTEC with the topside model correction.

  20. Improving the Long-Term Stability of Atmospheric Surface Deformation Predictions by Mitigating the Effects of Orography Updates in Operational Weather Forecast Models

    NASA Astrophysics Data System (ADS)

    Dill, Robert; Bergmann-Wolf, Inga; Thomas, Maik; Dobslaw, Henryk

    2016-04-01

    The global numerical weather prediction model routinely operated at the European Centre for Medium-Range Weather Forecasts (ECMWF) is typically updated about two times a year to incorporate the most recent improvements in the numerical scheme, the physical model or the data assimilation procedures into the system for steadily improving daily weather forecasting quality. Even though such changes frequently affect the long-term stability of meteorological quantities, data from the ECMWF deterministic model is often preferred over alternatively available atmospheric re-analyses due to both the availability of the data in near real-time and the substantially higher spatial resolution. However, global surface pressure time-series, which are crucial for the interpretation of geodetic observables, such as Earth rotation, surface deformation, and the Earth's gravity field, are in particular affected by changes in the surface orography of the model associated with every major change in horizontal resolution happened, e.g., in February 2006, January 2010, and May 2015 in case of the ECMWF operational model. In this contribution, we present an algorithm to harmonize surface pressure time-series from the operational ECMWF model by projecting them onto a time-invariant reference topography under consideration of the time-variable atmospheric density structure. The effectiveness of the method will be assessed globally in terms of pressure anomalies. In addition, we will discuss the impact of the method on predictions of crustal deformations based on ECMWF input, which have been recently made available by GFZ Potsdam.

  1. Self-perception in a clinical sample of gender variant children.

    PubMed

    Rijn, Anouk Balleur-van; Steensma, Thomas D; Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T

    2013-07-01

    Gender variance (GV) in childhood has a negative impact on the self-concept of children in the general population and can lead to mental health problems and even suicidal ideation in adulthood. This study explored the self-concept of clinically referred gender variant children and examined potential risk factors. The Self-Perception Profile for Children was administered to 147 children, who were referred to a gender identity clinic. Their parents completed the Child Behaviour Checklist and the Gender Identity Questionnaire to assess the degree of GV. The referred children were at risk of developing a negative self-concept; more specifically gender variant girls had low scores on 'global self-worth', 'physical appearance' and 'behavioural conduct' compared to Dutch norms for girls. Gender variant boys had low scores on 'global self-worth', 'scholastic competence', 'athletic competence' and 'physical appearance' compared to Dutch norms for boys. Within the group of referred children, sex differences, but no age effects, were found. The referred girls felt more competent than the referred boys on 'athletic competence' and 'scholastic functioning'. For both boys and girls poor peer relations had a significant negative relationship with self-concept and more GV was related to a lower global self-worth. Clinically referred gender variant children seemed vulnerable to developing a negative self-concept. Poor peer relations and extreme GV might be mediating variables. Interventions might focus on enhancing acceptance of the environment and improving social skills of gender variant children.

  2. Global bioethics and communitarianism.

    PubMed

    ten Have, Henk A M J

    2011-10-01

    This paper explores the role of 'community' in the context of global bioethics. With the present globalization of bioethics, new and interesting references are made to this concept. Some are familiar, for example, community consent. This article argues that the principle of informed consent is too individual-oriented and that in other cultures, consent can be community-based. Other references to 'community' are related to the novel principle of benefit sharing in the context of bioprospecting. The application of this principle necessarily requires the identification and construction of communities. On the global level there are also new uses of the concept of community as 'global community.' Three uses are distinguished: (1) a diachronic use, including past, present, and future generations, (2) a synchronic ecological use, including nonhuman species, and (3) a synchronic planetary use, including all human beings worldwide. Although there is a tension between the communitarian perspective and the idea of global community, this article argues that the third use can broaden communitarianism. The current development towards cosmopolitanism is creating a new global community that represents humanity as a whole, enabling identification of world citizens and evoking a sense of global solidarity and responsibility. The emergence of global bioethics today demonstrates this development.

  3. Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.

    2017-12-01

    Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.

  4. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    PubMed

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  5. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins

    PubMed Central

    Perez, Romel B.; Tischer, Alexander; Auton, Matthew; Whitten, Steven T.

    2014-01-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins, mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline and alanine to glycine substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (Rh) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the glycine substitutions decreased polyproline II (PPII) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in Rh were not associated with folding. The experiments showed that changes in local PPII structure cause changes in Rh that are variable and that depend on the intrinsic chain propensities of proline and alanine residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed proline and alanine effects on the structures of intrinsically disordered proteins. PMID:25244701

  6. Glomed-Land: a research project to study the effect of global change in contrasted mediterranean landscapes and future scenarios

    NASA Astrophysics Data System (ADS)

    Ruiz-Sinoga, José D.; Hueso-González, Paloma; León-Gross, Teodoro; Molina, Julián; Remond, Ricardo; Martínez-Murillo, Juan F.

    2017-04-01

    The Global Change is referred to the occurrence of great environmental changes associated to climatic fluctuations and human activity as wel (Vitousek et al., 1997; Steffen et al., 2004; Dearing et al., 2006). García-Ruiz et al. (2015) indicated that the relief varies very slowly in time while the changes in vegetation, overland flow generation and erosion occurred very rapidly and conditioned by their interactions and the climate variability as well. The GLOMED-LAND Project has its bases and scientific justification on the combination of the experience of the members of the research team, from one side, in the analysis of the dynamics and eco-geomorphological and climatic processes in Mediterranean environments of southern Spain, in the context of current Global change, and from another, in the study, development and application of new tools for simulation and modelling of future scenarios, and finally, in the analysis of the impact that society exercises the broadcast media related to the problem derived from the awareness and adaptation to Global change. Climate change (CC), directly affects the elements that compose the landscape. Both in the analysis of future climate scenarios raised by the IPCC (2013), such as the regionalisation carried out by AEMET, the Mediterranean region and, especially, the South of Spain, - with its defined longitudinal pluviometric gradient - configured as one of the areas of greatest uncertainty, reflected in a higher concentration of temporal rainfall, and even a reduction in the rainfall. Faced with this situation, the CC can modify the current landscape setting, with all the environmental impacts that this would entail for the terrestrial ecosystems and the systemic services rendered to the society. The combination of different work scales allows the analysis of the dynamics of the landscape and the consequence of its modifications on, hydro-geomorphological processes, closely related to degradation processes that can affect the abiotic, biotic, and human elements of the landscape (soil, plant cover, crops, water resources, etc.). Simulation and modelling is now an essential tool in the study of landscape and of the effects of Climate Change, not only towards the future through scenarios and simulation modelling, also to the past, to better understand what causes have led to effects, and to what extent. In this work we aim to create a set of software tools for analysis, modelling and simulation of the effects of Global change on two Mediterranean catchments: the middle and upper basin of the Grande River and the high Benamargosa River, both of them in the Province of Málaga (South of Spain). This will allow a full analysis, monitor, and predict those effects at local scale. Finally, we analyse the role that the impact of Global Change issues has had from the media point of view and what tendency can follow. References Dearing, J. et al. (2006): «Human-environment interactions: towards synthesis and simulation». Regional Environmental Change, n° 6, 115-123. García-Ruiz et al. (2015): «Los efectos geoecológicos del cambio global en el Pirineo central español: una revisión a distintas escalas espaciales y temporales». Pirineos, 170. Steffen, W. et al. (2004): Global Change and the Earth System: a planet under pressure. Executive summary. The IGBP Global Change Series. Springer-Verlag, Berlin, Heidelburg, 44 pp., New York. Vitousek, P.M. et al. (1997): «Human domination of earth's ecosystems». Science, n° 277, 494-499.

  7. National Construction of Global Education: A Critical Review of the National Curriculum Standards for South Korean Global High Schools

    ERIC Educational Resources Information Center

    Sung, Youl-Kwan; Park, Minjeong; Choi, Il-Seon

    2013-01-01

    In this paper, the authors investigate what global visions of education are reflected in the selected national curriculum standards, with special reference to two seemingly contradictory forces: globalization and nationalism. This paper examines the socio-economic and cultural foundations of the curriculum and explains how the national curriculum…

  8. Future global SLR network evolution and its impact on the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian

    2018-06-01

    Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

  9. 10 CFR 431.75 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.75 Materials incorporated by.../bookshop.htm. (ii) The ANSI Standard from Global Engineering Documents, 15 Inverness Way East, Englewood... from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, or http://global.ihs.com...

  10. 10 CFR 431.75 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.75 Materials incorporated by.../bookshop.htm. (ii) The ANSI Standard from Global Engineering Documents, 15 Inverness Way East, Englewood... from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, or http://global.ihs.com...

  11. Focus Upon Implementing the GGOS Decadal Vision for Geohazards Monitoring

    NASA Astrophysics Data System (ADS)

    LaBrecque, John; Stangl, Gunter

    2017-04-01

    The Global Geodetic Observing System of the IAG identified present and future roles for Geodesy in the development and well being of the global society. The GGOS is focused upon the development of infrastructure, information, analysis, and educational systems to advance the International Global Reference Frame, the International Celestial Reference System, the International Height Reference System, atmospheric dynamics, sea level change and geohazards monitoring. The geohazards initiative is guided by an eleven nation working group initially focused upon the development and integration of regional multi-GNSS networks and analysis systems for earthquake and tsunami early warning. The opportunities and challenges being addressed by the Geohazards working group include regional network design, algorithm development and implementation, communications, funding, and international agreements on data access. This presentation will discuss in further detail these opportunities and challenges for the GGOS focus upon earthquake and tsunami early warning.

  12. The International Reference Ionosphere: Model Update 2016

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir

    2016-04-01

    The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.

  13. Changes in Benefits of Flood Protection Standard under Climate Change

    NASA Astrophysics Data System (ADS)

    Lim, W. H.; Koirala, S.; Yamazaki, D.; Hirabayashi, Y.; Kanae, S.

    2014-12-01

    Understanding potential risk of river flooding under future climate scenarios might be helpful for developing risk management strategies (including mitigation, adaptation). Such analyses are typically performed at the macro scales (e.g., regional, global) where the climate model output could support (e.g., Hirabayashi et al., 2013, Arnell and Gosling, 2014). To understand the potential benefits of infrastructure upgrading as part of climate adaptation strategies, it is also informative to understand the potential impact of different flood protection standards (in terms of return periods) on global river flooding under climate change. In this study, we use a baseline period (forced by observed hydroclimate conditions) and CMIP5 model output (historic and future periods) to drive a global river routing model called CaMa-Flood (Yamazaki et al., 2011) and simulate the river water depth at a spatial resolution of 15 min x 15 min. From the simulated results of baseline period, we use the annual maxima river water depth to fit the Gumbel distribution and prepare the return period-flood risk relationship (involving population and GDP). From the simulated results of CMIP5 model, we also used the annual maxima river water depth to obtain the Gumbel distribution and then estimate the exceedance probability (historic and future periods). We apply the return period-flood risk relationship (above) to the exceedance probability and evaluate the potential risk of river flooding and changes in the benefits of flood protection standard (e.g., 100-year flood of the baseline period) from the past into the future (represented by the representative concentration pathways). In this presentation, we show our preliminary results. References: Arnell, N.W, Gosling, S., N., 2014. The impact of climate change on river flood risk at the global scale. Climatic Change 122: 127-140, doi: 10.1007/s10584-014-1084-5. Hirabayashi et al., 2013. Global flood risk under climate change. Nature Climate Change 3: 816-821, doi: 10.1038/nclimate1911. Yamazaki et al., 2011. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resources Research 47, W04501, doi: 10.1029/2010wr009726.

  14. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.

  15. Understand rotating isothermal collapses yet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tohline, J.E.

    1985-01-01

    A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, andmore » a realistic starting model for cloud collapse is proposed. 18 references.« less

  16. Scaling issues in local productivity hotspots in marine ecosystems using remote sensing data: A case study in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Ribera, M.; Gopal, S.

    2014-12-01

    Productivity hotspots are traditionally defined as concentrations of relatively high biomass compared to global reference values. These hotspots often signal atypical processes occurring in a location, and identifying them is a great first step at understanding the complexity inherent in the system. However, identifying local hotspots can be difficult when an overarching global pattern (i.e. spatial autocorrelation) already exists. This problem is particularly apparent in marine ecosystems because values of productivity in near-shore areas are consistently higher than those of the open ocean due to oceanographic processes such as upwelling. In such cases, if the global reference layer used to detect hotspots is too wide, hotspots may be only identified near the coast while missing known concentrations of organisms in offshore waters. On the other hand, if the global reference layer is too small, every single location may be considered a hotspot. We applied spatial and traditional statistics to remote sensing data to determine the optimal reference global spatial scale for identifying marine productivity hotspots in the Gulf of Maine. Our iterative process measured Getis and Ord's local G* statistic at different global scales until the variance of each hotspot was maximized. We tested this process with different full resolution MERIS chlorophyll layers (300m spatial resolution) for the whole Gulf of Maine. We concluded that the optimal global scale depends on the time of the year the remote sensing data was collected, particularly when coinciding with known seasonal phytoplankton blooms. The hotspots found through this process were also spatially heterogeneous in size, with bigger hotspots in areas offshore than in locations inshore. These results may be instructive for both managers and fisheries researchers as they adapt their fisheries management policies and methods to an ecosystem based approach (EBM).

  17. Aquarius Instrument Science Calibration During the Risk Reduction Phase

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher S.

    2004-01-01

    This final report presents the results of work performed under NASA Grant NAG512726 during the period 15 January 2003 through 30 June 2004. An analysis was performed of a possible vicarious calibration method for use by Aquarius to monitor and stabilize the absolute and relative calibration of its microwave radiometer. Stationary statistical properties of the brightness temperature (T(sub B)) measured by a low Earth orbiting radiometer operating at 1.4135 GHz are considered as a means of validating its absolute calibration. The global minimum, maximum, and average T(sub B) are considered, together with a vicarious cold reference method that detects the presence of a sharp lower bound on naturally occurring values for T(sub B). Of particular interest is the reliability with which these statistics can be extracted from a realistic distribution of T(sub B) measurements that would be observed by a typical sensor. Simulations of measurements are performed that include the effects of instrument noise and variable environmental factors such as the global water vapor and ocean surface temperature, salinity and wind distributions. Global minima can vary widely due to instrument noise and are not a reliable calibration reference. Global maxima are strongly influenced by several environmental factors as well as instrument noise and are even less stationary. Global averages are largely insensitive to instrument noise and, in most cases, to environmental conditions as well. The global average T(sub B) varies at only the 0.1 K RMS level except in cases of anomalously high winds, when it can increase considerably more. The vicarious cold reference is similarly insensitive to instrument effects and most environmental factors. It is not significantly affected by high wind conditions. The stability of the vicarious reference is, however, found to be somewhat sensitive (at the several tenths of Kelvins level) to variations in the background cold space brightness, T(sub c). The global average is much less sensitive to this parameter and so using two approaches together can be mutually beneficial.

  18. Solution to the spectral filter problem of residual terrain modelling (RTM)

    NASA Astrophysics Data System (ADS)

    Rexer, Moritz; Hirt, Christian; Bucha, Blažej; Holmes, Simon

    2018-06-01

    In physical geodesy, the residual terrain modelling (RTM) technique is frequently used for high-frequency gravity forward modelling. In the RTM technique, a detailed elevation model is high-pass-filtered in the topography domain, which is not equivalent to filtering in the gravity domain. This in-equivalence, denoted as spectral filter problem of the RTM technique, gives rise to two imperfections (errors). The first imperfection is unwanted low-frequency (LF) gravity signals, and the second imperfection is missing high-frequency (HF) signals in the forward-modelled RTM gravity signal. This paper presents new solutions to the RTM spectral filter problem. Our solutions are based on explicit modelling of the two imperfections via corrections. The HF correction is computed using spectral domain gravity forward modelling that delivers the HF gravity signal generated by the long-wavelength RTM reference topography. The LF correction is obtained from pre-computed global RTM gravity grids that are low-pass-filtered using surface or solid spherical harmonics. A numerical case study reveals maximum absolute signal strengths of ˜ 44 mGal (0.5 mGal RMS) for the HF correction and ˜ 33 mGal (0.6 mGal RMS) for the LF correction w.r.t. a degree-2160 reference topography within the data coverage of the SRTM topography model (56°S ≤ φ ≤ 60°N). Application of the LF and HF corrections to pre-computed global gravity models (here the GGMplus gravity maps) demonstrates the efficiency of the new corrections over topographically rugged terrain. Over Switzerland, consideration of the HF and LF corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 4.41 to 3.27 mGal, which translates into ˜ 26% improvement. Over a second test area (Canada), our corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 5.65 to 5.30 mGal (˜ 6% improvement). Particularly over Switzerland, geophysical signals (associated, e.g. with valley fillings) were found to stand out more clearly in the RTM-reduced gravity measurements when the HF and LF correction are taken into account. In summary, the new RTM filter corrections can be easily computed and applied to improve the spectral filter characteristics of the popular RTM approach. Benefits are expected, e.g. in the context of the development of future ultra-high-resolution global gravity models, smoothing of observed gravity data in mountainous terrain and geophysical interpretations of RTM-reduced gravity measurements.

  19. A new world natural vegetation map for global change studies.

    PubMed

    Lapola, David M; Oyama, Marcos D; Nobre, Carlos A; Sampaio, Gilvan

    2008-06-01

    We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).

  20. A global probabilistic tsunami hazard assessment from earthquake sources

    USGS Publications Warehouse

    Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana

    2017-01-01

    Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.

  1. Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Shi, Chuang; Zhang, Hongping

    2017-04-01

    Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future.

  2. Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere.

    PubMed

    Wang, Cheng; Shi, Chuang; Zhang, Hongping

    2017-04-06

    Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future.

  3. Project Loon based augmentation for global ionospheric modeling over Southern Hemisphere

    PubMed Central

    Wang, Cheng; Shi, Chuang; Zhang, Hongping

    2017-01-01

    Global ionospheric products of vertical total electron content (VTEC) derived from GNSS measurements may have low accuracy over oceans and southern latitudes where there are not rich observations. Project Loon provides a great opportunity to enhance the measurements over those areas. In this contribution, a simulation of Project Loon based augmentation for global ionospheric modeling is performed by using the international reference ionosphere (IRI) which could simulate VTEC measurements for the balloons. The performance of the enhanced method based on simulation of Project Loon is investigated by comparing with VTEC maps from Ionosphere Associate Analysis Centers (IAACs) as well as IGS final GIMs. The comparison indicates that there is a better consistency between the VTEC maps by the enhanced method and IGS final GIMs. Also, obvious improvements of RMS maps in GIMs for the middle latitudes and southern latitudes are enabled by the augmentation of Project Loon. Additionally, JASON data are used to validate the specific improvement of the VTEC maps. The results show that the performance of VTEC maps is improved slightly, especially in southern latitudes. It is possible that the VTEC maps could be improved significantly by using real GPS measurements from balloons of Project Loon in the near future. PMID:28383058

  4. Simulations of Seismic Wave Propagation on Mars

    NASA Astrophysics Data System (ADS)

    Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; Khan, Amir; Leng, Kuangdai; van Driel, Martin; Wieczorek, Mark; Rivoldini, Attilio; Larmat, Carène S.; Giardini, Domenico; Tromp, Jeroen; Lognonné, Philippe; Banerdt, Bruce W.

    2017-10-01

    We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613-1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390-412, 2002a; 150(1):303-318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425-445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars' northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703-1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.

  5. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  6. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  7. Global Reproduction and Transformation of Science Education

    ERIC Educational Resources Information Center

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  8. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  9. A decision support system to find the best water allocation strategies in a Mediterranean river basin in future scenarios of global change

    NASA Astrophysics Data System (ADS)

    Del Vasto-Terrientes, L.; Kumar, V.; Chao, T.-C.; Valls, A.

    2016-03-01

    Global change refers to climate changes, but also demographic, technological and economic changes. Predicted water scarcity will be critical in the coastal Mediterranean region, especially for provision to mid-sized and large-sized cities. This paper studies the case of the city of Tarragona, located at the Mediterranean area of north-eastern Spain (Catalonia). Several scenarios have been constructed to evaluate different sectorial water allocation policies to mitigate the water scarcity induced by global change. Future water supply and demand predictions have been made for three time spans. The decision support system presented is based on the outranking model, which constructs a partial pre-order based on pairwise preference relations among all the possible actions. The system analyses a hierarchical structure of criteria, including environmental and economic criteria. We compare several adaptation measures including alternative water sources, inter-basin water transfer and sectorial demand management coming from industry, agriculture and domestic sectors. Results indicate that the most appropriate water allocation strategies depend on the severity of the global change effects.

  10. Validation of "AW3D" Global Dsm Generated from Alos Prism

    NASA Astrophysics Data System (ADS)

    Takaku, Junichi; Tadono, Takeo; Tsutsui, Ken; Ichikawa, Mayumi

    2016-06-01

    Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM), one of onboard sensors carried by Advanced Land Observing Satellite (ALOS), was designed to generate worldwide topographic data with its optical stereoscopic observation. It has an exclusive ability to perform a triplet stereo observation which views forward, nadir, and backward along the satellite track in 2.5 m ground resolution, and collected its derived images all over the world during the mission life of the satellite from 2006 through 2011. A new project, which generates global elevation datasets with the image archives, was started in 2014. The data is processed in unprecedented 5 m grid spacing utilizing the original triplet stereo images in 2.5 m resolution. As the number of processed data is growing steadily so that the global land areas are almost covered, a trend of global data qualities became apparent. This paper reports on up-to-date results of the validations for the accuracy of data products as well as the status of data coverage in global areas. The accuracies and error characteristics of datasets are analyzed by the comparison with existing global datasets such as Ice, Cloud, and land Elevation Satellite (ICESat) data, as well as ground control points (GCPs) and the reference Digital Elevation Model (DEM) derived from the airborne Light Detection and Ranging (LiDAR).

  11. PACT Act

    THOMAS, 113th Congress

    Rep. Peters, Scott H. [D-CA-52

    2014-07-09

    House - 09/08/2014 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  12. Global adaptation patterns of Australian and CIMMYT spring bread wheat.

    PubMed

    Mathews, Ky L; Chapman, Scott C; Trethowan, Richard; Pfeiffer, Wolfgang; van Ginkel, Maarten; Crossa, Jose; Payne, Thomas; Delacy, Ian; Fox, Paul N; Cooper, Mark

    2007-10-01

    The International Adaptation Trial (IAT) is a special purpose nursery designed to investigate the genotype-by-environment interactions and worldwide adaptation for grain yield of Australian and CIMMYT spring bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L. var. durum). The IAT contains lines representing Australian and CIMMYT wheat breeding programs and was distributed to 91 countries between 2000 and 2004. Yield data of 41 reference lines from 106 trials were analysed. A multiplicative mixed model accounted for trial variance heterogeneity and inter-trial correlations characteristic of multi-environment trials. A factor analytic model explained 48% of the genetic variance for the reference lines. Pedigree information was then incorporated to partition the genetic line effects into additive and non-additive components. This model explained 67 and 56% of the additive by environment and non-additive by environment genetic variances, respectively. Australian and CIMMYT germplasm showed good adaptation to their respective target production environments. In general, Australian lines performed well in south and west Australia, South America, southern Africa, Iran and high latitude European and Canadian locations. CIMMYT lines performed well at CIMMYT's key yield testing location in Mexico (CIANO), north-eastern Australia, the Indo-Gangetic plains, West Asia North Africa and locations in Europe and Canada. Maturity explained some of the global adaptation patterns. In general, southern Australian germplasm were later maturing than CIMMYT material. While CIANO continues to provide adapted lines to northern Australia, selecting for yield among later maturing CIMMYT material in CIANO may identify lines adapted to southern and western Australian environments.

  13. Global scale observations of scattered energy near the inner-core boundary: Seismic constraints on the base of the outer-core

    NASA Astrophysics Data System (ADS)

    Adam, J. M.-C.; Romanowicz, B.

    2015-08-01

    We have collected a global dataset of several thousands of high quality records of PKPdf, PKPbc, PKPbc-diff and PKPab phase arrivals in the distance range [149-178°]. Within this collection, we have identified an energy packet that arrives 5-20 s after the PKPbc (or PKPbc-diff) and represents a phase that is not predicted by 1D reference seismic models. We use array analysis techniques to enhance the signal of these scattered phases and show that they originate along the great-circle path in a consistent range of arrival times and narrow range of ray parameters. We therefore refer to this scattered energy the "M" phase. Using the cross-correlation technique to detect and measure the scattered energy arrival times, we compiled a dataset of 1116 records of this M phase. There are no obvious variations with source or station location, nor with the depth of the source. After exploration of possible location for this M phase, we show that its origin is most likely in the vicinity of the inner-core boundary. A tentative model is found that predicts an M-like phase, and produces good fits to its travel times as well as those of the main core phases. In this model, the P velocity profile with depth exhibits an increased gradient from about 400 km to 50 km above the ICB (i.e. slightly faster velocities than in AK135 or PREM), and a ∼ 50 km thick lower velocity layer right above the ICB.

  14. Evaluation of the Geopotential value for the Local Vertical Datum of China using GRACE/GOCE GGMs and GPS/Leveling Data

    NASA Astrophysics Data System (ADS)

    He, Lin; Li, Jiancheng; Chu, Yonghai; Zhang, Tengxu

    2017-04-01

    National height reference systems have conventionally been linked to the coastal local mean sea level, observed at one tide gauge, such as the China national height datum 1985. Due to the effect of the local sea surface topography, the reference level surface of local datum is inconsistent with the global datum or other local datum. In order to unify or connect the local datum to the global height datum, it is necessary to obtain the zero-height geopotential value of local datum or the height offset with respect to the global datum. The GRACE and GOCE satellite mission are promising for purposes of unification of local vertical datums because they have brought a significant improvement in modeling of low-frequency or rather medium-frequency part of the Earth's static gravity field in the past ten years. The focus of this work is directed to the evaluation of most available Global Geopotential Models (GGMs) from GOCE and GRACE, both satellite only as well as combined ones. From the evaluation with the 649 GPS/Levelling benchmarks (BMs) in China, the GOCE/GRACE GGMs provide the accuracy at 42-52cm level, up to their max degree and order. The latest release 5 DIR, TIM GGMs improve the accuracies by 6-10cm compared to the release 1 models. The DIR_R1 is based on the fewer GOCE data performs equally well with the DIR_R4 and DIR_R5 model, this is attributed to the fact that during its development which used a priori information from EIGEN-51C. The zero-height geopotential value W0LVD for the China Local Vertical Datum (LVD) is 62636855.1606m2s-2 from the originally GOCE/GRACE GGMs. Taking into account the GPS/Levelling data contains the full spectral information, and the GOCE-only or GRACE-GOCE combined model are limited to the long wavelengths. To improve the accuracy of the GGMs, it is indispensable to account for the remaining signal above this maximum degree, known as the omission error of the GGM. The effect of GRACE/GOCE omission error is investigated by extending the models with the high-resolution gravity field model EGM2008. In China, the effect of the GRACE/GOCE GGMs omission error is at the decimeter level. The combined GGMs (up to 2160 degree and order) could provide an accuracy at 20cm level, which is better than that from EGM2008. Meanwhile, if an appropriate degree and order is chosen for the GOCE-only or GRACE-GOCE combined GGMs to connect with the EGM2008, the extended GGMs provide an accuracy at 16cm level. From the extended GGMs, the geopotential value W0LVD determined for the China local vertical datum is 62636853.4351 m2s-2 indicates a bias of about 2.5649 m2/s-2 compared to the conventional value of 62,636,856.0 m2s-2. This is support by National key research and development program No:2016YFB0501702. Keywords: Global Geopotential Models; GRACE; GOCE; GPS/Levelling; zero-height geopotential

  15. Modelling of mineral dust for interglacial and glacial climate conditions with a focus on Antarctica

    DOE PAGES

    Sudarchikova, Natalia; Mikolajewicz, Uwe; Timmreck, C.; ...

    2015-05-19

    The mineral dust cycle responds to climate variations and plays an important role in the climate system by affecting the radiative balance of the atmosphere and modifying biogeochemistry. Polar ice cores provide unique information about deposition of aeolian dust particles transported over long distances. These cores are a palaeoclimate proxy archive of climate variability thousands of years ago. The current study is a first attempt to simulate past interglacial dust cycles with a global aerosol–climate model ECHAM5-HAM. The results are used to explain the dust deposition changes in Antarctica in terms of quantitative contribution of different processes, such as emission,more » atmospheric transport and precipitation, which will help to interpret palaeodata from Antarctic ice cores. The investigated periods include four interglacial time slices: the pre-industrial control (CTRL), mid-Holocene (6000 yr BP; hereafter referred to as \\"6 kyr\\"), last glacial inception (115 000 yr BP; hereafter \\"115 kyr\\") and Eemian (126 000 yr BP; hereafter \\"126 kyr\\"). One glacial time interval, the Last Glacial Maximum (LGM) (21 000 yr BP; hereafter \\"21 kyr\\"), was simulated as well to be a reference test for the model. Results suggest an increase in mineral dust deposition globally, and in Antarctica, in the past interglacial periods relative to the pre-industrial CTRL simulation. Approximately two-thirds of the increase in the mid-Holocene and Eemian is attributed to enhanced Southern Hemisphere dust emissions. Slightly strengthened transport efficiency causes the remaining one-third of the increase in dust deposition. The moderate change in dust deposition in Antarctica in the last glacial inception period is caused by the slightly stronger poleward atmospheric transport efficiency compared to the pre-industrial. Maximum dust deposition in Antarctica was simulated for the glacial period. LGM dust deposition in Antarctica is substantially increased due to 2.6 times higher Southern Hemisphere dust emissions, 2 times stronger atmospheric transport towards Antarctica, and 30% weaker precipitation over the Southern Ocean. The model is able to reproduce the order of magnitude of dust deposition globally and in Antarctica for the pre-industrial and LGM climates.« less

  16. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water... can purchase a copy of the standard incorporated by reference from Global Engineering Documents, 15...

  17. Enhanced poleward propagation of storms under climate change

    NASA Astrophysics Data System (ADS)

    Tamarin-Brodsky, Talia; Kaspi, Yohai

    2017-12-01

    Earth's midlatitudes are dominated by regions of large atmospheric weather variability—often referred to as storm tracks— which influence the distribution of temperature, precipitation and wind in the extratropics. Comprehensive climate models forced by increased greenhouse gas emissions suggest that under global warming the storm tracks shift poleward. While the poleward shift is a robust response across most models, there is currently no consensus on what the underlying dynamical mechanism is. Here we present a new perspective on the poleward shift, which is based on a Lagrangian view of the storm tracks. We show that in addition to a poleward shift in the genesis latitude of the storms, associated with the shift in baroclinicity, the latitudinal displacement of cyclonic storms increases under global warming. This is achieved by applying a storm-tracking algorithm to an ensemble of CMIP5 models. The increased latitudinal propagation in a warmer climate is shown to be a result of stronger upper-level winds and increased atmospheric water vapour. These changes in the propagation characteristics of the storms can have a significant impact on midlatitude climate.

  18. Exploring the Global/Local Boundary in Education in Developing Countries: The Case of the Caribbean

    ERIC Educational Resources Information Center

    George, June; Lewis, Theodore

    2011-01-01

    This article focuses on education in developing countries in the context of globalization and with specific reference to the Caribbean. It examines the concept of globalization and related concepts and positions developing countries within this context. It explores the possibility of the creation of a third space where the local and the global can…

  19. Globalization and Its Impact on Education with Specific Reference to Education in South Africa

    ERIC Educational Resources Information Center

    Moloi, K. C.; Gravett, S. J.; Petersen, N. F.

    2009-01-01

    As globalization of the world economy continues unabated, a parallel growth of globalization of knowledge is also taking place. This latter trend is little affected by the boundaries between developed and less developed countries and is having a particular impact on trends in education. This article looks at the impact of globalization within the…

  20. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    USGS Publications Warehouse

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  1. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  2. Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Morel, Béatrice; Wild, Martin; Pohl, Benjamin; Abiodun, Babatunde; Bessafi, Miloud

    2018-02-01

    This study evaluates the performance of climate models in reproducing surface solar radiation (SSR) over Southern Africa (SA) by validating five Regional Climate Models (RCM, including CCLM4, HIRHAM5, RACMO22T, RCA4 and REMO2009) that participated in the Coordinated Regional Downscaling Experiment program over Africa (CORDEX-Africa) along with their ten driving General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 over SA. The model simulated SSR was thereby compared to reference data from ground-based measurements, satellite-derived products and reanalyses over the period 1990-2005. Results show that (1) the references obtained from satellite retrievals and reanalyses overall overestimate SSR by up to 10 W/m2 on average when compared to ground-based measurements from the Global Energy Balance Archive, which are located mainly over the eastern part of the southern African continent. (2) Compared to one of the satellite products (Surface Solar Radiation Data Set—Heliosat Edition 2; SARAH-2): GCMs overestimate SSR over SA in terms of their multi-model mean by about 1 W/m2 (compensation of opposite biases over sub-regions) and 7.5 W/m2 in austral summer and winter respectively; RCMs driven by GCMs show in their multimodel mean underestimations of SSR in both seasons with Mean Bias Errors (MBEs) of about - 30 W/m2 in austral summer and about - 14 W/m2 in winter compared to SARAH-2. This multi-model mean low bias is dominated by the simulations of the CCLM4, with negative biases up to - 76 W/m2 in summer and - 32 W/m2 in winter. (3) The discrepancies in the simulated SSR over SA are larger in the RCMs than in the GCMs. (4) In terms of trend during the "brightening" period 1990-2005, both GCMs and RCMs (driven by European Centre for Medium-Range Weather Forecasts Reanalysis ERA-Interim, short as ERAINT and GCMs) simulate an SSR trend of less than 1 W/m2 per decade. However, variations of SSR trend exist among different references data. (5) For individual RCM models, their SSR bias fields seem rather insensitive with respect to the different lateral forcings provided by ERAINT and various GCMs, in line with previous findings over Europe. (6) Biases in SSR are overall qualitatively consistent with those in total cloud cover. The information obtained in present study is of crucial importance for understanding future climate projections of SSR and for relevant impact studies.

  3. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking, they are able to extract smallest possible gravitational signals from modern and future satellite tracking measurements, leading to the production of global high-precision, high-resolution gravitational models. By directly turning the nonlinear differential equations of satellite motion into the nonlinear integral equations, and recognizing the fact that satellite orbits are measured with random errors, we further reformulate the links between satellite tracking measurements and the global uniformly convergent solutions to the Newton's governing differential equations as a condition adjustment model with unknown parameters, or equivalently, the weighted least squares estimation of unknown differential equation parameters with equality constraints, for the reconstruction of global high-precision, high-resolution gravitational models from modern (and future) satellite tracking measurements.

  4. Administering the Global Trap: The Role of Educational Leaders.

    ERIC Educational Resources Information Center

    Bates, Richard

    2002-01-01

    Discusses the role of educational leaders in a global society. Explains the globalization of technology, finance, production, and culture. Other topics include the withering away of the state, rebalancing states and markets, development as freedom, and the development as freedom for educational leaders. (Contains 32 references.) (PKP)

  5. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata.

    PubMed

    Galdino, Tarcísio Visintin da Silva; Kumar, Sunil; Oliveira, Leonardo S S; Alfenas, Acelino C; Neven, Lisa G; Al-Sadi, Abdullah M; Picanço, Marcelo C

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs.

  6. Mapping Global Potential Risk of Mango Sudden Decline Disease Caused by Ceratocystis fimbriata

    PubMed Central

    Oliveira, Leonardo S. S.; Alfenas, Acelino C.; Neven, Lisa G.; Al-Sadi, Abdullah M.

    2016-01-01

    The Mango Sudden Decline (MSD), also referred to as Mango Wilt, is an important disease of mango in Brazil, Oman and Pakistan. This fungus is mainly disseminated by the mango bark beetle, Hypocryphalus mangiferae (Stebbing), by infected plant material, and the infested soils where it is able to survive for long periods. The best way to avoid losses due to MSD is to prevent its establishment in mango production areas. Our objectives in this study were to: (1) predict the global potential distribution of MSD, (2) identify the mango growing areas that are under potential risk of MSD establishment, and (3) identify climatic factors associated with MSD distribution. Occurrence records were collected from Brazil, Oman and Pakistan where the disease is currently known to occur in mango. We used the correlative maximum entropy based model (MaxEnt) algorithm to assess the global potential distribution of MSD. The MaxEnt model predicted suitable areas in countries where the disease does not already occur in mango, but where mango is grown. Among these areas are the largest mango producers in the world including India, China, Thailand, Indonesia, and Mexico. The mean annual temperature, precipitation of coldest quarter, precipitation seasonality, and precipitation of driest month variables contributed most to the potential distribution of MSD disease. The mango bark beetle vector is known to occur beyond the locations where MSD currently exists and where the model predicted suitable areas, thus showing a high likelihood for disease establishment in areas predicted by our model. Our study is the first to map the potential risk of MSD establishment on a global scale. This information can be used in designing strategies to prevent introduction and establishment of MSD disease, and in preparation of efficient pest risk assessments and monitoring programs. PMID:27415625

  7. Using GPS and leveling data in local precise geoid determination and case study

    NASA Astrophysics Data System (ADS)

    Erol, B.; Çelik, R. N.; Erol, S.

    2003-04-01

    As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with the fundamental mathematical equation; N=h-H. In the equation, "h" is the ellipsoidal height of a point P, "H" is the orthometric height of the same point and "N" is "geoid undulation" value. Normally, "H" orthometric height derived from leveling measurements but these measurements are tiring applications. So, while having a geoid model in the region as the essential part of geodetic infrastructure, number leveling measurements can be reduced from the procedure and by this way time and labor is saved. Geoid determination is modeling of the data in such a way that geoid height can be obtained digital or analog at a point whose horizontal position is known. Geoid models can be developed for local, regional or global regions. Using satellite techniques, especially GPS, in geodetic measurements are increased importance of geoid. Because geoid is a natural tie between high precision geodetic coordinates and coordinates which obtained from satellites. There are several geoid determination methods according to used data and models. GPS/Leveling method, which is also known as geometric method, is one of these methods. This method is appropriate for local precise geoid determination in respectively small areas. In this paper, it is going to be given information about GPS/Leveling geoid determination method and mathematical models, which are used in geoid determination with this method. And Izmir local geoid model will be presented as a case study. Izmir is one of the west metropolitan cities of Turkey and located near Aegean Sea. The topography is extremely rough in the region. There are two different geoid determination studies which were carried out in 1996 and 2001 in Izmir. Both models were accomplished according to GPS/Leveling method. Those two geoid models of Izmir Metropolitan region are investigated in here, the conflict of them were discussed. The relation between distribution of common reference points and differences of geoid undulation values, which are calculated from both models separately, were analyzed and also effects of topography on conflict of both geoid model was investigated. The results of the study and suggestions are going to be given in the paper.

  8. Testing of Selected Geopotential Models in Terms of GOCE Satellite Orbit Determination Using Simulated GPS Observations

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2016-04-01

    This work contains a comparative study of performance of twenty geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, among others, such models as JYY_GOCE02S, ITG-GOCE02, ULUX_CHAMP2013S, GOGRA02S, ITG-GRACE2010S, EIGEN-51C, EGM2008, EGM96, JGM3, OSU91a, OSU86F were adopted. A special software package, called the Orbital Computation System (OCS), based on the classical method of least squares was used. In the frame of OCS, initial satellite state vector components are corrected in an iterative process, using the given geopotential model and the models describing the remaining gravitational perturbations. An important part of the OCS package is the 8th order Cowell numerical integration procedure, which enables a satellite orbit computation. Different sets of pseudorange simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System (GPS) satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. However, the solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the orbit estimated was slightly enhanced. The obtained solutions refer to the orbital arcs with the lengths of 90-minute and 1-day.

  9. Methodological Framework for World Health Organization Estimates of the Global Burden of Foodborne Disease

    PubMed Central

    Devleesschauwer, Brecht; Haagsma, Juanita A.; Angulo, Frederick J.; Bellinger, David C.; Cole, Dana; Döpfer, Dörte; Fazil, Aamir; Fèvre, Eric M.; Gibb, Herman J.; Hald, Tine; Kirk, Martyn D.; Lake, Robin J.; Maertens de Noordhout, Charline; Mathers, Colin D.; McDonald, Scott A.; Pires, Sara M.; Speybroeck, Niko; Thomas, M. Kate; Torgerson, Paul R.; Wu, Felicia; Havelaar, Arie H.; Praet, Nicolas

    2015-01-01

    Background The Foodborne Disease Burden Epidemiology Reference Group (FERG) was established in 2007 by the World Health Organization to estimate the global burden of foodborne diseases (FBDs). This paper describes the methodological framework developed by FERG's Computational Task Force to transform epidemiological information into FBD burden estimates. Methods and Findings The global and regional burden of 31 FBDs was quantified, along with limited estimates for 5 other FBDs, using Disability-Adjusted Life Years in a hazard- and incidence-based approach. To accomplish this task, the following workflow was defined: outline of disease models and collection of epidemiological data; design and completion of a database template; development of an imputation model; identification of disability weights; probabilistic burden assessment; and estimating the proportion of the disease burden by each hazard that is attributable to exposure by food (i.e., source attribution). All computations were performed in R and the different functions were compiled in the R package 'FERG'. Traceability and transparency were ensured by sharing results and methods in an interactive way with all FERG members throughout the process. Conclusions We developed a comprehensive framework for estimating the global burden of FBDs, in which methodological simplicity and transparency were key elements. All the tools developed have been made available and can be translated into a user-friendly national toolkit for studying and monitoring food safety at the local level. PMID:26633883

  10. How much might additional half a degree from a global warming of 1.5°C affects the extreme precipitation change in China?

    NASA Astrophysics Data System (ADS)

    Li, W.; Jiang, Z.

    2017-12-01

    In order to strengthen the global respond to the dangerous of global warming, Paris Agreement sets out two long-term warming goals: limiting global warming to well below 2˚C and purse effort to below 1.5˚C above pre-industrial levels. However, future climate change risks in those two warming targets show significant regional differences. This article aims to study the intensity and frequency of extreme precipitation change over China under those two global warming targets by using CMIP5 models under RCP4.5 and RCP8.5 scenario. Focus is put on the effects of the additional half degree in changing the extreme precipitation. Results show that the changes of extreme precipitation are independent of the RCP scenarios when global warming reaches the same threshold. Intensity of extreme precipitation averaged over China increase by around 6% and 11% when global warming reaches 1.5˚C and 2˚C, respectively. The additional half a degree increase makes the intensity of extreme precipitation averaged over China to increase by 4.5%, which translates to an increase close to the Clausius-Clapeyron scaling. Return period decreases by 5 years for the extra half degree warming when the 20-year return values are considered at the reference level.

  11. Examining Long-Term Global Climate Change on the Web.

    ERIC Educational Resources Information Center

    Huntoon, Jacqueline E.; Ridky, Robert K.

    2002-01-01

    Describes a web-based, inquiry-oriented activity that enables students to examine long-term global climate change. Supports instruction in other topics such as population growth. (Contains 34 references.) (DDR)

  12. Impact of biomass burning on nutrient deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Daskalakis, Nikos; Mihalopoulos, Nikolaos; Nenes, Athanasios

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients (Fe and P) into the atmosphere, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Dust is also known to enhance N deposition by interacting with anthropogenic pollutants and neutralisation of part of the acidity of the atmosphere by crustal alkaline species. These nutrients have also primary anthropogenic sources including combustion emissions. The global atmospheric N [1], Fe [2] and P [3] cycles have been parameterized in the global 3-D chemical transport model TM4-ECPL, accounting for inorganic and organic forms of these nutrients, for all natural and anthropogenic sources of these nutrients including biomass burning, as well as for the link between the soluble forms of Fe and P atmospheric deposition and atmospheric acidity. The impact of atmospheric acidity on nutrient solubility has been parameterised based on experimental findings and the model results have been evaluated by extensive comparison with available observations. In the present study we isolate the significant impact of biomass burning emissions on these nutrients deposition by comparing global simulations that consider or neglect biomass burning emissions. The investigated impact integrates changes in the emissions of the nutrients as well as in atmospheric oxidants and acidity and thus in atmospheric processing and secondary sources of these nutrients. The results are presented and thoroughly discussed. References [1] Kanakidou M, S. Myriokefalitakis, N. Daskalakis, G. Fanourgakis, A. Nenes, A. Baker, K. Tsigaridis, N. Mihalopoulos, Past, Present and Future Atmospheric Nitrogen Deposition, Journal of the Atmospheric Sciences (JAS-D-15-0278) Vol 73, 2039-2047, 2016. [2] Myriokefalitakis,S., Daskalakis,N., Mihalopoulos,N., Baker, A.R., Nenes, A., and Kanakidou,M.: Changes in dissolved iron deposition to the oceans driven by human activity: a 3-D global modelling study, Biogeosciences, 12, 3973-3992, 2015. [3] Myriokefalitakis S., Nenes A., Baker A.R., Mihalopoulos N., Kanakidou M.: Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modelling study, Biogeosciences, 13, 6519-6543, 2016.

  13. HTAP_v2: a mosaic of regional and global emission gridmaps for 2008 and 2010 to study hemispheric transport of air pollution

    NASA Astrophysics Data System (ADS)

    Janssens-Maenhout, G.; Crippa, M.; Guizzardi, D.; Dentener, F.; Muntean, M.; Pouliot, G.; Keating, T.; Zhang, Q.; Kurokawa, J.; Wankmüller, R.; Denier van der Gon, H.; Klimont, Z.; Frost, G.; Darras, S.; Koffi, B.

    2015-04-01

    The mandate of the Task Force Hemispheric Transport of Air Pollution (HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions dataset has been constructed using regional emission gridmaps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories, including the Environmental Protection Agency (EPA)'s for USA, EPA and Environment Canada's for Canada, the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO)'s for Europe, and the Model Inter-comparison Study in Asia (MICS-Asia)'s for China, India and other Asian countries, was gap-filled with the emission gridmaps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South-America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific gridmaps for each substance and year. The HTAP_v2.2 air pollutant gridmaps are considered to combine latest available regional information within a complete global dataset. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission gridmaps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for all air pollutant emissions from the energy and industry sectors, but not from the residential one. A comparison of the population weighted emissions for all world countries, grouped into four classes of similar income, reveals that the per capita emissions are, with increasing income group of countries, increasing in level but also in variation for all air pollutants but not for aerosols.

  14. Simulating multi-scale oceanic processes around Taiwan on unstructured grids

    NASA Astrophysics Data System (ADS)

    Yu, Hao-Cheng; Zhang, Yinglong J.; Yu, Jason C. S.; Terng, C.; Sun, Weiling; Ye, Fei; Wang, Harry V.; Wang, Zhengui; Huang, Hai

    2017-11-01

    We validate a 3D unstructured-grid (UG) model for simulating multi-scale processes as occurred in Northwestern Pacific around Taiwan using recently developed new techniques (Zhang et al., Ocean Modeling, 102, 64-81, 2016) that require no bathymetry smoothing even for this region with prevalent steep bottom slopes and many islands. The focus is on short-term forecast for several months instead of long-term variability. Compared with satellite products, the errors for the simulated Sea-surface Height (SSH) and Sea-surface Temperature (SST) are similar to a reference data-assimilated global model. In the nearshore region, comparison with 34 tide gauges located around Taiwan indicates an average RMSE of 13 cm for the tidal elevation. The average RMSE for SST at 6 coastal buoys is 1.2 °C. The mean transport and eddy kinetic energy compare reasonably with previously published values and the reference model used to provide boundary and initial conditions. The model suggests ∼2-day interruption of Kuroshio east of Taiwan during a typhoon period. The effect of tidal mixing is shown to be significant nearshore. The multi-scale model is easily extendable to target regions of interest due to its UG framework and a flexible vertical gridding system, which is shown to be superior to terrain-following coordinates.

  15. Theoretical and Applied Research in the Field of Higher Geodesy Conducted in Rzeszow

    NASA Astrophysics Data System (ADS)

    Kadaj, Roman; Świętoń, Tomasz

    2016-06-01

    Important qualitative changes were taking place in polish geodesy in last few years. It was related to application of new techniques and technologies and to introduction of European reference frames in Poland. New reference stations network ASG-EUPOS, together with Internet services which helps in precise positioning was created. It allows to fast setting up precise hybrid networks. New, accurate satellite networks became the basis of new definitions in the field of reference systems. Simultaneously arise the need of new software, which enables to execute the geodetic works in new technical conditions. Authors had an opportunity to participate in mentioned undertakings, also under the aegis of GUGiK, by creation of methods, algorithms and necessary software tools. In this way the automatic postprocessing module (APPS) in POZGEO service, a part of ASG-EUPOS system came into being. It is an entirely polish product which works in Trimble environment. Universal software for transformation between PLETRF89, PL-ETRF2000, PULKOWO'42 reference systems as well as defined coordinate systems was created (TRANSPOL v. 2.06) and published as open product. An essential functional element of the program is the quasi-geoid model PL-geoid-2011, which has been elaborated by adjustment (calibration) of the global quasi-geoid model EGM2008 to 570 geodetic points (satellite-leveling points). Those and other studies are briefly described in this paper.

  16. Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses

    PubMed Central

    Park, Danny S.; Brown, Brielin; Eng, Celeste; Huntsman, Scott; Hu, Donglei; Torgerson, Dara G.; Burchard, Esteban G.; Zaitlen, Noah

    2015-01-01

    Motivation: Approaches to identifying new risk loci, training risk prediction models, imputing untyped variants and fine-mapping causal variants from summary statistics of genome-wide association studies are playing an increasingly important role in the human genetics community. Current summary statistics-based methods rely on global ‘best guess’ reference panels to model the genetic correlation structure of the dataset being studied. This approach, especially in admixed populations, has the potential to produce misleading results, ignores variation in local structure and is not feasible when appropriate reference panels are missing or small. Here, we develop a method, Adapt-Mix, that combines information across all available reference panels to produce estimates of local genetic correlation structure for summary statistics-based methods in arbitrary populations. Results: We applied Adapt-Mix to estimate the genetic correlation structure of both admixed and non-admixed individuals using simulated and real data. We evaluated our method by measuring the performance of two summary statistics-based methods: imputation and joint-testing. When using our method as opposed to the current standard of ‘best guess’ reference panels, we observed a 28% decrease in mean-squared error for imputation and a 73.7% decrease in mean-squared error for joint-testing. Availability and implementation: Our method is publicly available in a software package called ADAPT-Mix available at https://github.com/dpark27/adapt_mix. Contact: noah.zaitlen@ucsf.edu PMID:26072481

  17. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in designing a co-location station.

  18. Protein Loop Structure Prediction Using Conformational Space Annealing.

    PubMed

    Heo, Seungryong; Lee, Juyong; Joo, Keehyoung; Shin, Hang-Cheol; Lee, Jooyoung

    2017-05-22

    We have developed a protein loop structure prediction method by combining a new energy function, which we call E PLM (energy for protein loop modeling), with the conformational space annealing (CSA) global optimization algorithm. The energy function includes stereochemistry, dynamic fragment assembly, distance-scaled finite ideal gas reference (DFIRE), and generalized orientation- and distance-dependent terms. For the conformational search of loop structures, we used the CSA algorithm, which has been quite successful in dealing with various hard global optimization problems. We assessed the performance of E PLM with two widely used loop-decoy sets, Jacobson and RAPPER, and compared the results against the DFIRE potential. The accuracy of model selection from a pool of loop decoys as well as de novo loop modeling starting from randomly generated structures was examined separately. For the selection of a nativelike structure from a decoy set, E PLM was more accurate than DFIRE in the case of the Jacobson set and had similar accuracy in the case of the RAPPER set. In terms of sampling more nativelike loop structures, E PLM outperformed E DFIRE for both decoy sets. This new approach equipped with E PLM and CSA can serve as the state-of-the-art de novo loop modeling method.

  19. Comparison of the New LEAF Area INDEX (LAI 3G) with the Kazahstan-Wide LEAF Area INDEX DATA SET (GGRS-LAI) over Central ASIA

    NASA Astrophysics Data System (ADS)

    Kappas, M.; Propastin, P.; Degener, J.; Renchin, T.

    2014-12-01

    Long-term global data sets of Leaf Area Index (LAI) are important for monitoring global vegetation dynamics. LAI indicating phenological development of vegetation is an important state variable for modeling land surface processes. The comparison of long-term data sets is based on two recently available data sets both derived from AVHRR time series. The LAI 3g data set introduced by Zaichun Zhu et al. (2013) is developed from the new improved third generation Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) and best-quality MODIS LAI data. The second long-term data set is based on the 8 km spatial resolution GIMMS-AVHRR data (GGRS-data set by Propastin et al. 2012). The GGRS-LAI product uses a three-dimensional physical radiative transfer model which establishes relationship between LAI, vegetation fractional cover and given patterns of surface reflectance, view-illumination conditions and optical properties of vegetation. The model incorporates a number of site/region specific parameters, including the vegetation architecture variables such as leaf angle distribution, clumping index, and light extinction coefficient. For the application of the model to Kazakhstan, the vegetation architecture variables were computed at the local (pixel) level based on extensive field surveys of the biophysical properties of vegetation in representative grassland areas of Kazakhstan. The comparison of both long-term data sets will be used to interpret their quality for scientific research in other disciplines. References:Propastin, P., Kappas, M. (2012). Retrieval of coarse-resolution leaf area index over the Republic of Kazakhstan using NOAA AVHRR satellite data and ground measurements," Remote Sensing, vol. 4, no. 1, pp. 220-246. Zaichun Zhu, Jian Bi, Yaozhong Pan, Sangram Ganguly, Alessandro Anav, Liang Xu, Arindam Samanta, Shilong Piao, Ramakrishna R. Nemani and Ranga B. Myneni (2013). Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sens. 2013, 5, 927-948; doi:10.3390/rs5020927

  20. Projected Changes on the Global Surface Wave Drift Climate towards the END of the Twenty-First Century

    NASA Astrophysics Data System (ADS)

    Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai

    2016-04-01

    The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

Top