Sample records for global reference system

  1. Definition and Proposed Realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Ihde, Johannes; Sánchez, Laura; Barzaghi, Riccardo; Drewes, Hermann; Foerste, Christoph; Gruber, Thomas; Liebsch, Gunter; Marti, Urs; Pail, Roland; Sideris, Michael

    2017-05-01

    Studying, understanding and modelling global change require geodetic reference frames with an order of accuracy higher than the magnitude of the effects to be actually studied and with high consistency and reliability worldwide. The International Association of Geodesy, taking care of providing a precise geodetic infrastructure for monitoring the Earth system, promotes the implementation of an integrated global geodetic reference frame that provides a reliable frame for consistent analysis and modelling of global phenomena and processes affecting the Earth's gravity field, the Earth's surface geometry and the Earth's rotation. The definition, realization, maintenance and wide utilization of the International Terrestrial Reference System guarantee a globally unified geometric reference frame with an accuracy at the millimetre level. An equivalent high-precision global physical reference frame that supports the reliable description of changes in the Earth's gravity field (such as sea level variations, mass displacements, processes associated with geophysical fluids) is missing. This paper addresses the theoretical foundations supporting the implementation of such a physical reference surface in terms of an International Height Reference System and provides guidance for the coming activities required for the practical and sustainable realization of this system. Based on conceptual approaches of physical geodesy, the requirements for a unified global height reference system are derived. In accordance with the practice, its realization as the International Height Reference Frame is designed. Further steps for the implementation are also proposed.

  2. GPS-Only Terrestrial Reference Frame Based on a Global Reprocessing

    NASA Astrophysics Data System (ADS)

    Dietrich, R.; Rothacher, M.; Ruelke, A.; Fritsche, M.; Steigenberger, P.

    2007-12-01

    The realization of the International Terrestrial Reference System (ITRS) with highest accuracy and stability is fundamental and crucial for applications in geodesy, geodynamics, geophysics and global change. In a joint effort TU Dresden and TU Munich/GFZ Potsdam reprocessed a global GPS network of more than 200 stations. As a contribution to an ITRS realization daily normal equations from 1994 to 2005 were rigorously combined in order to determine a global GPS-only reference frame (PDR05/Potsdam-Dresden-Reprocessing Reference Frame). We present a realization of the global terrestrial reference system which follows the center of mass approach in consideration of the load-induced deformation of the Earth's crust due to the redistribution of surface masses. The stability of our reference frame will be evaluated based on the obtained long-term trends of station coordinates, the load-induced deformation estimates and the homogeneous time series of station positions. We will compare our solution with other recent terrestrial reference system realizations and give some conclusions for future realizations of the ITRS.

  3. Unification of height systems in the frame of GGOS

    NASA Astrophysics Data System (ADS)

    Sánchez, Laura

    2015-04-01

    Most of the existing vertical reference systems do not fulfil the accuracy requirements of modern Geodesy. They refer to local sea surface levels, are stationary (do not consider variations in time), realize different physical height types (orthometric, normal, normal-orthometric, etc.), and their combination in a global frame presents uncertainties at the metre level. To provide a precise geodetic infrastructure for monitoring the Earth system, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), promotes the standardization of the height systems worldwide. The main purpose is to establish a global gravity field-related vertical reference system that (1) supports a highly-precise (at cm-level) combination of physical and geometric heights worldwide, (2) allows the unification of all existing local height datums, and (3) guarantees vertical coordinates with global consistency (the same accuracy everywhere) and long-term stability (the same order of accuracy at any time). Under this umbrella, the present contribution concentrates on the definition and realization of a conventional global vertical reference system; the standardization of the geodetic data referring to the existing height systems; and the formulation of appropriate strategies for the precise transformation of the local height datums into the global vertical reference system. The proposed vertical reference system is based on two components: a geometric component consisting of ellipsoidal heights as coordinates and a level ellipsoid as the reference surface, and a physical component comprising geopotential numbers as coordinates and an equipotential surface defined by a conventional W0 value as the reference surface. The definition of the physical component is based on potential parameters in order to provide reference to any type of physical heights (normal, orthometric, etc.). The conversion of geopotential numbers into metric heights and the modelling of the reference surface (geoid or quasigeoid determination) are considered as steps of the realization. The vertical datum unification strategy is based on (1) the physical connection of height datums to determine their discrepancies, (2) joint analysis of satellite altimetry and tide gauge records to determine time variations of sea level at reference tide gauges, (3) combination of geometrical and physical heights in a well-distributed and high-precise reference frame to estimate the relationship between the individual vertical levels and the global one, and (4) analysis of GNSS time series at reference tide gauges to separate crustal movements from sea level changes. The final vertical transformation parameters are provided by the common adjustment of the observation equations derived from these methods.

  4. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    NASA Astrophysics Data System (ADS)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  5. Focus Upon Implementing the GGOS Decadal Vision for Geohazards Monitoring

    NASA Astrophysics Data System (ADS)

    LaBrecque, John; Stangl, Gunter

    2017-04-01

    The Global Geodetic Observing System of the IAG identified present and future roles for Geodesy in the development and well being of the global society. The GGOS is focused upon the development of infrastructure, information, analysis, and educational systems to advance the International Global Reference Frame, the International Celestial Reference System, the International Height Reference System, atmospheric dynamics, sea level change and geohazards monitoring. The geohazards initiative is guided by an eleven nation working group initially focused upon the development and integration of regional multi-GNSS networks and analysis systems for earthquake and tsunami early warning. The opportunities and challenges being addressed by the Geohazards working group include regional network design, algorithm development and implementation, communications, funding, and international agreements on data access. This presentation will discuss in further detail these opportunities and challenges for the GGOS focus upon earthquake and tsunami early warning.

  6. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  7. Databases for the Global Dynamics of Multiparameter Nonlinear Systems

    DTIC Science & Technology

    2014-03-05

    AFRL-OSR-VA-TR-2014-0078 DATABASES FOR THE GLOBAL DYNAMICS OF MULTIPARAMETER NONLINEAR SYSTEMS Konstantin Mischaikow RUTGERS THE STATE UNIVERSITY OF...University of New Jersey ASB III, Rutgers Plaza New Brunswick, NJ 08807 DATABASES FOR THE GLOBAL DYNAMICS OF MULTIPARAMETER NONLINEAR SYSTEMS ...dynamical systems . We refer to the output as a Database for Global Dynamics since it allows the user to query for information about the existence and

  8. The gravity field observations and products at IGFS

    NASA Astrophysics Data System (ADS)

    Barzaghi, Riccardo; Vergos, George; Bonvalot, Sylvain; Barthelmes, Franz; Reguzzoni, Mirko; Wziontek, Hartmut; Kelly, Kevin

    2017-04-01

    The International Gravity Field Service (IGFS) is a service of the International Association of Geodesy (IAG) that was established in 2003 at the IAG/IUGG General Assembly in Sapporo (Japan). This service aims at coordinating the actions of the IAG services related to the Earth gravity field, i.e. the Bureau Gravimétrique International (BGI), the International Service for the Geoid (ISG), the International Geodynamics and Earth Tides Service (IGETS), the International Center for Global Earth Models (ICGEM) and the International Digital Elevation Model Service (IDEMS). Also, via its Central Bureau hosted at the Aristotle University of Thessaloniki (Greece), IGFS provides a link to the Global Geodetic Observing System (GGOS) bureaus in order to communicate their requirements and recommendations to the IGFS-Centers. In this work, a presentation is given on the recent activities of the service, namely those related to the contributions to the implementation of: the International Height Reference System/Frame; the Global Geodetic Reference System/Frame; the new Global Absolute Gravity Reference System/Frame. Particularly, the impact that these activities have in improving the estimation of the Earth's gravity field, either at global and local scale, is highlighted also in the framework of GGOS.

  9. Global Positioning System surveys of storm-surge sensors deployed during Hurricane Ike, Seadrift, Texas, to Lake Charles, Louisiana, 2008

    USGS Publications Warehouse

    Payne, Jason; Woodward, Brenda K.; Storm, John B.

    2009-01-01

    The U.S. Geological Survey installed a network of pressure sensors at 65 sites along the Gulf Coast from Seadrift, Texas, northeast to Lake Charles, Louisiana, to record the timing, areal extent, and magnitude of inland storm surge and coastal flooding caused by Hurricane Ike in September 2008. A Global Positioning System was used to obtain elevations of reference marks near each sensor. A combination of real-time kinematic (RTK) and static Global Positioning System surveys were done to obtain elevations of reference marks. Leveling relative to reference marks was done to obtain elevations of sensor orifices above the reference marks. This report summarizes the Global Positioning System data collected and processed to obtain reference mark and storm-sensor-orifice elevations for 59 storm-surge sensors recovered from the original 65 installed as a necessary prelude to computation of storm-surge elevations. National Geodetic Survey benchmarks were used for RTK surveying. Where National Geodetic Survey benchmarks were not within 12 kilometers of a sensor site, static surveying was done. Additional control points for static surveying were in the form of newly established benchmarks or reestablished existing benchmarks. RTK surveying was used to obtain positions and elevations of reference marks for 29 sensor sites. Static surveying was used to obtain positions and elevations of reference marks for 34 sensor sites; four sites were surveyed using both methods. Multiple quality checks on the RTK-survey and static-survey data were applied. The results of all quality checks indicate that the desired elevation accuracy for the surveys of this report, less than 0.1-meter error, was achieved.

  10. Construction Theory and Noise Analysis Method of Global CGCS2000 Coordinate Frame

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Wang, F.; Bai, J.; Li, Z.

    2018-04-01

    The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system) network and the mainland GNSS (Global Navigation Satellite System) network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  11. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging.

    PubMed

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-02-08

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people's daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement,as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station's geocentric coordinates and velocities relative to the centre of the Earth's mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized,as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement.

  12. A Unified Global Reference Frame of Vertical Crustal Movements by Satellite Laser Ranging

    PubMed Central

    Zhu, Xinhui; Wang, Ren; Sun, Fuping; Wang, Jinling

    2016-01-01

    Crustal movement is one of the main factors influencing the change of the Earth system, especially in its vertical direction, which affects people’s daily life through the frequent occurrence of earthquakes, geological disasters, and so on. In order to get a better study and application of the vertical crustal movement, as well as its changes, the foundation and prerequisite areto devise and establish its reference frame; especially, a unified global reference frame is required. Since SLR (satellite laser ranging) is one of the most accurate space techniques for monitoring geocentric motion and can directly measure the ground station’s geocentric coordinates and velocities relative to the centre of the Earth’s mass, we proposed to take the vertical velocity of the SLR technique in the ITRF2008 framework as the reference frame of vertical crustal motion, which we defined as the SLR vertical reference frame (SVRF). The systematic bias between other velocity fields and the SVRF was resolved by using the GPS (Global Positioning System) and VLBI (very long baseline interferometry) velocity observations, and the unity of other velocity fields and SVRF was realized, as well. The results show that it is feasible and suitable to take the SVRF as a reference frame, which has both geophysical meanings and geodetic observations, so we recommend taking the SLR vertical velocity under ITRF2008 as the global reference frame of vertical crustal movement. PMID:26867197

  13. Advanced Transport Operating System (ATOPS) control display unit software description

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.

    1992-01-01

    The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.

  14. National Centers for Environmental Prediction

    Science.gov Websites

    Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather / VISION | About EMC EMC > GLOBAL BRANCH > GFS > HOME Home Implementations Documentation References Products Model Guidance Performance Developers VLab GLOBAL FORECAST SYSTEM Global Data

  15. After Globalization: The Emerging Politics of Education.

    ERIC Educational Resources Information Center

    Marginson, Simon

    1998-01-01

    Globalization, referring to the formation of world systems, embraces finance and trade; communications and information technologies; migration and tourism; global societies; linguistic, cultural, and ideological convergence; and signs and images. Globalization does not negate the nation-state, but it changes its circumstances and makes education…

  16. Global Positioning System (GPS) civil signal monitoring (CSM) trade study report

    DOT National Transportation Integrated Search

    2014-03-07

    This GPS Civil Signal Monitoring (CSM) Trade Study has been performed at the direction of DOT/FAA Navigation Programs as the agency of reference for consolidating civil monitoring requirements on the Global Positioning System (GPS). The objective of ...

  17. "Competing Conceptions of Globalization" Revisited: Relocating the Tension between World-Systems Analysis and Globalization Analysis

    ERIC Educational Resources Information Center

    Clayton, Thomas

    2004-01-01

    In recent years, many scholars have become fascinated by a contemporary, multidimensional process that has come to be known as "globalization." Globalization originally described economic developments at the world level. More specifically, scholars invoked the concept in reference to the process of global economic integration and the seemingly…

  18. The Global Geodetic Observing System: Recent Activities and Accomplishments

    NASA Astrophysics Data System (ADS)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions of GGOS are based. The IAG Commissions and Inter-Commission Committees provide expertise and support for the scientific development within GGOS. In summary, GGOS is IAG's central interface to the scientific community and to society in general. Recent activities and accomplishments of the Global Geodetic Observing System will be presented.

  19. The GCOS Reference Upper-Air Network (GRUAN)

    NASA Astrophysics Data System (ADS)

    Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.

    2009-04-01

    While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.

  20. Advanced Transport Operating System (ATOPS) color displays software description microprocessor system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  1. A global dataset of crowdsourced land cover and land use reference data.

    PubMed

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-06-13

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

  2. A global dataset of crowdsourced land cover and land use reference data

    PubMed Central

    Fritz, Steffen; See, Linda; Perger, Christoph; McCallum, Ian; Schill, Christian; Schepaschenko, Dmitry; Duerauer, Martina; Karner, Mathias; Dresel, Christopher; Laso-Bayas, Juan-Carlos; Lesiv, Myroslava; Moorthy, Inian; Salk, Carl F.; Danylo, Olha; Sturn, Tobias; Albrecht, Franziska; You, Liangzhi; Kraxner, Florian; Obersteiner, Michael

    2017-01-01

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general. PMID:28608851

  3. On the establishment and maintenance of a modern conventional terrestrial reference system

    NASA Technical Reports Server (NTRS)

    Bock, Y.; Zhu, S. Y.

    1982-01-01

    The frame of the Conventional Terrestrial Reference System (CTS) is defined by an adopted set of coordinates, at a fundamental epoxh, of a global network of stations which contribute the vertices of a fundamental polyhedron. A method to estimate this set of coordinates using a combination of modern three dimensional geodetic systems is presented. Once established, the function of the CTS is twofold. The first is to monitor the external (or global) motions of the polyhedron with respect to the frame of a Conventional Inertial Reference System, i.e., those motions common to all stations. The second is to monitor the internal motions (or deformations) of the polyhedron, i.e., those motions that are not common to all stations. Two possible estimators for use in earth deformation analysis are given and their statistical and physical properties are described.

  4. The Determination of Earth Orientation by VLBI and GNSS: Principles and Results

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole

    2017-10-01

    The Earth Orientation Parameters (EOP) connect the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS). These parameters, i.e., Universal Time, UT1, and pole coordinates in the ITRS and in the GCRS, describe the irregularities of the Earth's rotation. They are mainly determined by two modern astro-geodetic techniques, VLBI (Very Long Baseline Radio Interferometry) on extragalactic radio sources, which is used to realize and maintain the International Celestial Reference System (ICRS), and Global Navigation Satellite System (GNSS), especially GPS (Global Positioning System), which has an important contribution to the realization of the ITRS. The aim of this presentation is twofold: to present the modern bases for the consider- ation of Earth orientation and to discuss how the principles of VLBI and GPS give access to the measure of different components of the EOP variations, especially UT1. The accuracy that can be achieved is based on the improved concepts, definitions, and models that have been adopted by IAU/IUGG resolutions on reference systems and Earth's rotation, as well as on the refined strategy of the observations.

  5. The Global Positioning System and Education in the 21st Century.

    ERIC Educational Resources Information Center

    Wikle, Thomas A.

    2000-01-01

    Students should have an understanding of basic Global Positioning System (GPS) principles as well as an awareness of how the technology will impact society in the future. Provides a brief overview of the evolution, principles, and applications of GPS together with suggested activities. (Contains 25 references.) (Author/WRM)

  6. Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system

    NASA Technical Reports Server (NTRS)

    Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.

    1992-01-01

    This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.

  7. Distributed Digital Subarray Antennas

    DTIC Science & Technology

    2013-12-01

    subarrays in space).  Linear, planar, volumetric.  Periodic, aperiodic or random.  Rotation and tilt relative to a global reference. Based on the...sm N , and ( ), ( ), ( )s s sx m y m z m  coordinates of subarray m in the global system. The subarrays can be rotated and tilted with respect...to the global origin. In the global system ( , )  the direction cosines are sin cos sin sin cos . u v w         (1) The scan

  8. Office of Spaceflight Standard Spaceborne Global Positioning System (GPS) user equipment project

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.

    1991-01-01

    The Global Positioning System (GPS) provides the following: (1) position and velocity determination to support vehicle GN&C, precise orbit determination, and payload pointing; (2) time reference to support onboard timing systems and data time tagging; (3) relative position and velocity determination to support cooperative vehicle tracking; and (4) attitude determination to support vehicle attitude control and payload pointing.

  9. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 2A. GSFLS visit findings (appendix). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-01-31

    This appendix is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. This appendix provides the legal/regulatory reference material, supportive of Volume 2 - GSFLS Visit Finding and Evaluations; and certain background material on British Nuclear Fuel Limited (BNFL).

  10. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in designing a co-location station.

  11. ESSG-based global spatial reference frame for datasets interrelation

    NASA Astrophysics Data System (ADS)

    Yu, J. Q.; Wu, L. X.; Jia, Y. J.

    2013-10-01

    To know well about the highly complex earth system, a large volume of, as well as a large variety of, datasets on the planet Earth are being obtained, distributed, and shared worldwide everyday. However, seldom of existing systems concentrates on the distribution and interrelation of different datasets in a common Global Spatial Reference Frame (GSRF), which holds an invisble obstacle to the data sharing and scientific collaboration. Group on Earth Obeservation (GEO) has recently established a new GSRF, named Earth System Spatial Grid (ESSG), for global datasets distribution, sharing and interrelation in its 2012-2015 WORKING PLAN.The ESSG may bridge the gap among different spatial datasets and hence overcome the obstacles. This paper is to present the implementation of the ESSG-based GSRF. A reference spheroid, a grid subdvision scheme, and a suitable encoding system are required to implement it. The radius of ESSG reference spheroid was set to the double of approximated Earth radius to make datasets from different areas of earth system science being covered. The same paramerters of positioning and orienting as Earth Centred Earth Fixed (ECEF) was adopted for the ESSG reference spheroid to make any other GSRFs being freely transformed into the ESSG-based GSRF. Spheroid degenerated octree grid with radius refiment (SDOG-R) and its encoding method were taken as the grid subdvision and encoding scheme for its good performance in many aspects. A triple (C, T, A) model is introduced to represent and link different datasets based on the ESSG-based GSRF. Finally, the methods of coordinate transformation between the ESSGbased GSRF and other GSRFs were presented to make ESSG-based GSRF operable and propagable.

  12. Helicopter precision approach capability using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1992-01-01

    The period between 1 July and 31 December, 1992, was spent developing a research plan as well as a navigation system document and flight test plan to investigate helicopter precision approach capability using the Global Positioning System (GPS). In addition, all hardware and software required for the research was acquired, developed, installed, and verified on both the test aircraft and the ground-based reference station.

  13. Realizing a terrestrial reference frame using the Global Positioning System

    NASA Astrophysics Data System (ADS)

    Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.

    2015-08-01

    We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.

  14. Evaluation of automated global mapping of Reference Soil Groups of WRB2015

    NASA Astrophysics Data System (ADS)

    Mantel, Stephan; Caspari, Thomas; Kempen, Bas; Schad, Peter; Eberhardt, Einar; Ruiperez Gonzalez, Maria

    2017-04-01

    SoilGrids is an automated system that provides global predictions for standard numeric soil properties at seven standard depths down to 200 cm, currently at spatial resolutions of 1km and 250m. In addition, the system provides predictions of depth to bedrock and distribution of soil classes based on WRB and USDA Soil Taxonomy (ST). In SoilGrids250m(1), soil classes (WRB, version 2006) consist of the RSG and the first prefix qualifier, whereas in SoilGrids1km(2), the soil class was assessed at RSG level. Automated mapping of World Reference Base (WRB) Reference Soil Groups (RSGs) at a global level has great advantages. Maps can be updated in a short time span with relatively little effort when new data become available. To translate soil names of older versions of FAO/WRB and national classification systems of the source data into names according to WRB 2006, correlation tables are used in SoilGrids. Soil properties and classes are predicted independently from each other. This means that the combinations of soil properties for the same cells or soil property-soil class combinations do not necessarily yield logical combinations when the map layers are studied jointly. The model prediction procedure is robust and probably has a low source of error in the prediction of RSGs. It seems that the quality of the original soil classification in the data and the use of correlation tables are the largest sources of error in mapping the RSG distribution patterns. Predicted patterns of dominant RSGs were evaluated in selected areas and sources of error were identified. Suggestions are made for improvement of WRB2015 RSG distribution predictions in SoilGrids. Keywords: Automated global mapping; World Reference Base for Soil Resources; Data evaluation; Data quality assurance References 1 Hengl T, de Jesus JM, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, et al. (2016) SoilGrids250m: global gridded soil information based on Machine Learning. Earth System Science Data (ESSD), in review. 2 Hengl T, de Jesus JM, MacMillan RA, Batjes NH, Heuvelink GBM, et al. (2014) SoilGrids1km — Global Soil Information Based on Automated Mapping. PLoS ONE 9(8): e105992. doi:10.1371/journal.pone.0105992

  15. Watershed Education for Sustainable Development.

    ERIC Educational Resources Information Center

    Stapp, William B.

    2000-01-01

    Presents information on the Global Rivers Environmental Education Network (GREEN), which is a global communication system for analyzing watershed usage and monitoring the quality and quantity of river water. Describes GREEN's watershed educational model and strategies and international development. (Contains 67 references.) (Author/YDS)

  16. Self-reference and predictive, normative and prescriptive approaches in applications of systems thinking in social sciences—(Survey)

    NASA Astrophysics Data System (ADS)

    Mesjasz, Czesław

    2000-05-01

    Cybernetics, systems thinking or systems theory, have been viewed as instruments of enhancing predictive, normative and prescriptive capabilities of the social sciences, beginning from microscale-management and ending with various reference to the global system. Descriptions, explanations and predictions achieved thanks to various systems ideas were also viewed as supportive for potential governance of social phenomena. The main aim of the paper is to examine what could be the possible applications of modern systems thinking in predictive, normative and prescriptive approaches in modern social sciences, beginning from management theory and ending with global studies. Attention is paid not only to "classical" mathematical systems models but also to the role of predictive, normative and prescriptive interpretations of analogies and metaphors associated with application of the classical ("first order cybernetics") and modern ("second order cybernetics", "complexity theory") systems thinking in social sciences.

  17. How Can a Global Social Support System Hope to Achieve Fairer Competiveness?

    PubMed Central

    Goldblatt, Peter

    2016-01-01

    Ooms et al sets out some good general principles for a global social support system to improve fairer global competitiveness as a result of redistribution. This commentary sets out to summarize some of the conditions that would need to be satisfied for it to level up gradients in inequality through such a social support system, using the National Basketball Association (NBA) example as a point of reference. From this, the minimal conditions are described that would be required for the support system, proposed in the article by Ooms et al, to succeed. PMID:26927594

  18. Four dimensional studies in earth space

    NASA Technical Reports Server (NTRS)

    Mather, R. S.

    1972-01-01

    A system of reference which is directly related to observations, is proposed for four-dimensional studies in earth space. Global control network and polar wandering are defined. The determination of variations in the earth's gravitational field with time also forms part of such a system. Techniques are outlined for the unique definition of the motion of the geocenter, and the changes in the location of the axis of rotation of an instantaneous earth model, in relation to values at some epoch of reference. The instantaneous system referred to is directly related to a fundamental equation in geodynamics. The reference system defined would provide an unambiguous frame for long period studies in earth space, provided the scale of the space were specified.

  19. How Can a Global Social Support System Hope to Achieve Fairer Competiveness? Comment on "A Global Social Support System: What the International Community Could Learn From the United States' National Basketball Association".

    PubMed

    Goldblatt, Peter

    2015-12-25

    Ooms et al sets out some good general principles for a global social support system to improve fairer global competitiveness as a result of redistribution. This commentary sets out to summarize some of the conditions that would need to be satisfied for it to level up gradients in inequality through such a social support system, using the National Basketball Association (NBA) example as a point of reference. From this, the minimal conditions are described that would be required for the support system, proposed in the article by Ooms et al, to succeed. © 2016 by Kerman University of Medical Sciences.

  20. The Current Status and Tendency of China Millimeter Coordinate Frame Implementation and Maintenance

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Cheng, Y.; Bei, J.

    2017-12-01

    China Geodetic Coordinate System 2000 (CGCS2000) was first officially declared as the national standard coordinate system on July 1, 2008. This reference frame was defined in the ITRF97 frame at epoch 2000.0 and included 2600 GPS geodetic control points. The paper discusses differences between China Geodetic Coordinate System 2000 (CGCS2000) and later updated ITRF versions, such as ITRF2014,in terms of technical implementation and maintenance. With the development of the Beidou navigation satellite system, especially third generation of BDS with signal global coverage in the future, and with progress of space geodetic technology, it is possible for us to establish a global millimeter-level reference frame based on space geodetic technology including BDS. The millimeter reference frame implementation concerns two factors: 1) The variation of geocenter motion estimation, and 2) the site nonlinear motion modeling. In this paper, the geocentric inversion methods are discussed and compared among results derived from various technical methods. Our nonlinear site movement modeling focuses on singular spectrum analysis method, which is of apparent advantages over earth physical effect modeling. All presented in the paper expected to provide reference to our future CGCS2000 maintenance.

  1. Global Data Spatially Interrelate System for Scientific Big Data Spatial-Seamless Sharing

    NASA Astrophysics Data System (ADS)

    Yu, J.; Wu, L.; Yang, Y.; Lei, X.; He, W.

    2014-04-01

    A good data sharing system with spatial-seamless services will prevent the scientists from tedious, boring, and time consuming work of spatial transformation, and hence encourage the usage of the scientific data, and increase the scientific innovation. Having been adopted as the framework of Earth datasets by Group on Earth Observation (GEO), Earth System Spatial Grid (ESSG) is potential to be the spatial reference of the Earth datasets. Based on the implementation of ESSG, SDOG-ESSG, a data sharing system named global data spatially interrelate system (GASE) was design to make the data sharing spatial-seamless. The architecture of GASE was introduced. The implementation of the two key components, V-Pools, and interrelating engine, and the prototype is presented. Any dataset is firstly resampled into SDOG-ESSG, and is divided into small blocks, and then are mapped into hierarchical system of the distributed file system in V-Pools, which together makes the data serving at a uniform spatial reference and at a high efficiency. Besides, the datasets from different data centres are interrelated by the interrelating engine at the uniform spatial reference of SDOGESSG, which enables the system to sharing the open datasets in the internet spatial-seamless.

  2. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  3. HIFiRE-5 Flight Test Preliminary Results (Postprint)

    DTIC Science & Technology

    2013-11-01

    DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test article leading edge...Reference System (DMARS-R) IMU and Ashtech DG14 Global Positioning System receiver. Results show that a tripped transition occurred on the test...pitch angle relative to earth as measured by IMU , or flight-path elevation angle as measured by GPS or IMU , degrees  = body-fixed angular coordinate

  4. Untangling Consequential Futures: Discovering Self-Consistent Regional and Global Multi-Sector Change Scenarios

    NASA Astrophysics Data System (ADS)

    Lamontagne, J. R.; Reed, P. M.

    2017-12-01

    Impacts and adaptations to global change largely occur at regional scales, yet they are shaped globally through the interdependent evolution of the climate, energy, agriculture, and industrial systems. It is important for regional actors to account for the impacts of global changes on their systems in a globally consistent but regionally relevant way. This can be challenging because emerging global reference scenarios may not reflect regional challenges. Likewise, regionally specific scenarios may miss important global feedbacks. In this work, we contribute a scenario discovery framework to identify regionally-specific decision relevant scenarios from an ensemble of scenarios of global change. To this end, we generated a large ensemble of time evolving regional, multi-sector global change scenarios by a full factorial sampling of the underlying assumptions in the emerging shared socio-economic pathways (SSPs), using the Global Change Assessment Model (GCAM). Statistical and visual analytics were then used to discover which SSP assumptions are particularly consequential for various regions, considering a broad range of time-evolving metrics that encompass multiple spatial scales and sectors. In an illustrative examples, we identify the most important global change narratives to inform water resource scenarios for several geographic regions using the proposed scenario discovery framework. Our results highlight the importance of demographic and agricultural evolution compared to technical improvements in the energy sector. We show that narrowly sampling a few canonical reference scenarios provides a very narrow view of the consequence space, increasing the risk of tacitly ignoring major impacts. Even optimistic scenarios contain unintended, disproportionate regional impacts and intergenerational transfers of consequence. Formulating consequential scenarios of deeply and broadly uncertain futures requires a better exploration of which quantitative measures of consequences are important, for whom are they important, where, and when. To this end, we have contributed a large database of climate change futures that can support `backwards' scenario generation techniques, that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.

  5. The International GPS Network for Charting the Evolving Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Zumberge, J. F.; Heflin, M. B.; Lindqwister, U. J.; Neilan, R. E.; Watkins, M. M.

    1995-01-01

    The Telecommunications and Engineering Division of Caltech's Jet Propulsion Laboratory is funded by the National Aeronautics and Space Administration to play a variety of roles in applying the Global Positioning System (GPS) to geodesy and geodynamics. Among these are the operation of dozens of globally-distributed, permanently-operating Earth fixed GPS stations. This, and other applications are described.

  6. The Global Energy Budget.

    ERIC Educational Resources Information Center

    Jax, Daniel W.

    1992-01-01

    Presents a lesson plan about greenhouse effect and global warming. Includes diagrams and graphs from which students are asked to make inferences. Provides background information about how energy enters and leaves the earth system, the energy budget, consequences of obstructing the energy balance, and the greenhouse effect. (three references) (MCO)

  7. Application of a global reference for fetal-weight and birthweight percentiles in predicting infant mortality.

    PubMed

    Ding, G; Tian, Y; Zhang, Y; Pang, Y; Zhang, J S; Zhang, J

    2013-12-01

    To determine whether the recently published A global reference for fetal-weight and birthweight percentiles (Global Reference) improves small- (SGA), appropriate- (AGA), and large-for-gestational-age (LGA) definitions in predicting infant mortality. Population-based cohort study. The US Linked Livebirth and Infant Death records between 1995 and 2004. Singleton births with birthweight >500 g born at 24-41 weeks of gestation. We compared infant mortality rates of SGA, AGA, and LGA infants classified by three different references: the Global Reference; a commonly used birthweight reference; and Hadlock's ultrasound reference. Infant mortality rates. Among 33 997 719 eligible liveborn singleton births, 25% of preterm and 9% of term infants were classified differently for SGA, AGA, and LGA by the Global Reference and the birthweight reference. The Global Reference indicated higher mortality rates in preterm SGA and preterm LGA infants than the birthweight reference. The mortality rate was considerably higher in infants classified as preterm SGA by the Global Reference but not by the birthweight reference, compared with the corresponding infants classified by the birthweight reference but not by the Global Reference (105.7 versus 12.9 per 1000, RR 8.17, 95% CI 7.38-9.06). Yet, the differences in mortality rates were much smaller in term infants than in preterm infants. Black infants had a particularly higher mortality rate than other races in AGA and LGA preterm and term infants. In respect to the commonly used birthweight reference, the Global Reference increases the identification of infant deaths by improved classification of abnormal newborn size at birth, and these advantages were more obvious in preterm than in term infants. © 2013 RCOG.

  8. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  9. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    NASA Astrophysics Data System (ADS)

    Coulot, David; Richard, Jean-Yves

    2017-04-01

    Many major indicators of climate change are monitored with space observations (sea level rise from satellite altimetry, ice melting from dedicated satellites, etc.). This monitoring is highly dependent on references (positions and velocities of ground observing instruments, orbits of satellites, etc.) that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. For this reason, in the framework of the Global Geodetic Observing System (GGOS), stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination (Combination at Observation Level - COL) of the space-geodetic measurements used to compute the official references of the International Earth Rotation and Reference Systems Service (IERS). The GEODESIE project aims at (i) determining highly-accurate global and consistent references (time series of Terrestrial Reference Frames and Celestial Reference Frames, of Earth's Orientation Parameters, and orbits of Earth's observation satellites) and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references (orbits of satellite altimeters, Terrestrial Reference Frames and related vertical velocities of stations) will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available on a Website designed and opened in the Summer of 2017. This project, supported by the French Agence Nationale de la Recherche (ANR) for the period 2017-2020, will be an unprecedented opportunity to provide the French Groupe de Recherche de Géodésie Spatiale (GRGS) with complete simulation and data processing capabilities to prepare the future arrival of space missions such as the European Geodetic Reference Antenna in SPace (E-GRASP) and to significantly contribute to the GGOS with accurate references.

  10. Coordinate transformations and gauges in the relativistic astronomical reference systems

    NASA Astrophysics Data System (ADS)

    Tao, J.-H.; Huang, T.-Y.; Han, C.-H.

    2000-11-01

    This paper applies a fully post-Newtonian theory (Damour et al. 1991, 1992, 1993, 1994) to the problem of gauge in relativistic reference systems. Gauge fixing is necessary when the precision of time measurement and application reaches 10-16 or better. We give a general procedure for fixing the gauges of gravitational potentials in both the global and local coordinate systems, and for determining the gauge functions in all the coordinate transformations. We demonstrate that gauge fixing in a gravitational N-body problem can be solved by fixing the gauge of the self-gravitational potential of each body and the gauge function in the coordinate transformation between the global and local coordinate systems. We also show that these gauge functions can be chosen to make all the coordinate systems harmonic or any as required, no matter what gauge is chosen for the self-gravitational potential of each body.

  11. Reference level winds from balloon platforms

    NASA Technical Reports Server (NTRS)

    Lally, Vincent E.

    1985-01-01

    The superpressure balloon was developed to provide a method of obtaining global winds at all altitudes from 5 to 30 km. If a balloon could be made to fly for several weeks at a constant altitude, and if it could be tracked accurately on its global circuits, the balloon would provide a tag for the air parcel in which it was embedded. The Lagrangian data on the atmospheric circulation would provide a superior data input to the numerical model. The Global Atmospheric Research Program (GARP) was initiated in large part based on the promise of this technique coupled with free-floating ocean buoys and satellite radiometers. The initial name proposed by Charney for GARP was SABABURA 'SAtellite BAlloon BUoy RAdiometric system' (Charney, 1966). However, although the superpressure balloon exceeded its designers' expectations for flight duration in the stratosphere (longest flight duration of 744 days), flight duration below 10 km was limited by icing in super-cooled clouds to a few days. The balloon was relegated to a secondary role during the GARP Special Observing Periods. The several major superpressure balloon programs for global wind measurement are described as well as those new developments which make the balloon once again an attractive vehicle for measurement of global winds as a reference and bench-mark system for future satellite systems.

  12. The first geocenter estimation results using GPS measurements

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S. C.

    1990-01-01

    The center of mass of the Earth is the natural and unambiguous origin of a geocentric satellite dynamical system. A geocentric reference frame assumes that the origin of its coordinate axes is at the geocenter, in which all relevant observations and results can be referred and in which geodynamic theories or models for the dynamic behavior of Earth can be formulated. In practice, however, a kinematically obtained terrestrial reference frame may assume an origin other than the geocenter. A fast and accurate method of determining origin offset from the geocenter is highly desirable. Global Positioning System (GPS) measurements, because of their abundance and broad distribution, provide a powerful tool to obtain this origin offset in a short period of time. Two effective strategies have been devised. Data from the first Central and South America (Casa Uno) global GPS experiment were studied to demonstrate the ability of recovering the geocenter location with present-day GPS satellites and receivers.

  13. Towards a first realization of the International Height Reference System (IHRS)

    NASA Astrophysics Data System (ADS)

    Sanchez, Laura; Ihde, Johannes; Pail, Roland; Gruber, Thomas; Barzaghi, Riccardo; Marti, Urs; Agren, Jonas; Sideris, Michael; Novak, Pavel

    2017-04-01

    The IAG Resolution No. 1 released during the IUGG 2015 General Assembly outlines five conventions for the definition of the International Height Reference System (IHRS). The definition is given in terms of potential parameters: the vertical coordinates are geopotential numbers referring to an equipotential surface of the Earth's gravity field realized by the conventional value W0 = 62 636 853.4 m2s-2. The spatial reference of the position P for the potential W(P) = W(X) is given by coordinates X of the International Terrestrial Reference Frame (ITRF). This Resolution also states that parameters, observations, and data shall be related to the mean tidal system/mean crust. At present, the main challenge is the realization of the IHRS; i.e., the establishment of the International Height Reference Frame (IHRF). It is expected that the IHRF follows the same structure as the ITRF: a global network with regional and national densifications, whose geopotential numbers referring to the global IHRS are known. According to the GGOS objectives, the target accuracy of these global geopotential numbers is 1 x 10-2 m2s-2. In practice, the precise realization of the IHRS is limited by different aspects; for instance, no unified standards or methods for the determination of the potential values W(P); application of different conventions for the gravity field modelling and the estimation of the position vectors X; inhomogeneous distribution of the geodetic infrastructure; restricted accessibility to terrestrial gravity data to increase the GGM resolution; insufficient modelling of geodynamic phenomena, etc. This may restrict the expected accuracy of 1 x 10-2 m2s-2 to some orders lower (from 10 x 10-2 m2s-2 to 100 x 10-2 m2s-2). This contribution discusses the required steps to outline a sustainable realization of the IHRS.

  14. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    NASA Astrophysics Data System (ADS)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  15. Requirements for DGPS-based TSPI system used in aircraft noise certification tests

    DOT National Transportation Integrated Search

    1997-04-30

    This letter report addresses that portion of a noise certification applicants Differential Global Positioning System (DGPS-based), Time Space Position Information (TSPI) system which is to be used as a position reference in place of a laser tracke...

  16. Global meaning in people with stroke: Content and changes

    PubMed Central

    Littooij, Elsbeth; Dekker, Joost; Vloothuis, Judith; Leget, Carlo JW; Widdershoven, Guy AM

    2016-01-01

    After a traumatic event like a stroke, people need to find meaning and control again. This study enhances knowledge on one of the driving principles behind meaning-making processes: global meaning. Global meaning refers to individuals’ general orienting systems, comprising fundamental beliefs and life goals. Little is known about global meaning in people with stroke and whether global meaning changes after stroke. In this qualitative study, five aspects of global meaning were found: core values, relationships, worldview, identity and inner posture. Continuity in all aspects was reported, but worldview, identity and inner posture were also subjected to change. PMID:28815054

  17. Global meaning in people with stroke: Content and changes.

    PubMed

    Littooij, Elsbeth; Dekker, Joost; Vloothuis, Judith; Leget, Carlo Jw; Widdershoven, Guy Am

    2016-07-01

    After a traumatic event like a stroke, people need to find meaning and control again. This study enhances knowledge on one of the driving principles behind meaning-making processes: global meaning. Global meaning refers to individuals' general orienting systems, comprising fundamental beliefs and life goals. Little is known about global meaning in people with stroke and whether global meaning changes after stroke. In this qualitative study, five aspects of global meaning were found: core values, relationships, worldview, identity and inner posture. Continuity in all aspects was reported, but worldview, identity and inner posture were also subjected to change.

  18. Geospatial Technology

    ERIC Educational Resources Information Center

    Reed, Philip A.; Ritz, John

    2004-01-01

    Geospatial technology refers to a system that is used to acquire, store, analyze, and output data in two or three dimensions. This data is referenced to the earth by some type of coordinate system, such as a map projection. Geospatial systems include thematic mapping, the Global Positioning System (GPS), remote sensing (RS), telemetry, and…

  19. Development of Normalization Factors for Canada and the United States and Comparison with European Factors.

    EPA Science Inventory

    In Life Cycle Assessment (LCA), normalization calculates the magnitude of an impact (midpoint or endpoint) relative to the total effect of a given reference. Using a country or a continent as a reference system is a first step towards global normalization. The goal of this work ...

  20. Development of Normalization Factors for Canada and the United States and Comparison with European Factors

    EPA Science Inventory

    In Life Cycle Assessment (LCA), normalization calculates the magnitude of an impact (midpoint or endpoint) relative to the total effect of a given reference. Using a country or a continent as a reference system is a first step towards global normalization. The goal of this wor...

  1. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  2. Global robust output regulation control for cascaded nonlinear systems using the internal model principle

    NASA Astrophysics Data System (ADS)

    Yu, Jiang-Bo; Zhao, Yan; Wu, Yu-Qiang

    2014-04-01

    This article considers the global robust output regulation problem via output feedback for a class of cascaded nonlinear systems with input-to-state stable inverse dynamics. The system uncertainties depend not only on the measured output but also all the unmeasurable states. By introducing an internal model, the output regulation problem is converted into a stabilisation problem for an appropriately augmented system. The designed dynamic controller could achieve the global asymptotic tracking control for a class of time-varying reference signals for the system output while keeping all other closed-loop signals bounded. It is of interest to note that the developed control approach can be applied to the speed tracking control of the fan speed control system. The simulation results demonstrate its effectiveness.

  3. Venus Global Reference Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.

    2017-01-01

    Venus Global Reference Atmospheric Model (Venus-GRAM) is an engineering-level atmospheric model developed by MSFC that is widely used for diverse mission applications including: Systems design; Performance analysis; Operations planning for aerobraking, Entry, Descent and Landing, and aerocapture; Is not a forecast model; Outputs include density, temperature, pressure, wind components, and chemical composition; Provides dispersions of thermodynamic parameters, winds, and density; Optional trajectory and auxiliary profile input files Has been used in multiple studies and proposals including NASA Engineering and Safety Center (NESC) Autonomous Aerobraking and various Discovery proposals; Released in 2005; Available at: https://software.nasa.gov/software/MFS-32314-1.

  4. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    NASA Technical Reports Server (NTRS)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  5. High order GPS base station support for Rhode Island

    DOT National Transportation Integrated Search

    2001-09-01

    The University of Rhode Island (URI) upgraded its Global Positioning System (GPS) Base Station to provide round-the-clock Internet access to survey-grade (+/- 2 cm accuracy) reference files using a web-based data distribution system. In August 2000, ...

  6. Garbage Collection in a Distributed Object-Oriented System

    NASA Technical Reports Server (NTRS)

    Gupta, Aloke; Fuchs, W. Kent

    1993-01-01

    An algorithm is described in this paper for garbage collection in distributed systems with object sharing across processor boundaries. The algorithm allows local garbage collection at each node in the system to proceed independently of local collection at the other nodes. It requires no global synchronization or knowledge of the global state of the system and exhibits the capability of graceful degradation. The concept of a specialized dump node is proposed to facilitate the collection of inaccessible circular structures. An experimental evaluation of the algorithm is also described. The algorithm is compared with a corresponding scheme that requires global synchronization. The results show that the algorithm works well in distributed processing environments even when the locality of object references is low.

  7. Policy Internationalization, National Variety and Governance: Global Models and Network Power in Higher Education States

    ERIC Educational Resources Information Center

    King, Roger

    2010-01-01

    This article analyzes policy convergence and the adoption of globalizing models by higher education states, a process we describe, following Thatcher (2007), as policy internationalization. This refers to processes found in many policy domains and which increasingly are exemplified in tertiary education systems too. The focus is on governmental…

  8. Global plate motion frames: Toward a unified model

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Müller, R. Dietmar; van der Voo, Rob; Steinberger, Bernhard; Gaina, Carmen

    2008-09-01

    Plate tectonics constitutes our primary framework for understanding how the Earth works over geological timescales. High-resolution mapping of relative plate motions based on marine geophysical data has followed the discovery of geomagnetic reversals, mid-ocean ridges, transform faults, and seafloor spreading, cementing the plate tectonic paradigm. However, so-called "absolute plate motions," describing how the fragments of the outer shell of the Earth have moved relative to a reference system such as the Earth's mantle, are still poorly understood. Accurate absolute plate motion models are essential surface boundary conditions for mantle convection models as well as for understanding past ocean circulation and climate as continent-ocean distributions change with time. A fundamental problem with deciphering absolute plate motions is that the Earth's rotation axis and the averaged magnetic dipole axis are not necessarily fixed to the mantle reference system. Absolute plate motion models based on volcanic hot spot tracks are largely confined to the last 130 Ma and ideally would require knowledge about the motions within the convecting mantle. In contrast, models based on paleomagnetic data reflect plate motion relative to the magnetic dipole axis for most of Earth's history but cannot provide paleolongitudes because of the axial symmetry of the Earth's magnetic dipole field. We analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot, and global moving hot spot), discuss their uncertainties, and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a "hybrid" model for the time period from the assembly of Pangea (˜320 Ma) to the present. For the last 100 Ma we use a moving hot spot reference frame that takes mantle convection into account, and we connect this to a pre-100 Ma global paleomagnetic frame adjusted 5° in longitude to smooth the reference frame transition. Using plate driving force arguments and the mapping of reconstructed large igneous provinces to core-mantle boundary topography, we argue that continental paleolongitudes can be constrained with reasonable confidence.

  9. Global AIDS Reporting-2001 to 2015: Lessons for Monitoring the Sustainable Development Goals.

    PubMed

    Alfvén, T; Erkkola, T; Ghys, P D; Padayachy, J; Warner-Smith, M; Rugg, D; de Lay, P

    2017-07-01

    Since 2001 the UNAIDS Secretariat has retained the responsibility for monitoring progress towards global commitments on HIV/AIDS. Key critical characteristics of the reporting system were assessed for the reporting period from 2004 to 2014 and analyses were undertaken of response rates and core indicator performance. Country submission rates ranged from 102 (53%) Member States in 2004 to 186 (96%) in 2012. There was great variance in response rates for specific indicators, with the highest response rates for treatment-related indicators. The Global AIDS reporting system has improved substantially over time and has provided key trend data on responses to the HIV epidemic, serving as the global accountability mechanism and providing reference data on the global AIDS response. It will be critical that reporting systems continue to evolve to support the monitoring of the Sustainable Development Goals, in view of ending the AIDS epidemic as a public health threat by 2030.

  10. 47 CFR 80.1133 - Transmission of safety communications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Operating... (Reference Information Center) or at the National Archives and Records Administration (NARA). For information...

  11. Space-based augmentation for global navigation satellite systems.

    PubMed

    Grewal, Mohinder S

    2012-03-01

    This paper describes space-based augmentation for global navigation satellite systems (GNSS). Space-based augmentations increase the accuracy and integrity of the GNSS, thereby enhancing users' safety. The corrections for ephemeris, ionospheric delay, and clocks are calculated from reference station measurements of GNSS data in wide-area master stations and broadcast via geostationary earth orbit (GEO) satellites. This paper discusses the clock models, satellite orbit determination, ionospheric delay estimation, multipath mitigation, and GEO uplink subsystem (GUS) as used in the Wide Area Augmentation System developed by the FAA.

  12. Overall properties of the Gaia DR1 reference frame

    NASA Astrophysics Data System (ADS)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration for the future Gaia-ICRF link. The cause of the rather small global rotation between TGAS and Tycho-2 proper motion systems is unclear and needs further investigation. The possible residual rotation in Gaia DR1 reference frame inferred from the Galactic kinematic analysis should be noted and examined in future data release.

  13. Integration of Remotely Sensed Data Into Geospatial Reference Information Databases. Un-Ggim National Approach

    NASA Astrophysics Data System (ADS)

    Arozarena, A.; Villa, G.; Valcárcel, N.; Pérez, B.

    2016-06-01

    Remote sensing satellites, together with aerial and terrestrial platforms (mobile and fixed), produce nowadays huge amounts of data coming from a wide variety of sensors. These datasets serve as main data sources for the extraction of Geospatial Reference Information (GRI), constituting the "skeleton" of any Spatial Data Infrastructure (SDI). Since very different situations can be found around the world in terms of geographic information production and management, the generation of global GRI datasets seems extremely challenging. Remotely sensed data, due to its wide availability nowadays, is able to provide fundamental sources for any production or management system present in different countries. After several automatic and semiautomatic processes including ancillary data, the extracted geospatial information is ready to become part of the GRI databases. In order to optimize these data flows for the production of high quality geospatial information and to promote its use to address global challenges several initiatives at national, continental and global levels have been put in place, such as European INSPIRE initiative and Copernicus Programme, and global initiatives such as the Group on Earth Observation/Global Earth Observation System of Systems (GEO/GEOSS) and United Nations Global Geospatial Information Management (UN-GGIM). These workflows are established mainly by public organizations, with the adequate institutional arrangements at national, regional or global levels. Other initiatives, such as Volunteered Geographic Information (VGI), on the other hand may contribute to maintain the GRI databases updated. Remotely sensed data hence becomes one of the main pillars underpinning the establishment of a global SDI, as those datasets will be used by public agencies or institutions as well as by volunteers to extract the required spatial information that in turn will feed the GRI databases. This paper intends to provide an example of how institutional arrangements and cooperative production systems can be set up at any territorial level in order to exploit remotely sensed data in the most intensive manner, taking advantage of all its potential.

  14. Mapping the global football field: a sociological model of transnational forces within the world game.

    PubMed

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  15. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study.

    PubMed

    Souza, J P; Betran, A P; Dumont, A; de Mucio, B; Gibbs Pickens, C M; Deneux-Tharaux, C; Ortiz-Panozo, E; Sullivan, E; Ota, E; Togoobaatar, G; Carroli, G; Knight, H; Zhang, J; Cecatti, J G; Vogel, J P; Jayaratne, K; Leal, M C; Gissler, M; Morisaki, N; Lack, N; Oladapo, O T; Tunçalp, Ö; Lumbiganon, P; Mori, R; Quintana, S; Costa Passos, A D; Marcolin, A C; Zongo, A; Blondel, B; Hernández, B; Hogue, C J; Prunet, C; Landman, C; Ochir, C; Cuesta, C; Pileggi-Castro, C; Walker, D; Alves, D; Abalos, E; Moises, Ecd; Vieira, E M; Duarte, G; Perdona, G; Gurol-Urganci, I; Takahiko, K; Moscovici, L; Campodonico, L; Oliveira-Ciabati, L; Laopaiboon, M; Danansuriya, M; Nakamura-Pereira, M; Costa, M L; Torloni, M R; Kramer, M R; Borges, P; Olkhanud, P B; Pérez-Cuevas, R; Agampodi, S B; Mittal, S; Serruya, S; Bataglia, V; Li, Z; Temmerman, M; Gülmezoglu, A M

    2016-02-01

    To generate a global reference for caesarean section (CS) rates at health facilities. Cross-sectional study. Health facilities from 43 countries. Thirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10,045,875 women giving birth from 43 countries for model testing. We hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. These models generated probabilities of CS that could be compared with the observed CS rates. We devised a three-step approach to generate the global benchmark of CS rates at health facilities: creation of a multi-country reference population, building mathematical models, and testing these models. Area under the ROC curves, diagnostic odds ratio, expected CS rate, observed CS rate. According to the different versions of the model, areas under the ROC curves suggested a good discriminatory capacity of C-Model, with summary estimates ranging from 0.832 to 0.844. The C-Model was able to generate expected CS rates adjusted for the case-mix of the obstetric population. We have also prepared an e-calculator to facilitate use of C-Model (www.who.int/reproductivehealth/publications/maternal_perinatal_health/c-model/en/). This article describes the development of a global reference for CS rates. Based on maternal characteristics, this tool was able to generate an individualised expected CS rate for health facilities or groups of health facilities. With C-Model, obstetric teams, health system managers, health facilities, health insurance companies, and governments can produce a customised reference CS rate for assessing use (and overuse) of CS. The C-Model provides a customized benchmark for caesarean section rates in health facilities and systems. © 2015 World Health Organization; licensed by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  16. Assessment of second- and third-order ionospheric effects on regional networks: case study in China with longer CMONOC GPS coordinate time series

    NASA Astrophysics Data System (ADS)

    Deng, Liansheng; Jiang, Weiping; Li, Zhao; Chen, Hua; Wang, Kaihua; Ma, Yifang

    2017-02-01

    Higher-order ionospheric (HOI) delays are one of the principal technique-specific error sources in precise global positioning system analysis and have been proposed to become a standard part of precise GPS data processing. In this research, we apply HOI delay corrections to the Crustal Movement Observation Network of China's (CMONOC) data processing (from January 2000 to December 2013) and furnish quantitative results for the effects of HOI on CMONOC coordinate time series. The results for both a regional reference frame and global reference frame are analyzed and compared to clarify the HOI effects on the CMONOC network. We find that HOI corrections can effectively reduce the semi-annual signals in the northern and vertical components. For sites with lower semi-annual amplitudes, the average decrease in magnitude can reach 30 and 10 % for the northern and vertical components, respectively. The noise amplitudes with HOI corrections and those without HOI corrections are not significantly different. Generally, the HOI effects on CMONOC networks in a global reference frame are less obvious than the results in the regional reference frame, probably because the HOI-induced errors are smaller in comparison to the higher noise levels seen when using a global reference frame. Furthermore, we investigate the combined contributions of environmental loading and HOI effects on the CMONOC stations. The largest loading effects on the vertical displacement are found in the mid- to high-latitude areas. The weighted root mean square differences between the corrected and original weekly GPS height time series of the loading model indicate that the mass loading adequately reduced the scatter on the CMONOC height time series, whereas the results in the global reference frame showed better agreements between the GPS coordinate time series and the environmental loading. When combining the effects of environmental loading and HOI corrections, the results with the HOI corrections reduced the scatter on the observed GPS height coordinates better than the height when estimated without HOI corrections, and the combined solutions in the regional reference frame indicate more preferred improvements. Therefore, regional reference frames are recommended to investigate the HOI effects on regional networks.

  17. Precise GPS orbits for geodesy

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1994-01-01

    The Global Positioning System (GPS) has become, in recent years, the main space-based system for surveying and navigation in many military, commercial, cadastral, mapping, and scientific applications. Better receivers, interferometric techniques (DGPS), and advances in post-processing methods have made possible to position fixed or moving receivers with sub-decimeter accuracies in a global reference frame. Improved methods for obtaining the orbits of the GPS satellites have played a major role in these achievements; this paper gives a personal view of the main developments in GPS orbit determination.

  18. The 1991 EOS reference handbook

    NASA Technical Reports Server (NTRS)

    Dokken, David (Editor)

    1991-01-01

    The following topics are covered: (1) The Global Change Research Program; (2) The Earth Observing System (EOS) goal and objectives; (3) primary EOS mission requirements; (4) EOS science; (5) EOS Data and Information System (EOSDIS) architecture; (6) data policy; (7) international cooperation; (8) plans and status; (9) the role of the National Oceanic and Atmospheric Administration; (10) The Global Fellowship Program; (11) management of EOS; (12) mission elements; (13) EOS instruments; (14) interdisciplinary science investigations; (15) points of contact; and (16) acronyms and abbreviations.

  19. GIM-TEC adaptive ionospheric weather assessment and forecast system

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Hernandez-Pajares, M.; Stanislawska, I.

    2013-09-01

    The Ionospheric Weather Assessment and Forecast (IWAF) system is a computer software package designed to assess and predict the world-wide representation of 3-D electron density profiles from the Global Ionospheric Maps of Total Electron Content (GIM-TEC). The unique system products include daily-hourly numerical global maps of the F2 layer critical frequency (foF2) and the peak height (hmF2) generated with the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, upgraded by importing the daily-hourly GIM-TEC as a new model driving parameter. Since GIM-TEC maps are provided with 1- or 2-days latency, the global maps forecast for 1 day and 2 days ahead are derived using an harmonic analysis applied to the temporal changes of TEC, foF2 and hmF2 at 5112 grid points of a map encapsulated in IONEX format (-87.5°:2.5°:87.5°N in latitude, -180°:5°:180°E in longitude). The system provides online the ionospheric disturbance warnings in the global W-index map establishing categories of the ionospheric weather from the quiet state (W=±1) to intense storm (W=±4) according to the thresholds set for instant TEC perturbations regarding quiet reference median for the preceding 7 days. The accuracy of IWAF system predictions of TEC, foF2 and hmF2 maps is superior to the standard persistence model with prediction equal to the most recent ‘true’ map. The paper presents outcomes of the new service expressed by the global ionospheric foF2, hmF2 and W-index maps demonstrating the process of origin and propagation of positive and negative ionosphere disturbances in space and time and their forecast under different scenarios.

  20. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models

    PubMed Central

    Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-01-01

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods. PMID:28672795

  1. A Direct Georeferencing Method for Terrestrial Laser Scanning Using GNSS Data and the Vertical Deflection from Global Earth Gravity Models.

    PubMed

    Osada, Edward; Sośnica, Krzysztof; Borkowski, Andrzej; Owczarek-Wesołowska, Magdalena; Gromczak, Anna

    2017-06-24

    Terrestrial laser scanning is an efficient technique in providing highly accurate point clouds for various geoscience applications. The point clouds have to be transformed to a well-defined reference frame, such as the global Geodetic Reference System 1980. The transformation to the geocentric coordinate frame is based on estimating seven Helmert parameters using several GNSS (Global Navigation Satellite System) referencing points. This paper proposes a method for direct point cloud georeferencing that provides coordinates in the geocentric frame. The proposed method employs the vertical deflection from an external global Earth gravity model and thus demands a minimum number of GNSS measurements. The proposed method can be helpful when the number of georeferencing GNSS points is limited, for instance in city corridors. It needs only two georeferencing points. The validation of the method in a field test reveals that the differences between the classical georefencing and the proposed method amount at maximum to 7 mm with the standard deviation of 8 mm for all of three coordinate components. The proposed method may serve as an alternative for the laser scanning data georeferencing, especially when the number of GNSS points is insufficient for classical methods.

  2. Global Positioning System Use in the Community to Evaluate Improvements in Walking After Revascularization

    PubMed Central

    Gernigon, Marie; Le Faucheur, Alexis; Fradin, Dominique; Noury-Desvaux, Bénédicte; Landron, Cédric; Mahe, Guillaume; Abraham, Pierre

    2015-01-01

    Abstract Revascularization aims at improving walking ability in patients with arterial claudication. The highest measured distance between 2 stops (highest-MDCW), the average walking speed (average-WSCW), and the average stop duration (average-DSCW) can be measured by global positioning system, but their evolution after revascularization is unknown. We included 251 peripheral artery diseased patients with self-reported limiting claudication. The patients performed a 1-hour stroll, recorded by a global positioning system receiver. Patients (n = 172) with confirmed limitation (highest-MDCW <2000m) at inclusion were reevaluated after 6 months. Patients revascularized during the follow-up period were compared with reference patients (ie, with unchanged lifestyle medical or surgical status). Other patients (lost to follow-up or treatment change) were excluded (n = 89). We studied 44 revascularized and 39 reference patients. Changes in highest-MDCW (+442 vs. +13 m) and average-WSCW (+0.3 vs. −0.2 km h−1) were greater in revascularized than in reference patients (both P < 0.01). In contrast, no significant difference in average-DSCW changes was found between the groups. Among the revascularized patients, 13 (29.5%) had a change in average-WSCW, but not in highest-MDCW, greater than the mean + 1 standard deviation of the change observed for reference patients. Revascularization may improve highest-MDCW and/or average-WSCW. This first report of changes in community walking ability in revascularized patients suggests that, beyond measuring walking distances, average-WSCW measurement is essential to monitor these changes. Applicability to other surgical populations remains to be evaluated. Registration: http://www.clinicaltrials.gov/ct2/show/NCT01141361 PMID:25950694

  3. Global positioning system use in the community to evaluate improvements in walking after revascularization: a prospective multicenter study with 6-month follow-up in patients with peripheral arterial disease.

    PubMed

    Gernigon, Marie; Le Faucheur, Alexis; Fradin, Dominique; Noury-Desvaux, Bénédicte; Landron, Cédric; Mahe, Guillaume; Abraham, Pierre

    2015-05-01

    Revascularization aims at improving walking ability in patients with arterial claudication. The highest measured distance between 2 stops (highest-MDCW), the average walking speed (average-WSCW), and the average stop duration (average-DSCW) can be measured by global positioning system, but their evolution after revascularization is unknown.We included 251 peripheral artery diseased patients with self-reported limiting claudication. The patients performed a 1-hour stroll, recorded by a global positioning system receiver. Patients (n = 172) with confirmed limitation (highest-MDCW <2000m) at inclusion were reevaluated after 6 months. Patients revascularized during the follow-up period were compared with reference patients (ie, with unchanged lifestyle medical or surgical status). Other patients (lost to follow-up or treatment change) were excluded (n = 89).We studied 44 revascularized and 39 reference patients. Changes in highest-MDCW (+442 vs. +13 m) and average-WSCW (+0.3 vs. -0.2 km h) were greater in revascularized than in reference patients (both P < 0.01). In contrast, no significant difference in average-DSCW changes was found between the groups. Among the revascularized patients, 13 (29.5%) had a change in average-WSCW, but not in highest-MDCW, greater than the mean + 1 standard deviation of the change observed for reference patients.Revascularization may improve highest-MDCW and/or average-WSCW. This first report of changes in community walking ability in revascularized patients suggests that, beyond measuring walking distances, average-WSCW measurement is essential to monitor these changes. Applicability to other surgical populations remains to be evaluated. http://www.clinicaltrials.gov/ct2/show/NCT01141361.

  4. 47 CFR 80.409 - Station logs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., the Officer of the Navigational Watch, or GMDSS Operator on watch, shall update the embedded position... (vessels subject to the Global Maritime Distress and Safety System (GMDSS) should also refer to subpart W...

  5. 47 CFR 80.409 - Station logs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., the Officer of the Navigational Watch, or GMDSS Operator on watch, shall update the embedded position... (vessels subject to the Global Maritime Distress and Safety System (GMDSS) should also refer to subpart W...

  6. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  7. Position Measurement Standard Evaluation

    DOT National Transportation Integrated Search

    1975-02-01

    The objectives of the Position Measurement Standard Program were to collect navigation data from three DME receivers and a low-frequency GLOBAL Navigation system, and evaluate their relative performance against a reference radar. Flight test data dur...

  8. INTEGRATED INS/GPS NAVIGATION FROM A POPULAR PERSPECTIVE

    DOT National Transportation Integrated Search

    2002-02-13

    Inertial navigation, blended with other navigation aids Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relat...

  9. Terrestrial reference standard sites for postlaunch sensor calibration

    USGS Publications Warehouse

    Teillet, P.M.; Chander, G.

    2010-01-01

    In an era when the number of Earth observation satellites is rapidly growing and measurements from satellite sensors are used to address increasingly urgent global issues, often through synergistic and operational combinations of data from multiple sources, it is imperative that scientists and decision-makers are able to rely on the accuracy of Earth observation data products. The characterization and calibration of these sensors, particularly their relative biases, are vital to the success of the developing integrated Global Earth Observation System of Systems (GEOSS) for coordinated and sustained observations of the Earth. This can only reliably be achieved in the postlaunch environment through the careful use of observations by multiple sensor systems over common, well-characterized terrestrial targets (i.e., on or near the Earth's surface). Through greater access to and understanding of these vital reference standard sites and their use, the validity and utility of information gained from Earth remote sensing will continue to improve. This paper provides a brief overview of the use of reference standard sites for postlaunch sensor radiometric calibration from historical, current, and future perspectives. Emphasis is placed on optical sensors operating in the visible, near-infrared, and shortwave infrared spectral regions.

  10. A Note on the Temporary Misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery

    NASA Technical Reports Server (NTRS)

    Storey, James; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John; Choate, Michael

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2sigma). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  11. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery

    USGS Publications Warehouse

    Storey, James C.; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John L.; Choate, Michael J.

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2σ). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  12. Building National Capacity To Implement National Forest Monitoring System In Africa By GLAD

    NASA Astrophysics Data System (ADS)

    Lola Amani, P. K.

    2017-12-01

    Earth Observation data provide numerous information on the earth and its phenomena from space/satellite. They also offer the ability to compile and analyze information at global or local scales in a timely manner. However, to use them, it is important to develop methods that can enable the extraction of the desired information. Such methods should be robust and consistent enough to be considered for national monitoring systems. At the University of Maryland, the Global Land Analysis and Discovery (GLAD) Laboratory, led by Dr. Hansen, has developed automatic methods using Landsat data that have been applied for the Global Forest Change (GFC) in collaboration with the World Resources Institute (WRI), Google and others to providing information on tree cover loss throughout the global on a yearly basis, and on a daily basis a tree cover loss alert system to improve transparency and accessible at GFW Initiative (Global Forest Watch) website. Following the increasing interest in utilizing the GFC data, the GLAD Laboratory is working closely with national governments of different countries to reinforce their capacities in using the data in the best way and implementing the methodological framework for supporting their national forest monitoring, notification, and reporting (MNV) system. More precisely, the Lab supports step by step the countries in developing their reference emission levels and/or forest reference levels based on the country-specific needs, goals, and requirements, including the definition of the forest. Once in place, the methodology can easily be extended to different applications, such as monitoring the droughts events, etc. Here, we present the work accomplished with the national agencies of some countries in Africa, like Cameroon, Republic of Congo and Madagascar with the support of the Silva-Carbon and USAID-CARPE Programs and WRI. These countries are mainly engaged at different levels of the REDD+ process. Keywords: Earth Observation, Landsat data, Global Forest Change, National Monitoring System, Capacity Building, Africa

  13. Improvements in the Global Reference Atmospheric Model and comparisons with a global 3-D numerical model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Chimonas, George; Cunnold, D. M.

    1989-01-01

    The status of the Global Reference Atmospheric Model (GRAM) and the Mars Global Reference Atmospheric Model (MARS-GRAM) is reviewed. The wavelike perturbations observed in the Viking 1 and 2 surface pressure data, in the Mariner 9 IR spectroscopy data, and in the Viking 1 and 2 lander entry profiles were studied and the results interpreted.

  14. The NASA MSFC Earth Global Reference Atmospheric Model-2007 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F.W.; Justus, C.G.

    2008-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA/Marshall Space Flight Center (MSFC) Global Reference Atmospheric Model (GRAM) was developed in response to the need for a design reference atmosphere that provides complete global geographical variability, and complete altitude coverage (surface to orbital altitudes) as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. A unique feature of GRAM is that, addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations in these atmospheric parameters (e.g. fluctuations due to turbulence and other atmospheric perturbation phenomena). A summary comparing GRAM features to characteristics and features of other reference or standard atmospheric models, can be found Guide to Reference and Standard Atmosphere Models. The original GRAM has undergone a series of improvements over the years with recent additions and changes. The software program is called Earth-GRAM2007 to distinguish it from similar programs for other bodies (e.g. Mars, Venus, Neptune, and Titan). However, in order to make this Technical Memorandum (TM) more readable, the software will be referred to simply as GRAM07 or GRAM unless additional clarity is needed. Section 1 provides an overview of the basic features of GRAM07 including the newly added features. Section 2 provides a more detailed description of GRAM07 and how the model output generated. Section 3 presents sample results. Appendices A and B describe the Global Upper Air Climatic Atlas (GUACA) data and the Global Gridded Air Statistics (GGUAS) database. Appendix C provides instructions for compiling and running GRAM07. Appendix D gives a description of the required NAMELIST format input. Appendix E gives sample output. Appendix F provides a list of available parameters to enable the user to generate special output. Appendix G gives an example and guidance on incorporating GRAM07 as a subroutine in other programs such as trajectory codes or orbital propagation routines.

  15. SIRGAS: the core geodetic infrastructure in Latin America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Sanchez, L.; Brunini, C.; Drewes, H.; Mackern, V.; da Silva, A.

    2013-05-01

    Studying, understanding, and modelling geophysical phenomena, such as global change and geodynamics, require geodetic reference frames with (1) an order of accuracy higher than the magnitude of the effects we want to study, (2) consistency and reliability worldwide (the same accuracy everywhere), and (3) a long-term stability (the same order of accuracy at any time). The definition, realisation, maintenance, and wide-utilisation of the International Terrestrial Reference System (ITRS) are oriented to guarantee a globally unified geometric reference frame with reliability at the mm-level, i.e. the International Terrestrial Reference Frame (ITRF). The densification of the global ITRF in Latin America and The Caribbean is given by SIRGAS (Sistema de Referencia Geocéntrico para Las Américas), primary objective of which is to provide the most precise coordinates in the region. Therefore, SIRGAS is the backbone for all regional projects based on the generation, use, and analysis of geo-referenced data at national as well as at international level. Besides providing the reference for a wide range of scientific applications such as the monitoring of Earth's crust deformations, vertical movements, sea level variations, atmospheric studies, etc., SIRGAS is also the platform for practical applications such as engineering projects, digital administration of geographical data, geospatial data infrastructures, etc. According to this, the present contribution describes the main features of SIRGAS, giving special care to those challenges faced to continue providing the best possible, long-term stable and high-precise reference frame for Latin America and the Caribbean.

  16. An Introduction to the Global Space-based Inter-Calibration System from a EUMETSAT Perspective

    NASA Astrophysics Data System (ADS)

    Wagner, S. C.; Hewison, T.; Roebeling, R. A.; Koenig, M.; Schulz, J.; Miu, P.

    2012-04-01

    The Global Space-based Inter-Calibration System (GSICS) (Goldberg and al. 2011) is an international collaborative effort which aims to monitor, improve and harmonize the quality of observations from operational weather and environmental satellites of the Global Observing System (GOS). GSICS aims at ensuring consistent accuracy among space-based observations worldwide for climate monitoring, weather forecasting, and environmental applications. This is achieved through a comprehensive calibration strategy, which involves monitoring instrument performances, operational inter-calibration of satellite instruments, tying the measurements to absolute references and standards, and recalibration of archived data. A major part of this strategy involves direct comparison of collocated observations from pairs of satellite instruments, which are used to systematically generate calibration functions to compare and correct the calibration of monitored instruments to references. These GSICS Corrections are needed for accurately integrating data from multiple observing systems into both near real-time and re-analysis products, applications and services. This paper gives more insight into the activities carried out by EUMETSAT as a GSICS Processing and Research Centre. Currently these are closely bound to the in-house development and operational implementation of calibration methods for solar and thermal band channels of geostationary and polar-orbiting satellites. They include inter-calibration corrections for Meteosat imagers using reference instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Aqua satellite for solar band channels, the Infrared Atmospheric Sounding Interferometer (IASI) on-board Metop-A and, for historic archive data, the High-resolution InfraRed Sounder (HIRS). Additionally, bias monitoring is routinely performed, allowing users to visualise the calibration accuracy of the instruments in near real-time. These activities are based on principles and protocols defined by the GSICS Research Working Group and Data Management Working Group, which require assessment of the calibration uncertainties to ensure the traceability to community references.

  17. Multi-disciplinary contributions of HartRAO to global geodesy and geodynamics

    NASA Astrophysics Data System (ADS)

    Combrinck, Ludwig

    2015-04-01

    The Hartebeesthoek Radio Astronomy Observatory (South Africa) supports global initiatives in both geodesy and geodynamics through an active programme of science platform provision in Africa, the Atlantic Ocean, Indian Ocean and Antarctica. Our involvement ranges from the installation of tide gauges, Global Navigation Satellite Systems stations, seismometers and accelerometers on remote islands to the installation of radar reflectors in Antarctica which enable accurate, geo-referenced maps of the Antarctic coast line to be made. Currently we also participate in the African VLBI Network (AVN), with the aim to densify not only astronomical observatories in Africa, but to improve the geometry and distribution of advanced geodetic and geophysical equipment to facilitate development of research platforms in Africa, which can be used for geodynamics and related sciences, supporting international projects such as the WEGENER initiative. We present our multi-disciplinary activities during the last decade and sketch the way forward. Participation of Africa in the global arena of astronomy, geodesy, geodynamics and related fields will receive a major boost during the next decade. This is partially due to the development of a component of the Square Kilometre Array (SKA) in Africa but also due to the Global Geodetic Observing System (GGOS) project and the international objectives of higher geodetic accuracies and more stable reference frames. Consequent spinoffs into many disciplines relying on global reference frames and sub-cm positional accuracies stand to benefit and Africa can play a major role in improving both science and network geometries.

  18. Scaling issues in local productivity hotspots in marine ecosystems using remote sensing data: A case study in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Ribera, M.; Gopal, S.

    2014-12-01

    Productivity hotspots are traditionally defined as concentrations of relatively high biomass compared to global reference values. These hotspots often signal atypical processes occurring in a location, and identifying them is a great first step at understanding the complexity inherent in the system. However, identifying local hotspots can be difficult when an overarching global pattern (i.e. spatial autocorrelation) already exists. This problem is particularly apparent in marine ecosystems because values of productivity in near-shore areas are consistently higher than those of the open ocean due to oceanographic processes such as upwelling. In such cases, if the global reference layer used to detect hotspots is too wide, hotspots may be only identified near the coast while missing known concentrations of organisms in offshore waters. On the other hand, if the global reference layer is too small, every single location may be considered a hotspot. We applied spatial and traditional statistics to remote sensing data to determine the optimal reference global spatial scale for identifying marine productivity hotspots in the Gulf of Maine. Our iterative process measured Getis and Ord's local G* statistic at different global scales until the variance of each hotspot was maximized. We tested this process with different full resolution MERIS chlorophyll layers (300m spatial resolution) for the whole Gulf of Maine. We concluded that the optimal global scale depends on the time of the year the remote sensing data was collected, particularly when coinciding with known seasonal phytoplankton blooms. The hotspots found through this process were also spatially heterogeneous in size, with bigger hotspots in areas offshore than in locations inshore. These results may be instructive for both managers and fisheries researchers as they adapt their fisheries management policies and methods to an ecosystem based approach (EBM).

  19. A new governance space for health

    PubMed Central

    Kickbusch, Ilona; Szabo, Martina Marianna Cassar

    2014-01-01

    Global health refers to ‘those health issues which transcend national boundaries and governments and call for actions on the global forces and global flows that determine the health of people’. (Kickbusch 2006) Governance in this trans-national and cross-cutting arena can be analyzed along three political spaces: global health governance, global governance for health, and governance for global health. It is argued that the management of the interface between these three political spaces of governance in the global public health domain is becoming increasingly important in order to move the global health agenda forward. Global health governance refers mainly to those institutions and processes of governance which are related to an explicit health mandate, such as the World Health Organization; global governance for health refers mainly to those institutions and processes of global governance which have a direct and indirect health impact, such as the United Nations, World Trade Organization or the Human Rights Council; governance for global health refers to the institutions and mechanisms established at the national and regional level to contribute to global health governance and/or to governance for global health – such as national global health strategies or regional strategies for global health. It can also refer to club strategies, such as agreements by a group of countries such as the BRICS. In all three political spaces, the involvement of a multitude of state and non-state actors has become the norm – that is why issues of legitimacy, accountability and transparency have moved to the fore. The transnational nature of global health will require the engagement of all actors to produce global public goods for health (GPGH) and to ensure a rules-based and reliably financed global public health domain. PMID:24560259

  20. A new governance space for health.

    PubMed

    Kickbusch, Ilona; Szabo, Martina Marianna Cassar

    2014-01-01

    Global health refers to 'those health issues which transcend national boundaries and governments and call for actions on the global forces and global flows that determine the health of people'. (Kickbusch 2006) Governance in this trans-national and cross-cutting arena can be analyzed along three political spaces: global health governance, global governance for health, and governance for global health. It is argued that the management of the interface between these three political spaces of governance in the global public health domain is becoming increasingly important in order to move the global health agenda forward. Global health governance refers mainly to those institutions and processes of governance which are related to an explicit health mandate, such as the World Health Organization; global governance for health refers mainly to those institutions and processes of global governance which have a direct and indirect health impact, such as the United Nations, World Trade Organization or the Human Rights Council; governance for global health refers to the institutions and mechanisms established at the national and regional level to contribute to global health governance and/or to governance for global health--such as national global health strategies or regional strategies for global health. It can also refer to club strategies, such as agreements by a group of countries such as the BRICS. In all three political spaces, the involvement of a multitude of state and non-state actors has become the norm--that is why issues of legitimacy, accountability and transparency have moved to the fore. The transnational nature of global health will require the engagement of all actors to produce global public goods for health (GPGH) and to ensure a rules-based and reliably financed global public health domain.

  1. Reference set for performance testing of pediatric vaccine safety signal detection methods and systems.

    PubMed

    Brauchli Pernus, Yolanda; Nan, Cassandra; Verstraeten, Thomas; Pedenko, Mariia; Osokogu, Osemeke U; Weibel, Daniel; Sturkenboom, Miriam; Bonhoeffer, Jan

    2016-12-12

    Safety signal detection in spontaneous reporting system databases and electronic healthcare records is key to detection of previously unknown adverse events following immunization. Various statistical methods for signal detection in these different datasources have been developed, however none are geared to the pediatric population and none specifically to vaccines. A reference set comprising pediatric vaccine-adverse event pairs is required for reliable performance testing of statistical methods within and across data sources. The study was conducted within the context of the Global Research in Paediatrics (GRiP) project, as part of the seventh framework programme (FP7) of the European Commission. Criteria for the selection of vaccines considered in the reference set were routine and global use in the pediatric population. Adverse events were primarily selected based on importance. Outcome based systematic literature searches were performed for all identified vaccine-adverse event pairs and complemented by expert committee reports, evidence based decision support systems (e.g. Micromedex), and summaries of product characteristics. Classification into positive (PC) and negative control (NC) pairs was performed by two independent reviewers according to a pre-defined algorithm and discussed for consensus in case of disagreement. We selected 13 vaccines and 14 adverse events to be included in the reference set. From a total of 182 vaccine-adverse event pairs, we classified 18 as PC, 113 as NC and 51 as unclassifiable. Most classifications (91) were based on literature review, 45 were based on expert committee reports, and for 46 vaccine-adverse event pairs, an underlying pathomechanism was not plausible classifying the association as NC. A reference set of vaccine-adverse event pairs was developed. We propose its use for comparing signal detection methods and systems in the pediatric population. Published by Elsevier Ltd.

  2. New International Agreements About Space Techniques Among Argentina, China and France

    NASA Astrophysics Data System (ADS)

    Pacheco, A. M.; Podestá, R.; Actis, E.; Adarvez, S.; Quinteros, J.; Li, J.; Saunier, J.; Podestá, F.; Ramos, F.; Aguilera, J.; Sosa, G.; Hauser, D.

    2018-01-01

    The International Earth Rotation and Reference Systems (IERS) is in charge of defining and materializing celestial reference systems (ICRS - ICRF) and terrestrial reference systems (ITRS - ITRF). In order to perform this task it uses data from the following techniques: Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite System (GNSS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). Nowadays, the Observatorio Astronómico Félix Aguilar (OAFA) has two instruments with these advanced techniques: SLR and a permanent GNSS station. In the nearby future a 40 m diameter radio telescope will be available that will be operated in VLBI mode along with a DORIS buoy which will be co-localized with a SLR telescope and GNSS antennas. In this way OAFA will become a zero station, first class, of the ITRF 2014 frame.

  3. GPS Block 2R Time Standard Assembly (TSA) architecture

    NASA Technical Reports Server (NTRS)

    Baker, Anthony P.

    1990-01-01

    The underlying philosophy of the Global Positioning System (GPS) 2R Time Standard Assembly (TSA) architecture is to utilize two frequency sources, one fixed frequency reference source and one system frequency source, and to couple the system frequency source to the reference frequency source via a sample data loop. The system source is used to provide the basic clock frequency and timing for the space vehicle (SV) and it uses a voltage controlled crystal oscillator (VCXO) with high short term stability. The reference source is an atomic frequency standard (AFS) with high long term stability. The architecture can support any type of frequency standard. In the system design rubidium, cesium, and H2 masers outputting a canonical frequency were accommodated. The architecture is software intensive. All VCXO adjustments are digital and are calculated by a processor. They are applied to the VCXO via a digital to analog converter.

  4. Impact of seasonal and postglacial surface displacement on global reference frames

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Böhm, Johannes; King, Matt; Memin, Anthony; Shabala, Stanislav; Watson, Christopher

    2014-05-01

    The calculation of actual station positions requires several corrections which are partly recommended by the International Earth Rotation and Reference Systems Service (IERS) Conventions (e.g., solid Earth tides and ocean tidal loading) as well as other corrections, e.g. accounting for hydrology and atmospheric loading. To investigate the pattern of omitted non-linear seasonal motion we estimated empirical harmonic models for selected stations within a global solution of suitable Very Long Baseline Interferometry (VLBI) sessions as well as mean annual models by stacking yearly time series of station positions. To validate these models we compare them to displacement series obtained from the Gravity Recovery and Climate Experiment (GRACE) data and to hydrology corrections determined from global models. Furthermore, we assess the impact of the seasonal station motions on the celestial reference frame as well as on Earth orientation parameters derived from real and also artificial VLBI observations. In the second part of the presentation we apply vertical rates of the ICE-5G_VM2_2012 vertical land movement grid on vertical station velocities. We assess the impact of postglacial uplift on the variability in the scale given different sampling of the postglacial signal in time and hence on the uncertainty in the scale rate of the estimated terrestrial reference frame.

  5. GLOBAL REFERENCE ATMOSPHERIC MODELS FOR AEROASSIST APPLICATIONS

    NASA Technical Reports Server (NTRS)

    Duvall, Aleta; Justus, C. G.; Keller, Vernon W.

    2005-01-01

    Aeroassist is a broad category of advanced transportation technology encompassing aerocapture, aerobraking, aeroentry, precision landing, hazard detection and avoidance, and aerogravity assist. The eight destinations in the Solar System with sufficient atmosphere to enable aeroassist technology are Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Saturn's moon Titan. Engineering-level atmospheric models for five of these targets - Earth, Mars, Titan, Neptune, and Venus - have been developed at NASA's Marshall Space Flight Center. These models are useful as tools in mission planning and systems analysis studies associated with aeroassist applications. The series of models is collectively named the Global Reference Atmospheric Model or GRAM series. An important capability of all the models in the GRAM series is their ability to simulate quasi-random perturbations for Monte Carlo analysis in developing guidance, navigation and control algorithms, for aerothermal design, and for other applications sensitive to atmospheric variability. Recent example applications are discussed.

  6. Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruddick, R.; Twilley, B.

    2016-03-01

    This station formed part of the Australian Regional GPS Network (ARGN) and South Pacific Regional GPS Network (SPRGN), which is a network of continuous GPS stations operating within Australia and its Territories (including Antarctica) and the Pacific. These networks support a number of different science applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming.

  7. Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for green water flows.

    PubMed

    Núñez, Montserrat; Pfister, Stephan; Roux, Philippe; Antón, Assumpció

    2013-01-01

    This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). This was an issue that LCA had not tackled before. The approach, which is applied during the life cycle inventory phase (LCI), consists of quantifying the net change in the evapo(transpi)ration of the production system compared to the natural reference situation. Potential natural vegetation (PNV) is used as the natural reference situation. In order to apply the method, we estimated PNV evapotranspiration adapted to local biogeographic conditions, on global dry lands, where soil-water consumption impacts can be critical. Values are reported at different spatial aggregation levels: 10-arcmin global grid, ecoregions (501 units), biomes (14 units), countries (124 units), continents, and a global average, to facilitate the assessment for different spatial information detail levels available in the LCI. The method is intended to be used in rain-fed agriculture and rainwater harvesting contexts, which includes direct soil moisture uptake by plants and rainwater harvested and then reused in production systems. The paper provides the necessary LCI method and data for further development of impact assessment models and characterization factors to evaluate the environmental effects of the net change in evapo(transpi)ration.

  8. Global reproduction and transformation of science education

    NASA Astrophysics Data System (ADS)

    Tobin, Kenneth

    2011-03-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and derivative sensibilities, including standards, competition, and accountability systems, that mediate enacted curricula. I investigate these referents in relation to science education in two geographically and temporally discrete contexts Western Australia in the 1960s and 1970s and more recently in an inner city high school in the US. In so doing I problematize some of the taken for granted aspects of science education, including holding teachers responsible for establishing and maintaining control over students, emphasizing competition between individuals and between collectives such as schools, school districts and countries, and holding teachers and school leaders accountable for student achievement.

  9. Global References, Local Translation: Adaptation of the Bologna Process Degree Structure and Credit System at Universities in Cameroon

    ERIC Educational Resources Information Center

    Eta, Elizabeth Agbor; Vubo, Emmanuel Yenshu

    2016-01-01

    This article uses temporal comparison and thematic analytical approaches to analyse text documents and interviews, examining the adaptation of the Bologna Process degree structure and credit system in two sub-systems of education in Cameroon: the Anglo-Saxon and the French systems. The central aim is to verify whether such adaptation has replaced,…

  10. A Navigation Reference System (NRS) Using Global Positioning System (GPS) Aiding

    DTIC Science & Technology

    1991-03-01

    1M0 WPAFB OH 45433- 8583 AI/EEG9M0 9. SPONSORINM/MONITORING AGENCY NAMI(S) AND ADDRESS(ES) 10. SPONSORING/I MONITORINA AGENCY REPORT NUMBER 6585th...60 Re .100 ISO ."-150 ’ , I • . . . , 0 2000 4000 6000 8000 Time (eec) (a) 3 S.. ......................S 1

  11. Theory and Realization of Global Terrestrial Reference Systems

    NASA Technical Reports Server (NTRS)

    Ma, C.; Bolotin, S.; Gipson, J.; Gordon, D.; Le Bail, K.; MacMillan, D.

    2010-01-01

    Comparison of realizations of the terrestrial reference frame. IGN and DGFI both generated realizations of the terrestrial reference frame under the auspices of the IERS from combination of the same space geodetic data. We examined both results for VLBI sites using the full geodetic VLBI data set with respect to site positions and velocities and time series of station positions, baselines and Earth orientation parameters. One of the difficulties encountered was matching episodic breaks and periods of non-linear motion of the two realizations with the VLBI models. Our analysis and conclusions will be discussed.

  12. Understanding the impact of global trade liberalization on health systems pursuing universal health coverage.

    PubMed

    Missoni, Eduardo

    2013-01-01

    In the context of reemerging universalistic approaches to health care, the objective of this article was to contribute to the discussion by highlighting the potential influence of global trade liberalization on the balance between health demand and the capacity of health systems pursuing universal health coverage (UHC) to supply adequate health care. Being identified as a defining feature of globalization affecting health, trade liberalization is analyzed as a complex and multidimensional influence on the implementation of UHC. The analysis adopts a systems-thinking approach and refers to the six building blocks of World Health Organization's current "framework for action," emphasizing their interconnectedness. While offering new opportunities to increase access to health information and care, in the absence of global governance mechanisms ensuring adequate health protection and promotion, global trade tends to have negative effects on health systems' capacity to ensure UHC, both by causing higher demand and by interfering with the interconnected functioning of health systems' building blocks. The prevention of such an impact and the effective implementation of UHC would highly benefit from a more consistent commitment and stronger leadership by the World Health Organization in protecting health in global policymaking fora in all sectors. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  13. How directions of route descriptions influence orientation specificity: the contribution of spatial abilities.

    PubMed

    Meneghetti, Chiara; Muffato, Veronica; Varotto, Diego; De Beni, Rossana

    2017-03-01

    Previous studies found mental representations of route descriptions north-up oriented when egocentric experience (given by the protagonist's initial view) was congruent with the global reference system. This study examines: (a) the development and maintenance of representations derived from descriptions when the egocentric and global reference systems are congruent or incongruent; and (b) how spatial abilities modulate these representations. Sixty participants (in two groups of 30) heard route descriptions of a protagonist's moves starting from the bottom of a layout and headed mainly northwards (SN description) in one group, and headed south from the top (NS description, the egocentric view facing in the opposite direction to the canonical north) in the other. Description recall was tested with map drawing (after hearing the description a first and second time; i.e. Time 1 and 2) and South-North (SN) or North-South (NS) pointing tasks; and spatial objective tasks were administered. The results showed that: (a) the drawings were more rotated in NS than in SN descriptions, and performed better at Time 2 than at Time 1 for both types of description; SN pointing was more accurate than NS pointing for the SN description, while SN and NS pointing accuracy did not differ for the NS description; (b) spatial (rotation) abilities were related to recall accuracy for both types of description, but were more so for the NS ones. Overall, our results showed that the way in which spatial information is conveyed (with/without congruence between the egocentric and global reference systems) and spatial abilities influence the development and maintenance of mental representations.

  14. Evaluation of various LandFlux evapotranspiration algorithms using the LandFlux-EVAL synthesis benchmark products and observational data

    NASA Astrophysics Data System (ADS)

    Michel, Dominik; Hirschi, Martin; Jimenez, Carlos; McCabe, Mathew; Miralles, Diego; Wood, Eric; Seneviratne, Sonia

    2014-05-01

    Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which can not be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). Currently, a multi-decadal global reference heat flux data set for ET at the land surface is being developed within the LandFlux initiative of the Global Energy and Water Cycle Experiment (GEWEX). This LandFlux v0 ET data set comprises four ET algorithms forced with a common radiation and surface meteorology. In order to estimate the agreement of this LandFlux v0 ET data with existing data sets, it is compared to the recently available LandFlux-EVAL synthesis benchmark product. Additional evaluation of the LandFlux v0 ET data set is based on a comparison to in situ observations of a weighing lysimeter from the hydrological research site Rietholzbach in Switzerland. These analyses serve as a test bed for similar evaluation procedures that are envisaged for ESA's WACMOS-ET initiative (http://wacmoset.estellus.eu). Reference: Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17(10): 3707-3720.

  15. Ionospheric Simulation System for Satellite Observations and Global Assimilative Modeling Experiments (ISOGAME)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Mannucci, Anthony J.; Verkhoglyadova, Olga P.; Stephens, Philip; Wilson, Brian D.; Akopian, Vardan; Komjathy, Attila; Lijima, Byron A.

    2013-01-01

    ISOGAME is designed and developed to assess quantitatively the impact of new observation systems on the capability of imaging and modeling the ionosphere. With ISOGAME, one can perform observation system simulation experiments (OSSEs). A typical OSSE using ISOGAME would involve: (1) simulating various ionospheric conditions on global scales; (2) simulating ionospheric measurements made from a constellation of low-Earth-orbiters (LEOs), particularly Global Navigation Satellite System (GNSS) radio occultation data, and from ground-based global GNSS networks; (3) conducting ionospheric data assimilation experiments with the Global Assimilative Ionospheric Model (GAIM); and (4) analyzing modeling results with visualization tools. ISOGAME can provide quantitative assessment of the accuracy of assimilative modeling with the interested observation system. Other observation systems besides those based on GNSS are also possible to analyze. The system is composed of a suite of software that combines the GAIM, including a 4D first-principles ionospheric model and data assimilation modules, an Internal Reference Ionosphere (IRI) model that has been developed by international ionospheric research communities, observation simulator, visualization software, and orbit design, simulation, and optimization software. The core GAIM model used in ISOGAME is based on the GAIM++ code (written in C++) that includes a new high-fidelity geomagnetic field representation (multi-dipole). New visualization tools and analysis algorithms for the OSSEs are now part of ISOGAME.

  16. Production of synthetic winds for the Global Reference Atmosphere Model (GRAM)

    DOT National Transportation Integrated Search

    2010-12-15

    The Aerospace Corporation was tasked by the Volpe National Transportation systems Center to provide technical support to the Federal Aviation Administration, Office of Commercial Space Transportation (FAA/AST), in developing a method based on Princip...

  17. Coordination and Integration of Global Ocean Observing through JCOMM

    NASA Astrophysics Data System (ADS)

    Legler, D. M.; Meldrum, D. T.; Hill, K. L.; Charpentier, E.

    2016-02-01

    The primary objective of the JCOMM Observations Coordination Group (OCG) is to provide technical coordination to implement fully integrated ocean observing system across the entire marine meteorology and oceanographic community. JCOMM OCG works in partnership with the Global Ocean Observing System, , which focusses on setting observing system requirements and conducting evalutions. JCOMM OCG initially focused on major global observing networks (e.g. Argo profiling floats, moored buoys, ship based observations, sea level stations, reference sites, etc), and is now expanding its horizon in recognition of new observing needs and new technologies/networks (e.g. ocean gliders). Over the next five years the JCOMM OCG is focusing its attention on integration and coordination in four major areas: observing network implementation particularly in response to integrated ocean observing requirements; observing system monitoring and metrics; standards and best practices; and improving integrated data management and access. This presentation will describe the scope and mission of JCOMM OCG; summarize the state of the global ocean observing system; highlight recent successes and resources for the research, prediction, and assessment communities; summarize our plans for the next several years; and suggest engagement opportunities.

  18. Where Creativity and Innovation are much Needed Fuels

    NASA Astrophysics Data System (ADS)

    Loreto, Vittorio

    Our societies are being thoroughly transformed by the pervasive role technology is playing in our culture and everyday life. Nowadays the term techno-social systems is adopted to quickly refer to social systems in which the technology entangles, in an original and unpredictable way, cognitive, behavioral, and social aspects of human beings. This revolution does not come without a cost and in our complex world new global challenges always emerge that call for new paradigms and original thinking: climate change, global financial crises, global pandemics, growth of cities, urbanization, and migration patterns. In this framework we progressively face the need to increase the number of people able to imagine original and valuable solutions to sustain large human societies safely and prosperously...

  19. The Global GNSS, SLR, VLBI, and DORIS Networks and their Support of GGOS: IGS+ILRS+IVS+IDS

    NASA Technical Reports Server (NTRS)

    Noll, Carey

    2008-01-01

    The global network of the International GNSS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International DORIS Service (IDS) are part of the ground-based infrastructure for GGOS. The observations obtained from these global networks provide for the determination and maintenance of the International Terrestrial Reference Frame (ITRF), an accurate set of positions and velocities that provides a stable coordinate system allowing scientists ts to link measurements over space and time. Many of these sites offer co-location of two or more techniques. Co-location provides integration of technique-specific networks into the ITRF as well as an assessment/validation of the quality and accuracy of the resulting measurements. As of fall 2008, these networks consisted of 410 GNSS sites, 42 laser ranging sites, 45 VLBI sites, and 58 DORIS sites. This poster will illustrate the global coverage of these networks, highlighting inter-technique co-locations, and show the importance of these networks 60 the underlying goals of GGOS including providing the observational basis to maintain a stable, accurate, global reference frame.

  20. Status of NGS CORS Network and Its Contribution to the GGOS Infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Haw, D.; Sun, L.

    2017-12-01

    Recent advancement of Satellite Geodesy techniques can now contribute to the global frame realization needed to improve worldwide accuracies. These techniques rely on coordinates computed using continuously observed GPS data and corresponding satellite orbits. The GPS-based reference system continues to depend on the physical stability of a ground-based network of points as the primary foundation for these observations. NOAA's National Geodetic Survey (NGS) has been operating Continuously Operating Reference Stations (CORS) to provide direct access to the National Spatial Reference System (NSRS). By virtue of NGS' scientific reputation and leadership in national and international geospatial issues, NGS has determined to increase its participation in the maintenance of the U.S. component of the global GPS tracking network in order to realize a long-term stable national terrestrial reference frame. NGS can do so by leveraging its national leadership role coupled with NGS' scientific expertise, in designating and upgrading a subset of the current tracking network for this purpose. This subset of stations must have the highest operational standards to serve the dual functions: being the U.S. contribution to the international frame, along with providing the link to the national datum. These stations deserve special attention to ensure that the highest possible levels of quality and stability are maintained. To meet this need, NGS is working with the international scientific groups to add and designate these reference stations based on scientific merit such as: colocation with other geodetic techniques, geographic area, and monumentation stability.

  1. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2004-01-01

    The few millimeter per year level accuracy of radial global velocity estimates with the Global Positioning System (GPS) is at least an order of magnitude poorer than the accuracy of horizontal global motions. An improvement in the accuracy of radial global velocities would have a very positive impact on a number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. GPS error sources relevant to this project can be classified in two broad categories: (1) those related to the analysis of the GPS phase observable, and (2) those related to the combination of the positions and velocities of a set of globally distributed stations as determined from the analysis of GPS data important aspect in the first category include the effect on vertical rate estimates due to standard analysis choices, such as orbit modeling, network geometry, ambiguity resolution, as well as errors in models (or simply the lack of models) for clocks, multipath, phase-center variations, atmosphere, and solid-Earth tides. The second category includes the possible methods of combining and defining terrestrial reference flames for determining vertical velocities in a global scale. The latter has been the subject of our research activities during this reporting period.

  2. RDTC [Restricted Data Transmission Controller] global variable definitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grambihler, A.J.; O`Callaghan, P.B.

    The purpose of the Restricted Data Transmission Controller (RDTC) is to demonstrate a methodology for transmitting data between computers which have different levels of classification. The RDTC does this by logically filtering the data being transmitted between the two computers. This prototype is set up to filter data from the classified computer so that only numeric data is passed to the unclassified computer. The RDTC allows all data from the unclassified computer to be sent to the classified computer. The classified system is referred to as LUA and the unclassified system is referred to as LUB. 9 tabs.

  3. Spatial database for a global assessment of undiscovered copper resources: Chapter Z in Global mineral resource assessment

    USGS Publications Warehouse

    Dicken, Connie L.; Dunlap, Pamela; Parks, Heather L.; Hammarstrom, Jane M.; Zientek, Michael L.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.

    2016-07-13

    As part of the first-ever U.S. Geological Survey global assessment of undiscovered copper resources, data common to several regional spatial databases published by the U.S. Geological Survey, including one report from Finland and one from Greenland, were standardized, updated, and compiled into a global copper resource database. This integrated collection of spatial databases provides location, geologic and mineral resource data, and source references for deposits, significant prospects, and areas permissive for undiscovered deposits of both porphyry copper and sediment-hosted copper. The copper resource database allows for efficient modeling on a global scale in a geographic information system (GIS) and is provided in an Esri ArcGIS file geodatabase format.

  4. Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala Space Observatory

    NASA Astrophysics Data System (ADS)

    Lösler, Michael; Haas, Rüdiger; Eschelbach, Cornelia

    2013-08-01

    The Global Geodetic Observing System (GGOS) requires sub-mm accuracy, automated and continual determinations of the so-called local tie vectors at co-location stations. Co-location stations host instrumentation for several space geodetic techniques and the local tie surveys involve the relative geometry of the reference points of these instruments. Thus, these reference points need to be determined in a common coordinate system, which is a particular challenge for rotating equipment like radio telescopes for geodetic Very Long Baseline Interferometry. In this work we describe a concept to achieve automated and continual determinations of radio telescope reference points with sub-mm accuracy. We developed a monitoring system, including Java-based sensor communication for automated surveys, network adjustment and further data analysis. This monitoring system was tested during a monitoring campaign performed at the Onsala Space Observatory in the summer of 2012. The results obtained in this campaign show that it is possible to perform automated determination of a radio telescope reference point during normal operations of the telescope. Accuracies on the sub-mm level can be achieved, and continual determinations can be realized by repeated determinations and recursive estimation methods.

  5. 33 CFR 169.15 - Incorporation by reference: Where can I get a copy of the publications mentioned in this part?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... inspection at the National Archives and Records Administration (NARA). For information on the availability of... Radio Equipment Forming Part of the Global Maritime Distress and Safety System (GMDSS) and for...

  6. Design Document for Differential GPS Ground Reference Station Pseudorange Correction Generation Algorithm

    DOT National Transportation Integrated Search

    1986-12-01

    The algorithms described in this report determine the differential corrections to be broadcast to users of the Global Positioning System (GPS) who require higher accuracy navigation or position information than the 30 to 100 meters that GPS normally ...

  7. Hybrid Co-Evolutionary Motion Planning via Visibility-Based Repair

    NASA Technical Reports Server (NTRS)

    Dozier, Gerry; McCullough, Shaun; Brown, Edward, Jr.; Homaifar, Abdollah; Bikdash, Mar-wan

    1997-01-01

    This paper introduces a hybrid co-evolutionary system for global motion planning within unstructured environments. This system combines the concept of co-evolutionary search along with a concept that we refer to as the visibility-based repair to form a hybrid which quickly transforms infeasible motions into feasible ones. Also, this system makes use of a novel representation scheme for the obstacles within an environment. Our hybrid evolutionary system differs from other evolutionary motion planners in that (1) more emphasis is placed on repairing infeasible motions to develop feasible motions rather than using simulated evolution exclusively as a means of discovering feasible motions, (2) a continuous map of the environment is used rather than a discretized map, and (3) it develops global motion plans for multiple mobile destinations by co-evolving populations of sub-global motion plans. In this paper, we demonstrate the effectiveness of this system by using it to solve two challenging motion planning problems where multiple targets try to move away from a point robot.

  8. Toward a Global 1/25deg HYCOM Ocean Prediction System with Tides

    DTIC Science & Technology

    2009-01-01

    global, regional, and coastal applications. Figure 1 shows the cross-vertical section of the zonal baroclinic velocity after 5 days for two of the...Lorenzo et al., 2003). Figure 1: Snapshots (~4.7 days) of cross-vertical section of zonal baroclinic velocity for HYCOM (left panels) and ROMS...MITgcm, we used two idealized configurations: 1) the well known lock exchange problem (Haidvogel and Beckman, 1999) as a reference and 2) the pure

  9. Distributed Arrays and Signal Processing for the TechSat21 Space-Based Radar

    DTIC Science & Technology

    2009-04-01

    lIlustrating the derivation of minimum aperture size and coherent integration time ............. 25 B 4. Global coordinate system and satellite-based...work of Dr. Robert Mailloux. Dr. Peter Franchi . and Dr. Scott Santarelli. VII Summary The TechSat2l space-based radar concept, suggested by AFRUVS...Linearization for small motions around a reference point in a global circular orbit leads to the Hill equations, derived in 1878, and alternatively named

  10. Strategic Mobility 21. Service Oriented Architecture (SOA) Reference Model - Global Transportation Management System Architecture

    DTIC Science & Technology

    2009-10-07

    SECTION A. BUSINESS ENVIRONMENT 1 INTRODUCTION The Strategic Mobility 21 (SM21) program is currently in the process of developing the Joint...Platform ( BPP ) which enables the ability to rapidly compose new business processes and expand the core TMS feature-set to adapt to the challenges...Reference: Strategic Mobility 21 Contract N00014-06-C-0060 Dear Paul, In accordance with the requirements of referenced contract, we are pleased to

  11. The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti.

    PubMed

    Monaghan, A J; Sampson, K M; Steinhoff, D F; Ernst, K C; Ebi, K L; Jones, B; Hayden, M H

    2018-02-01

    The mosquito Aedes (Ae). aegypti transmits the viruses that cause dengue and chikungunya, two globally-important vector-borne diseases. We investigate how choosing alternate emissions and/or socioeconomic pathways may modulate future human exposure to Ae. aegypti . Occurrence patterns for Ae. aegypti for 2061-2080 are mapped globally using empirically downscaled air temperature and precipitation projections from the Community Earth System Model, for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios. Population growth is quantified using gridded global population projections consistent with two Shared Socioeconomic Pathways (SSPs), SSP3 and SSP5. Change scenarios are compared to a 1950-2000 reference period. A global land area of 56.9 M km 2 is climatically suitable for Ae. aegypti during the reference period, and is projected to increase by 8% (RCP4.5) to 13% (RCP8.5) by 2061-2080. The annual average number of people exposed globally to Ae. aegypti for the reference period is 3794 M, a value projected to statistically significantly increase by 298-460 M (8-12%) by 2061-2080 if only climate change is considered, and by 4805-5084 M (127-134%) for SSP3 and 2232-2483 M (59-65%) for SSP5 considering both climate and population change (lower and upper values of each range represent RCP4.5 and RCP8.5 respectively). Thus, taking the lower-emissions RCP4.5 pathway instead of RCP8.5 may mitigate future human exposure to Ae. aegypti globally, but the effect of population growth on exposure will likely be larger. Regionally, Australia, Europe and North America are projected to have the largest percentage increases in human exposure to Ae. aegypti considering only climate change.

  12. Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurable target

    NASA Astrophysics Data System (ADS)

    Xia, Renbo; Hu, Maobang; Zhao, Jibin; Chen, Songlin; Chen, Yueling

    2018-06-01

    Multi-camera vision systems are often needed to achieve large-scale and high-precision measurement because these systems have larger fields of view (FOV) than a single camera. Multiple cameras may have no or narrow overlapping FOVs in many applications, which pose a huge challenge to global calibration. This paper presents a global calibration method for multi-cameras without overlapping FOVs based on photogrammetry technology and a reconfigurable target. Firstly, two planar targets are fixed together and made into a long target according to the distance between the two cameras to be calibrated. The relative positions of the two planar targets can be obtained by photogrammetric methods and used as invariant constraints in global calibration. Then, the reprojection errors of target feature points in the two cameras’ coordinate systems are calculated at the same time and optimized by the Levenberg–Marquardt algorithm to find the optimal solution of the transformation matrix between the two cameras. Finally, all the camera coordinate systems are converted to the reference coordinate system in order to achieve global calibration. Experiments show that the proposed method has the advantages of high accuracy (the RMS error is 0.04 mm) and low cost and is especially suitable for on-site calibration.

  13. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brent Dixon

    Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less

  14. Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target

    NASA Astrophysics Data System (ADS)

    Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.

    2018-01-01

    The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove variable system delays. The main motivation for the newly established central reference target, locked to the station clock, is the combination of all space geodetic instruments at a single reference point at the observatory. On top of that it provides the unique capability to perform a closure measurement based on the observation of time.

  15. Subjective Social Status and Well-Being: The Role of Referent Abstraction.

    PubMed

    Haught, Heather M; Rose, Jason; Geers, Andrew; Brown, Jill A

    2015-01-01

    Subjective social status (SSS) has been shown to predict well-being and mental health, above and beyond objective social status (OSS). However, little is known about the factors that moderate this relationship. Two studies explored whether the link between SSS and well-being varied depending upon the referent used for comparison in SSS judgments. Participants judged their well-being and SSS in comparison to referents that varied in abstraction. A confirmatory factor analysis on SSS judgments yielded two factors: (a) SSS perceptions toward global referents and (b) SSS perceptions toward local referents. SSS relative to a global referent was a better predictor of depression (Studies 1 and 2), life satisfaction (Studies 1 and 2), and self-esteem (Study 2) than SSS relative to a local referent. These findings have theoretical implications for understanding how people differentiate between local vs. global referents and practical implications for status-related health disparities.

  16. Differential GPS for air transport: Status

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    1993-01-01

    The presentation presents background on what the Global Navigation Satellite System (GNSS) is, desired target dates for initial GNSS capabilities for aircraft operations, and a description of differential GPS (Global Positioning System). The presentation also presents an overview of joint flight tests conducted by LaRC and Honeywell on an integrated differential GPS/inertial reference unit (IRU) navigation system. The overview describes the system tested and the results of the flight tests. The last item presented is an overview of a current grant with Ohio University from LaRC which has the goal of developing a precision DGPS navigation system based on interferometry techniques. The fundamentals of GPS interferometry are presented and its application to determine attitude and heading and precision positioning are shown. The presentation concludes with the current status of the grant.

  17. Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013

    NASA Astrophysics Data System (ADS)

    Ladstädter, F.; Steiner, A. K.; Schwärz, M.; Kirchengast, G.

    2015-04-01

    Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Overall very good agreement is found between all three data sets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO, up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.

  18. Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN over 2002 to 2013

    NASA Astrophysics Data System (ADS)

    Ladstädter, F.; Steiner, A. K.; Schwärz, M.; Kirchengast, G.

    2014-11-01

    Observations from the GPS radio occultation (GPSRO) satellite technique and from the newly established GCOS Reference Upper Air Network (GRUAN) are both candidates to serve as reference observations in the Global Climate Observing System (GCOS). Such reference observations are key to decrease existing uncertainties in upper-air climate research. There are now more than 12 years of data available from GPSRO, with the recognized properties high accuracy, global coverage, high vertical resolution, and long-term stability. These properties make GPSRO a suitable choice for comparison studies with other upper-air observational systems. The GRUAN network consists of reference radiosonde ground stations (16 at present), which adhere to the GCOS climate monitoring principles. In this study, we intercompare GPSRO temperature and humidity profiles and Vaisala RS90/92 data from the "standard" global radiosonde network over the whole 2002 to 2013 time frame. Additionally, we include the first years of GRUAN data (using Vaisala RS92), available since 2009. GPSRO profiles which occur within 3 h and 300 km of radiosonde launches are used. Very good agreement is found between all three datasets with temperature differences usually less than 0.2 K. In the stratosphere above 30 hPa, temperature differences are larger but still within 0.5 K. Day/night comparisons with GRUAN data reveal small deviations likely related to a warm bias of the radiosonde data at high altitudes, but also residual errors from the GPSRO retrieval process might play a role. Vaisala RS90/92 specific humidity exhibits a dry bias of up to 40% in the upper troposphere, with a smaller bias at lower altitudes within 15%. GRUAN shows a marked improvement in the bias characteristics, with less than 5% difference to GPSRO up to 300 hPa. GPSRO dry temperature and physical temperature are validated using radiosonde data as reference. We find that GPSRO provides valuable long-term stable reference observations with well-defined error characteristics for climate applications and for anchoring other upper-air measurements.

  19. Incorporation of Carrier Phase Global Positioning System Measurements into the Navigation Reference System for Improved Performance

    DTIC Science & Technology

    1993-12-01

    5-6 5.6.1 Large Cycle Slip Simulation ............................. 5-7 5.6.2 Small Cycle Slip Simulation ........................... 5-9...Appendix J. Small Cycle Slip Simulation Results ............................. J-1 Bibliography ........................................................ BIB-I...when subjected to large and small cycle slips. Results of the simulations indicate that the PNRS can provide an improved navigation solution over

  20. Managing Identifiers for Elements of Provenance of the Third National Climate Assessment in the Global Change Information System (Invited)

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Aulenbach, S.; Duggan, B.; Goldstein, J.

    2013-12-01

    A Federal Advisory Committee (The "National Climate Assessment and Development Advisory Committee" or NCADAC) has overseen the development of a draft climate report that after extensive review will be considered by the Federal Government in the Third National Climate Assessment (NCA). This comprehensive report (1) Integrates, evaluates, and interprets the findings of the Program and discusses the scientific uncertainties associated with such findings; (2) Analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and (3) Analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The U.S. Global Change Program (USGCRP), composed of the 13 federal agencies most concerned with global change, is building a Global Change Information System (GCIS) that will ultimately organize access to all of the research, data, and information about global change from across the system. A prototype of the system has been constructed that captures and presents all of the elements of provenance of the NCA through a coherent data model and friendly front end web site. This work will focus on the globally unique and persistent identifiers used to reference and organize those items. These include externally referenced items, such as DOIs used by scientific journal publishers for research articles or by agencies as dataset identifiers, as well as our own internal approach to identifiers, our overall data model and experiences managing persistent identifiers within the GCIS.

  1. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local-global reference frames.

    PubMed

    Knierim, James J; Neunuebel, Joshua P; Deshmukh, Sachin S

    2014-02-05

    The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between 'where' versus 'what' needs revision. We propose a refinement of this model, which is more complex than the simple spatial-non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience.

  2. Functional correlates of the lateral and medial entorhinal cortex: objects, path integration and local–global reference frames

    PubMed Central

    Knierim, James J.; Neunuebel, Joshua P.; Deshmukh, Sachin S.

    2014-01-01

    The hippocampus receives its major cortical input from the medial entorhinal cortex (MEC) and the lateral entorhinal cortex (LEC). It is commonly believed that the MEC provides spatial input to the hippocampus, whereas the LEC provides non-spatial input. We review new data which suggest that this simple dichotomy between ‘where’ versus ‘what’ needs revision. We propose a refinement of this model, which is more complex than the simple spatial–non-spatial dichotomy. MEC is proposed to be involved in path integration computations based on a global frame of reference, primarily using internally generated, self-motion cues and external input about environmental boundaries and scenes; it provides the hippocampus with a coordinate system that underlies the spatial context of an experience. LEC is proposed to process information about individual items and locations based on a local frame of reference, primarily using external sensory input; it provides the hippocampus with information about the content of an experience. PMID:24366146

  3. NREL Solar Radiation Research Laboratory (SRRL): Baseline Measurement System (BMS); Golden, Colorado (Data)

    DOE Data Explorer

    Stoffel, T.; Andreas, A.

    1981-07-15

    The SRRL was established at the Solar Energy Research Institute (now NREL) in 1981 to provide continuous measurements of the solar resources, outdoor calibrations of pyranometers and pyrheliometers, and to characterize commercially available instrumentation. The SRRL is an outdoor laboratory located on South Table Mountain, a mesa providing excellent solar access throughout the year, overlooking Denver. Beginning with the basic measurements of global horizontal irradiance, direct normal irradiance and diffuse horizontal irradiance at 5-minute intervals, the SRRL Baseline Measurement System now produces more than 130 data elements at 1-min intervals that are available from the Measurement & Instrumentation Data Center Web site. Data sources include global horizontal, direct normal, diffuse horizontal (from shadowband and tracking disk), global on tilted surfaces, reflected solar irradiance, ultraviolet, infrared (upwelling and downwelling), photometric and spectral radiometers, sky imagery, and surface meteorological conditions (temperature, relative humidity, barometric pressure, precipitation, snow cover, wind speed and direction at multiple levels). Data quality control and assessment include daily instrument maintenance (M-F) with automated data quality control based on real-time examinations of redundant instrumentation and internal consistency checks using NREL's SERI-QC methodology. Operators are notified of equipment problems by automatic e-mail messages generated by the data acquisition and processing system. Radiometers are recalibrated at least annually with reference instruments traceable to the World Radiometric Reference (WRR).

  4. On the global geodetic observing system: Africa's preparedness and challenges

    NASA Astrophysics Data System (ADS)

    Botai, O. J.; Combrinck, Ludwig; Rautenbach, C. J. Hannes

    2013-02-01

    Space geodetic techniques and satellite missions play a crucial role in the determination and monitoring of geo-kinematics, Earth's rotation and gravity fields. These three pillars of geodesy provide the basis for determining the geodetic reference frames with high accuracy, spatial resolution and temporal stability. Space geodetic techniques have been used for the assessment of geo-hazards, anthropogenic hazards and in the design of early warning systems for hazard and disasters. In general, space geodesy provides products for Earth observation, science and influences many activities (e.g., building and management) in a modern society. In order to further promote the application of space geodetic methods to solving Earth science problems, the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) was commissioned as an important geodetic infrastructure that integrates different geodetic techniques (such as Global Navigation Satellite Systems, Very Long Baseline Interferometry, Satellite Laser Ranging, Interferometric Synthetic Aperture Radar and Doppler Orbitography and Radio-positioning Integrated by Satellite), models and analysis techniques for the purpose of ensuring long-term, precise monitoring of geodetic observables vital for monitoring Earth system processes. Since its inception, there has been considerable progress made towards setting up the infrastructure necessary for the establishment of the GGOS database. While the challenges that beleaguer the GGOS are acknowledged (at least at global level), the assessment of an attuned GGOS infrastructure in the African context is necessary, yet lacking. In the present contribution, (a) the African preparedness and response to the observing system is assessed, and (b) the specific scientific and technological challenges of establishing a regional GGOS hub for Africa are reviewed. Currently only South Africa has a fundamental geodetic observatory located at Hartebeesthoek, Pretoria. Other countries in Africa have shown interest to participate in global geodetic activities, in particular through interest in the development of a unified African geodetic reference frame (AFREF). In particular interest has been shown in the proposed African VLBI Network (AVN), which will be partially based on existing ex-telecommunication radio antennas. Several countries are investigating their participation in the AVN, including Kenya, Nigeria and Ghana.

  5. VLBI Observations of Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Artz, T.; Nothnagel, A.; La Porta, L.

    2013-08-01

    For a consistent realization of a Global Geodetic Observing System (GGOS), a proper tie between the individual global reference systems used in the analysis of space-geodetic observations is a prerequisite. For instance, the link between the terrestrial, the celestial and the dynamic reference system of artificial Earth orbiters may be realized by Very Long O Baseline Interferometry (VLBI) observations of one or several satellites. In the preparation phase for a dedicated satellite mission, one option to realize this is using a geostationary (GEO) satellite emitting a radio signal in X-Band and/or S-Band and, thus, imitating a quasar. In this way, the GEO satellite can be observed by VLBI together with nearby quasars and the GEO orbit can, thus, be determined in a celestial reference frame. If the GEO satellite is, e.g., also equipped with a GNSS-type transmitter, a further tie between GNSS and VLBI may be realized. In this paper, a concept for the generation of a radio signal is shown. Furthermore, simulation studies for estimating the GEO position are presented with a GEO satellite included in the VLBI schedule. VLBI group delay observations are then simulated for the quasars as well as for the GEO satellite. The analysis of the simulated observations shows that constant orbit changes are adequately absorbed by estimated orbit parameters. Furthermore, the post-fit residuals are comparable to those from real VLBI sessions.

  6. Global Space-Based Inter-Calibration System Reflective Solar Calibration Reference: From Aqua MODIS to S-NPP VIIRS

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Angal, Amit; Butler, James; Cao, Changyong; Doelling, Daivd; Wu, Aisheng; Wu, Xiangqian

    2016-01-01

    The MODIS has successfully operated on-board the NASA's EOS Terra and Aqua spacecraft for more than 16 and 14 years, respectively. MODIS instrument was designed with stringent calibration requirements and comprehensive on-board calibration capability. In the reflective solar spectral region, Aqua MODIS has performed better than Terra MODIS and, therefore, has been chosen by the Global Space-based Inter-Calibration System (GSICS) operational community as the calibration reference sensor in cross-sensor calibration and calibration inter-comparisons. For the same reason, it has also been used by a number of earth observing sensors as their calibration reference. Considering that Aqua MODIS has already operated for nearly 14 years, it is essential to transfer its calibration to a follow-on reference sensor with a similar calibration capability and stable performance. The VIIRS is a follow-on instrument to MODIS and has many similar design features as MODIS, including their on-board calibrators (OBC). As a result, VIIRS is an ideal candidate to replace MODIS to serve as the future GSICS reference sensor. Since launch, the S-NPP VIIRS has already operated for more than 4 years and its overall performance has been extensively characterized and demonstrated to meet its overall design requirements. This paper provides an overview of Aqua MODIS and S-NPP VIIRS reflective solar bands (RSB) calibration methodologies and strategies, traceability, and their on-orbit performance. It describes and illustrates different methods and approaches that can be used to facilitate the calibration reference transfer, including the use of desert and Antarctic sites, deep convective clouds (DCC), and the lunar observations.

  7. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization.

    PubMed

    Unemo, Magnus; Golparian, Daniel; Sánchez-Busó, Leonor; Grad, Yonatan; Jacobsson, Susanne; Ohnishi, Makoto; Lahra, Monica M; Limnios, Athena; Sikora, Aleksandra E; Wi, Teodora; Harris, Simon R

    2016-11-01

    Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, quality-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic, genetic and reference genome characteristics of the 2016 WHO gonococcal reference strains intended for quality assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide. The 2016 WHO reference strains (n = 14) constitute the eight 2008 WHO reference strains and six novel strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n = 23), serovar, prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing. The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished references genomes (n = 14) were presented. The 2016 WHO gonococcal reference strains are intended for internal and external quality assurance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection, molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis, transcriptomics, proteomics and other molecular technologies and data analysis. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Towards a Refined Realisation of the Terrestrial Reference System

    NASA Astrophysics Data System (ADS)

    Angermann, D.; Drewes, H.; Meisel, B.; Kruegel, M.; Tesmer, V.

    2004-12-01

    Global reference frames provide the framework for scientific investigations of the Earth's system (e.g. plate tectonics, sea level change, seasonal and secular loading signals, atmosphere dynamics, Earth orientation excitation), as well as for many practical applications (e.g. surveying and navigation). Today, space geodetic techniques allow to determine geodetic parameters (e.g. station positions, Earth rotation) with a precision of a few millimeters (or even better). However, this high accuracy is not reflected by current realisations of the terrestrial reference system. To fully exploit the potential of the space geodetic observations for investigations of various global and regional, short-term, seasonal and secular phenomena of the Earth's system, the reference frame must be realised with the highest accuracy, spatial and temporal consistency and stability over decades. Furthermore, future progress in Earth sciences will fundamentally depend on understanding the Earth as a system, into which the three areas of geodetic research (geometry/deformation, Earth rotation, gravity) are to be integrated. The presentation focusses on various aspects that must be considered for a refined realisation of the terrestrial reference system, such as the development of suitable methods for the combination of the contributing space geodetic observations, the realisation of the TRF datum and the parameterisation of site motions. For this purpose we investigated time series of station positions and datum parameters obtained from VLBI, SLR, GPS and DORIS solutions, and compared the results at co-location sites and with other studies. Furthermore, we present results obtained from a TRS realisation based on epoch (weekly/daily) normal equations with station positions and daily Earth Orientation Parameters (EOP) using five years (1999-2004) of VLBI, SLR, GPS and DORIS data. This refined approach has major advantages compared to past TRF realisations based on multi-year solutions with station positions at a given epoch and constant velocities, as for instance non-linear effects of site positions and datum parameters can be considered, and consistency between TRF and EOPs can be achieved. First results of this new approach are promising.

  9. Global daily reference evapotranspiration modeling and evaluation

    USGS Publications Warehouse

    Senay, G.B.; Verdin, J.P.; Lietzow, R.; Melesse, Assefa M.

    2008-01-01

    Accurate and reliable evapotranspiration (ET) datasets are crucial in regional water and energy balance studies. Due to the complex instrumentation requirements, actual ET values are generally estimated from reference ET values by adjustment factors using coefficients for water stress and vegetation conditions, commonly referred to as crop coefficients. Until recently, the modeling of reference ET has been solely based on important weather variables collected from weather stations that are generally located in selected agro-climatic locations. Since 2001, the National Oceanic and Atmospheric Administration’s Global Data Assimilation System (GDAS) has been producing six-hourly climate parameter datasets that are used to calculate daily reference ET for the whole globe at 1-degree spatial resolution. The U.S. Geological Survey Center for Earth Resources Observation and Science has been producing daily reference ET (ETo) since 2001, and it has been used on a variety of operational hydrological models for drought and streamflow monitoring all over the world. With the increasing availability of local station-based reference ET estimates, we evaluated the GDAS-based reference ET estimates using data from the California Irrigation Management Information System (CIMIS). Daily CIMIS reference ET estimates from 85 stations were compared with GDAS-based reference ET at different spatial and temporal scales using five-year daily data from 2002 through 2006. Despite the large difference in spatial scale (point vs. ∼100 km grid cell) between the two datasets, the correlations between station-based ET and GDAS-ET were very high, exceeding 0.97 on a daily basis to more than 0.99 on time scales of more than 10 days. Both the temporal and spatial correspondences in trend/pattern and magnitudes between the two datasets were satisfactory, suggesting the reliability of using GDAS parameter-based reference ET for regional water and energy balance studies in many parts of the world. While the study revealed the potential of GDAS ETo for large-scale hydrological applications, site-specific use of GDAS ETo in complex hydro-climatic regions such as coastal areas and rugged terrain may require the application of bias correction and/or disaggregation of the GDAS ETo using downscaling techniques.

  10. Unification of Intercontinental Height Systems based on the Fixed Geodetic Boundary Value Problem - A Case Study in Spherical Approximation

    NASA Astrophysics Data System (ADS)

    Grombein, T.; Seitz, K.; Heck, B.

    2013-12-01

    In general, national height reference systems are related to individual vertical datums defined by specific tide gauges. The discrepancy of these vertical datums causes height system biases that range in an order of 1-2 m at a global scale. Continental height systems can be connected by spirit leveling and gravity measurements along the leveling lines as performed for the definition of the European Vertical Reference Frame. In order to unify intercontinental height systems, an indirect connection is needed. For this purpose, global geopotential models derived from recent satellite missions like GOCE provide an important contribution. However, to achieve a highly-precise solution, a combination with local terrestrial gravity data is indispensable. Such combinations result in the solution of a Geodetic Boundary Value Problem (GBVP). In contrast to previous studies, mostly related to the traditional (scalar) free GBVP, the present paper discusses the use of the fixed GBVP for height system unification, where gravity disturbances instead of gravity anomalies are applied as boundary values. The basic idea of our approach is a conversion of measured gravity anomalies to gravity disturbances, where unknown datum parameters occur that can be associated with height system biases. In this way, the fixed GBVP can be extended by datum parameters for each datum zone. By evaluating the GBVP at GNSS/leveling benchmarks, the unknown datum parameters can be estimated in a least squares adjustment. Beside the developed theory, we present numerical results of a case study based on the spherical fixed GBVP and boundary values simulated by the use of the global geopotential model EGM2008. In a further step, the impact of approximations like linearization as well as topographic and ellipsoidal effects is taken into account by suitable reduction and correction terms.

  11. Internal validation of the GlobalFiler™ Express PCR Amplification Kit for the direct amplification of reference DNA samples on a high-throughput automated workflow.

    PubMed

    Flores, Shahida; Sun, Jie; King, Jonathan; Budowle, Bruce

    2014-05-01

    The GlobalFiler™ Express PCR Amplification Kit uses 6-dye fluorescent chemistry to enable multiplexing of 21 autosomal STRs, 1 Y-STR, 1 Y-indel and the sex-determining marker amelogenin. The kit is specifically designed for processing reference DNA samples in a high throughput manner. Validation studies were conducted to assess the performance and define the limitations of this direct amplification kit for typing blood and buccal reference DNA samples on various punchable collection media. Studies included thermal cycling sensitivity, reproducibility, precision, sensitivity of detection, minimum detection threshold, system contamination, stochastic threshold and concordance. Results showed that optimal amplification and injection parameters for a 1.2mm punch from blood and buccal samples were 27 and 28 cycles, respectively, combined with a 12s injection on an ABI 3500xL Genetic Analyzer. Minimum detection thresholds were set at 100 and 120RFUs for 27 and 28 cycles, respectively, and it was suggested that data from positive amplification controls provided a better threshold representation. Stochastic thresholds were set at 250 and 400RFUs for 27 and 28 cycles, respectively, as stochastic effects increased with cycle number. The minimum amount of input DNA resulting in a full profile was 0.5ng, however, the optimum range determined was 2.5-10ng. Profile quality from the GlobalFiler™ Express Kit and the previously validated AmpFlSTR(®) Identifiler(®) Direct Kit was comparable. The validation data support that reliable DNA typing results from reference DNA samples can be obtained using the GlobalFiler™ Express PCR Amplification Kit. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Global height datum unification: a new approach in gravity potential space

    NASA Astrophysics Data System (ADS)

    Ardalan, A. A.; Safari, A.

    2005-12-01

    The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.

  13. Peering into the Future of Advertising.

    ERIC Educational Resources Information Center

    Hsia, H. J.

    All areas in mass communications (i.e., newspapers, magazines, television, radio, films, photos, and books) will be transformed because of the increasing sophistication of computer users, the decreasing costs for interactive computer systems, and the global adoption of integrated services digital networks (ISDN). ISDN refer to the digitization of…

  14. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    NASA Astrophysics Data System (ADS)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During the 6th Session of the UN-GGIM in August 2016 the role of DGGS in the context of the GSGF was formally acknowledged. This paper proposes to highlight the synergies and role of DGGS in the Global Statistical Geospatial Framework and to show examples of the use of DGGS to combine geospatial statistics with traditional geoscientific data.

  15. Planning for the Global Earth Observation System of Systems (GEOSS)

    USGS Publications Warehouse

    Christian, E.

    2005-01-01

    The Group on Earth Observations was established to promote comprehensive, coordinated, and sustained Earth observations. Its mandate is to implement the Global Earth Observation System of Systems (GEOSS) in accord with the GEOSS 10-Year Implementation Plan and Reference Document. During the months over which the GEOSS Implementation Plan was developed, many issues surfaced and were addressed. This article discusses several of the more interesting or challenging of those issues-e.g. fitting in with existing organizations and securing stable funding - some of which have yet to be resolved fully as of this writing. Despite the relatively short period over which the Implementation Plan had to be developed, there is a good chance that the work undertaken will be influential for decades to come. ?? 2005 Elsevier Ltd. All rights reserved.

  16. Study of the global positioning system for maritime concepts/applications: Study of the feasibility of replacing maritime shipborne navigation systems with NAVSTAR

    NASA Technical Reports Server (NTRS)

    Winn, C. B.; Huston, W.

    1981-01-01

    A geostationary reference satellite (REFSAT) that broadcasts every four seconds updated GPS satellite coordinates was developed. This procedure reduces the complexity of the GPS receiver. The economic and performance payoffs associated with replacing maritime stripborne navigation systems with NAVSTAR was quantified and the use of NAVSTAR for measurements of ocean currents in the broad ocean areas of the world was evaluated.

  17. A variational approach to dynamics of flexible multibody systems

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Chin; Haug, Edward J.; Kim, Sung-Soo

    1989-01-01

    This paper presents a variational formulation of constrained dynamics of flexible multibody systems, using a vector-variational calculus approach. Body reference frames are used to define global position and orientation of individual bodies in the system, located and oriented by position of its origin and Euler parameters, respectively. Small strain linear elastic deformation of individual components, relative to their body references frames, is defined by linear combinations of deformation modes that are induced by constraint reaction forces and normal modes of vibration. A library of kinematic couplings between flexible and/or rigid bodies is defined and analyzed. Variational equations of motion for multibody systems are obtained and reduced to mixed differential-algebraic equations of motion. A space structure that must deform during deployment is analyzed, to illustrate use of the methods developed.

  18. Multiple-stage ambiguity in motion perception reveals global computation of local motion directions.

    PubMed

    Rider, Andrew T; Nishida, Shin'ya; Johnston, Alan

    2016-12-01

    The motion of a 1D image feature, such as a line, seen through a small aperture, or the small receptive field of a neural motion sensor, is underconstrained, and it is not possible to derive the true motion direction from a single local measurement. This is referred to as the aperture problem. How the visual system solves the aperture problem is a fundamental question in visual motion research. In the estimation of motion vectors through integration of ambiguous local motion measurements at different positions, conventional theories assume that the object motion is a rigid translation, with motion signals sharing a common motion vector within the spatial region over which the aperture problem is solved. However, this strategy fails for global rotation. Here we show that the human visual system can estimate global rotation directly through spatial pooling of locally ambiguous measurements, without an intervening step that computes local motion vectors. We designed a novel ambiguous global flow stimulus, which is globally as well as locally ambiguous. The global ambiguity implies that the stimulus is simultaneously consistent with both a global rigid translation and an infinite number of global rigid rotations. By the standard view, the motion should always be seen as a global translation, but it appears to shift from translation to rotation as observers shift fixation. This finding indicates that the visual system can estimate local vectors using a global rotation constraint, and suggests that local motion ambiguity may not be resolved until consistencies with multiple global motion patterns are assessed.

  19. InSAR datum connection using GNSS-augmented radar transponders

    NASA Astrophysics Data System (ADS)

    Mahapatra, Pooja; der Marel, Hans van; van Leijen, Freek; Samiei-Esfahany, Sami; Klees, Roland; Hanssen, Ramon

    2018-01-01

    Deformation estimates from Interferometric Synthetic Aperture Radar (InSAR) are relative: they form a `free' network referred to an arbitrary datum, e.g. by assuming a reference point in the image to be stable. However, some applications require `absolute' InSAR estimates, i.e. expressed in a well-defined terrestrial reference frame, e.g. to compare InSAR results with those of other techniques. We propose a methodology based on collocated InSAR and Global Navigation Satellite System (GNSS) measurements, achieved by rigidly attaching phase-stable millimetre-precision compact active radar transponders to GNSS antennas. We demonstrate this concept through a simulated example and practical case studies in the Netherlands.

  20. Space Nuclear Power and Propulsion: Materials Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Houts, Mike

    2008-01-01

    The current focus of NASA s space fission effort is Fission Surface Power (FSP). FSP systems could be used to provide power anytime, anywhere on the surface of the Moon or Mars. FSP systems could be used at locations away from the lunar poles or in permanently shaded regions, with no performance penalty. A potential reference 40 kWe option has been devised that is cost-competitive with alternatives while providing more power for less mass. The potential reference system is readily extensible for use on Mars. At Mars the system could be capable of operating through global dust storms and providing year-round power at any Martian latitude. To ensure affordability, the potential near-term, 40 kWe reference concept is designed to use only well established materials and fuels. However, if various materials challenges could be overcome, extremely high performance fission systems could be devised. These include high power, low mass fission surface power systems; in-space systems with high specific power; and high performance nuclear thermal propulsion systems. This tutorial will provide a brief overview of space fission systems and will focus on materials challenges that, if overcome, could help enable advanced exploration and utilization of the solar system.

  1. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    NASA Astrophysics Data System (ADS)

    Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.

    2017-12-01

    Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at geodesie_anr.ign.fr.This project, supported by the French Agence Nationale de la Recherche (ANR) for the period 2017-2020, will be an unprecedented opportunity to provide the French Groupe de Recherche de Géodésie Spatiale (GRGS) with complete simulation and data processing capabilities to prepare the future arrival of space missions such as the European Geodetic Reference Antenna in SPace (E-GRASP) and to significantly contribute to the GGOS with accurate references.

  2. Reference NO2 calibration system for ground-based intercomparisons during NASA's GTE/CITE 2 mission

    NASA Technical Reports Server (NTRS)

    Fried, Alan; Nunnermacker, Linda; Cadoff, Barry; Sams, Robert; Yates, Nathan

    1990-01-01

    An NO2 calibration system, based on a permeation device and a two-stage dynamic dilution system, was designed, constructed, and characterized at the National Bureau of Standards. In this system, calibrant flow entering the second stage was controlled without contacting a metal flow controller, and permeation oven temperature and flow were continuously maintained, even during transport. The system performance and the permeation emission rate were characterized by extensive laboratory tests. This system was capable of accurately delivering known NO2 concentrations in the ppbv and sub-ppbv concentration range with a total uncertainty of approximately 10 percent. The calibration system was placed on board NASA research aircraft at both the Wallops Island and Ames research facilities. There it was employed as the reference standard in NASA's Global Tropospheric Experiment/Chemical Instrumental Test and Evaluation 2 mission in August 1986.

  3. Global precipitation measurement (GPM)

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Flaming, Gilbert M.; Adams, W. James; Smith, Eric A.

    2001-12-01

    The National Aeronautics and Space Administration (NASA) is studying options for future space-based missions for the EOS Follow-on Era (post 2003), building upon the measurements made by Pre-EOS and EOS First Series Missions. One mission under consideration is the Global Precipitation Measurement (GPM), a cooperative venture of NASA, Japan, and other international partners. GPM will capitalize on the experience of the highly successful Tropical Rainfall Measurement Mission (TRMM). Its goal is to extend the measurement of rainfall to high latitudes with high temporal frequency, providing a global data set every three hours. A reference concept has been developed consisting of an improved TRMM-like primary satellite with precipitation radar and microwave radiometer to make detailed and accurate estimates of the precipitation structure and a constellation of small satellites flying compact microwave radiometers to provide the required temporal sampling of highly variable precipitation systems. Considering that DMSP spacecraft equipped with SSMIS microwave radiometers, successor NPOESS spacecraft equipped with CMIS microwave radiometers, and other relevant international systems are expected to be in operation during the timeframe of the reference concept, the total number of small satellites required to complete the constellation will be reduced. A nominal plan is to begin implementation in FY'03 with launches in 2007. NASA is presently engaged in advanced mission studies and advanced instrument technology development related to the mission.

  4. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  5. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    NASA Astrophysics Data System (ADS)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  6. Data interoperabilty between European Environmental Research Infrastructures and their contribution to global data networks

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.; Zhao, Z.; Hardisty, A.; Hellström, M.; Chin, Y.; Magagna, B.; Asmi, A.; Papale, D.; Pfeil, B.; Atkinson, M.

    2017-12-01

    Environmental Research Infrastructures (ENVRIs) are expected to become important pillars not only for supporting their own scientific communities, but also a) for inter-disciplinary research and b) for the European Earth Observation Program Copernicus as a contribution to the Global Earth Observation System of Systems (GEOSS) or global thematic data networks. As such, it is very important that data-related activities of the ENVRIs will be well integrated. This requires common policies, models and e-infrastructure to optimise technological implementation, define workflows, and ensure coordination, harmonisation, integration and interoperability of data, applications and other services. The key is interoperating common metadata systems (utilising a richer metadata model as the `switchboard' for interoperation with formal syntax and declared semantics). The metadata characterises data, services, users and ICT resources (including sensors and detectors). The European Cluster Project ENVRIplus has developed a reference model (ENVRI RM) for common data infrastructure architecture to promote interoperability among ENVRIs. The presentation will provide an overview of recent progress and give examples for the integration of ENVRI data in global integration networks.

  7. A decision support system to find the best water allocation strategies in a Mediterranean river basin in future scenarios of global change

    NASA Astrophysics Data System (ADS)

    Del Vasto-Terrientes, L.; Kumar, V.; Chao, T.-C.; Valls, A.

    2016-03-01

    Global change refers to climate changes, but also demographic, technological and economic changes. Predicted water scarcity will be critical in the coastal Mediterranean region, especially for provision to mid-sized and large-sized cities. This paper studies the case of the city of Tarragona, located at the Mediterranean area of north-eastern Spain (Catalonia). Several scenarios have been constructed to evaluate different sectorial water allocation policies to mitigate the water scarcity induced by global change. Future water supply and demand predictions have been made for three time spans. The decision support system presented is based on the outranking model, which constructs a partial pre-order based on pairwise preference relations among all the possible actions. The system analyses a hierarchical structure of criteria, including environmental and economic criteria. We compare several adaptation measures including alternative water sources, inter-basin water transfer and sectorial demand management coming from industry, agriculture and domestic sectors. Results indicate that the most appropriate water allocation strategies depend on the severity of the global change effects.

  8. Hydrological Excitations of Polar Motion Derived from Different Variables of Fgoals - g2 Climate Model

    NASA Astrophysics Data System (ADS)

    Winska, M.

    2016-12-01

    The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.

  9. The globalization of football: a study in the glocalization of the 'serious life'.

    PubMed

    Giulianotti, Richard; Robertson, Roland

    2004-12-01

    Sport, in particular football, constitutes one of the most dynamic, sociologically illuminating domains of globalization. This paper examines the globalization of football with particular reference to Robertson's theorizations of global processes. We examine football's cultural globalization through the concept of 'glocalization', which highlights the interdependence of local and global processes within the game's identities and institutions. We address economic globalization in football by considering the world's leading clubs as 'glocal' transnational corporations. We assess the political globalization of football with reference to the possible enhancement of democracy within the game's international governance. We conclude by affirming the utility of sport in advancing our empirical and theoretical understanding of globalization processes.

  10. A Qualitative Approach to Sketch the Graph of a Function.

    ERIC Educational Resources Information Center

    Alson, Pedro

    1992-01-01

    Presents a qualitative and global method of graphing functions that involves transformations of the graph of a known function in the cartesian coordinate system referred to as graphic operators. Explains how the method has been taught to students and some comments about the results obtained. (MDH)

  11. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    PubMed

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  12. NASA visual thesaurus maintenance documentation

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The following document is presented in six sections: (1) introduction; (2) a diagram showing how the various routines are grouped together into functional modules; (3) a printout of all the layouts in the system along with their associated layout procedures; (4) listings of all the global procedures in the system; (5) a cross-reference of all identifiers used in the system; and (6) descriptions of the external procedures used in the system. The document was prepared at the Project ICON Image Scaling Laboratory.

  13. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 8. System Specification

    DTIC Science & Technology

    1976-03-01

    Service , CSE, Scott AFB, IL 62225. aws, usaf ltr dtd 8 jul 1976 >- a. CD SYSTEM DEVELOPMENT CORPORATION 1/ 2500 Colorado Avenue Santa Monica...Government Agen-TfAf* 17 MAR 1976 cies only. Other requests for this document ’-^ must be referred to Air Weather Service /CSi^,, Scott Air Force...Air Force Communica- tions Service must be clear’y defined. The appropriate Air Force Conmunications Service Agency should be responsible for the

  14. Interdisciplinary knowledge exchange across scales in a globally changing marine environment.

    PubMed

    McDonald, Karlie S; Hobday, Alistair J; Fulton, Elizabeth A; Thompson, Peter A

    2018-07-01

    The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species-specific regional scale climate change research is most commonly published, and "supporting" is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines. © 2018 John Wiley & Sons Ltd.

  15. A reference radiosonde system for climate and weather research: IHOP experience

    NASA Astrophysics Data System (ADS)

    Wang, Junhong; Hock, Terry F.; Lauritsen, Dean; Cole, Harold L.; Beierle, Kathryn; Chamberlain, Ned; Parsons, David B.; Carlson, David J.

    2003-04-01

    Global radiosonde data are required by meteorological analysis centers for initializing numerical prediction models for weather forecasting, and represent an increasingly valuable resource for studies of climate change and in the development, calibration and validation of retrieval techniques for atmospheric temperature and water vapor profiles from satellite. Unfortunately, the usefulness of radiosonde data is limited by sensor accuracy, by data reporting practices, and by the fact that sonde and sensor types vary by location and with time. Numerous studies and reports have called for a reference sonde to serve as a transfer standard to compare and connect data from past, present and future sonde systems. We are working on developing a reference radiosonde system at the Atmospheric Technology Division (ATD) at NCAR. The reference radiosonde system will carry the best sensors, have a flexible infrastructure to host multiple and different user-provided sensors and will be recoverable to reduce costs. The first version of the reference radiosonde system was deployed in the Oklahoma panhandle and Dodge City, KS (NWS radiosonde site) during the International H2O Project (IHOP_2002). A total of sixteen reference sondes were launched during IHOP either with Vaisala RS80 or Sippican (VIZ) radiosondes. The humidity data from the reference humidity sensor (Snow White, SW) are compared with Vaisala and VIZ data. The comparisons show that (a) VIZ carbon hygristor fails to respond to humidity changes in the upper troposphere, (b) the carbon hygristor inside the reference sonde has slower response than that inside NWS VIZ sonde, (c) Vaisala RS80-H agrees with SW very well in the middle and lower troposphere, and (d) SW can detect cirrus clouds near the tropopause and possibly estimate their ice water content (IWC). The climate impacts of these results are also discussed.

  16. The Acceleration of the Barycenter of Solar System Obtained from VLBI Observations and Its Impact on the ICRS

    NASA Astrophysics Data System (ADS)

    Xu, M. H.

    2016-03-01

    Since 1998 January 1, instead of the traditional stellar reference system, the International Celestial Reference System (ICRS) has been realized by an ensemble of extragalactic radio sources that are located at hundreds of millions of light years away (if we accept their cosmological distances), so that the reference frame realized by extragalactic radio sources is assumed to be space-fixed. The acceleration of the barycenter of solar system (SSB), which is the origin of the ICRS, gives rise to a systematical variation in the directions of the observed radio sources. This phenomenon is called the secular aberration drift. As a result, the extragalactic reference frame fixed to the space provides a reference standard for detecting the secular aberration drift, and the acceleration of the barycenter with respect to the space can be determined from the observations of extragalactic radio sources. In this thesis, we aim to determine the acceleration of the SSB from astrometric and geodetic observations obtained by Very Long Baseline Interferometry (VLBI), which is a technique using the telescopes globally distributed on the Earth to observe a radio source simultaneously, and with the capacity of angular positioning for compact radio sources at 10-milliarcsecond level. The method of the global solution, which allows the acceleration vector to be estimated as a global parameter in the data analysis, is developed. Through the formal error given by the solution, this method shows directly the VLBI observations' capability to constrain the acceleration of the SSB, and demonstrates the significance level of the result. In the next step, the impact of the acceleration on the ICRS is studied in order to obtain the correction of the celestial reference frame (CRF) orientation. This thesis begins with the basic background and the general frame of this work. A brief review of the realization of the CRF based on the kinematical and the dynamical methods is presented in Chapter 2, along with the definition of the CRF and its relationship with the inertial reference frame. Chapter 3 is divided into two parts. The first part describes various effects that modify the geometric direction of an object, especially the parallax, the aberration, and the proper motion. Then the derivative model and the principle of determination of the acceleration are introduced in the second part. The VLBI data analysis method, including VLBI data reduction (solving the ambiguity, identifying the clock break, and determining the ionospheric effect), theoretical delay model, parameterization, and datum definition, is discussed in detail in Chapter 4. The estimation of the acceleration by more than 30-year VLBI observations and the results are then described in Chapter 5. The evaluation and the robust check of our results by different solutions and the comparison to that from another research group are performed. The error sources for the estimation of the acceleration, such as the secular parallax caused by the velocity of the barycenter in space, are quantitatively studied by simulation and data analysis in Chapter 6. The two main impacts of the acceleration on the CRF, the apparent proper motion with the magnitude of the μ as\\cdot yr^{-1} level and the global rotation in the CRF due to the un-uniformed distribution of radio sources on the sky, are discussed in Chapter 7. The definition and the realization of the epoch CRF are presented as well. The future work concerning the explanation of the estimated acceleration and potential research on several main problems in modern astrometry are discussed in the last chapter.

  17. An International Strategy for Human Exploration of the Moon: The International Space Exploration Coordination Group (ISECG) Reference Architecture for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Junichiro, Kawaguchi; Piedboeuf, Jean-Claude; Schade, Britta; Lorenzoni, Andrea; Curtis, Jeremy; Hae-Dong, Kim

    2010-01-01

    The International Space Exploration Coordination Group (ISECG) was established in response to The Global Exploration Strategy: The Framework for Coordination developed by fourteen space agencies and released in May 2007. Several ISECG participating space agencies have been studying concepts for human exploration of the moon that allow individual and collective goals and objectives to be met. This 18 month study activity culminated with the development of the ISECG Reference Architecture for Human Lunar Exploration. The reference architecture is a series of elements delivered over time in a flexible and evolvable campaign. This paper will describe the reference architecture and how it will inform near-term and long-term programmatic planning within interested agencies. The reference architecture is intended to serve as a global point of departure conceptual architecture that enables individual agency investments in technology development and demonstration, International Space Station research and technology demonstration, terrestrial analog studies, and robotic precursor missions to contribute towards the eventual implementation of a human lunar exploration scenario which reflects the concepts and priorities established to date. It also serves to create opportunities for partnerships that will support evolution of this concept and its eventual realization. The ISECG Reference Architecture for Human Lunar Exploration (commonly referred to as the lunar gPoD) reflects the agency commitments to finding an effective balance between conducting important scientific investigations of and from the moon, as well as demonstrating and mastering the technologies and capabilities to send humans farther into the Solar System. The lunar gPoD begins with a robust robotic precursor phase that demonstrates technologies and capabilities considered important for the success of the campaign. Robotic missions will inform the human missions and buy down risks. Human exploration will start with a thorough scientific investigation of the polar region while allowing the ability to demonstrate and validate the systems needed to take humans on more ambitious lunar exploration excursions. The ISECG Reference Architecture for Human Lunar Exploration serves as a model for future cooperation and is documented in a summary report and a comprehensive document that also describes the collaborative international process that led to its development. ISECG plans to continue with architecture studies such as this to examine an open transportation architecture and other destinations, with expanded participation from ISECG agencies, as it works to inform international partnerships and advance the Global Exploration Strategy.

  18. TIGO: a geodetic observatory for the improvement of the global reference frame

    NASA Astrophysics Data System (ADS)

    Schlueter, Wolfgang; Hase, Hayo; Boeer, Armin

    1999-12-01

    The Bundesamt fuer Kartographie und Geodaesie (BKG) will provide a major contribution to the improvement and maintenance of the global reference frames: ICRF (International Celestial Reference Frame), ITRF (International Terrestrial Reference Frame) with the operation of TIGO (Transportable Integrated Geodetic Observatory). TIGO is designed as a transportable geodetic observatory which consists of all relevant geodetic space techniques for a fundamental station (including VLBI, SLR, GPS). The transportability of the observatory enables to fill up gaps in the International Space Geodetic Network and to optimize the contribution to the global reference frames. TIGO should operate for a period of 2 to 3 years (at minimum) at one location. BKG is looking for a cooperation with countries willing to contribute to the ITRF and to support the operation of TIGO.

  19. Locating damage using integrated global-local approach with wireless sensing system and single-chip impedance measurement device.

    PubMed

    Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin

    2014-01-01

    This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.

  20. Estimating the Geocenter from GNSS Observations

    NASA Astrophysics Data System (ADS)

    Dach, Rolf; Michael, Meindl; Beutler, Gerhard; Schaer, Stefan; Lutz, Simon; Jäggi, Adrian

    2014-05-01

    The satellites of the Global Navigation Satellite Systems (GNSS) are orbiting the Earth according to the laws of celestial mechanics. As a consequence, the satellites are sensitive to the coordinates of the center of mass of the Earth. The coordinates of the (ground) tracking stations are referring to the center of figure as the conventional origin of the reference frame. The difference between the center of mass and center of figure is the instantaneous geocenter. Following this definition the global GNSS solutions are sensitive to the geocenter. Several studies demonstrated strong correlations of the GNSS-derived geocenter coordinates with parameters intended to absorb radiation pressure effects acting on the GNSS satellites, and with GNSS satellite clock parameters. One should thus pose the question to what extent these satellite-related parameters absorb (or hide) the geocenter information. A clean simulation study has been performed to answer this question. The simulation environment allows it in particular to introduce user-defined shifts of the geocenter (systematic inconsistencies between the satellite's and station's reference frames). These geocenter shifts may be recovered by the mentioned parameters - provided they were set up in the analysis. If the geocenter coordinates are not estimated, one may find out which other parameters absorb the user-defined shifts of the geocenter and to what extent. Furthermore, the simulation environment also allows it to extract the correlation matrix from the a posteriori covariance matrix to study the correlations between different parameter types of the GNSS analysis system. Our results show high degrees of correlations between geocenter coordinates, orbit-related parameters, and satellite clock parameters. These correlations are of the same order of magnitude as the correlations between station heights, troposphere, and receiver clock parameters in each regional or global GNSS network analysis. If such correlations are accepted in a GNSS analysis when estimating station coordinates, geocenter coordinates must be considered as mathematically estimable in a global GNSS analysis. The geophysical interpretation may of course become difficult, e.g., if insufficient orbit models are used.

  1. NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.

    PubMed

    Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.

    1997-06-01

    In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.

  2. Pathway to 2022: The Ongoing Modernization of the United States National Spatial Reference System

    NASA Astrophysics Data System (ADS)

    Stone, W. A.; Caccamise, D.

    2017-12-01

    The National Oceanic and Atmospheric Administration's National Geodetic Survey (NGS) mission is "to define, maintain and provide access to the National Spatial Reference System (NSRS) to meet our nation's economic, social, and environmental needs." The NSRS is an assemblage of geophysical and geodetic models, tools, and data, with the most-visible components being the North American Datum of 1983 (NAD83) and the North American Vertical Datum of 1988 (NAVD88), which together provide a consistent spatial reference framework for myriad geospatial applications and positioning requirements throughout the United States. The NGS is engaged in an ongoing and comprehensive multi-year project of modernizing the NSRS, a makeover necessitated by technological developments and user accuracy requirements, all with a goal of providing a modern, accurate, accessible, and globally aligned national positioning framework exploiting the substantial power and utility of the Global Navigation Satellite System - of both today and tomorrow. The modernized NSRS will include four new-generation geometric terrestrial reference frames (replacing NAD83) and a technically unprecedented geopotential datum (replacing NAVD88), all to be released in 2022 (anticipated). This poster/presentation will describe the justification for this modernization effort and will update the status and planned evolution of the NSRS as 2022 draws ever closer. Also discussed will be recent developments, including the publication of "blueprint" documents addressing technical details of various facets of the modernized NSRS and a continued series of public Geospatial Summits. Supporting/ancillary projects such as Gravity for the Redefinition of the American Vertical Datum (GRAV-D), which will result in the generation of a highly accurate gravimetric geoid - or definitional reference surface (zero elevation) - for the future geopotential datum, and Geoid Slope Validation Surveys (GSVS), which are exploring the achievable accuracy of the new geopotential datum, will be summarized. Also included will be suggestions of user preparation for transition to the NSRS of tomorrow.

  3. Technologies That Assess the Location of Physical Activity and Sedentary Behavior: A Systematic Review.

    PubMed

    Loveday, Adam; Sherar, Lauren B; Sanders, James P; Sanderson, Paul W; Esliger, Dale W

    2015-08-05

    The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information.

  4. Technologies That Assess the Location of Physical Activity and Sedentary Behavior: A Systematic Review

    PubMed Central

    Sherar, Lauren B; Sanders, James P; Sanderson, Paul W; Esliger, Dale W

    2015-01-01

    Background The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. Objective This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. Methods To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. Conclusions The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information. PMID:26245157

  5. Venus Global Reference Atmospheric Model Status and Planned Updates

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Dwyer Cianciolo, A. M.

    2017-05-01

    Details the current status of Venus Global Reference Atmospheric Model (Venus-GRAM). Provides new sources of data and upgrades that need to be incorporated to maintain credibility and identifies options and features that could increase capability.

  6. Global sensitivity analysis for fuzzy inputs based on the decomposition of fuzzy output entropy

    NASA Astrophysics Data System (ADS)

    Shi, Yan; Lu, Zhenzhou; Zhou, Yicheng

    2018-06-01

    To analyse the component of fuzzy output entropy, a decomposition method of fuzzy output entropy is first presented. After the decomposition of fuzzy output entropy, the total fuzzy output entropy can be expressed as the sum of the component fuzzy entropy contributed by fuzzy inputs. Based on the decomposition of fuzzy output entropy, a new global sensitivity analysis model is established for measuring the effects of uncertainties of fuzzy inputs on the output. The global sensitivity analysis model can not only tell the importance of fuzzy inputs but also simultaneously reflect the structural composition of the response function to a certain degree. Several examples illustrate the validity of the proposed global sensitivity analysis, which is a significant reference in engineering design and optimization of structural systems.

  7. Tower-scale performance of four observation-based evapotranspiration algorithms within the WACMOS-ET project

    NASA Astrophysics Data System (ADS)

    Michel, Dominik; Miralles, Diego; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego

    2015-04-01

    Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts have recently aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which cannot be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). The WACMOS-ET project (http://wacmoset.estellus.eu) started in the year 2012 and constitutes an ESA contribution to the GEWEX initiative LandFlux. It focuses on advancing the development of ET estimates at global, regional and tower scales. WACMOS-ET aims at developing a Reference Input Data Set exploiting European Earth Observations assets and deriving ET estimates produced by a set of four ET algorithms covering the period 2005-2007. The algorithms used are the SEBS (Su et al., 2002), Penman-Monteith from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008) and GLEAM (Miralles et al., 2011). The algorithms are run with Fluxnet tower observations, reanalysis data (ERA-Interim), and satellite forcings. They are cross-compared and validated against in-situ data. In this presentation the performance of the different ET algorithms with respect to different temporal resolutions, hydrological regimes, land cover types (including grassland, cropland, shrubland, vegetation mosaic, savanna, woody savanna, needleleaf forest, deciduous forest and mixed forest) are evaluated at the tower-scale in 24 pre-selected study regions on three continents (Europe, North America, and Australia). References: Fisher, J. B., Tu, K.P., and Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ. 112, 901-919, 2008. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102, 2011. 
 Miralles, D.G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453-469, 2011. 
 Mu, Q., Zhao, M. & Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800, 2011. 
 Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17, 3707-3720. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720, 2013. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-99, 2002.

  8. On the global well-posedness theory for a class of PDE models for criminal activity

    NASA Astrophysics Data System (ADS)

    Rodríguez, N.

    2013-10-01

    We study a class of ‘reaction-advection-diffusion’ system of partial differential equations, which can be taken as basic models for criminal activity. This class of models are based on routine activity theory and other theories, such as the ‘repeat and near-repeat victimization effect’ and were first introduced in Short et al. (2008) [11]. In these models the criminal density is advected by a velocity field that depends on a scalar field, which measures the appeal to commit a crime. We refer to this scalar field as the attractiveness field. We prove local well-posedness of solutions for the general class of models. Furthermore, we prove global well-posedness of solutions to a fully-parabolic system with a velocity field that depends logarithmically on the attractiveness field. Our final result is the global well-posedness of solutions the fully-parabolic system with velocity field that depends linearly on the attractiveness field for small initial mass.

  9. Validity Theory: Reform Policies, Accountability Testing, and Consequences

    ERIC Educational Resources Information Center

    Chalhoub-Deville, Micheline

    2016-01-01

    Educational policies such as Race to the Top in the USA affirm a central role for testing systems in government-driven reform efforts. Such reform policies are often referred to as the global education reform movement (GERM). Changes observed with the GERM style of testing demand socially engaged validity theories that include consequential…

  10. Documentary with Ephemeral Media: Curation Practices in Online Social Spaces

    ERIC Educational Resources Information Center

    Erickson, Ingrid

    2010-01-01

    New hardware such as mobile handheld devices and digital cameras; new online social venues such as social networking, microblogging, and online photo sharing sites; and new infrastructures such as the global positioning system are beginning to establish new practices--what the author refers to as "sociolocative"--that combine data about a physical…

  11. Singapore's Global Education Hub Ambitions: University Governance Change and Transnational Higher Education

    ERIC Educational Resources Information Center

    Mok, Ka Ho

    2008-01-01

    Purpose: The principal goal of the article is to examine how Singapore, one of the East Asian tiger economies, has attempted to diversify its higher education system by developing "transnational education" in the island state. Design/methodology/approach: With particular reference to the most recent education reforms and changing higher…

  12. The Cosmopolitan University: The Medium toward Global Citizenship and Justice

    ERIC Educational Resources Information Center

    George-Jackson, Casey E.

    2010-01-01

    This article promotes the idea of universities adopting cosmopolitanism as a way to manage the changing demands on the system of higher education in the USA, namely to improve the inclusion of international students, minority students and other historically underrepresented groups, often referred to as the "Other," which will in turn…

  13. Non-linear motions in reprocessed GPS station position time series

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gendt, Gerd

    2010-05-01

    Global Positioning System (GPS) data of about 400 globally distributed stations obtained at time span from 1998 till 2007 were reprocessed using GFZ Potsdam EPOS (Earth Parameter and Orbit System) software within International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Pilot Project and IGS Data Reprocessing Campaign with the purpose to determine weekly precise coordinates of GPS stations located at or near tide gauges. Vertical motions of these stations are used to correct the vertical motions of tide gauges for local motions and to tie tide gauge measurements to the geocentric reference frame. Other estimated parameters include daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. The solution GT1 derived is based on using absolute phase center variation model, ITRF2005 as a priori reference frame, and other new models. The solution contributed also to ITRF2008. The time series of station positions are analyzed to identify non-linear motions caused by different effects. The paper presents the time series of GPS station coordinates and investigates apparent non-linear motions and their influence on GPS station height rates.

  14. Method of steering the gain of a multiple antenna global positioning system receiver

    NASA Astrophysics Data System (ADS)

    Evans, Alan G.; Hermann, Bruce R.

    1992-06-01

    A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.

  15. On the life cycle cost and return on investment of a 500 GW global space solar power system

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.

    Past studies have produced considerable evidence that Peter E. Glaser's proposal to establish solar power plants in the geostationary orbit (to contribute to the supply of our planet with electrical energy) is technically feasible. However, the economical viability and the risks involved were hurdles to be taken. A new reference system using chemical propellants only and lunar resources seem to provide satisfactory answers with respect to economy and risk. Detailed simulations of this new reference concept through a full life cycle provide new insights which are reason enough to encourage further analysis. Data on a 500 GW SSPS system and its technical and financial properties over a 14 year development and 100 year operational life cycle are presented on 24 diagrams.

  16. On the life cycle cost and return on investment of a 500 GW global space solar power system

    NASA Astrophysics Data System (ADS)

    Koelle, H. H.

    1987-10-01

    Past studies have produced considerable evidence that Glaser's (1968 and 1973) proposal to establish solar powerplants in the geostationary orbit (to contribute to the supply of our planet with electrical energy) is technically feasible. However, the economical viability and the risks involved were hurdles to be taken. A new reference system using chemical propellants only and lunar resources seem to provide satisfactory answers with respect to economy and risk. Detailed simulations of this new reference concept through a full life cycle provide new insights which are reason enough to encourage further analysis. Data on a 500 GW SSPS system and its technical and financial properties over a 14 year development and 100 year operational life cycle are presented on 24 diagrams.

  17. Establishing a Modern Ground Network for Space Geodesy Applications

    NASA Technical Reports Server (NTRS)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in designing a co-location station.

  18. The 1990 Reference Handbook: Earth Observing System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the Earth Observing System (EOS) including goals and requirements is given. Its role in the U.S. Global Change Research Program and the International--Biosphere Program is addressed. The EOS mission requirements, science, fellowship program, data and information systems architecture, data policy, space measurement, and mission elements are presented along with the management of EOS. Descriptions of the facility instruments, instrument investigations, and interdisciplinary investigations are also present. The role of the National Oceanic and Atmospheric Administration in the mission is mentioned.

  19. Systems Engineering Processes for the Acquisition of Prognostic and Health Management Systems

    DTIC Science & Technology

    2012-09-01

    INTRODUCTION A. BACKGROUND Prior to the F-35 Joint Strike Fighter (JSF) Program, the A-7 Corsair II was the last single engine fighter in the Navy...first fielded on the A-7 Corsair to the CBM+ systems being developed for the F-35 JSF. It also identified the DoD directive that mandates the...LEFT BLANK 55 LIST OF REFERENCES [1] A-7 Corsair II. (2011, July 7). GlobalSecurity.org. [Online]. Available: http://www.globalsecurity.org

  20. Anthropocene: Shifting Paradigms in Geoscience, Philosophy, History and Geopolitics

    NASA Astrophysics Data System (ADS)

    Maslin, M. A.; Lewis, S. L.

    2015-12-01

    The concept of the Anthropocene has created a profound paradigm shift within the scientific community that we argue will create equally important changes in philosophy, history and politics. There is general scientific agreement that human activity has been a geologically recent, yet profound, influence on the Earth System. The magnitude, variety and longevity of human-induced changes, to the lithosphere, hydrosphere, cryosphere, biosphere and atmosphere suggests that we should refer to the present, not as within the Holocene Epoch (as it is currently formally referred to), but instead as within the Anthropocene Epoch. Discussion is now centred on defining the start of the epoch using the fundamental principles of stratigraphy. These must include (i) a near permanent change to the Earth system that sets it on to a new trajectory and (ii) global changes to the Earth system recorded in a number of stratigraphic deposits worldwide to provide a correlative boundary event or marker called a Global Stratotype Section & Point (GSSP) or 'golden spike'. Using this framework we conclude that just two time-periods are likely adhere to the criteria. These are 1) the irreversible cross-ocean exchange of species alongside the globally synchronous coolest part of the Little Ice Age in the 17th century, marked by the 1610 minima of CO2 (Orbis Spike), and 2) the accelerating atmospheric, oceanic and terrestrial changes in the second half of the 20th century, referred to as the Great Acceleration and conveniently marked by the 1964 peak radionuclide fallout (Bomb Spike). We seek to clear up misconceptions and misunderstandings about geological criteria and relevant evidence that have crept into the literature. We also argue that there are multiple definitions of the Anthropocene and even if a formal definition of the Anthropocene Epoch is agreed by geoscientists, this would in no way invalidate other definitions or uses. It is the utility and wide appeal that makes the Anthropocene such an important concept.

  1. International Collaboration in the field of GNSS-Meteorology and Climate Monitoring

    NASA Astrophysics Data System (ADS)

    Jones, J.; Guerova, G.; Dousa, J.; Bock, O.; Elgered, G.; Vedel, H.; Pottiaux, E.; de Haan, S.; Pacione, R.; Dick, G.; Wang, J.; Gutman, S. I.; Wickert, J.; Rannat, K.; Liu, G.; Braun, J. J.; Shoji, Y.

    2012-12-01

    International collaboration in the field of GNSS-meteorology and climate monitoring is essential, as severe weather and climate change have no respect for national boundaries. The use of Global Navigation Satellite Systems (GNSS) for meteorological purposes is an established atmospheric observing technique, which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Severe weather forecasting is challenging, in part due to the high temporal and spatial variation of atmospheric water vapour. Water vapour is currently under-sampled and obtaining and exploiting more high-quality humidity observations is essential to severe weather forecasting and climate monitoring. A proposed EU COST Action (http://www.cost.eu) will address new and improved capabilities from concurrent developments in both GNSS and atmospheric communities to improve (short-range) weather forecasts and climate projections. For the first time, the synergy of the three GNSS systems, GPS, GLONASS and Galileo, will be used to develop new, advanced tropospheric products, stimulating the full potential exploitation of multi-GNSS water vapour estimates on a wide range of temporal and spatial scales, from real-time severe weather monitoring and forecasting to climate research. The Action will work in close collaboration with the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN), GNSS Precipitable Water Task Team (TT). GRUAN is a global reference observing network, designed to meet climate requirements and to fill a major void in the current global observing system. GRUAN observations will provide long-term, high-quality data to determine climatic trends and to constrain and validate data from space-based remote sensors. Ground-based GNSS PW was identified as a Priority 1 measurement for GRUAN, and the GNSS-PW TT's goal is to develop explicit guidance on hardware, software and data management practices to obtain GNSS PW measurements of consistent quality at all GRUAN sites. The GRUAN GNSS-PW TT and the proposed COST Action will look to expand the international framework already in place with the European E-GVAP programme to facilitate global collaboration to facilitate knowledge and data exchange.

  2. Accuracy Evaluation of Two Global Land Cover Data Sets Over Wetlands of China

    NASA Astrophysics Data System (ADS)

    Niu, Z. G.; Shan, Y. X.; Gong, P.

    2012-07-01

    Although wetlands are well known as one of the most important ecosystems in the world, there are still few global wetland mapping efforts at present. To evaluate the wetland-related types of data accurately for both the Global Land Cover 2000 (GLC2000) data set and MODIS land cover data set (MOD12Q1), we used the China wetland map of 2000, which was interpreted manually based on Landsat TM images, to examine the precision of these global land cover data sets from two aspects (class area accuracy, and spatial agreement) across China. The results show that the area consistency coefficients of wetland-related types between the two global data sets and the reference data are 77.27% and 56.85%, respectively. However, the overall accuracy of relevant wetland types from GLC2000 is only 19.81% based on results of confusion matrix of spatial consistency, and similarly, MOD12Q1 is merely 18.91%. Furthermore, the accuracy of the peatlands is much lower than that of the water bodies according to the results of per-pixel comparison. The categories where errors occurred frequently mainly include grasslands, croplands, bare lands and part of woodland (deciduous coniferous forest, deciduous broadleaf forest and open shrubland). The possible reasons for the low precision of wetland-related land cover types include (1)the different aims of various products and therefore the inconsistent wetland definitions in their systems; (2) the coarse spatial resolution of satellite images used in global data; (3) Discrepancies in dates when images were acquired between the global data set and the reference data. Overall, the unsatisfactory results highlight that more attention should be paid to the application of these two global data products, especially in wetland-relevant types across China.

  3. A Recommendation on SLR Ranging to Future Global Navigation Satellite Systems

    NASA Astrophysics Data System (ADS)

    Labrecque, J. L.; Miller, J. J.; Pearlman, M.

    2008-12-01

    The multi-agency US Geodetic Requirements Working Group has recommended that Satellite Laser Retro- reflectors be installed on GPS III satellites as a principal component of the Positioning, Navigation, and Timing mandate of the Global Positioning System. The Working Group, which includes NASA, NGA, NOAA, NRL, USGS, and the USNO, echoes the Global Geodetic Observing System recommendation that SLR retro- reflectors be installed on all GNSS satellites. It is further recommended that the retro-reflectors conform to and hopefully exceed the minimum standard of the International Laser Ranging Service for retro-reflector cross sections of 100 million square meters for the HEO GNSS satellites to insure sufficiently accurate ranging by the global network of satellite laser ranging systems. The objective of this recommendation is to contribute to the improvement in the International Terrestrial Reference Frame, and its derivative the WGS84 reference frame, through continuing improvements in the characterization of the GPS orbits and clocks. Another objective is to provide an independent means of assessing the interoperability and accuracy of the GNSS systems and regional augmentation systems. The ranging to GNSS-mounted retro-reflectors will constitute a significant new means of space-based collocation to constrain the tie between the GPS and SLR networks that constitute over 50% of the data from which the ITRF is derived. The recommendation for the installation of SLR retro-reflectors aboard future GPS satellites is one of a number of efforts aimed at improving the accuracy and stability of ITRF. These steps are being coordinated with and supportive of the efforts of the GGOS and its services such at the VLBI2010 initiative, developing a next generation geodetic network, near real-time GPS positioning and EOP determination, and numerous efforts in the improvement of geodetic algorithms for GPS, SLR, VLBI, DORIS, and the determination of the ITRF. If past is prologue, the requirements of accuracy placed upon GNSS systems will continue to evolve at a factor of ten per decade for the lifetime of the GPS III, extending to 2025 and beyond. Global societal priorities such as sea level change measurement already require a factor of ten or more improvement in the accuracy and stability of the ITRF. Increasing accuracy requirements by civilian users for precision positioning and time keeping will certainly continue to grow at an exponential rate. The PNT accuracy of our GNSS systems will keep pace with these societal needs only if we equip the GNSS systems with the capability to identify and further reduce systematic errors.

  4. The need to look at antibiotic resistance from a health systems perspective

    PubMed Central

    Vlad, Ioana

    2014-01-01

    Current use, misuse, and overuse of antibiotics raise dangers and ethical dilemmas that cannot be solved in isolation, exclusively within a health system building block or even within the health sector only. There is a need to tackle antibiotic resistance emergence and containment on levels ranging from individuals, households, and the communities, to health care facilities, the entire health sector, and finally to national and global levels. We analyse emergence of antibiotic resistance based on interdependencies between health systems resources. We further go beyond the health system building blocks, to look at determinants of antibiotic resistance referring to wider global dynamics. Multi-level governance is the key for successful action in containment strategies. This will involve, in a comprehensive way, patients, health facilities where they receive care, health systems to which these facilities pertain, and the wider national context as well as the global community that influences the functioning of these health systems. In order to be effective and sustainable in both high and low-resource settings, implementation of containment interventions at all these levels needs to be managed based on existing theories and models of change. Although ministries of health and the global community must provide vision and support, it is important to keep in mind that containment interventions for antibiotic resistance will target individuals, consumers as well as providers. PMID:24673267

  5. Automation of Precise Time Reference Stations (PTRS)

    NASA Astrophysics Data System (ADS)

    Wheeler, P. J.

    1985-04-01

    The U.S. Naval Observatory is presently engaged in a program of automating precise time stations (PTS) and precise time reference stations (PTBS) by using a versatile mini-computer controlled data acquisition system (DAS). The data acquisition system is configured to monitor locally available PTTI signals such as LORAN-C, OMEGA, and/or the Global Positioning System. In addition, the DAS performs local standard intercomparison. Computer telephone communications provide automatic data transfer to the Naval Observatory. Subsequently, after analysis of the data, results and information can be sent back to the precise time reference station to provide automatic control of remote station timing. The DAS configuration is designed around state of the art standard industrial high reliability modules. The system integration and software are standardized but allow considerable flexibility to satisfy special local requirements such as stability measurements, performance evaluation and printing of messages and certificates. The DAS operates completely independently and may be queried or controlled at any time with a computer or terminal device (control is protected for use by authorized personnel only). Such DAS equipped PTS are operational in Hawaii, California, Texas and Florida.

  6. Cache Hardware Approaches to Multiple Independent Levels of Security (MILS)

    DTIC Science & Technology

    2012-10-01

    systems that require that several multicore processors be connected together in a single system. However, no such boards were available on the market ...available concerning each module. However, the availability of modules seems to significantly lag the time when the corresponding hardware hits the market ...version of real mode often referred to as “Unreal mode” can be entered by loading a Local Descriptor Table (LDT) and Global Descriptor Table (GDT

  7. Centimeter-Level Robust Gnss-Aided Inertial Post-Processing for Mobile Mapping Without Local Reference Stations

    NASA Astrophysics Data System (ADS)

    Hutton, J. J.; Gopaul, N.; Zhang, X.; Wang, J.; Menon, V.; Rieck, D.; Kipka, A.; Pastor, F.

    2016-06-01

    For almost two decades mobile mapping systems have done their georeferencing using Global Navigation Satellite Systems (GNSS) to measure position and inertial sensors to measure orientation. In order to achieve cm level position accuracy, a technique referred to as post-processed carrier phase differential GNSS (DGNSS) is used. For this technique to be effective the maximum distance to a single Reference Station should be no more than 20 km, and when using a network of Reference Stations the distance to the nearest station should no more than about 70 km. This need to set up local Reference Stations limits productivity and increases costs, especially when mapping large areas or long linear features such as roads or pipelines. An alternative technique to DGNSS for high-accuracy positioning from GNSS is the so-called Precise Point Positioning or PPP method. In this case instead of differencing the rover observables with the Reference Station observables to cancel out common errors, an advanced model for every aspect of the GNSS error chain is developed and parameterized to within an accuracy of a few cm. The Trimble Centerpoint RTX positioning solution combines the methodology of PPP with advanced ambiguity resolution technology to produce cm level accuracies without the need for local reference stations. It achieves this through a global deployment of highly redundant monitoring stations that are connected through the internet and are used to determine the precise satellite data with maximum accuracy, robustness, continuity and reliability, along with advance algorithms and receiver and antenna calibrations. This paper presents a new post-processed realization of the Trimble Centerpoint RTX technology integrated into the Applanix POSPac MMS GNSS-Aided Inertial software for mobile mapping. Real-world results from over 100 airborne flights evaluated against a DGNSS network reference are presented which show that the post-processed Centerpoint RTX solution agrees with the DGNSS solution to better than 2.9 cm RMSE Horizontal and 5.5 cm RMSE Vertical. Such accuracies are sufficient to meet the requirements for a majority of airborne mapping applications.

  8. Progress and Challenges in Developing Reference Data Layers for Human Population Distribution and Built Infrastructure

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Yetman, G.; de Sherbinin, A. M.

    2015-12-01

    Understanding the interactions between environmental and human systems, and in particular supporting the applications of Earth science data and knowledge in place-based decision making, requires systematic assessment of the distribution and dynamics of human population and the built human infrastructure in conjunction with environmental variability and change. The NASA Socioeconomic Data and Applications Center (SEDAC) operated by the Center for International Earth Science Information Network (CIESIN) at Columbia University has had a long track record in developing reference data layers for human population and settlements and is expanding its efforts on topics such as intercity roads, reservoirs and dams, and energy infrastructure. SEDAC has set as a strategic priority the acquisition, development, and dissemination of data resources derived from remote sensing and socioeconomic data on urban land use change, including temporally and spatially disaggregated data on urban change and rates of change, the built infrastructure, and critical facilities. We report here on a range of past and ongoing activities, including the Global Human Settlements Layer effort led by the European Commission's Joint Research Centre (JRC), the Global Exposure Database for the Global Earthquake Model (GED4GEM) project, the Global Roads Open Access Data Working Group (gROADS) of the Committee on Data for Science and Technology (CODATA), and recent work with ImageCat, Inc. to improve estimates of the exposure and fragility of buildings, road and rail infrastructure, and other facilities with respect to selected natural hazards. New efforts such as the proposed Global Human Settlement indicators initiative of the Group on Earth Observations (GEO) could help fill critical gaps and link potential reference data layers with user needs. We highlight key sectors and themes that require further attention, and the many significant challenges that remain in developing comprehensive, high quality, up-to-date, and well maintained reference data layers on population and built infrastructure. The need for improved indicators of sustainable development in the context of the post-2015 development framework provides an opportunity to link data efforts directly with international development needs and investments.

  9. Local effects of redundant terrestrial and GPS-based tie vectors in ITRF-like combinations

    NASA Astrophysics Data System (ADS)

    Abbondanza, Claudio; Altamimi, Zuheir; Sarti, Pierguido; Negusini, Monia; Vittuari, Luca

    2009-11-01

    Tie vectors (TVs) between co-located space geodetic instruments are essential for combining terrestrial reference frames (TRFs) realised using different techniques. They provide relative positioning between instrumental reference points (RPs) which are part of a global geodetic network such as the international terrestrial reference frame (ITRF). This paper gathers the set of very long baseline interferometry (VLBI)-global positioning system (GPS) local ties performed at the observatory of Medicina (Northern Italy) during the years 2001-2006 and discusses some important aspects related to the usage of co-location ties in the combinations of TRFs. Two measurement approaches of local survey are considered here: a GPS-based approach and a classical approach based on terrestrial observations (i.e. angles, distances and height differences). The behaviour of terrestrial local ties, which routinely join combinations of space geodetic solutions, is compared to that of GPS-based local ties. In particular, we have performed and analysed different combinations of satellite laser ranging (SLR), VLBI and GPS long term solutions in order to (i) evaluate the local effects of the insertion of the series of TVs computed at Medicina, (ii) investigate the consistency of GPS-based TVs with respect to space geodetic solutions, (iii) discuss the effects of an imprecise alignment of TVs from a local to a global reference frame. Results of ITRF-like combinations show that terrestrial TVs originate the smallest residuals in all the three components. In most cases, GPS-based TVs fit space geodetic solutions very well, especially in the horizontal components (N, E). On the contrary, the estimation of the VLBI RP Up component through GPS technique appears to be awkward, since the corresponding post fit residuals are considerably larger. Besides, combination tests including multi-temporal TVs display local effects of residual redistribution, when compared to those solutions where Medicina TVs are added one at a time. Finally, the combination of TRFs turns out to be sensitive to the orientation of the local tie into the global frame.

  10. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  11. GNSS RTK-networks: The significance and issues to realize a recent reference coordinate system

    NASA Astrophysics Data System (ADS)

    Umnig, Elke; Möller, Gregor; Weber, Robert

    2014-05-01

    The upcoming release of the new global reference frame ITRF2013 will provide high accurate reference station positions and station velocities at the mm- and mm/year level, respectively. ITRF users benefit from this development in various ways. For example, this new frame allows for embedding high accurate GNSS baseline observations to an underlying reference of at least the same accuracy. Another advantage is that the IGS products are fully consistent with this frame and therefore all GNSS based zero-difference positioning results (Precise Point Positioning (PPP)) will be aligned to the ITRF2013. Unfortunately the transistion to a new frame (or just to a new epoch) implies also issues in particular for providers and users of real time positioning services. Thus providers have to perform arrangements, such as the readjustment of the reference station coordinates and the update of the transformation parameters from the homogenous GNSS coordinate frame into the national datum. Finally providers have to inform their clients appropriately about these changes and significant adjustments. Furthermore the aspect of the continental reference frame has to be considered: In Europe the use of the continental reference system/reference frame ETRS89/ETRF2000 is, due to cross-national guidelines, recommend by most national mapping authorities. Subsequently GNSS post-processing applications are degraded by the concurrent use of the reference systems and reference frames, to which terrestrial site coordinates and satellite coordinates are aligned. In this presentation we highlight all significant steps and hurdles which have to be jumped over when introducing a new reference frame from point of view of a typical regional RTK-reference station network provider. This network is located in Austria and parts of the neighbouring countries and consists of about 40 reference stations. Moreover, we discuss the significance of permanently monitoring the stability of the reference network sites and the determination of station velocities/rates for geodynamical investigations.

  12. EOS Laser Atmosphere Wind Sounder (LAWS) investigation

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In this final report, the set of tasks that evolved from the Laser Atmosphere Wind Sounder (LAWS) Science Team are reviewed, the major accomplishments are summarized, and a complete set of resulting references provided. The tasks included preparation of a plan for the LAWS Algorithm Development and Evolution Laboratory (LADEL); participation in the preparation of a joint CNES/NASA proposal to build a space-based DWL; involvement in the Global Backscatter Experiments (GLOBE); evaluation of several DWL concepts including 'Quick-LAWS', SPNDL and several direct detection technologies; and an extensive series of system trade studies and Observing System Simulation Experiments (OSSE's). In this report, some of the key accomplishments are briefly summarized with reference to interim reports, special reports, conference/workshop presentations, and publications.

  13. Global retrieval of soil moisture and vegetation properties using data-driven methods

    NASA Astrophysics Data System (ADS)

    Rodriguez-Fernandez, Nemesio; Richaume, Philippe; Kerr, Yann

    2017-04-01

    Data-driven methods such as neural networks (NNs) are a powerful tool to retrieve soil moisture from multi-wavelength remote sensing observations at global scale. In this presentation we will review a number of recent results regarding the retrieval of soil moisture with the Soil Moisture and Ocean Salinity (SMOS) satellite, either using SMOS brightness temperatures as input data for the retrieval or using SMOS soil moisture retrievals as reference dataset for the training. The presentation will discuss several possibilities for both the input datasets and the datasets to be used as reference for the supervised learning phase. Regarding the input datasets, it will be shown that NNs take advantage of the synergy of SMOS data and data from other sensors such as the Advanced Scatterometer (ASCAT, active microwaves) and MODIS (visible and infra red). NNs have also been successfully used to construct long time series of soil moisture from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and SMOS. A NN with input data from ASMR-E observations and SMOS soil moisture as reference for the training was used to construct a dataset sharing a similar climatology and without a significant bias with respect to SMOS soil moisture. Regarding the reference data to train the data-driven retrievals, we will show different possibilities depending on the application. Using actual in situ measurements is challenging at global scale due to the scarce distribution of sensors. In contrast, in situ measurements have been successfully used to retrieve SM at continental scale in North America, where the density of in situ measurement stations is high. Using global land surface models to train the NN constitute an interesting alternative to implement new remote sensing surface datasets. In addition, these datasets can be used to perform data assimilation into the model used as reference for the training. This approach has recently been tested at the European Centre for Medium-Range Weather Forecasts (ECMWF). Finally, retrievals using radiative transfer models can also be used as a reference SM dataset for the training phase. This approach was used to retrieve soil moisture from ASMR-E, as mentioned above, and also to implement the official European Space Agency (ESA) SMOS soil moisture product in Near-Real-Time. We will finish with a discussion of the retrieval of vegetation parameters from SMOS observations using data-driven methods.

  14. The Pursuit of Word Meanings

    PubMed Central

    Stevens, Jon Scott; Gleitman, Lila R.; Trueswell, John C.; Yang, Charles

    2016-01-01

    We evaluate here the performance of four models of cross-situational word learning; two global models, which extract and retain multiple referential alternatives from each word occurrence; and two local models, which extract just a single referent from each occurrence. One of these local models, dubbed Pursuit, uses an associative learning mechanism to estimate word-referent probability but pursues and tests the best referent-meaning at any given time. Pursuit is found to perform as well as global models under many conditions extracted from naturalistic corpora of parent child-interactions, even though the model maintains far less information than global models. Moreover, Pursuit is found to best capture human experimental findings from several relevant cross-situational word-learning experiments, including those of Yu and Smith (2007), the paradigm example of a finding believed to support fully global cross-situational models. Implications and limitations of these results are discussed, most notably that the model characterizes only the earliest stages of word learning, when reliance on the co-occurring referent world is at its greatest. PMID:27666335

  15. Foundational Data Products for Europa: A Planetary Spatial Data Infrastructure Example

    NASA Astrophysics Data System (ADS)

    Archinal, B. A.; Laura, J.; Becker, T. L.; Bland, M. T.; Kirk, R. L.

    2017-12-01

    Any Spatial Data Infrastructure (SDI), including a Planetary SDI (PSDI [1]), includes primary components such as "policy, access network, technical standards, people (including partnerships), and data" [2]. Data is largely categorized into critical foundational products and framework data products. Of data themes [3] previously identified for the U. S. National SDI, we identify [4] three types of products that are foundational to a PSDI: geodetic coordinate reference systems, elevation information, and orthomosaics. We previously listed examples of such products for the Moon (ibid.). Here, we list the current state of these three foundational products for Europa, a key destination in the outer Solar System. Geodetic coordinate reference systems for Europa are based on photogrammetric control networks generated from processing of Voyager and Galileo images, the most recent being that created by M. Davies and T. Colvin at The RAND Corporation in the late 1990s. The Voyager and Galileo images provide insufficient stereo coverage to derive a detailed global topographic model, but various global ellipsoidal shape models have been derived using e.g. the RAND network or limb profile data. The best-known global mosaic of Europa is a controlled orthomosaic produced by the U.S. Geological Survey [5], based on the RAND network and triaxial ellipsoid shape model. Near future needs include comparing the resolution and accuracy of these products with estimates for newer products that might supersede them, including released or unreleased regional products (such as digital terrain models or mosaics) and products that could be made by processing of extant data. Understanding these PSDI fundamental needs will also improve assessing and prioritizing products that are planned for by the upcoming NASA Europa Clipper mission. This effort is not only useful for Europa science, but is also a first step toward developing such summaries for all Solar System bodies with relevant data, which collectively will serve as a foundation of an entire PSDI. References: [1] Laura et al., ISPRS J. Geo-Info., 6, #181. [2] Rajabifard and Williamson, in Williamson and Rajabifard, eds., ISPRS-WG IV/8, Hong Kong, China, Ch. 6, 2001. [3] OMB Circular A-16 Supp. Guidance. [4] LPS XLVIII, #2286. [5] USGS map I-2757.

  16. Quantitative Analysis Tools and Digital Phantoms for Deformable Image Registration Quality Assurance.

    PubMed

    Kim, Haksoo; Park, Samuel B; Monroe, James I; Traughber, Bryan J; Zheng, Yiran; Lo, Simon S; Yao, Min; Mansur, David; Ellis, Rodney; Machtay, Mitchell; Sohn, Jason W

    2015-08-01

    This article proposes quantitative analysis tools and digital phantoms to quantify intrinsic errors of deformable image registration (DIR) systems and establish quality assurance (QA) procedures for clinical use of DIR systems utilizing local and global error analysis methods with clinically realistic digital image phantoms. Landmark-based image registration verifications are suitable only for images with significant feature points. To address this shortfall, we adapted a deformation vector field (DVF) comparison approach with new analysis techniques to quantify the results. Digital image phantoms are derived from data sets of actual patient images (a reference image set, R, a test image set, T). Image sets from the same patient taken at different times are registered with deformable methods producing a reference DVFref. Applying DVFref to the original reference image deforms T into a new image R'. The data set, R', T, and DVFref, is from a realistic truth set and therefore can be used to analyze any DIR system and expose intrinsic errors by comparing DVFref and DVFtest. For quantitative error analysis, calculating and delineating differences between DVFs, 2 methods were used, (1) a local error analysis tool that displays deformation error magnitudes with color mapping on each image slice and (2) a global error analysis tool that calculates a deformation error histogram, which describes a cumulative probability function of errors for each anatomical structure. Three digital image phantoms were generated from three patients with a head and neck, a lung and a liver cancer. The DIR QA was evaluated using the case with head and neck. © The Author(s) 2014.

  17. Fusion of range camera and photogrammetry: a systematic procedure for improving 3-D models metric accuracy.

    PubMed

    Guidi, G; Beraldin, J A; Ciofi, S; Atzeni, C

    2003-01-01

    The generation of three-dimensional (3-D) digital models produced by optical technologies in some cases involves metric errors. This happens when small high-resolution 3-D images are assembled together in order to model a large object. In some applications, as for example 3-D modeling of Cultural Heritage, the problem of metric accuracy is a major issue and no methods are currently available for enhancing it. The authors present a procedure by which the metric reliability of the 3-D model, obtained through iterative alignments of many range maps, can be guaranteed to a known acceptable level. The goal is the integration of the 3-D range camera system with a close range digital photogrammetry technique. The basic idea is to generate a global coordinate system determined by the digital photogrammetric procedure, measuring the spatial coordinates of optical targets placed around the object to be modeled. Such coordinates, set as reference points, allow the proper rigid motion of few key range maps, including a portion of the targets, in the global reference system defined by photogrammetry. The other 3-D images are normally aligned around these locked images with usual iterative algorithms. Experimental results on an anthropomorphic test object, comparing the conventional and the proposed alignment method, are finally reported.

  18. Earth observing system: 1989 reference handbook

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA is studying a coordinated effort called the Mission to Planet Earth to understand global change. The goals are to understand the Earth as a system, and to determine those processes that contribute to the environmental balance, as well as those that may result in changes. The Earth Observing System (Eos) is the centerpiece of the program. Eos will create an integrated scientific observing system that will enable multidisciplinary study of the Earth including the atmosphere, oceans, land surface, polar regions, and solid Earth. Science goals, the Eos data and information system, experiments, measuring instruments, and interdisciplinary investigations are described.

  19. Network global navigation satellite system survey to harmonize water-surface elevation data for the Rainy River Basin

    USGS Publications Warehouse

    Ziegeweid, Jeffrey R.; Silliker, R. Jason; Densmore, Brenda K.; Krahulik, Justin

    2016-08-15

    Continuously recording water-level streamgages in Rainy Lake and Namakan Reservoir are used to regulate water levels according to rule curves established in 2000 by the International Joint Commission; however, water levels at streamgages were referenced to a variety of vertical datums, confounding efforts to model the flow of water through the system, regulate water levels during periods of high inflow, and evaluate the effectiveness of the rule curves. In October 2014, the U.S. Geological Survey, Natural Resources Canada, International Joint Commission, and National Park Service began a joint field study with the goal of obtaining precise elevations referenced to a uniform vertical datum for all reference marks used to set water levels at streamgages throughout Rainy Lake and Namakan Reservoir. This report was prepared by the U.S. Geological Survey in cooperation with Natural Resources Canada, International Joint Commission, and National Park Service.Three field crews deployed Global Navigation Satellite System receivers statically over 16 reference marks colocated with active and discontinued water-level streamgages throughout Rainy River, Rainy Lake, Namakan Reservoir, and select tributaries of Rainy Lake and Namakan Reservoir. A Global Navigation Satellite System receiver also was deployed statically over a National Geodetic Survey cooperative base network control station for use as a quality-control reference mark. Satellite data were collected simultaneously during a 5-day period and processed independently by the U.S. Geological Survey and Natural Resources Canada to obtain accurate positioning and elevations for the 17 surveyed reference marks. Processed satellite data were used to convert published water levels to elevations above sea level referenced to the Canadian Geodetic Vertical Datum of 2013 in order to compare water-surface elevations referenced to a uniform vertical datum throughout the study area. In this report, an “offset” refers to the correction applied to published data from a particular streamgage to produce elevation data referenced to a specified vertical datum.Offsets were applied to water-level data from surveyed streamgages to further evaluate the accuracy and utility of updated reference mark elevations presented in this report. Daily mean water levels from active streamgages surveyed in this study were converted to water-surface elevations referenced to the Canadian Geodetic Vertical Datum of 2013. Graphical comparisons of water-surface elevations for streamgages in Namakan Reservoir, Rainy Lake, and selected rivers are presented (referencing the Canadian Geodetic Vertical Datum of 2013). Offsets presented in this report can be used in the evaluation of rule curves and in flood damage curves that fully assess the benefits of one regulation approach over another. In addition, offsets may be used to calibrate hydraulic models developed for four narrows that connect lakes of Namakan Reservoir, refine digital elevation models, and support modeling studies designed to assess the effects of rule curves on aquatic vegetation, benthic invertebrates, northern pike, and walleye.

  20. Poland and Global Threats

    NASA Astrophysics Data System (ADS)

    Kleer, Jerzy

    2016-01-01

    This essay seeks to present the specifics of global threats, as well as the reasons for them being universal in nature, and for their persistence. A certain classification of the threats is also engaged in. At the same time, an attempt is made to show the specific threats present - irrespective of their global counterparts - in different regions, and even in different states. The genesis and nature of the latter are demonstrated in a somewhat ad hoc manner by reference to the threats considered to face Poland. If the global threats are truly universal, and arise out of the changes taking place around the world in the last half-century (primarily around the twin phenomena of globalisation and the information revolution), a specific reverse kind of situation applies to decolonisation, plus the collapse of the communist system and the transformation into market economies that apply to formerly communist countries. Equally, some at least of the threats facing Poland may have even a longer history, given that they are very much influenced by past economic and political development, as well as the dominant cultural system.

  1. Model reference tracking control of an aircraft: a robust adaptive approach

    NASA Astrophysics Data System (ADS)

    Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan

    2017-05-01

    This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.

  2. Global Positioning System III (GPS III)

    DTIC Science & Technology

    2015-12-01

    Vacuum (TVAC) testing on October 12, 2015, and successfully completed baseline TVAC testing on December 23, 2015 – a major system- level event...0.0 0.0 Total 4142.9 5285.2 N/A 5180.4 4269.8 5650.1 5557.4 Current APB Cost Estimate Reference SCP dated July 02, 2015 Confidence Level Confidence... Level of cost estimate for current APB: 60% The current APB is established at the 60% confidence level . This estimate is built upon the February 2015

  3. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems.

    PubMed

    Gilgien, Matthias; Spörri, Jörg; Chardonnens, Julien; Kröll, Josef; Limpach, Philippe; Müller, Erich

    2015-01-01

    In the sport of alpine skiing, knowledge about the centre of mass (CoM) kinematics (i.e. position, velocity and acceleration) is essential to better understand both performance and injury. This study proposes a global navigation satellite system (GNSS)-based method to measure CoM kinematics without restriction of capture volume and with reasonable set-up and processing requirements. It combines the GNSS antenna position, terrain data and the accelerations acting on the skier in order to approximate the CoM location, velocity and acceleration. The validity of the method was assessed against a reference system (video-based 3D kinematics) over 12 turn cycles on a giant slalom skiing course. The mean (± s) position, velocity and acceleration differences between the CoM obtained from the GNSS and the reference system were 9 ± 12 cm, 0.08 ± 0.19 m · s(-1) and 0.22 ± 1.28 m · s(-2), respectively. The velocity and acceleration differences obtained were smaller than typical differences between the measures of several skiers on the same course observed in the literature, while the position differences were slightly larger than its discriminative meaningful change. The proposed method can therefore be interpreted to be technically valid and adequate for a variety of biomechanical research questions in the field of alpine skiing with certain limitations regarding position.

  4. How Can We Identify the Elimination of Infectious Diseases? Experience From an Active Measles Laboratory Surveillance System in the Republic of Korea.

    PubMed

    Yang, Tae Un; Kang, Hae Ji; Eom, Hye Eun; Park, Young-Joon; Park, Ok; Kim, Su Jin; Nam, Jeong-Gu; Kim, Sung Soon; Jeong, Eun Kyeong

    2015-11-01

    Global efforts have markedly decreased the disease burden of vaccine-preventable diseases. Many countries have made considerable progress toward the elimination of measles. As elimination is approached, the very low incidence achieved by high vaccination coverage has underscored the need for a sensitive and timely surveillance system. In the Republic of Korea, an active laboratory surveillance system (ALSS) was implemented to supplement the existing passive surveillance system in 2006. The ALSS connects 5 major commercial laboratories and the national measles reference laboratory, where referred samples with positive or equivocal results are retested. Annually, from 2009 to 2013, 3714 suspected cases were detected through the ALSS, an expansion of 8- to 57-fold, compared with only the passive surveillance system. The ALSS, with its sensitivity and timeliness, is a reasonable strategy to supplement the existing measles surveillance system and to help identify the elimination of measles. © 2015 APJPH.

  5. What Is a Complex Innovation System?

    PubMed Central

    Katz, J. Sylvan

    2016-01-01

    Innovation systems are sometimes referred to as complex systems, something that is intuitively understood but poorly defined. A complex system dynamically evolves in non-linear ways giving it unique properties that distinguish it from other systems. In particular, a common signature of complex systems is scale-invariant emergent properties. A scale-invariant property can be identified because it is solely described by a power law function, f(x) = kxα, where the exponent, α, is a measure of scale-invariance. The focus of this paper is to describe and illustrate that innovation systems have properties of a complex adaptive system. In particular scale-invariant emergent properties indicative of their complex nature that can be quantified and used to inform public policy. The global research system is an example of an innovation system. Peer-reviewed publications containing knowledge are a characteristic output. Citations or references to these articles are an indirect measure of the impact the knowledge has on the research community. Peer-reviewed papers indexed in Scopus and in the Web of Science were used as data sources to produce measures of sizes and impact. These measures are used to illustrate how scale-invariant properties can be identified and quantified. It is demonstrated that the distribution of impact has a reasonable likelihood of being scale-invariant with scaling exponents that tended toward a value of less than 3.0 with the passage of time and decreasing group sizes. Scale-invariant correlations are shown between the evolution of impact and size with time and between field impact and sizes at points in time. The recursive or self-similar nature of scale-invariance suggests that any smaller innovation system within the global research system is likely to be complex with scale-invariant properties too. PMID:27258040

  6. International global network of fiducial stations: Scientific and implementation issues

    NASA Astrophysics Data System (ADS)

    1991-11-01

    In this report, an ad hoc panel of the National Research Council's Committee on Geodesy, Board of Earth Sciences and Resources (1) evaluates the scientific importance of a global network of fiducial sites, monitored very precisely, using a combination of surface- and space-geodetic techniques; (2) examines strategies for implementing and operating such a network; and (3) assesses whether such a network would provide a suitable global infrastructure for geodetic and other geophysical systems of the next century. The panel concludes that a global network of fiducial sites would be a valuable tool for addressing global change issues and play a critical role in providing a reference frame for scientific Earth missions. The panel suggests that existing global networks be integrated and anticipates that such a network would grow from about 30 to the ultimate size of about 200 fiducial sites. It is noted that such a global network will provide a long-term infrastructure for geodetic and geophysical studies. The panel expects that these fiducial sites would evolve into terrestrial observatories or laboratories that would permit more comprehensive studies of the Earth than those now possible.

  7. International global network of fiducial stations: Scientific and implementation issues

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this report, an ad hoc panel of the National Research Council's Committee on Geodesy, Board of Earth Sciences and Resources (1) evaluates the scientific importance of a global network of fiducial sites, monitored very precisely, using a combination of surface- and space-geodetic techniques; (2) examines strategies for implementing and operating such a network; and (3) assesses whether such a network would provide a suitable global infrastructure for geodetic and other geophysical systems of the next century. The panel concludes that a global network of fiducial sites would be a valuable tool for addressing global change issues and play a critical role in providing a reference frame for scientific Earth missions. The panel suggests that existing global networks be integrated and anticipates that such a network would grow from about 30 to the ultimate size of about 200 fiducial sites. It is noted that such a global network will provide a long-term infrastructure for geodetic and geophysical studies. The panel expects that these fiducial sites would evolve into terrestrial observatories or laboratories that would permit more comprehensive studies of the Earth than those now possible.

  8. Performance of the High Sensitivity Open Source Multi-GNSS Assisted GNSS Reference Server.

    NASA Astrophysics Data System (ADS)

    Sarwar, Ali; Rizos, Chris; Glennon, Eamonn

    2015-06-01

    The Open Source GNSS Reference Server (OSGRS) exploits the GNSS Reference Interface Protocol (GRIP) to provide assistance data to GPS receivers. Assistance can be in terms of signal acquisition and in the processing of the measurement data. The data transfer protocol is based on Extensible Mark-up Language (XML) schema. The first version of the OSGRS required a direct hardware connection to a GPS device to acquire the data necessary to generate the appropriate assistance. Scenarios of interest for the OSGRS users are weak signal strength indoors, obstructed outdoors or heavy multipath environments. This paper describes an improved version of OSGRS that provides alternative assistance support from a number of Global Navigation Satellite Systems (GNSS). The underlying protocol to transfer GNSS assistance data from global casters is the Networked Transport of RTCM (Radio Technical Commission for Maritime Services) over Internet Protocol (NTRIP), and/or the RINEX (Receiver Independent Exchange) format. This expands the assistance and support model of the OSGRS to globally available GNSS data servers connected via internet casters. A variety of formats and versions of RINEX and RTCM streams become available, which strengthens the assistance provisioning capability of the OSGRS platform. The prime motivation for this work was to enhance the system architecture of the OSGRS to take advantage of globally available GNSS data sources. Open source software architectures and assistance models provide acquisition and data processing assistance for GNSS receivers operating in weak signal environments. This paper describes test scenarios to benchmark the OSGRSv2 performance against other Assisted-GNSS solutions. Benchmarking devices include the SPOT satellite messenger, MS-Based & MS-Assisted GNSS, HSGNSS (SiRFstar-III) and Wireless Sensor Networks Assisted-GNSS. Benchmarked parameters include the number of tracked satellites, the Time to Fix First (TTFF), navigation availability and accuracy. Three different configurations of Multi-GNSS assistance servers were used, namely Cloud-Client-Server, the Demilitarized Zone (DMZ) Client-Server and PC-Client-Server; with respect to the connectivity location of client and server. The impact on the performance based on server and/or client initiation, hardware capability, network latency, processing delay and computation times with their storage, scalability, processing and load sharing capabilities, were analysed. The performance of the OSGRS is compared against commercial GNSS, Assisted-GNSS and WSN-enabled GNSS devices. The OSGRS system demonstrated lower TTFF and higher availability.

  9. Accurate Realization of GPS Vertical Global Reference Frame

    NASA Technical Reports Server (NTRS)

    Elosegui, Pedro

    2005-01-01

    The goal of this project is to improve our current understanding of GPS error sources associated with estimates of radial velocities at global scales. An improvement in the accuracy of radial global velocities would have a very positive impact on a large number of geophysical studies of current general interest such as global sea-level and climate change, coastal hazards, glacial isostatic adjustment, atmospheric and oceanic loading, glaciology and ice mass variability, tectonic deformation and volcanic inflation, and geoid variability. A set of GPS error sources relevant to this project are those related to the combination of the positions and velocities of a set of globally distributed stations as determined &om the analysis of GPS data, including possible methods of combining and defining terrestrial reference frames. This is were our research activities during this reporting period have concentrated. During this reporting period, we have researched two topics: (1) The effect of errors on the GPS satellite antenna models (or lack thereof) on global GPS vertical position and velocity estimates; (2) The effect of reference W e definition and practice on estimates of the geocenter variations.

  10. Versatile all-digital time interval measuring system

    NASA Astrophysics Data System (ADS)

    Vyhlidal, David; Cech, Miroslav

    2011-06-01

    This paper describes a design and performance of a versatile all-digital time interval measuring system. The measurement method is based on an interpolation principle. In this principle the time interval is first roughly digitized by a coarse counter driven by a high stability reference clock and the fractions between the clock periods are measured by two Time-to-Digital Converter chips TDC-GPX manufactured by Acam messelectronic. Control circuits allow programmable customization of the system to satisfy many applications such as laser range finding, event counting, or time-of-flight measurements in various physics experiments. The system has two reference clocks inputs and two independent channels for measuring start and stop events. Only one 40 MHz reference is required for the measurement. The second reference can be, for example, 1 PPS (Pulse per Second) signal from a GPS (Global Positioning System) to time tag events. Time intervals are measured using the highest resolution mode of the TDC-GPX chips. The resolution of each chip is software programmable and is PLL (Phase Locked Loop) stabilized against temperature and voltage variations. The system can achieve a timing resolution better than 15 ps rms with up to 90 kHz repetition rate. The time interval measurement range is from 0 ps up to 1 second. The power consumption of the whole system is 18 W including an embedded computer board and an LCD (Liquid Crystal Display) screen. The embedded computer controls the whole system, collects and evaluates measurement data and with the display provides a user interface. The system is implemented using commercially available components.

  11. GPS Disciplined Oscillators for Traceability to the Italian Time Standard

    NASA Technical Reports Server (NTRS)

    Cordara, Franco; Pettiti, Valerio

    1996-01-01

    The Istituo Elettrotecnico Nazionale (IEN) is one of the Italian primary institutes which is responsible for the accreditation of secondary laboratories belong to the national calibration system (SNT) established by law in 1991. The Times and Frequency Department that has accredited in this frame 14 calibration centers for frequency, performs also the remote calibration of their reference oscillators by means of different synchronization systems. The problem of establishing the traceability of the national time standard of the Global Positioning System (GPS) disciplined oscillators has been investigated and the results obtained are reported.

  12. Assimilation of HF Radar Observations in the Chesapeake-Delaware Bay Region Using the Navy Coastal Ocean Model (NCOM) and the Four-Dimensional Variational (4DVAR) Method

    DTIC Science & Technology

    2015-01-01

    6. Zhang WG, Wilkin JL, Arango HG. Towards an integrated observation and modeling system in the New York Bight using variational methods. Part 1...1992;7:262- 72. ---- -- - ---------------------------- References 391 17. Rosmond TE, Teixeria J, Pcng M, Hogan TF, Pauley R. Navy operational global

  13. Contribution of Socio-Emotional Development Game to Social Integration of Young Children from Disadvantaged Backgrounds

    ERIC Educational Resources Information Center

    Cuc, Maria Claudia; Macarie, Simona

    2012-01-01

    In Romania postmodern education system is built on a new philosophy of education, which promotes a new concept, as the social fact and reference value in building human capital. Integration effects, of globalization, poor management and poor government policy, have brought out another aspect of Romania, poverty, which leaves its mark on the…

  14. Photogrammetry Tool for Forensic Analysis

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    A system allows crime scene and accident scene investigators the ability to acquire visual scene data using cameras for processing at a later time. This system uses a COTS digital camera, a photogrammetry calibration cube, and 3D photogrammetry processing software. In a previous instrument developed by NASA, the laser scaling device made use of parallel laser beams to provide a photogrammetry solution in 2D. This device and associated software work well under certain conditions. In order to make use of a full 3D photogrammetry system, a different approach was needed. When using multiple cubes, whose locations relative to each other are unknown, a procedure that would merge the data from each cube would be as follows: 1. One marks a reference point on cube 1, then marks points on cube 2 as unknowns. This locates cube 2 in cube 1 s coordinate system. 2. One marks reference points on cube 2, then marks points on cube 1 as unknowns. This locates cube 1 in cube 2 s coordinate system. 3. This procedure is continued for all combinations of cubes. 4. The coordinate of all of the found coordinate systems is then merged into a single global coordinate system. In order to achieve maximum accuracy, measurements are done in one of two ways, depending on scale: when measuring the size of objects, the coordinate system corresponding to the nearest cube is used, or when measuring the location of objects relative to a global coordinate system, a merged coordinate system is used. Presently, traffic accident analysis is time-consuming and not very accurate. Using cubes with differential GPS would give absolute positions of cubes in the accident area, so that individual cubes would provide local photogrammetry calibration to objects near a cube.

  15. Sub-seasonal predictability of water scarcity at global and local scale

    NASA Astrophysics Data System (ADS)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  16. A global deltas typology of environmental stress and its relation to terrestrial hydrology

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.; McDonald, K. C.; Schroeder, R.; Grossberg, M.; Gladkova, I.; Aizenman, H.

    2013-12-01

    River delta systems around the world are under varying degrees of environmental stress stemming from a variety of human impacts, both from upstream basin based activities and local impacts on the deltas themselves, as well as sea level rise. These stresses are known to affect rates of relative sea level rise by disrupting the delivery or deposition of sediment on the delta. We present a global database of several of these stresses, and investigate patterns of stress across delta systems. Several methods of aggregating the environmental stressors into an index score are also investigated. A statistical clustering analysis, which we refer to as a "global delta fingerprinting system", across the environmental stresses identifies systems under similar states of threat. Several deltas, including the Nile, are in unique clusters, while regional patterns are evident among deltas in Southeast Asia. These patterns are compared with observed surface inundation derived from SAR, NDVI from MODIS, river discharge estimates from the WBMplus numerical model, and ocean wave activity from WAVEWATCH III. Delta inundation sensitivity to river and coastal forcings are observed to vary with environmental stress and social indicators including population density and GDP.

  17. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less

  18. Current Trends and Challenges in Satellite Laser Ranging

    NASA Astrophysics Data System (ADS)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and greatly enhancing efficiency. Discussions are ongoing with some missions that will allow the SLR network stations to provide crucial, but energy-safe, range measurements to optically vulnerable satellites. New retro-reflector designs are improving the signal link and enable daylight ranging that is now the norm for many stations. We discuss many of these laser ranging activities and some of the tough challenges that the SLR network currently faces.

  19. Assessment of Current Estimates of Global and Regional Mean Sea Level from the TOPEX/Poseidon, Jason-1, and OSTM 17-Year Record

    NASA Technical Reports Server (NTRS)

    Beckley, Brian D.; Ray, Richard D.; Lemoine, Frank G.; Zelensky, N. P.; Holmes, S. A.; Desal, Shailen D.; Brown, Shannon; Mitchum, G. T.; Jacob, Samuel; Luthcke, Scott B.

    2010-01-01

    The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the International Terrestrial Reference Frame (ITRF) used to produce the precision orbits at different times cause systematic inconsistencies to appear in the multimission time-frame between TOPEX and Jason-1, and can affect the intermission calibration of these data. In an effort to adhere to cross mission consistency, we have generated the full time series of orbits for TOPEX/Poseidon (TP), Jason-1, and OSTM based on recent improvements in the satellite force models, reference systems, and modeling strategies. The recent release of the entire revised Jason-1 Geophysical Data Records, and recalibration of the microwave radiometer correction also require the further re-examination of inter-mission consistency issues. Here we present an assessment of these recent improvements to the accuracy of the 17 -year sea surface height time series, and evaluate the subsequent impact on global and regional mean sea level estimates.

  20. A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS

    NASA Astrophysics Data System (ADS)

    Glaser, Susanne; König, Rolf; Ampatzidis, Dimitrios; Nilsson, Tobias; Heinkelmann, Robert; Flechtner, Frank; Schuh, Harald

    2017-07-01

    In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.

  1. Incorporation of Differential Global Positioning System Measurements Using an Extended Kalman Filter for Improved Reference System Performance

    DTIC Science & Technology

    1991-12-01

    Kalman filtering. As GPS usage expands throughout the military and civilian communities, I hope this thesis provides a small contribution in this area...of the measurement’equation. In this thesis, some of the INS states not part of a measurement equation need a small amount of added noise to...estimating the state, but the variance often goes negative. A small amount of added noise in the filter keeps the variance of the state positive and does not

  2. Study and Development of Mobile Tracingterminal Based on Gprs for Agriculturalproducts Quality Tracking

    NASA Astrophysics Data System (ADS)

    Liu, Shihong; Meng, Hong; Zheng, Huoguo; Wu, Jiangshou

    Traceability system has become an important means for food safety management. Global food industry and many countries have paid increasing attention to the construction of food traceability system, but rarely referred to tracing terminal. According to the technical requirements of cereal and oil products quality safety tracing process, we design and develop a mobile tracing terminal based on GPRS for agricultural products quality tracking to facilitate quality supervisors and consumers to track and trace the quality of related agricultural products anytime ,anywhere.

  3. An empirical model of L-band scintillation S4 index constructed by using FORMOSAT-3/COSMIC data

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Ping; Bilitza, Dieter; Liu, Jann-Yenq; Caton, Ronald; Chang, Loren C.; Yeh, Wen-Hao

    2017-09-01

    Modern society relies heavily on the Global Navigation Satellite System (GNSS) technology for applications such as satellite communication, navigation, and positioning on the ground and/or aviation in the troposphere/stratosphere. However, ionospheric scintillations can severely impact GNSS systems and their related applications. In this study, a global empirical ionospheric scintillation model is constructed with S4-index data obtained by the FORMOSAT-3/COSMIC (F3/C) satellites during 2007-2014 (hereafter referred to as the F3CGS4 model). This model describes the S4-index as a function of local time, day of year, dip-latitude, and solar activity using the index PF10.7. The model reproduces the F3/C S4-index observations well, and yields good agreement with ground-based reception of satellite signals. This confirms that the constructed model can be used to forecast global L-band scintillations on the ground and in the near surface atmosphere.

  4. Temporal Stability of GPS Transmitter Group Delay Variations.

    PubMed

    Beer, Susanne; Wanninger, Lambert

    2018-05-29

    The code observable of global navigation satellite systems (GNSS) is influenced by group delay variations (GDV) of transmitter and receiver antennas. For the Global Positioning System (GPS), the variations can sum up to 1 m in the ionosphere-free linear combination and thus can significantly affect precise code applications. The contribution of the GPS transmitters can amount to 0.8 m peak-to-peak over the entire nadir angle range. To verify the assumption of their time-invariance, we determined daily individual satellite GDV for GPS transmitter antennas over a period of more than two years. Dual-frequency observations of globally distributed reference stations and their multipath combination form the basis for our analysis. The resulting GPS GDV are stable on the level of a few centimeters for C1, P2, and for the ionosphere-free linear combination. Our study reveals that the inconsistencies of the GDV of space vehicle number (SVN) 55 with respect to earlier studies are not caused by temporal instabilities, but are rather related to receiver properties.

  5. Global Positioning System offers evidence of plate motions in eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Burc Oral, M.; Reilinger, Robert E.; Nafi Toksöz, M.; King, Robert W.; Aykut Barka, A.; Kinik, Ibrahim; Lenk, Onur

    Geophysicists are using the Global Positioning System (GPS), a highly precise satellite navigation system, to monitor the slow movements (cm/yr) of the crustal plates composing the Earth's surface and the deformations where such plates interact. We report the results of repeated GPS measurements in the complex zone of interaction between the Eurasian, Arabian, and African plates in Turkey. The GPS observations made between 1988 and 1992 indicate that western, central, and east central Turkey are decoupled from the Eurasian plate and are moving as a more or less coherent unit about an axis located north of the Sinai peninsula. Other space-based measurements of crustal motion in Greece and along the Hellenic arc [Smith et al., 1994] suggest that this coherent motion includes southern Greece and the south central Aegean Sea. We refer to this region (shaded in Figure 1) as the Anatolian plate.

  6. Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.

    PubMed

    Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh

    2009-01-01

    This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.

  7. Remote sensing and the Mississippi high accuracy reference network

    NASA Technical Reports Server (NTRS)

    Mick, Mark; Alexander, Timothy M.; Woolley, Stan

    1994-01-01

    Since 1986, NASA's Commercial Remote Sensing Program (CRSP) at Stennis Space Center has supported commercial remote sensing partnerships with industry. CRSP's mission is to maximize U.S. market exploitation of remote sensing and related space-based technologies and to develop advanced technical solutions for spatial information requirements. Observation, geolocation, and communications technologies are converging and their integration is critical to realize the economic potential for spatial informational needs. Global positioning system (GPS) technology enables a virtual revolution in geopositionally accurate remote sensing of the earth. A majority of states are creating GPS-based reference networks, or high accuracy reference networks (HARN). A HARN can be defined for a variety of local applications and tied to aerial or satellite observations to provide an important contribution to geographic information systems (GIS). This paper details CRSP's experience in the design and implementation of a HARN in Mississippi and the design and support of future applications of integrated earth observations, geolocation, and communications technology.

  8. MicroRNA Expression in Formalin-fixed Paraffin-embedded Cancer Tissue: Identifying Reference MicroRNAs and Variability.

    PubMed

    Boisen, Mogens Karsbøl; Dehlendorff, Christian; Linnemann, Dorte; Schultz, Nicolai Aagaard; Jensen, Benny Vittrup; Høgdall, Estrid Vilma Solyom; Johansen, Julia Sidenius

    2015-12-29

    Archival formalin-fixed paraffin-embedded (FFPE) cancer tissue samples are a readily available resource for microRNA (miRNA) biomarker identification. No established standard for reference miRNAs in FFPE tissue exists. We sought to identify stable reference miRNAs for normalization of miRNA expression in FFPE tissue samples from patients with colorectal (CRC) and pancreatic (PC) cancer and to quantify the variability associated with sample age and fixation. High-throughput miRNA profiling results from 203 CRC and 256 PC FFPE samples as well as from 37 paired frozen/FFPE samples from nine other CRC tumors (methodological samples) were used. Candidate reference miRNAs were identified by their correlation with global mean expression. The stability of reference genes was analyzed according to published methods. The association between sample age and global mean miRNA expression was tested using linear regression. Variability was described using correlation coefficients and linear mixed effects models. Normalization effects were determined by changes in standard deviation and by hierarchical clustering. We created lists of 20 miRNAs with the best correlation to global mean expression in each cancer type. Nine of these miRNAs were present in both lists, and miR-103a-3p was the most stable reference miRNA for both CRC and PC FFPE tissue. The optimal number of reference miRNAs was 4 in CRC and 10 in PC. Sample age had a significant effect on global miRNA expression in PC (50% reduction over 20 years) but not in CRC. Formalin fixation for 2-6 days decreased miRNA expression 30-65%. Normalization using global mean expression reduced variability for technical and biological replicates while normalization using the expression of the identified reference miRNAs reduced variability only for biological replicates. Normalization only had a minor impact on clustering results. We identified suitable reference miRNAs for future miRNA expression experiments using CRC- and PC FFPE tissue samples. Formalin fixation decreased miRNA expression considerably, while the effect of increasing sample age was estimated to be negligible in a clinical setting.

  9. Theoretical and Applied Research in the Field of Higher Geodesy Conducted in Rzeszow

    NASA Astrophysics Data System (ADS)

    Kadaj, Roman; Świętoń, Tomasz

    2016-06-01

    Important qualitative changes were taking place in polish geodesy in last few years. It was related to application of new techniques and technologies and to introduction of European reference frames in Poland. New reference stations network ASG-EUPOS, together with Internet services which helps in precise positioning was created. It allows to fast setting up precise hybrid networks. New, accurate satellite networks became the basis of new definitions in the field of reference systems. Simultaneously arise the need of new software, which enables to execute the geodetic works in new technical conditions. Authors had an opportunity to participate in mentioned undertakings, also under the aegis of GUGiK, by creation of methods, algorithms and necessary software tools. In this way the automatic postprocessing module (APPS) in POZGEO service, a part of ASG-EUPOS system came into being. It is an entirely polish product which works in Trimble environment. Universal software for transformation between PLETRF89, PL-ETRF2000, PULKOWO'42 reference systems as well as defined coordinate systems was created (TRANSPOL v. 2.06) and published as open product. An essential functional element of the program is the quasi-geoid model PL-geoid-2011, which has been elaborated by adjustment (calibration) of the global quasi-geoid model EGM2008 to 570 geodetic points (satellite-leveling points). Those and other studies are briefly described in this paper.

  10. Recent Progress on the Second Generation CMORPH: A Prototype Operational Processing System

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2016-04-01

    As reported at the EGU General Assembly of 2015, a conceptual test system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05deg lat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include both rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Sub-systems were developed and refined to derive precipitation estimates from the GEO and LEO IR observations and to compute precipitating cloud motion vectors. The results were reported at the EGU of 2014 and the AGU 2015 Fall Meetings. In this presentation, we report our recent work on the construction of a prototype operational processing system for the second generation CMORPH. The second generation CMORPH prototype operational processing system takes in the passive microwave (PMW) retrievals of instantaneous precipitation rates from all available sensors, the full-resolution GEO and LEO IR data, as well as the hourly precipitation fields generated by the NOAA/NCEP Climate Forecast System (CFS) Reanalysis (CFS). First, a combined field of PMW based precipitation retrievals (MWCOMB) is created on a 0.05deg lat/lon grid over the entire globe through inter-calibrating retrievals from various sensors against a common reference. For this experiment, the reference field is the GMI based retrievals with climatological adjustment against the TMI retrievals using data over the overlapping period. Precipitation estimation is then derived from the GEO and LEO IR data through calibration against the global MWCOMB and the CloudSat CPR based estimates. At the meantime, precipitating cloud motion vectors are derived through the combination of vectors computed from the GEO IR based precipitation estimates and the CFSR precipitation with a 2DVAR technique. A prototype system is applied to generate integrated global precipitation estimates over the entire globe for a three-month period from June 1 to August 31 of 2015. Preliminary tests are conducted to optimize the performance of the system. Specific efforts are made to improve the computational efficiency of the system. The second generation CMORPH test products are compared to the first generation CMORPH and ground observations. Detailed results will be reported at the EGU.

  11. A global meta-analysis on the ecological drivers of forest restoration success

    PubMed Central

    Crouzeilles, Renato; Curran, Michael; Ferreira, Mariana S.; Lindenmayer, David B.; Grelle, Carlos E. V.; Rey Benayas, José M.

    2016-01-01

    Two billion ha have been identified globally for forest restoration. Our meta-analysis encompassing 221 study landscapes worldwide reveals forest restoration enhances biodiversity by 15–84% and vegetation structure by 36–77%, compared with degraded ecosystems. For the first time, we identify the main ecological drivers of forest restoration success (defined as a return to a reference condition, that is, old-growth forest) at both the local and landscape scale. These are as follows: the time elapsed since restoration began, disturbance type and landscape context. The time elapsed since restoration began strongly drives restoration success in secondary forests, but not in selectively logged forests (which are more ecologically similar to reference systems). Landscape restoration will be most successful when previous disturbance is less intensive and habitat is less fragmented in the landscape. Restoration does not result in full recovery of biodiversity and vegetation structure, but can complement old-growth forests if there is sufficient time for ecological succession. PMID:27193756

  12. Detecting and Quantifying Forest Change: The Potential of Existing C- and X-Band Radar Datasets.

    PubMed

    Tanase, Mihai A; Ismail, Ismail; Lowell, Kim; Karyanto, Oka; Santoro, Maurizio

    2015-01-01

    This paper evaluates the opportunity provided by global interferometric radar datasets for monitoring deforestation, degradation and forest regrowth in tropical and semi-arid environments. The paper describes an easy to implement method for detecting forest spatial changes and estimating their magnitude. The datasets were acquired within space-borne high spatial resolutions radar missions at near-global scales thus being significant for monitoring systems developed under the United Framework Convention on Climate Change (UNFCCC). The approach presented in this paper was tested in two areas located in Indonesia and Australia. Forest change estimation was based on differences between a reference dataset acquired in February 2000 by the Shuttle Radar Topography Mission (SRTM) and TanDEM-X mission (TDM) datasets acquired in 2011 and 2013. The synergy between SRTM and TDM datasets allowed not only identifying changes in forest extent but also estimating their magnitude with respect to the reference through variations in forest height.

  13. Synthetic biology through biomolecular design and engineering.

    PubMed

    Channon, Kevin; Bromley, Elizabeth H C; Woolfson, Derek N

    2008-08-01

    Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.

  14. Geocenter Motion Derived from GNSS and SLR Tracking Data of LEO

    NASA Astrophysics Data System (ADS)

    Li, Y. S.; Ning, F. S.; Tseng, K. H.; Tseng, T. P.; Wu, J. M.; Chen, K. L.

    2017-12-01

    Space geodesy techniques can provide the monitoring data of global variations with high precision and large coverage through the satellites. Geocenter motion (GM) describes the difference of CF (Center of Figure) respect to CM (Center of Mass of the Earth System) due to the re-distribution and deformation of the earth system. Because satellite tracking data between ground stations and satellites orbit around the CM, geocenter motion is related to the realization of the ITRF (International Terrestrial Reference Frame) origin. In this study, GPS (Global Positioning System) observation data of IGS (International GNSS Service) and SLR (Satellite Laser Ranging) tracking data are applied to estimate the coordinates of observing sites on Earth's surface. The GPS observing sites are distributed deliberately and globally by 15° ×15° grids. Meanwhile, two different global ocean tide models are applied here. The model used in ITRF comparison and combination is parameter transformation, which is a mathematical formula allowing to transform the different frames between ITRF and CM system. Following the parameter transformation, the results of geocenter motion can be determined. The FORMOSAT-7/COSMIC-2 (F7C2) mission is a constellation of LEO (Low-Earth-Orbit) satellites, which will be launched in 2018. Besides the observing system for Meteorology, Ionosphere, and Climate, the F7C2 will be equipped with LRR (Laser Ranging Retroreflector). This work is a pilot survey to study the application of LEO SLR data in Taiwan.

  15. Global Oncology; Harvard Global Health Catalyst summit lecture notes

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Nguyen, Paul

    2017-08-01

    The material presented in this book is at the cutting-edge of global oncology and provides highly illuminating examples, addresses frequently asked questions, and provides information and a reference for future work in global oncology care, research, education, and outreach.

  16. Evaluation of Design Assurance Regulations for Safety of Space Navigation Services

    NASA Astrophysics Data System (ADS)

    Ratti, B.; Sarno, M.; De Andreis, C.

    2005-12-01

    The European Space Agency (ESA), the European Community (EC), and the European Organisation for the Safety of Air Navigation (Eurocontrol) are contributing to the development of a Global positioning and Navigation Satellite System, known as GNSS. The development programme is carried out in two main steps:• GNSS-1: the first-generation system, based on signals received from the GPS (USA) and GLONASS (Russia) constellations, and augmentation systems like EGNOS (European Geostationary Navigation Overlay Service)• GNSS-2: the second-generation system, that will achieve the ultimate objective of European sovereignty for position determination, navigation and time dissemination. This system, named Galileo, comprises a global space and ground control infrastructure.The Galileo navigation signal will be used in the frame of safety-critical transport applications, thus it is necessary to assess the space safety assurance activity against the civil safety regulations and safety management system.. RTCA DO-254 and IEC 61508 standards, considered as part of best practice engineering references, for the development of safety- related systems in most applications, were selected during phases B2 and C0 of the Galileo project for this purpose.

  17. The role of vocational education in science and technology developement in the era of globalisation

    NASA Astrophysics Data System (ADS)

    Sudirman

    2018-03-01

    Globalization refers to a condition by which a world becomes competitive. In such a world, people are urged to do a job properly since they will be the asset to advance their nation further; this is also to strengthen the nation’s capital markets. Both the formal and informal vocational education is proposed to produce well-capable and highly-competitive graduates. This is considered important as one effort to deal with some challenges as well as a rapid advance in science and technology in the globalized world. This present study aims at exploring the contribution of vocational education in response to the development of science and technology in the globalized world. Furthermore, this study is a development of a notion that the vocational education system is proposed as a solution to the highly-competitive situation and challenges due to the globalization. To put it simply, vocational education significantly contributes towards the development of science and technology in a globalized world and how to deal with the situation. Such an education system equips the student with skills needed to become a productive and professional individual. This is also to produce better and competitive human resources that are able to compete with other nations.

  18. Process Management in Universities--Recent Perspectives in the Context of Quality Management Oriented towards Excellence

    ERIC Educational Resources Information Center

    Popescu, Veronica Adriana; Popescu, Gheorghe N.; Popescu, Cristina Raluca

    2013-01-01

    The paper aims at providing a survey of the latest trends that exist nowadays in higher education systems, with direct reference to Romania's experience. It seeks to study the results obtain in terms of higher education and the impact that these results have in respect to Romania's development, in the general framework of global crisis. In order…

  19. A Status of NASA Rotorcraft Research

    DTIC Science & Technology

    2009-09-01

    approximate threefold range in the values of CP. It has been found useful in many cases to include additional independent variables and group...and improved rotorcraft. These needs include better analysis and better data. Many plans proposed for NASA rotorcraft research are discussed here, to...a successful active noise- control system include : obtaining a clean reference signal with minimal phase jitter; achieving a global reduction of

  20. Deriving a geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, R. P.; Wu, S.-C.

    1988-01-01

    With the advent of Earth-orbiting geodetic satellites, nongeocentric datums or reference frames have become things of the past. Accurate geocentric three-dimensional positioning is now possible and is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using very long baseline interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be on the order of 1 meter. Satellite laser ranging (SLR), however, is capable of determining this offset to better than 10 cm, but this is possible only after years of measurements. Global Positioning System (GPS) measurements provide a powerful tool for an accurate determination of this origin offset. Two strategies are discussed. The first strategy utilizes the precise relative positions that were predetermined by VLBI to fix the frame orientation and the absolute scaling, while the offset from the geocenter is determined from GPS measurements. Three different cases are presented under this strategy. The reference frame thus adopted will be consistent with the VLBI coordinate system. The second strategy establishes a reference frame by holding only the longitude of one of the tracking sites fixed. The absolute scaling is determined by the adopted gravitational constant (GM) of the Earth; and the latitude is inferred from the time signature of the Earth rotation in the GPS measurements. The coordinate system thus defined will be a geocentric Earth-fixed coordinate system.

  1. The Crustal Dynamics Data Information System: A Resource to Support Scientific Analysis Using Space Geodesy

    NASA Technical Reports Server (NTRS)

    Noll. Carey E.

    2010-01-01

    Since 1982. the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by the National Aeronautics and Space Administration (NASA) as well as national and international programs. The CDDIS provides easy, timely, and reliable access to a variety of data sets, products, and information about these data. These measurements. obtained from a global network of nearly 650 instruments at more than 400 distinct sites, include DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), GNSS (Global Navigation Satellite System), SLR and LLR (Satellite and Lunar Laser Ranging), and VLBI (Very Long Baseline Interferometry). The CDDIS data system and its archive have become increasingly important to many national and international science communities, particularly several of the operational services within the International Association of Geodesy (IAG) and its observing system the Global Geodetic Observing System (GGOS), including the International DORIS Service (IDS), the International GNSS Service (IGS). the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS). and the International Earth rotation and Reference frame Service (IERS), Investigations resulting from the data and products available through the CDDIS support research in many aspects of Earth system science and global change. Each month, the CDDIS archives more than one million data and derived product files totaling over 90 Gbytes in volume. In turn. the global user community downloads nearly 1.2 TBytes (over 10.5 million files) of data and products from the CDDIS each month. The requirements of analysts have evolved since the start of the CDDIS; the specialized nature of the system accommodates the enhancements required to support diverse data sets and user needs. This paper discusses the CDDIS. including background information about the system and its. user communities. archive contents. available metadata, and future plans.

  2. Validation of a rapid DNA process with the RapidHIT® ID system using GlobalFiler® Express chemistry, a platform optimized for decentralized testing environments.

    PubMed

    Salceda, Susana; Barican, Arnaldo; Buscaino, Jacklyn; Goldman, Bruce; Klevenberg, Jim; Kuhn, Melissa; Lehto, Dennis; Lin, Frank; Nguyen, Phong; Park, Charles; Pearson, Francesca; Pittaro, Rick; Salodkar, Sayali; Schueren, Robert; Smith, Corey; Troup, Charles; Tsou, Dean; Vangbo, Mattias; Wunderle, Justus; King, David

    2017-05-01

    The RapidHIT ® ID is a fully automated sample-to-answer system for short tandem repeat (STR)-based human identification. The RapidHIT ID has been optimized for use in decentralized environments and processes presumed single source DNA samples, generating Combined DNA Index System (CODIS)-compatible DNA profiles in less than 90min. The system is easy to use, requiring less than one minute of hands-on time. Profiles are reviewed using centralized linking software, RapidLINK™ (IntegenX, Pleasanton, CA), a software tool designed to collate DNA profiles from single or multiple RapidHIT ID systems at different geographic locations. The RapidHIT ID has been designed to employ GlobalFiler ® Express and AmpFLSTR ® NGMSElect™, Thermo Fisher Scientific (Waltham, MA) STR chemistries. The Developmental Validation studies were performed using GlobalFiler ® Express with single source reference samples according to Scientific Working Group for DNA Analysis Methods guidelines. These results show that multiple RapidHIT ID systems networked with RapidLINK software form a highly reliable system for wide-scale deployment in locations such as police booking stations and border crossings enabling real-time testing of arrestees, potential human trafficking victims, and other instances where rapid turnaround is essential. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. cual-id: Globally Unique, Correctable, and Human-Friendly Sample Identifiers for Comparative Omics Studies.

    PubMed

    Chase, John H; Bolyen, Evan; Rideout, Jai Ram; Caporaso, J Gregory

    2016-01-01

    The number of samples in high-throughput comparative "omics" studies is increasing rapidly due to declining experimental costs. To keep sample data and metadata manageable and to ensure the integrity of scientific results as the scale of these projects continues to increase, it is essential that we transition to better-designed sample identifiers. Ideally, sample identifiers should be globally unique across projects, project teams, and institutions; short (to facilitate manual transcription); correctable with respect to common types of transcription errors; opaque, meaning that they do not contain information about the samples; and compatible with existing standards. We present cual-id, a lightweight command line tool that creates, or mints, sample identifiers that meet these criteria without reliance on centralized infrastructure. cual-id allows users to assign universally unique identifiers, or UUIDs, that are globally unique to their samples. UUIDs are too long to be conveniently written on sampling materials, such as swabs or microcentrifuge tubes, however, so cual-id additionally generates human-friendly 4- to 12-character identifiers that map to their UUIDs and are unique within a project. By convention, we use "cual-id" to refer to the software, "CualID" to refer to the short, human-friendly identifiers, and "UUID" to refer to the globally unique identifiers. CualIDs are used by humans when they manually write or enter identifiers, while the longer UUIDs are used by computers to unambiguously reference a sample. Finally, cual-id optionally generates printable label sticker sheets containing Code 128 bar codes and CualIDs for labeling of sample collection and processing materials. IMPORTANCE The adoption of identifiers that are globally unique, correctable, and easily handwritten or manually entered into a computer will be a major step forward for sample tracking in comparative omics studies. As the fields transition to more-centralized sample management, for example, across labs within an institution, across projects funded under a common program, or in systems designed to facilitate meta- and/or integrated analysis, sample identifiers generated with cual-id will not need to change; thus, costly and error-prone updating of data and metadata identifiers will be avoided. Further, using cual-id will ensure that transcription errors in sample identifiers do not require the discarding of otherwise-useful samples that may have been expensive to obtain. Finally, cual-id is simple to install and use and is free for all use. No centralized infrastructure is required to ensure global uniqueness, so it is feasible for any lab to get started using these identifiers within their existing infrastructure.

  4. Maintenance of time and frequency in the Jet Propulsion Laboratory's Deep Space Network using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Borutzki, S. E.; Kirk, A.

    1984-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.

  5. Rebooting Bioresilience: A Multi-OMICS Approach to Tackle Global Catastrophic Biological Risks and Next-Generation Biothreats.

    PubMed

    Kambouris, Manousos E; Manoussopoulos, Yiannis; Kantzanou, Maria; Velegraki, Aristea; Gaitanis, Georgios; Arabatzis, Michalis; Patrinos, George P

    2018-01-01

    Global Catastrophic Biological Risks (GCBRs) refer to biological events-natural, deliberate, and accidental-of a global and lasting impact. This challenges the life scientists to raise their game on two hitherto neglected innovation frontiers: a veritable "futures" thinking to "think the unthinkable," and "systems thinking" so as to see both the trees and the forest when it comes to GCBRs. This innovation analysis article outlines the promise of Omics systems science biotechnologies, for example, to deploy rapid fire diagnostics for health security crises at GCBR level, possibly involving neopathogens and/or incurring epidemics (e.g., severe acute respiratory syndrome [SARS] and Ebola) that collectively threaten the lives of global society and interdependent biological ecosystems. Moreover, Omics encourages thinking beyond immediacy and in long-term strategies for biopreparedness and response innovation when the timelines are aggressive and compressed in response to crises such as GCBRs, but also to non-global but surging, multiple threats occurring as successive, overlapping, or distinct events, rather than as distinct entities-a prospect enforcing a reboot in Bioresilience. We define Next-Generation Bioresilience as "a systems approach against natural, accidental and perpetrated GCBRs using Omics technologies, and a shift in mentality, whereby the systems approach is expanded to include multiple plausible futures and expose unchecked assumptions attendant to risks, beyond technological determinism." In sum, it is time to think about the realistic potential of Omics biotechnologies beyond clinical practice and precision medicine so as to harness the opportunities and address the uncertainties associated not only with GCBRs but also with other emerging Omics applications in health and society.

  6. Global Surgery 2030: a roadmap for high income country actors.

    PubMed

    Ng-Kamstra, Joshua S; Greenberg, Sarah L M; Abdullah, Fizan; Amado, Vanda; Anderson, Geoffrey A; Cossa, Matchecane; Costas-Chavarri, Ainhoa; Davies, Justine; Debas, Haile T; Dyer, George S M; Erdene, Sarnai; Farmer, Paul E; Gaumnitz, Amber; Hagander, Lars; Haider, Adil; Leather, Andrew J M; Lin, Yihan; Marten, Robert; Marvin, Jeffrey T; McClain, Craig D; Meara, John G; Meheš, Mira; Mock, Charles; Mukhopadhyay, Swagoto; Orgoi, Sergelen; Prestero, Timothy; Price, Raymond R; Raykar, Nakul P; Riesel, Johanna N; Riviello, Robert; Rudy, Stephen M; Saluja, Saurabh; Sullivan, Richard; Tarpley, John L; Taylor, Robert H; Telemaque, Louis-Franck; Toma, Gabriel; Varghese, Asha; Walker, Melanie; Yamey, Gavin; Shrime, Mark G

    2016-01-01

    The Millennium Development Goals have ended and the Sustainable Development Goals have begun, marking a shift in the global health landscape. The frame of reference has changed from a focus on 8 development priorities to an expansive set of 17 interrelated goals intended to improve the well-being of all people. In this time of change, several groups, including the Lancet Commission on Global Surgery, have brought a critical problem to the fore: 5 billion people lack access to safe, affordable surgical and anaesthesia care when needed. The magnitude of this problem and the world's new focus on strengthening health systems mandate reimagined roles for and renewed commitments from high income country actors in global surgery. To discuss the way forward, on 6 May 2015, the Commission held its North American launch event in Boston, Massachusetts. Panels of experts outlined the current state of knowledge and agreed on the roles of surgical colleges and academic medical centres; trainees and training programmes; academia; global health funders; the biomedical devices industry, and news media and advocacy organisations in building sustainable, resilient surgical systems. This paper summarises these discussions and serves as a consensus statement providing practical advice to these groups. It traces a common policy agenda between major actors and provides a roadmap for maximising benefit to surgical patients worldwide. To close the access gap by 2030, individuals and organisations must work collectively, interprofessionally and globally. High income country actors must abandon colonial narratives and work alongside low and middle income country partners to build the surgical systems of the future.

  7. Global Surgery 2030: a roadmap for high income country actors

    PubMed Central

    Greenberg, Sarah L M; Abdullah, Fizan; Amado, Vanda; Anderson, Geoffrey A; Cossa, Matchecane; Costas-Chavarri, Ainhoa; Davies, Justine; Debas, Haile T; Dyer, George S M; Erdene, Sarnai; Farmer, Paul E; Gaumnitz, Amber; Hagander, Lars; Haider, Adil; Leather, Andrew J M; Lin, Yihan; Marten, Robert; Marvin, Jeffrey T; McClain, Craig D; Meara, John G; Meheš, Mira; Mock, Charles; Mukhopadhyay, Swagoto; Orgoi, Sergelen; Prestero, Timothy; Price, Raymond R; Raykar, Nakul P; Riesel, Johanna N; Riviello, Robert; Rudy, Stephen M; Saluja, Saurabh; Sullivan, Richard; Tarpley, John L; Taylor, Robert H; Telemaque, Louis-Franck; Toma, Gabriel; Varghese, Asha; Walker, Melanie; Yamey, Gavin; Shrime, Mark G

    2016-01-01

    The Millennium Development Goals have ended and the Sustainable Development Goals have begun, marking a shift in the global health landscape. The frame of reference has changed from a focus on 8 development priorities to an expansive set of 17 interrelated goals intended to improve the well-being of all people. In this time of change, several groups, including the Lancet Commission on Global Surgery, have brought a critical problem to the fore: 5 billion people lack access to safe, affordable surgical and anaesthesia care when needed. The magnitude of this problem and the world's new focus on strengthening health systems mandate reimagined roles for and renewed commitments from high income country actors in global surgery. To discuss the way forward, on 6 May 2015, the Commission held its North American launch event in Boston, Massachusetts. Panels of experts outlined the current state of knowledge and agreed on the roles of surgical colleges and academic medical centres; trainees and training programmes; academia; global health funders; the biomedical devices industry, and news media and advocacy organisations in building sustainable, resilient surgical systems. This paper summarises these discussions and serves as a consensus statement providing practical advice to these groups. It traces a common policy agenda between major actors and provides a roadmap for maximising benefit to surgical patients worldwide. To close the access gap by 2030, individuals and organisations must work collectively, interprofessionally and globally. High income country actors must abandon colonial narratives and work alongside low and middle income country partners to build the surgical systems of the future. PMID:28588908

  8. Global Online Freedom Act of 2013

    THOMAS, 113th Congress

    Rep. Smith, Christopher H. [R-NJ-4

    2013-02-04

    House - 02/25/2013 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Exploring the reversibility of marine climate change impacts in temperature overshoot scenarios

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Li, X.; Tokarska, K.; Kohfeld, K. E.

    2017-12-01

    Artificial carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating climate change and restoring the climate system to a `safe' state after overshoot. Previous studies have demonstrated that the changes in surface air temperature due to anthropogenic CO2 emissions can be reversed through CDR, while some oceanic properties, for example thermosteric sea level rise, show a delay in their response to CDR. This research aims to investigate the reversibility of changes in ocean conditions after implementation of CDR with a focus on ocean biogeochemical properties. To achieve this, we analyze climate model simulations based on two sets of emission scenarios. We first use RCP2.6 and its extension until year 2300 as the reference scenario and design several temperature and cumulative CO2 emissions "overshoot" scenarios based on other RCPs, which represents cases with less ambitious mitigation policies in the near term that temporarily exceed the 2 °C target adopted by the Paris Agreement. In addition, we use a set of emission scenarios with a reference scenario limiting warming to 1.5°C in the long term and two overshoot scenarios. The University of Victoria Earth System Climate Model (UVic ESCM), a climate model of intermediate complexity, is forced with these emission scenarios. We compare the response of select ocean variables (seawater temperature, pH, dissolved oxygen) in the overshoot scenarios to that in the respective reference scenario at the time the same amount of cumulative emissions is achieved. Our results suggest that the overshoot and subsequent return to a reference CO2 cumulative emissions level would leave substantial impacts on the marine environment. Although the changes in global mean sea surface variables (temperature, pH and dissolved oxygen) are largely reversible, global mean ocean temperature, dissolved oxygen and pH differ significantly from those in the reference scenario. Large ocean areas exhibit temperature increase and pH and dissolved oxygen decrease relative to the reference scenario without cumulative CO2 emissions overshoot. Furthermore, our results show that the higher the level of overshoot, the lower the reversibility of changes in the marine environment.

  10. Constructing the [Parochial] Global Citizen

    ERIC Educational Resources Information Center

    Salter, Peta; Halbert, Kelsey

    2017-01-01

    Cultural exchange is privileged in many higher education programs across the globe. The Australian government's New Colombo Plan refers to a "Third Wave" of globalisation which foregrounds global interrelatedness through developing student capabilities to live, work and contribute to global communities and aims to make the global an…

  11. Global Radius of Curvature Estimation and Control System for Segmented Mirrors

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M. (Inventor)

    2006-01-01

    An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.

  12. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics

    NASA Astrophysics Data System (ADS)

    Dobslaw, Henryk; Dill, Robert

    2018-02-01

    Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3 h temporal resolution. Additionally, 6 days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15 months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6 days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for Δ UT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.

  13. Globalization of psychiatry - a barrier to mental health development.

    PubMed

    Fernando, Suman

    2014-10-01

    The concept of globalization has been applied recently to ways in which mental health may be developed in low- and middle-income countries (LMICs), sometimes referred to as the 'Third World' or developing countries. This paper (1) describes the roots of psychiatry in western culture and its current domination by pharmacological therapies; (2) considers the history of mental health in LMICs, focusing on many being essentially non-western in cultural background with a tradition of using a plurality of systems of care and help for mental health problems, including religious and indigenous systems of medicine; and (3) concludes that in a post-colonial world, mental health development in LMICs should not be left to market forces, which are inevitably manipulated by the interests of multinational corporations mostly located in ex-colonizing countries, especially the pharmaceutical companies.

  14. Vulnerability Assessment of Shelters in the Eastern Caribbean: Retrofitting Terms of Reference for Consultants, Standards, [and] Global Estimates.

    ERIC Educational Resources Information Center

    Gibbs, Tony

    Dozens of natural disaster shelters (mostly schools) in five Caribbean islands were assessed as to their vulnerability and the needed retrofitting to upgrade them. This report provides retrofit consultants with terms of reference and building design criteria for withstanding various natural disasters, as well as estimated global costs of various…

  15. Cultural Implications of a Global Context: The Need for the Reference Librarian To Ask Again "Who Is My Client?".

    ERIC Educational Resources Information Center

    McSwiney, Carolyn

    Globalization provides the contextual framework for cultural changes in the library user group. In order to be more effective, and realistically, more client-focused, the reference librarian is challenged to ask again "Who is my client?" in this changing context. This paper presents a positive and practical response to cultural change…

  16. Standardization in laboratory medicine: Adoption of common reference intervals to the Croatian population.

    PubMed

    Flegar-Meštrić, Zlata; Perkov, Sonja; Radeljak, Andrea

    2016-03-26

    Considering the fact that the results of laboratory tests provide useful information about the state of health of patients, determination of reference value is considered an intrinsic part in the development of laboratory medicine. There are still huge differences in the analytical methods used as well as in the associated reference intervals which could consequently significantly affect the proper assessment of patient health. In a constant effort to increase the quality of patients' care, there are numerous international initiatives for standardization and/or harmonization of laboratory diagnostics in order to achieve maximum comparability of laboratory test results and improve patient safety. Through the standardization and harmonization processes of analytical methods the ability to create unique reference intervals is achieved. Such reference intervals could be applied globally in all laboratories using methods traceable to the same reference measuring system and analysing the biological samples from the populations with similar socio-demographic and ethnic characteristics. In this review we outlined the results of the harmonization processes in Croatia in the field of population based reference intervals for clinically relevant blood and serum constituents which are in accordance with ongoing activity for worldwide standardization and harmonization based on traceability in laboratory medicine.

  17. Standardization in laboratory medicine: Adoption of common reference intervals to the Croatian population

    PubMed Central

    Flegar-Meštrić, Zlata; Perkov, Sonja; Radeljak, Andrea

    2016-01-01

    Considering the fact that the results of laboratory tests provide useful information about the state of health of patients, determination of reference value is considered an intrinsic part in the development of laboratory medicine. There are still huge differences in the analytical methods used as well as in the associated reference intervals which could consequently significantly affect the proper assessment of patient health. In a constant effort to increase the quality of patients’ care, there are numerous international initiatives for standardization and/or harmonization of laboratory diagnostics in order to achieve maximum comparability of laboratory test results and improve patient safety. Through the standardization and harmonization processes of analytical methods the ability to create unique reference intervals is achieved. Such reference intervals could be applied globally in all laboratories using methods traceable to the same reference measuring system and analysing the biological samples from the populations with similar socio-demographic and ethnic characteristics. In this review we outlined the results of the harmonization processes in Croatia in the field of population based reference intervals for clinically relevant blood and serum constituents which are in accordance with ongoing activity for worldwide standardization and harmonization based on traceability in laboratory medicine. PMID:27019800

  18. A Global Survey of Deep Underground Facilities; Examples of Geotechnical and Engineering Capabilities, Achievements, Challenges (Mines, Shafts, Tunnels, Boreholes, Sites and Underground Facilities for Nuclear Waste and Physics R&D): A Guide to Interactive Global Map Layers, Table Database, References and Notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.

    These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less

  19. Changes in Sea Levels around the British Isles Revisited (Invited)

    NASA Astrophysics Data System (ADS)

    Teferle, F. N.; Hansen, D. N.; Bingley, R. M.; Williams, S. D.; Woodworth, P. L.; Gehrels, W. R.; Bradley, S. L.; Stocchi, P.

    2009-12-01

    Recently a number of new and/or updated sources for estimates of vertical land movements for the British Isles have become available allowing the relative and average changes in sea levels for this region to be revisited. The geodetic data set stems from a combination of re-processed continuous Global Positioning System (GPS) measurements from stations in the British Isles and from a global reference frame network, and absolute gravity (AG) measurements from two stations in the British Isles. The geologic data set of late Holocene sea level indicators has recently been updated, now applying corrections for the 20th century sea level rise, syphoning effect and late Holocene global ice melt, and expanded to Northern Ireland and Ireland. Several new model predictions of the glacial isostatic adjustment (GIA) process active in this region form the modelling data set of vertical land movements for the British Isles. Correcting the updated revised local reference (RLR) trends from the Permanent Service for Mean Sea Level (PSMSL) with these vertical land movement data sets, regional and averaged changes in sea levels around the British Isles have been investigated. Special focus is thereby also given to the coastal areas that have recently been identified within the UK Climate Projections 2009.

  20. Inequality measures perform differently in global and local assessments: An exploratory computational experiment

    NASA Astrophysics Data System (ADS)

    Chiang, Yen-Sheng

    2015-11-01

    Inequality measures are widely used in both the academia and public media to help us understand how incomes and wealth are distributed. They can be used to assess the distribution of a whole society-global inequality-as well as inequality of actors' referent networks-local inequality. How different is local inequality from global inequality? Formalizing the structure of reference groups as a network, the paper conducted a computational experiment to see how the structure of complex networks influences the difference between global and local inequality assessed by a selection of inequality measures. It was found that local inequality tends to be higher than global inequality when population size is large; network is dense and heterophilously assorted, and income distribution is less dispersed. The implications of the simulation findings are discussed.

  1. Automated vocabulary discovery for geo-parsing online epidemic intelligence.

    PubMed

    Keller, Mikaela; Freifeld, Clark C; Brownstein, John S

    2009-11-24

    Automated surveillance of the Internet provides a timely and sensitive method for alerting on global emerging infectious disease threats. HealthMap is part of a new generation of online systems designed to monitor and visualize, on a real-time basis, disease outbreak alerts as reported by online news media and public health sources. HealthMap is of specific interest for national and international public health organizations and international travelers. A particular task that makes such a surveillance useful is the automated discovery of the geographic references contained in the retrieved outbreak alerts. This task is sometimes referred to as "geo-parsing". A typical approach to geo-parsing would demand an expensive training corpus of alerts manually tagged by a human. Given that human readers perform this kind of task by using both their lexical and contextual knowledge, we developed an approach which relies on a relatively small expert-built gazetteer, thus limiting the need of human input, but focuses on learning the context in which geographic references appear. We show in a set of experiments, that this approach exhibits a substantial capacity to discover geographic locations outside of its initial lexicon. The results of this analysis provide a framework for future automated global surveillance efforts that reduce manual input and improve timeliness of reporting.

  2. Background Mole Fractions of Hydrocarbons in North America Determined from NOAA Global Reference Network Data

    NASA Astrophysics Data System (ADS)

    Mielke-Maday, I.

    2015-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD) maintains a global reference network for over 50 trace gas species and analyzes discrete air samples collected by this network throughout the world at the Earth System Research Laboratory in Boulder, Colorado. In particular, flask samples are analyzed for a number of hydrocarbons with policy and health relevance such as ozone precursors, greenhouse gases, and hazardous air pollutants. Because this global network's sites are remote and therefore minimally influenced by local anthropogenic emissions, these data yield information about background ambient mole fractions and can provide a context for observations collected in intensive field campaigns, such as the Front Range Air Pollution and Photochemistry Experiment (FRAPPE), the Southeast Nexus (SENEX) study, and the DISCOVER-AQ deployments. Information about background mole fractions during field campaigns is critical for calculating hydrocarbon enhancements in the region of study and for assessing the extent to which a particular region's local emissions sources contribute to these enhancements. Understanding the geographic variability of the background and its contribution to regional ambient mole fractions is also crucial for the development of realistic regulations. We present background hydrocarbon mole fractions and their ratios in North America using data from air samples collected in the planetary boundary layer at tall towers and aboard aircraft from 2008 to 2014. We discuss the spatial and seasonal variability in these data. We present trends over the time period of measurements and propose possible explanations for these trends.

  3. Applications of Mars Global Reference Atmospheric Model (Mars-GRAM 2005) Supporting Mission Site Selection for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. One new feature of Mars-GRAM 2005 is the 'auxiliary profile' option. In this option, an input file of temperature and density versus altitude is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5)model) and a global Thermal Emission Spectrometer(TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components,averaged over 5-by-5 degree latitude-longitude bins and 15 degree L(s) bins, for each of three Mars years of TES nadir data. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate Mars Science Laboratory (MSL) landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  4. Towards generalised reference condition models for environmental assessment: a case study on rivers in Atlantic Canada.

    PubMed

    Armanini, D G; Monk, W A; Carter, L; Cote, D; Baird, D J

    2013-08-01

    Evaluation of the ecological status of river sites in Canada is supported by building models using the reference condition approach. However, geography, data scarcity and inter-operability constraints have frustrated attempts to monitor national-scale status and trends. This issue is particularly true in Atlantic Canada, where no ecological assessment system is currently available. Here, we present a reference condition model based on the River Invertebrate Prediction and Classification System approach with regional-scale applicability. To achieve this, we used biological monitoring data collected from wadeable streams across Atlantic Canada together with freely available, nationally consistent geographic information system (GIS) environmental data layers. For the first time, we demonstrated that it is possible to use data generated from different studies, even when collected using different sampling methods, to generate a robust predictive model. This model was successfully generated and tested using GIS-based rather than local habitat variables and showed improved performance when compared to a null model. In addition, ecological quality ratio data derived from the model responded to observed stressors in a test dataset. Implications for future large-scale implementation of river biomonitoring using a standardised approach with global application are presented.

  5. Further Investigations of Ionospheric Total Electron Content and Scintillation Effects on Transionospheric Radiowave Propagation

    DTIC Science & Technology

    1998-02-12

    HAARP ). 14. SUBJECT TERMS Global Positioning System (GPS), High Frequency Active Auroral Research Program ( HAARP ), ionosphere, radiowave...Scintillation Simulation 23 4.10 Automated Calibrations 23 5. HAARP Activities 24 5.1 Development of HAARP Diagnostics 24 5.2 Facilitation of... HAARP Operations and Broader Scientific Collaborations 27 5.3 Public Relations 28 6. Publications 30 References 30 Acronyms and Initials 30 Appendix

  6. Climate and Weather Analysis of Afghanistan Thunderstorms

    DTIC Science & Technology

    2011-09-01

    dry, continental polar (cP) air. The subtropical jet (STJ) and Extratropical storm track tend to lie south of Kabul. Mean high SFC temperatures...March-April-May (MAM). Note that AFG lies to the east of a broad trough centered over southern Europe and to the west of broad ridge centered over... Extratropical Cyclone FAR False Alarm Rate FOB Forward Operating Base FRN Forecaster Reference Notebook GFS Global Forecast System GoA

  7. The use of global image characteristics for neural network pattern recognitions

    NASA Astrophysics Data System (ADS)

    Kulyas, Maksim O.; Kulyas, Oleg L.; Loshkarev, Aleksey S.

    2017-04-01

    The recognition system is observed, where the information is transferred by images of symbols generated by a television camera. For descriptors of objects the coefficients of two-dimensional Fourier transformation generated in a special way. For solution of the task of classification the one-layer neural network trained on reference images is used. Fast learning of a neural network with a single neuron calculation of coefficients is applied.

  8. GlobalTrust: An Attack Resilient Reputation System for Tactical Networks

    DTIC Science & Technology

    2014-07-03

    MSA): Some malicious nodes misbehave while other malicious nodes, called malicious spies, behave normally by providing proper services. These...disseminate conflicting (or inconsistent) LTOs. For example, they may misbehave only to a subset of honest nodes (referred to as target nodes) to... misbehaving with prob. α honestly reporting LTOs NRA misbehaving with prob. α reporting opposite LTOs, 1− α CRA misbehaving with prob. α reporting

  9. Generating precise and homogeneous orbits for Jason-1 and Jason-2

    NASA Astrophysics Data System (ADS)

    Flohrer, Claudia; Otten, Michiel; Springer, Tim; Dow, John M.

    Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are needed. Satellite altimetry missions meanwhile span over three decades, in which our understanding of the Earth has increased significantly. As also the models used for precise orbit determination (POD) have improved, the satellite orbits of the altimetry satellites are not available in an uniform reference system. Homogeneously determined orbits referring to the same global reference system are, however, needed to improve our understanding of the Earth system. With the launch of the TOPEX/Poseidon (T/P) mission in 1992 a still ongoing time series of high-altimetry measurements of ocean topography started. In 2001 the altimetry mission Jason-1 took over and in 2009 the follow-on program Jason-2/OSTM started. All three satellites follow the same ground-track by flying in the same orbit, thus ensuring a continuous time-series of centimetre-level ocean topography observations. Therefore a reprocessing of the orbit determination for these altimetry satellites would be highly beneficial for altimetry applications. The Navigation Support Office at ESA/ESOC has enhanced the GNSS processing capabilities of its NAPEOS software. Thus it is now in the unique position to do orbit determination by combining different types of data, and by using one single software system for different satellite types, including the most recent improvements in orbit and observation modelling and IERS conventions. Our presentation focuses on the re-processing efforts carried out by ESA/ESOC for the gener-ation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. At the same time ESOC carried out a re-processing of the com-bined GPS/GLONASS IGS solution from 2002-2009 for the generation of 30 second satellite clocks, which enabled us to use 30 second-sampled GPS observations in our POD process. Data of all three tracking instruments on-board the satellites, i.e. GPS, DORIS, and SLR measure-ments, were used in a combined data analysis. About 8 years of Jason-1 data and about 2 years of Jason-2 data were processed. We present the orbit determination results, focusing on the benefits when adding the 30 second-sampled GPS data (used together with DORIS and SLR measurements) to the solution. We evaluate the orbit accuracy by analysing post-fit residuals, orbit overlap errors, and orbit differences between our orbits and external orbits generated by other analysis centres. The consistency between our solutions and external orbits is below the 1 cm level in the radial direction, the most crucial component for altimetry height measurements. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The use of GPS data also seems to improve the DORIS data processing, as the DORIS post-fit residuals clearly benefit.

  10. The International Gravity Field Service (IGFS): Present Day Activities And Future Plans

    NASA Astrophysics Data System (ADS)

    Barzaghi, R.; Vergos, G. S.

    2016-12-01

    IGFS is a unified "umbrella" IAG service that coordinates the servicing of the geodetic and geophysical community with gravity field related data, software and information. The combined data of the IGFS entities will include global geopotential models, terrestrial, airborne, satellite and marine gravity observations, Earth tide data, GPS/levelling data, digital models of terrain and bathymetry, as well as ocean gravity field and geoid from satellite altimetry. The IGFS structure is based on the Gravity Services, the "operating arms" of IGFS. These Services related to IGFS are: BGI (Bureau Gravimetrique International), Toulouse, France ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy IGETS (International Geodynamics and Earth Tides Service), EOST, Strasbourg, France ICGEM (International Center for Global Earth Models), GFZ, Potsdam, Germany IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA The Central Bureau, hosted at the Aristotle Thessaloniki University, is in charge for all the interactions among the services and the other IAG bodies, particularly GGOS. In this respect, connections with the GGOS Bureaus of Products and Standards and of Networks and Observations have been recently strengthened in order to align the Gravity services to the GGOS standards. IGFS is also strongly involved in the most relevant projects related to the gravity field such as the establishment of the new Global Absolute Gravity Reference System and of the International Height Reference System. These projects, along with the organization of Geoid Schools devoted to methods for gravity and geoid estimate, will play a central role in the IGFS future actions in the framework of GGOS.

  11. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir; Carlisle, Candace

    2010-01-01

    The Global Precipitation Measurement (GP!v1) mission is an international cooperative effort to advance the understanding of the physics of the Earth's water and energy cycle. Accurate and timely knowledge of global precipitation is essential for understanding the weather/climate/ecological system, for improving our ability to manage freshwater resources, and for predicting high-impact natural hazard events including floods, droughts, extreme weather events, and landslides. The GPM Core Observatory will be a reference standard to uniformly calibrate data from a constellation of spacecraft with passive microwave sensors. GPM is being developed under a partnership between the United States (US) National Aeronautics and Space Administration (NASA) and the Japanese Aerospace and Exploration Agency (JAXA). NASA's Goddard Space Flight Center (GSFC), in Greenbelt, MD is developing the Core Observatory, two GPM Microwave Imager (GMI) instruments, Ground Validation System and Precipitation Processing System for the GPM mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. The second GMI instrument will be flown on a partner-provided spacecraft. Other US agencies and international partners contribute to the GPM mission by providing precipitation measurements obtained from their own spacecraft and/or providing ground-based precipitation measurements to support ground validation activities. The Precipitation Processing System will provide standard data products for the mission.

  12. An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto

    2012-01-01

    This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less

  13. System-of-Systems Considerations in the Notional Development of a Metropolitan Aerial Transportation System. [Implications as to the Identification of Enabling Technologies and Reference Designs for Extreme Short Haul VTOL Vehicles With Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Alonso, Juan J.; Arneson, Heather M.; Melton, John E.; Vegh, Michael; Walker, Cedric; Young, Larry A.

    2017-01-01

    There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses.

  14. Searching bioremediation patents through Cooperative Patent Classification (CPC).

    PubMed

    Prasad, Rajendra

    2016-03-01

    Patent classification systems have traditionally evolved independently at each patent jurisdiction to classify patents handled by their examiners to be able to search previous patents while dealing with new patent applications. As patent databases maintained by them went online for free access to public as also for global search of prior art by examiners, the need arose for a common platform and uniform structure of patent databases. The diversity of different classification, however, posed problems of integrating and searching relevant patents across patent jurisdictions. To address this problem of comparability of data from different sources and searching patents, WIPO in the recent past developed what is known as International Patent Classification (IPC) system which most countries readily adopted to code their patents with IPC codes along with their own codes. The Cooperative Patent Classification (CPC) is the latest patent classification system based on IPC/European Classification (ECLA) system, developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) which is likely to become a global standard. This paper discusses this new classification system with reference to patents on bioremediation.

  15. The current state of the creation and modernization of national geodetic and cartographic resources in Poland

    NASA Astrophysics Data System (ADS)

    Doskocz, Adam

    2016-01-01

    All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI), including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.

  16. An Examination of the Nature of Global MODIS Cloud Regimes

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  17. Current Status of Herbal Drug Standards in the Indian Pharmacopoeia.

    PubMed

    Prakash, Jai; Srivastava, Sushma; Ray, R S; Singh, Neha; Rajpali, Roshni; Singh, Gyanendra Nath

    2017-12-01

    The benefits of herbal drugs were well understood way back. They have been used for the promotion of health and medical purposes - in disease conditions. It is a conventional belief that herbal drugs have no side effects, are cheaper and locally available. Among Indian systems of medicines, herbs/herbal formulations are used to a larger extent. The quality control of the marketed herbs/herbal formulations is important for acquiring optimum therapeutic benefit as well as for expanding global outreach. Therefore, herbal drug standards are important. Reference standards, the Indian Pharmacopoeia Reference Substances especially the botanical reference substances and the phytochemical reference substances are required for comparison of quality of herbal drugs. The Indian Pharmacopoeia Commission has initiated the process of providing Indian Pharmacopoeia Reference Substances to the stakeholders. Therefore, this article provides an overview of the history and the status of herbal drug standards in the current and forthcoming issues of Indian Pharmacopoeia. In Indian Pharmacopeia, efforts have been made for the harmonization of standards with international counterparts wherever possible. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Linking HIPPARCOS to the Extragalactic Reference Frame Part 5 OF 6, Newc, Cycle 2,CONTINUATION of 2565-HIGH

    NASA Astrophysics Data System (ADS)

    Hemenway, Paul

    1991-07-01

    Determination of a non-rotating Reference Frame is crucial to progress in many areas, including: Galactic motions, local (Oort's A and B) and global (R0) parameters derived from them, solar system motion discrepancies (Planet X); and in conjunction with the VLBI radio reference frame, the registration of radio and optical images at an accuracy well below the resolution limit of HST images (0.06 arcsec). The goal of the Program is to tie the HIPPARCOS and Extra- galactic Reference Frames together at the 0.0005 arcsec and 0.0005 arcsec/year level. The HST data will allow a deter- mination of the brightness distribution in the stellar and extragalactic objects observed and time dependent changes therein at the 0.001 arcsec/year level. The Program requires targets distributed over the whole sky to define a rigid Reference Frame. GTO observations will provide initial first epoch data and preliminary proper motions. The observations will consist of relative positions of Extra- galactic objects (EGOs) and HIPPARCOS stars, measured with the FGSs.

  19. GARS O'Higgins as a core station for geodesy in Antarctica

    NASA Astrophysics Data System (ADS)

    Klügel, Thomas; Diedrich, Erhard; Falk, Reinhard; Hessels, Uwe; Höppner, Kathrin; Kühmstedt, Elke; Metzig, Robert; Plötz, Christian; Reinhold, Andreas; Schüler, Torben; Wojdziak, Reiner

    2014-05-01

    The German Antarctic Receiving Station GARS O'Higgins at the northern tip of the Antarctic Peninsula is a dual purpose facility for Earth observation since more than 20 years. It serves as a satellite ground station for payload data downlink and telecommanding of remote sensing satellites as well as a geodetic observatory for global reference frames and global change. Both applications use the same 9m diameter radio telescope. For space geodesy and astrometry the radio telescope significantly improves the coverage on the southern hemisphere and plays an essential role within the global Very Long Baseline Interferometry (VLBI) network. In particular the determination of the Earth Orientation Parameters (EOP) and the sky coverage of the International Celectial Reference Frame (ICRF) benefit from the location at high southern latitude. Further geodetic instrumentation includes different permanent GNSS receivers (since 1995), two SAR corner reflectors (since 2013) and in the past a PRARE system (1996 - 2004). In addition absolute gravity measurements were performed in 1997 and 2011. All geodetic reference points are tied together by a local survey network. The various geodetic instrumentation and the long time series at O'Higgins allow a reliable determination of crustal motions. VLBI station velocities, continuous GNSS time series and absolute gravity measurements consistently document an uplift rate of about 5 mm/a. A pressure gauge and a radar tide gauge being refererenced to space by a GNSS antenna on top allow the measurement of sea level changes independently from crustal motions, and the determination of the ellipsoidal height of the sea surface, which is, the geoid height plus the mean dynamic topography. The outstanding location on the Antarctic continent makes GARS O'Higgins also in future attractive for polar orbiting satellite missions and an essential station for the global VLBI network. Future plans envisage a development towards an observatory for environmentally relevant research.

  20. Evaluation of the Global Land Data Assimilation System (GLDAS) air temperature data products

    USGS Publications Warehouse

    Ji, Lei; Senay, Gabriel B.; Verdin, James P.

    2015-01-01

    There is a high demand for agrohydrologic models to use gridded near-surface air temperature data as the model input for estimating regional and global water budgets and cycles. The Global Land Data Assimilation System (GLDAS) developed by combining simulation models with observations provides a long-term gridded meteorological dataset at the global scale. However, the GLDAS air temperature products have not been comprehensively evaluated, although the accuracy of the products was assessed in limited areas. In this study, the daily 0.25° resolution GLDAS air temperature data are compared with two reference datasets: 1) 1-km-resolution gridded Daymet data (2002 and 2010) for the conterminous United States and 2) global meteorological observations (2000–11) archived from the Global Historical Climatology Network (GHCN). The comparison of the GLDAS datasets with the GHCN datasets, including 13 511 weather stations, indicates a fairly high accuracy of the GLDAS data for daily temperature. The quality of the GLDAS air temperature data, however, is not always consistent in different regions of the world; for example, some areas in Africa and South America show relatively low accuracy. Spatial and temporal analyses reveal a high agreement between GLDAS and Daymet daily air temperature datasets, although spatial details in high mountainous areas are not sufficiently estimated by the GLDAS data. The evaluation of the GLDAS data demonstrates that the air temperature estimates are generally accurate, but caution should be taken when the data are used in mountainous areas or places with sparse weather stations.

  1. Statistical considerations for harmonization of the global multicenter study on reference values.

    PubMed

    Ichihara, Kiyoshi

    2014-05-15

    The global multicenter study on reference values coordinated by the Committee on Reference Intervals and Decision Limits (C-RIDL) of the IFCC was launched in December 2011, targeting 45 commonly tested analytes with the following objectives: 1) to derive reference intervals (RIs) country by country using a common protocol, and 2) to explore regionality/ethnicity of reference values by aligning test results among the countries. To achieve these objectives, it is crucial to harmonize 1) the protocol for recruitment and sampling, 2) statistical procedures for deriving the RI, and 3) test results through measurement of a panel of sera in common. For harmonized recruitment, very lenient inclusion/exclusion criteria were adopted in view of differences in interpretation of what constitutes healthiness by different cultures and investigators. This policy may require secondary exclusion of individuals according to the standard of each country at the time of deriving RIs. An iterative optimization procedure, called the latent abnormal values exclusion (LAVE) method, can be applied to automate the process of refining the choice of reference individuals. For global comparison of reference values, test results must be harmonized, based on the among-country, pair-wise linear relationships of test values for the panel. Traceability of reference values can be ensured based on values assigned indirectly to the panel through collaborative measurement of certified reference materials. The validity of the adopted strategies is discussed in this article, based on interim results obtained to date from five countries. Special considerations are made for dissociation of RIs by parametric and nonparametric methods and between-country difference in the effect of body mass index on reference values. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Continental scale data assimilation of discharge and its effect on flow predictions

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; van Dijk, Albert

    2017-04-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) and Europe into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  3. Continental scale data assimilation of discharge and its effect on flow predictions across the contiguous US (CONUS)

    NASA Astrophysics Data System (ADS)

    Weerts, A.; Schellekens, J.; van Dijk, A.; Molenaar, R.

    2016-12-01

    Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.

  4. Social influence on selection behaviour: Distinguishing local- and global-driven preferential attachment

    PubMed Central

    Pan, Xue; Liu, Kecheng

    2017-01-01

    Social influence drives human selection behaviours when numerous objects competing for limited attentions, which leads to the ‘rich get richer’ dynamics where popular objects tend to get more attentions. However, evidences have been found that, both the global information of the whole system and the local information among one’s friends have significant influence over the one’s selection. Consequently, a key question raises that, it is the local information or the global information more determinative for one’s selection? Here we compare the local-based influence and global-based influence. We show that, the selection behaviour is mainly driven by the local popularity of the objects while the global popularity plays a supplementary role driving the behaviour only when there is little local information for the user to refer to. Thereby, we propose a network model to describe the mechanism of user-object interaction evolution with social influence, where the users perform either local-driven or global-driven preferential attachments to the objects, i.e., the probability of an objects to be selected by a target user is proportional to either its local popularity or global popularity. The simulation suggests that, about 75% of the attachments should be driven by the local popularity to reproduce the empirical observations. It means that, at least in the studied context where users chose businesses on Yelp, there is a probability of 75% for a user to make a selection according to the local popularity. The proposed model and the numerical findings may shed some light on the study of social influence and evolving social systems. PMID:28406984

  5. Social influence on selection behaviour: Distinguishing local- and global-driven preferential attachment.

    PubMed

    Pan, Xue; Hou, Lei; Liu, Kecheng

    2017-01-01

    Social influence drives human selection behaviours when numerous objects competing for limited attentions, which leads to the 'rich get richer' dynamics where popular objects tend to get more attentions. However, evidences have been found that, both the global information of the whole system and the local information among one's friends have significant influence over the one's selection. Consequently, a key question raises that, it is the local information or the global information more determinative for one's selection? Here we compare the local-based influence and global-based influence. We show that, the selection behaviour is mainly driven by the local popularity of the objects while the global popularity plays a supplementary role driving the behaviour only when there is little local information for the user to refer to. Thereby, we propose a network model to describe the mechanism of user-object interaction evolution with social influence, where the users perform either local-driven or global-driven preferential attachments to the objects, i.e., the probability of an objects to be selected by a target user is proportional to either its local popularity or global popularity. The simulation suggests that, about 75% of the attachments should be driven by the local popularity to reproduce the empirical observations. It means that, at least in the studied context where users chose businesses on Yelp, there is a probability of 75% for a user to make a selection according to the local popularity. The proposed model and the numerical findings may shed some light on the study of social influence and evolving social systems.

  6. Measuring precise sea level from a buoy using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Rocken, Christian; Kelecy, Thomas M.; Born, George H.; Young, Larry E.; Purcell, George H., Jr.; Wolf, Susan Kornreich

    1990-01-01

    The feasibility of using the Global Positioning System (GPS) for accurate sea surface positioning was examined. An experiment was conducted on the Scripps pier at La Jolla, California from December 13-15, 1989. A GPS-equipped buoy was deployed about 100 m off the pier. Two fixed reference GPS receivers, located on the pier and about 80 km away on Monument Peak, were used to estimate the relative position of the floater. Kinematic GPS processing software, developed at the National Geodetic Survey, and the Jet Propulsion Laboratory's GPS Infrared Processing System software were used to determine the floater position relative to land-fixing receivers. Calculations were made of sea level and ocean wave spectra from GPS measurements. It is found that the GPS sea level for the short 100 m baseline agrees with the PPT sea level at the 1 cm level and has an rms variation of 5 mm over a period of 4 hours.

  7. Analysis and design of gain scheduled control systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shamma, Jeff S.

    1988-01-01

    Gain scheduling, as an idea, is to construct a global feedback control system for a time varying and/or nonlinear plant from a collection of local time invariant designs. However in the absence of a sound analysis, these designs come with no guarantees on the robustness, performance, or even nominal stability of the overall gain schedule design. Such an analysis is presented for three types of gain scheduling situations: (1) a linear parameter varying plant scheduling on its exogenous parameters, (2) a nonlinear plant scheduling on a prescribed reference trajectory, and (3) a nonlinear plant scheduling on the current plant output. Conditions are given which guarantee that the stability, robustness, and performance properties of the fixed operating point designs carry over to the global gain scheduled designs, such as the scheduling variable should vary slowly and capture the plants nonlinearities. Finally, an alternate design framework is proposed which removes the slowing varying restriction or gain scheduled systems. This framework addresses some fundamental feedback issues previously ignored in standard gain.

  8. Analysis of Four Automated Urinalysis Systems Compared to Reference Methods.

    PubMed

    Bartosova, Kamila; Kubicek, Zdenek; Franekova, Janka; Louzensky, Gustav; Lavrikova, Petra; Jabor, Antonin

    2016-11-01

    The aim of this study was to compare four automated urinalysis systems: the Iris iQ200 Sprint (Iris Diagnostics, U.S.A.) combined with the Arkray AUTION MAX AX 4030, Iris + AUTION, Arkray AU 4050 (Arkray Global Business, Inc., Japan), Dirui FUS 2000 (Dirui Industrial Co., P.R.C.), and Menarini sediMAX (Menarini, Italy). Urine concentrations of protein and glucose (Iris, Dirui) were compared using reference quantitative analysis on an Abbott Architect c16000. Leukocytes, erythrocytes, epithelia, and casts (Iris, Arkray, Diuri, Menarini) were compared to urine sediment under reference light microscopy, Leica DM2000 (Leica Microsystems GmbH, Germany) with calibrated FastRead plates (Biosigma S.r.l., Italy), using both native and stained preparations. Total protein and glucose levels were measured using the Iris + AUTION system with borderline trueness, while the Dirui analysis revealed worse performances for the protein and glucose measurements. True classifications of leukocytes and erythrocytes were above 85% and 72%, respectively. Kappa statistics revealed a nearly perfect evaluation of leukocytes for all tested systems; the erythrocyte evaluation was nearly perfect for the Iris, Dirui and Arkray analyzers and substantial for the Menarini analyzer. The epithelia identification was connected to high false negativity (above 15%) in the Iris, Arkray, and Menarini analyses. False-negative casts were above 70% for all tested systems. The use of automated urinalysis demonstrated some weaknesses and should be checked by experienced laboratory staff using light microscopy.

  9. Co-location satellite GPS and SLR geodetic techniques at the Felix Aguilar Astronomical Observatory of San Juan, Argentina

    NASA Astrophysics Data System (ADS)

    Podestá, R.; Pacheco, A. M.; Alvis Rojas, H.; Quinteros, J.; Podestá, F.; Albornoz, E.; Navarro, A.; Luna, M.

    2018-01-01

    This work shows the strategy followed for the co-location of the Satellite Laser Ranging (SLR) ILRS 7406 telescope and the antenna of the permanent Global Positioning System (GPS) station, located at the Félix Aguilar Astronomical Observatory (OAFA) in San Juan, Argentina. The accomplishment of the co-location consisted in the design, construction, measurement, adjustment and compensation of a geodesic net between the stations SLR and GPS, securing support points solidly built in the soil. The co-location allows the coordinates of the station to be obtained by combining the data of both SLR and GPS techniques, achieving a greater degree of accuracy than individually. The International Earth Rotation and Reference Systems Service (IERS) considers the co-located stations as the most valuable and important points for the maintenance of terrestrial reference systems and their connection with the celestial ones. The 3 mm precision required by the IERS has been successfully achieved.

  10. An odd manifestation of the Capgras syndrome: loss of familiarity even with the sexual partner.

    PubMed

    Thomas Antérion, C; Convers, P; Desmales, S; Borg, C; Laurent, B

    2008-06-01

    We report the case of a patient who presented visual hallucinations and identification disorders associated with a Capgras syndrome. During the Capgras periods, there was not only a misidentification of his wife's face, but also a more global perceptive and emotional sexual identification disorder. Thus, he had sexual intercourse with his wife's "double" without having the slightest recollection feeling of familiarity towards his "wife" and even changed his sexual habits. To the best of our knowledge, he is the only neurological patient who made his wife a mistress. Starting from this global familiarity loss, we discuss the mechanism of Capgras delusion with reference to the role of the implicit system of face recognition. Such behavior of familiarity loss not only with face but also with all intimacy aspects argues for a specific disconnection between the ventral visual pathway of face identification and the limbic system involved in emotional and episodic memory contents.

  11. The Ablowitz–Ladik system on a finite set of integers

    NASA Astrophysics Data System (ADS)

    Xia, Baoqiang

    2018-07-01

    We show how to solve initial-boundary value problems for integrable nonlinear differential–difference equations on a finite set of integers. The method we employ is the discrete analogue of the unified transform (Fokas method). The implementation of this method to the Ablowitz–Ladik system yields the solution in terms of the unique solution of a matrix Riemann–Hilbert problem, which has a jump matrix with explicit -dependence involving certain functions referred to as spectral functions. Some of these functions are defined in terms of the initial value, while the remaining spectral functions are defined in terms of two sets of boundary values. These spectral functions are not independent but satisfy an algebraic relation called global relation. We analyze the global relation to characterize the unknown boundary values in terms of the given initial and boundary values. We also discuss the linearizable boundary conditions.

  12. (abstract) Altimeter Calibration and Geophysical Monitoring from Collocated Measurements at the Harvest Oil Platform

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Christensen, E. J.; Norman, R. A.; Parke, M. E.; Born, G. H.; Gill, S. K.

    1996-01-01

    Prior to the launch of TOPEX/ Poseidon in August 1992, NASA established its primary in situ verification site on the Harvest oil platform located in the Pacific Ocean off the coast of central California. Data from a suite of geodetic and oceanographic instruments attached to the platform have been combined to yield a precise record of absolute sea level simce the beginning of the mission. Critical to the computation of this geocentric sea level record is the precise determination of the platform geodetic height and the vertical velocity in the global terrestrial reference frame.We compare estimates of the platform height and vertical velocity from global positioning system (GPS) data alone and from a combination of GPS and satellite laser ranging (SLR) information. Current estimates suggest the platform is subsiding at a rate of about 8 mm per year. This height information is combined with in situ tide gauge measurements of sea level relative to a platform reference mark in order to produce a continuous record of the local geocentric sea height.

  13. Venus Global Reference Atmospheric Model Status and Planned Updates

    NASA Technical Reports Server (NTRS)

    Justh, H. L.; Dwyer Cianciolo, A. M.

    2017-01-01

    The Venus Global Reference Atmospheric Model (Venus-GRAM) was originally developed in 2004 under funding from NASA's In Space Propulsion (ISP) Aerocapture Project to support mission studies at the planet. Many proposals, including NASA New Frontiers and Discovery, as well as other studies have used Venus-GRAM to design missions and assess system robustness. After Venus-GRAM's release in 2005, several missions to Venus have generated a wealth of additional atmospheric data, yet few model updates have been made to Venus-GRAM. This paper serves to address three areas: (1) to present the current status of Venus-GRAM, (2) to identify new sources of data and other upgrades that need to be incorporated to maintain Venus-GRAM credibility and (3) to identify additional Venus-GRAM options and features that could be included to increase its capability. This effort will de-pend on understanding the needs of the user community, obtaining new modeling data and establishing a dedicated funding source to support continual up-grades. This paper is intended to initiate discussion that can result in an upgraded and validated Venus-GRAM being available to future studies and NASA proposals.

  14. Evaluation of observation-driven evaporation algorithms: results of the WACMOS-ET project

    NASA Astrophysics Data System (ADS)

    Miralles, Diego G.; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Michel, Dominik; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego

    2015-04-01

    Terrestrial evaporation (ET) links the continental water, energy and carbon cycles. Understanding the magnitude and variability of ET at the global scale is an essential step towards reducing uncertainties in our projections of climatic conditions and water availability for the future. However, the requirement of global observational data of ET can neither be satisfied with our sparse global in-situ networks, nor with the existing satellite sensors (which cannot measure evaporation directly from space). This situation has led to the recent rise of several algorithms dedicated to deriving ET fields from satellite data indirectly, based on the combination of ET-drivers that can be observed from space (e.g. radiation, temperature, phenological variability, water content, etc.). These algorithms can either be based on physics (e.g. Priestley and Taylor or Penman-Monteith approaches) or be purely statistical (e.g., machine learning). However, and despite the efforts from different initiatives like GEWEX LandFlux (Jimenez et al., 2011; Mueller et al., 2013), the uncertainties inherent in the resulting global ET datasets remain largely unexplored, partly due to a lack of inter-product consistency in forcing data. In response to this need, the ESA WACMOS-ET project started in 2012 with the main objectives of (a) developing a Reference Input Data Set to derive and validate ET estimates, and (b) performing a cross-comparison, error characterization and validation exercise of a group of selected ET algorithms driven by this Reference Input Data Set and by in-situ forcing data. The algorithms tested are SEBS (Su et al., 2002), the Penman- Monteith approach from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008), the MPI-MTE model (Jung et al., 2010) and GLEAM (Miralles et al., 2011). In this presentation we will show the first results from the ESA WACMOS-ET project. The performance of the different algorithms at multiple spatial and temporal scales for the 2005-2007 reference period will be disclosed. The skill of these algorithms to close the water balance over the continents will be assessed by comparisons to runoff data. The consistency in forcing data will allow to (a) evaluate the skill of these five algorithms in producing ET over particular ecosystems, (b) facilitate the attribution of the observed differences to either algorithms or driving data, and (c) set up a solid scientific basis for the development of global long-term benchmark ET products. Project progress can be followed on our website http://wacmoset.estellus.eu. REFERENCES Fisher, J. B., Tu, K.P., and Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 112, 901-919, 2008. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102, 2011. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951-954, 2010. Miralles, D.G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453-469, 2011. Mu, Q., Zhao, M. & Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800, 2011. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi- dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720, 2013. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-99, 2002.

  15. Intercomparison of CO 2 measurements

    NASA Astrophysics Data System (ADS)

    Poisson, A.; Culkin, F.; Ridout, P.

    1990-10-01

    Seawater samples, of four different salinities, were analysed for total alkalinity, total CO 2, pH and pCO 2 by up to 12 laboratories. The results showthat although most laboratories are capable of high precision in these determinations, there is an unacceptably high disagreement between their analyses of the same samples. For global programmes involving studies of the CO 2 system in seawater, it is strongly recommended that standard reference materials be made widely available.

  16. The MAGTF’s Reliance on the Global Positioning System: A Critical Vulnerability

    DTIC Science & Technology

    2013-05-02

    Reference&ItemId=+++1 499015&Pubabbrev=JC4IJ 45 “AURA Mobile Communications GPS/ WiFi Jammer”, Jane’s Police and Homeland Security Equipment, last...securityaffairs.co/wordpress/2845/ hacking /gps-spoofing- old-threat-and-new-problems.html 52“GPS Spoofing, Old Threat and New Problems”, Pierluigi...Paganini, Security Affairs, last modified February 23, 2012, http://securityaffairs.co/wordpress/2845/ hacking /gps-spoofing- old-threat-and-new

  17. CMR Catalog Service for the Web

    NASA Technical Reports Server (NTRS)

    Newman, Doug; Mitchell, Andrew

    2016-01-01

    With the impending retirement of Global Change Master Directory (GCMD) Application Programming Interfaces (APIs) the Common Metadata Repository (CMR) was charged with providing a collection-level Catalog Service for the Web (CSW) that provided the same level of functionality as GCMD. This talk describes the capabilities of the CMR CSW API with particular reference to the support of the Committee on Earth Observation Satellites (CEOS) Working Group on Information Systems and Services (WGISS) Integrated Catalog (CWIC).

  18. Relating Operational Art to the National Guard State Partnership Program

    DTIC Science & Technology

    2014-05-15

    Program Coordinator GEF Global Employment of the Force DSCA Defense Support of Civil Authorities BCA Budget Control Act NATO North Atlantic Treaty...between Florida and the U.S. Virgin Islands are referred to as the Regional Security System (RSS). Florida and the U.S. Virgin Islands partner with... Atlantic Treaty Organization (NATO) in 2004 due, in part, to the mentorship from the Maryland National Guard.54 Not only did the Maryland National Guard

  19. Constraints on Transient Viscoelastic Rheology of the Asthenosphere From Seasonal Deformation

    NASA Astrophysics Data System (ADS)

    Chanard, Kristel; Fleitout, Luce; Calais, Eric; Barbot, Sylvain; Avouac, Jean-Philippe

    2018-03-01

    We discuss the constraints on short-term asthenospheric viscosity provided by seasonal deformation of the Earth. We use data from 195 globally distributed continuous Global Navigation Satellite System stations. Surface loading is derived from the Gravity Recovery and Climate Experiment and used as an input to predict geodetic displacements. We compute Green's functions for surface displacements for a purely elastic spherical reference Earth model and for viscoelastic Earth models. We show that a range of transient viscoelastic rheologies derived to explain the early phase of postseismic deformation may induce a detectable effect on the phase and amplitude of horizontal displacements induced by seasonal loading at long wavelengths (1,300-4,000 km). By comparing predicted and observed seasonal horizontal motion, we conclude that transient asthenospheric viscosity cannot be lower than 5 × 1017 Pa.s, suggesting that low values of transient asthenospheric viscosities reported in some postseismic studies cannot hold for the seasonal deformation global average.

  20. A study of the application of differential techniques to the global positioning system for a helicopter precision approach

    NASA Technical Reports Server (NTRS)

    Mccall, D. L.

    1984-01-01

    The results of a simulation study to define the functional characteristics of a airborne and ground reference GPS receiver for use in a Differential GPS system are doumented. The operations of a variety of receiver types (sequential-single channel, continuous multi-channel, etc.) are evaluated for a typical civil helicopter mission scenario. The math model of each receiver type incorporated representative system errors including intentional degradation. The results include the discussion of the receiver relative performance, the spatial correlative properties of individual range error sources, and the navigation algorithm used to smooth the position data.

  1. Synchronization trigger control system for flow visualization

    NASA Technical Reports Server (NTRS)

    Chun, K. S.

    1987-01-01

    The use of cinematography or holographic interferometry for dynamic flow visualization in an internal combustion engine requires a control device that globally synchronizes camera and light source timing at a predefined shaft encoder angle. The device is capable of 0.35 deg resolution for rotational speeds of up to 73 240 rpm. This was achieved by implementing the shaft encoder signal addressed look-up table (LUT) and appropriate latches. The developed digital signal processing technique achieves 25 nsec of high speed triggering angle detection by using direct parallel bit comparison of the shaft encoder digital code with a simulated angle reference code, instead of using angle value comparison which involves more complicated computation steps. In order to establish synchronization to an AC reference signal whose magnitude is variant with the rotating speed, a dynamic peak followup synchronization technique has been devised. This method scrutinizes the reference signal and provides the right timing within 40 nsec. Two application examples are described.

  2. Accuracy and coverage of the modernized Polish Maritime differential GPS system

    NASA Astrophysics Data System (ADS)

    Specht, Cezary

    2011-01-01

    The DGPS navigation service augments The NAVSTAR Global Positioning System by providing localized pseudorange correction factors and ancillary information which are broadcast over selected marine reference stations. The DGPS service position and integrity information satisfy requirements in coastal navigation and hydrographic surveys. Polish Maritime DGPS system has been established in 1994 and modernized (in 2009) to meet the requirements set out in IMO resolution for a future GNSS, but also to preserve backward signal compatibility of user equipment. Having finalized installation of the new technology L1, L2 reference equipment performance tests were performed.The paper presents results of the coverage modeling and accuracy measuring campaign based on long-term signal analyses of the DGPS reference station Rozewie, which was performed for 26 days in July 2009. Final results allowed to verify the coverage area of the differential signal from reference station and calculated repeatable and absolute accuracy of the system, after the technical modernization. Obtained field strength level area and position statistics (215,000 fixes) were compared to past measurements performed in 2002 (coverage) and 2005 (accuracy), when previous system infrastructure was in operation.So far, no campaigns were performed on differential Galileo. However, as signals, signal processing and receiver techniques are comparable to those know from DGPS. Because all satellite differential GNSS systems use the same transmission standard (RTCM), maritime DGPS Radiobeacons are standardized in all radio communication aspects (frequency, binary rate, modulation), then the accuracy results of differential Galileo can be expected as a similar to DGPS.Coverage of the reference station was calculated based on unique software, which calculate the signal strength level based on transmitter parameters or field signal strength measurement campaign, done in the representative points. The software works based on Baltic sea vector map, ground electric parameters and models atmospheric noise level in the transmission band.

  3. Reduction of ZTD outliers through improved GNSS data processing and screening strategies

    NASA Astrophysics Data System (ADS)

    Stepniak, Katarzyna; Bock, Olivier; Wielgosz, Pawel

    2018-03-01

    Though Global Navigation Satellite System (GNSS) data processing has been significantly improved over the years, it is still commonly observed that zenith tropospheric delay (ZTD) estimates contain many outliers which are detrimental to meteorological and climatological applications. In this paper, we show that ZTD outliers in double-difference processing are mostly caused by sub-daily data gaps at reference stations, which cause disconnections of clusters of stations from the reference network and common mode biases due to the strong correlation between stations in short baselines. They can reach a few centimetres in ZTD and usually coincide with a jump in formal errors. The magnitude and sign of these biases are impossible to predict because they depend on different errors in the observations and on the geometry of the baselines. We elaborate and test a new baseline strategy which solves this problem and significantly reduces the number of outliers compared to the standard strategy commonly used for positioning (e.g. determination of national reference frame) in which the pre-defined network is composed of a skeleton of reference stations to which secondary stations are connected in a star-like structure. The new strategy is also shown to perform better than the widely used strategy maximizing the number of observations available in many GNSS programs. The reason is that observations are maximized before processing, whereas the final number of used observations can be dramatically lower because of data rejection (screening) during the processing. The study relies on the analysis of 1 year of GPS (Global Positioning System) data from a regional network of 136 GNSS stations processed using Bernese GNSS Software v.5.2. A post-processing screening procedure is also proposed to detect and remove a few outliers which may still remain due to short data gaps. It is based on a combination of range checks and outlier checks of ZTD and formal errors. The accuracy of the final screened GPS ZTD estimates is assessed by comparison to ERA-Interim reanalysis.

  4. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    NASA Astrophysics Data System (ADS)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  5. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    NASA Astrophysics Data System (ADS)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  6. Self-perception in a clinical sample of gender variant children.

    PubMed

    Rijn, Anouk Balleur-van; Steensma, Thomas D; Kreukels, Baudewijntje P C; Cohen-Kettenis, Peggy T

    2013-07-01

    Gender variance (GV) in childhood has a negative impact on the self-concept of children in the general population and can lead to mental health problems and even suicidal ideation in adulthood. This study explored the self-concept of clinically referred gender variant children and examined potential risk factors. The Self-Perception Profile for Children was administered to 147 children, who were referred to a gender identity clinic. Their parents completed the Child Behaviour Checklist and the Gender Identity Questionnaire to assess the degree of GV. The referred children were at risk of developing a negative self-concept; more specifically gender variant girls had low scores on 'global self-worth', 'physical appearance' and 'behavioural conduct' compared to Dutch norms for girls. Gender variant boys had low scores on 'global self-worth', 'scholastic competence', 'athletic competence' and 'physical appearance' compared to Dutch norms for boys. Within the group of referred children, sex differences, but no age effects, were found. The referred girls felt more competent than the referred boys on 'athletic competence' and 'scholastic functioning'. For both boys and girls poor peer relations had a significant negative relationship with self-concept and more GV was related to a lower global self-worth. Clinically referred gender variant children seemed vulnerable to developing a negative self-concept. Poor peer relations and extreme GV might be mediating variables. Interventions might focus on enhancing acceptance of the environment and improving social skills of gender variant children.

  7. Global bioethics and communitarianism.

    PubMed

    ten Have, Henk A M J

    2011-10-01

    This paper explores the role of 'community' in the context of global bioethics. With the present globalization of bioethics, new and interesting references are made to this concept. Some are familiar, for example, community consent. This article argues that the principle of informed consent is too individual-oriented and that in other cultures, consent can be community-based. Other references to 'community' are related to the novel principle of benefit sharing in the context of bioprospecting. The application of this principle necessarily requires the identification and construction of communities. On the global level there are also new uses of the concept of community as 'global community.' Three uses are distinguished: (1) a diachronic use, including past, present, and future generations, (2) a synchronic ecological use, including nonhuman species, and (3) a synchronic planetary use, including all human beings worldwide. Although there is a tension between the communitarian perspective and the idea of global community, this article argues that the third use can broaden communitarianism. The current development towards cosmopolitanism is creating a new global community that represents humanity as a whole, enabling identification of world citizens and evoking a sense of global solidarity and responsibility. The emergence of global bioethics today demonstrates this development.

  8. The influence of medical cost controls implemented by Taiwan's national health insurance program on doctor-patient relationships.

    PubMed

    Chiu, Jhih-Ling

    2015-01-01

    To prevent medical costs from rising, the National Health Insurance administration implemented the global budget system for financial reform, effective 1 July 2004. Since the implementation of this system, patients have been required to pay for some medicines to limit costs to the system. More recently, as they have faced constant increases in health insurance fees and also faced an increase in the number of medical expenses they must pay during an economic recession and a rise in unemployment, would the economic burden on the people of Taiwan not be increased? Even though National Health Insurance is a form of social insurance, does it guarantee social equality? The value of the healthcare industry is irreplaceable, so the most critical concern is whether worsening doctor-patient relationships will worsen healthcare quality. In short, while the global budget system saves on National Health Insurance costs, whether its implementation has affected healthcare quality is also worth exploring. This commentary also hopes to serve as a reference for the implementation of national health insurance in the United States. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.

    NASA Technical Reports Server (NTRS)

    Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; hide

    2017-01-01

    Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.

  10. National Construction of Global Education: A Critical Review of the National Curriculum Standards for South Korean Global High Schools

    ERIC Educational Resources Information Center

    Sung, Youl-Kwan; Park, Minjeong; Choi, Il-Seon

    2013-01-01

    In this paper, the authors investigate what global visions of education are reflected in the selected national curriculum standards, with special reference to two seemingly contradictory forces: globalization and nationalism. This paper examines the socio-economic and cultural foundations of the curriculum and explains how the national curriculum…

  11. Future global SLR network evolution and its impact on the terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian

    2018-06-01

    Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

  12. Resolution of Infinite-Loop in Hyperincursive and Nonlocal Cellular Automata: Introduction to Slime Mold Computing

    NASA Astrophysics Data System (ADS)

    Aono, Masashi; Gunji, Yukio-Pegio

    2004-08-01

    How can non-algorithmic/non-deterministic computational syntax be computed? "The hyperincursive system" introduced by Dubois is an anticipatory system embracing the contradiction/uncertainty. Although it may provide a novel viewpoint for the understanding of complex systems, conventional digital computers cannot run faithfully as the hyperincursive computational syntax specifies, in a strict sense. Then is it an imaginary story? In this paper we try to argue that it is not. We show that a model of complex systems "Elementary Conflictable Cellular Automata (ECCA)" proposed by Aono and Gunji is embracing the hyperincursivity and the nonlocality. ECCA is based on locality-only type settings basically as well as other CA models, and/but at the same time, each cell is required to refer to globality-dominant regularity. Due to this contradictory locality-globality loop, the time evolution equation specifies that the system reaches the deadlock/infinite-loop. However, we show that there is a possibility of the resolution of these problems if the computing system has parallel and/but non-distributed property like an amoeboid organism. This paper is an introduction to "the slime mold computing" that is an attempt to cultivate an unconventional notion of computation.

  13. 10 CFR 431.75 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.75 Materials incorporated by.../bookshop.htm. (ii) The ANSI Standard from Global Engineering Documents, 15 Inverness Way East, Englewood... from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, or http://global.ihs.com...

  14. 10 CFR 431.75 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces Test Procedures § 431.75 Materials incorporated by.../bookshop.htm. (ii) The ANSI Standard from Global Engineering Documents, 15 Inverness Way East, Englewood... from Global Engineering Documents, 15 Inverness Way East, Englewood, CO 80112, or http://global.ihs.com...

  15. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  16. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  17. Aquarius Instrument Science Calibration During the Risk Reduction Phase

    NASA Technical Reports Server (NTRS)

    Ruf, Christopher S.

    2004-01-01

    This final report presents the results of work performed under NASA Grant NAG512726 during the period 15 January 2003 through 30 June 2004. An analysis was performed of a possible vicarious calibration method for use by Aquarius to monitor and stabilize the absolute and relative calibration of its microwave radiometer. Stationary statistical properties of the brightness temperature (T(sub B)) measured by a low Earth orbiting radiometer operating at 1.4135 GHz are considered as a means of validating its absolute calibration. The global minimum, maximum, and average T(sub B) are considered, together with a vicarious cold reference method that detects the presence of a sharp lower bound on naturally occurring values for T(sub B). Of particular interest is the reliability with which these statistics can be extracted from a realistic distribution of T(sub B) measurements that would be observed by a typical sensor. Simulations of measurements are performed that include the effects of instrument noise and variable environmental factors such as the global water vapor and ocean surface temperature, salinity and wind distributions. Global minima can vary widely due to instrument noise and are not a reliable calibration reference. Global maxima are strongly influenced by several environmental factors as well as instrument noise and are even less stationary. Global averages are largely insensitive to instrument noise and, in most cases, to environmental conditions as well. The global average T(sub B) varies at only the 0.1 K RMS level except in cases of anomalously high winds, when it can increase considerably more. The vicarious cold reference is similarly insensitive to instrument effects and most environmental factors. It is not significantly affected by high wind conditions. The stability of the vicarious reference is, however, found to be somewhat sensitive (at the several tenths of Kelvins level) to variations in the background cold space brightness, T(sub c). The global average is much less sensitive to this parameter and so using two approaches together can be mutually beneficial.

  18. Utilizing Mars Global Reference Atmospheric Model (Mars-GRAM 2005) to Evaluate Entry Probe Mission Sites

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.

    2008-01-01

    The Mars Global Reference Atmospheric Model (Mars-GRAM 2005) is an engineering-level atmospheric model widely used for diverse mission applications. An overview is presented of Mars-GRAM 2005 and its new features. The "auxiliary profile" option is one new feature of Mars-GRAM 2005. This option uses an input file of temperature and density versus altitude to replace the mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. Any source of data or alternate model output can be used to generate an auxiliary profile. Auxiliary profiles for this study were produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) and a global Thermal Emission Spectrometer (TES) database. The global TES database has been specifically generated for purposes of making Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude-longitude bins and 15 degree Ls bins, for each of three Mars years of TES nadir data. The Mars Science Laboratory (MSL) sites are used as a sample of how Mars-GRAM' could be a valuable tool for planning of future Mars entry probe missions. Results are presented using auxiliary profiles produced from the mesoscale model output and TES observed data for candidate MSL landing sites. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.

  19. Flight-test evaluation of civil helicopter terminal approach operations using differential GPS

    NASA Technical Reports Server (NTRS)

    Edwards, F. G.; Hegarty, D. M.

    1989-01-01

    A civil code differential Global Positioning System (DGPS) has been developed and flight-tested by the NASA Ames Research Center. The system was used to evaluate the performance of the DGPS for support of helicopter terminal approach operations. The airborne component of the DGPS was installed in a NASA helicopter. The ground-reference component was installed in a mobile van and equipped with a real-time VHF telemetry data link to transmit correction information to the aircraft system. An extensive series of tests was conducted to evaluate the performance of the system for several different configurations of the airborne navigation filter. This paper will describe the systems, the results of the flight tests, and the results of the posttest analysis.

  20. Scale invariance in natural and artificial collective systems: a review

    PubMed Central

    Huepe, Cristián

    2017-01-01

    Self-organized collective coordinated behaviour is an impressive phenomenon, observed in a variety of natural and artificial systems, in which coherent global structures or dynamics emerge from local interactions between individual parts. If the degree of collective integration of a system does not depend on size, its level of robustness and adaptivity is typically increased and we refer to it as scale-invariant. In this review, we first identify three main types of self-organized scale-invariant systems: scale-invariant spatial structures, scale-invariant topologies and scale-invariant dynamics. We then provide examples of scale invariance from different domains in science, describe their origins and main features and discuss potential challenges and approaches for designing and engineering artificial systems with scale-invariant properties. PMID:29093130

  1. Tipping elements in the Earth's climate system.

    PubMed

    Lenton, Timothy M; Held, Hermann; Kriegler, Elmar; Hall, Jim W; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim

    2008-02-12

    The term "tipping point" commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term "tipping element" to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points.

  2. Global chemical profiling based quality evaluation approach of rhubarb using ultra performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry.

    PubMed

    Zhang, Li; Liu, Haiyu; Qin, Lingling; Zhang, Zhixin; Wang, Qing; Zhang, Qingqing; Lu, Zhiwei; Wei, Shengli; Gao, Xiaoyan; Tu, Pengfei

    2015-02-01

    A global chemical profiling based quality evaluation approach using ultra performance liquid chromatography with tandem quadrupole time-of-flight mass spectrometry was developed for the quality evaluation of three rhubarb species, including Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill. Considering that comprehensive detection of chemical components is crucial for the global profile, a systemic column performance evaluation method was developed. Based on this, a Cortecs column was used to acquire the chemical profile, and Chempattern software was employed to conduct similarity evaluation and hierarchical cluster analysis. The results showed R. tanguticum could be differentiated from R. palmatum and R. officinale at the similarity value 0.65, but R. palmatum and R. officinale could not be distinguished effectively. Therefore, a common pattern based on three rhubarb species was developed to conduct the quality evaluation, and the similarity value 0.50 was set as an appropriate threshold to control the quality of rhubarb. A total of 88 common peaks were identified by their accurate mass and fragmentation, and partially verified by reference standards. Through the verification, the newly developed method could be successfully used for evaluating the holistic quality of rhubarb. It would provide a reference for the quality control of other herbal medicines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Selected remarks about anticipation in instrumental civilization subsystems

    NASA Astrophysics Data System (ADS)

    Adamkiewicz, Wiktor H.

    2001-06-01

    The paper contains a fragment of research description dealing with social systems saturated with technology products. The aim of this research is to determine the possibility to predict the influence of changes in the system on the process leading to the adaptation to the environment. The adaptation process is an activity based on anticipation of the future system states and environment states. Therefore, it is essential to determine the relationships existing between these two sets of states. Research results should determine the efficiency level of anticipating activity. Many processes take place in the system and its environment. Simultaneous research on all processes allows to specify the effect of synergy whose form determines adaptation. Researching all processes is not possible, though. Therefore, it is necessary to use appropriate models. Such models may be created by applying general rule of system approach. Nowadays, social systems must adapt to the increasing pace of globalization involving products, markets, competition and finance. The ability to adapt the system to the global situation is the condition for survival and possible development. Thus, the conformity of development and global situation is the superior aim of anticipation. Many experts deal with research on social systems. Many of them represent the humanities. We cannot expect them to undertake special mathematical studies. However, such research requires analysing various sets of figures. The ability to formulate tasks for mathematicians and the ability to use the results of figure analyses are essential. Therefore, the author makes certain suggestions referring to the application of mathematics in the research which may be accepted by the humanities' scholars. (Adamkiewicz, 1999d). The author hopes so.

  4. Localization of a mobile laser scanner via dimensional reduction

    NASA Astrophysics Data System (ADS)

    Lehtola, Ville V.; Virtanen, Juho-Pekka; Vaaja, Matti T.; Hyyppä, Hannu; Nüchter, Andreas

    2016-11-01

    We extend the concept of intrinsic localization from a theoretical one-dimensional (1D) solution onto a 2D manifold that is embedded in a 3D space, and then recover the full six degrees of freedom for a mobile laser scanner with a simultaneous localization and mapping algorithm (SLAM). By intrinsic localization, we mean that no reference coordinate system, such as global navigation satellite system (GNSS), nor inertial measurement unit (IMU) are used. Experiments are conducted with a 2D laser scanner mounted on a rolling prototype platform, VILMA. The concept offers potential in being extendable to other wheeled platforms.

  5. Progress in multidisciplinary design optimization at NASA Langley

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.

    1993-01-01

    Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.

  6. Design and flight test of a differential GPS/inertial navigation system for approach/landing guidance

    NASA Technical Reports Server (NTRS)

    Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary

    1991-01-01

    NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.

  7. Engineering-Level Model Atmospheres for Titan and Neptune

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Johnson, D. L.

    2003-01-01

    Engineering-level atmospheric models for Titan and Neptune have been developed for use in NASA s systems analysis studies of aerocapture applications in missions to the outer planets. Analogous to highly successful Global Reference Atmospheric Models for Earth (GRAM, Justus et al., 2000) and Mars (Mars-GRAM, Justus and Johnson, 2001, Justus et al., 2002) the new models are called Titan-GRAM and Neptune-GRAM. Like GRAM and Mars-GRAM, an important feature of Titan-GRAM and Neptune-GRAM is their ability to simulate quasi-random perturbations for Monte- Carlo analyses in developing guidance, navigation and control algorithms, and for thermal systems design.

  8. Generating a fault-tolerant global clock using high-speed control signals for the MetaNet architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ofek, Y.

    1994-05-01

    This work describes a new technique, based on exchanging control signals between neighboring nodes, for constructing a stable and fault-tolerant global clock in a distributed system with an arbitrary topology. It is shown that it is possible to construct a global clock reference with time step that is much smaller than the propagation delay over the network's links. The synchronization algorithm ensures that the global clock tick' has a stable periodicity, and therefore, it is possible to tolerate failures of links and clocks that operate faster and/or slower than nominally specified, as well as hard failures. The approach taken inmore » this work is to generate a global clock from the ensemble of the local transmission clocks and not to directly synchronize these high-speed clocks. The steady-state algorithm, which generates the global clock, is executed in hardware by the network interface of each node. At the network interface, it is possible to measure accurately the propagation delay between neighboring nodes with a small error or uncertainty and thereby to achieve global synchronization that is proportional to these error measurements. It is shown that the local clock drift (or rate uncertainty) has only a secondary effect on the maximum global clock rate. The synchronization algorithm can tolerate any physical failure. 18 refs.« less

  9. The Contribution of the IGS to a Globally Integrated Geodetic Observing System

    NASA Astrophysics Data System (ADS)

    WEBER, R.

    2002-05-01

    The dedicated goal of the International GPS Service (IGS) is 'to provide a service to support geodetic and geophysical research activities through GPS data and data products'. To accomplish its mission IGS began routine operations in Jan 1994. Nowadays operations are based on a large number of components like a globally distributed tracking network of about 200 stations, local and regional data centers as well as eight analysis centers. This presentation summarizes the measurement principles of the GPS and GLONASS microwave satellite navigation systems. An overview of current IGS-products will be given and factors limiting the accuracy of these products are discussed. Moreover IGS serves as one of the technique center of the IERS and therefore the delivered products follow designated IERS standards as close as possible. It can be anticipated that the IGS will also play an important role within the framework of an upcoming Globally Integrated Geodetic Observing System. Even today there are a number of scientific crosslinks to other space geodetic techniques and services e.g. to the ILRS in the determination of the geocentre or to the IVS in questions of a temporal and spatial densification of the reference frame. The above-mentioned initiative will strengthen further the cooperation and increase the scientific outcome.

  10. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    PubMed

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  11. Peak oil and health in low- and middle-income countries: impacts and potential responses.

    PubMed

    Winch, Peter; Stepnitz, Rebecca

    2011-09-01

    Peak oil refers to the predicted peak and subsequent decline in global production of petroleum products over the coming decades. We describe how peak oil will affect health, nutrition, and health systems in low- and middle-income countries along 5 pathways. The negative effects of peak oil on health and nutrition will be felt most acutely in the 58 low-income countries experiencing minimal or negative economic growth because of their patterns of sociopolitical, geographic, and economic vulnerability. The global health community needs to take additional steps to build resilience among the residents of low- and middle-income countries and maintain access to maternal and other health services in the face of predicted changes in availability and price of fossil fuels.

  12. A bilayer Double Semion model with symmetry-enriched topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, L., E-mail: lauraort@ucm.es; Martin-Delgado, M.A.

    2016-12-15

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topological Order with a global spin–flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trivial braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariantmore » under the flavour symmetry and the well-known spin flip symmetry.« less

  13. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  14. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  15. Global Reproduction and Transformation of Science Education

    ERIC Educational Resources Information Center

    Tobin, Kenneth

    2011-01-01

    Neoliberalism has spread globally and operates hegemonically in many fields, including science education. I use historical auto/ethnography to examine global referents that have mediated the production of contemporary science education to explore how the roles of teachers and learners are related to macrostructures such as neoliberalism and…

  16. CERTAIN CONCEPTS OF “PRAMEHA” (DIABETES) IN AYURVEDA (INDIAN SYSTEM OF MEDICINE) WITH SPECIAL REFERENCE TO THE RELATIONSHIP BETWEEN ANCIENT INDIAN AND MODERN THOUGHTS

    PubMed Central

    Rajasekharan, S.; Raju, G.S.

    1982-01-01

    Prameha (Diabetes) which has been a global problem is well described in the ancient Indian classics life the Vedas and the Ayurvedic works which ensued the Vedic period. In the present work, the authors have tried to focus the narrations on pramehas in Vedic literature with special reference to the “Kauchika Soothra” of Atharva Veda. A new hypothesis comparing the actions of pittatejas which is set free by the pitta dharakala with the actions of the hormones like insulin and glucagon is also discussed. The aetiopathogenesis of pramehas as described by the Ayurvedic authors with a glance to the therapeutic measures is also included in the study PMID:22556947

  17. Simultaneous tracking and regulation visual servoing of wheeled mobile robots with uncalibrated extrinsic parameters

    NASA Astrophysics Data System (ADS)

    Lu, Qun; Yu, Li; Zhang, Dan; Zhang, Xuebo

    2018-01-01

    This paper presentsa global adaptive controller that simultaneously solves tracking and regulation for wheeled mobile robots with unknown depth and uncalibrated camera-to-robot extrinsic parameters. The rotational angle and the scaled translation between the current camera frame and the reference camera frame, as well as the ones between the desired camera frame and the reference camera frame can be calculated in real time by using the pose estimation techniques. A transformed system is first obtained, for which an adaptive controller is then designed to accomplish both tracking and regulation tasks, and the controller synthesis is based on Lyapunov's direct method. Finally, the effectiveness of the proposed method is illustrated by a simulation study.

  18. PACT Act

    THOMAS, 113th Congress

    Rep. Peters, Scott H. [D-CA-52

    2014-07-09

    House - 09/08/2014 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Maximally Permissive Composition of Actors in Ptolemy II

    DTIC Science & Technology

    2013-03-20

    into our physical world by means of sensors and actuators . This global network of Cyber-Physical Systems (i.e., integrations of computation with...physical processes [Lee, 2008]), is often referred to as the “Internet of Things” ( IoT ). This term was coined by Kevin Ashton [Ashton, 2009] in 1999 to...processing capabilities. A newly emerging outer- most peripheral layer of the Cloud that is key to the full realization of the IoT , is identified as “The

  20. An Assessment of Global Atmospheric Effects of a Major Nuclear Conflict

    DTIC Science & Technology

    1988-05-10

    effects on storm systems of all scales around the globe; however, the statistical characteristics of the atmosphere, such as average temperature and...literature on characteristics of housing and nonresidential buildings in the U.S., U.S.S.R., and Europe , as well as references on petroleum production...especially in the U.S. They considered 3,500 military targets in the U.S., U.S.S.R., and Europe , including missile silos and launchers, bases, and weapon

  1. Research priorities for the environment, agriculture and infectious diseases of poverty.

    PubMed

    2013-01-01

    This report reviews the connections between environmental change, modern agricultural practices and the occurrence of infectious diseases - especially those of poverty; proposes a multi-criteria decision analysis approach to determining the key research priorities; and explores the benefits and limitations of a more systems-based approach to conceptualizing and investigating the problem. The report is the output of the Thematic Reference Group on Environment, Agriculture and Infectious Diseases of Poverty (TRG 4), part of an independent think tank of international experts, established and funded by the Special Programme for Research and Training in Tropical Diseases (TDR) to identify key research priorities through review of research evidence and input from stakeholder consultations. The report concludes that mitigating the outcomes on human health will require far-reaching strategies - spanning the environment, climate, agriculture, social-ecological, microbial and public-health sectors; as well as inter-disciplinary research and intersectoral action. People will also need to modify their way of thinking and engage beyond their own specialities, since the challenges are systemic and are amplified by the increasing inter-connectedness of human populations. This is one of a series of disease and thematic reference group reports that have come out of the TDR Think Tank, all of which have contributed to the development of the Global Report for Research on Infectious Diseases of Poverty, available at www.who.int/tdr/capacity/global_report.

  2. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND INDUSTRIAL EQUIPMENT Commercial Water Heaters, Hot Water Supply Boilers and Unfired Hot Water... can purchase a copy of the standard incorporated by reference from Global Engineering Documents, 15...

  3. Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites

    DOE PAGES

    Madonna, F.; Rosoldi, M.; Güldner, J.; ...

    2014-11-19

    The potential for measurement redundancy to reduce uncertainty in atmospheric variables has not been investigated comprehensively for climate observations. We evaluated the usefulness of entropy and mutual correlation concepts, as defined in information theory, for quantifying random uncertainty and redundancy in time series of the integrated water vapour (IWV) and water vapour mixing ratio profiles provided by five highly instrumented GRUAN (GCOS, Global Climate Observing System, Reference Upper-Air Network) stations in 2010–2012. Results show that the random uncertainties on the IWV measured with radiosondes, global positioning system, microwave and infrared radiometers, and Raman lidar measurements differed by less than 8%.more » Comparisons of time series of IWV content from ground-based remote sensing instruments with in situ soundings showed that microwave radiometers have the highest redundancy with the IWV time series measured by radiosondes and therefore the highest potential to reduce the random uncertainty of the radiosondes time series. Moreover, the random uncertainty of a time series from one instrument can be reduced by ~ 60% by constraining the measurements with those from another instrument. The best reduction of random uncertainty is achieved by conditioning Raman lidar measurements with microwave radiometer measurements. In conclusion, specific instruments are recommended for atmospheric water vapour measurements at GRUAN sites. This approach can be applied to the study of redundant measurements for other climate variables.« less

  4. Height system unification based on the Fixed Geodetic Boundary Value Problem with limited availability of gravity data

    NASA Astrophysics Data System (ADS)

    Porz, Lucas; Grombein, Thomas; Seitz, Kurt; Heck, Bernhard; Wenzel, Friedemann

    2017-04-01

    Regional height reference systems are generally related to individual vertical datums defined by specific tide gauges. The discrepancies of these vertical datums with respect to a unified global datum cause height system biases that range in an order of 1-2 m at a global scale. One approach for unification of height systems relates to the solution of a Geodetic Boundary Value Problem (GBVP). In particular, the fixed GBVP, using gravity disturbances as boundary values, is solved at GNSS/leveling benchmarks, whereupon height datum offsets can be estimated by least squares adjustment. In spherical approximation, the solution of the fixed GBVP is obtained by Hotine's spherical integral formula. However, this method relies on the global availability of gravity data. In practice, gravity data of the necessary resolution and accuracy is not accessible globally. Thus, the integration is restricted to an area within the vicinity of the computation points. The resulting truncation error can reach several meters in height, making height system unification without further consideration of this effect unfeasible. This study analyzes methods for reducing the truncation error by combining terrestrial gravity data with satellite-based global geopotential models and by modifying the integral kernel in order to accelerate the convergence of the resulting potential. For this purpose, EGM2008-derived gravity functionals are used as pseudo-observations to be integrated numerically. Geopotential models of different spectral degrees are implemented using a remove-restore-scheme. Three types of modification are applied to the Hotine-kernel and the convergence of the resulting potential is analyzed. In a further step, the impact of these operations on the estimation of height datum offsets is investigated within a closed loop simulation. A minimum integration radius in combination with a specific modification of the Hotine-kernel is suggested in order to achieve sub-cm accuracy for the estimation of height datum offsets.

  5. Application of the Undifferenced GNSS Precise Positioning in Determining Coordinates in National Reference Frames

    NASA Astrophysics Data System (ADS)

    Krzan, Grzegorz; Stępniak, Katarzyna

    2017-09-01

    In high-accuracy positioning using GNSS, the most common solution is still relative positioning using double-difference observations of dual-frequency measurements. An increasingly popular alternative to relative positioning are undifferenced approaches, which are designed to make full use of modern satellite systems and signals. Positions referenced to global International Terrestrial Reference Frame (ITRF2008) obtained from Precise Point Positioning (PPP) or Undifferenced (UD) network solutions have to be transformed to national (regional) reference frame, which introduces additional bases related to the transformation process. In this paper, satellite observations from two test networks using different observation time series were processed. The first test concerns the positioning accuracy from processing one year of dual-frequency GPS observations from 14 EUREF Permanent Network (EPN) stations using NAPEOS 3.3.1 software. The results were transformed into a national reference frame (PL-ETRF2000) and compared to positions from an EPN cumulative solution, which was adopted as the true coordinates. Daily observations were processed using PPP and UD multi-station solutions to determine the final accuracy resulting from satellite positioning, the transformation to national coordinate systems and Eurasian intraplate plate velocities. The second numerical test involved similar processing strategies of post-processing carried out using different observation time series (30 min., 1 hour, 2 hours, daily) and different classes of GNSS receivers. The centimeter accuracy of results presented in the national coordinate system satisfies the requirements of many surveying and engineering applications.

  6. The African Reference Frame (AFREF) project: a fundamental geodetic tool for Africa

    NASA Astrophysics Data System (ADS)

    Farah, H.

    2009-04-01

    AFREF has as objective the establishment and maintenance of a unified geodetic reference frame for Africa, which will support and facilitate fundamental scientific and technical projects. The installation of observation systems all over Africa will provide important data that can be used in many different scientific fields (e.g., geodynamics, meteorological). Furthermore, AFREF will create an uniform frame that will support development projects, uniform environmental and mapping programmes as well as aid in resolving current and future international boundary disputes. This reference frame will be based on the International Terrestrial Reference Frame (ITRF) and will be realised through the establishment of a network of permanent Global Navigation Satellite System (GNSS) receivers. In close collaboration with several institutional role players, AFREF is an initiative of the United Nations Economic Commission for Africa (UNECA) Committee on Development Information (CODI). A steering committee is currently responsible for the over-all management and coordination of the implementation of AFREF. Implementation of AFREF is envisaged to be at national level in collaboration with National Mapping Organizations. Furthermore, many scientific Institutions are contributing for the densification of the network. The current status of the AFREF network will be discussed in detail. Several CORS systems have been installed to support AFREF specifically. In addition, most or all of the IGS stations located in Africa will automatically qualify as AFREF core stations. Furthermore, we will show examples of interaction between specific projects and AFREF that are contributing for the development of science in Africa.

  7. Exploring the Global/Local Boundary in Education in Developing Countries: The Case of the Caribbean

    ERIC Educational Resources Information Center

    George, June; Lewis, Theodore

    2011-01-01

    This article focuses on education in developing countries in the context of globalization and with specific reference to the Caribbean. It examines the concept of globalization and related concepts and positions developing countries within this context. It explores the possibility of the creation of a third space where the local and the global can…

  8. Globalization and Its Impact on Education with Specific Reference to Education in South Africa

    ERIC Educational Resources Information Center

    Moloi, K. C.; Gravett, S. J.; Petersen, N. F.

    2009-01-01

    As globalization of the world economy continues unabated, a parallel growth of globalization of knowledge is also taking place. This latter trend is little affected by the boundaries between developed and less developed countries and is having a particular impact on trends in education. This article looks at the impact of globalization within the…

  9. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    USGS Publications Warehouse

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  10. Administering the Global Trap: The Role of Educational Leaders.

    ERIC Educational Resources Information Center

    Bates, Richard

    2002-01-01

    Discusses the role of educational leaders in a global society. Explains the globalization of technology, finance, production, and culture. Other topics include the withering away of the state, rebalancing states and markets, development as freedom, and the development as freedom for educational leaders. (Contains 32 references.) (PKP)

  11. Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China.

    PubMed

    Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li'an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling

    2016-03-01

    A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box-Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China.

  12. Nationwide Multicenter Reference Interval Study for 28 Common Biochemical Analytes in China

    PubMed Central

    Xia, Liangyu; Chen, Ming; Liu, Min; Tao, Zhihua; Li, Shijun; Wang, Liang; Cheng, Xinqi; Qin, Xuzhen; Han, Jianhua; Li, Pengchang; Hou, Li’an; Yu, Songlin; Ichihara, Kiyoshi; Qiu, Ling

    2016-01-01

    Abstract A nationwide multicenter study was conducted in the China to explore sources of variation of reference values and establish reference intervals for 28 common biochemical analytes, as a part of the International Federation of Clinical Chemistry and Laboratory Medicine, Committee on Reference Intervals and Decision Limits (IFCC/C-RIDL) global study on reference values. A total of 3148 apparently healthy volunteers were recruited in 6 cities covering a wide area in China. Blood samples were tested in 2 central laboratories using Beckman Coulter AU5800 chemistry analyzers. Certified reference materials and value-assigned serum panel were used for standardization of test results. Multiple regression analysis was performed to explore sources of variation. Need for partition of reference intervals was evaluated based on 3-level nested ANOVA. After secondary exclusion using the latent abnormal values exclusion method, reference intervals were derived by a parametric method using the modified Box–Cox formula. Test results of 20 analytes were made traceable to reference measurement procedures. By the ANOVA, significant sex-related and age-related differences were observed in 12 and 12 analytes, respectively. A small regional difference was observed in the results for albumin, glucose, and sodium. Multiple regression analysis revealed BMI-related changes in results of 9 analytes for man and 6 for woman. Reference intervals of 28 analytes were computed with 17 analytes partitioned by sex and/or age. In conclusion, reference intervals of 28 common chemistry analytes applicable to Chinese Han population were established by use of the latest methodology. Reference intervals of 20 analytes traceable to reference measurement procedures can be used as common reference intervals, whereas others can be used as the assay system-specific reference intervals in China. PMID:26945390

  13. Land cover maps, BVOC emissions, and SOA burden in a global aerosol-climate model

    NASA Astrophysics Data System (ADS)

    Stanelle, Tanja; Henrot, Alexandra; Bey, Isaelle

    2015-04-01

    It has been reported that different land cover representations influence the emission of biogenic volatile organic compounds (BVOC) (e.g. Guenther et al., 2006). But the land cover forcing used in model simulations is quite uncertain (e.g. Jung et al., 2006). As a consequence the simulated emission of BVOCs depends on the applied land cover map. To test the sensitivity of global and regional estimates of BVOC emissions on the applied land cover map we applied 3 different land cover maps into our global aerosol-climate model ECHAM6-HAM2.2. We found a high sensitivity for tropical regions. BVOCs are a very prominent precursor for the production of Secondary Organic Aerosols (SOA). Therefore the sensitivity of BVOC emissions on land cover maps impacts the SOA burden in the atmosphere. With our model system we are able to quantify that impact. References: Guenther et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, Atmos. Chem. Phys., 6, 3181-3210, doi:10.5194/acp-6-3181-2006. Jung et al. (2006), Exploiting synergies of global land cover products for carbon cycle modeling, Rem. Sens. Environm., 101, 534-553, doi:10.1016/j.rse.2006.01.020.

  14. International medical migration: a critical conceptual review of the global movements of doctors and nurses.

    PubMed

    Bradby, Hannah

    2014-11-01

    This paper critically appraises the discourse around international medical migration at the turn of the 21st century. A critical narrative review of a range of English-language sources, including grey literature, books and research reports, traces the development and spread of specific causative models. The attribution of causative relations between the movement of skilled medical workers, the provision of health care and population health outcomes illustrates how the global reach of biomedicine has to be understood in the context of local conditions. The need to understand migration as an aspect of uneven global development, rather than a delimited issue of manpower services management, is illustrated with reference to debates about 'brain drain' of Africa's health-care professionals, task-shifting and the crisis in health-care human resources. The widespread presumed cause of shortages of skilled health-care staff in sub-Saharan Africa was overdetermined by a compelling narrative of rich countries stealing poor countries' trained health-care professionals. This narrative promotes medical professional interests and ignores historical patterns of underinvestment in health-care systems and structures. Sociological theories of medicalization suggest that the international marketization of medical recruitment is a key site where the uneven global development of capital is at work. A radical reconfiguration of medical staffing along the lines of 'task-shifting' in rich and poor countries' health-care systems alike offers one means of thinking about global equity in access to quality care. © The Author(s) 2014.

  15. Examining Long-Term Global Climate Change on the Web.

    ERIC Educational Resources Information Center

    Huntoon, Jacqueline E.; Ridky, Robert K.

    2002-01-01

    Describes a web-based, inquiry-oriented activity that enables students to examine long-term global climate change. Supports instruction in other topics such as population growth. (Contains 34 references.) (DDR)

  16. Lunar power system summary of studies for the lunar enterprise task force NASA-office of exploration

    NASA Technical Reports Server (NTRS)

    Criswell, David R.

    1989-01-01

    The capacity of global power systems must be increased by a factor of ten to provide the predicted power needs of electric power by the year 2050. The Lunar Power System (LPS) would collect solar energy at power bases located on opposing limbs of the moon as seen from Earth. LPS can provide dependable, economic, renewable, and environmentally benign solar energy to Earth. A preliminary engineering and cash flow model of the LPS was developed. Results are shown for a system scaled to a peak capacity of 355 GWe on Earth and to provide 13,600 GWe-Yrs of energy over a 70 year life cycle of construction and full operation. The growth in capacity of the reference system from start of installation on the moon in 2005 to completion of its nominal life cycle in the year 2070 is shown. World needs for power could be accommodated by expansion in capacity of the reference LPS beyond 344 GWe. This would be done by steadily incorporating newer technology during full operation and by establishing additional bases. The results presented encourage consideration of a faster paced program than is assumed herein.

  17. Portable Wireless LAN Device and Two-way Radio Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2003-01-01

    Measurement processes, data and analysis are provided to address the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. A radiated emission measurement process is developed and spurious radiated emissions from various devices are characterized using reverberation chambers. Spurious radiated emissions in aircraft radio frequency bands from several wireless network devices are compared with baseline emissions from standard computer laptops and personal digital assistants. In addition, spurious radiated emission data in aircraft radio frequency bands from seven pairs of two-way radios are provided, A description of the measurement process, device modes of operation and the measurement results are reported. Aircraft interference path loss measurements were conducted on four Boeing 747 and Boeing 737 aircraft for several aircraft radio systems. The measurement approach is described and the path loss results are compared with existing data from reference documents, standards, and NASA partnerships. In-band on-channel interference thresholds are compiled from an existing reference document. Using these data, a risk assessment is provided for interference from wireless network devices and two-way radios to aircraft systems, including Localizer, Glideslope, Very High Frequency Omnidirectional Range, Microwave Landing System and Global Positioning System. The report compares the interference risks associated with emissions from wireless network devices and two-way radios against standard laptops and personal digital assistants. Existing receiver interference threshold references are identified as to require more data for better interference risk assessments.

  18. End Modern-Day Slavery Act

    THOMAS, 113th Congress

    Rep. Peters, Scott H. [D-CA-52

    2014-07-09

    House - 09/08/2014 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture.

    PubMed

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; www.cropwatch.com.cn , Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  20. CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture

    NASA Astrophysics Data System (ADS)

    Gommes, René; Wu, Bingfang; Zhang, Ning; Feng, Xueliang; Zeng, Hongwei; Li, Zhongyuan; Chen, Bo

    2017-02-01

    CropWatch agroclimatic indicators (CWAIs) are a monitoring tool developed by the CropWatch global crop monitoring system in the Chinese Academy of Sciences (CAS; http://www.cropwatch.com.cn, Wu et al Int J Digital Earth 7(2):113-137, 2014, Wu et al Remote Sens 7:3907-3933, 2015). Contrary to most other environmental and agroclimatic indicators, they are "agronomic value-added", i.e. they are spatial values averaged over agricultural areas only and they include a weighting that enhances the contribution of the areas with the largest production potential. CWAIs can be computed for any time interval (starting from dekads) and yield one synthetic value per variable over a specific area and time interval, for instance a national annual value. Therefore, they are very compatible with socio-economic and other variables that are usually reported at regular time intervals over administrative units, such as national environmental or agricultural statistics. Two of the CWAIs are satellite-based (RAIN and Photosynthetically Active radiation, PAR) while the third is ground based (TEMP, air temperature); capitals are used when specifically referring to CWAIs rather than the climate variables in general. The paper first provides an overview of some common agroclimatic indicators, describing their procedural, systemic and normative features in subsequent sections, following the terminology of Binder et al Environ Impact Assess Rev 30:71-81 (2010). The discussion focuses on the systemic and normative aspects: the CWAIs are assessed in terms of their coherent description of the agroclimatic crop environment, at different spatial scales (systemic). The final section shows that the CWAIs retain key statistical properties of the underlying climate variables and that they can be compared to a reference value and used as monitoring and early warning variables (normative).

  1. Design and implementation of multichannel global active structural acoustic control for a device casing

    NASA Astrophysics Data System (ADS)

    Mazur, Krzysztof; Wrona, Stanislaw; Pawelczyk, Marek

    2018-01-01

    The paper presents the idea and discussion on implementation of multichannel global active noise control systems. As a test plant an active casing is used. It has been developed by the authors to reduce device noise directly at the source by controlling vibration of its casing. To provide global acoustic effect in the whole environment, where the device operates, it requires a number of secondary sources and sensors for each casing wall, thus making the whole active control structure complicated, i.e. with a large number of interacting channels. The paper discloses all details concerning hardware setup and efficient implementation of control algorithms for the multichannel case. A new formulation is presented to introduce the distributed version of the Switched-error Filtered-reference Least Mean Squares (FXLMS) algorithm together with adaptation rate enhancement. The convergence rate of the proposed algorithm is compared with original Multiple-error FXLMS. A number of hints followed from many years of authors' experience on microprocessor control systems design and signal processing algorithms optimization are presented. They can be used for various active control and signal processing applications, both for academic research and commercialization.

  2. Open Earth Observation Data for Measuring Anthropogenic Development in Coastal Zones at Continental Scales

    NASA Astrophysics Data System (ADS)

    Du, X.; Leinenkugel, P.; Guo, H.; Kuenzer, C.

    2017-12-01

    During the recent decades, global coasts are undergoing tremendous change due to accelerating socio-economic growth, which has severe effects on the functioning of global coastal systems. In view of this, accurate, timely, and area-wide global information on natural as well as anthropogenic processes in the coastal zone are of paramount importance for sustainable coastal development. A broad range of freely available satellite derived products, and open geo-datasets, as well as statistics with global coverage exist that have not yet been fully exploited to evaluate human development patterns in coastal areas. In this study, we demonstrate the potential of freely and openly available EO and GEO data sets for characterizing and evaluating human development in coastal zones on large scales. Therefore, different geo-spatial dataset such as Global Urban Footprint (GUF), Open Street Map (OSM), time series of Global Human Settlement Layer (GHSL) and Climate Change Initiative (CCI) Land cover were acquired for the entire continental coast of Asia, defined as the terrestrial area 100 km from the coastline. In order to extract indices for the coastline, a reference structure was developed allowing the integration of a 2D spatial pattern of a given parameter to a certain location along the coast line. Based on this reference structure statistics for the coast were calculated every 5 km parallel to the coast line as well as for four different distance intervals from the coast. The results demonstrate the highly unequal distribution of coastal development with respect to urban and agricultural usage in Asia, with large differences between and within different countries. China coasts show the highest overall patterns of urban development, while countries such as Pakistan and Myanmar show comparably low levels with nearly no development evident absence from coastal metropolitan areas. Furthermore, a clear trend of decreasing urban development is evident with increasing distance from the coast. This study highlights the potential of global geo-spatial data products for deriving anthropogenic development indicators that can support the evaluation and monitoring for sustainable development of coastal zones, while also discussing the shortcomings of these datasets for such purposes.

  3. Using GPS and leveling data in local precise geoid determination and case study

    NASA Astrophysics Data System (ADS)

    Erol, B.; Çelik, R. N.; Erol, S.

    2003-04-01

    As an important result of developments in high technology, satellite based positioning system has become to use in geodesy and surveying professions. These developments made the measurement works more accurate, more practical and more economic. Today, one of the most recent used satellite based positioning system is GPS (Global Positioning System) and it serves to a very wide range of geodetic applications from monitoring earth crustal deformations till building the basis for a GIS (Geographical Information Systems). The most efficient way to utilize GPS measurement system for mentioned aims is having a reliable geodetic infrastructure in working area. Geodetic infrastructure is a extraterrestrial and time system and involved 4D geodetic reference networks. The forth element of mentioned geodetic reference system is time because having an accurate and reliable geodetic infrastructure is needed to up-date according to physical realities of the region. By the help of a well designed geodetic infrastructure accurate and reliable coordinates of a point can be generated economically every time in a global and up-to-date system. Geoid is one of the important parts of a geodetic infrastructure. As it is well known, geoid is the equipotential surface of the Earth's gravity field which best fits, in a least squares sense, global mean sea level and it is reference for physical height systems like orthometric and normal heights. In the most of the applications, vertical position of a point is expressed with orthometric or normal height. Orthometric or normal height is a physical concept and gives vertical position of a point uniquely. On the other hand, vertical position of a point is derived in a geometrical system according to GPS measurements. GPS datum is WGS84 and in this system, an ellipsoidal height of a point is calculated according to WGS84 ellipsoid. So, it is an necessity to transform the ellipsoidal heights to orthometric heights and this procedure is managed with the fundamental mathematical equation; N=h-H. In the equation, "h" is the ellipsoidal height of a point P, "H" is the orthometric height of the same point and "N" is "geoid undulation" value. Normally, "H" orthometric height derived from leveling measurements but these measurements are tiring applications. So, while having a geoid model in the region as the essential part of geodetic infrastructure, number leveling measurements can be reduced from the procedure and by this way time and labor is saved. Geoid determination is modeling of the data in such a way that geoid height can be obtained digital or analog at a point whose horizontal position is known. Geoid models can be developed for local, regional or global regions. Using satellite techniques, especially GPS, in geodetic measurements are increased importance of geoid. Because geoid is a natural tie between high precision geodetic coordinates and coordinates which obtained from satellites. There are several geoid determination methods according to used data and models. GPS/Leveling method, which is also known as geometric method, is one of these methods. This method is appropriate for local precise geoid determination in respectively small areas. In this paper, it is going to be given information about GPS/Leveling geoid determination method and mathematical models, which are used in geoid determination with this method. And Izmir local geoid model will be presented as a case study. Izmir is one of the west metropolitan cities of Turkey and located near Aegean Sea. The topography is extremely rough in the region. There are two different geoid determination studies which were carried out in 1996 and 2001 in Izmir. Both models were accomplished according to GPS/Leveling method. Those two geoid models of Izmir Metropolitan region are investigated in here, the conflict of them were discussed. The relation between distribution of common reference points and differences of geoid undulation values, which are calculated from both models separately, were analyzed and also effects of topography on conflict of both geoid model was investigated. The results of the study and suggestions are going to be given in the paper.

  4. The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 1: Technical/users manual

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.

    1991-01-01

    A technical description of the NASA/MSFC Global Reference Atmospheric Model 1990 version (GRAM-90) is presented with emphasis on the additions and new user's manual descriptions of the program operation aspects of the revised model. Some sample results for the new middle atmosphere section and comparisons with results from a three dimensional circulation model are provided. A programmer's manual with more details for those wishing to make their own GRAM program adaptations is also presented.

  5. Status and Future Developments of SIRGAS

    NASA Astrophysics Data System (ADS)

    Fortes, L.; Lauría, E.; Brunini, C.; Amaya, W.; Sanchez, L.; Drewes, H.

    2007-05-01

    This paper presents the status and future developments of the SIRGAS (Geocentric Reference System for the Americas) project. Since its creation, in 1993, SIRGAS has coordinated two continental GPS campaigns in 1995 an 2000, responsible for the establishment of a very accurate 3D reference frame in the region. First focusing on South America, the project has expanded its scope to Latin America since 2001. Currently the maintenance of the SIRGAS reference frame is carried out through more than 80 continuous operating GNSS (Global Navigation Satellite System) stations available in the region, whose data is officially processed by the International GNSS Service (IGS) Regional Network Associate Analysis Centre for SIRGAS (IGS RNACC-SIR), functioning at the DGFI (Deutsches Geodatisches Forschungsinstitut), in Munich, to generate weekly coordinates and velocity information of each continuous GNSS station. Since October 2006, five additional experimental processing centers - located at the Brazilian Institute of Geography and Statistics (IBGE), National Institute of Statistics, Geography and Informatics of Mexico (INEGI), Military Geographic Institute of Argentina (IGM), University of La Plata (UNLP), Argentina, and Geographic Institute Agustín Codazzi, Colombia (IGAC) - have also been processing data from those stations in order to assume the official processing responsibility in near future. Many Latin American countries have already adopted SIRGAS as their new official reference system. Besides, efforts have been carried out in order to have the national geodetic networks of Central American countries connected to the SIRGAS reference frame, which will be accomplished by a GNSS campaign scheduled for the first semester of 2007. In terms of vertical datum, SIRGAS continues to coordinate with each member country all the necessary efforts towards making the geodetic leveling data available together with gravity information in order to support the computation of geopotential numbers, to be unified in a continental adjustment.

  6. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  7. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  8. EOP and scale from continuous VLBI observing: CONT campaigns to future VGOS networks

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2017-07-01

    Continuous (CONT) VLBI campaigns have been carried out about every 3 years since 2002. The basic idea of these campaigns is to acquire state-of-the-art VLBI data over a continuous time period of about 2 weeks to demonstrate the highest accuracy of which the current VLBI system is capable. In addition, these campaigns support scientific studies such as investigations of high-resolution Earth rotation, reference frame stability, and daily to sub-daily site motions. The size of the CONT networks and the observing data rate have increased steadily since 1994. Performance of these networks based on reference frame scale precision and polar motion/LOD comparison with global navigation satellite system (GNSS) earth orientation parameters (EOP) has been substantially better than the weekly operational R1 and R4 series. The precisions of CONT EOP and scale have improved by more than a factor of two since 2002. Polar motion precision based on the WRMS difference between VLBI and GNSS for the most recent CONT campaigns is at the 30 μas level, which is comparable to that of GNSS. The CONT campaigns are a natural precursor to the planned future VLBI observing networks, which are expected to observe continuously. We compare the performance of the most recent CONT campaigns in 2011 and 2014 with the expected performance of the future VLBI global observing system network using simulations. These simulations indicate that the expected future precision of scale and EOP will be at least 3 times better than the current CONT precision.

  9. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.; Kotamarthi, V. Rao

    2018-02-01

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 × 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmental Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation's performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.

  10. In vitro validation and reliability study of electromagnetic skin sensors for evaluation of end range of motion positions of the hip.

    PubMed

    Audenaert, E A; Vigneron, L; Van Hoof, T; D'Herde, K; van Maele, G; Oosterlinck, D; Pattyn, C

    2011-12-01

    There is growing evidence that femoroacetabular impingement (FAI) is a probable risk factor for the development of early osteoarthritis in the nondysplastic hip. As FAI arises with end range of motion activities, measurement errors related to skin movement might be higher than anticipated when using previously reported methods for kinematic evaluation of the hip. We performed an in vitro validation and reliability study of a noninvasive method to define pelvic and femur positions in end range of motion activities of the hip using an electromagnetic tracking device. Motion data, collected from sensors attached to the bone and skin of 11 cadaver hips, were simultaneously obtained and compared in a global reference frame. Motion data were then transposed in the hip joint local coordinate systems. Observer-related variability in locating the anatomical landmarks required to define the local coordinate system and variability of determining the hip joint center was evaluated. Angular root mean square (RMS) differences between the bony and skin sensors averaged 3.2° (SD 3.5°) and 1.8° (SD 2.3°) in the global reference frame for the femur and pelvic sensors, respectively. Angular RMS differences between the bony and skin sensors in the hip joint local coordinate systems ranged at end range of motion and dependent on the motion under investigation from 1.91 to 5.81°. The presented protocol for evaluation of hip motion seems to be suited for the 3-D description of motion relevant to the experimental and clinical evaluation of femoroacetabular impingement.

  11. Results from the ESA-funded project 'Height System Unification with GOCE'

    NASA Astrophysics Data System (ADS)

    Sideris, M. G.; Rangelova, E. V.; Gruber, T.; Rummel, R. F.; Woodworth, P. L.; Hughes, C. W.; Ihde, J.; Liebsch, G.; Schäfer, U.; Rülke, A.; Gerlach, C.; Haagmans, R.

    2013-12-01

    The paper summarizes the main results of a project, supported by the European Space Agency, whose main goal is to identify the impact of GOCE gravity field models on height system unification. In particular, the Technical University Munich, the University of Calgary and the National Oceanography Centre in Liverpool, together with the Bavarian Academy of Sciences, the Federal German Agency for Cartography and Geodesy, and the Geodetic Surveys of Canada, USA and Mexico, have investigated the role of GOCE-derived gravity and geoid models for regional and global height datum connection. GOCE provides three important components of height unification: highly accurate potential differences (geopotential numbers), a global geoid- or quasi-geoid-based reference surface for elevations that is independent of inaccuracies and inconsistencies of local and regional data, and a consistent way to refer to the same datum all the relevant gravimetric, topographic and oceanographic data. We introduce briefly the methodology that has been applied in order to unify height system in North America, North Atlantic Ocean and Europe, and present results obtained using the available GOCE-derived satellite-only geopotential models, and their combination with terrestrial data and ocean models. The effects of various factors, such as data noise, omission errors, indirect bias terms, ocean models and temporal variations, on height datum unification are also presented, highlighting their magnitude and importance in the estimation of offsets between vertical datums. Based on the experiences gained in this project, a general roadmap has been developed for height datum unification in regions with good, as well as poor, coverage in gravity and geodetic height and tide gauge control stations.

  12. A cellphone based system for large-scale monitoring of black carbon

    NASA Astrophysics Data System (ADS)

    Ramanathan, N.; Lukac, M.; Ahmed, T.; Kar, A.; Praveen, P. S.; Honles, T.; Leong, I.; Rehman, I. H.; Schauer, J. J.; Ramanathan, V.

    2011-08-01

    Black carbon aerosols are a major component of soot and are also a major contributor to global and regional climate change. Reliable and cost-effective systems to measure near-surface black carbon (BC) mass concentrations (hereafter denoted as [BC]) globally are necessary to validate air pollution and climate models and to evaluate the effectiveness of BC mitigation actions. Toward this goal we describe a new wireless, low-cost, ultra low-power, BC cellphone based monitoring system (BC_CBM). BC_CBM integrates a Miniaturized Aerosol filter Sampler (MAS) with a cellphone for filter image collection, transmission and image analysis for determining [BC] in real time. The BC aerosols in the air accumulate on the MAS quartz filter, resulting in a coloration of the filter. A photograph of the filter is captured by the cellphone camera and transmitted by the cellphone to the analytics component of BC_CBM. The analytics component compares the image with a calibrated reference scale (also included in the photograph) to estimate [BC]. We demonstrate with field data collected from vastly differing environments, ranging from southern California to rural regions in the Indo-Gangetic plains of Northern India, that the total BC deposited on the filter is directly and uniquely related to the reflectance of the filter in the red wavelength, irrespective of its source or how the particles were deposited. [BC] varied from 0.1 to 1 μg m -3 in Southern California and from 10 to 200 μg m -3 in rural India in our field studies. In spite of the 3 orders of magnitude variation in [BC], the BC_CBM system was able to determine the [BC] well within the experimental error of two independent reference instruments for both indoor air and outdoor ambient air. Accurate, global-scale measurements of [BC] in urban and remote rural locations, enabled by the wireless, low-cost, ultra low-power operation of BC_CBM, will make it possible to better capture the large spatial and temporal variations in [BC], informing climate science, health, and policy.

  13. The Political Ecology of Environmental and Sustainability Education Policy across Global-National Divides

    ERIC Educational Resources Information Center

    Stahelin, Nicolas

    2017-01-01

    This research is a qualitative case study of global and national (Brazilian) Environmental and Sustainability Education (ESE) policies in historical perspectives. My overall objectives are two-fold: First, to understand how global ESE policy frameworks have evolved ideologically over time--a concept I refer to as ESE policy trajectories; and…

  14. Teaching Global Issues Through Mathematics. Development Education Paper No. 20.

    ERIC Educational Resources Information Center

    Schwartz, Richard H.

    The document shows how teachers can use mathematics problems to teach fourth, fifth, and sixth grade students about critical global issues. The problems are arranged according to development topics. For each problem, the solution, reference source, and mathematical skills to be strengthened are given; global issues related to each problem are also…

  15. Education Abroad and the Making of Global Citizens: Assessing Learning Outcomes of Course-Embedded, Faculty-Led International Programming

    ERIC Educational Resources Information Center

    Ogden, Anthony C.

    2010-01-01

    This study builds on education abroad, global citizenship and academic development literatures by assessing the extent to which embedding brief international travel experiences into residentially-taught courses enhances academic development and promotes global citizenship. Such faculty-led, education abroad programs are referred to as…

  16. Implementation and Evaluation of an INS System Using a Three Degrees of Freedom MEMS Accelerometer

    DTIC Science & Technology

    2008-12-01

    122 123 124 125 LIST OF REFERENCES [1] Robert C. Michelson, “Autonomous navigation,” in AccessScience @McGraw-Hil, DOI... AccessScience @McGraw-Hil, DOI 10.1036/1097-8542.342700 at http://www.accesssicence.com (accessed October 13, 2008). [4] T. Logsdon, The Navstar Global... AccessScience @McGraw-Hill,http://www.accessscience.com (accessed October 15, 2008). [13] Z-World Inc., BL2000 User’s Manual, 2001. 126 [14

  17. Recognizing people of African Descent and Black Europeans.

    THOMAS, 113th Congress

    Rep. Hastings, Alcee L. [D-FL-20

    2013-11-19

    House - 12/06/2013 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. International Human Rights Defense Act of 2014

    THOMAS, 113th Congress

    Rep. Tierney, John F. [D-MA-6

    2014-07-16

    House - 09/08/2014 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. SUPL support for mobile devices

    NASA Astrophysics Data System (ADS)

    Narisetty, Jayanthi; Soghoyan, Arpine; Sundaramurthy, Mohanapriya; Akopian, David

    2012-02-01

    Conventional Global Positioning System (GPS) receivers operate well in open-sky environments. But their performance degrades in urban canyons, indoors and underground due to multipath, foliage, dissipation, etc. To overcome such situations, several enhancements have been suggested such as Assisted GPS (A-GPS). Using this approach, orbital parameters including ephemeris and almanac along with reference time and coarse location information are provided to GPS receivers to assist in acquisition of weak signals. To test A-GPS enabled receivers high-end simulators are used, which are not affordable by many academic institutions. This paper presents an economical A-GPS supplement for inexpensive simulators which operates on application layer. Particularly proposed solution is integrated with National Instruments' (NI) GPS Simulation Toolkit and implemented using NI's Labview environment. This A-GPS support works for J2ME and Android platforms. The communication between the simulator and the receiver is in accordance with the Secure User Plane Location (SUPL) protocol encapsulated with Radio Resource Location Protocol (RRLP) applies to Global System for Mobile Communications (GSM) and Universal Mobile Telecommunications System (UMTS) cellular networks.

  20. The Problem Patron and the Academic Library Web Site as Virtual Reference Desk.

    ERIC Educational Resources Information Center

    Taylor, Daniel; Porter, George S.

    2002-01-01

    Considers problem library patrons in a virtual environment based on experiences at California Institute of Technology's Web site and its use for virtual reference. Discusses the virtual reference desk concept; global visibility and access to the World Wide Web; problematic email; and advantages in the electronic environment. (LRW)

  1. Spatial nonlinearities: Cascading effects in the earth system

    USGS Publications Warehouse

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  2. Tipping elements in the Earth's climate system

    PubMed Central

    Lenton, Timothy M.; Held, Hermann; Kriegler, Elmar; Hall, Jim W.; Lucht, Wolfgang; Rahmstorf, Stefan; Schellnhuber, Hans Joachim

    2008-01-01

    The term “tipping point” commonly refers to a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system. Here we introduce the term “tipping element” to describe large-scale components of the Earth system that may pass a tipping point. We critically evaluate potential policy-relevant tipping elements in the climate system under anthropogenic forcing, drawing on the pertinent literature and a recent international workshop to compile a short list, and we assess where their tipping points lie. An expert elicitation is used to help rank their sensitivity to global warming and the uncertainty about the underlying physical mechanisms. Then we explain how, in principle, early warning systems could be established to detect the proximity of some tipping points. PMID:18258748

  3. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179

  4. Simulating the impact of climate, land use and human water use on the hydrological system over the period 1850-2100 using PCR-GLOBWB

    NASA Astrophysics Data System (ADS)

    Bosmans, Joyce; van Beek, Rens; Bierkens, Marc

    2015-04-01

    In this study we investigate the impact of humans on the global hydrological system by separating the impacts of climate change, land use and land cover change, and human water use in a series of experiments with the PCR-GLOBWB hydrological model (e.g. van Beek et al., 2011; Sutanudjaja et al., 2014). We force PCR-GLOBWB with input from the EC-Earth and CESM GCMs, allowing us to extend our experiments from the pre-industrial (1850) to the end of the century (2099). Two greenhouse gas emission scenarios are used for the coming century: Representative Concentration Pathway 2.6 (RCP2.6), a low-end scenario, as well as the high-end RCP8.5 scenario. Precipitation, temperature and reference potential evapotranspiration are applied to PCR-GLOBWB, after bias-correction using the ISI-MIP method (Hempel et al., 2013). The reference potential evapotranspiration is computed using the Penman-Monteith equation with GCM wind, radiation, temperature, humidity and pressure as opposed to the Hamon method used as default in PCR-GLOBWB. To evaluate the impacts of climate change as well as land use and land cover (LULC) change, we apply a combination of fixed and transient LULC scenarios. First, LULC is kept fixed at 1850 values, so the hydrological model is only experiencing changes in precipitation, temperature and reference potential evapotranspiration. Then, LULC is allowed to vary according to historical reconstructions (HYDE) and future projections per RCP (Hurtt et al., 2011). In these experiments, anthropogenic effects are excluded. This is the first study to evaluate PCR-GLOBWB with pre-industrial or transient LULC in combination with present and future climate change. The next step is to investigate human impacts on the water system, by comparing the experiment with varying LULC to an experiment that additionally includes reservoir operations, human water abstractions including irrigation (paddy and non-paddy) and subsequent return flows. We aim to project future human impacts using information based on Shared Socioeconomic Pathways (SSPs). In previous studies, domestic, industrial and irrigation water demand were varied over the past decades in PCR-GLOBWB. Here we improve the analyses of human impacts on the hydrological system by looking further into the past and the future, as well as by comparing the impact of human water use to impacts of climate and LULC change. van Beek et al (2011), Global monthly water stress: 1. Water balance and water availability. Water Resources Research, Vol 47. Hempel et al (2013), A trend-preserving bias correction - the ISI-MIP approach. Earth System Dynamics, Vol 4. Hurtt et al (2011), Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, Vol 109. Sutanudjaja et al (2014), Development and validation of PCR-GLOBWB 2.0: a 5 arc min resolution global hydrology and water resources model. EGU General Assembly Conference Abstracts

  5. Sentinel-3 coverage-driven mission design: Coupling of orbit selection and instrument design

    NASA Astrophysics Data System (ADS)

    Cornara, S.; Pirondini, F.; Palmade, J. L.

    2017-11-01

    The first satellite of the Sentinel-3 series was launched in February 2016. Sentinel-3 payload suite encompasses the Ocean and Land Colour Instrument (OLCI) with a swath of 1270 km, the Sea and Land Surface Temperature Radiometer (SLSTR) yielding a dual-view scan with swaths of 1420 km (nadir) and 750 km (oblique view), the Synthetic Aperture Radar Altimeter (SRAL) working in Ku-band and C-band, and the dual-frequency Microwave Radiometer (MWR). In the early stages of mission and system design, the main driver for the Sentinel-3 reference orbit selection was the requirement to achieve a revisit time of two days or less globally over ocean areas with two satellites (i.e. 4-day global coverage with one satellite). The orbit selection was seamlessly coupled with the OLCI instrument design in terms of field of view (FoV) definition driven by the observation zenith angle (OZA) and sunglint constraints applied to ocean observations. The criticality of the global coverage requirement for ocean monitoring derives from the sunglint phenomenon, i.e. the impact on visible channels of the solar ray reflection on the water surface. This constraint was finally overcome thanks to the concurrent optimisation of the orbit parameters, notably the Local Time at Descending Node (LTDN), and the OLCI instrument FoV definition. The orbit selection process started with the identification of orbits with short repeat cycle (2-4 days), firstly to minimise the time required to achieve global coverage with existing constraints, and then to minimise the swath required to obtain global coverage and the maximum required OZA. This step yielded the selection of a 4-day repeat cycle orbit, thus allowing 2-day coverage with two adequately spaced satellites. Then suitable candidate orbits with higher repeat cycles were identified in the proximity of the selected altitudes and the reference orbit was ultimately chosen. Rationale was to keep the swath for global coverage as close as possible to the previous optimum value, but to tailor the repeat cycle length (i.e. the ground-track grid) to optimise the topography mission performances. The final choice converged on the sun-synchronous orbit 14 + 7/27, reference altitude ∼800 km, LTDN = 10h00. Extensive coverage analyses were carried out to characterise the mission performance and the fulfilment of the requirements, encompassing revisit time, number of acquisitions, observation viewing geometry and swath properties. This paper presents a comprehensive overview of the Sentinel-3 orbit selection, starting from coverage requirements and highlighting the close interaction with the instrument design activity.

  6. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  7. Reference pricing of pharmaceuticals for Medicare: evidence from Germany, The Netherlands, and New Zealand.

    PubMed

    Danzon, Patricia M; Ketcham, Jonathan D

    2004-01-01

    This paper describes three prototypical systems of therapeutic reference pricing (RP) for pharmaceuticals--Germany, the Netherlands, and New Zealand--and examines their effects on the availability of new drugs, reimbursement levels, manufacturer prices, and out-of-pocket surcharges to patients. RP for pharmaceuticals is not simply analogous to a defined contribution approach to subsidizing insurance coverage. Although a major purpose of RP is to stimulate competition, theory suggests that the achievement of this goal is unlikely, and this is confirmed by the empirical evidence. Other effects of RP differ across countries in predictable ways, reflecting each country's system design and other cost-control policies. New Zealand's RP system has reduced reimbursement and limited the availability of new drugs, particularly more expensive drugs. Compared to these three countries, if RP were applied in the United States, it would likely have a more negative effect on prices of onpatent products because of the more competitive U.S. generic market, and on research and development (R&D) and the future supply of new drugs, because of the much larger U.S. share of global pharmaceutical sales.

  8. A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation

    NASA Astrophysics Data System (ADS)

    Kim, Seokhyeon; Parinussa, Robert M.; Liu, Yi. Y.; Johnson, Fiona M.; Sharma, Ashish

    2015-08-01

    A method for combining two microwave satellite soil moisture products by maximizing the temporal correlation with a reference data set has been developed. The method was applied to two global soil moisture data sets, Japan Aerospace Exploration Agency (JAXA) and Land Parameter Retrieval Model (LPRM), retrieved from the Advanced Microwave Scanning Radiometer 2 observations for the period 2012-2014. A global comparison revealed superior results of the combined product compared to the individual products against the reference data set of ERA-Interim volumetric water content. The global mean temporal correlation coefficient of the combined product with this reference was 0.52 which outperforms the individual JAXA (0.35) as well as the LPRM (0.45) product. Additionally, the performance was evaluated against in situ observations from the International Soil Moisture Network. The combined data set showed a significant improvement in temporal correlation coefficients in the validation compared to JAXA and minor improvements for the LPRM product.

  9. Increasing Susceptibility of the Global Network of Food Trade to Climate Disturbances

    NASA Astrophysics Data System (ADS)

    Puma, M. J.; Bose, S.; Chon, S.; Cook, B.

    2013-12-01

    Globalization of agriculture through trade liberalization has led to a dramatic transformation of the global network of food trade. The many benefits of this globalization include greater and more efficient global agricultural production, reduced variability of regional and global food supplies, and savings in global water resources. However, a potential hidden cost is an increasingly fragile network that is more susceptible to shocks or disruptions. Recent studies suggest that complex systems, like the global food trade network, may have architectural features typically associated with the existence of tipping points and susceptibility to collapse. Here we present evidence that this global agricultural network is increasingly connected, homogeneous, and in a state where network nodes (here countries) can flip between alternate states. We use production and trade data from 1986 to 2009 to identify shifts in national self sufficiency and to quantify changes in connectivity and homogeneity of the wheat, maize and rice trade. We then simulate the possible impacts of climate and crop-disease disruptions, which could potentially trigger a global food crisis through an export-restriction-induced domino effect. Changes in self-sufficiency ratio (SSR) over time for various country groups. The SSR is computed based on production and trade of cereals and starchy roots. (Top row) Time series of SSR for the Group of Eight + Five (G8+5) countries. The '+ Five' refers to the five leading emerging economies in the world. (Bottom row) Boxplots of average SSR over two periods (1986-1990 and 2005-2009) for countries designated as 'Annex I' and 'Least Developed Countries' (LDC) by the United Nations.

  10. Towards ontology-based decision support systems for complex ultrasound diagnosis in obstetrics and gynecology.

    PubMed

    Maurice, P; Dhombres, F; Blondiaux, E; Friszer, S; Guilbaud, L; Lelong, N; Khoshnood, B; Charlet, J; Perrot, N; Jauniaux, E; Jurkovic, D; Jouannic, J-M

    2017-05-01

    We have developed a new knowledge base intelligent system for obstetrics and gynecology ultrasound imaging, based on an ontology and a reference image collection. This study evaluates the new system to support accurate annotations of ultrasound images. We have used the early ultrasound diagnosis of ectopic pregnancies as a model clinical issue. The ectopic pregnancy ontology was derived from medical texts (4260 ultrasound reports of ectopic pregnancy from a specialist center in the UK and 2795 Pubmed abstracts indexed with the MeSH term "Pregnancy, Ectopic") and the reference image collection was built on a selection from 106 publications. We conducted a retrospective analysis of the signs in 35 scans of ectopic pregnancy by six observers using the new system. The resulting ectopic pregnancy ontology consisted of 1395 terms, and 80 images were collected for the reference collection. The observers used the knowledge base intelligent system to provide a total of 1486 sign annotations. The precision, recall and F-measure for the annotations were 0.83, 0.62 and 0.71, respectively. The global proportion of agreement was 40.35% 95% CI [38.64-42.05]. The ontology-based intelligent system provides accurate annotations of ultrasound images and suggests that it may benefit non-expert operators. The precision rate is appropriate for accurate input of a computer-based clinical decision support and could be used to support medical imaging diagnosis of complex conditions in obstetrics and gynecology. Copyright © 2017. Published by Elsevier Masson SAS.

  11. An Overview of the Naval Research Laboratory Ocean Surface Flux (NFLUX) System

    NASA Astrophysics Data System (ADS)

    May, J. C.; Rowley, C. D.; Barron, C. N.

    2016-02-01

    The Naval Research Laboratory (NRL) ocean surface flux (NFLUX) system is an end-to-end data processing and assimilation system used to provide near-real time satellite-based surface heat flux fields over the global ocean. Swath-level air temperature (TA), specific humidity (QA), and wind speed (WS) estimates are produced using multiple polynomial regression algorithms with inputs from satellite sensor data records from the Special Sensor Microwave Imager/Sounder, the Advanced Microwave Sounding Unit-A, the Advanced Technology Microwave Sounder, and the Advanced Microwave Scanning Radiometer-2 sensors. Swath-level WS estimates are also retrieved from satellite environmental data records from WindSat, the MetOp scatterometers, and the Oceansat scatterometer. Swath-level solar and longwave radiative flux estimates are produced utilizing the Rapid Radiative Transfer Model for Global Circulation Models (RRTMG). Primary inputs to the RRTMG include temperature and moisture profiles and cloud liquid and ice water paths from the Microwave Integrated Retrieval System. All swath-level satellite estimates undergo an automated quality control process and are then assimilated with atmospheric model forecasts to produce 3-hourly gridded analysis fields. The turbulent heat flux fields, latent and sensible heat flux, are determined from the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.0 bulk algorithms using inputs of TA, QA, WS, and a sea surface temperature model field. Quality-controlled in situ observations over a one-year time period from May 2013 through April 2014 form the reference for validating ocean surface state parameter and heat flux fields. The NFLUX fields are evaluated alongside the Navy's operational global atmospheric model, the Navy Global Environmental Model (NAVGEM). NFLUX is shown to have smaller biases and lower or similar root mean square errors compared to NAVGEM.

  12. The relationship between differential inequity, job satisfaction, intention to turnover, and self-esteem.

    PubMed

    Abraham, R

    1999-03-01

    This study was an examination of differential inequity or underreward in working conditions, originating from the discrepancy between individual working conditions and those of comparative referents. In its exploration of the outcomes of inequity in working conditions, the study fills a gap in the literature because most such studies have been primarily devoted to investigations of pay inequity. Empirically, it is an investigation of elements of differential inequity as antecedents of job satisfaction and intentions to turnover and of self-esteem as a moderator of inequity-criteria relationships. Significant relationships between system and age inequity and job satisfaction and between company inequity and intention to turnover were found. Self-esteem significantly moderated the global inequity-job satisfaction and global inequity-intention to turnover relationships.

  13. Combining Distributed and Shared Memory Models: Approach and Evolution of the Global Arrays Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieplocha, Jarek; Harrison, Robert J.; Kumar, Mukul

    2002-07-29

    Both shared memory and distributed memory models have advantages and shortcomings. Shared memory model is much easier to use but it ignores data locality/placement. Given the hierarchical nature of the memory subsystems in the modern computers this characteristic might have a negative impact on performance and scalability. Various techniques, such as code restructuring to increase data reuse and introducing blocking in data accesses, can address the problem and yield performance competitive with message passing[Singh], however at the cost of compromising the ease of use feature. Distributed memory models such as message passing or one-sided communication offer performance and scalability butmore » they compromise the ease-of-use. In this context, the message-passing model is sometimes referred to as?assembly programming for the scientific computing?. The Global Arrays toolkit[GA1, GA2] attempts to offer the best features of both models. It implements a shared-memory programming model in which data locality is managed explicitly by the programmer. This management is achieved by explicit calls to functions that transfer data between a global address space (a distributed array) and local storage. In this respect, the GA model has similarities to the distributed shared-memory models that provide an explicit acquire/release protocol. However, the GA model acknowledges that remote data is slower to access than local data and allows data locality to be explicitly specified and hence managed. The GA model exposes to the programmer the hierarchical memory of modern high-performance computer systems, and by recognizing the communication overhead for remote data transfer, it promotes data reuse and locality of reference. This paper describes the characteristics of the Global Arrays programming model, capabilities of the toolkit, and discusses its evolution.« less

  14. The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.; Christensen, P.; Smith, D. E.; Neumann, G. A.; Kirk, R. L.; Caplinger, M. A.; Albee, A. A.; Seregina, N. V.; Neukum, G.; Archinal, B. A.

    2014-12-01

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses in the year 2000 tied Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to update the location of Airy-0. Based upon this tie and radiometric tracking of landers/rovers from Earth, new expressions for the Mars spin axis direction, spin rate, and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Since the Mars Global Surveyor mission and Mars Orbiter Laser Altimeter global digital terrain model were completed some time ago, a more exhaustive study has been performed to determine the accuracy of the Airy-0 location and orientation of Mars at the standard epoch. Thermal Emission Imaging System (THEMIS) IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be about 0.001° east of its predicted location using the currently defined International Astronomical Union (IAU) prime meridian location. Information on this new location and how it was derived will be provided to the NASA Mars Exploration Program Geodesy and Cartography Working Group for their assessment. This NASA group will make a recommendation to the IAU Working Group on Cartographic Coordinates and Rotational Elements to update the expression for the Mars spin axis direction, spin rate, and prime meridian location.

  15. An Innovative Procedure for Calibration of Strapdown Electro-Optical Sensors Onboard Unmanned Air Vehicles

    PubMed Central

    Fasano, Giancarmine; Accardo, Domenico; Moccia, Antonio; Rispoli, Attilio

    2010-01-01

    This paper presents an innovative method for estimating the attitude of airborne electro-optical cameras with respect to the onboard autonomous navigation unit. The procedure is based on the use of attitude measurements under static conditions taken by an inertial unit and carrier-phase differential Global Positioning System to obtain accurate camera position estimates in the aircraft body reference frame, while image analysis allows line-of-sight unit vectors in the camera based reference frame to be computed. The method has been applied to the alignment of the visible and infrared cameras installed onboard the experimental aircraft of the Italian Aerospace Research Center and adopted for in-flight obstacle detection and collision avoidance. Results show an angular uncertainty on the order of 0.1° (rms). PMID:22315559

  16. Patient socioeconomic determinants of the choice of generic versus brand name drugs in the context of a reference price system: evidence from Belgian prescription data.

    PubMed

    Farfan-Portet, Maria-Isabel; Van de Voorde, Carine; Vrijens, France; Vander Stichele, Robert

    2012-06-01

    The generic reference price system (RPS) can impose a financial penalty for patients using a brand name drug instead of its generic alternative. Previous studies on the impact of the RPS have not considered the potentially differential effect of using generic alternatives for individuals with a different socioeconomic background. However, patients' characteristics might determine their overall knowledge of the existence of the system and thus of the financial burden to which they may be confronted. The association between patients' characteristics and the use of generic drugs versus brand name drugs was analyzed for ten highly prescribed pharmaceutical molecules included in the Belgian generic reference price system. Prescriptions were obtained from a 10% sample of all general practitioners in 2008 (corresponding to 120,670 adult patients and 368,101 prescriptions). For each pharmaceutical molecule, logistic regression models were performed, with independent variables for patient socioeconomic background at the individual level (work status, having a guaranteed income and being entitled to increased reimbursement of co-payments) and at the level of the neighborhood (education). The percentage of generic prescriptions ranged from 24.7 to 76.4%, and the mean reference supplement in 2008 ranged from €4.3 to €37.8. For seven molecules, higher use of a generic alternative was associated with either having a guaranteed income, with receiving increased reimbursement of co-payments or with living in areas with the lowest levels of education. Globally, results provided evidence that the generic RPS in Belgium does not lead to a higher financial burden on individuals from a low socioeconomic background.

  17. Global Positioning System data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program

    USGS Publications Warehouse

    Murray, Jessica R.; Svarc, Jerry L.

    2017-01-01

    The U.S. Geological Survey Earthquake Science Center collects and processes Global Positioning System (GPS) data throughout the western United States to measure crustal deformation related to earthquakes and tectonic processes as part of a long‐term program of research and monitoring. Here, we outline data collection procedures and present the GPS dataset built through repeated temporary deployments since 1992. This dataset consists of observations at ∼1950 locations. In addition, this article details our data processing and analysis procedures, which consist of the following. We process the raw data collected through temporary deployments, in addition to data from continuously operating western U.S. GPS stations operated by multiple agencies, using the GIPSY software package to obtain position time series. Subsequently, we align the positions to a common reference frame, determine the optimal parameters for a temporally correlated noise model, and apply this noise model when carrying out time‐series analysis to derive deformation measures, including constant interseismic velocities, coseismic offsets, and transient postseismic motion.

  18. Helicopter Approach Capability Using the Differential Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1994-01-01

    The results of flight tests to determine the feasibility of using the Global Positioning System (GPS) in the Differential mode (DGPS) to provide high accuracy, precision navigation and guidance for helicopter approaches to landing are presented. The airborne DGPS receiver and associated equipment is installed in a NASA UH-60 Black Hawk helicopter. The ground-based DGPS reference receiver is located at a surveyed test site and is equipped with a real-time VHF data link to transmit correction information to the airborne DGPS receiver. The corrected airborne DGPS information, together with the preset approach geometry, is used to calculate guidance commands which are sent to the aircraft's approach guidance instruments. The use of DGPS derived guidance for helicopter approaches to landing is evaluated by comparing the DGPS data with the laser tracker truth data. The errors indicate that the helicopter position based on DGPS guidance satisfies the International Civil Aviation Organization (ICAO) Category 1 (CAT 1) lateral and vertical navigational accuracy requirements.

  19. A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, F.; Diddams, S. A.; Ycas, G.

    2010-06-15

    A 12.5 GHz-spaced optical frequency comb locked to a global positioning system disciplined oscillator for near-infrared (IR) spectrograph calibration is presented. The comb is generated via filtering a 250 MHz-spaced comb. Subsequent nonlinear broadening of the 12.5 GHz comb extends the wavelength range to cover 1380-1820 nm, providing complete coverage over the H-band transmission window of earth's atmosphere. Finite suppression of spurious sidemodes, optical linewidth, and instability of the comb has been examined to estimate potential wavelength biases in spectrograph calibration. Sidemode suppression varies between 20 and 45 dB, and the optical linewidth is {approx}350 kHz at 1550 nm. Themore » comb frequency uncertainty is bounded by {+-}30 kHz (corresponding to a radial velocity of {+-}5 cm/s), limited by the global positioning system disciplined oscillator reference. These results indicate that this comb can readily support radial velocity measurements below 1 m/s in the near IR.« less

  20. A new phase-correlation-based iris matching for degraded images.

    PubMed

    Krichen, Emine; Garcia-Salicetti, Sonia; Dorizzi, Bernadette

    2009-08-01

    In this paper, we present a new phase-correlation-based iris matching approach in order to deal with degradations in iris images due to unconstrained acquisition procedures. Our matching system is a fusion of global and local Gabor phase-correlation schemes. The main originality of our local approach is that we do not only consider the correlation peak amplitudes but also their locations in different regions of the images. Results on several degraded databases, namely, the CASIA-BIOSECURE and Iris Challenge Evaluation 2005 databases, show the improvement of our method compared to two available reference systems, Masek and Open Source for Iris (OSRIS), in verification mode.

  1. Global Soil Moisture Estimation through a Coupled CLM4-RTM-DART Land Data Assimilation System

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Yang, Z. L.; Hoar, T. J.

    2016-12-01

    Very few frameworks exist that estimate global-scale soil moisture through microwave land data assimilation (DA). Toward this goal, we have developed such a framework by linking the Community Land Model version 4 (CLM4) and a microwave radiative transfer model (RTM) with the Data Assimilation Research Testbed (DART). The deterministic Ensemble Adjustment Kalman Filter (EAKF) within the DART is utilized to estimate global multi-layer soil moisture by assimilating brightness temperature observations from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). A 40-member of Community Atmosphere Model version 4 (CAM4) reanalysis is adopted to drive CLM4 simulations. Spatial-specific time-invariant microwave parameters are pre-calibrated to minimize uncertainties in RTM. Besides, various methods are designed in consideration of computational efficiency. A series of experiments are conducted to quantify the DA sensitivity to microwave parameters, choice of assimilated observations, and different CLM4 updating schemes. Evaluation results indicate that the newly established CLM4-RTM-DART framework improves the open-loop CLM4 simulated soil moisture. Pre-calibrated microwave parameters, rather than their default values, can ensure a more robust global-scale performance. In addition, updating near-surface soil moisture is capable of improving soil moisture in deeper layers, while simultaneously updating multi-layer soil moisture fails to obtain intended improvements. We will show in this presentation the architecture of the CLM4-RTM-DART system and the evaluations on AMSR-E DA. Preliminary results on multi-sensor DA that integrates various satellite observations including GRACE, MODIS, and AMSR-E will also be presented. ReferenceZhao, L., Z.-L. Yang, and T. J. Hoar, 2016. Global Soil Moisture Estimation by Assimilating AMSR-E Brightness Temperatures in a Coupled CLM4-RTM-DART System. Journal of Hydrometeorology, DOI: 10.1175/JHM-D-15-0218.1.

  2. Supporting the goals and ideals of World Malaria Day.

    THOMAS, 113th Congress

    Rep. Crenshaw, Ander [R-FL-4

    2014-05-06

    House - 06/10/2014 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  3. Phoenix model

    EPA Science Inventory

    Phoenix (formerly referred to as the Second Generation Model or SGM) is a global general equilibrium model designed to analyze energy-economy-climate related questions and policy implications in the medium- to long-term. This model disaggregates the global economy into 26 industr...

  4. Global Outreach: Formal and Non-Formal Education.

    ERIC Educational Resources Information Center

    Smith, Mary Oakes; Bradsher, Monica

    "Global outreach" refers to the international delivery of education, health, public information, commercial, and other services using appropriate communications technology. International organizations are partnering in various ways with developing-country governments, private companies, local communities, and non-governmental…

  5. Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2017-01-01

    Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.

  6. Contributions of internationalization to psychology: toward a global and inclusive discipline.

    PubMed

    van de Vijver, Fons J R

    2013-11-01

    In this article I define and describe the current state of internationalization in psychology. Internationalization refers here to the approach in which existing or new psychological theories, methods, procedures, or data across cultures are synthesized so as to create a more culture-informed, inclusive, and globally applicable science and profession. This approach is essential to advance psychology beyond its Euro-American context of development and to achieve a more global applicability of its theories and professional procedures. Internationalization already has led to a better integration of cultural aspects in various psychological theories, to more insight into how to deal with methodological aspects of intact group comparisons (such as bias and equivalence), and to the development of guidelines in areas such as test development, test adaptations, ethics codes, and Internet testing. I review systemic and scientific climate factors in psychology that thwart the progress of internationalization, and conclude by suggesting methods of enhancing internationalization, which is essential for developing a truly universal psychology.

  7. Interrogating scarcity: how to think about ‘resource-scarce settings’

    PubMed Central

    Schrecker, Ted

    2013-01-01

    The idea of resource scarcity permeates health ethics and health policy analysis in various contexts. However, health ethics inquiry seldom asks—as it should—why some settings are ‘resource-scarce’ and others not. In this article I describe interrogating scarcity as a strategy for inquiry into questions of resource allocation within a single political jurisdiction and, in particular, as an approach to the issue of global health justice in an interconnected world. I demonstrate its relevance to the situation of low- and middle-income countries (LMICs) with brief descriptions of four elements of contemporary globalization: trade agreements; the worldwide financial marketplace and capital flight; structural adjustment; imperial geopolitics and foreign policy. This demonstration involves not only health care, but also social determinants of health. Finally, I argue that interrogating scarcity provides the basis for a new, critical approach to health policy at the interface of ethics and the social sciences, with specific reference to market fundamentalism as the value system underlying contemporary globalization. PMID:22899597

  8. Trade brokerage property of industrial sectors on the global value chain

    NASA Astrophysics Data System (ADS)

    Xing, Lizhi; Xu, Xiaoyu; Guan, Jun; Dong, Xianlei

    2017-08-01

    ICIO data have proven itself to be a reliable source for the analysis of economic globalization, with which sectors all over the world could be constructed into a sophisticated GVC, bringing the advantages of simultaneous study on international and domestic economies in detail as a holistic network. This paper uses OECD-WTO TiVA data to set up GIVCN-TiVA networks as the general analytical framework, depicting the transferring process of intermediate goods among sectors of various countries/regions. Secondly, the conception of brokerage roles in SNA has been adopted to redefine sector’s function while linkage exists between its upstream providers and downstream consumers, referred to as “Trade Brokerage Property”, as well as to quantify the ratio of each types of the roles. Thirdly, a set of simulations have been defined to testify the contribution that different TBPs incur to the robustness of global economic system. Finally, analyses on TBPs and NTBPs have been carried out in the levels of industry and country/region, respectively.

  9. Interrogating scarcity: how to think about 'resource-scarce settings'.

    PubMed

    Schrecker, Ted

    2013-07-01

    The idea of resource scarcity permeates health ethics and health policy analysis in various contexts. However, health ethics inquiry seldom asks-as it should-why some settings are 'resource-scarce' and others not. In this article I describe interrogating scarcity as a strategy for inquiry into questions of resource allocation within a single political jurisdiction and, in particular, as an approach to the issue of global health justice in an interconnected world. I demonstrate its relevance to the situation of low- and middle-income countries (LMICs) with brief descriptions of four elements of contemporary globalization: trade agreements; the worldwide financial marketplace and capital flight; structural adjustment; imperial geopolitics and foreign policy. This demonstration involves not only health care, but also social determinants of health. Finally, I argue that interrogating scarcity provides the basis for a new, critical approach to health policy at the interface of ethics and the social sciences, with specific reference to market fundamentalism as the value system underlying contemporary globalization.

  10. GPS inferred geocentric reference frame for satellite positioning and navigation

    NASA Technical Reports Server (NTRS)

    Malla, Rajendra P.; Wu, Sien-Chong

    1989-01-01

    Accurate geocentric three-dimensional positioning is of great importance for various geodetic and oceanographic applications. While relative positioning accuracy of a few centimeters has become a reality using Very Long Baseline Interferometry (VLBI), the uncertainty in the offset of the adopted coordinate system origin from the geocenter is still believed to be of the order of one meter. Satellite Laser Ranging (SLR) is capable of determining this offset to better than 10 cm, though, because of the limited number of satellites, this requires a long arc of data. The Global Positioning System (GPS) measurements provide a powerful alternative for an accurate determination of this origin offset in relatively short period of time. Two strategies are discussed, the first utilizes the precise relative positions predetermined by VLBI, whereas the second establishes a reference frame by holding only one of the tracking sites longitude fixed. Covariance analysis studies indicate that geocentric positioning to an accuracy of a few centimeters can be achieved with just one day of precise GPS pseudorange and carrier phase data.

  11. [Globalization and infectious diseases: the past and future].

    PubMed

    Scotto, Gaetano

    2011-03-01

    Globalization is a widely-used term that can be defined in a number of different ways. When used in an economic context, it refers to the reduction and removal of barriers between national borders in order to facilitate the flow of goods, capital, services and labour. Globalization is not a new phenomenon. Today the concept of globalization can be extended to include global exposure to infectious diseases, which is becoming more apparent. The aim of this article is to examine the influence of globalization on the outbreak and spread of infections in the world.

  12. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    NASA Astrophysics Data System (ADS)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for CMIP5 RCP simulations. Biogeosciences Discuss 2014, 11:7151-7188. Bond-Lamberty, B et al: Coupling earth system and integrated assessment models: The problem of steady state. Geosci. Model Dev. Discuss 2014, 7: 1499-1524, doi:10.5194/gmdd-7-1499-2014.

  13. Maintenance of Time and Frequency in the DSN Using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Kirk, A.; Borutzki, S. E.

    1985-01-01

    The Deep Space Network must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. The DSN has three tracking complexes, located approximately equidistantly around the Earth. Various methods are used to coordinate the clocks among the three complexes. These methods include Loran-C, TV Line 10, very long baseline interferometry (VLBI), and the Global Positioning System (GPS). The GPS is becoming increasingly important because of the accuracy, precision, and rapid availability of the data; GPS receivers have been installed at each of the DSN complexes and are used to obtain daily time offsets between the master clock at each site and UTC(USNO/NBS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN frequency and timing system (DFT). A brief history of the GPS timing receivers in the DSN, a description of the data and information flow, data on the performance of the DSN master clocks and GPS measurement system, and a description of hydrogen maser frequency steering using these data are presented.

  14. Generating Ground Reference Data for a Global Impervious Surface Survey

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; De Colstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    We are developing an approach for generating ground reference data in support of a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. Since sufficient ground reference data for training and validation is not available from ground surveys, we are developing an interactive tool, called HSegLearn, to facilitate the photo-interpretation of 1 to 2 m spatial resolution imagery data, which we will use to generate the needed ground reference data at 30m. Through the submission of selected region objects and positive or negative examples of impervious surfaces, HSegLearn enables an analyst to automatically select groups of spectrally similar objects from a hierarchical set of image segmentations produced by the HSeg image segmentation program at an appropriate level of segmentation detail, and label these region objects as either impervious or nonimpervious.

  15. Process-based modelling of phosphorus transformations and retention in global rivers

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Mogollon, Jose; Beusen, Arthur; Bouwman, Lex

    2016-04-01

    Phosphorus (P) plays a major role in the biogeochemical functioning of aquatic systems. It typically acts as the limiting nutrient for primary productivity in freshwater bodies, and thus the increase in anthropogenic P loads during the XXth century has fuelled the eutrophication of these systems. Total P retention in global rivers has also escalated over this timeframe as demonstrated via a global model that implements the spiralling method at a spatial resolution of 0.5° (IMAGE-GNM, Beusen et al., 2015). Here, we refine this coupled hydrological - nutrient model by including mechanistic biogeochemical interactions that govern the P cycle. Special attention is paid to the representation of particle processes (i.e. particle loading, sedimentation and erosion), which play a major role in P transport and accumulation in aquatic systems. Our preliminary results are compared to measurements of suspended sediments, total P and orthophosphates in selected river basins. Initial model results show that P concentrations are particularly sensitive to particulate load distribution in the river network within a grid cell. This novel modelling approach will eventually allow a better assessment of the amounts of different forms of P (organic P, soluble reactive P, and particulate inorganic P), of P transformation rates and retention in inland waters. References Beusen, A.H.W., Van Beek, L.P.H., Bouwman, A.F., Mogollón, J.M., Middelburg, J.J. 2015. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water - description of the IMAGE-GNM and analysis of performance. Geosci. Model Dev. 8, 4045-4067

  16. Planning of an Experiment for VLBI Tracking of GNSS Satellites

    NASA Technical Reports Server (NTRS)

    Tornatore, Vincenza; Hass, Ruediger; Molera, Guifre; Pogrebenko, Sergei

    2010-01-01

    As a preparation for future possible orbit determination of global navigation satellite system (GNSS) satellites by VLBI observations an initial three-station experiment was planned and performed in January 2009. The goal was to get first experience and to verify the feasibility of using the method for accurate satellite tracking. GNSS orbits related to a satellite constellation can be expressed in the Terrestrial Reference Frame. A comparison with orbit results that might be obtained by VLBI can give valuable information on how the GNSS reference frame and the VLBI reference frame are linked. We present GNSS transmitter specifications and experimental results of the observations of some GLONASS satellites together with evaluations for the expected signal strengths at telescopes. The satellite flux densities detected on the Earth s surface are very high. The narrow bandwidth of the GNSS signal partly compensates for potential problems at the receiving stations, and signal attenuation is necessary. Attempts to correlate recorded data have been performed with different software.

  17. A reference web architecture and patterns for real-time visual analytics on large streaming data

    NASA Astrophysics Data System (ADS)

    Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer

    2013-12-01

    Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.

  18. Celestial reference frames and the gauge freedom in the post-Newtonian mechanics of the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Kopeikin, Sergei; Xie, Yi

    2010-11-01

    We introduce the Jacobi coordinates adopted to the advanced theoretical analysis of the relativistic Celestial Mechanics of the Earth-Moon system. Theoretical derivation utilizes the relativistic resolutions on reference frames adopted by the International Astronomical Union (IAU) in 2000. The resolutions assume that the Solar System is isolated and space-time is asymptotically flat at infinity and the primary reference frame covers the entire space-time, has its origin at the Solar System barycenter (SSB) with spatial axes stretching up to infinity. The SSB frame is not rotating with respect to a set of distant quasars that are assumed to be at rest on the sky forming the International Celestial Reference Frame (ICRF). The second reference frame has its origin at the Earth-Moon barycenter (EMB). The EMB frame is locally inertial and is not rotating dynamically in the sense that equation of motion of a test particle moving with respect to the EMB frame, does not contain the Coriolis and centripetal forces. Two other local frames—geocentric and selenocentric—have their origins at the center of mass of Earth and Moon respectively and do not rotate dynamically. Each local frame is subject to the geodetic precession both with respect to other local frames and with respect to the ICRF because of their relative motion with respect to each other. Theoretical advantage of the dynamically non-rotating local frames is in a more simple mathematical description of the metric tensor and relative equations of motion of the Moon with respect to Earth. Each local frame can be converted to kinematically non-rotating one after alignment with the axes of ICRF by applying the matrix of the relativistic precession as recommended by the IAU resolutions. The set of one global and three local frames is introduced in order to decouple physical effects of gravity from the gauge-dependent effects in the equations of relative motion of the Moon with respect to Earth.

  19. A topological system for delineation and codification of the Earth's river basins

    USGS Publications Warehouse

    Verdin, K.L.; Verdin, J.P.

    1999-01-01

    A comprehensive reference system for the Earth's river basins is proposed as a support to fiver basin management, global change research, and the pursuit of sustainable development. A natural system for delineation and codification of basins is presented which is based upon topographic control and the topology of the fiver network. These characteristics make the system well suited for implementation and use with digital elevation models (DEMs) and geographic information systems. A demonstration of these traits is made with the 30-arcsecond GTOPO30 DEM for North America. The system has additional appeal owing to its economy of digits and the topological information that they carry. This is illustrated through presentation of comparisons with USGS hydrologic unit codes and demonstration of the use of code numbers to reveal dependence or independence of water use activities within a basin.

  20. Diagnostic Accuracy of Global Pharma Health Fund Minilab™ in Assessing Pharmacopoeial Quality of Antimicrobials.

    PubMed

    Pan, Hui; Ba-Thein, William

    2018-01-01

    Global Pharma Health Fund (GPHF) Minilab™, a semi-quantitative thin-layer chromatography (TLC)-based commercially available test kit, is widely used in drug quality surveillance globally, but its diagnostic accuracy is unclear. We investigated the diagnostic accuracy of Minilab system for antimicrobials, using high-performance liquid chromatography (HPLC) as reference standard. Following the Minilab protocols and the Pharmacopoeia of the People's Republic of China protocols, Minilab-TLC and HPLC were used to test five common antimicrobials (506 batches) for relative concentration of active pharmaceutical ingredients. The prevalence of poor-quality antimicrobials determined, respectively, by Minilab TLC and HPLC was amoxicillin (0% versus 14.9%), azithromycin (0% versus 17.4%), cefuroxime axetil (14.3% versus 0%), levofloxacin (0% versus 3.0%), and metronidazole (0% versus 38.0%). The Minilab TLC had false-positive and false-negative detection rates of 2.6% (13/506) and 15.2% (77/506) accordingly, resulting in the following test characteristics: sensitivity 0%, specificity 97.0%, positive predictive value 0, negative predictive value 0.8, positive likelihood ratio 0, negative likelihood ratio 1.0, diagnostic odds ratio 0, and adjusted diagnostic odds ratio 0.2. This study demonstrates unsatisfying diagnostic accuracy of Minilab system in screening poor-quality antimicrobials of common use. Using Minilab as a stand-alone system for monitoring drug quality should be reconsidered.

  1. Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing

    PubMed Central

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.

    2014-01-01

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330

  2. Integrated GNSS attitude determination and positioning for direct geo-referencing.

    PubMed

    Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G

    2014-07-17

    Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station.

  3. Development of an integrated chemical weather prediction system for environmental applications at meso to global scales: NMMB/BSC-CHEM

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.

    2009-09-01

    This contribution presents the ongoing developments of a new fully on-line chemical weather prediction system for meso to global scale applications. The modeling system consists of a mineral dust module and a gas-phase chemistry module coupled on-line to a unified global-regional atmospheric driver. This approach allows solving small scale processes and their interactions at local to global scales. Its unified environment maintains the consistency of all the physico-chemical processes involved. The atmospheric driver is the NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) developed at National Centers for Environmental Prediction (NCEP). It represents an evolution of the operational WRF-NMME model extending from meso to global scales. Its unified non-hydrostatic dynamical core supports regional and global simulations. The Barcelona Supercomputing Center is currently designing and implementing a chemistry transport model coupled online with the new global/regional NMMB. The new modeling system is intended to be a powerful tool for research and to provide efficient global and regional chemical weather forecasts at sub-synoptic and mesoscale resolutions. The online coupling of the chemistry follows the approach similar to that of the mineral dust module already coupled to the atmospheric driver, NMMB/BSC-DUST (Pérez et al., 2008). Chemical species are advected and mixed at the corresponding time steps of the meteorological tracers using the same numerical scheme. Advection is eulerian, positive definite and monotone. The chemical mechanism and chemistry solver is based on the Kinetic PreProcessor KPP (Damian et al., 2002) package with the main purpose of maintaining a wide flexibility when configuring the model. Such approach will allow using a simplified chemical mechanism for global applications or a more complete mechanism for high-resolution local or regional studies. Moreover, it will permit the implementation of a specific configuration for forecasting applications in regional or global domains. An emission process allows the coupling of different emission inventories sources such as RETRO, EDGAR and GEIA for the global domain, EMEP for Europe and HERMES for Spain. The photolysis scheme is based on the Fast-J scheme, coupled with physics of each model layer (e.g., aerosols, clouds, absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The dry deposition scheme follows the deposition velocity analogy for gases, enabling the calculation of deposition fluxes from airborne concentrations. No cloud-chemistry processes are included in the system yet (no wet deposition, scavenging and aqueous chemistry). The modeling system developments will be presented and first results of the gas-phase chemistry at global scale will be discussed. REFERENCES Janjic, Z.I., and Black, T.L., 2007. An ESMF unified model for a broad range of spatial and temporal scales, Geophysical Research Abstracts, 9, 05025. Pérez, C., Haustein, K., Janjic, Z.I., Jorba, O., Baldasano, J.M., Black, T.L., and Nickovic, S., 2008. An online dust model within the meso to global NMMB: current progress and plans. AGU Fall Meeting, San Francisco, A41K-03, 2008. Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G.R., 2002. The kinetic preprocessor KPP - A software environment for solving chemical kinetics. Comp. Chem. Eng., 26, 1567-1579. Sandu, A., and Sander, R., 2006. Technical note:Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. and Phys., 6, 187-195.

  4. Consistent realization of Celestial and Terrestrial Reference Frames

    NASA Astrophysics Data System (ADS)

    Kwak, Younghee; Bloßfeld, Mathis; Schmid, Ralf; Angermann, Detlef; Gerstl, Michael; Seitz, Manuela

    2018-03-01

    The Celestial Reference System (CRS) is currently realized only by Very Long Baseline Interferometry (VLBI) because it is the space geodetic technique that enables observations in that frame. In contrast, the Terrestrial Reference System (TRS) is realized by means of the combination of four space geodetic techniques: Global Navigation Satellite System (GNSS), VLBI, Satellite Laser Ranging (SLR), and Doppler Orbitography and Radiopositioning Integrated by Satellite. The Earth orientation parameters (EOP) are the link between the two types of systems, CRS and TRS. The EOP series of the International Earth Rotation and Reference Systems Service were combined of specifically selected series from various analysis centers. Other EOP series were generated by a simultaneous estimation together with the TRF while the CRF was fixed. Those computation approaches entail inherent inconsistencies between TRF, EOP, and CRF, also because the input data sets are different. A combined normal equation (NEQ) system, which consists of all the parameters, i.e., TRF, EOP, and CRF, would overcome such an inconsistency. In this paper, we simultaneously estimate TRF, EOP, and CRF from an inter-technique combined NEQ using the latest GNSS, VLBI, and SLR data (2005-2015). The results show that the selection of local ties is most critical to the TRF. The combination of pole coordinates is beneficial for the CRF, whereas the combination of Δ UT1 results in clear rotations of the estimated CRF. However, the standard deviations of the EOP and the CRF improve by the inter-technique combination which indicates the benefits of a common estimation of all parameters. It became evident that the common determination of TRF, EOP, and CRF systematically influences future ICRF computations at the level of several μas. Moreover, the CRF is influenced by up to 50 μas if the station coordinates and EOP are dominated by the satellite techniques.

  5. A Centralized, Web-Based Annual Training and Certification Program for a Decentralized Adjutant General Corps Will Improve the Level of Human Resources Proficiency for Human Resources Professionals in the U.S. Active Army, U.S. Army Reserve and U.S. National Guard Components

    DTIC Science & Technology

    2009-12-11

    66  Army eLearning ............................................................................................................ 67  AG...support Army transformation” and potential Overseas Contingency Operations (OCO), previously referred to as the Global War on Terror, with high...Operations, formerly referred to as the Global War on Terror, in two theaters has been 53 difficult due to high operational tempos. Mentorship under PSDR

  6. Earth Global Reference Atmospheric Model (GRAM) Overview and Updates: DOLWG Meeting

    NASA Technical Reports Server (NTRS)

    White, Patrick

    2017-01-01

    What is Earth-GRAM (Global Reference Atmospheric Model): Provides monthly mean and standard deviation for any point in atmosphere - Monthly, Geographic, and Altitude Variation; Earth-GRAM is a C++ software package - Currently distributed as Earth-GRAM 2016; Atmospheric variables included: pressure, density, temperature, horizontal and vertical winds, speed of sound, and atmospheric constituents; Used by engineering community because of ability to create dispersions in atmosphere at a rapid runtime - Often embedded in trajectory simulation software; Not a forecast model; Does not readily capture localized atmospheric effects.

  7. The NASA/MSFC global reference atmospheric model: 1990 version (GRAM-90). Part 2: Program/data listings

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Cunnold, D. M.; Jeffries, W. R., III; Johnson, D. L.

    1991-01-01

    A new (1990) version of the NASA/MSFC Global Reference Atmospheric Model (GRAM-90) was completed and the program and key data base listing are presented. GRAM-90 incorporate extensive new data, mostly collected under the Middle Atmosphere Program, to produce a completely revised middle atmosphere model (20 to 120 km). At altitudes greater than 120 km, GRAM-90 uses the NASA Marshall Engineering Thermosphere model. Complete listings of all program and major data bases are presented. Also, a test case is included.

  8. Strategies to Improve the Accuracy of Mars-GRAM Sensitivity Studies at Large Optical Depths

    NASA Technical Reports Server (NTRS)

    Justh, Hilary L.; Justus, Carl G.; Badger, Andrew M.

    2010-01-01

    The poster provides an overview of techniques to improve the Mars Global Reference Atmospheric Model (Mars-GRAM) sensitivity. It has been discovered during the Mars Science Laboratory (MSL) site selection process that the Mars Global Reference Atmospheric Model (Mars-GRAM) when used for sensitivity studies for TES MapYear = 0 and large optical depth values such as tau = 3 is less than realistic. A preliminary fix has been made to Mars-GRAM by adding a density factor value that was determined for tau = 0.3, 1 and 3.

  9. Predicting the Global Potential Distribution of Four Endangered Panax Species in Middle-and Low-Latitude Regions of China by the Geographic Information System for Global Medicinal Plants (GMPGIS).

    PubMed

    Du, Zhixia; Wu, Jie; Meng, Xiangxiao; Li, Jinhua; Huang, Linfang

    2017-09-28

    Global biodiversity is strongly influenced by the decrease in endangered biological species. Predicting the distribution of endangered medicinal plants is necessary for resource conservation. A spatial distribution model-geographic information system for global medicinal plants (GMPGIS)-is used to predict the global potential suitable distribution of four endangered Panax species, including Panax japonicas (T. Nees) C. A. Meyer and Panax japonicas var. major (Burkill) C. Y. Wu & K. M. Feng distributed in low- and middle-latitude, Panax zingiberensis C. Y. Wu & K. M. Feng and Panax stipuleanatus C. T. Tsai & K. M. Feng in low-latitude regions of China based on seven bioclimatic variables and 600 occurrence points. Results indicate that areas of P. japonicus and P. japonicus var. major are 266.29 × 10⁵ and 77.5 × 10⁵ km², respectively, which are mainly distributed in China and America. By contrast, the areas of P. zingiberensis and P. stipuleanatus are 5.09 × 10⁵ and 2.05 × 10⁵ km², respectively, which are mainly distributed in Brazil and China. P. japonicus has the widest distribution among the four species. The data also indicate that the mean temperature of coldest quarter is the most critical factor. This scientific prediction can be used as reference for resource conservation of endangered plants and as a guide to search for endangered species in previously unknown areas.

  10. GNSS Radio Occultation Excess Phase Processing with Integrated Uncertainty Estimation for Thermodynamic Cal/Val of Passive Atmospheric Sounders and Climate Science

    NASA Astrophysics Data System (ADS)

    Innerkofler, J.; Pock, C.; Kirchengast, G.; Schwaerz, M.; Jaeggi, A.; Andres, Y.; Marquardt, C.; Hunt, D.; Schreiner, W. S.; Schwarz, J.

    2017-12-01

    Global Navigation Satellite System (GNSS) radio occultation (RO) is a highly valuable satellite remote sensing technique for atmospheric and climate sciences, including calibration and validation (cal/val) of passive sounding instruments such as radiometers. It is providing accurate and precise measurements in the troposphere and stratosphere regions with global coverage, long-term stability, and virtually all-weather capability since 2001. For fully exploiting the potential of RO data as a cal/val reference and climate data record, uncertainties attributed to the data need to be assessed. Here we focus on the atmospheric excess phase data, based on the raw occultation tracking and orbit data, and its integrated uncertainty estimation within the new Reference Occultation Processing System (rOPS) developed at the WEGC. These excess phases correspond to integrated refractivity, proportional to pressure/temperature and water vapor, and are therefore highly valuable reference data for thermodynamic cal/val of passive (radiometric) sounder data. In order to enable high accuracy of the excess phase profiles, accurate orbit positions and velocities as well as clock estimates of the GNSS transmitter satellites and RO receiver satellites are determined using the Bernese and Napeos orbit determination software packages. We find orbit uncertainty estimates of about 5 cm (position) / 0.05 mm/s (velocity) for daily orbits for the MetOp, GRACE, and CHAMP RO missions, and decreased uncertainty estimates near 20 cm (position) / 0.2 mm/s (velocity) for the COSMIC RO mission. The strict evaluation and quality control of the position, velocity, and clock accuracies of the daily LEO and GNSS orbits assure smallest achievable uncertainties in the excess phase data. We compared the excess phase profiles from WEGC against profiles from EUMETSAT and UCAR. Results show good agreement in line with the estimated uncertainties, with millimetric differences in the upper stratosphere and mesosphere and centimetric differences in the troposphere, where the excess phases amount to beyond 100 m. This underlines the potential for a new fundamental cal/val reference and climate data record based on atmospheric excess phases from RO, given their narrow uncertainty and independence from background data.

  11. Prototyping the E-ELT M1 local control system communication infrastructure

    NASA Astrophysics Data System (ADS)

    Argomedo, J.; Kornweibel, N.; Grudzien, T.; Dimmler, M.; Andolfato, L.; Barriga, P.

    2016-08-01

    The primary mirror of the E-ELT is composed of 798 hexagonal segments of about 1.45 meters across. Each segment can be moved in piston and tip-tilt using three position actuators. Inductive edge sensors are used to provide feedback for global reconstruction of the mirror shape. The E-ELT M1 Local Control System will provide a deterministic infrastructure for collecting edge sensor and actuators readings and distribute the new position actuators references while at the same time providing failure detection, isolation and notification, synchronization, monitoring and configuration management. The present paper describes the prototyping activities carried out to verify the feasibility of the E-ELT M1 local control system communication architecture design and assess its performance and potential limitations.

  12. Differential GPS/inertial navigation approach/landing flight test results

    NASA Technical Reports Server (NTRS)

    Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary

    1992-01-01

    In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.

  13. Precise Selenodetic Coordinate System on Artificial Light Refers

    NASA Astrophysics Data System (ADS)

    Bagrov, Alexander; Pichkhadze, Konstantin M.; Sysoev, Valentin

    Historically a coordinate system for the Moon was established on the base of telescopic observations from the Earth. As the angular resolution of Earth-to-Space telescopic observations is limited by Earth atmosphere, and is ordinary worse then 1 ang. second, the mean accuracy of selenodetic coordinates is some angular minutes, which corresponds to errors about 900 meters for positions of lunar objects near center of visible lunar disk, and at least twice more when objects are near lunar poles. As there are no Global Positioning System nor any astronomical observation instruments on the Moon, we proposed to use an autonomous light beacon on the Luna-Globe landing module to fix its position on the surface of the moon ant to use it as refer point for fixation of spherical coordinates system for the Moon. The light beacon is designed to be surely visible by orbiting probe TV-camera. As any space probe has its own stars-orientation system, there is not a problem to calculate a set of directions to the beacon and to the referent stars in probe-centered coordinate system during flight over the beacon. Large number of measured angular positions and time of each observation will be enough to calculate both orbital parameters of the probe and selenodetic coordinates of the beacon by methods of geodesy. All this will allow fixing angular coordinates of any feature of lunar surface in one global coordinate system, referred to the beacon. The satellite’s orbit plane contains ever the center mass of main body, so if the beacon will be placed closely to a lunar pole, we shall determine pole point position of the Moon with accuracy tens times better then it is known now. When angular accuracy of self-orientation by stars of the orbital module of Luna-Glob mission will be 6 angular seconds, then being in circular orbit with height of 200 km the on-board TV-camera will allow calculation of the beacon position as well as 6" corresponding to spatial resolution of the camera. It mean that coordinates of the beacon will be determined with accuracy not worse then 6 meters on the lunar surface. Much more accuracy can be achieved if orbital probe will use as precise angular measurer as optical interferometer. The limiting accuracy of proposed method is far above any reasonable level, because it may be sub-millimeter one. Theoretical analysis shows that for achievement of 1-meter accuracy of coordinate measuring over lunar globe it will be enough to disperse over it surface some 60 light beacons. Designed by Lavochkin Association light beacon is autonomous one, and it will work at least 10 years, so coordinate frame of any other lunar mission could use established selenodetic coordinates during this period. The same approach may be used for establishing Martial coordinates system.

  14. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode, the software aligns the precision navigation sensors and initializes the communications interfaces with the sensor and the remote computing system. It also monitors the navigation data state for quality and ensures that the system maintains the required fidelity for attitude and positional information. In the operational mode, the software runs at 12.5 Hz and gathers the required navigation/attitude data, computes the required sensor correction values, and then commands the sensor to the required roll correction. In this manner, the sensor will stay very near to vertical at all times, greatly improving the resulting collected data and imagery. CANS greatly improves quality of resulting imagery and data collected. In addition, the software component of the system outputs a concisely formatted, high-speed data stream that can be used for further science data processing. This precision, time-stamped data also can benefit other instruments on the same aircraft platform by providing extra information from the mission flight.

  15. Evaluation of Global Observations-Based Evapotranspiration Datasets and IPCC AR4 Simulations

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Seneviratne, S. I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J. B.; Guo, Z.; hide

    2011-01-01

    Quantification of global land evapotranspiration (ET) has long been associated with large uncertainties due to the lack of reference observations. Several recently developed products now provide the capacity to estimate ET at global scales. These products, partly based on observational data, include satellite ]based products, land surface model (LSM) simulations, atmospheric reanalysis output, estimates based on empirical upscaling of eddycovariance flux measurements, and atmospheric water balance datasets. The LandFlux-EVAL project aims to evaluate and compare these newly developed datasets. Additionally, an evaluation of IPCC AR4 global climate model (GCM) simulations is presented, providing an assessment of their capacity to reproduce flux behavior relative to the observations ]based products. Though differently constrained with observations, the analyzed reference datasets display similar large-scale ET patterns. ET from the IPCC AR4 simulations was significantly smaller than that from the other products for India (up to 1 mm/d) and parts of eastern South America, and larger in the western USA, Australia and China. The inter-product variance is lower across the IPCC AR4 simulations than across the reference datasets in several regions, which indicates that uncertainties may be underestimated in the IPCC AR4 models due to shared biases of these simulations.

  16. Expressing the sense of the House of Representatives on Nelson Mandela International Day.

    THOMAS, 113th Congress

    Rep. Lewis, John [D-GA-5

    2013-06-27

    House - 07/09/2013 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Supporting the goals and ideals of the International Day Against Homophobia and Transphobia.

    THOMAS, 113th Congress

    Rep. Lee, Barbara [D-CA-13

    2013-05-17

    House - 06/07/2013 Referred to the Subcommittee on Africa, Global Health, Global Human Rights and International Organizations. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Global Ill-Literacies: Hip Hop Cultures, Youth Identities, and the Politics of Literacy

    ERIC Educational Resources Information Center

    Alim, H. Samy

    2011-01-01

    This article focuses on the emergence of what the author refers to as "global ill-literacies," that is, the hybrid, transcultural linguistic and literacy practices of Hip Hop youth in local and global contexts, as well as the pedagogical possibilities that scholars open up as they engage these forms. By reviewing a broad but focused range of…

  19. How Important Is Private Higher Education in Europe? A Regional Analysis in Global Context

    ERIC Educational Resources Information Center

    Levy, Daniel C.

    2012-01-01

    The importance of private higher education (PHE) is increasingly clear globally. But does Europe fit the global generalisation? This question can be assessed with reference to two major considerations: the size of PHE and the degree of private-public difference. The growth of PHE in Europe has been delayed and limited compared to that in most of…

  20. Global environmental crisis: is there a connection with place-based, ecosociocultural education in rural Spain?

    NASA Astrophysics Data System (ADS)

    Glasson, George E.

    2011-06-01

    Environmental educators are challenged by how to teach children about global environmental crisis such as the Gulf oil spill, which only serves to engender children's fears and apprehensions about the negative impact of humans on ecosystems. Eduardo Dopico and Eva Garcia-Vazquez's article presents an interesting context from which to analyze and reflect on the connections between local and global environmental education issues. The authors' study involves student researchers in actively learning about place-based, sustainable agricultural practices in rural Spain that are passed down through generations. These ecofriendly, culturally mediated farming practices, referred to as "traditional" by the farmers, were contrasted to "modern" practices that are used throughout market-based globalized economy. The connection between local (traditional) and global (modern) practices became very important in the reflections and learning of the student participants about sustainability and ecojustice issues associated with traditional farming. Students learned from the local farmers a positive, non-dualistic approach to sustainable agriculture in which human activity and culture is connected to ecological sustainability. Further, the students' active research of sustainable and culturally medicated agricultural practices at the local level provided a frame of reference to understand global environmental crises.

  1. Local and global evaluation for remote sensing image segmentation

    NASA Astrophysics Data System (ADS)

    Su, Tengfei; Zhang, Shengwei

    2017-08-01

    In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results.

  2. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited)

    NASA Astrophysics Data System (ADS)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.

    2009-12-01

    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic infrastructure, of the associated technological advances, and of the concomitant fundamental geodetic research.

  3. Life-cycle thinking and the LEED rating system: global perspective on building energy use and environmental impacts.

    PubMed

    Al-Ghamdi, Sami G; Bilec, Melissa M

    2015-04-07

    This research investigates the relationship between energy use, geographic location, life cycle environmental impacts, and Leadership in Energy and Environmental Design (LEED). The researchers studied worldwide variations in building energy use and associated life cycle impacts in relation to the LEED rating systems. A Building Information Modeling (BIM) of a reference 43,000 ft(2) office building was developed and situated in 400 locations worldwide while making relevant changes to the energy model to meet reference codes, such as ASHRAE 90.1. Then life cycle environmental and human health impacts from the buildings' energy consumption were calculated. The results revealed considerable variations between sites in the U.S. and international locations (ranging from 394 ton CO2 equiv to 911 ton CO2 equiv, respectively). The variations indicate that location specific results, when paired with life cycle assessment, can be an effective means to achieve a better understanding of possible adverse environmental impacts as a result of building energy consumption in the context of green building rating systems. Looking at these factors in combination and using a systems approach may allow rating systems like LEED to continue to drive market transformation toward sustainable development, while taking into consideration both energy sources and building efficiency.

  4. Projecting Images of the "Good" and the "Bad School": Top Scorers in Educational Large-Scale Assessments as Reference Societies

    ERIC Educational Resources Information Center

    Waldow, Florian

    2017-01-01

    Researchers interested in the global flow of educational ideas and programmes have long been interested in the role of so-called "reference societies." The article investigates how top scorers in large-scale assessments are framed as positive or negative reference societies in the education policy-making debate in German mass media and…

  5. Natural Resources: Time, Space and Spirit--Keys to Scientific Literacy Series.

    ERIC Educational Resources Information Center

    Stonebarger, Bill

    Many experts have predicted a global crisis for the end of the twentieth century because of dwindling supplies of natural resources such as minerals, oil, gas, and soil. This booklet considers three aspects of natural resources, time, space, and spirit. Time refers to a sense of history; space refers to geography; and spirit refers to life and…

  6. Globalization and social determinants of health: Promoting health equity in global governance (part 3 of 3).

    PubMed

    Labonté, Ronald; Schrecker, Ted

    2007-06-19

    This article is the third in a three-part review of research on globalization and the social determinants of health (SDH). In the first article of the series, we identified and defended an economically oriented definition of globalization and addressed a number of important conceptual and metholodogical issues. In the second article, we identified and described seven key clusters of pathways relevant to globalization's influence on SDH. This discussion provided the basis for the premise from which we begin this article: interventions to reduce health inequities by way of SDH are inextricably linked with social protection, economic management and development strategy. Reflecting this insight, and against the background of the Millennium Development Goals (MDGs), we focus on the asymmetrical distribution of gains, losses and power that is characteristic of globalization in its current form and identify a number of areas for innovation on the part of the international community: making more resources available for health systems, as part of the more general task of expanding and improving development assistance; expanding debt relief and taking poverty reduction more seriously; reforming the international trade regime; considering the implications of health as a human right; and protecting the policy space available to national governments to address social determinants of health, notably with respect to the hypermobility of financial capital. We conclude by suggesting that responses to globalization's effects on social determinants of health can be classified with reference to two contrasting visions of the future, reflecting quite distinct values.

  7. Evaluations of high-resolution dynamically downscaled ensembles over the contiguous United States Climate Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zobel, Zachary; Wang, Jiali; Wuebbles, Donald J.

    This study uses Weather Research and Forecast (WRF) model to evaluate the performance of six dynamical downscaled decadal historical simulations with 12-km resolution for a large domain (7200 x 6180 km) that covers most of North America. The initial and boundary conditions are from three global climate models (GCMs) and one reanalysis data. The GCMs employed in this study are the Geophysical Fluid Dynamics Laboratory Earth System Model with Generalized Ocean Layer Dynamics component, Community Climate System Model, version 4, and the Hadley Centre Global Environment Model, version 2-Earth System. The reanalysis data is from the National Centers for Environmentalmore » Prediction-US. Department of Energy Reanalysis II. We analyze the effects of bias correcting, the lateral boundary conditions and the effects of spectral nudging. We evaluate the model performance for seven surface variables and four upper atmospheric variables based on their climatology and extremes for seven subregions across the United States. The results indicate that the simulation’s performance depends on both location and the features/variable being tested. We find that the use of bias correction and/or nudging is beneficial in many situations, but employing these when running the RCM is not always an improvement when compared to the reference data. The use of an ensemble mean and median leads to a better performance in measuring the climatology, while it is significantly biased for the extremes, showing much larger differences than individual GCM driven model simulations from the reference data. This study provides a comprehensive evaluation of these historical model runs in order to make informed decisions when making future projections.« less

  8. Geometrically constrained kinematic global navigation satellite systems positioning: Implementation and performance

    NASA Astrophysics Data System (ADS)

    Asgari, Jamal; Mohammadloo, Tannaz H.; Amiri-Simkooei, Ali Reza

    2015-09-01

    GNSS kinematic techniques are capable of providing precise coordinates in extremely short observation time-span. These methods usually determine the coordinates of an unknown station with respect to a reference one. To enhance the precision, accuracy, reliability and integrity of the estimated unknown parameters, GNSS kinematic equations are to be augmented by possible constraints. Such constraints could be derived from the geometric relation of the receiver positions in motion. This contribution presents the formulation of the constrained kinematic global navigation satellite systems positioning. Constraints effectively restrict the definition domain of the unknown parameters from the three-dimensional space to a subspace defined by the equation of motion. To test the concept of the constrained kinematic positioning method, the equation of a circle is employed as a constraint. A device capable of moving on a circle was made and the observations from 11 positions on the circle were analyzed. Relative positioning was conducted by considering the center of the circle as the reference station. The equation of the receiver's motion was rewritten in the ECEF coordinates system. A special attention is drawn onto how a constraint is applied to kinematic positioning. Implementing the constraint in the positioning process provides much more precise results compared to the unconstrained case. This has been verified based on the results obtained from the covariance matrix of the estimated parameters and the empirical results using kinematic positioning samples as well. The theoretical standard deviations of the horizontal components are reduced by a factor ranging from 1.24 to 2.64. The improvement on the empirical standard deviation of the horizontal components ranges from 1.08 to 2.2.

  9. [Preparedness for influenza A/H5N1 pandemic in Niger: a study on health care workers' knowledge and global organization of health activities].

    PubMed

    d'Alessandro, E; Soula, G; Jaffré, Y; Gourouza, B; Adehossi, E; Delmont, J

    2012-02-01

    In industrialized countries, the emergence of potentially pandemic influenza virus has invited reactions consistent with the potential threat represented by these infectious agents. However, with globalization, controlling epidemics depends as much on an effective global coordination of control methods as on preparedness of northern and southern national health care systems, at the core of which are health care workers. Our study was conducted in the National Hospital of Niamey, the main Nigerian hospital. Its objective was to evaluate the knowledge of health care professionals regarding flu pandemic and control of infection. We interviewed 178 nursing staff, doctors and paramedics on the basis of a survey. This study - the first to our knowledge to explore these issues in the African context-revealed that caregivers have a rather good mastery of theoretical knowledge. Nevertheless, beyond theoretical knowledge, miscellaneous factors compromise the effectiveness of the health care structure. Some of them seem to occupy a critical position, particularly the absence of shared references among sanitary authorities and health care professionals, and the weaknesses of global coordination of preventive activities and case management.

  10. Assessing skill of a global bimonthly streamflow ensemble prediction system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I.; Peña-Arancibia, J.; Sheffield, J.; Wood, E. F.

    2011-12-01

    Ideally, a seasonal streamflow forecasting system might be conceived of as a system that ingests skillful climate forecasts from general circulation models and propagates these through thoroughly calibrated hydrological models that are initialised using hydrometric observations. In practice, there are practical problems with each of these aspects. Instead, we analysed whether a comparatively simple hydrological model-based Ensemble Prediction System (EPS) can provide global bimonthly streamflow forecasts with some skill and if so, under what circumstances the greatest skill may be expected. The system tested produces ensemble forecasts for each of six annual bimonthly periods based on the previous 30 years of global daily gridded 1° resolution climate variables and an initialised global hydrological model. To incorporate some of the skill derived from ocean conditions, a post-EPS analog method was used to sample from the ensemble based on El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) index values observed prior to the forecast. Forecasts skill was assessed through a hind-casting experiment for the period 1979-2008. Potential skill was calculated with reference to a model run with the actual forcing for the forecast period (the 'perfect' model) and was compared to actual forecast skill calculated for each of the six forecast times for an average 411 Australian and 51 pan-tropical catchments. Significant potential skill in bimonthly forecasts was largely limited to northern regions during the snow melt period, seasonally wet tropical regions at the transition of wet to dry season, and the Indonesian region where rainfall is well correlated to ENSO. The actual skill was approximately 34-50% of the potential skill. We attribute this primarily to limitations in the model structure, parameterisation and global forcing data. Use of better climate forecasts and remote sensing observations of initial catchment conditions should help to increase actual skill in future. Future work also could address the potential skill gain from using weather and climate forecasts and from a calibrated and/or alternative hydrological model or model ensemble. The approach and data might be useful as a benchmark for joint seasonal forecasting experiments planned under GEWEX.

  11. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation

    NASA Astrophysics Data System (ADS)

    Aschonitis, Vassilis G.; Papamichail, Dimitris; Demertzi, Kleoniki; Colombani, Nicolo; Mastrocicco, Micol; Ghirardini, Andrea; Castaldelli, Giuseppe; Fano, Elisa-Anna

    2017-08-01

    The objective of the study is to provide global grids (0.5°) of revised annual coefficients for the Priestley-Taylor (P-T) and Hargreaves-Samani (H-S) evapotranspiration methods after calibration based on the ASCE (American Society of Civil Engineers)-standardized Penman-Monteith method (the ASCE method includes two reference crops: short-clipped grass and tall alfalfa). The analysis also includes the development of a global grid of revised annual coefficients for solar radiation (Rs) estimations using the respective Rs formula of H-S. The analysis was based on global gridded climatic data of the period 1950-2000. The method for deriving annual coefficients of the P-T and H-S methods was based on partial weighted averages (PWAs) of their mean monthly values. This method estimates the annual values considering the amplitude of the parameter under investigation (ETo and Rs) giving more weight to the monthly coefficients of the months with higher ETo values (or Rs values for the case of the H-S radiation formula). The method also eliminates the effect of unreasonably high or low monthly coefficients that may occur during periods where ETo and Rs fall below a specific threshold. The new coefficients were validated based on data from 140 stations located in various climatic zones of the USA and Australia with expanded observations up to 2016. The validation procedure for ETo estimations of the short reference crop showed that the P-T and H-S methods with the new revised coefficients outperformed the standard methods reducing the estimated root mean square error (RMSE) in ETo values by 40 and 25 %, respectively. The estimations of Rs using the H-S formula with revised coefficients reduced the RMSE by 28 % in comparison to the standard H-S formula. Finally, a raster database was built consisting of (a) global maps for the mean monthly ETo values estimated by ASCE-standardized method for both reference crops, (b) global maps for the revised annual coefficients of the P-T and H-S evapotranspiration methods for both reference crops and a global map for the revised annual coefficient of the H-S radiation formula and (c) global maps that indicate the optimum locations for using the standard P-T and H-S methods and their possible annual errors based on reference values. The database can support estimations of ETo and solar radiation for locations where climatic data are limited and it can support studies which require such estimations on larger scales (e.g. country, continent, world). The datasets produced in this study are archived in the PANGAEA database (https://doi.org/10.1594/PANGAEA.868808) and in the ESRN database (http://www.esrn-database.org or http://esrn-database.weebly.com).

  12. National aerospace meeting of the Institute of Navigation

    NASA Astrophysics Data System (ADS)

    Fell, Patrick

    The program for this year's aerospace meeting of The Institute of Navigation addressed developments in the evolving Global Positioning System (GPS) of navigation satellites, inertial navigation systems, and other electronic navigation systems and their applications. Also included in the program were a limited number of papers addressing the geodetic use of the GPS system.The Global Positioning System is a constellation of 18 navigation satellites being developed by the Department of Defense to provide instantaneous worldwide navigation. The system will support a multitude of military applications. The first paper by Jacobson reviewed the engineering development of GPS navigation receivers stressing the use of common hardware and software modules. A later paper by Ould described the mechanization of a digital receiver for GPS applications designed for faster acquisition of the spread spectrum satellite transmissions than analog receivers. The paper by Brady discussed the worldwide coverage that is provided by the limited number of satellites that will constitute the GPS constellation through 1983. The capability provided by the satellites presently on orbit would support a variety of experiments at almost any location. Tables of multiple satellite availability are provided for numerous worldwide locations. For civil aviation applications, Vogel addressed the satellite geometry considerations for low cost GPS user equipment, Esposito described the Federal Aviation Administration acceptance tests of a GPS navigation receiver, and Hopkins discussed the design and capability of an integrated GPS strapdown attitude and heading reference system for avionics.

  13. Support time-dependent transformations for surveying and GIS : current status and upcoming challenges

    NASA Astrophysics Data System (ADS)

    Mahmoudabadi, H.; Lercier, D.; Vielliard, S.; Mein, N.; Briggs, G.

    2016-12-01

    The support of time-dependent transformations for surveying and GIS is becoming a critical issue. We need to convert positions from the realizations of the International Terrestrial Reference Frame to any national reference frame. This problem is easy to solve when all of the required information is available. But it becomes really complicated in a worldwide context. We propose an overview of the current ITRF-aligned reference frames and we describe a global solution to support time-dependent transformations between them and the International Terrestrial Reference Frame. We focus on the uncertainties of station velocities used. In a first approximation, we use a global tectonic plate model to calculate point velocities. We show the impact of the velocity model on the coordinate accuracies. Several countries, particularly in active regions, are developing semi-dynamic reference frames. These frames include local displacement models updated regularly and/or after major events (such as earthquakes). Their integration into surveying or GIS applications is an upcoming challenge. We want to encourage the geodetic community to develop and use standard formats.

  14. The Effect of Electroencephalogram (EEG) Reference Choice on Information-Theoretic Measures of the Complexity and Integration of EEG Signals

    PubMed Central

    Trujillo, Logan T.; Stanfield, Candice T.; Vela, Ruben D.

    2017-01-01

    Converging evidence suggests that human cognition and behavior emerge from functional brain networks interacting on local and global scales. We investigated two information-theoretic measures of functional brain segregation and integration—interaction complexity CI(X), and integration I(X)—as applied to electroencephalographic (EEG) signals and how these measures are affected by choice of EEG reference. CI(X) is a statistical measure of the system entropy accounted for by interactions among its elements, whereas I(X) indexes the overall deviation from statistical independence of the individual elements of a system. We recorded 72 channels of scalp EEG from human participants who sat in a wakeful resting state (interleaved counterbalanced eyes-open and eyes-closed blocks). CI(X) and I(X) of the EEG signals were computed using four different EEG references: linked-mastoids (LM) reference, average (AVG) reference, a Laplacian (LAP) “reference-free” transformation, and an infinity (INF) reference estimated via the Reference Electrode Standardization Technique (REST). Fourier-based power spectral density (PSD), a standard measure of resting state activity, was computed for comparison and as a check of data integrity and quality. We also performed dipole source modeling in order to assess the accuracy of neural source CI(X) and I(X) estimates obtained from scalp-level EEG signals. CI(X) was largest for the LAP transformation, smallest for the LM reference, and at intermediate values for the AVG and INF references. I(X) was smallest for the LAP transformation, largest for the LM reference, and at intermediate values for the AVG and INF references. Furthermore, across all references, CI(X) and I(X) reliably distinguished between resting-state conditions (larger values for eyes-open vs. eyes-closed). These findings occurred in the context of the overall expected pattern of resting state PSD. Dipole modeling showed that simulated scalp EEG-level CI(X) and I(X) reflected changes in underlying neural source dependencies, but only for higher levels of integration and with highest accuracy for the LAP transformation. Our observations suggest that the Laplacian-transformation should be preferred for the computation of scalp-level CI(X) and I(X) due to its positive impact on EEG signal quality and statistics, reduction of volume-conduction, and the higher accuracy this provides when estimating scalp-level EEG complexity and integration. PMID:28790884

  15. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    PubMed Central

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  16. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus.

    PubMed

    Gildor, Tsvia; Malik, Assaf; Sher, Noa; Avraham, Linor; Ben-Tabou de-Leon, Smadar

    2016-02-01

    Embryonic development progresses through the timely activation of thousands of differentially activated genes. Quantitative developmental transcriptomes provide the means to relate global patterns of differentially expressed genes to the emerging body plans they generate. The sea urchin is one of the classic model systems for embryogenesis and the models of its developmental gene regulatory networks are of the most comprehensive of their kind. Thus, the sea urchin embryo is an excellent system for studies of its global developmental transcriptional profiles. Here we produced quantitative developmental transcriptomes of the sea urchin Paracentrotus lividus (P. lividus) at seven developmental stages from the fertilized egg to prism stage. We generated de-novo reference transcriptome and identified 29,817 genes that are expressed at this time period. We annotated and quantified gene expression at the different developmental stages and confirmed the reliability of the expression profiles by QPCR measurement of a subset of genes. The progression of embryo development is reflected in the observed global expression patterns and in our principle component analysis. Our study illuminates the rich patterns of gene expression that participate in sea urchin embryogenesis and provide an essential resource for further studies of the dynamic expression of P. lividus genes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A study of the Ionospheric electron density profile with FORMOSAT-3/COSMIC observation data

    NASA Astrophysics Data System (ADS)

    Chou, Min-Yang; Tsai, Ho-Fang; Lin, Chi-Yen; Lee, I.-Te; Lin, Charles; Liu, Jann-Yenq

    2015-04-01

    The GPS Occultation Experiment payload onboard FORMOSAT-3/COSMIC microsatellite constellation is capable of scanning the ionospheric structure by the radio occultation (RO) technique to retrieve precise electron density profiles since 2006. Due to the success of FORMOSAT-3/COSMIC, the follow-on mission, FORMOSAT-7/COSMIC-2, is to launch 12 microsatellites in 2016 and 2018, respectively, with the Global Navigation Satellite Systems (GNSS) RO instrument onboard for tracking GPS, Galileo and/or GLONASS satellite signals and to provide more than 8,000 RO soundings per day globally. An overview of the validation of the FORMOSAT-3/COSMIC ionospheric profiling is given by means of the traditional Abel transform through bending angle and total electron content (TEC), while the ionospheric data assimilation is also applied, based on the Gauss-Markov Kalman filter with the International Reference Ionosphere model (IRI-2007) and global ionosphere map (GIM) as background model, to assimilate TEC observations from FORMOSAT-3/COSMIC. The results shows comparison of electron density profiles from Abel inversion and data assimilation. Furthermore, an observing system simulation experiment is also applied to determine the impact of FORMOSAT-7/COSMIC-2 on ionospheric weather monitoring, which reveals an opportunity on advanced study of small spatial and temporal variations in the ionosphere.

  18. Global Citizenship

    ERIC Educational Resources Information Center

    Osiadacz, Evelina

    2018-01-01

    This article draws attention to the keyword "global citizenship" through an analysis of the ambiguity of expectations of teachers from the Ontario curriculum documents. Particular reference is drawn to the citizenship education framework, an addition to the 2013 revision of "Ontario Curriculum: Social Studies, Grades 1 to 6;…

  19. Robust iterative closest point algorithm based on global reference point for rotation invariant registration.

    PubMed

    Du, Shaoyi; Xu, Yiting; Wan, Teng; Hu, Huaizhong; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao

    2017-01-01

    The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm.

  20. Robust iterative closest point algorithm based on global reference point for rotation invariant registration

    PubMed Central

    Du, Shaoyi; Xu, Yiting; Wan, Teng; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao

    2017-01-01

    The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm. PMID:29176780

  1. Music: Creativity and Structure Transitions

    NASA Astrophysics Data System (ADS)

    Pietrocini, Emanuela

    Music, compared to other complex forms of representation, is fundamentally characterized by constant evolution and a dynamic succession of structure reference models. This is without taking into account historical perspective, the analysis of forms and styles, or questions of a semantic nature; the observation rather refers to the phenomenology of the music system. The more abstract a compositional model, the greater the number and frequency of variables that are not assimilated to the reference structure; this "interference" which happens more often than not in an apparently casual manner, modifies the creative process to varying but always substantial degrees: locally, it produces a disturbance in perceptive, formal and structural parameters, resulting more often than not in a synaesthetic experience; globally, on the other hand, it defines the terms of a transition to a new state, in which the relations between elements and components modify the behavior of the entire system from which they originated. It is possible to find examples of this phenomenon in the whole range of musical production, in particular in improvisations, in the use of the Basso Continuo, and in some contrapuntal works of the baroque period, music whose temporal dimension can depart from the limits of mensurability and symmetry to define an open compositional environment in continuous evolution.

  2. Impact of the galactic acceleration on the terrestrial reference frame and the scale factor in VLBI

    NASA Astrophysics Data System (ADS)

    Krásná, Hana; Titov, Oleg

    2017-04-01

    The relative motion of the solar system barycentre around the galactic centre can also be described as an acceleration of the solar system directed towards the centre of the Galaxy. So far, this effect has been omitted in the a priori modelling of the Very Long Baseline Interferometry (VLBI) observable. Therefore, it results in a systematic dipole proper motion (Secular Aberration Drift, SAD) of extragalactic radio sources building the celestial reference frame with a theoretical maximum magnitude of 5-7 microarcsec/year. In this work, we present our estimation of the SAD vector obtained within a global adjustment of the VLBI measurements (1979.0 - 2016.5) using the software VieVS. We focus on the influence of the observed radio sources with the maximum SAD effect on the terrestrial reference frame. We show that the scale factor from the VLBI measurements estimated for each source individually discloses a clear systematic aligned with the direction to the Galactic centre-anticentre. Therefore, the radio sources located near Galactic anticentre may cause a strong systematic effect, especially, in early VLBI years. For instance, radio source 0552+398 causes a difference up to 1 mm in the estimated baseline length. Furthermore, we discuss the scale factor estimated for each radio source after removal of the SAD systematic.

  3. SWOT analysis and revelation in traditional Chinese medicine internationalization.

    PubMed

    Tang, Haitao; Huang, Wenlong; Ma, Jimei; Liu, Li

    2018-01-01

    Traditional Chinese medicine (TCM) is currently the best-preserved and most influential traditional medical system with the largest number of users worldwide. In recent years, the trend of TCM adoption has increased greatly, but the process of TCM internationalization has suffered from a series of setbacks for both internal and external reasons. Thus, the process of TCM internationalization faces formidable challenges, although it also has favourable opportunities. Using SWOT analysis, this paper investigates the strengths, weaknesses, opportunities and threats for TCM. These findings can serve as references for TCM enterprises with global ambitions.

  4. The Europa Mission: Multiple Europa Flyby Trajectory Design Trades and Challenges

    NASA Technical Reports Server (NTRS)

    Lam, Try; Arrieta-Camacho, Juan J.; Buffington, Brent B.

    2015-01-01

    With potential sources of water, energy and other chemicals essential for life, Europa is a top candidate for finding current life in our Solar System outside of Earth. This paper describes the current trajectory design concept for a multiple Europa flyby mission and discusses several trajectory design challenges. The candidate reference trajectory utilizes multiple Europa flybys while around Jupiter to enable near global coverage of Europa while balancing science requirements, radiation dose, propellant usage, and flight time. Trajectory design trades and robustness are also discussed.

  5. Travel time tomography with local image regularization by sparsity constrained dictionary learning

    NASA Astrophysics Data System (ADS)

    Bianco, M.; Gerstoft, P.

    2017-12-01

    We propose a regularization approach for 2D seismic travel time tomography which models small rectangular groups of slowness pixels, within an overall or `global' slowness image, as sparse linear combinations of atoms from a dictionary. The groups of slowness pixels are referred to as patches and a dictionary corresponds to a collection of functions or `atoms' describing the slowness in each patch. These functions could for example be wavelets.The patch regularization is incorporated into the global slowness image. The global image models the broad features, while the local patch images incorporate prior information from the dictionary. Further, high resolution slowness within patches is permitted if the travel times from the global estimates support it. The proposed approach is formulated as an algorithm, which is repeated until convergence is achieved: 1) From travel times, find the global slowness image with a minimum energy constraint on the pixel variance relative to a reference. 2) Find the patch level solutions to fit the global estimate as a sparse linear combination of dictionary atoms.3) Update the reference as the weighted average of the patch level solutions.This approach relies on the redundancy of the patches in the seismic image. Redundancy means that the patches are repetitions of a finite number of patterns, which are described by the dictionary atoms. Redundancy in the earth's structure was demonstrated in previous works in seismics where dictionaries of wavelet functions regularized inversion. We further exploit redundancy of the patches by using dictionary learning algorithms, a form of unsupervised machine learning, to estimate optimal dictionaries from the data in parallel with the inversion. We demonstrate our approach on densely, but irregularly sampled synthetic seismic images.

  6. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE PAGES

    Kim, John B.; Monier, Erwan; Sohngen, Brent; ...

    2017-03-28

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  7. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    NASA Astrophysics Data System (ADS)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  8. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, John B.; Monier, Erwan; Sohngen, Brent

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  9. A global multicenter study on reference values: 1. Assessment of methods for derivation and comparison of reference intervals.

    PubMed

    Ichihara, Kiyoshi; Ozarda, Yesim; Barth, Julian H; Klee, George; Qiu, Ling; Erasmus, Rajiv; Borai, Anwar; Evgina, Svetlana; Ashavaid, Tester; Khan, Dilshad; Schreier, Laura; Rolle, Reynan; Shimizu, Yoshihisa; Kimura, Shogo; Kawano, Reo; Armbruster, David; Mori, Kazuo; Yadav, Binod K

    2017-04-01

    The IFCC Committee on Reference Intervals and Decision Limits coordinated a global multicenter study on reference values (RVs) to explore rational and harmonizable procedures for derivation of reference intervals (RIs) and investigate the feasibility of sharing RIs through evaluation of sources of variation of RVs on a global scale. For the common protocol, rather lenient criteria for reference individuals were adopted to facilitate harmonized recruitment with planned use of the latent abnormal values exclusion (LAVE) method. As of July 2015, 12 countries had completed their study with total recruitment of 13,386 healthy adults. 25 analytes were measured chemically and 25 immunologically. A serum panel with assigned values was measured by all laboratories. RIs were derived by parametric and nonparametric methods. The effect of LAVE methods is prominent in analytes which reflect nutritional status, inflammation and muscular exertion, indicating that inappropriate results are frequent in any country. The validity of the parametric method was confirmed by the presence of analyte-specific distribution patterns and successful Gaussian transformation using the modified Box-Cox formula in all countries. After successful alignment of RVs based on the panel test results, nearly half the analytes showed variable degrees of between-country differences. This finding, however, requires confirmation after adjusting for BMI and other sources of variation. The results are reported in the second part of this paper. The collaborative study enabled us to evaluate rational methods for deriving RIs and comparing the RVs based on real-world datasets obtained in a harmonized manner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. A veterinary anatomy tutoring system.

    PubMed

    Theodoropoulos, G; Loumos, V; Antonopoulos, J

    1994-02-14

    A veterinary anatomy tutoring system was developed by using Knowledge Pro, an object-oriented software development tool with hypermedia capabilities, and MS Access, a relational database. Communication between them is facilitated by using the Structured Query Language (SQL). The architecture of the system is based on knowledge sets, each of which covers four different descriptions of an organ, namely gross anatomy (general description), gross anatomy (comparative features), histology, and embryology, which constitute the knowledge units. These knowledge units are linked with three global variables that define the animals, the topographies, and the system to which this organ belongs, creating three data-bases. These three data-bases are interrelated through the organ field in order to establish a relational model. This system allows versatility in the student's navigation through the information space by offering different modes for information location and presentation. These include course mode, review mode, reference mode, dissection mode, and comparison mode. In addition, the system provides a self-evaluation mode.

  11. Development of AM 1.5 global measurement procedures and international cell measurement round robin

    NASA Technical Reports Server (NTRS)

    Mueller, R.

    1985-01-01

    The development of the capability for measurement under global irradiance spectral distribution is reported. The airmass 1.5 global measurement procedure is given. Also given is the procedure and justification for using the large area pulsed solar simulator (LAPSS). The status of the international round robin of reference cell measurements managed by the Commission of European Communities (CEC) is described.

  12. GLOBAL INTEGRATED ISR: A BETTER ORGANIZATIONAL CONSTRUCT FOR AIR FORCE LD/HD ISR

    DTIC Science & Technology

    2017-04-06

    Mr. Kevin S. Williams, LeMay Center Intelligence Directorate, United States Air Force 6 April 2017 DISTRIBUTION A. Approved for public...E-8 intelligence , surveillance, and reconnaissance (ISR) aircraft it refers to as Low Density/High Demand (LD/HD). Current worldwide demand for LD...management GFMAP Global Force Management Allocation Plan GIISR global integrated intelligence , surveillance, and reconnaissance ISIS Islamic

  13. The "Common European Framework of Reference" Down Under: A Survey of Its Use and Non-Use in Australian Universities

    ERIC Educational Resources Information Center

    Normand-Marconnet, Nadine; Lo Bianco, Joseph

    2015-01-01

    Today, the "Common European Framework of Reference for Languages" (CEFR; Council of Europe 2001) is widely recognised as emblematic of globalization in education, both in the realms of policy and in educational practice (Byram et al. 2012a). In Europe the CEFR is regularly cited as a reference point for curriculum planning, and is often…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, P.; Purdue University, West Lafayette, Indiana 47907; Verma, K.

    Borazine is isoelectronic with benzene and is popularly referred to as inorganic benzene. The study of non-covalent interactions with borazine and comparison with its organic counterpart promises to show interesting similarities and differences. The motivation of the present study of the borazine-water interaction, for the first time, stems from such interesting possibilities. Hydrogen-bonded complexes of borazine and water were studied using matrix isolation infrared spectroscopy and quantum chemical calculations. Computations were performed at M06-2X and MP2 levels of theory using 6-311++G(d,p) and aug-cc-pVDZ basis sets. At both the levels of theory, the complex involving an N–H⋯O interaction, where the N–Hmore » of borazine serves as the proton donor to the oxygen of water was found to be the global minimum, in contrast to the benzene-water system, which showed an H–π interaction. The experimentally observed infrared spectra of the complexes corroborated well with our computations for the complex corresponding to the global minimum. In addition to the global minimum, our computations also located two local minima on the borazine-water potential energy surface. Of the two local minima, one corresponded to a structure where the water was the proton donor to the nitrogen of borazine, approaching the borazine ring from above the plane of the ring; a structure that resembled the global minimum in the benzene-water H–π complex. The second local minimum corresponded to an interaction of the oxygen of water with the boron of borazine, which can be termed as the boron bond. Clearly the borazine-water system presents a richer landscape than the benzene-water system.« less

  15. Performance Evaluation of Block Acquisition and Tracking Algorithms Using an Open Source GPS Receiver Platform

    NASA Technical Reports Server (NTRS)

    Ramachandran, Ganesh K.; Akopian, David; Heckler, Gregory W.; Winternitz, Luke B.

    2011-01-01

    Location technologies have many applications in wireless communications, military and space missions, etc. US Global Positioning System (GPS) and other existing and emerging Global Navigation Satellite Systems (GNSS) are expected to provide accurate location information to enable such applications. While GNSS systems perform very well in strong signal conditions, their operation in many urban, indoor, and space applications is not robust or even impossible due to weak signals and strong distortions. The search for less costly, faster and more sensitive receivers is still in progress. As the research community addresses more and more complicated phenomena there exists a demand on flexible multimode reference receivers, associated SDKs, and development platforms which may accelerate and facilitate the research. One of such concepts is the software GPS/GNSS receiver (GPS SDR) which permits a facilitated access to algorithmic libraries and a possibility to integrate more advanced algorithms without hardware and essential software updates. The GNU-SDR and GPS-SDR open source receiver platforms are such popular examples. This paper evaluates the performance of recently proposed block-corelator techniques for acquisition and tracking of GPS signals using open source GPS-SDR platform.

  16. Agency problems of global budget system in Taiwan's National Health Insurance.

    PubMed

    Yan, Yu-Hua; Yang, Chen-Wei; Fang, Shih-Chieh

    2014-05-01

    The main purpose of this study was to investigate the agency problem presented by the global budget system followed by hospitals in Taiwan. In this study, we examine empirically the interaction between the principal: Bureau of National Health Insurance (BNHI) and agency: medical service providers (hospitals); we also describe actual medical service provider and hospital governance conditions from a agency theory perspective. This study identified a positive correlation between aversion to agency hazard (self-interest behavior, asymmetric information, and risk hedging) and agency problem risks (disregard of medical ethics, pursuit of extra-contract profit, disregard of professionalism, and cost orientation). Agency costs refer to BNHI auditing and monitoring expenditures used to prevent hospitals from deviating from NHI policy goals. This study also found agency costs negatively moderate the relationship between agency hazards and agency problems The main contribution of this study is its use of agency theory to clarify agency problems and several potential factors caused by the NHI system. This study also contributes to the field of health policy study by clarifying the nature and importance of agency problems in the health care sector. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Normalisation in product life cycle assessment: an LCA of the global and European economic systems in the year 2000.

    PubMed

    Sleeswijk, Anneke Wegener; van Oers, Lauran F C M; Guinée, Jeroen B; Struijs, Jaap; Huijbregts, Mark A J

    2008-02-01

    In the methodological context of the interpretation of environmental life cycle assessment (LCA) results, a normalisation study was performed. 15 impact categories were accounted for, including climate change, acidification, eutrophication, human toxicity, ecotoxicity, depletion of fossil energy resources, and land use. The year 2000 was chosen as a reference year, and information was gathered on two spatial levels: the global and the European level. From the 860 environmental interventions collected, 48 interventions turned out to account for at least 75% of the impact scores of all impact categories. All non-toxicity related, emission dependent impacts are fully dominated by the bulk emissions of only 10 substances or substance groups: CO(2), CH(4), SO(2), NO(x), NH(3), PM(10), NMVOC, and (H)CFCs emissions to air and emissions of N- and P-compounds to fresh water. For the toxicity-related emissions (pesticides, organics, metal compounds and some specific inorganics), the availability of information was still very limited, leading to large uncertainty in the corresponding normalisation factors. Apart from their usefulness as a reference for LCA studies, the results of this study stress the importance of efficient measures to combat bulk emissions and to promote the registration of potentially toxic emissions on a more comprehensive scale.

  18. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.

    PubMed

    Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2017-03-03

    In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2-3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling.

  19. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations

    PubMed Central

    Tu, Rui; Zhang, Rui; Lu, Cuixian; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2017-01-01

    In this study, a unified model for BeiDou Navigation Satellite System (BDS) wide area and local area augmentation positioning based on raw observations has been proposed. Applying this model, both the Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) service can be realized by performing different corrections at the user end. This algorithm was assessed and validated with the BDS data collected at four regional stations from Day of Year (DOY) 080 to 083 of 2016. When the users are located within the local reference network, the fast and high precision RTK service can be achieved using the regional observation corrections, revealing a convergence time of about several seconds and a precision of about 2–3 cm. For the users out of the regional reference network, the global broadcast State-Space Represented (SSR) corrections can be utilized to realize the global PPP service which shows a convergence time of about 25 min for achieving an accuracy of 10 cm. With this unified model, it can not only integrate the Network RTK (NRTK) and PPP into a seamless positioning service, but also recover the ionosphere Vertical Total Electronic Content (VTEC) and Differential Code Bias (DCB) values that are useful for the ionosphere monitoring and modeling. PMID:28273814

  20. A Survey of Phase Variable Candidates of Human Locomotion

    PubMed Central

    Villarreal, Dario J.; Gregg, Robert D.

    2014-01-01

    Studies show that the human nervous system is able to parameterize gait cycle phase using sensory feedback. In the field of bipedal robots, the concept of a phase variable has been successfully used to mimic this behavior by parameterizing the gait cycle in a time-independent manner. This approach has been applied to control a powered transfemoral prosthetic leg, but the proposed phase variable was limited to the stance period of the prosthesis only. In order to achieve a more robust controller, we attempt to find a new phase variable that fully parameterizes the gait cycle of a prosthetic leg. The angle with respect to a global reference frame at the hip is able to monotonically parameterize both the stance and swing periods of the gait cycle. This survey looks at multiple phase variable candidates involving the hip angle with respect to a global reference frame across multiple tasks including level-ground walking, running, and stair negotiation. In particular, we propose a novel phase variable candidate that monotonically parameterizes the whole gait cycle across all tasks, and does so particularly well across level-ground walking. In addition to furthering the design of robust robotic prosthetic leg controllers, this survey could help neuroscientists and physicians study human locomotion across tasks from a time-independent perspective. PMID:25570873

Top