Predictive and Incremental Validity of Global and Domain-Based Adolescent Life Satisfaction Reports
ERIC Educational Resources Information Center
Haranin, Emily C.; Huebner, E. Scott; Suldo, Shannon M.
2007-01-01
Concurrent, predictive, and incremental validity of global and domain-based adolescent life satisfaction reports are examined with respect to internalizing and externalizing behavior problems. The Students' Life Satisfaction Scale (SLSS), Multidimensional Students' Life Satisfaction Scale (MSLSS), and measures of internalizing and externalizing…
NASA Technical Reports Server (NTRS)
Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.
2016-01-01
Changing hydro-climatic and socioeconomic conditions increasingly put pressure on fresh water resources and are expected to aggravate water scarcity conditions towards the future. Despite numerous calls for risk-based water scarcity assessments, a global-scale framework that includes UNISDR's definition of risk does not yet exist. This study provides a first step towards such a risk based assessment, applying a Gamma distribution to estimate water scarcity conditions at the global scale under historic and future conditions, using multiple climate change and population growth scenarios. Our study highlights that water scarcity risk, expressed in terms of expected annual exposed population, increases given all future scenarios, up to greater than 56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels.
Combining global and local approximations
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1991-01-01
A method based on a linear approximation to a scaling factor, designated the 'global-local approximation' (GLA) method, is presented and shown capable of extending the range of usefulness of derivative-based approximations to a more refined model. The GLA approach refines the conventional scaling factor by means of a linearly varying, rather than constant, scaling factor. The capabilities of the method are demonstrated for a simple beam example with a crude and more refined FEM model.
Jarnevich, Catherine S.; Young, Nicholas E.; Talbert, Marian; Talbert, Colin
2018-01-01
Understanding invasive species distributions and potential invasions often requires broad‐scale information on the environmental tolerances of the species. Further, resource managers are often faced with knowing these broad‐scale relationships as well as nuanced environmental factors related to their landscape that influence where an invasive species occurs and potentially could occur. Using invasive buffelgrass (Cenchrus ciliaris), we developed global models and local models for Saguaro National Park, Arizona, USA, based on location records and literature on physiological tolerances to environmental factors to investigate whether environmental relationships of a species at a global scale are also important at local scales. In addition to correlative models with five commonly used algorithms, we also developed a model using a priori user‐defined relationships between occurrence and environmental characteristics based on a literature review. All correlative models at both scales performed well based on statistical evaluations. The user‐defined curves closely matched those produced by the correlative models, indicating that the correlative models may be capturing mechanisms driving the distribution of buffelgrass. Given climate projections for the region, both global and local models indicate that conditions at Saguaro National Park may become more suitable for buffelgrass. Combining global and local data with correlative models and physiological information provided a holistic approach to forecasting invasive species distributions.
Brand, John; Johnson, Aaron P
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.
Brand, John; Johnson, Aaron P.
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675
Evaluation of coral reef carbonate production models at a global scale
NASA Astrophysics Data System (ADS)
Jones, N. S.; Ridgwell, A.; Hendy, E. J.
2014-09-01
Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle. It is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are essential for understanding how carbonate deposition responds to environmental conditions including future atmospheric CO2 concentrations, but these models must first be evaluated in terms of their skill in recreating present day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales, by comparing carbonate budget outputs with independent estimates. We also compile available global data on reef calcification to produce an observation-based dataset for the model evaluation. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically-developed global framework, the Global Reef Accretion Model (GRAM). None of the four models correlated with independent rate estimates of whole reef calcification. The temperature-only based approach was the only model output to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modeling approach, accounting for population dynamics in terms of mortality and recruitment and hence coral cover, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.
Towards a global water scarcity risk assessment framework: using scenarios and risk distributions
NASA Astrophysics Data System (ADS)
Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Philip
2016-04-01
Over the past decades, changing hydro-climatic and socioeconomic conditions have led to increased water scarcity problems. A large number of studies have shown that these water scarcity conditions will worsen in the near future. Despite numerous calls for risk-based assessments of water scarcity, a framework that includes UNISDR's definition of risk does not yet exist at the global scale. This study provides a first step towards such a risk-based assessment, applying a Gamma distribution to estimate water scarcity conditions at the global scale under historic and future conditions, using multiple climate change projections and socioeconomic scenarios. Our study highlights that water scarcity risk increases given all future scenarios, up to >56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity in terms of Expected Annual Exposed Population, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels. Covering hazard, exposure, and vulnerability, risk-based methods are well-suited to assess water scarcity adaptation. Completing the presented risk framework therefore offers water managers a promising perspective to increase water security in a well-informed and adaptive manner.
A Distributed Platform for Global-Scale Agent-Based Models of Disease Transmission
Parker, Jon; Epstein, Joshua M.
2013-01-01
The Global-Scale Agent Model (GSAM) is presented. The GSAM is a high-performance distributed platform for agent-based epidemic modeling capable of simulating a disease outbreak in a population of several billion agents. It is unprecedented in its scale, its speed, and its use of Java. Solutions to multiple challenges inherent in distributing massive agent-based models are presented. Communication, synchronization, and memory usage are among the topics covered in detail. The memory usage discussion is Java specific. However, the communication and synchronization discussions apply broadly. We provide benchmarks illustrating the GSAM’s speed and scalability. PMID:24465120
Similar negative impacts of temperature on global wheat yield estimated by three independent methods
USDA-ARS?s Scientific Manuscript database
The potential impact of global temperature change on global wheat production has recently been assessed with different methods, scaling and aggregation approaches. Here we show that grid-based simulations, point-based simulations, and statistical regressions produce similar estimates of temperature ...
Magnitude and variability of land evaporation and its components at the global scale
USDA-ARS?s Scientific Manuscript database
A physics-based methodology is applied to estimate global land-surface evaporation from multi-satellite observations. GLEAM (Global Land-surface Evaporation: the Amsterdam Methodology) combines a wide range of remotely sensed observations within a Priestley and Taylor-based framework. Daily actual e...
Using Web Maps to Analyze the Construction of Global Scale Cognitive Maps
ERIC Educational Resources Information Center
Pingel, Thomas J.
2018-01-01
Game-based Web sites and applications are changing the ways in which students learn the world map. In this study, a Web map-based digital learning tool was used as a study aid for a university-level geography course in order to examine the way in which global scale cognitive maps are constructed. A network analysis revealed that clicks were…
ERIC Educational Resources Information Center
Aydin, Belgin; Unver, Meral Melek; Alan, Bülent; Saglam, Sercan
2017-01-01
This paper explains the process of designing a curriculum based on the Taba Model and the Global Scale of English (GSE) in an intensive language education program. The Taba Model emphasizing the involvement of the teachers and the learners in the curriculum development process was combined with the GSE, a psychometric tool measuring language…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, M. F.; Ershadi, A.; Jimenez, C.
Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less
McCabe, M. F.; Ershadi, A.; Jimenez, C.; ...
2016-01-26
Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less
Evaluation of coral reef carbonate production models at a global scale
NASA Astrophysics Data System (ADS)
Jones, N. S.; Ridgwell, A.; Hendy, E. J.
2015-03-01
Calcification by coral reef communities is estimated to account for half of all carbonate produced in shallow water environments and more than 25% of the total carbonate buried in marine sediments globally. Production of calcium carbonate by coral reefs is therefore an important component of the global carbon cycle; it is also threatened by future global warming and other global change pressures. Numerical models of reefal carbonate production are needed for understanding how carbonate deposition responds to environmental conditions including atmospheric CO2 concentrations in the past and into the future. However, before any projections can be made, the basic test is to establish model skill in recreating present-day calcification rates. Here we evaluate four published model descriptions of reef carbonate production in terms of their predictive power, at both local and global scales. We also compile available global data on reef calcification to produce an independent observation-based data set for the model evaluation of carbonate budget outputs. The four calcification models are based on functions sensitive to combinations of light availability, aragonite saturation (Ωa) and temperature and were implemented within a specifically developed global framework, the Global Reef Accretion Model (GRAM). No model was able to reproduce independent rate estimates of whole-reef calcification, and the output from the temperature-only based approach was the only model to significantly correlate with coral-calcification rate observations. The absence of any predictive power for whole reef systems, even when consistent at the scale of individual corals, points to the overriding importance of coral cover estimates in the calculations. Our work highlights the need for an ecosystem modelling approach, accounting for population dynamics in terms of mortality and recruitment and hence calcifier abundance, in estimating global reef carbonate budgets. In addition, validation of reef carbonate budgets is severely hampered by limited and inconsistent methodology in reef-scale observations.
Carbon budgets of biological soil crusts at micro-, meso-, and global scales
Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina
2016-01-01
The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.
A Land System representation for global assessments and land-use modeling.
van Asselen, Sanneke; Verburg, Peter H
2012-10-01
Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.
Relationship of School-Based Attributions to Depression
ERIC Educational Resources Information Center
Bell, Sherry Mee; McCallum, R. Steve; Doucette, Janette A.
2004-01-01
Relationships among attributions for success and failure and depression were investigated for 63 5th-grade students. Significant relationships were found among school-based attributions, as measured by global scale scores from the Student Academic Attribution Scale (SAAS) and the Student Social Attribution Scale (SSAS), general attributions as…
Teach for All: Storytelling "Shared Solutions" and Scaling Global Reform
ERIC Educational Resources Information Center
Ahmann, Chloe
2015-01-01
"Teach For All" is a global network of state-based organizations that translate "Teach For America's" market model of school reform into moral projects of nation-building abroad. Referring to this challenge as one of "scaling" the organization, its leaders elaborate a theory of change that hinges on replicability: in…
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
NASA Astrophysics Data System (ADS)
Nord, Mark; Cafiero, Carlo; Viviani, Sara
2016-11-01
Statistical methods based on item response theory are applied to experiential food insecurity survey data from 147 countries, areas, and territories to assess data quality and develop methods to estimate national prevalence rates of moderate and severe food insecurity at equal levels of severity across countries. Data were collected from nationally representative samples of 1,000 adults in each country. A Rasch-model-based scale was estimated for each country, and data were assessed for consistency with model assumptions. A global reference scale was calculated based on item parameters from all countries. Each country's scale was adjusted to the global standard, allowing for up to 3 of the 8 scale items to be considered unique in that country if their deviance from the global standard exceeded a set tolerance. With very few exceptions, data from all countries were sufficiently consistent with model assumptions to constitute reasonably reliable measures of food insecurity and were adjustable to the global standard with fair confidence. National prevalence rates of moderate-or-severe food insecurity assessed over a 12-month recall period ranged from 3 percent to 92 percent. The correlations of national prevalence rates with national income, health, and well-being indicators provide external validation of the food security measure.
Developing and testing a global-scale regression model to quantify mean annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.
2017-01-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.
Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers
NASA Technical Reports Server (NTRS)
Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)
1996-01-01
Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.
Global scale predictability of floods
NASA Astrophysics Data System (ADS)
Weerts, Albrecht; Gijsbers, Peter; Sperna Weiland, Frederiek
2016-04-01
Flood (and storm surge) forecasting at the continental and global scale has only become possible in recent years (Emmerton et al., 2016; Verlaan et al., 2015) due to the availability of meteorological forecast, global scale precipitation products and global scale hydrologic and hydrodynamic models. Deltares has setup GLOFFIS a research-oriented multi model operational flood forecasting system based on Delft-FEWS in an open experimental ICT facility called Id-Lab. In GLOFFIS both the W3RA and PCRGLOB-WB model are run in ensemble mode using GEFS and ECMWF-EPS (latency 2 days). GLOFFIS will be used for experiments into predictability of floods (and droughts) and their dependency on initial state estimation, meteorological forcing and the hydrologic model used. Here we present initial results of verification of the ensemble flood forecasts derived with the GLOFFIS system. Emmerton, R., Stephens, L., Pappenberger, F., Pagano, T., Weerts, A., Wood, A. Salamon, P., Brown, J., Hjerdt, N., Donnelly, C., Cloke, H. Continental and Global Scale Flood Forecasting Systems, WIREs Water (accepted), 2016 Verlaan M, De Kleermaeker S, Buckman L. GLOSSIS: Global storm surge forecasting and information system 2015, Australasian Coasts & Ports Conference, 15-18 September 2015,Auckland, New Zealand.
NASA Astrophysics Data System (ADS)
Bronstert, Axel; Heistermann, Maik; Francke, Till
2017-04-01
Hydrological models aim at quantifying the hydrological cycle and its constituent processes for particular conditions, sites or periods in time. Such models have been developed for a large range of spatial and temporal scales. One must be aware that the question which is the appropriate scale to be applied depends on the overall question under study. Therefore, it is not advisable to give a general applicable guideline on what is "the best" scale for a model. This statement is even more relevant for coupled hydrological, ecological and atmospheric models. Although a general statement about the most appropriate modelling scale is not recommendable, it is worth to have a look on what are the advantages and the shortcomings of micro-, meso- and macro-scale approaches. Such an appraisal is of increasing importance, since increasingly (very) large / global scale approaches and models are under operation and therefore the question arises how far and for what purposes such methods may yield scientifically sound results. It is important to understand that in most hydrological (and ecological, atmospheric and other) studies process scale, measurement scale, and modelling scale differ from each other. In some cases, the differences between theses scales can be of different orders of magnitude (example: runoff formation, measurement and modelling). These differences are a major source of uncertainty in description and modelling of hydrological, ecological and atmospheric processes. Let us now summarize our viewpoint of the strengths (+) and weaknesses (-) of hydrological models of different scales: Micro scale (e.g. extent of a plot, field or hillslope): (+) enables process research, based on controlled experiments (e.g. infiltration; root water uptake; chemical matter transport); (+) data of state conditions (e.g. soil parameter, vegetation properties) and boundary fluxes (e.g. rainfall or evapotranspiration) are directly measurable and reproducible; (+) equations based on first principals, partly pde-type, are available for several processes (but not for all), because measurement and modelling scale are compatible (-) the spatial model domain are hardly representative for larger spatial entities, including regions for which water resources management decisions are to be taken; straightforward upsizing is also limited by data availability and computational requirements. Meso scale (e.g. extent of a small to large catchment or region): (+) the spatial extent of the model domain has approximately the same extent as the regions for which water resources management decisions are to be taken. I.e., such models enable water resources quantification at the scale of most water management decisions; (+) data of some state conditions (e.g. vegetation cover, topography, river network and cross sections) are available; (+) data of some boundary fluxes (in particular surface runoff / channel flow) are directly measurable with mostly sufficient certainty; (+) equations, partly based on simple water budgeting, partly variants of pde-type equations, are available for most hydrological processes. This enables the construction of meso-scale distributed models reflecting the spatial heterogeneity of regions/landscapes; (-) process scale, measurement scale, and modelling scale differ from each other for a number of processes, e.g., such as runoff generation; (-) the process formulation (usually derived from micro-scale studies) cannot directly be transferred to the modelling domain. Upscaling procedures for this purpose are not readily and generally available. Macro scale (e.g. extent of a continent up to global): (+) the spatial extent of the model may cover the whole Earth. This enables an attractive global display of model results; (+) model results might be technically interchangeable or at least comparable with results from other global models, such as global climate models; (-) process scale, measurement scale, and modelling scale differ heavily from each other for all hydrological and associated processes; (-) the model domain and its results are not representative regions for which water resources management decisions are to be taken. (-) both state condition and boundary flux data are hardly available for the whole model domain. Water management data and discharge data from remote regions are particular incomplete / unavailable for this scale. This undermines the model's verifiability; (-) since process formulation and resulting modelling reliability at this scale is very limited, such models can hardly show any explanatory skills or prognostic power; (-) since both the entire model domain and the spatial sub-units cover large areas, model results represent values averaged over at least the spatial sub-unit's extent. In many cases, the applied time scale implies a long-term averaging in time, too. We emphasize the importance to be aware of the above mentioned strengths and weaknesses of those scale-specific models. (Many of the) results of the current global model studies do not reflect such limitations. In particular, we consider the averaging over large model entities in space and/or time inadequate. Many hydrological processes are of a non-linear nature, including threshold-type behaviour. Such features cannot be reflected by such large scale entities. The model results therefore can be of little or no use for water resources decisions and/or even misleading for public debates or decision making. Some rather newly developed sustainability concepts, e.g. "Planetary Boundaries" in which humanity may "continue to develop and thrive for generations to come" are based on such global-scale approaches and models. However, many of the major problems regarding sustainability on Earth, e.g. water scarcity, do not exhibit on a global but on a regional scale. While on a global scale water might look like being available in sufficient quantity and quality, there are many regions where water problems already have very harmful or even devastating effects. Therefore, it is the challenge to derive models and observation programmes for regional scales. In case a global display is desired future efforts should be directed towards the development of a global picture based on a mosaic of regional sound assessments, rather than "zooming into" the results of large-scale simulations. Still, a key question remains to be discussed, i.e. for which purpose models at this (global) scale can be used.
Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J
2012-02-19
Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.
Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.
2012-01-01
Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768
Setting the scene for SWOT: global maps of river reach hydrodynamic variables
NASA Astrophysics Data System (ADS)
Schumann, Guy J.-P.; Durand, Michael; Pavelsky, Tamlin; Lion, Christine; Allen, George
2017-04-01
Credible and reliable characterization of discharge from the Surface Water and Ocean Topography (SWOT) mission using the Manning-based algorithms needs a prior estimate constraining reach-scale channel roughness, base flow and river bathymetry. For some places, any one of those variables may exist locally or even regionally as a measurement, which is often only at a station, or sometimes as a basin-wide model estimate. However, to date none of those exist at the scale required for SWOT and thus need to be mapped at a continental scale. The prior estimates will be employed for producing initial discharge estimates, which will be used as starting-guesses for the various Manning-based algorithms, to be refined using the SWOT measurements themselves. A multitude of reach-scale variables were derived, including Landsat-based width, SRTM slope and accumulation area. As a possible starting point for building the prior database of low flow, river bathymetry and channel roughness estimates, we employed a variety of sources, including data from all GRDC records, simulations from the long-time runs of the global water balance model (WBM), and reach-based calculations from hydraulic geometry relationships as well as Manning's equation. Here, we present the first global maps of this prior database with some initial validation, caveats and prospective uses.
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.
A new global anthropogenic heat estimation based on high-resolution nighttime light data
Yang, Wangming; Luan, Yibo; Liu, Xiaolei; Yu, Xiaoyong; Miao, Lijuan; Cui, Xuefeng
2017-01-01
Consumption of fossil fuel resources leads to global warming and climate change. Apart from the negative impact of greenhouse gases on the climate, the increasing emission of anthropogenic heat from energy consumption also brings significant impacts on urban ecosystems and the surface energy balance. The objective of this work is to develop a new method of estimating the global anthropogenic heat budget and validate it on the global scale with a high precision and resolution dataset. A statistical algorithm was applied to estimate the annual mean anthropogenic heat (AH-DMSP) from 1992 to 2010 at 1×1 km2 spatial resolution for the entire planet. AH-DMSP was validated for both provincial and city scales, and results indicate that our dataset performs well at both scales. Compared with other global anthropogenic heat datasets, the AH-DMSP has a higher precision and finer spatial distribution. Although there are some limitations, the AH-DMSP could provide reliable, multi-scale anthropogenic heat information, which could be used for further research on regional or global climate change and urban ecosystems. PMID:28829436
Global Swath and Gridded Data Tiling
NASA Technical Reports Server (NTRS)
Thompson, Charles K.
2012-01-01
This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.
NASA Astrophysics Data System (ADS)
Grell, G. A.; Freitas, S. R.; Olson, J.; Bela, M.
2017-12-01
We will start by providing a summary of the latest cumulus parameterization modeling efforts at NOAA's Earth System Research Laboratory (ESRL) will be presented on both regional and global scales. The physics package includes a scale-aware parameterization of subgrid cloudiness feedback to radiation (coupled PBL, microphysics, radiation, shallow and congestus type convection), the stochastic Grell-Freitas (GF) scale- and aerosol-aware convective parameterization, and an aerosol aware microphysics package. GF is based on a stochastic approach originally implemented by Grell and Devenyi (2002) and described in more detail in Grell and Freitas (2014, ACP). It was expanded to include PDF's for vertical mass flux, as well as modifications to improve the diurnal cycle. This physics package will be used on different scales, spanning global to cloud resolving, to look at the impact on scalar transport and numerical weather prediction.
Behavioral therapy for treatment of stereotypic movements in nonautistic children.
Miller, Jonathan M; Singer, Harvey S; Bridges, Dana D; Waranch, H Richard
2006-02-01
Although typically described in autistic, mentally retarded, and sensory-deprived individuals, motor stereotypies also occur in normal children. In this preliminary report, the behavior modification techniques of habit reversal and differential reinforcement of other behavior were evaluated as a therapeutic modality for the suppression of stereotypic movements in nonautistic subjects. Twelve children, ages 6 to 14 years, with physiologic stereotypies were treated using a standardized treatment protocol. Clinical outcomes were based on differences between assessments obtained at baseline and on telephone follow-up. Evaluation scales included measures of the frequency, intensity, interference, and number of stereotypies (Stereotypy Severity Scale motor portion and Stereotypy Linear Analog Scale) and assessment of global function (Child Global Assessment Scale and Stereotypy Severity Scale global portion). The results were correlated with the child's level of motivation and the number of treatment sessions. After a mean follow-up of 12.1 months, motor stereotypies showed significant improvement on the Stereotypy Linear Analog Scale and Stereotypy Severity Scale total score, P = .009 and P = .046, respectively. Both scales showed a relationship between the number of treatment sessions attended and a reduction in movements. The Child Global Assessment Scale also improved with therapy, but there was no correlation with the number of treatment sessions. Highly motivated patients had greater improvement on the Stereotypy Linear Analog Scale and Stereotypy Severity Scale scales compared with less motivated patients, but motivation had no impact on the Child Global Assessment Scale. The combined use of habit reversal and differential reinforcement of other behavior is beneficial in reducing motor stereotypies in nonautistic children.
NASA Astrophysics Data System (ADS)
Liu, Z.; Shie, C. L.; Meyer, D. J.
2017-12-01
Global satellite-based precipitation products have been widely used in research and applications around the world. Compared to ground-based observations, satellite-based measurements provide precipitation data on a global scale, especially in remote continents and over oceans. Over the years, satellite-based precipitation products have evolved from single sensor and single algorithm to multi-sensors and multi-algorithms. As a result, many satellite-based precipitation products have been enhanced such as spatial and temporal coverages. With inclusion of ground-based measurements, biases of satellite-based precipitation products have been significantly reduced. However, data quality issues still exist and can be caused by many factors such as observations, satellite platform anomaly, algorithms, production, calibration, validation, data services, etc. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to NASA global precipitation product archives including the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), as well as other global and regional precipitation products. Precipitation is one of the top downloaded and accessed parameters in the GES DISC data archive. Meanwhile, users want to easily locate and obtain data quality information at regional and global scales to better understand how precipitation products perform and how reliable they are. As data service providers, it is necessary to provide an easy access to data quality information, however, such information normally is not available, and when it is available, it is not in one place and difficult to locate. In this presentation, we will present challenges and activities at the GES DISC to address precipitation data quality issues.
NASA Astrophysics Data System (ADS)
Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.
2015-11-01
Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.
Mapping Tree Density at the Global Scale
NASA Astrophysics Data System (ADS)
Covey, K. R.; Crowther, T. W.; Glick, H.; Bettigole, C.; Bradford, M.
2015-12-01
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global-scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical regions, with 0.74, and 0.61 trillion in boreal and temperate regions, respectively. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming impact of humans across most of the world. Based on our projected tree densities, we estimate that deforestation is currently responsible for removing over 15 billion trees each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Mapping tree density at a global scale
NASA Astrophysics Data System (ADS)
Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M.-N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G.-J.; Tikhonova, E.; Borchardt, P.; Li, C.-F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
2015-09-01
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
Mapping tree density at a global scale.
Crowther, T W; Glick, H B; Covey, K R; Bettigole, C; Maynard, D S; Thomas, S M; Smith, J R; Hintler, G; Duguid, M C; Amatulli, G; Tuanmu, M-N; Jetz, W; Salas, C; Stam, C; Piotto, D; Tavani, R; Green, S; Bruce, G; Williams, S J; Wiser, S K; Huber, M O; Hengeveld, G M; Nabuurs, G-J; Tikhonova, E; Borchardt, P; Li, C-F; Powrie, L W; Fischer, M; Hemp, A; Homeier, J; Cho, P; Vibrans, A C; Umunay, P M; Piao, S L; Rowe, C W; Ashton, M S; Crane, P R; Bradford, M A
2015-09-10
The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.
IS THE SMALL-SCALE MAGNETIC FIELD CORRELATED WITH THE DYNAMO CYCLE?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karak, Bidya Binay; Brandenburg, Axel, E-mail: bbkarak@nordita.org
2016-01-01
The small-scale magnetic field is ubiquitous at the solar surface—even at high latitudes. From observations we know that this field is uncorrelated (or perhaps even weakly anticorrelated) with the global sunspot cycle. Our aim is to explore the origin, and particularly the cycle dependence, of such a phenomenon using three-dimensional dynamo simulations. We adopt a simple model of a turbulent dynamo in a shearing box driven by helically forced turbulence. Depending on the dynamo parameters, large-scale (global) and small-scale (local) dynamos can be excited independently in this model. Based on simulations in different parameter regimes, we find that, when onlymore » the large-scale dynamo is operating in the system, the small-scale magnetic field generated through shredding and tangling of the large-scale magnetic field is positively correlated with the global magnetic cycle. However, when both dynamos are operating, the small-scale field is produced from both the small-scale dynamo and the tangling of the large-scale field. In this situation, when the large-scale field is weaker than the equipartition value of the turbulence, the small-scale field is almost uncorrelated with the large-scale magnetic cycle. On the other hand, when the large-scale field is stronger than the equipartition value, we observe an anticorrelation between the small-scale field and the large-scale magnetic cycle. This anticorrelation can be interpreted as a suppression of the small-scale dynamo. Based on our studies we conclude that the observed small-scale magnetic field in the Sun is generated by the combined mechanisms of a small-scale dynamo and tangling of the large-scale field.« less
Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.; ...
2017-06-23
Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.
Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less
Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke
2017-04-01
Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.
Rupert Seidl; Thomas A. Spies; Werner Rammer; E. Ashley Steel; Robert J. Pabst; Keith. Olsen
2012-01-01
Forest ecosystems are the most important terrestrial carbon (C) storage globally, and presently mitigate anthropogenic climate change by acting as a large and persistent sink for atmospheric CO2. Yet, forest C density varies greatly in space, both globally and at stand and landscape levels. Understanding the multi-scale drivers of this variation...
2008-03-01
38 39 ......................... 40 ......................... 42 42 Offsets in the Global Arms Market ...The Global Arms Market Structure .................................................. Increasing Globalization of Defense Industry...109 Overcapacity of the Defense Industry in a Declining Market ........................... 109 Economies of Scale
Bringing the Global Scale to Education in Natural Resources Management
NASA Astrophysics Data System (ADS)
Turner, D. P.
2017-12-01
Given the ominous trajectory of rapid global environmental change, environmental managers must grapple with global scale structures, processes, and concepts. The concept of the Anthropocene Epoch, albeit contested, is highly integrative across disciplines and temporal scales, and thus potentially helpful in the context of educating environmental managers. It can be framed temporally in terms of the geologic history of the global environment, the initiation and acceleration of anthropogenic impacts on the environment, and a future global environment that is highly dependent on human decisions. A key lesson from Earth's pre-human geologic history is that global climate has generally been linked to greenhouse gas concentrations, and many mass extinction events were associated with high greenhouse gas concentrations. The pervasive impacts of the contemporary technosphere on the biosphere point especially to the need to conserve biosphere capital. Scenarios of Earth's future environment, based on Earth system models, suggest that business-as-usual technologies and economic practices will set the stage for a biophysical environment that is hostile (if not inimical) to a high technology global civilization. These lessons can inform and inspire sub-global management efforts to mitigate and adapt to global environmental change.
A stochastic two-scale model for pressure-driven flow between rough surfaces
Larsson, Roland; Lundström, Staffan; Wall, Peter; Almqvist, Andreas
2016-01-01
Seal surface topography typically consists of global-scale geometric features as well as local-scale roughness details and homogenization-based approaches are, therefore, readily applied. These provide for resolving the global scale (large domain) with a relatively coarse mesh, while resolving the local scale (small domain) in high detail. As the total flow decreases, however, the flow pattern becomes tortuous and this requires a larger local-scale domain to obtain a converged solution. Therefore, a classical homogenization-based approach might not be feasible for simulation of very small flows. In order to study small flows, a model allowing feasibly-sized local domains, for really small flow rates, is developed. Realization was made possible by coupling the two scales with a stochastic element. Results from numerical experiments, show that the present model is in better agreement with the direct deterministic one than the conventional homogenization type of model, both quantitatively in terms of flow rate and qualitatively in reflecting the flow pattern. PMID:27436975
DAPAGLOCO - A global daily precipitation dataset from satellite and rain-gauge measurements
NASA Astrophysics Data System (ADS)
Spangehl, T.; Danielczok, A.; Dietzsch, F.; Andersson, A.; Schroeder, M.; Fennig, K.; Ziese, M.; Becker, A.
2017-12-01
The BMBF funded project framework MiKlip(Mittelfristige Klimaprognosen) develops a global climate forecast system on decadal time scales for operational applications. Herein, the DAPAGLOCO project (Daily Precipitation Analysis for the validation of Global medium-range Climate predictions Operationalized) provides a global precipitation dataset as a combination of microwave-based satellite measurements over ocean and rain gauge measurements over land on daily scale. The DAPAGLOCO dataset is created for the evaluation of the MiKlip forecast system in the first place. The HOAPS dataset (Hamburg Ocean Atmosphere Parameter and Fluxes from Satellite data) is used for the derivation of precipitation rates over ocean and is extended by the use of measurements from TMI, GMI, and AMSR-E, in addition to measurements from SSM/I and SSMIS. A 1D-Var retrieval scheme is developed to retrieve rain rates from microwave imager data, which also allows for the determination of uncertainty estimates. Over land, the GPCC (Global Precipitation Climatology Center) Full Data Daily product is used. It consists of rain gauge measurements that are interpolated on a regular grid by ordinary Kriging. The currently available dataset is based on a neuronal network approach, consists of 21 years of data from 1988 to 2008 and is currently extended until 2015 using the 1D-Var scheme and with improved sampling. Three different spatial resolved dataset versions are available with 1° and 2.5° global, and 0.5° for Europe. The evaluation of the MiKlip forecast system by DAPAGLOCO is based on ETCCDI (Expert Team on Climate Change and Detection Indices). Hindcasts are used for the index-based comparison between model and observations. These indices allow for the evaluation of precipitation extremes, their spatial and temporal distribution as well as for the duration of dry and wet spells, average precipitation amounts and percentiles on global scale. Besides, an ETCCDI-based climatology of the DAPAGLOCO precipitation dataset has been derived.
Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates
NASA Technical Reports Server (NTRS)
Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe;
2017-01-01
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
On the reliable use of satellite-derived surface water products for global flood monitoring
NASA Astrophysics Data System (ADS)
Hirpa, F. A.; Revilla-Romero, B.; Thielen, J.; Salamon, P.; Brakenridge, R.; Pappenberger, F.; de Groeve, T.
2015-12-01
Early flood warning and real-time monitoring systems play a key role in flood risk reduction and disaster response management. To this end, real-time flood forecasting and satellite-based detection systems have been developed at global scale. However, due to the limited availability of up-to-date ground observations, the reliability of these systems for real-time applications have not been assessed in large parts of the globe. In this study, we performed comparative evaluations of the commonly used satellite-based global flood detections and operational flood forecasting system using 10 major flood cases reported over three years (2012-2014). Specially, we assessed the flood detection capabilities of the near real-time global flood maps from the Global Flood Detection System (GFDS), and from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the operational forecasts from the Global Flood Awareness System (GloFAS) for the major flood events recorded in global flood databases. We present the evaluation results of the global flood detection and forecasting systems in terms of correctly indicating the reported flood events and highlight the exiting limitations of each system. Finally, we propose possible ways forward to improve the reliability of large scale flood monitoring tools.
Temperature increase reduces global yields of major crops in four independent estimates
Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold
2017-01-01
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375
Temperature increase reduces global yields of major crops in four independent estimates.
Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold
2017-08-29
Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.
Variations in Global Precipitation: Climate-scale to Floods
NASA Technical Reports Server (NTRS)
Adler, Robert
2006-01-01
Variations in global precipitation from climate-scale to small scale are examined using satellite-based analyses of the Global Precipitation Climatology Project (GPCP) and information from the Tropical Rainfall Measuring Mission (TRMM). Global and large regional rainfall variations and possible long-term changes are examined using the 27- year (1979-2005) monthly dataset from the GPCP. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of longterm change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward trend in the Tropics (25S-25N), especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the trend is examined. The status of TRMM estimates is examined in terms of evaluating and improving the long-term global data set. To look at rainfall variations on a much smaller scale TRMM data is used in combination with observations from other satellites to produce a 3-hr resolution, eight-year data set for examination of weather events and for practical applications such as detecting floods. Characteristics of the data set are presented and examples of recent flood events are examined.
NASA Astrophysics Data System (ADS)
Wieder, W. R.; Bradford, M.; Koven, C.; Talbot, J. M.; Wood, S.; Chadwick, O.
2016-12-01
High uncertainty and low confidence in terrestrial carbon (C) cycle projections reflect the incomplete understanding of how best to represent biologically-driven C cycle processes at global scales. Ecosystem theories, and consequently biogeochemical models, are based on the assumption that different belowground communities function similarly and interact with the abiotic environment in consistent ways. This assumption of "Scale Invariance" posits that environmental conditions will change the rate of ecosystem processes, but the biotic response will be consistent across sites. Indeed, cross-site comparisons and global-scale analyses suggest that climate strongly controls rates of litter mass loss and soil organic matter turnover. Alternatively, activities of belowground communities are shaped by particular local environmental conditions, such as climate and edaphic conditions. Under this assumption of "Scale Dependence", relationships generated by evolutionary trade-offs in acquiring resources and withstanding environmental stress dictate the activities of belowground communities and their functional response to environmental change. Similarly, local edaphic conditions (e.g. permafrost soils or reactive minerals that physicochemically stabilize soil organic matter on mineral surfaces) may strongly constrain the availability of substrates that biota decompose—altering the trajectory of soil biogeochemical response to perturbations. Identifying when scale invariant assumptions hold vs. where local variation in biotic communities or edaphic conditions must be considered is critical to advancing our understanding and representation of belowground processes in the face of environmental change. Here we introduce data sets that support assumptions of scale invariance and scale dependent processes and discuss their application in global-scale biogeochemical models. We identify particular domains over which assumptions of scale invariance may be appropriate and potential thresholds where shifts in ecosystem function may be expected. Finally, we discuss the mechanistic insight that can be applied in process-based models and datasets that can evaluate models across spatial and temporal scales.
Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?
NASA Astrophysics Data System (ADS)
Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.
2016-12-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.
A Comprehensive Response: The Role of Nonstate Actors in the Global Plan.
Vitillo, Robert J; Merico, Francesca; Levine, Anna S; Buonocore, Taylor
2017-05-01
Nonstate actors-especially faith-based organizations, other nongovernmental organizations, groups of people living with HIV and AIDS, and private sector organizations-have been deeply committed to supporting governments reach the goals of the Global Plan Towards the Elimination of New HIV Infections Among Children by 2015 and Keeping Their Mothers Alive (Global Plan). This article highlights the role and contributions of select faith-based organizations and some private sector and philanthropic partners, as well as the work of other organizations. The success and impact of the Global Plan was in no small part a result of large-scale country-led collaboration in the provision of health care and implementation of programs. As the world grapples with meeting the ambitious United Nations Joint Programme on AIDS targets to end the AIDS epidemic by 2030-at a time when it also faces many other emerging health crises-the lessons learned from the Global Plan in harnessing the strengths of nonstate partners are the ones that should be replicated, enhanced, and taken to scale.
NASA Technical Reports Server (NTRS)
Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming
2012-01-01
Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.
Ecological Consistency of SSU rRNA-Based Operational Taxonomic Units at a Global Scale
Schmidt, Thomas S. B.; Matias Rodrigues, João F.; von Mering, Christian
2014-01-01
Operational Taxonomic Units (OTUs), usually defined as clusters of similar 16S/18S rRNA sequences, are the most widely used basic diversity units in large-scale characterizations of microbial communities. However, it remains unclear how well the various proposed OTU clustering algorithms approximate ‘true’ microbial taxa. Here, we explore the ecological consistency of OTUs – based on the assumption that, like true microbial taxa, they should show measurable habitat preferences (niche conservatism). In a global and comprehensive survey of available microbial sequence data, we systematically parse sequence annotations to obtain broad ecological descriptions of sampling sites. Based on these, we observe that sequence-based microbial OTUs generally show high levels of ecological consistency. However, different OTU clustering methods result in marked differences in the strength of this signal. Assuming that ecological consistency can serve as an objective external benchmark for cluster quality, we conclude that hierarchical complete linkage clustering, which provided the most ecologically consistent partitions, should be the default choice for OTU clustering. To our knowledge, this is the first approach to assess cluster quality using an external, biologically meaningful parameter as a benchmark, on a global scale. PMID:24763141
Global maps of the magnetic thickness and magnetization of the Earth's lithosphere
NASA Astrophysics Data System (ADS)
Vervelidou, Foteini; Thébault, Erwan
2015-10-01
We have constructed global maps of the large-scale magnetic thickness and magnetization of Earth's lithosphere. Deriving such large-scale maps based on lithospheric magnetic field measurements faces the challenge of the masking effect of the core field. In this study, the maps were obtained through analyses in the spectral domain by means of a new regional spatial power spectrum based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism. A series of regional spectral analyses were conducted covering the entire Earth. The R-SCHA surface power spectrum for each region was estimated using the NGDC-720 spherical harmonic (SH) model of the lithospheric magnetic field, which is based on satellite, aeromagnetic, and marine measurements. These observational regional spectra were fitted to a recently proposed statistical expression of the power spectrum of Earth's lithospheric magnetic field, whose free parameters include the thickness and magnetization of the magnetic sources. The resulting global magnetic thickness map is compared to other crustal and magnetic thickness maps based upon different geophysical data. We conclude that the large-scale magnetic thickness of the lithosphere is on average confined to a layer that does not exceed the Moho.
A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.
2016-12-01
Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.
Irrational Delay Revisited: Examining Five Procrastination Scales in a Global Sample
Svartdal, Frode; Steel, Piers
2017-01-01
Scales attempting to measure procrastination focus on different facets of the phenomenon, yet they share a common understanding of procrastination as an unnecessary, unwanted, and disadvantageous delay. The present paper examines in a global sample (N = 4,169) five different procrastination scales – Decisional Procrastination Scale (DPS), Irrational Procrastination Scale (IPS), Pure Procrastination Scale (PPS), Adult Inventory of Procrastination Scale (AIP), and General Procrastination Scale (GPS), focusing on factor structures and item functioning using Confirmatory Factor Analysis and Item Response Theory. The results indicated that The PPS (12 items selected from DPS, AIP, and GPS) measures different facets of procrastination even better than the three scales it is based on. An even shorter version of the PPS (5 items focusing on irrational delay), corresponds well to the nine-item IPS. Both scales demonstrate good psychometric properties and appear to be superior measures of core procrastination attributes than alternative procrastination scales. PMID:29163302
Irrational Delay Revisited: Examining Five Procrastination Scales in a Global Sample.
Svartdal, Frode; Steel, Piers
2017-01-01
Scales attempting to measure procrastination focus on different facets of the phenomenon, yet they share a common understanding of procrastination as an unnecessary, unwanted, and disadvantageous delay. The present paper examines in a global sample ( N = 4,169) five different procrastination scales - Decisional Procrastination Scale (DPS), Irrational Procrastination Scale (IPS), Pure Procrastination Scale (PPS), Adult Inventory of Procrastination Scale (AIP), and General Procrastination Scale (GPS), focusing on factor structures and item functioning using Confirmatory Factor Analysis and Item Response Theory. The results indicated that The PPS (12 items selected from DPS, AIP, and GPS) measures different facets of procrastination even better than the three scales it is based on. An even shorter version of the PPS (5 items focusing on irrational delay), corresponds well to the nine-item IPS. Both scales demonstrate good psychometric properties and appear to be superior measures of core procrastination attributes than alternative procrastination scales.
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-05-01
Glacier length is an important measure of glacier geometry but global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using a fully automated method based on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for the same area as well as for Alaska, and eventually applied to all ∼200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where DEM quality is good (East Greenland) and limited precision on low quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on model output we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a central parameter to global glacier inventories. Global and regional scaling laws might proof beneficial in conceptual glacier models.
Global Albedo Variations on Mars from Recent MRO/MARCI and Other Space-Based Observations
NASA Astrophysics Data System (ADS)
Bell, J. F., III; Wellington, D. F.
2017-12-01
Dramatic changes in Mars surface albedo have been quantified by telescopic, orbital, and surface-based observations over the last 40 years. These changes provide important inputs for global and mesoscale climate models, enabling characterization of seasonal and secular variations in the distribution of mobile surface materials (dust, sand) in the planet's current climate regime. Much of the modern record of dust storms and albedo changes comes from synoptic-scale global imaging from the Viking Orbiter, Mars Global Surveyor (MGS), Hubble Space Telescope (HST), and Mars Reconnaissance Orbiter (MRO) missions, as well as local-scale observations from long-lived surface platforms like the Spirit and Opportunity rovers. Here we focus on the substantial time history of global-scale images acquired from the MRO Mars Color Imager (MARCI). MARCI is a wide-angle multispectral imager that acquires daily coverage of most of the surface at up to 1 km/pixel. MARCI has been in orbit since 2006, providing six Mars years of continuous surface and atmospheric observations, and building on the nearly five previous Mars years of global-scale imaging from the MGS Mars Orbiter Camera Wide Angle (MOC/WA) imager, which operated from 1997 to 2006. While many of the most significant MARCI-observed changes in the surface albedo are the result of large dust storms, other regions experience seasonal darkening events that repeat with different degrees of annual regularity. Some of these are associated with local dust storms, while for others, frequent surface changes take place with no associated evidence for dust storms, suggesting action by seasonally-variable winds and/or small-scale storms/dust devils too small to resolve. Discrete areas of dramatic surface changes across widely separated regions of Tharsis and in portions of Solis Lacus and Syrtis Major are among the regions where surface changes have been observed without a direct association to specific detectable dust storm events. Deposition following the annual southern summer dusty season plays a significant role in maintaining the cyclic nature of these changes. These and other historical observations also show that major regional or global-scale dust storms produce unique changes that may require several Mars years to reverse.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-05-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-01-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
Global patterns of groundwater table depth.
Fan, Y; Li, H; Miguez-Macho, G
2013-02-22
Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.
The scaling structure of the global road network
Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J.; Rinaldo, Andrea
2017-01-01
Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions. PMID:29134071
The scaling structure of the global road network.
Strano, Emanuele; Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J; Rinaldo, Andrea
2017-10-01
Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions.
Global warming and extinctions of endemic species from biodiversity hotspots.
Jay R. Malcolm; Canran Liu; Ronald P. Neilson; Lara Hansen; Lee Hannah
2006-01-01
Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-C02 climates, calculated changes in habitat areas and associated extinctions of...
NASA Astrophysics Data System (ADS)
Iwahashi, J.; Yamazaki, D.; Matsuoka, M.; Thamarux, P.; Herrick, J.; Yong, A.; Mital, U.
2017-12-01
A seamless model of landform classifications with regional accuracy will be a powerful platform for geophysical studies that forecast geologic hazards. Spatial variability as a function of landform on a global scale was captured in the automated classifications of Iwahashi and Pike (2007) and additional developments are presented here that incorporate more accurate depictions using higher-resolution elevation data than the original 1-km scale Shuttle Radar Topography Mission digital elevation model (DEM). We create polygon-based terrain classifications globally by using the 280-m DEM interpolated from the Multi-Error-Removed Improved-Terrain DEM (MERIT; Yamazaki et al., 2017). The multi-scale pixel-image analysis method, known as Multi-resolution Segmentation (Baatz and Schäpe, 2000), is first used to classify the terrains based on geometric signatures (slope and local convexity) calculated from the 280-m DEM. Next, we apply the machine learning method of "k-means clustering" to prepare the polygon-based classification at the globe-scale using slope, local convexity and surface texture. We then group the divisions with similar properties by hierarchical clustering and other statistical analyses using geological and geomorphological data of the area where landslides and earthquakes are frequent (e.g. Japan and California). We find the 280-m DEM resolution is only partially sufficient for classifying plains. We nevertheless observe that the categories correspond to reported landslide and liquefaction features at the global scale, suggesting that our model is an appropriate platform to forecast ground failure. To predict seismic amplification, we estimate site conditions using the time-averaged shear-wave velocity in the upper 30-m (VS30) measurements compiled by Yong et al. (2016) and the terrain model developed by Yong (2016; Y16). We plan to test our method on finer resolution DEMs and report our findings to obtain a more globally consistent terrain model as there are known errors in DEM derivatives at higher-resolutions. We expect the improvement in DEM resolution (4 times greater detail) and the combination of regional and global coverage will yield a consistent dataset of polygons that have the potential to improve relations to the Y16 estimates significantly.
Global quantum discord and matrix product density operators
NASA Astrophysics Data System (ADS)
Huang, Hai-Lin; Cheng, Hong-Guang; Guo, Xiao; Zhang, Duo; Wu, Yuyin; Xu, Jian; Sun, Zhao-Yu
2018-06-01
In a previous study, we have proposed a procedure to study global quantum discord in 1D chains whose ground states are described by matrix product states [Z.-Y. Sun et al., Ann. Phys. 359, 115 (2015)]. In this paper, we show that with a very simple generalization, the procedure can be used to investigate quantum mixed states described by matrix product density operators, such as quantum chains at finite temperatures and 1D subchains in high-dimensional lattices. As an example, we study the global discord in the ground state of a 2D transverse-field Ising lattice, and pay our attention to the scaling behavior of global discord in 1D sub-chains of the lattice. We find that, for any strength of the magnetic field, global discord always shows a linear scaling behavior as the increase of the length of the sub-chains. In addition, global discord and the so-called "discord density" can be used to indicate the quantum phase transition in the model. Furthermore, based upon our numerical results, we make some reliable predictions about the scaling of global discord defined on the n × n sub-squares in the lattice.
Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh; D. Todd Jones-Farland
2013-01-01
Efforts to conserve regional biodiversity in the face of global climate change, habitat loss and fragmentation will depend on approaches that consider population processes at multiple scales. By combining habitat and demographic modeling, landscape-based population viability models effectively relate small-scale habitat and landscape patterns to regional population...
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.
Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.
Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less
Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...
2018-02-09
Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less
Walker, Anthony P; Quaife, Tristan; van Bodegom, Peter M; De Kauwe, Martin G; Keenan, Trevor F; Joiner, Joanna; Lomas, Mark R; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan; Woodward, F Ian
2017-09-01
The maximum photosynthetic carboxylation rate (V cmax ) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr -1 , 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r = 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.
NASA Technical Reports Server (NTRS)
Walker, Anthony P.; Quaife, Tristan; Van Bodegom, Peter M.; De Kauwe, Martin G.; Keenan, Trevor F.; Joiner, Joanna; Lomas, Mark R.; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan;
2017-01-01
The maximum photosynthetic carboxylation rate (V (sub cmax)) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V(sub cmax) distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 petagrams of Carbon (PgC) per year, 65 percent of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27percent coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r equals 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V(sub cmax) variation in the field, particularly in northern latitudes.
Advances in Landslide Nowcasting: Evaluation of a Global and Regional Modeling Approach
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia Bach; Peters-Lidard, Christa; Adler, Robert; Hong, Yang; Kumar, Sujay; Lerner-Lam, Arthur
2011-01-01
The increasing availability of remotely sensed data offers a new opportunity to address landslide hazard assessment at larger spatial scales. A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that may experience landslide activity. This system combines a calculation of static landslide susceptibility with satellite-derived rainfall estimates and uses a threshold approach to generate a set of nowcasts that classify potentially hazardous areas. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale near real-time landslide hazard assessment efforts, it requires several modifications before it can be fully realized as an operational tool. This study draws upon a prior work s recommendations to develop a new approach for considering landslide susceptibility and hazard at the regional scale. This case study calculates a regional susceptibility map using remotely sensed and in situ information and a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America. The susceptibility map is evaluated with a regional rainfall intensity duration triggering threshold and results are compared with the global algorithm framework for the same event. Evaluation of this regional system suggests that this empirically based approach provides one plausible way to approach some of the data and resolution issues identified in the global assessment. The presented methodology is straightforward to implement, improves upon the global approach, and allows for results to be transferable between regions. The results also highlight several remaining challenges, including the empirical nature of the algorithm framework and adequate information for algorithm validation. Conclusions suggest that integrating additional triggering factors such as soil moisture may help to improve algorithm performance accuracy. The regional algorithm scenario represents an important step forward in advancing regional and global-scale landslide hazard assessment.
Photogrammetric portrayal of Mars topography.
Wu, S.S.C.
1979-01-01
Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.-Author
Photogrammetric portrayal of Mars topography
NASA Technical Reports Server (NTRS)
Wu, S. S. C.
1979-01-01
Special photogrammetric techniques have been developed to portray Mars topography, using Mariner and Viking imaging and nonimaging topographic information and earth-based radar data. Topography is represented by the compilation of maps at three scales: global, intermediate, and very large scale. The global map is a synthesis of topographic information obtained from Mariner 9 and earth-based radar, compiled at a scale of 1:25,000,000 with a contour interval of 1 km; it gives a broad quantitative view of the planet. At intermediate scales, Viking Orbiter photographs of various resolutions are used to compile detailed contour maps of a broad spectrum of prominent geologic features; a contour interval as small as 20 m has been obtained from very high resolution orbital photography. Imagery from the Viking lander facsimile cameras permits construction of detailed, very large scale (1:10) topographic maps of the terrain surrounding the two landers; these maps have a contour interval of 1 cm. This paper presents several new detailed topographic maps of Mars.
Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods
NASA Technical Reports Server (NTRS)
Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.;
2016-01-01
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
Similar estimates of temperature impacts on global wheat yield by three independent methods
NASA Astrophysics Data System (ADS)
Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan
2016-12-01
The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.
The global reference atmospheric model, mod 2 (with two scale perturbation model)
NASA Technical Reports Server (NTRS)
Justus, C. G.; Hargraves, W. R.
1976-01-01
The Global Reference Atmospheric Model was improved to produce more realistic simulations of vertical profiles of atmospheric parameters. A revised two scale random perturbation model using perturbation magnitudes which are adjusted to conform to constraints imposed by the perfect gas law and the hydrostatic condition is described. The two scale perturbation model produces appropriately correlated (horizontally and vertically) small scale and large scale perturbations. These stochastically simulated perturbations are representative of the magnitudes and wavelengths of perturbations produced by tides and planetary scale waves (large scale) and turbulence and gravity waves (small scale). Other new features of the model are: (1) a second order geostrophic wind relation for use at low latitudes which does not "blow up" at low latitudes as the ordinary geostrophic relation does; and (2) revised quasi-biennial amplitudes and phases and revised stationary perturbations, based on data through 1972.
A new, accurate, global hydrography data for remote sensing and modelling of river hydrodynamics
NASA Astrophysics Data System (ADS)
Yamazaki, D.
2017-12-01
A high-resolution hydrography data is an important baseline data for remote sensing and modelling of river hydrodynamics, given the spatial scale of river network is much smaller than that of land hydrology or atmosphere/ocean circulations. For about 10 years, HydroSHEDS, developed based on the SRTM3 DEM, has been the only available global-scale hydrography data. However, the data availability at the time of HydroSHEDS development limited the quality of the represented river networks. Here, we developed a new global hydrography data using latest geodata such as the multi-error-removed elevation data (MERIT DEM), Landsat-based global water body data (GSWO & G3WBM), cloud-sourced open geography database (OpenStreetMap). The new hydrography data covers the entire globe (including boreal regions above 60N), and it represents more detailed structure of the world river network and contains consistent supplementary data layers such as hydrologically adjusted elevations and river channel width. In the AGU meeting, the developing methodology, assessed quality, and potential applications of the new global hydrography data will be introduced.
NASA Astrophysics Data System (ADS)
Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.
2014-12-01
Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have long-term effects on ecosystems. Our synthetic simulations show that while tropical ecosystems uptake may reach pre-disturbance level after a decade, biomass stocks would most likely need more than a century to recover from a single extreme disturbance event.
Evaluation of Global Observations-Based Evapotranspiration Datasets and IPCC AR4 Simulations
NASA Technical Reports Server (NTRS)
Mueller, B.; Seneviratne, S. I.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J. B.; Guo, Z.;
2011-01-01
Quantification of global land evapotranspiration (ET) has long been associated with large uncertainties due to the lack of reference observations. Several recently developed products now provide the capacity to estimate ET at global scales. These products, partly based on observational data, include satellite ]based products, land surface model (LSM) simulations, atmospheric reanalysis output, estimates based on empirical upscaling of eddycovariance flux measurements, and atmospheric water balance datasets. The LandFlux-EVAL project aims to evaluate and compare these newly developed datasets. Additionally, an evaluation of IPCC AR4 global climate model (GCM) simulations is presented, providing an assessment of their capacity to reproduce flux behavior relative to the observations ]based products. Though differently constrained with observations, the analyzed reference datasets display similar large-scale ET patterns. ET from the IPCC AR4 simulations was significantly smaller than that from the other products for India (up to 1 mm/d) and parts of eastern South America, and larger in the western USA, Australia and China. The inter-product variance is lower across the IPCC AR4 simulations than across the reference datasets in several regions, which indicates that uncertainties may be underestimated in the IPCC AR4 models due to shared biases of these simulations.
Towards the Redefinition of the Global Stratigraphy of Mercury: The Case of Intermediate Plains
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Rothery, D. A.; Massironi, M.; Ferranti, L.; Mercury Mapping Team
2018-05-01
Observations based on an average mapping scale of 1:400k provide context for the redefinition of the global stratigraphy of Mercury. Results show that the Intermediate Plains unit should be re-introduced as an official mappable terrain.
NASA Technical Reports Server (NTRS)
Randel, D. L.; Campbell, G. G.; Vonder Haar, T. H.; Smith, L.
1986-01-01
Scale factors and assumptions which were applied in calculations of global radiation budget parameters based on ERB data are discussed. The study was performed to examine the relationship between the composite global ERB map that can be generated every six days using all available data and the actual average global ERB. The wide field of view ERB instrument functioned for the first 19 months of the Nimbus-7 life, and furnished sufficient data for calculating actual ERB averages. The composite was most accurate in regions with the least variation in radiation budget.
NASA Astrophysics Data System (ADS)
Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.
2009-09-01
This contribution presents the ongoing developments of a new fully on-line chemical weather prediction system for meso to global scale applications. The modeling system consists of a mineral dust module and a gas-phase chemistry module coupled on-line to a unified global-regional atmospheric driver. This approach allows solving small scale processes and their interactions at local to global scales. Its unified environment maintains the consistency of all the physico-chemical processes involved. The atmospheric driver is the NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) developed at National Centers for Environmental Prediction (NCEP). It represents an evolution of the operational WRF-NMME model extending from meso to global scales. Its unified non-hydrostatic dynamical core supports regional and global simulations. The Barcelona Supercomputing Center is currently designing and implementing a chemistry transport model coupled online with the new global/regional NMMB. The new modeling system is intended to be a powerful tool for research and to provide efficient global and regional chemical weather forecasts at sub-synoptic and mesoscale resolutions. The online coupling of the chemistry follows the approach similar to that of the mineral dust module already coupled to the atmospheric driver, NMMB/BSC-DUST (Pérez et al., 2008). Chemical species are advected and mixed at the corresponding time steps of the meteorological tracers using the same numerical scheme. Advection is eulerian, positive definite and monotone. The chemical mechanism and chemistry solver is based on the Kinetic PreProcessor KPP (Damian et al., 2002) package with the main purpose of maintaining a wide flexibility when configuring the model. Such approach will allow using a simplified chemical mechanism for global applications or a more complete mechanism for high-resolution local or regional studies. Moreover, it will permit the implementation of a specific configuration for forecasting applications in regional or global domains. An emission process allows the coupling of different emission inventories sources such as RETRO, EDGAR and GEIA for the global domain, EMEP for Europe and HERMES for Spain. The photolysis scheme is based on the Fast-J scheme, coupled with physics of each model layer (e.g., aerosols, clouds, absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The dry deposition scheme follows the deposition velocity analogy for gases, enabling the calculation of deposition fluxes from airborne concentrations. No cloud-chemistry processes are included in the system yet (no wet deposition, scavenging and aqueous chemistry). The modeling system developments will be presented and first results of the gas-phase chemistry at global scale will be discussed. REFERENCES Janjic, Z.I., and Black, T.L., 2007. An ESMF unified model for a broad range of spatial and temporal scales, Geophysical Research Abstracts, 9, 05025. Pérez, C., Haustein, K., Janjic, Z.I., Jorba, O., Baldasano, J.M., Black, T.L., and Nickovic, S., 2008. An online dust model within the meso to global NMMB: current progress and plans. AGU Fall Meeting, San Francisco, A41K-03, 2008. Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G.R., 2002. The kinetic preprocessor KPP - A software environment for solving chemical kinetics. Comp. Chem. Eng., 26, 1567-1579. Sandu, A., and Sander, R., 2006. Technical note:Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. and Phys., 6, 187-195.
This paper reviews the controls on aeolian processes and their consequences at plant-interspace, patch-landscape, and regional-global scales. Based on this review, we define the requirements for a cross-scale model of wind erosion in structurally complex arid and semiarid ecosyst...
Biology-Inspired Distributed Consensus in Massively-Deployed Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2005-01-01
Promises of ubiquitous control of the physical environment by large-scale wireless sensor networks open avenues for new applications that are expected to redefine the way we live and work. Most of recent research has concentrated on developing techniques for performing relatively simple tasks in small-scale sensor networks assuming some form of centralized control. The main contribution of this work is to propose a new way of looking at large-scale sensor networks, motivated by lessons learned from the way biological ecosystems are organized. Indeed, we believe that techniques used in small-scale sensor networks are not likely to scale to large networks; that such large-scale networks must be viewed as an ecosystem in which the sensors/effectors are organisms whose autonomous actions, based on local information, combine in a communal way to produce global results. As an example of a useful function, we demonstrate that fully distributed consensus can be attained in a scalable fashion in massively deployed sensor networks where individual motes operate based on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects.
AgMIP Coordinated Global and Regional Assessments for 1.5°C and 2.0°C
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2017-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study performs a proof-of-concept of the CGRA to demonstrate advantages and challenges of the framework. This effort responds to the request by UNFCCC for the implications of limiting global temperature increases to 1.5°C and 2.0°C above pre-industrial conditions. The protocols for the 1.5°C/2.0°C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), HAPPI and CMIP5 ensemble scenarios, global gridded crop models, global agricultural economic models, site-based crop models, and within-country regional economic models. CGRA results show that at the global scale, mixed areas of positive and negative simulated yield changes, with declines in some breadbasket regions led to overall declines in productivity at both 1.5°C and 2.0°C. These projected global yield changes resulted in increases in prices of major commodities in a global economic model. Simulations for 1.5°C and 2.0°C using site-based crop models had mixed results depending on region and crop, but with more negative effects on productivity at 2.0°C than at 1.5°C for the most part. In conjunction with price changes from the global economics models, these productivity declines resulted generally in small positive effects on regional farm livelihoods, showing that farming systems should continue to be viable under high mitigation scenarios. CGRA protocols focus on how mitigation actions and effects differ across scales, with main mechanisms studied in the integrated assessment models being policies and technologies that reduce direct non-CO2 emissions from agriculture, reduce CO2 emissions from land use change and forest sink enhancement, and utilize biomass for energy production. At regional scales, increasing soil organic carbon (SOC) is of active interest.
A dynamic routing strategy with limited buffer on scale-free network
NASA Astrophysics Data System (ADS)
Wang, Yufei; Liu, Feng
2016-04-01
In this paper, we propose an integrated routing strategy based on global static topology information and local dynamic data packet queue lengths to improve the transmission efficiency of scale-free networks. The proposed routing strategy is a combination of a global static routing strategy (based on the shortest path algorithm) and local dynamic queue length management, in which, instead of using an infinite buffer, the queue length of each node i in the proposed routing strategy is limited by a critical queue length Qic. When the network traffic is lower and the queue length of each node i is shorter than its critical queue length Qic, it forwards packets according to the global routing table. With increasing network traffic, when the buffers of the nodes with higher degree are full, they do not receive packets due to their limited buffers and the packets have to be delivered to the nodes with lower degree. The global static routing strategy can shorten the transmission time that it takes a packet to reach its destination, and the local limited queue length can balance the network traffic. The optimal critical queue lengths of nodes have been analysed. Simulation results show that the proposed routing strategy can get better performance than that of the global static strategy based on topology, and almost the same performance as that of the global dynamic routing strategy with less complexity.
NASA Astrophysics Data System (ADS)
Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus
2016-09-01
Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
NASA Technical Reports Server (NTRS)
Fukumori, I.; Raghunath, R.; Fu, L. L.
1996-01-01
The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equaiton model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to February 1996. The physical nature of the temporal variability from periods of days to a year, are examined based on spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements.
Global sensitivity analysis of multiscale properties of porous materials
NASA Astrophysics Data System (ADS)
Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.
2018-02-01
Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.
NASA Technical Reports Server (NTRS)
Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui;
2016-01-01
Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global scale well and thus is appropriate for global applications presented here.
Downscaling global precipitation for local applications - a case for the Rhine basin
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek; van Verseveld, Willem; Schellekens, Jaap
2017-04-01
Within the EU FP7 project eartH2Observe a global Water Resources Re-analysis (WRR) is being developed. This re-analysis consists of meteorological and hydrological water balance variables with global coverage, spanning the period 1979-2014 at 0.25 degrees resolution (Schellekens et al., 2016). The dataset can be of special interest in regions with limited in-situ data availability, yet for local scale analysis particularly in mountainous regions, a resolution of 0.25 degrees may be too coarse and downscaling the data to a higher resolution may be required. A downscaling toolbox has been made that includes spatial downscaling of precipitation based on the global WorldClim dataset that is available at 1 km resolution as a monthly climatology (Hijmans et al., 2005). The input of the down-scaling tool are either the global eartH2Observe WRR1 and WRR2 datasets based on the WFDEI correction methodology (Weedon et al., 2014) or the global Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset (Beck et al., 2016). Here we present a validation of the datasets over the Rhine catchment by means of a distributed hydrological model (wflow, Schellekens et al., 2014) using a number of precipitation scenarios. (1) We start by running the model using the local reference dataset derived by spatial interpolation of gauge observations. Furthermore we use (2) the MSWEP dataset at the native 0.25-degree resolution followed by (3) MSWEP downscaled with the WorldClim dataset and final (4) MSWEP downscaled with the local reference dataset. The validation will be based on comparison of the modeled river discharges as well as rainfall statistics. We expect that down-scaling the MSWEP dataset with the WorldClim data to higher resolution will increase its performance. To test the performance of the down-scaling routine we have added a run with MSWEP data down-scaled with the local dataset and compare this with the run based on the local dataset itself. - Beck, H. E. et al., 2016. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data, Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-236, accepted for final publication. - Hijmans, R.J. et al., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. - Schellekens, J. et al., 2016. A global water resources ensemble of hydrological models: the eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-55, under review. - Schellekens, J. et al., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived digital elevation model. Environmental Modelling&Software - Weedon, G.P. et al., 2014. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resources Research, 50, doi:10.1002/2014WR015638.
NASA Astrophysics Data System (ADS)
Switzer, A.; Yap, W.; Lauro, F.; Gouramanis, C.; Dominey-Howes, D.; Labbate, M.
2016-12-01
This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.
NASA Astrophysics Data System (ADS)
Sorooshian, S.; Nguyen, P.; Hsu, K. L.
2017-12-01
This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.
A Spatial Method to Calculate Small-Scale Fisheries Extent
NASA Astrophysics Data System (ADS)
Johnson, A. F.; Moreno-Báez, M.; Giron-Nava, A.; Corominas, J.; Erisman, B.; Ezcurra, E.; Aburto-Oropeza, O.
2016-02-01
Despite global catch per unit effort having redoubled since the 1950's, the global fishing fleet is estimated to be twice the size that the oceans can sustainably support. In order to gauge the collateral impacts of fishing intensity, we must be able to estimate the spatial extent and amount of fishing vessels in the oceans. Methods that do currently exist are built around electronic tracking and log book systems and generally focus on industrial fisheries. Spatial extent for small-scale fisheries therefore remains elusive for many small-scale fishing fleets; even though these fisheries land the same biomass for human consumption as industrial fisheries. Current methods are data-intensive and require extensive extrapolation when estimated across large spatial scales. We present an accessible, spatial method of calculating the extent of small-scale fisheries based on two simple measures that are available, or at least easily estimable, in even the most data poor fisheries: the number of boats and the local coastal human population. We demonstrate this method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This method provides an important first step towards estimating the fishing extent of the small-scale fleet, globally.
Fractional solubility of aerosol iron: Synthesis of a global-scale data set
NASA Astrophysics Data System (ADS)
Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.; Baker, Alexander R.; Powell, Claire F.
2012-07-01
Aerosol deposition provides a major input of the essential micronutrient iron to the open ocean. A critical parameter with respect to biological availability is the proportion of aerosol iron that enters the oceanic dissolved iron pool - the so-called fractional solubility of aerosol iron (%FeS). Here we present a global-scale compilation of total aerosol iron loading (FeT) and estimated %FeS values for ∼1100 samples collected over the open ocean, the coastal ocean, and some continental sites, including a new data set from the Atlantic Ocean. Despite the wide variety of methods that have been used to define 'soluble' aerosol iron, our global-scale compilation reveals a remarkably consistent trend in the fractional solubility of aerosol iron as a function of total aerosol iron loading, with the great bulk of the data defining an hyperbolic trend. The hyperbolic trends that we observe for both global- and regional-scale data are adequately described by a simple two-component mixing model, whereby the fractional solubility of iron in the bulk aerosol reflects the conservative mixing of 'lithogenic' mineral dust (high FeT and low %FeS) and non-lithogenic 'combustion' aerosols (low FeT and high %FeS). An increasing body of empirical and model-based evidence points to anthropogenic fuel combustion as the major source of these non-lithogenic 'combustion' aerosols, implying that human emissions are a major determinant of the fractional solubility of iron in marine aerosols. The robust global-scale relationship between %FeS and FeT provides a simple heuristic method for estimating aerosol iron solubility at the regional to global scale.
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
Biogeography in the air: fungal diversity over land and oceans
NASA Astrophysics Data System (ADS)
Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.
2012-03-01
Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.
Rocchini, Duccio
2009-01-01
Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600
Scaling law analysis of paraffin thin films on different surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotto, M. E. R.; Camargo, S. S. Jr.
2010-01-15
The dynamics of paraffin deposit formation on different surfaces was analyzed based on scaling laws. Carbon-based films were deposited onto silicon (Si) and stainless steel substrates from methane (CH{sub 4}) gas using radio frequency plasma enhanced chemical vapor deposition. The different substrates were characterized with respect to their surface energy by contact angle measurements, surface roughness, and morphology. Paraffin thin films were obtained by the casting technique and were subsequently characterized by an atomic force microscope in noncontact mode. The results indicate that the morphology of paraffin deposits is strongly influenced by substrates used. Scaling laws analysis for coated substratesmore » present two distinct dynamics: a local roughness exponent ({alpha}{sub local}) associated to short-range surface correlations and a global roughness exponent ({alpha}{sub global}) associated to long-range surface correlations. The local dynamics is described by the Wolf-Villain model, and a global dynamics is described by the Kardar-Parisi-Zhang model. A local correlation length (L{sub local}) defines the transition between the local and global dynamics with L{sub local} approximately 700 nm in accordance with the spacing of planes measured from atomic force micrographs. For uncoated substrates, the growth dynamics is related to Edwards-Wilkinson model.« less
Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion
NASA Astrophysics Data System (ADS)
Ruan, Zhixing; Liu, Guang; Ding, Yixing
2016-07-01
The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.
Global-scale patterns of forest fragmentation
Kurt H. Riitters; James D. Wickham; R. O' Neill; B. Jones; E. Smith
2000-01-01
We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale) to 59,049 km 2 (243 x 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (...
NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales
NASA Technical Reports Server (NTRS)
Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill
2011-01-01
NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.
NASA Astrophysics Data System (ADS)
Dekavalla, Maria; Argialas, Demetre
2017-07-01
The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88.4%), Plateau (78.9%), Continental Slope (76.4%), Trench (71.2%), Abyssal Hill (62.9%), Abyssal Plain (62.4%), Ridge (49.8%), Seamount (48.8%) and Continental Rise (25.4%). The knowledge-based OBIA classification approach was considered transferable since the percentages of spatial and thematic agreement between the most of the classified undersea feature classes and the GSFM exhibited low deviations across the six case studies.
Angeler, David G.; Allen, Craig R.; Johnson, Richard K.
2013-01-01
1. Ecosystems at high altitudes and latitudes are expected to be particularly vulnerable to the effects of global change. We assessed the responses of littoral invertebrate communities to changing abiotic conditions in subarctic Swedish lakes with long-term data (1988–2010) and compared the responses of subarctic lakes with those of more southern, hemiboreal lakes. 2. We used a complex systems approach, based on multivariate time-series modelling, and identified dominant and distinct temporal frequencies in the data; that is, we tracked community change at distinct temporal scales. We determined the distribution of functional feeding groups of invertebrates within and across temporal scales. Within and cross-scale distributions of functions have been considered to confer resilience to ecosystems, despite changing environmental conditions. 3. Two patterns of temporal change within the invertebrate communities were identified that were consistent across the lakes. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second was one of showing fluctuation patterns largely unrelated to gradual environmental change. Thus, two dominant and distinct temporal frequencies (temporal scales) were present in all lakes analysed. 4. Although the contribution of individual feeding groups varied between subarctic and hemiboreal lakes, they shared overall similar functional attributes (richness, evenness, diversity) and redundancies of functions within and between the observed temporal scales. This highlights similar resilience characteristics in subarctic and hemiboreal lakes. 5. Synthesis and applications. The effects of global change can be particularly strong at a single scale in ecosystems. Over time, this can cause monotonic change in communities and eventually lead to a loss of important ecosystem services upon reaching a critical threshold. Dynamics at other spatial or temporal scales can be unrelated to environmental change. The relative ‘intactness’ of these scales that are unaffected by global change and the persistence of functions at those scales may safeguard the whole system from the potential loss of functions at the scale at which global change impacts can be substantial. Thus, an understanding of scale-specific processes provides managers with a realistic assessment of vulnerabilities and the relative resilience of ecosystems to environmental change. Explicit consideration of ‘intact’ and ‘affected’ scales in analyses of global change impacts provides opportunities to tailor more specific management plans.
Zha, Wenting; Zhai, Junyong; Fei, Shumin
2013-07-01
This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Vulnerability of ecosystems to climate change moderated by habitat intactness.
Eigenbrod, Felix; Gonzalez, Patrick; Dash, Jadunandan; Steyl, Ilse
2015-01-01
The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48×48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8×4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large-scale refugia is the priority. In human-dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large-scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network. © 2014 John Wiley & Sons Ltd.
AgMIP 1.5°C Assessment: Mitigation and Adaptation at Coordinated Global and Regional Scales
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2016-12-01
The AgMIP 1.5°C Coordinated Global and Regional Integrated Assessments of Climate Change and Food Security (AgMIP 1.5 CGRA) is linking site-based crop and livestock models with similar models run on global grids, and then links these biophysical components with economics models and nutrition metrics at regional and global scales. The AgMIP 1.5 CGRA assessment brings together experts in climate, crop, livestock, economics, nutrition, and food security to define the 1.5°C Protocols and guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including socioeconomic development (Shared Socioeconomic Pathways), greenhouse gas concentrations (Representative Concentration Pathways), and specific pathways of agricultural sector development (Representative Agricultural Pathways). Shared Climate Policy Assumptions will be extended to provide additional agricultural detail on mitigation and adaptation strategies. The multi-model, multi-disciplinary, multi-scale integrated assessment framework is using scenarios of economic development, adaptation, mitigation, food policy, and food security. These coordinated assessments are grounded in the expertise of AgMIP partners around the world, leading to more consistent results and messages for stakeholders, policymakers, and the scientific community. The early inclusion of nutrition and food security experts has helped to ensure that assessment outputs include important metrics upon which investment and policy decisions may be based. The CGRA builds upon existing AgMIP research groups (e.g., the AgMIP Wheat Team and the AgMIP Global Gridded Crop Modeling Initiative; GGCMI) and regional programs (e.g., AgMIP Regional Teams in Sub-Saharan Africa and South Asia), with new protocols for cross-scale and cross-disciplinary linkages to ensure the propagation of expert judgment and consistent assumptions.
Global drought outlook by means of seasonal forecasts
NASA Astrophysics Data System (ADS)
Ziese, Markus; Fröhlich, Kristina; Rustemeier, Elke; Becker, Andreas
2017-04-01
Droughts are naturally occurring phenomena which are caused by a shortage of available water due to lower than normal precipitation and/or above normal evaporation. Depending on the length of the droughts, several sectors are affected starting with agriculture, then river and ground water levels and finally socio-economic losses at the long end of the spectrum of drought persistence. Droughts are extreme events that affect much larger areas and last much longer than floods, but are less geared towards media than floods being more short-scale in persistence and impacts. Finally the slow onset of droughts make the detection and early warning of their beginning difficult and time is lost for preparatory measures. Drought indices are developed to detect and classify droughts based on (meteorological) observations and possible additional information tailored to specific user needs, e.g. in agriculture, hydrology and other sectors. Not all drought indices can be utilized for global applications as not all input parameters are available at this scale. Therefore the Global Precipitation Climatology Centre (GPCC) developed a drought index as combination of the Standardized Drought Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), the GPCC-DI. The GPCC-DI is applied to drought monitoring and retrospective analyses on a global scale. As the Deutscher Wetterdienst (DWD) operates a seasonal forecast system in cooperation with Max-Planck-Institute for Meteorology Hamburg and University of Hamburg, these data are also used for an outlook of drought conditions by means of the GPCC-DI. The reliability of seasonal precipitation forecasts is limited, so the drought outlook is available only for forecast months two to four. Based on the GPCC-DI, DWD provides a retrospective analysis, near-real-time monitoring and outlook of drought conditions on a global scale and regular basis.
NASA Astrophysics Data System (ADS)
Revilla-Romero, Beatriz; Netgeka, Victor; Raynaud, Damien; Thielen, Jutta
2013-04-01
Flood warning systems typically rely on forecasts from national meteorological services and in-situ observations from hydrological gauging stations. This capacity is not equally developed in flood-prone developing countries. Low-cost satellite monitoring systems and global flood forecasting systems can be an alternative source of information for national flood authorities. The Global Flood Awareness System (GloFAS) has been develop jointly with the European Centre for Medium-Range Weather Forecast (ECMWF) and the Joint Research Centre, and it is running quasi operational now since June 2011. The system couples state-of-the art weather forecasts with a hydrological model driven at a continental scale. The system provides downstream countries with information on upstream river conditions as well as continental and global overviews. In its test phase, this global forecast system provides probabilities for large transnational river flooding at the global scale up to 30 days in advance. It has shown its real-life potential for the first time during the flood in Southeast Asia in 2011, and more recently during the floods in Australia in March 2012, India (Assam, September-October 2012) and Chad Floods (August-October 2012).The Joint Research Centre is working on further research and development, rigorous testing and adaptations of the system to create an operational tool for decision makers, including national and regional water authorities, water resource managers, hydropower companies, civil protection and first line responders, and international humanitarian aid organizations. Currently efforts are being made to link GloFAS to the Global Flood Detection System (GFDS). GFDS is a Space-based river gauging and flood monitoring system using passive microwave remote sensing which was developed by a collaboration between the JRC and Dartmouth Flood Observatory. GFDS provides flood alerts based on daily water surface change measurements from space. Alerts are shown on a world map, with detailed reports for individual gauging sites. A comparison of discharge estimates from the Global Flood Detection System (GFDS) and the Global Flood Awareness System (GloFAS) with observations for representative climatic zones is presented. Both systems have demonstrated strong potential in forecasting and detecting recent catastrophic floods. The usefulness of their combined information on global scale for decision makers at different levels is discussed. Combining space-based monitoring and global forecasting models is an innovative approach and has significant benefits for international river commissions as well as international aid organisations. This is in line with the objectives of the Hyogo and the Post-2015 Framework that aim at the development of systems which involve trans-boundary collaboration, space-based earth observation, flood forecasting and early warning.
The Global Emergency Observation and Warning System
NASA Technical Reports Server (NTRS)
Bukley, Angelia P.; Mulqueen, John A.
1994-01-01
Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.
Reusser, Deborah A.; Lee, Henry
2011-01-01
Threats to marine and estuarine species operate over many spatial scales, from nutrient enrichment at the watershed/estuarine scale to invasive species and climate change at regional and global scales. To help address research questions across these scales, we provide here a standardized framework for a biogeographical information system containing queriable biological data that allows extraction of information on multiple species, across a variety of spatial scales based on species distributions, natural history attributes and habitat requirements. As scientists shift from research on localized impacts on individual species to regional and global scale threats, macroecological approaches of studying multiple species over broad geographical areas are becoming increasingly important. The standardized framework described here for capturing and integrating biological and geographical data is a critical first step towards addressing these macroecological questions and we urge organizations capturing biogeoinformatics data to consider adopting this framework.
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.
1996-01-01
The SUNDIAL-ATLAS effort was a global-scale investigation which responded to the science priorities of the ITM Panel, the Integrated SPD Strategy Implementation Plan as a whole, and the need for potential cost-saving design criteria for the TIMED mission. The investigation focused on coupling processes in the ionospheric-thermospheric system, taking advantage of the timelines of the ATLAS-1 mission (March 1992), and the global-scale ground-based measurement and modeling activities of the SUNDIAL program. The collaborative SUNDIAL-ATLAS activity was the first opportunity for global measurements of the chemistry, kinetics, and electrodynamics which couple the E-, Fl-, and F2-regions into a single interactive system. As such, the program represented an important first step in studying global issues; and accordingly, was an important proof of concept experiment relevant to the strategic mission plans for the ITM community and the upcoming intermediate class satellite program called TIMED. To meet its projected goals, TIMED must perform a number of critical measurements and execute a number of correlations that were to be tried and tested for the first time in the SUNDIAL-ATLAS investigation. This was designed to include global correlations of thermospheric and ionospheric composition during quiet and disturbed conditions and the co-registration of global-scale ground-based measurements with along-track satellite diagnostics. The SUNDIAL component of the current investigation addressed this need by acquiring, reducing, and analyzing a multi-sensor database that complemented and extended that which was generated in the ATLAS mission (Atmospheric Laboratory for Applications and Science). The SUNDIAL data defined the state and condition of the global-scale ionosphere in the altitude range from 100 km to the F2-peak. These data specified the peak heights and densities of the E-, Fl-, and F2-regions, along with the global distributions of intermediate, descending, and sequential layers which play a critical role in the dynamo region of the lower ionospheric-thermospheric domain. The data were collected by the SUNDIAL network of more than 50 ground-based stations utilizing ionosondes, radars, photometers, Fabry-Perot interferometers, and total electron content measurements. The data were acquired during a three-week period centered on the eight-day ATLAS-1 mission, which provided image and photometric sensing of the altitude distributions of the major and minor ions and neutrals in the ITM system. This report focuses on the scientific contributions of the SUNDIAL component of the overall investigation. Specific findings are described in seven papers (attached) published in the Journal of Geophysical Research.
Zhang, Yong-Feng; Chiang, Hsiao-Dong
2017-09-01
A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.
NASA Astrophysics Data System (ADS)
Grill, Günther; Lehner, Bernhard; Lumsdon, Alexander E.; MacDonald, Graham K.; Zarfl, Christiane; Reidy Liermann, Catherine
2015-01-01
The global number of dam constructions has increased dramatically over the past six decades and is forecast to continue to rise, particularly in less industrialized regions. Identifying development pathways that can deliver the benefits of new infrastructure while also maintaining healthy and productive river systems is a great challenge that requires understanding the multifaceted impacts of dams at a range of scales. New approaches and advanced methodologies are needed to improve predictions of how future dam construction will affect biodiversity, ecosystem functioning, and fluvial geomorphology worldwide, helping to frame a global strategy to achieve sustainable dam development. Here, we respond to this need by applying a graph-based river routing model to simultaneously assess flow regulation and fragmentation by dams at multiple scales using data at high spatial resolution. We calculated the cumulative impact of a set of 6374 large existing dams and 3377 planned or proposed dams on river connectivity and river flow at basin and subbasin scales by fusing two novel indicators to create a holistic dam impact matrix for the period 1930-2030. Static network descriptors such as basin area or channel length are of limited use in hierarchically nested and dynamic river systems, so we developed the river fragmentation index and the river regulation index, which are based on river volume. These indicators are less sensitive to the effects of network configuration, offering increased comparability among studies with disparate hydrographies as well as across scales. Our results indicate that, on a global basis, 48% of river volume is moderately to severely impacted by either flow regulation, fragmentation, or both. Assuming completion of all dams planned and under construction in our future scenario, this number would nearly double to 93%, largely due to major dam construction in the Amazon Basin. We provide evidence for the importance of considering small to medium sized dams and for the need to include waterfalls to establish a baseline of natural fragmentation. Our versatile framework can serve as a component of river fragmentation and connectivity assessments; as a standardized, easily replicable monitoring framework at global and basin scales; and as part of regional dam planning and management strategies.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
Dedy, Nicolas J; Szasz, Peter; Louridas, Marisa; Bonrath, Esther M; Husslein, Heinrich; Grantcharov, Teodor P
2015-06-01
Nontechnical skills are critical for patient safety in the operating room (OR). As a result, regulatory bodies for accreditation and certification have mandated the integration of these competencies into postgraduate education. A generally accepted approach to the in-training assessment of nontechnical skills, however, is lacking. The goal of the present study was to develop an evidence-based and reliable tool for the in-training assessment of residents' nontechnical performance in the OR. The Objective Structured Assessment of Nontechnical Skills tool was designed as a 5-point global rating scale with descriptive anchors for each item, based on existing evidence-based frameworks of nontechnical skills, as well as resident training requirements. The tool was piloted on scripted videos and refined in an iterative process. The final version was used to rate residents' performance in recorded OR crisis simulations and during live observations in the OR. A total of 37 simulations and 10 live procedures were rated. Interrater agreement was good for total mean scores, both in simulation and in the real OR, with intraclass correlation coefficients >0.90 in all settings for average and single measures. Internal consistency of the scale was high (Cronbach's alpha = 0.80). The Objective Structured Assessment of Nontechnical Skills global rating scale was developed as an evidence-based tool for the in-training assessment of residents' nontechnical performance in the OR. Unique descriptive anchors allow for a criterion-referenced assessment of performance. Good reliability was demonstrated in different settings, supporting applications in research and education. Copyright © 2015 Elsevier Inc. All rights reserved.
Synthesis: Deriving a Core Set of Recommendations to Optimize Diabetes Care on a Global Scale.
Mechanick, Jeffrey I; Leroith, Derek
2015-01-01
Diabetes afflicts 382 million people worldwide, with increasing prevalence rates and adverse effects on health, well-being, and society in general. There are many drivers for the complex presentation of diabetes, including environmental and genetic/epigenetic factors. The aim was to synthesize a core set of recommendations from information from 14 countries that can be used to optimize diabetes care on a global scale. Information from 14 papers in this special issue of Annals of Global Health was reviewed, analyzed, and sorted to synthesize recommendations. PubMed was searched for relevant studies on diabetes and global health. Key findings are as follows: (1) Population-based transitions distinguish region-specific diabetes care; (2) biological drivers for diabetes differ among various populations and need to be clarified scientifically; (3) principal resource availability determines quality-of-care metrics; and (4) governmental involvement, independent of economic barriers, improves the contextualization of diabetes care. Core recommendations are as follows: (1) Each nation should assess region-specific epidemiology, the scientific evidence base, and population-based transitions to establish risk-stratified guidelines for diagnosis and therapeutic interventions; (2) each nation should establish a public health imperative to provide tools and funding to successfully implement these guidelines; and (3) each nation should commit to education and research to optimize recommendations for a durable effect. Systematic acquisition of information about diabetes care can be analyzed, extrapolated, and then used to provide a core set of actionable recommendations that may be further studied and implemented to improve diabetes care on a global scale. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wen, Guoyong; Cahalan, Robert F.; Rind, David; Jonas, Jeffrey; Pilewskie, Peter; Wu, Dong L.; Krivova, Natalie A.
2017-03-01
We apply two reconstructed spectral solar forcing scenarios, one SIM (Spectral Irradiance Monitor) based, the other the SATIRE (Spectral And Total Irradiance REconstruction) modeled, as inputs to the GISS (Goddard Institute for Space Studies) GCMAM (Global Climate Middle Atmosphere Model) to examine climate responses on decadal to centennial time scales, focusing on quantifying the difference of climate response between the two solar forcing scenarios. We run the GCMAM for about 400 years with present day trace gas and aerosol for the two solar forcing inputs. We find that the SIM-based solar forcing induces much larger long-term response and 11-year variation in global averaged stratospheric temperature and column ozone. We find significant decreasing trends of planetary albedo for both forcing scenarios in the 400-year model runs. However the mechanisms for the decrease are very different. For SATIRE solar forcing, the decreasing trend of planetary albedo is associated with changes in cloud cover. For SIM-based solar forcing, without significant change in cloud cover on centennial and longer time scales, the apparent decreasing trend of planetary albedo is mainly due to out-of-phase variation in shortwave radiative forcing proxy (downwelling flux for wavelength >330 nm) and total solar irradiance (TSI). From the Maunder Minimum to present, global averaged annual mean surface air temperature has a response of 0.1 °C to SATIRE solar forcing compared to 0.04 °C to SIM-based solar forcing. For 11-year solar cycle, the global surface air temperature response has 3-year lagged response to either forcing scenario. The global surface air 11-year temperature response to SATIRE forcing is about 0.12 °C, similar to recent multi-model estimates, and comparable to the observational-based evidence. However, the global surface air temperature response to 11-year SIM-based solar forcing is insignificant and inconsistent with observation-based evidence.
Escalante, Agustín; Haas, Roy W; del Rincón, Inmaculada
2004-01-01
Outcome assessment in patients with rheumatoid arthritis (RA) includes measurement of physical function. We derived a scale to quantify global physical function in RA, using three performance-based rheumatology function tests (RFTs). We measured grip strength, walking velocity, and shirt button speed in consecutive RA patients attending scheduled appointments at six rheumatology clinics, repeating these measurements after a median interval of 1 year. We extracted the underlying latent variable using principal component factor analysis. We used the Bayesian information criterion to assess the global physical function scale's cross-sectional fit to criterion standards. The criteria were joint tenderness, swelling, and deformity, pain, physical disability, current work status, and vital status at 6 years after study enrolment. We computed Guyatt's responsiveness statistic for improvement according to the American College of Rheumatology (ACR) definition. Baseline functional performance data were available for 777 patients, and follow-up data were available for 681. Mean ± standard deviation for each RFT at baseline were: grip strength, 14 ± 10 kg; walking velocity, 194 ± 82 ft/min; and shirt button speed, 7.1 ± 3.8 buttons/min. Grip strength and walking velocity departed significantly from normality. The three RFTs loaded strongly on a single factor that explained ≥70% of their combined variance. We rescaled the factor to vary from 0 to 100. Its mean ± standard deviation was 41 ± 20, with a normal distribution. The new global scale had a stronger fit than the primary RFT to most of the criterion standards. It correlated more strongly with physical disability at follow-up and was more responsive to improvement defined according to the ACR20 and ACR50 definitions. We conclude that a performance-based physical function scale extracted from three RFTs has acceptable distributional and measurement properties and is responsive to clinically meaningful change. It provides a parsimonious scale to measure global physical function in RA. PMID:15225367
Evaluation of high fidelity patient simulator in assessment of performance of anaesthetists.
Weller, J M; Bloch, M; Young, S; Maze, M; Oyesola, S; Wyner, J; Dob, D; Haire, K; Durbridge, J; Walker, T; Newble, D
2003-01-01
There is increasing emphasis on performance-based assessment of clinical competence. The High Fidelity Patient Simulator (HPS) may be useful for assessment of clinical practice in anaesthesia, but needs formal evaluation of validity, reliability, feasibility and effect on learning. We set out to assess the reliability of a global rating scale for scoring simulator performance in crisis management. Using a global rating scale, three judges independently rated videotapes of anaesthetists in simulated crises in the operating theatre. Five anaesthetists then independently rated subsets of these videotapes. There was good agreement between raters for medical management, behavioural attributes and overall performance. Agreement was high for both the initial judges and the five additional raters. Using a global scale to assess simulator performance, we found good inter-rater reliability for scoring performance in a crisis. We estimate that two judges should provide a reliable assessment. High fidelity simulation should be studied further for assessing clinical performance.
Multiscale global identification of porous structures
NASA Astrophysics Data System (ADS)
Hatłas, Marcin; Beluch, Witold
2018-01-01
The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.
NASA Technical Reports Server (NTRS)
Mcewen, A. S.; Soderblom, L. A.; Becker, T. L.; Lee, E. M.; Batson, R. M.
1993-01-01
About 1000 Viking Orbiter red and violet filter images have been processed to provide global color coverage of Mars at a scale of 1 km/pixel. Individual image frames acquired during a single spacecraft revolution ('rev') were first processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking. A total of 57 'single-rev' mosaics have been produced. Phase angles range from 13 to 85 degrees. All the mosaics are geometrically tied to the Mars digital image mosaic (MDIM), a black-and-white base map with a scale of 231 m/pixel.
The global coastline dataset: the observed relation between erosion and sea-level rise
NASA Astrophysics Data System (ADS)
Donchyts, G.; Baart, F.; Luijendijk, A.; Hagenaars, G.
2017-12-01
Erosion of sandy coasts is considered one of the key risks of sea-level rise. Because sandy coastlines of the world are often highly populated, erosive coastline trends result in risk to populations and infrastructure. Most of our understanding of the relation between sea-level rise and coastal erosion is based on local or regional observations and generalizations of numerical and physical experiments. Until recently there was no reliable global scale assessment of the location of sandy coasts and their rate of erosion and accretion. Here we present the global coastline dataset that covers erosion indicators on a local scale with global coverage. The dataset uses our global coastline transects grid defined with an alongshore spacing of 250 m and a cross shore length extending 1 km seaward and 1 km landward. This grid matches up with pre-existing local grids where available. We present the latest results on validation of coastal-erosion trends (based on optical satellites) and classification of sandy versus non-sandy coasts. We show the relation between sea-level rise (based both on tide-gauges and multi-mission satellite altimetry) and observed erosion trends over the last decades, taking into account broken-coastline trends (for example due to nourishments).An interactive web application presents the publicly-accessible results using a backend based on Google Earth Engine. It allows both researchers and stakeholders to use objective estimates of coastline trends, particularly when authoritative sources are not available.
Biogeography in the air: fungal diversity over land and oceans
NASA Astrophysics Data System (ADS)
Fröhlich-Nowoisky, J.; Burrows, S. M.; Xie, Z.; Engling, G.; Solomon, P. A.; Fraser, M. P.; Mayol-Bracero, O. L.; Artaxo, P.; Begerow, D.; Conrad, R.; Andreae, M. O.; Després, V. R.; Pöschl, U.
2011-07-01
Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.
Devaraju, N; Bala, G; Nemani, R
2015-09-01
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.
Universal Health Coverage for Schizophrenia: A Global Mental Health Priority
Patel, Vikram
2016-01-01
The growing momentum towards a global consensus on universal health coverage, alongside an acknowledgment of the urgency and importance of a comprehensive mental health action plan, offers a unique opportunity for a substantial scale-up of evidence-based interventions and packages of care for a range of mental disorders in all countries. There is a robust evidence base testifying to the effectiveness of drug and psychosocial interventions for people with schizophrenia and to the feasibility, acceptability and cost-effectiveness of the delivery of these interventions through a collaborative care model in low resource settings. While there are a number of barriers to scaling up this evidence, for eg, the finances needed to train and deploy community based workers and the lack of agency for people with schizophrenia, the experiences of some upper middle income countries show that sustained political commitment, allocation of transitional financial resources to develop community services, a commitment to an integrated approach with a strong role for community based institutions and providers, and a progressive realization of coverage are the key ingredients for scale up of services for schizophrenia. PMID:26245942
The Updating of Geospatial Base Data
NASA Astrophysics Data System (ADS)
Alrajhi, Muhamad N.; Konecny, Gottfried
2018-04-01
Topopographic mapping issues concern the area coverage at different scales and their age. The age of the map is determined by the system of updating. The United Nations (UNGGIM) have attempted to track the global map coverage at various scale ranges, which has greatly improved in recent decades. However the poor state of updating of base maps is still a global problem. In Saudi Arabia large scale mapping is carried out for all urban, suburban and rural areas by aerial surveys. Updating is carried out by remapping every 5 to 10 years. Due to the rapid urban development this is not satisfactory, but faster update methods are forseen by use of high resolution satellite imagery and the improvement of object oriented geodatabase structures, which will permit to utilize various survey technologies to update the photogrammetry established geodatabases. The longterm goal is to create an geodata infrastructure, which exists in Great Britain or Germany.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less
1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the...
Tan, Jerry; Wolfe, Barat; Weiss, Jonathan; Stein-Gold, Linda; Bikowski, Joseph; Del Rosso, James; Webster, Guy F; Lucky, Anne; Thiboutot, Diane; Wilkin, Jonathan; Leyden, James; Chren, Mary-Margaret
2012-08-01
There are multiple global scales for acne severity grading but no singular standard. Our objective was to determine the essential clinical components (content items) and features (property-related items) for an acne global grading scale for use in research and clinical practice using an iterative method, the Delphi process. Ten acne experts were invited to participate in a Web-based Delphi survey comprising 3 iterative rounds of questions. In round 1, the experts identified the following clinical components (primary acne lesions, number of lesions, extent, regional involvement, secondary lesions, and patient experiences) and features (clinimetric properties, ease of use, categorization of severity based on photographs or text, and acceptance by all stakeholders). In round 2, consensus for inclusion in the scale was established for primary lesions, number, sites, and extent; as well as clinimetric properties and ease of use. In round 3, consensus for inclusion was further established for categorization and acceptance. Patient experiences were excluded and no consensus was achieved for secondary lesions. The Delphi panel consisted solely of the United States (U.S.)-based acne experts. Using an established method for achieving consensus, experts in acne vulgaris concluded that an ideal acne global grading scale would comprise the essential clinical components of primary acne lesions, their quantity, extent, and facial and extrafacial sites of involvement; with features of clinimetric properties, categorization, efficiency, and acceptance. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
A global probabilistic tsunami hazard assessment from earthquake sources
Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana
2017-01-01
Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.
The length of the world's glaciers - a new approach for the global calculation of center lines
NASA Astrophysics Data System (ADS)
Machguth, H.; Huss, M.
2014-09-01
Glacier length is an important measure of glacier geometry. Nevertheless, global glacier inventories are mostly lacking length data. Only recently semi-automated approaches to measure glacier length have been developed and applied regionally. Here we present a first global assessment of glacier length using an automated method that relies on glacier surface slope, distance to the glacier margins and a set of trade-off functions. The method is developed for East Greenland, evaluated for East Greenland as well as for Alaska and eventually applied to all ~ 200 000 glaciers around the globe. The evaluation highlights accurately calculated glacier length where digital elevation model (DEM) quality is high (East Greenland) and limited accuracy on low-quality DEMs (parts of Alaska). Measured length of very small glaciers is subject to a certain level of ambiguity. The global calculation shows that only about 1.5% of all glaciers are longer than 10 km, with Bering Glacier (Alaska/Canada) being the longest glacier in the world at a length of 196 km. Based on the output of our algorithm we derive global and regional area-length scaling laws. Differences among regional scaling parameters appear to be related to characteristics of topography and glacier mass balance. The present study adds glacier length as a key parameter to global glacier inventories. Global and regional scaling laws might prove beneficial in conceptual glacier models.
NASA Astrophysics Data System (ADS)
Nascetti, A.; Di Rita, M.; Ravanelli, R.; Amicuzi, M.; Esposito, S.; Crespi, M.
2017-05-01
The high-performance cloud-computing platform Google Earth Engine has been developed for global-scale analysis based on the Earth observation data. In particular, in this work, the geometric accuracy of the two most used nearly-global free DSMs (SRTM and ASTER) has been evaluated on the territories of four American States (Colorado, Michigan, Nevada, Utah) and one Italian Region (Trentino Alto- Adige, Northern Italy) exploiting the potentiality of this platform. These are large areas characterized by different terrain morphology, land covers and slopes. The assessment has been performed using two different reference DSMs: the USGS National Elevation Dataset (NED) and a LiDAR acquisition. The DSMs accuracy has been evaluated through computation of standard statistic parameters, both at global scale (considering the whole State/Region) and in function of the terrain morphology using several slope classes. The geometric accuracy in terms of Standard deviation and NMAD, for SRTM range from 2-3 meters in the first slope class to about 45 meters in the last one, whereas for ASTER, the values range from 5-6 to 30 meters. In general, the performed analysis shows a better accuracy for the SRTM in the flat areas whereas the ASTER GDEM is more reliable in the steep areas, where the slopes increase. These preliminary results highlight the GEE potentialities to perform DSM assessment on a global scale.
A high-resolution global-scale groundwater model
NASA Astrophysics Data System (ADS)
de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.
2015-02-01
Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.
Magliocca, Nicholas R; Brown, Daniel G; Ellis, Erle C
2014-01-01
Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement.
Magliocca, Nicholas R.; Brown, Daniel G.; Ellis, Erle C.
2014-01-01
Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement. PMID:24489696
NASA Astrophysics Data System (ADS)
Wood, E. F.; Yuan, X.; Sheffield, J.; Pan, M.; Roundy, J.
2013-12-01
One of the key recommendations of the WCRP Global Drought Information System (GDIS) workshop is to develop an experimental real-time global monitoring and prediction system. While great advances has been made in global drought monitoring based on satellite observations and model reanalysis data, global drought forecasting has been stranded in part due to the limited skill both in climate forecast models and global hydrologic predictions. Having been working on drought monitoring and forecasting over USA for more than a decade, the Princeton land surface hydrology group is now developing an experimental global drought early warning system that is based on multiple climate forecast models and a calibrated global hydrologic model. In this presentation, we will test its capability in seasonal forecasting of meteorological, agricultural and hydrologic droughts over global major river basins, using precipitation, soil moisture and streamflow forecasts respectively. Based on the joint probability distribution between observations using Princeton's global drought monitoring system and model hindcasts and real-time forecasts from North American Multi-Model Ensemble (NMME) project, we (i) bias correct the monthly precipitation and temperature forecasts from multiple climate forecast models, (ii) downscale them to a daily time scale, and (iii) use them to drive the calibrated VIC model to produce global drought forecasts at a 1-degree resolution. A parallel run using the ESP forecast method, which is based on resampling historical forcings, is also carried out for comparison. Analysis is being conducted over global major river basins, with multiple drought indices that have different time scales and characteristics. The meteorological drought forecast does not have uncertainty from hydrologic models and can be validated directly against observations - making the validation an 'apples-to-apples' comparison. Preliminary results for the evaluation of meteorological drought onset hindcasts indicate that climate models increase drought detectability over ESP by 31%-81%. However, less than 30% of the global drought onsets can be detected by climate models. The missed drought events are associated with weak ENSO signals and lower potential predictability. Due to the high false alarms from climate models, the reliability is more important than sharpness for a skillful probabilistic drought onset forecast. Validations and skill assessments for agricultural and hydrologic drought forecasts are carried out using soil moisture and streamflow output from the VIC land surface model (LSM) forced by a global forcing data set. Given our previous drought forecasting experiences over USA and Africa, validating the hydrologic drought forecasting is a significant challenge for a global drought early warning system.
Towards an purely data driven view on the global carbon cycle and its spatiotemporal variability
NASA Astrophysics Data System (ADS)
Zscheischler, Jakob; Mahecha, Miguel; Reichstein, Markus; Avitabile, Valerio; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Jung, Martin; Landschützer, Peter; Laruelle, Goulven; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Regnier, Pierre; Rödenbeck, Christian; Cuesta, Rosa Maria Roman; Valentini, Ricardo
2015-04-01
Constraining carbon (C) fluxes between the Earth's surface and the atmosphere at regional scale via observations is essential for understanding the Earth's carbon budget and predicting future atmospheric C concentrations. Carbon budgets have often been derived based on merging observations, statistical models and process-based models, for example in the Global Carbon Project (GCP). However, it would be helpful to derive global C budgets and fluxes at global scale as independent as possible from model assumptions to obtain an independent reference. Long-term in-situ measurements of land and ocean C stocks and fluxes have enabled the derivation of a new generation of data driven upscaled data products. Here, we combine a wide range of in-situ derived estimates of terrestrial and aquatic C fluxes for one decade. The data were produced and/or collected during the FP7 project GEOCARBON and include surface-atmosphere C fluxes from the terrestrial biosphere, fossil fuels, fires, land use change, rivers, lakes, estuaries and open ocean. By including spatially explicit uncertainties in each dataset we are able to identify regions that are well constrained by observations and areas where more measurements are required. Although the budget cannot be closed at the global scale, we provide, for the first time, global time-varying maps of the most important C fluxes, which are all directly derived from observations. The resulting spatiotemporal patterns of C fluxes and their uncertainties inform us about the needs for intensifying global C observation activities. Likewise, we provide priors for inversion exercises or to identify regions of high (and low) uncertainty of integrated C fluxes. We discuss the reasons for regions of high observational uncertainties, and for biases in the budget. Our data synthesis might also be used as empirical reference for other local and global C budgeting exercises.
Coordinating AgMIP data and models across global and regional scales for 1.5°C and 2.0°C assessments
NASA Astrophysics Data System (ADS)
Rosenzweig, Cynthia; Ruane, Alex C.; Antle, John; Elliott, Joshua; Ashfaq, Muhammad; Chatta, Ashfaq Ahmad; Ewert, Frank; Folberth, Christian; Hathie, Ibrahima; Havlik, Petr; Hoogenboom, Gerrit; Lotze-Campen, Hermann; MacCarthy, Dilys S.; Mason-D'Croz, Daniel; Contreras, Erik Mencos; Müller, Christoph; Perez-Dominguez, Ignacio; Phillips, Meridel; Porter, Cheryl; Raymundo, Rubi M.; Sands, Ronald D.; Schleussner, Carl-Friedrich; Valdivia, Roberto O.; Valin, Hugo; Wiebe, Keith
2018-05-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.5°C and 2.0°C above pre-industrial conditions. The protocols for the 1.5°C/2.0°C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) and Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble scenarios, global gridded crop models, global agricultural economics models, site-based crop models and within-country regional economics models. The CGRA consistently links disciplines, models and scales in order to track the complex chain of climate impacts and identify key vulnerabilities, feedbacks and uncertainties in managing future risk. CGRA proof-of-concept results show that, at the global scale, there are mixed areas of positive and negative simulated wheat and maize yield changes, with declines in some breadbasket regions, at both 1.5°C and 2.0°C. Declines are especially evident in simulations that do not take into account direct CO2 effects on crops. These projected global yield changes mostly resulted in increases in prices and areas of wheat and maize in two global economics models. Regional simulations for 1.5°C and 2.0°C using site-based crop models had mixed results depending on the region and the crop. In conjunction with price changes from the global economics models, productivity declines in the Punjab, Pakistan, resulted in an increase in vulnerable households and the poverty rate. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Rosenzweig, Cynthia; Ruane, Alex C; Antle, John; Elliott, Joshua; Ashfaq, Muhammad; Chatta, Ashfaq Ahmad; Ewert, Frank; Folberth, Christian; Hathie, Ibrahima; Havlik, Petr; Hoogenboom, Gerrit; Lotze-Campen, Hermann; MacCarthy, Dilys S; Mason-D'Croz, Daniel; Contreras, Erik Mencos; Müller, Christoph; Perez-Dominguez, Ignacio; Phillips, Meridel; Porter, Cheryl; Raymundo, Rubi M; Sands, Ronald D; Schleussner, Carl-Friedrich; Valdivia, Roberto O; Valin, Hugo; Wiebe, Keith
2018-05-13
The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.5°C and 2.0°C above pre-industrial conditions. The protocols for the 1.5°C/2.0°C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) and Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble scenarios, global gridded crop models, global agricultural economics models, site-based crop models and within-country regional economics models. The CGRA consistently links disciplines, models and scales in order to track the complex chain of climate impacts and identify key vulnerabilities, feedbacks and uncertainties in managing future risk. CGRA proof-of-concept results show that, at the global scale, there are mixed areas of positive and negative simulated wheat and maize yield changes, with declines in some breadbasket regions, at both 1.5°C and 2.0°C. Declines are especially evident in simulations that do not take into account direct CO 2 effects on crops. These projected global yield changes mostly resulted in increases in prices and areas of wheat and maize in two global economics models. Regional simulations for 1.5°C and 2.0°C using site-based crop models had mixed results depending on the region and the crop. In conjunction with price changes from the global economics models, productivity declines in the Punjab, Pakistan, resulted in an increase in vulnerable households and the poverty rate.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.
Responses to climate change in hot desert ecosystems: connecting local to global scales
USDA-ARS?s Scientific Manuscript database
The consequences of connectivity in resources, propagules, and information to the interplay between drivers and responses across scales can result in ecological dynamics that are not easily predicted based on local drivers. Three major classes of connectivity events link local ecological dynamics wi...
Global intensification in observed short-duration rainfall extremes
NASA Astrophysics Data System (ADS)
Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.
2017-12-01
Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.
Groundwater development stress: Global-scale indices compared to regional modeling
Alley, William; Clark, Brian R.; Ely, Matt; Faunt, Claudia
2018-01-01
The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem.
Allen, Michael H; Daniel, David G; Revicki, Dennis A; Canuso, Carla M; Turkoz, Ibrahim; Fu, Dong-Jing; Alphs, Larry; Ishak, K Jack; Bartko, John J; Lindenmayer, Jean-Pierre
2012-01-01
The Clinical Global Impression for Schizoaffective Disorder scale is a new rating scale adapted from the Clinical Global Impression scale for use in patients with schizoaffective disorder. The psychometric characteristics of the Clinical Global Impression for Schizoaffective Disorder are described. Content validity was assessed using an investigator questionnaire. Inter-rater reliability was determined with 12 sets of videotaped interviews rated independently by two trained individuals. Test-retest reliability was assessed using 30 randomly selected raters from clinical trials who evaluated the same videos on separate occasions two weeks apart. Convergent and divergent validity and effect size were evaluated by comparing scores between the Clinical Global Impression for Schizoaffective Disorder and the Positive and Negative Syndrome Scale, 21-item Hamilton Rating Scale for Depression, and Young Mania Rating Scale scales using pooled patient data from two clinical trials. Clinical Global Impression for Schizoaffective Disorder scores were then linked to corresponding Positive and Negative Syndrome Scale scores. Content validity was strong. Inter-rater agreement was good to excellent for most scales and subscales (intra-class correlation coefficient ≥ 0.50). Test-retest showed good reproducibility, with intraclass correlation coefficients ranging from 0.444 to 0.898. Spearman correlations between Clinical Global Impression for Schizoaffective Disorder domains and corresponding symptom scales were 0.60 or greater, and effect sizes for Clinical Global Impression for Schizoaffective Disorder overall and domain scores were similar to Positive and Negative Syndrome Scale Young Mania Rating Scale, and 21-item Hamilton Rating Scale for Depression scores. Raters anticipated that the scale might be less effective in distinguishing negative from depressive symptoms, and, in fact, the results here may reflect that clinical reality. Multiple lines of evidence support the reliability and validity of the Clinical Global Impression for Schizoaffective Disorder for studies in schizoaffective disorder.
Feng, Huihui
2016-09-07
Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate.
Assessing students' communication skills: validation of a global rating.
Scheffer, Simone; Muehlinghaus, Isabel; Froehmel, Annette; Ortwein, Heiderose
2008-12-01
Communication skills training is an accepted part of undergraduate medical programs nowadays. In addition to learning experiences its importance should be emphasised by performance-based assessment. As detailed checklists have been shown to be not well suited for the assessment of communication skills for different reasons, this study aimed to validate a global rating scale. A Canadian instrument was translated to German and adapted to assess students' communication skills during an end-of-semester-OSCE. Subjects were second and third year medical students at the reformed track of the Charité-Universitaetsmedizin Berlin. Different groups of raters were trained to assess students' communication skills using the global rating scale. Validity testing included concurrent validity and construct validity: Judgements of different groups of raters were compared to expert ratings as a defined gold standard. Furthermore, the amount of agreement between scores obtained with this global rating scale and a different instrument for assessing communication skills was determined. Results show that communication skills can be validly assessed by trained non-expert raters as well as standardised patients using this instrument.
A Global Estimate of Seafood Consumption by Coastal Indigenous Peoples
Pauly, Daniel; Weatherdon, Lauren V.
2016-01-01
Coastal Indigenous peoples rely on ocean resources and are highly vulnerable to ecosystem and economic change. Their challenges have been observed and recognized at local and regional scales, yet there are no global-scale analyses to inform international policies. We compile available data for over 1,900 coastal Indigenous communities around the world representing 27 million people across 87 countries. Based on available data at local and regional levels, we estimate a total global yearly seafood consumption of 2.1 million (1.5 million–2.8 million) metric tonnes by coastal Indigenous peoples, equal to around 2% of global yearly commercial fisheries catch. Results reflect the crucial role of seafood for these communities; on average, consumption per capita is 15 times higher than non-Indigenous country populations. These findings contribute to an urgently needed sense of scale to coastal Indigenous issues, and will hopefully prompt increased recognition and directed research regarding the marine knowledge and resource needs of Indigenous peoples. Marine resources are crucial to the continued existence of coastal Indigenous peoples, and their needs must be explicitly incorporated into management policies. PMID:27918581
A Global Estimate of Seafood Consumption by Coastal Indigenous Peoples.
Cisneros-Montemayor, Andrés M; Pauly, Daniel; Weatherdon, Lauren V; Ota, Yoshitaka
2016-01-01
Coastal Indigenous peoples rely on ocean resources and are highly vulnerable to ecosystem and economic change. Their challenges have been observed and recognized at local and regional scales, yet there are no global-scale analyses to inform international policies. We compile available data for over 1,900 coastal Indigenous communities around the world representing 27 million people across 87 countries. Based on available data at local and regional levels, we estimate a total global yearly seafood consumption of 2.1 million (1.5 million-2.8 million) metric tonnes by coastal Indigenous peoples, equal to around 2% of global yearly commercial fisheries catch. Results reflect the crucial role of seafood for these communities; on average, consumption per capita is 15 times higher than non-Indigenous country populations. These findings contribute to an urgently needed sense of scale to coastal Indigenous issues, and will hopefully prompt increased recognition and directed research regarding the marine knowledge and resource needs of Indigenous peoples. Marine resources are crucial to the continued existence of coastal Indigenous peoples, and their needs must be explicitly incorporated into management policies.
Lin, Yong; Franzke, Christian L E
2015-08-11
Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.
Harries, Anthony D; Ford, Nathan; Jahn, Andreas; Schouten, Erik J; Libamba, Edwin; Chimbwandira, Frank; Maher, Dermot
2016-09-06
The scale-up of antiretroviral therapy (ART) in Malawi was based on a public health approach adapted to its resource-poor setting, with principles and practices borrowed from the successful tuberculosis control framework. From 2004 to 2015, the number of new patients started on ART increased from about 3000 to over 820,000. Despite being a small country, Malawi has made a significant contribution to the 15 million people globally on ART and has also contributed policy and service delivery innovations that have supported international guidelines and scale up in other countries. The first set of global guidelines for scaling up ART released by the World Health Organization (WHO) in 2002 focused on providing clinical guidance. In Malawi, the ART guidelines adopted from the outset a more operational and programmatic approach with recommendations on health systems and services that were needed to deliver HIV treatment to affected populations. Seven years after the start of national scale-up, Malawi launched a new strategy offering all HIV-infected pregnant women lifelong ART regardless of the CD4-cell count, named Option B+. This strategy was subsequently incorporated into a WHO programmatic guide in 2012 and WHO ART guidelines in 2013, and has since then been adopted by the majority of countries worldwide. In conclusion, the Malawi experience of ART scale-up has become a blueprint for a public health response to HIV and has informed international efforts to end the AIDS epidemic by 2030.
Topographical Hill Shading Map Production Based Tianditu (map World)
NASA Astrophysics Data System (ADS)
Wang, C.; Zha, Z.; Tang, D.; Yang, J.
2018-04-01
TIANDITU (Map World) is the public version of National Platform for Common Geospatial Information Service, and the terrain service is an important channel for users on the platform. With the development of TIANDITU, topographical hill shading map production for providing and updating global terrain map on line becomes necessary for the characters of strong intuition, three-dimensional sense and aesthetic effect. As such, the terrain service of TIANDITU focuses on displaying the different scales of topographical data globally. And this paper mainly aims to research the method of topographical hill shading map production globally using DEM (Digital Elevation Model) data between the displaying scales about 1 : 140,000,000 to 1 : 4,000,000, corresponded the display level from 2 to 7 on TIANDITU website.
Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature
NASA Technical Reports Server (NTRS)
Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning;
2017-01-01
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.
Zhang, Ling Yu; Liu, Zhao Gang
2017-12-01
Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.
Towards a New Assessment of Urban Areas from Local to Global Scales
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Roy Chowdhury, P. K.; McKee, J.; Weaver, J.; Bright, E.; Weber, E.
2015-12-01
Since early 2000s, starting with NASA MODIS, satellite based remote sensing has facilitated collection of imagery with medium spatial resolution but high temporal resolution (daily). This trend continues with an increasing number of sensors and data products. Increasing spatial and temporal resolutions of remotely sensed data archives, from both public and commercial sources, have significantly enhanced the quality of mapping and change data products. However, even with automation of such analysis on evolving computing platforms, rates of data processing have been suboptimal largely because of the ever-increasing pixel to processor ratio coupled with limitations of the computing architectures. Novel approaches utilizing spatiotemporal data mining techniques and computational architectures have emerged that demonstrates the potential for sustained and geographically scalable landscape monitoring to be operational. We exemplify this challenge with two broad research initiatives on High Performance Geocomputation at Oak Ridge National Laboratory: (a) mapping global settlement distribution; (b) developing national critical infrastructure databases. Our present effort, on large GPU based architectures, to exploit high resolution (1m or less) satellite and airborne imagery for extracting settlements at global scale is yielding understanding of human settlement patterns and urban areas at unprecedented resolution. Comparison of such urban land cover database, with existing national and global land cover products, at various geographic scales in selected parts of the world is revealing intriguing patterns and insights for urban assessment. Early results, from the USA, Taiwan, and Egypt, indicate closer agreements (5-10%) in urban area assessments among databases at larger, aggregated geographic extents. However, spatial variability at local scales could be significantly different (over 50% disagreement).
A climatology of gravity wave parameters based on satellite limb soundings
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin
2017-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.
GPU Multi-Scale Particle Tracking and Multi-Fluid Simulations of the Radiation Belts
NASA Astrophysics Data System (ADS)
Ziemba, T.; Carscadden, J.; O'Donnell, D.; Winglee, R.; Harnett, E.; Cash, M.
2007-12-01
The properties of the radiation belts can vary dramatically under the influence of magnetic storms and storm-time substorms. The task of understanding and predicting radiation belt properties is made difficult because their properties determined by global processes as well as small-scale wave-particle interactions. A full solution to the problem will require major innovations in technique and computer hardware. The proposed work will demonstrates liked particle tracking codes with new multi-scale/multi-fluid global simulations that provide the first means to include small-scale processes within the global magnetospheric context. A large hurdle to the problem is having sufficient computer hardware that is able to handle the dissipate temporal and spatial scale sizes. A major innovation of the work is that the codes are designed to run of graphics processing units (GPUs). GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for little more cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. A demonstration of the code pushing more than 500,000 particles faster than real time is presented, and used to provide new insight into radiation belt dynamics.
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Muller, Christoff
2015-01-01
Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and future periods. Implementation differences in these and other modeling choices contribute to significant variation among global-scale crop model assessments in addition to differences in crop model implementations that also cause large differences in site-specific crop modeling (Asseng et al., 2013; Bassu et al., 2014).
NASA Astrophysics Data System (ADS)
Wei, Y.; Chen, X.
2017-12-01
We present a first description and evaluation of the IAP Atmospheric Aerosol Chemistry Model (IAP-AACM) which has been integrated into the earth system model CAS-ESM. In this way it is possible to research into interaction of clouds and aerosol by its two-way coupling with the IAP Atmospheric General Circulation Model (IAP-AGCM). The model has a nested global-regional grid based on the Global Environmental Atmospheric Transport Model (GEATM) and the Nested Air Quality Prediction Modeling System (NAQPMS). The AACM provides two optional gas chemistry schemes, the CBM-Z gas chemistry as well as a sulfur oxidize box designed specifically for the CAS-ESM. Now the model driven by AGCM has been applied to a 1-year simulation of tropospheric chemistry both on global and regional scales for 2014, and been evaluated against various observation datasets, including aerosol precursor gas concentration, aerosol mass and number concentrations. Furthermore, global budgets in AACM are compared with other global aerosol models. Generally, the AACM simulations are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of gases and particles concentration both on global and regional scales.
Pirogovsky, Eva; Martinez-Hannon, Mercedes; Schiehser, Dawn M; Lessig, Stephanie L; Song, David D; Litvan, Irene; Filoteo, J Vincent
2013-01-01
Few studies have examined instrumental activities of daily living (iADLs) in nondemented Parkinson's disease (PD), and the majority of these studies have used report-based measures, which can have limited validity. The present study had two main goals: (a) to examine the performance of nondemented PD patients on two performance-based measures of iADLs, which are considered more objective functional measures, and (b) to examine the cognitive, motor, and psychiatric correlates of iADL impairment in PD. Ninety-eight nondemented PD patients and 47 healthy older adults were administered performance-based measures that assess the ability to manage medications (Medication Management Ability Assessment) and finances (University of California, San Diego, UCSD, Performance-based Skills Assessment), the Mattis Dementia Rating Scale to assess global cognitive functioning, the Unified Parkinson's Disease Rating Scale Part III to assess motor symptom severity, and the Geriatric Depression Scale to assess depressive symptoms. Nondemented PD patients demonstrated significantly impaired scores relative to the healthy comparison group on the performance-based measure of financial management, but there were no significant group differences in medication management. Global cognitive functioning, motor severity, and depressive symptoms did not correlate with scores on either of the functional measures, except for a small correlation between depressive symptoms and financial management. The two performance-based measures of iADL functioning did not correlate with one another. These findings suggest that medication and financial management may not be predicted based on global cognitive functioning and that iADLs may not be represented by a single construct. Furthermore, these findings suggest the potential need for a multidimensional approach to assessing iADLs.
Towards Remotely Sensed Composite Global Drought Risk Modelling
NASA Astrophysics Data System (ADS)
Dercas, Nicholas; Dalezios, Nicolas
2015-04-01
Drought is a multi-faceted issue and requires a multi-faceted assessment. Droughts may have the origin on precipitation deficits, which sequentially and by considering different time and space scales may impact soil moisture, plant wilting, stream flow, wildfire, ground water levels, famine and social impacts. There is a need to monitor drought even at a global scale. Key variables for monitoring drought include climate data, soil moisture, stream flow, ground water, reservoir and lake levels, snow pack, short-medium-long range forecasts, vegetation health and fire danger. However, there is no single definition of drought and there are different drought indicators and indices even for each drought type. There are already four operational global drought risk monitoring systems, namely the U.S. Drought Monitor, the European Drought Observatory (EDO), the African and the Australian systems, respectively. These systems require further research to improve the level of accuracy, the time and space scales, to consider all types of drought and to achieve operational efficiency, eventually. This paper attempts to contribute to the above mentioned objectives. Based on a similar general methodology, the multi-indicator approach is considered. This has resulted from previous research in the Mediterranean region, an agriculturally vulnerable region, using several drought indices separately, namely RDI and VHI. The proposed scheme attempts to consider different space scaling based on agroclimatic zoning through remotely sensed techniques and several indices. Needless to say, the agroclimatic potential of agricultural areas has to be assessed in order to achieve sustainable and efficient use of natural resources in combination with production maximization. Similarly, the time scale is also considered by addressing drought-related impacts affected by precipitation deficits on time scales ranging from a few days to a few months, such as non-irrigated agriculture, topsoil moisture, wildfire danger, range and pasture conditions and unregulated stream flows. Keywords Remote sensing; Composite Drought Indicators; Global Drought Risk Monitoring.
An experimental system for flood risk forecasting and monitoring at global scale
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Alfieri, Lorenzo; Kalas, Milan; Lorini, Valerio; Salamon, Peter
2017-04-01
Global flood forecasting and monitoring systems are nowadays a reality and are being applied by a wide range of users and practitioners in disaster risk management. Furthermore, there is an increasing demand from users to integrate flood early warning systems with risk based forecasting, combining streamflow estimations with expected inundated areas and flood impacts. Finally, emerging technologies such as crowdsourcing and social media monitoring can play a crucial role in flood disaster management and preparedness. Here, we present some recent advances of an experimental procedure for near-real time flood mapping and impact assessment. The procedure translates in near real-time the daily streamflow forecasts issued by the Global Flood Awareness System (GloFAS) into event-based flood hazard maps, which are then combined with exposure and vulnerability information at global scale to derive risk forecast. Impacts of the forecasted flood events are evaluated in terms of flood prone areas, potential economic damage, and affected population, infrastructures and cities. To increase the reliability of our forecasts we propose the integration of model-based estimations with an innovative methodology for social media monitoring, which allows for real-time verification and correction of impact forecasts. Finally, we present the results of preliminary tests which show the potential of the proposed procedure in supporting emergency response and management.
GloFAS-Seasonal: Operational Seasonal Ensemble River Flow Forecasts at the Global Scale
NASA Astrophysics Data System (ADS)
Emerton, Rebecca; Zsoter, Ervin; Smith, Paul; Salamon, Peter
2017-04-01
Seasonal hydrological forecasting has potential benefits for many sectors, including agriculture, water resources management and humanitarian aid. At present, no global scale seasonal hydrological forecasting system exists operationally; although smaller scale systems have begun to emerge around the globe over the past decade, a system providing consistent global scale seasonal forecasts would be of great benefit in regions where no other forecasting system exists, and to organisations operating at the global scale, such as disaster relief. We present here a new operational global ensemble seasonal hydrological forecast, currently under development at ECMWF as part of the Global Flood Awareness System (GloFAS). The proposed system, which builds upon the current version of GloFAS, takes the long-range forecasts from the ECMWF System4 ensemble seasonal forecast system (which incorporates the HTESSEL land surface scheme) and uses this runoff as input to the Lisflood routing model, producing a seasonal river flow forecast out to 4 months lead time, for the global river network. The seasonal forecasts will be evaluated using the global river discharge reanalysis, and observations where available, to determine the potential value of the forecasts across the globe. The seasonal forecasts will be presented as a new layer in the GloFAS interface, which will provide a global map of river catchments, indicating whether the catchment-averaged discharge forecast is showing abnormally high or low flows during the 4-month lead time. Each catchment will display the corresponding forecast as an ensemble hydrograph of the weekly-averaged discharge forecast out to 4 months, with percentile thresholds shown for comparison with the discharge climatology. The forecast visualisation is based on a combination of the current medium-range GloFAS forecasts and the operational EFAS (European Flood Awareness System) seasonal outlook, and aims to effectively communicate the nature of a seasonal outlook while providing useful information to users and partners. We demonstrate the first version of an operational GloFAS seasonal outlook, outlining the model set-up and presenting a first look at the seasonal forecasts that will be displayed in the GloFAS interface, and discuss the initial results of the forecast evaluation.
Global Education Inc.: New Policy Networks and the Neoliberal Imaginary
ERIC Educational Resources Information Center
Ball, Stephen J.
2012-01-01
Do private and philanthropic solutions to the problems of education signal the end of state education in its "welfare" form? Education policy is being reformed and re-worked on a global scale. Policies are flowing and converging to produce a singular vision of "best practice" based on the methods and tenets of the "neo-liberal imaginary".…
Moon-based Earth Observation for Large Scale Geoscience Phenomena
NASA Astrophysics Data System (ADS)
Guo, Huadong; Liu, Guang; Ding, Yixing
2016-07-01
The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.
Dwyer, Tim; Wright, Sara; Kulasegaram, Kulamakan M; Theodoropoulos, John; Chahal, Jaskarndip; Wasserstein, David; Ringsted, Charlotte; Hodges, Brian; Ogilvie-Harris, Darrell
2015-12-02
Competency-based medical education as a resident-training format will move postgraduate training away from time-based training, to a model based on observable outcomes. The purpose of this study was to determine whether junior residents and senior residents could demonstrate clinical skills to a similar level, after a sports medicine rotation. All residents undertaking a three-month sports medicine rotation had to pass an Objective Structured Clinical Examination. The stations tested the fundamentals of history-taking, examination, image interpretation, differential diagnosis, informed consent, and clinical decision-making. Performance at each station was assessed with a binary station-specific checklist and an overall global rating scale, in which 1 indicated novice, 2 indicated advanced beginner, 3 indicated competent, 4 indicated proficient, and 5 indicated expert. A global rating scale was also given for each domain of knowledge. Over eighteen months, thirty-nine residents (twenty-one junior residents and eighteen senior residents) and six fellows (for a total of forty-five participants) completed the examination. With regard to junior residents and senior residents, analysis using a two-tailed t test demonstrated a significant difference (p < 0.01) in both total checklist score and overall global rating scale; the mean total checklist score (and standard deviation) was 56.15% ± 10.99% for junior residents and 71.87% ± 8.94% for senior residents, and the mean global rating scale was 2.44 ± 0.55 for junior residents and 3.79 ± 0.49 for senior residents. There was a significant difference between junior residents and senior residents for each knowledge domain, with a significance of p < 0.05 for history-taking and p < 0.01 for the remainder of the domains. Despite intensive teaching within a competency-based medical education model, junior residents were not able to demonstrate knowledge as well as senior residents, suggesting that overall clinical experience is critically important for achieving competency as measured by the Objective Structured Clinical Examination. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H
2014-05-01
Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
Jones, B.; O’Neill, B. C.
2016-07-29
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2013-11-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well-reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness-of-fit for broadleaved forests. N limitation associated with low N mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N-limitation associated with low N mineralisation rates of colder soils reduces CO2-enhancement of NPP for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by c. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions not only in studies of global terrestrial C cycling, but to understand underlying mechanisms on local scales and in different regional contexts.
NASA Astrophysics Data System (ADS)
Smith, B.; Wårlind, D.; Arneth, A.; Hickler, T.; Leadley, P.; Siltberg, J.; Zaehle, S.
2014-04-01
The LPJ-GUESS dynamic vegetation model uniquely combines an individual- and patch-based representation of vegetation dynamics with ecosystem biogeochemical cycling from regional to global scales. We present an updated version that includes plant and soil N dynamics, analysing the implications of accounting for C-N interactions on predictions and performance of the model. Stand structural dynamics and allometric scaling of tree growth suggested by global databases of forest stand structure and development were well reproduced by the model in comparison to an earlier multi-model study. Accounting for N cycle dynamics improved the goodness of fit for broadleaved forests. N limitation associated with low N-mineralisation rates reduces productivity of cold-climate and dry-climate ecosystems relative to mesic temperate and tropical ecosystems. In a model experiment emulating free-air CO2 enrichment (FACE) treatment for forests globally, N limitation associated with low N-mineralisation rates of colder soils reduces CO2 enhancement of net primary production (NPP) for boreal forests, while some temperate and tropical forests exhibit increased NPP enhancement. Under a business-as-usual future climate and emissions scenario, ecosystem C storage globally was projected to increase by ca. 10%; additional N requirements to match this increasing ecosystem C were within the high N supply limit estimated on stoichiometric grounds in an earlier study. Our results highlight the importance of accounting for C-N interactions in studies of global terrestrial N cycling, and as a basis for understanding mechanisms on local scales and in different regional contexts.
The assessment of Global Precipitation Measurement estimates over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.
2017-08-01
Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.; O’Neill, B. C.
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
Estimating global cropland production from 1961 to 2010
NASA Astrophysics Data System (ADS)
Han, Pengfei; Zeng, Ning; Zhao, Fang; Lin, Xiaohui
2017-09-01
Global cropland net primary production (NPP) has tripled over the last 50 years, contributing 17-45 % to the increase in global atmospheric CO2 seasonal amplitude. Although many regional-scale comparisons have been made between statistical data and modeling results, long-term national comparisons across global croplands are scarce due to the lack of detailed spatiotemporal management data. Here, we conducted a simulation study of global cropland NPP from 1961 to 2010 using a process-based model called Vegetation-Global Atmosphere-Soil (VEGAS) and compared the results with Food and Agriculture Organization of the United Nations (FAO) statistical data on both continental and country scales. According to the FAO data, the global cropland NPP was 1.3, 1.8, 2.2, 2.6, 3.0, and 3.6 PgC yr-1 in the 1960s, 1970s, 1980s, 1990s, 2000s, and 2010s, respectively. The VEGAS model captured these major trends on global and continental scales. The NPP increased most notably in the US Midwest, western Europe, and the North China Plain and increased modestly in Africa and Oceania. However, significant biases remained in some regions such as Africa and Oceania, especially in temporal evolution. This finding is not surprising as VEGAS is the first global carbon cycle model with full parameterization representing the Green Revolution. To improve model performance for different major regions, we modified the default values of management intensity associated with the agricultural Green Revolution differences across various regions to better match the FAO statistical data at the continental level and for selected countries. Across all the selected countries, the updated results reduced the RMSE from 19.0 to 10.5 TgC yr-1 (˜ 45 % decrease). The results suggest that these regional differences in model parameterization are due to differences in socioeconomic development. To better explain the past changes and predict the future trends, it is important to calibrate key parameters on regional scales and develop data sets for land management history.
NASA Astrophysics Data System (ADS)
Tallapragada, V.
2017-12-01
NOAA's Next Generation Global Prediction System (NGGPS) has provided the unique opportunity to develop and implement a non-hydrostatic global model based on Geophysical Fluid Dynamics Laboratory (GFDL) Finite Volume Cubed Sphere (FV3) Dynamic Core at National Centers for Environmental Prediction (NCEP), making a leap-step advancement in seamless prediction capabilities across all spatial and temporal scales. Model development efforts are centralized with unified model development in the NOAA Environmental Modeling System (NEMS) infrastructure based on Earth System Modeling Framework (ESMF). A more sophisticated coupling among various earth system components is being enabled within NEMS following National Unified Operational Prediction Capability (NUOPC) standards. The eventual goal of unifying global and regional models will enable operational global models operating at convective resolving scales. Apart from the advanced non-hydrostatic dynamic core and coupling to various earth system components, advanced physics and data assimilation techniques are essential for improved forecast skill. NGGPS is spearheading ambitious physics and data assimilation strategies, concentrating on creation of a Common Community Physics Package (CCPP) and Joint Effort for Data Assimilation Integration (JEDI). Both initiatives are expected to be community developed, with emphasis on research transitioning to operations (R2O). The unified modeling system is being built to support the needs of both operations and research. Different layers of community partners are also established with specific roles/responsibilities for researchers, core development partners, trusted super-users, and operations. Stakeholders are engaged at all stages to help drive the direction of development, resources allocations and prioritization. This talk presents the current and future plans of unified model development at NCEP for weather, sub-seasonal, and seasonal climate prediction applications with special emphasis on implementation of NCEP FV3 Global Forecast System (GFS) and Global Ensemble Forecast System (GEFS) into operations by 2019.
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics.
NASA Astrophysics Data System (ADS)
Hugelius, G.; Ahlström, A.; Loisel, J.; Harden, J. W.
2017-12-01
Soils provide numerous and indispensable services to ecological systems and human societies. As human populations and human land use changes, the capacity of soils to maintain these services may also change. To investigate this we provide the first global scale study based on the soil service index (SSI; see presentations by Harden et al. and Loisel et al. in this session for more details). In this index multiple soil services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability. Soil services assessed under the SSI include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The SSI may be applied at any scale. Here we present a first global application of the SSI and provide broad-scale analyses of soil service spatial distributions. We assess how the SSI will change under projected changes in human societies populations and human land use (following representative concentration pathway scenarios). Present and future potential utilization and vulnerability of soil resources are analyzed in the context of human population distributions and its projected changes. The SSI is designed to be broadly useful across scientific, governance and resource management organizations. To exemplify this, the parameterization of this is global soil service estimate is based on only open source input data.
NASA Astrophysics Data System (ADS)
Montzka, S. A.
2016-12-01
Measurements from global surface-based air sampling networks provide a fundamental understanding of how and why concentrations of long-lived trace gases are changing over time. Results from these networks are used to quantify trace-gas concentrations and their time-dependent changes on global and smaller scales, and thus provide a means to quantify emission rates, loss frequencies, and mixing processes. Substantial advances in measurement and sampling technologies and the ability of these programs to create and maintain reliable gas standards mean that spatial concentration gradients and time-dependent changes are often very reliably measured. The presence of multiple independent networks allows an assessment of this reliability. Furthermore, recent global `snap-shot' surveys (e.g., HIPPO and ATom) and ongoing atmospheric profiling programs help us assess the ability of surface-based data to describe concentration distributions throughout most of the atmosphere ( 80% of its mass). In this overview talk, I'll explore the usefulness and limitations of existing long-term, ongoing sampling network programs and their advantages and disadvantages for characterizing concentrations on global and regional scales, and how recent advances (and short-term sampling programs) help us assess the accuracy of the surface networks to provide estimates of source and sink magnitudes, and inter-annual variability in both.
Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model
NASA Technical Reports Server (NTRS)
Putman, William M.
2010-01-01
NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system
Automatic Matching of Large Scale Images and Terrestrial LIDAR Based on App Synergy of Mobile Phone
NASA Astrophysics Data System (ADS)
Xia, G.; Hu, C.
2018-04-01
The digitalization of Cultural Heritage based on ground laser scanning technology has been widely applied. High-precision scanning and high-resolution photography of cultural relics are the main methods of data acquisition. The reconstruction with the complete point cloud and high-resolution image requires the matching of image and point cloud, the acquisition of the homonym feature points, the data registration, etc. However, the one-to-one correspondence between image and corresponding point cloud depends on inefficient manual search. The effective classify and management of a large number of image and the matching of large image and corresponding point cloud will be the focus of the research. In this paper, we propose automatic matching of large scale images and terrestrial LiDAR based on APP synergy of mobile phone. Firstly, we develop an APP based on Android, take pictures and record related information of classification. Secondly, all the images are automatically grouped with the recorded information. Thirdly, the matching algorithm is used to match the global and local image. According to the one-to-one correspondence between the global image and the point cloud reflection intensity image, the automatic matching of the image and its corresponding laser radar point cloud is realized. Finally, the mapping relationship between global image, local image and intensity image is established according to homonym feature point. So we can establish the data structure of the global image, the local image in the global image, the local image corresponding point cloud, and carry on the visualization management and query of image.
USDA-ARS?s Scientific Manuscript database
Many of the most dramatic and surprising effects of global change on ecological systems will occur across large spatial extents, from regions to continents. Multiple ecosystem types will be impacted across a range of interacting spatial and temporal scales. The ability of ecologists to understand an...
USDA-ARS?s Scientific Manuscript database
Climate change is well documented at the global scale, but local and regional changes are not as well understood. Finer, local-to-regional scale information is needed for creating specific, place-based planning and adaption efforts. Here we detail the development of an indicator-focused climate chan...
Pushing HTCondor and glideinWMS to 200K+ Jobs in a Global Pool for CMS before Run 2
NASA Astrophysics Data System (ADS)
Balcas, J.; Belforte, S.; Bockelman, B.; Gutsche, O.; Khan, F.; Larson, K.; Letts, J.; Mascheroni, M.; Mason, D.; McCrea, A.; Saiz-Santos, M.; Sfiligoi, I.
2015-12-01
The CMS experiment at the LHC relies on HTCondor and glideinWMS as its primary batch and pilot-based Grid provisioning system. So far we have been running several independent resource pools, but we are working on unifying them all to reduce the operational load and more effectively share resources between various activities in CMS. The major challenge of this unification activity is scale. The combined pool size is expected to reach 200K job slots, which is significantly bigger than any other multi-user HTCondor based system currently in production. To get there we have studied scaling limitations in our existing pools, the biggest of which tops out at about 70K slots, providing valuable feedback to the development communities, who have responded by delivering improvements which have helped us reach higher and higher scales with more stability. We have also worked on improving the organization and support model for this critical service during Run 2 of the LHC. This contribution will present the results of the scale testing and experiences from the first months of running the Global Pool.
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.;
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
NASA Astrophysics Data System (ADS)
Nogueira, Miguel
2018-02-01
Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales < 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: (1) Clausius-Clapeyron (C-C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-scales; (2) C-C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where the weather regime is approached and other mechanisms become important; (3) C-C is not a dominant control for P or E over land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start to act as a single coupled system at time-scales > 1-2 years, while at time-scales < 6 months they are not the dominant drivers of each other. For global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high ( 0.6-0.8) values. Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation and evaporation variability and its governing mechanisms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Anthony P.; Quaife, Tristan; van Bodegom, Peter M.
Here, the maximum photosynthetic carboxylation rate (V cmax) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V cmax distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 PgC yr –1, 65% of the range of a recent model intercomparison of global GPP. The variation in GPP propagated throughmore » to a 27% coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated ( r = 0.85–0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V cmax variation in the field, particularly in northern latitudes.« less
NASA Astrophysics Data System (ADS)
Michel, Dominik; Miralles, Diego; Jimenez, Carlos; Ershadi, Ali; McCabe, Matthew F.; Hirschi, Martin; Seneviratne, Sonia I.; Jung, Martin; Wood, Eric F.; (Bob) Su, Z.; Timmermans, Joris; Chen, Xuelong; Fisher, Joshua B.; Mu, Quiaozen; Fernandez, Diego
2015-04-01
Research on climate variations and the development of predictive capabilities largely rely on globally available reference data series of the different components of the energy and water cycles. Several efforts have recently aimed at producing large-scale and long-term reference data sets of these components, e.g. based on in situ observations and remote sensing, in order to allow for diagnostic analyses of the drivers of temporal variations in the climate system. Evapotranspiration (ET) is an essential component of the energy and water cycle, which cannot be monitored directly on a global scale by remote sensing techniques. In recent years, several global multi-year ET data sets have been derived from remote sensing-based estimates, observation-driven land surface model simulations or atmospheric reanalyses. The LandFlux-EVAL initiative presented an ensemble-evaluation of these data sets over the time periods 1989-1995 and 1989-2005 (Mueller et al. 2013). The WACMOS-ET project (http://wacmoset.estellus.eu) started in the year 2012 and constitutes an ESA contribution to the GEWEX initiative LandFlux. It focuses on advancing the development of ET estimates at global, regional and tower scales. WACMOS-ET aims at developing a Reference Input Data Set exploiting European Earth Observations assets and deriving ET estimates produced by a set of four ET algorithms covering the period 2005-2007. The algorithms used are the SEBS (Su et al., 2002), Penman-Monteith from MODIS (Mu et al., 2011), the Priestley and Taylor JPL model (Fisher et al., 2008) and GLEAM (Miralles et al., 2011). The algorithms are run with Fluxnet tower observations, reanalysis data (ERA-Interim), and satellite forcings. They are cross-compared and validated against in-situ data. In this presentation the performance of the different ET algorithms with respect to different temporal resolutions, hydrological regimes, land cover types (including grassland, cropland, shrubland, vegetation mosaic, savanna, woody savanna, needleleaf forest, deciduous forest and mixed forest) are evaluated at the tower-scale in 24 pre-selected study regions on three continents (Europe, North America, and Australia). References: Fisher, J. B., Tu, K.P., and Baldocchi, D.D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites, Remote Sens. Environ. 112, 901-919, 2008. Jiménez, C. et al. Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res. 116, D02102, 2011. Miralles, D.G. et al. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 15, 453-469, 2011. Mu, Q., Zhao, M. & Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781-1800, 2011. Mueller, B., Hirschi, M., Jimenez, C., Ciais, P., Dirmeyer, P. A., Dolman, A. J., Fisher, J. B., Jung, M., Ludwig, F., Maignan, F., Miralles, D. G., McCabe, M. F., Reichstein, M., Sheffield, J., Wang, K., Wood, E. F., Zhang, Y., and Seneviratne, S. I. (2013). Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17, 3707-3720. Mueller, B. et al. Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol. Earth Syst. Sci. 17, 3707-3720, 2013. Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6, 85-99, 2002.
NASA Astrophysics Data System (ADS)
Afanasiev, M.; Boehm, C.; van Driel, M.; Krischer, L.; May, D.; Rietmann, M.; Fichtner, A.
2016-12-01
Recent years have been witness to the application of waveform inversion to new and exciting domains, ranging from non-destructive testing to global seismology. Often, each new application brings with it novel wave propagation physics, spatial and temporal discretizations, and models of variable complexity. Adapting existing software to these novel applications often requires a significant investment of time, and acts as a barrier to progress. To combat these problems we introduce Salvus, a software package designed to solve large-scale full-waveform inverse problems, with a focus on both flexibility and performance. Based on a high order finite (spectral) element discretization, we have built Salvus to work on unstructured quad/hex meshes in both 2 or 3 dimensions, with support for P1-P3 bases on triangles and tetrahedra. A diverse (and expanding) collection of wave propagation physics are supported (i.e. coupled solid-fluid). With a focus on the inverse problem, functionality is provided to ease integration with internal and external optimization libraries. Additionally, a python-based meshing package is included to simplify the generation and manipulation of regional to global scale Earth models (quad/hex), with interfaces available to external mesh generators for complex engineering-scale applications (quad/hex/tri/tet). Finally, to ensure that the code remains accurate and maintainable, we build upon software libraries such as PETSc and Eigen, and follow modern software design and testing protocols. Salvus bridges the gap between research and production codes with a design based on C++ mixins and Python wrappers that separates the physical equations from the numerical core. This allows domain scientists to add new equations using a high-level interface, without having to worry about optimized implementation details. Our goal in this presentation is to introduce the code, show several examples across the scales, and discuss some of the extensible design points.
NASA Astrophysics Data System (ADS)
Afanasiev, Michael; Boehm, Christian; van Driel, Martin; Krischer, Lion; May, Dave; Rietmann, Max; Fichtner, Andreas
2017-04-01
Recent years have been witness to the application of waveform inversion to new and exciting domains, ranging from non-destructive testing to global seismology. Often, each new application brings with it novel wave propagation physics, spatial and temporal discretizations, and models of variable complexity. Adapting existing software to these novel applications often requires a significant investment of time, and acts as a barrier to progress. To combat these problems we introduce Salvus, a software package designed to solve large-scale full-waveform inverse problems, with a focus on both flexibility and performance. Currently based on an abstract implementation of high order finite (spectral) elements, we have built Salvus to work on unstructured quad/hex meshes in both 2 or 3 dimensions, with support for P1-P3 bases on triangles and tetrahedra. A diverse (and expanding) collection of wave propagation physics are supported (i.e. viscoelastic, coupled solid-fluid). With a focus on the inverse problem, functionality is provided to ease integration with internal and external optimization libraries. Additionally, a python-based meshing package is included to simplify the generation and manipulation of regional to global scale Earth models (quad/hex), with interfaces available to external mesh generators for complex engineering-scale applications (quad/hex/tri/tet). Finally, to ensure that the code remains accurate and maintainable, we build upon software libraries such as PETSc and Eigen, and follow modern software design and testing protocols. Salvus bridges the gap between research and production codes with a design based on C++ template mixins and Python wrappers that separates the physical equations from the numerical core. This allows domain scientists to add new equations using a high-level interface, without having to worry about optimized implementation details. Our goal in this presentation is to introduce the code, show several examples across the scales, and discuss some of the extensible design points.
NASA Technical Reports Server (NTRS)
Diehl, T. L.; Mian, Chin; Bond, T. C.; Carn, S. A.; Duncan, B. N.; Krotkov, N. A.; Streets, D. G.
2007-01-01
The approach to create a comprehensive emission inventory for the time period 1980 to 2000 is described in this paper. We have recently compiled an emission database, which we will use for a 21 year simulation of tropospheric aerosols with the GOCART model. Particular attention was paid to the time-dependent SO2, black carbon and organic carbon aerosol emissions. For the emission of SO2 from sporadically erupting volcanoes, we assembled emission data from the Global Volcanism Program of the Smithsonian Institution, using the VEI to derive the volcanic cloud height and the SO2 amount, and amended this dataset by the SO2 emission data from the TOMS instrument when available. 3-dimensional aircraft emission data was obtained for a number of years from the AEAP project, converted from burned fuel to SO2 and interpolated to each year, taking the sparsity of the flight patterns into account. Other anthopogenic SO2 emissions are based on gridded emissions from the EDGAR 2000 database (excluding sources from aircraft, biomass burning and international ship traffic), which were scaled to individual years with country/regional based emission inventories. Gridded SO2 emissions from international ship traffic for 2000 and the scaling factors for other years are from [Eyring et al., 2005]. We used gridded anthropogenic black and organic carbon emissions for 1996 [Bond et al., 2005], again excluding aircraft, biomass burning and ship sources. These emissions were scaled with regional based emission inventories from 1980 to 2000 to derive gridded emissions for each year. The biomass burning emissions are based on a climatology, which is scaled with regional scaling factors derived from the TOMS aerosol index and the AVHRR/ATSR fire counts to each year [Duncan et al., 2003]. Details on the integration of the information from the various sources will be provided and the distribution patterns and total emissions in the final product will be discussed.
NASA Technical Reports Server (NTRS)
Diehl, Thomas L.; Chin, Mian; Bond, Tami C.; Carn, SImon A.; Duncan, Bryan N.; Krotkov, Nickolay A.; Streets, David G.
2006-01-01
The approach to create a comprehensive emission inventory for the time period 1980 to 2000 is described in this paper. We have recently compiled an emission database, which we will use for a 21 year simulation of tropospheric aerosols with the GOCART model. Particular attention was paid to the time-dependent SO2, black carbon and organic carbon aerosol emissions. For the emission of SO2 from sporadically erupting volcanoes, we assembled emission data from the Global Volcanism Program of the Smithsonian Institution, using the VEI to derive the volcanic cloud height and the SO2 amount, and amended this dataset by the SO2 emission data from the TOMS instrument when available. 3-dimensional aircraft emission data was obtained for a number of years from the AEAP project, converted from burned fuel to SO2 and interpolated to each year, taking the sparsity of the flight patterns into account. Other anthropogenic SO2 emissions are based on gridded emissions from the EDGAR 2000 database (excluding sources from aircraft, biomass burning and international ship traffic), which were scaled to individual years with country/regional based emission inventories. Gridded SO2 emissions from international ship traffic for 2000 and the scaling factors for other years are from [Eyring et al., 2005]. We used gridded anthropogenic black and organic carbon emissions for 1996 [Bond et al., 2005], again excluding aircraft, biomass burning and ship sources. These emissions were scaled with regional based emission inventories from 1980 to 2000 to derive gridded emissions for each year. The biomass burning emissions are based on a climatology, which is scaled with regional scaling factors derived from the TOMS aerosol index and the AVHRR/ASTR fire counts to each year [Duncan et al., 2003]. Details on the integration of the information from the various sources will be provided and the distribution patterns and total emissions in the final product will be discussed.
Remote-sensing supported monitoring of global biodiversity change
NASA Astrophysics Data System (ADS)
Jetz, W.; Tuanmu, M. N.; W, A.; Melton, F. S.; Parmentier, B.; Amatulli, G.; Guzman, A.
2016-12-01
Remote sensing combined with biodiversity observation offers an unrivalled tool for understanding and predicting species distributions and their changes at the planetary scale. I will illustrate recently developed high-resolution remote-sensing based layers targeted for spatiotemporal biodiversity modeling, addressing climate, environment, topography, and habitat heterogeneity. In particular, I will illustrate the development and use of global MODIS-derived environmental layers for biodiversity assessment and change monitoring. Remote-sensing based capture of these putative predictors of biodiversity dynamics provides more a reliable signal than spatially interpolated layers and avoids inflated spatial autocorrelation. The layers result in more accurate models of species occurrence and are more readily able to address the scale of processes underpinning species distributions, e.g. when combined with emerging hierarchical, cross-scale models. I illustrate the multiple ways in which this type of information, based on continuously collected data, supports the prediction of not just spatial but also temporal variation in biodiversity. Using implementations in the Map of Life infrastructure I will showcase new indicators of species distribution and change that demonstrate these new opportunities.
Daniel, David G; Revicki, Dennis A; Canuso, Carla M; Turkoz, Ibrahim; Fu, Dong-Jing; Alphs, Larry; Ishak, K. Jack; Bartko, John J; Lindenmayer, Jean-Pierre
2012-01-01
Objective: The Clinical Global Impression for Schizoaffective Disorder scale is a new rating scale adapted from the Clinical Global Impression scale for use in patients with schizoaffective disorder. The psychometric characteristics of the Clinical Global Impression for Schizoaffective Disorder are described. Design: Content validity was assessed using an investigator questionnaire. Inter-rater reliability was determined with 12 sets of videotaped interviews rated independently by two trained individuals. Test-retest reliability was assessed using 30 randomly selected raters from clinical trials who evaluated the same videos on separate occasions two weeks apart. Convergent and divergent validity and effect size were evaluated by comparing scores between the Clinical Global Impression for Schizoaffective Disorder and the Positive and Negative Syndrome Scale, 21-item Hamilton Rating Scale for Depression, and Young Mania Rating Scale scales using pooled patient data from two clinical trials. Clinical Global Impression for Schizoaffective Disorder scores were then linked to corresponding Positive and Negative Syndrome Scale scores. Results: Content validity was strong. Inter-rater agreement was good to excellent for most scales and subscales (intra-class correlation coefficient ≥0.50). Test-retest showed good reproducibility, with intraclass correlation coefficients ranging from 0.444 to 0.898. Spearman correlations between Clinical Global Impression for Schizoaffective Disorder domains and corresponding symptom scales were 0.60 or greater, and effect sizes for Clinical Global Impression for Schizoaffective Disorder overall and domain scores were similar to Positive and Negative Syndrome Scale Young Mania Rating Scale, and 21-item Hamilton Rating Scale for Depression scores. Raters anticipated that the scale might be less effective in distinguishing negative from depressive symptoms, and, in fact, the results here may reflect that clinical reality. Conclusion: Multiple lines of evidence support the reliability and validity of the Clinical Global Impression for Schizoaffective Disorder for studies in schizoaffective disorder. PMID:22347687
Kenneth J. Ruzicka; Klaus J. Puettmann; J. Renée Brooks
2017-01-01
Summary1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment to better understand options for managing forests under climate change. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (δ...
Seismic waves and earthquakes in a global monolithic model
NASA Astrophysics Data System (ADS)
Roubíček, Tomáš
2018-03-01
The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.
Double symbolic joint entropy in nonlinear dynamic complexity analysis
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-07-01
Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.
Realizing a terrestrial reference frame using the Global Positioning System
NASA Astrophysics Data System (ADS)
Haines, Bruce J.; Bar-Sever, Yoaz E.; Bertiger, Willy I.; Desai, Shailen D.; Harvey, Nate; Sibois, Aurore E.; Weiss, Jan P.
2015-08-01
We describe a terrestrial reference frame (TRF) realization based on Global Positioning System (GPS) data alone. Our approach rests on a highly dynamic, long-arc (9 day) estimation strategy and on GPS satellite antenna calibrations derived from Gravity Recovery and Climate Experiment and TOPEX/Poseidon low Earth orbit receiver GPS data. Based on nearly 17 years of data (1997-2013), our solution for scale rate agrees with International Terrestrial Reference Frame (ITRF)2008 to 0.03 ppb yr-1, and our solution for 3-D origin rate agrees with ITRF2008 to 0.4 mm yr-1. Absolute scale differs by 1.1 ppb (7 mm at the Earth's surface) and 3-D origin by 8 mm. These differences lie within estimated error levels for the contemporary TRF.
NASA Astrophysics Data System (ADS)
Wendler, Ines
2013-11-01
Climate variability is driven by a complex interplay of global-scale processes and our understanding of them depends on sufficient temporal resolution of the geologic records and their precise inter-regional correlation, which in most cases cannot be obtained with biostratigraphic methods alone. Chemostratigraphic correlation based on bulk sediment carbon isotopes is increasingly used to facilitate high-resolution correlation over large distances, but complications arise from a multitude of possible influences from local differences in biological, diagenetic and physico-chemical factors on individual δ13C records that can mask the global signal. To better assess the global versus local contribution in a δ13C record it is necessary to compare numerous isotopic records on a global scale. As a contribution to this objective, this paper reviews bulk sediment δ13Ccarb records from the Late Cretaceous in order to identify differences and similarities in secular δ13C trends that help establish a global reference δ13C record for this period. The study presents a global-scale comparison of twenty δ13C records from sections representing various palaeo-latitudes in both hemispheres and different oceanic settings from the Boreal, Tethys, Western Interior, Indian Ocean and Pacific Ocean, and with various diagenetic overprinting. The isotopic patterns are correlated based on independent dating with biostratigraphic and paleomagnetic data and reveal good agreement of the major isotope events despite offsets in absolute δ13C values and variation in amplitude between the sites. These differences reflect the varying local influences e.g. from depositional settings, bottom water age and diagenetic history, whereas the concordant patterns in δ13C shifts might represent δ13C fluctuations in the global seawater dissolved inorganic carbon. The latter is modulated by variations in organic matter burial relative to re-mineralization, in the global-scale formation of authigenic carbonate, and in partitioning of carbon between organic carbon and carbonate sinks. These variations are mainly controlled by changes in climate and eustasy. Additionally, some globally synchronous shifts in the bulk δ13Ccarb records could result from parallel variation in the contribution of authigenic carbonate to the sediment. Formation of these cements through biologically mediated early diagenetic processes is related to availability of oxygen and organic material and, thus, can be globally synchronized by fluctuations in eustasy, atmospheric and oceanic oxygen levels or in large-scale oceanic circulation. Because the influence of early diagenetic cements on the bulk δ13Ccarb signal can, but need not be synchronized, chemostratigraphy should not be used as a stand-alone method for trans-continental correlation, and especially minor isotopic shifts have to be interpreted with utmost care. Nevertheless, the observed consistency of the δ13C correlations confirms global scale applicability of bulk sediment δ13C chemostratigraphy for the Late Cretaceous, including sediments that underwent lithification and burial diagenesis such as the sediments from the Himalayan and Alpine sections. Limitations arise from increased uncertainties (1) in sediments with very low carbonate content, (2) from larger δ13C variability in sediments from very shallow marine environments, (3) from unrecognized hiatuses or strong changes in sedimentation rates, and (4) in sections with short stratigraphic coverage or with few biostratigraphic marker horizons.
NASA Astrophysics Data System (ADS)
Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.
2015-01-01
Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.
David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon
2005-01-01
Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...
Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface
NASA Astrophysics Data System (ADS)
Cutler, B. B.; Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.
NASA Astrophysics Data System (ADS)
Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.
2014-12-01
Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay, E.; Baker, W. E.
1981-01-01
The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.
Probing Mantle Heterogeneity Across Spatial Scales
NASA Astrophysics Data System (ADS)
Hariharan, A.; Moulik, P.; Lekic, V.
2017-12-01
Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.
Global hydrobelts: improved reporting scale for water-related issues?
NASA Astrophysics Data System (ADS)
Meybeck, M.; Kummu, M.; Dürr, H. H.
2012-08-01
Questions related to water such as its availability, water needs or stress, or management, are mapped at various resolutions at the global scale. They are reported at many scales, mostly along political or continental boundaries. As such, they ignore the fundamental heterogeneity of the hydroclimate and the natural boundaries of the river basins. Here, we describe the continental landmasses according to eight global-scale hydrobelts strictly limited by river basins, defined at a 30' (0.5°) resolution. The belts were defined and delineated, based primarily on the annual average temperature (T) and runoff (q), to maximise interbelt differences and minimise intrabelt variability. The belts were further divided into 29 hydroregions based on continental limits. This new global puzzle defines homogeneous and near-contiguous entities with similar hydrological and thermal regimes, glacial and postglacial basin histories, endorheism distribution and sensitivity to climate variations. The Mid-Latitude, Dry and Subtropical belts have northern and southern analogues and a general symmetry can be observed for T and q between them. The Boreal and Equatorial belts are unique. The hydroregions (median size 4.7 Mkm2) contrast strongly, with the average q ranging between 6 and 1393 mm yr-1 and the average T between -9.7 and +26.3 °C. Unlike the hydroclimate, the population density between the North and South belts and between the continents varies greatly, resulting in pronounced differences between the belts with analogues in both hemispheres. The population density ranges from 0.7 to 0.8 p km-2 for the North American Boreal and some Australian hydroregions to 280 p km-2 for the Asian part of the Northern Mid-Latitude belt. The combination of population densities and hydroclimate features results in very specific expressions of water-related characteristics in each of the 29 hydroregions. Our initial tests suggest that hydrobelt and hydroregion divisions are often more appropriate for water-relative global analysis and reporting than conventional continental or political divisions.
NASA Astrophysics Data System (ADS)
Beck, Hylke; de Roo, Ad; van Dijk, Albert; McVicar, Tim; Miralles, Diego; Schellekens, Jaap; Bruijnzeel, Sampurno; de Jeu, Richard
2015-04-01
Motivated by the lack of large-scale model parameter regionalization studies, a large set of 3328 small catchments (< 10000 km2) around the globe was used to set up and evaluate five model parameterization schemes at global scale. The HBV-light model was chosen because of its parsimony and flexibility to test the schemes. The catchments were calibrated against observed streamflow (Q) using an objective function incorporating both behavioral and goodness-of-fit measures, after which the catchment set was split into subsets of 1215 donor and 2113 evaluation catchments based on the calibration performance. The donor catchments were subsequently used to derive parameter sets that were transferred to similar grid cells based on a similarity measure incorporating climatic and physiographic characteristics, thereby producing parameter maps with global coverage. Overall, there was a lack of suitable donor catchments for mountainous and tropical environments. The schemes with spatially-uniform parameter sets (EXP2 and EXP3) achieved the worst Q estimation performance in the evaluation catchments, emphasizing the importance of parameter regionalization. The direct transfer of calibrated parameter sets from donor catchments to similar grid cells (scheme EXP1) performed best, although there was still a large performance gap between EXP1 and HBV-light calibrated against observed Q. The schemes with parameter sets obtained by simultaneously calibrating clusters of similar donor catchments (NC10 and NC58) performed worse than EXP1. The relatively poor Q estimation performance achieved by two (uncalibrated) macro-scale hydrological models suggests there is considerable merit in regionalizing the parameters of such models. The global HBV-light parameter maps and ancillary data are freely available via http://water.jrc.ec.europa.eu.
Process-based upscaling of surface-atmosphere exchange
NASA Astrophysics Data System (ADS)
Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.
2015-12-01
Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.
Integrated fringe projection 3D scanning system for large-scale metrology based on laser tracker
NASA Astrophysics Data System (ADS)
Du, Hui; Chen, Xiaobo; Zhou, Dan; Guo, Gen; Xi, Juntong
2017-10-01
Large scale components exist widely in advance manufacturing industry,3D profilometry plays a pivotal role for the quality control. This paper proposes a flexible, robust large-scale 3D scanning system by integrating a robot with a binocular structured light scanner and a laser tracker. The measurement principle and system construction of the integrated system are introduced. And a mathematical model is established for the global data fusion. Subsequently, a flexible and robust method and mechanism is introduced for the establishment of the end coordination system. Based on this method, a virtual robot noumenon is constructed for hand-eye calibration. And then the transformation matrix between end coordination system and world coordination system is solved. Validation experiment is implemented for verifying the proposed algorithms. Firstly, hand-eye transformation matrix is solved. Then a car body rear is measured for 16 times for the global data fusion algorithm verification. And the 3D shape of the rear is reconstructed successfully.
Effect of Gender on the Knowledge of Medicinal Plants: Systematic Review and Meta-Analysis
Torres-Avilez, Wendy; de Medeiros, Patrícia Muniz
2016-01-01
Knowledge of medicinal plants is not only one of the main components in the structure of knowledge in local medical systems but also one of the most studied resources. This study uses a systematic review and meta-analysis of a compilation of ethnobiological studies with a medicinal plant component and the variable of gender to evaluate whether there is a gender-based pattern in medicinal plant knowledge on different scales (national, continental, and global). In this study, three types of meta-analysis are conducted on different scales. We detect no significant differences on the global level; women and men have the same rich knowledge. On the national and continental levels, significant differences are observed in both directions (significant for men and for women), and a lack of significant differences in the knowledge of the genders is also observed. This finding demonstrates that there is no gender-based pattern for knowledge on different scales. PMID:27795730
Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.
2015-01-01
A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.
NASA Astrophysics Data System (ADS)
López, Oliver; Houborg, Rasmus; McCabe, Matthew Francis
2017-01-01
Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this consistency
-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2-3 months. Interestingly, after imposing a simple lag in GRACE data to account for delayed surface runoff or baseflow components, an improved match in terms of degree correlation was observed in the Niger River basin. Significant improvements to the degree correlations (from ˜ 0 to about 0.6) were also found in the Colorado River basin for both the CSIRO-PML and GLEAM products, while MOD16 showed only half of that improvement. In other basins, the variability in the temporal pattern of degree correlations remained considerable and hindered any clear differentiation between the evaporation products. Even so, it was found that a constant lag of 2 months provided a better fit compared to other alternatives, including a zero lag. From a product assessment perspective, no significant or persistent advantage could be discerned across any of the three evaporation products in terms of a sustained hydrological consistency with precipitation and water storage anomaly data. As a result, our analysis has implications in terms of the confidence that can be placed in independent retrievals of the hydrological cycle, raises questions on inter-product quality, and highlights the need for additional techniques to evaluate large-scale products.
An online mineral dust model within the global/regional NMMB: current progress and plans
NASA Astrophysics Data System (ADS)
Perez, C.; Haustein, K.; Janjic, Z.; Jorba, O.; Baldasano, J. M.; Black, T.; Nickovic, S.
2008-12-01
While mineral dust distribution and effects are important on global scales, they strongly depend on dust emissions that are occurring on small spatial and temporal scales. Indeed, the accuracy of surface wind speed used in dust models is crucial. Due to the high-order power dependency on wind friction velocity and the threshold behaviour of dust emissions, small errors in surface wind speed lead to large dust emission errors. Most global dust models use prescribed wind fields provided by major meteorological centres (e.g., NCEP and ECMWF) and their spatial resolution is currently about 1 degree x 1 degree . Such wind speeds tend to be strongly underestimated over arid and semi-arid areas and do not account for mesoscale systems responsible for a significant fraction of dust emissions regionally and globally. Other significant uncertainties in dust emissions resulting from such approaches are related to the misrepresentation of high subgrid-scale spatial heterogeneity in soil and vegetation boundary conditions, mainly in semi-arid areas. In order to significantly reduce these uncertainties, the Barcelona Supercomputing Center is currently implementing a mineral dust model coupled on-line with the new global/regional NMMB atmospheric model using the ESMF framework under development in NOAA/NCEP/EMC. The NMMB is an evolution of the operational WRF-NMME extending from meso to global scales, and including non-hydrostatic option and improved tracer advection. This model is planned to become the next-generation NCEP mesoscale model for operational weather forecasting in North America. Current implementation is based on the well established regional dust model and forecast system Eta/DREAM (http://www.bsc.es/projects/earthscience/DREAM/). First successful global simulations show the potentials of such an approach and compare well with DREAM regionally. Ongoing developments include improvements in dust size distribution representation, sedimentation, dry deposition, wet scavenging and dust-radiation feedback, as well as the efficient implementation of the model on High Performance Supercomputers for global simulations and forecasts at high resolution.
Hilley, George E; Porder, Stephen
2008-11-04
Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.
New estimation architecture for multisensor data fusion
NASA Astrophysics Data System (ADS)
Covino, Joseph M.; Griffiths, Barry E.
1991-07-01
This paper describes a novel method of hierarchical asynchronous distributed filtering called the Net Information Approach (NIA). The NIA is a Kalman-filter-based estimation scheme for spatially distributed sensors which must retain their local optimality yet require a nearly optimal global estimate. The key idea of the NIA is that each local sensor-dedicated filter tells the global filter 'what I've learned since the last local-to-global transmission,' whereas in other estimation architectures the local-to-global transmission consists of 'what I think now.' An algorithm based on this idea has been demonstrated on a small-scale target-tracking problem with many encouraging results. Feasibility of this approach was demonstrated by comparing NIA performance to an optimal centralized Kalman filter (lower bound) via Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Kaspar, Frank; Kaiser-Weiss, Andrea K.; Heene, Vera; Borsche, Michael; Keller, Jan
2015-04-01
Within the preparation activities for a European COPERNICUS Climate Change Service (C3S) several ongoing research projects analyse the potential of global and regional model-based climate reanalyses for applications. A user survey in the FP7-project CORE-CLIMAX revealed that surface wind (10 m) is among the most frequently used parameters of global reanalysis products. The FP7 project UERRA (Uncertainties in Ensembles of Regional Re-Analysis) has the focus on regional European reanalysis and the associated uncertainties, also from a user perspective. Especially in the field of renewable energy planning and production there is a need for climatological information across all spatial scales, i.e., from climatology at a certain site to the spatial scale of national or continental renewable energy production. Here, we focus on a comparison of wind measurements of the Germany's meteorological service (Deutscher Wetterdienst, DWD) with global reanalyses of ECWMF and a regional reanalysis for Europe based on DWD's NWP-model COSMO (performed by the Hans-Ertel-Center for Weather Research, University of Bonn). Reanalyses can provide valuable additional information on larger scale variability, e.g. multi-annual variation over Germany. However, changes in the observing system, model errors and biases have to be carefully considered. On the other hand, the ground-based observation networks partly suffer from change of the station distribution, changes in instrumentation, measurements procedures and quality control as well as local changes which might modify their spatial representativeness. All these effects might often been unknown or hard to characterize, although plenty of the meta-data information has been recorded for the German stations. One focus of the presentation will be the added-value of the regional reanalysis.
A satellite and model based flood inundation climatology of Australia
NASA Astrophysics Data System (ADS)
Schumann, G.; Andreadis, K.; Castillo, C. J.
2013-12-01
To date there is no coherent and consistent database on observed or simulated flood event inundation and magnitude at large scales (continental to global). The only compiled data set showing a consistent history of flood inundation area and extent at a near global scale is provided by the MODIS-based Dartmouth Flood Observatory. However, MODIS satellite imagery is only available from 2000 and is hampered by a number of issues associated with flood mapping using optical images (e.g. classification algorithms, cloud cover, vegetation). Here, we present for the first time a proof-of-concept study in which we employ a computationally efficient 2-D hydrodynamic model (LISFLOOD-FP) complemented with a sub-grid channel formulation to generate a complete flood inundation climatology of the past 40 years (1973-2012) for the entire Australian continent. The model was built completely from freely available SRTM-derived data, including channel widths, bank heights and floodplain topography, which was corrected for vegetation canopy height using a global ICESat canopy dataset. Channel hydraulics were resolved using actual channel data and bathymetry was estimated within the model using hydraulic geometry. On the floodplain, the model simulated the flow paths and inundation variables at a 1 km resolution. The developed model was run over a period of 40 years and a floodplain inundation climatology was generated and compared to satellite flood event observations. Our proof-of-concept study demonstrates that this type of model can reliably simulate past flood events with reasonable accuracies both in time and space. The Australian model was forced with both observed flow climatology and VIC-simulated flows in order to assess the feasibility of a model-based flood inundation climatology at the global scale.
Rating of personality disorder features in popular movie characters.
Hesse, Morten; Schliewe, Sanna; Thomsen, Rasmus R
2005-12-08
Tools for training professionals in rating personality disorders are few. We present one such tool: rating of fictional persons. However, before ratings of fictional persons can be useful, we need to know whether raters get the same results, when rating fictional characters. Psychology students at the University of Copenhagen (N = 8) rated four different movie characters from four movies based on three systems: Global rating scales representing each of the 10 personality disorders in the DSM-IV, a criterion list of all criteria for all DSM-IV personality disorders in random order, and the Ten Item Personality Inventory for rating the five-factor model. Agreement was estimated based on intraclass-correlation. Agreement for rating scales for personality disorders ranged from 0.04 to 0.54. For personality disorder features based on DSM-IV criteria, agreement ranged from 0.24 to 0.89, and agreement for the five-factor model ranged from 0.05 to 0.88. The largest multivariate effect was observed for criteria count followed by the TIPI, followed by rating scales. Raters experienced personality disorder criteria as the easiest, and global personality disorder scales as the most difficult, but with significant variation between movies. Psychology students with limited or no clinical experience can agree well on the personality traits of movie characters based on watching the movie. Rating movie characters may be a way to practice assessment of personality.
Rating of personality disorder features in popular movie characters
Hesse, Morten; Schliewe, Sanna; Thomsen, Rasmus R
2005-01-01
Background Tools for training professionals in rating personality disorders are few. We present one such tool: rating of fictional persons. However, before ratings of fictional persons can be useful, we need to know whether raters get the same results, when rating fictional characters. Method Psychology students at the University of Copenhagen (N = 8) rated four different movie characters from four movies based on three systems: Global rating scales representing each of the 10 personality disorders in the DSM-IV, a criterion list of all criteria for all DSM-IV personality disorders in random order, and the Ten Item Personality Inventory for rating the five-factor model. Agreement was estimated based on intraclass-correlation. Results Agreement for rating scales for personality disorders ranged from 0.04 to 0.54. For personality disorder features based on DSM-IV criteria, agreement ranged from 0.24 to 0.89, and agreement for the five-factor model ranged from 0.05 to 0.88. The largest multivariate effect was observed for criteria count followed by the TIPI, followed by rating scales. Raters experienced personality disorder criteria as the easiest, and global personality disorder scales as the most difficult, but with significant variation between movies. Conclusion Psychology students with limited or no clinical experience can agree well on the personality traits of movie characters based on watching the movie. Rating movie characters may be a way to practice assessment of personality. PMID:16336663
Applications of Land Surface Temperature from Microwave Observations
USDA-ARS?s Scientific Manuscript database
Land surface temperature (LST) is a key input for physically-based retrieval algorithms of hydrological states and fluxes. Yet, it remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observation...
Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.
2014-12-01
The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are associated to derive food production estimates. Based on trends analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. CropWatch bulletin can be downloaded from the CropWatch website at http://www.cropwatch.com.cn.
Data needs and data bases for climate studies
NASA Technical Reports Server (NTRS)
Matthews, Elaine
1986-01-01
Two complementary global digital data bases of vegetation and land use, compiled at 1 deg resolution from published sources for use in climate studies, are discussed. The data bases were implemented, in several individually tailored formulations, in a series of climate related applications including: land-surface prescriptions in three-dimensional general circulation models, global biogeochemical cycles (CO2, methane), critical-area mapping for satellite monitoring of land-cover change, and large-scale remote sensing of surface reflectance. The climate applications are discussed with reference to data needs, and data availability from traditional and remote sensing sources.
Does remote sensing help translating local SGD investigation to large spatial scales?
NASA Astrophysics Data System (ADS)
Moosdorf, N.; Mallast, U.; Hennig, H.; Schubert, M.; Knoeller, K.; Neehaul, Y.
2016-02-01
Within the last 20 years, studies on submarine groundwater discharge (SGD) have revealed numerous processes, temporal behavior and quantitative estimations as well as best-practice and localization methods. This plethora on information is valuable regarding the understanding of magnitude and effects of SGD for the respective location. Yet, since given local conditions vary, the translation of local understanding, magnitudes and effects to a regional or global scale is not trivial. In contrast, modeling approaches (e.g. 228Ra budget) tackling SGD on a global scale do provide quantitative global estimates but have not been related to local investigations. This gap between the two approaches, local and global, and the combination and/or translation of either one to the other represents one of the mayor challenges the SGD community currently faces. But what if remote sensing can provide certain information that may be used as translation between the two, similar to transfer functions in many other disciplines allowing an extrapolation from in-situ investigated and quantified SGD (discrete information) to regional scales or beyond? Admittedly, the sketched future is ambitious and we will certainly not be able to present a solution to the raised question. Nonetheless, we will show a remote sensing based approach that is already able to identify potential SGD sites independent on location or hydrogeological conditions. Based on multi-temporal thermal information of the water surface as core of the approach, SGD influenced sites display a smaller thermal variation (thermal anomalies) than surrounding uninfluenced areas. Despite the apparent simplicity, the automatized approach has helped to localize several sites that could be validated with proven in-situ methods. At the same time it embodies the risk to identify false positives that can only be avoided if we can `calibrate' the so obtained thermal anomalies to in-situ data. We will present all pros and cons of our approach with the intention to contribute to the solution of translating SGD investigation to larger scales.
NASA Astrophysics Data System (ADS)
Bland, Michael T.; McKinnon, William B.
2015-01-01
The ubiquity of tectonic features formed in extension, and the apparent absence of ones formed in contraction, has led to the hypothesis that Ganymede has undergone global expansion in its past. Determining the magnitude of such expansion is challenging however, and extrapolation of locally or regionally inferred strains to global scales often results in strain estimates that exceed those based on global constraints. Here we use numerical simulations of groove terrain formation to develop a strain history for Ganymede that is generally consistent at local, regional, and global scales. These simulations reproduce groove-like amplitudes, wavelengths, and average slopes at modest regional extensions (10-15%). The modest strains are more consistent with global constraints on Ganymede's expansion. Yet locally, we also find that surface strains can be much larger (30-60%) in the same simulations, consistent with observations of highly-extended impact craters. Thus our simulations satisfy both the smallest-scale and largest-scale inferences of strain on Ganymede. The growth rate of the topography is consistent with (or exceeds) predictions of analytical models, and results from the use of a non-associated plastic rheology that naturally permits localization of brittle failure (plastic strain) into linear fault-like shear zones. These fault-like zones are organized into periodically-spaced graben-like structures with stepped, steeply-dipping faults. As in previous work, groove amplitudes and wavelengths depend on both the imposed heat flux and surface temperature, but because our brittle strength increases with depth, we find (for the parameters explored) that the growth rate of topography is initially faster for lower heat flows. We observe a transition to narrow rifting for higher heat flows and larger strains, which is a potential pathway for breakaway margin or band formation.
Bland, Michael T.; McKinnon, W. B.
2015-01-01
The ubiquity of tectonic features formed in extension, and the apparent absence of ones formed in contraction, has led to the hypothesis that Ganymede has undergone global expansion in its past. Determining the magnitude of such expansion is challenging however, and extrapolation of locally or regionally inferred strains to global scales often results in strain estimates that exceed those based on global constraints. Here we use numerical simulations of groove terrain formation to develop a strain history for Ganymede that is generally consistent at local, regional, and global scales. These simulations reproduce groove-like amplitudes, wavelengths, and average slopes at modest regional extensions (10–15%). The modest strains are more consistent with global constraints on Ganymede’s expansion. Yet locally, we also find that surface strains can be much larger (30–60%) in the same simulations, consistent with observations of highly-extended impact craters. Thus our simulations satisfy both the smallest-scale and largest-scale inferences of strain on Ganymede. The growth rate of the topography is consistent with (or exceeds) predictions of analytical models, and results from the use of a non-associated plastic rheology that naturally permits localization of brittle failure (plastic strain) into linear fault-like shear zones. These fault-like zones are organized into periodically-spaced graben-like structures with stepped, steeply-dipping faults. As in previous work, groove amplitudes and wavelengths depend on both the imposed heat flux and surface temperature, but because our brittle strength increases with depth, we find (for the parameters explored) that the growth rate of topography is initially faster for lower heat flows. We observe a transition to narrow rifting for higher heat flows and larger strains, which is a potential pathway for breakaway margin or band formation.
Mazhari, Shahrzad; Ghafaree-Nejad, Ali R; Soleymani-Zade, Somayeh; Keefe, Richard S E
2017-06-01
The Schizophrenia Cognition Rating Scale (SCoRS) is an interview-based assessment of cognition that involves interviews with patients and informants. The SCoRS has shown good reliability, validity, and sensitivity to cognitive impairment in schizophrenia, with the advantage of brief administration and scoring time. The present study aimed to test the concurrent validity of the Persian version of the SCoRS. A group of 35 patients with schizophrenia and a group of 35 healthy controls received the Persian-SCoRS in the first session, and a standardized performance-based cognitive battery, the Brief Assessment of Cognition in Schizophrenia (BACS), in the second session.Our results indicated that the Persian version of the SCoRS was sensitive to cognitive impairment in the patients. The Persian SCoRS global rating was significantly associated with the composite score generated from the Persian version of the BACS and predicted functional outcomes as measured by Global Assessment of Functioning (GAF) and World Health Organization Quality of Life (WHO QOL). A Persian version of the SCoRS, an interview based measure of cognition that included informants, is related to cognitive performance and global functioning. Copyright © 2017 Elsevier B.V. All rights reserved.
Rueda, Ana; Vitousek, Sean; Camus, Paula; Tomás, Antonio; Espejo, Antonio; Losada, Inigo J; Barnard, Patrick L; Erikson, Li H; Ruggiero, Peter; Reguero, Borja G; Mendez, Fernando J
2017-07-11
Coastal communities throughout the world are exposed to numerous and increasing threats, such as coastal flooding and erosion, saltwater intrusion and wetland degradation. Here, we present the first global-scale analysis of the main drivers of coastal flooding due to large-scale oceanographic factors. Given the large dimensionality of the problem (e.g. spatiotemporal variability in flood magnitude and the relative influence of waves, tides and surge levels), we have performed a computer-based classification to identify geographical areas with homogeneous climates. Results show that 75% of coastal regions around the globe have the potential for very large flooding events with low probabilities (unbounded tails), 82% are tide-dominated, and almost 49% are highly susceptible to increases in flooding frequency due to sea-level rise.
Introducing GFWED: The Global Fire Weather Database
NASA Technical Reports Server (NTRS)
Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.;
2015-01-01
The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.
Global root zone storage capacity from satellite-based evaporation data
NASA Astrophysics Data System (ADS)
Wang-Erlandsson, Lan; Bastiaanssen, Wim; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel; van Dijk, Albert; Guerschman, Juan; Keys, Patrick; Gordon, Line; Savenije, Hubert
2016-04-01
We present an "earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale-independent. In contrast to traditional look-up table approaches, our method captures the variability in root zone storage capacity within land cover type, including in rainforests where direct measurements of root depth otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. We find that evergreen forests are able to create a large storage to buffer for extreme droughts (with a return period of up to 60 years), in contrast to short vegetation and crops (which seem to adapt to a drought return period of about 2 years). The presented method to estimate root zone storage capacity eliminates the need for soils and rooting depth information, which could be a game-changer in global land surface modelling.
How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?
Tang, Xuguang; Li, Hengpeng; Desai, Ankur R; Nagy, Zoltan; Luo, Juhua; Kolb, Thomas E; Olioso, Albert; Xu, Xibao; Yao, Li; Kutsch, Werner; Pilegaard, Kim; Köstner, Barbara; Ammann, Christof
2014-12-15
A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 51°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20° ~ 30°N and the other extends a little farther north than 51°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.
Toward a new architecture for global mental health.
Kirmayer, Laurence J; Pedersen, Duncan
2014-12-01
Current efforts in global mental health (GMH) aim to address the inequities in mental health between low-income and high-income countries, as well as vulnerable populations within wealthy nations (e.g., indigenous peoples, refugees, urban poor). The main strategies promoted by the World Health Organization (WHO) and other allies have been focused on developing, implementing, and evaluating evidence-based practices that can be scaled up through task-shifting and other methods to improve access to services or interventions and reduce the global treatment gap for mental disorders. Recent debates on global mental health have raised questions about the goals and consequences of current approaches. Some of these critiques emphasize the difficulties and potential dangers of applying Western categories, concepts, and interventions given the ways that culture shapes illness experience. The concern is that in the urgency to address disparities in global health, interventions that are not locally relevant and culturally consonant will be exported with negative effects including inappropriate diagnoses and interventions, increased stigma, and poor health outcomes. More fundamentally, exclusive attention to mental disorders identified by psychiatric nosologies may shift attention from social structural determinants of health that are among the root causes of global health disparities. This paper addresses these critiques and suggests how the GMH movement can respond through appropriate modes of community-based practice and ongoing research, while continuing to work for greater equity and social justice in access to effective, socially relevant, culturally safe and appropriate mental health care on a global scale. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
Ma, Jianyong; Shugart, Herman H; Yan, Xiaodong; Cao, Cougui; Wu, Shuang; Fang, Jing
2017-05-15
The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be accurately quantified and predicted by ecological models. As a preamble to apply the model to estimate global carbon uptake by forest ecosystems, we used the CO 2 flux measurements from 37 forest eddy-covariance sites to examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production (NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated GPP and slightly overestimated ER across most of the eddy-covariance sites. An underestimation of NEP arose primarily from the lower GPP estimates. Model performance was better in capturing both the temporal changes and magnitude of carbon fluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less well for sites in Mediterranean climate. We then applied the model to estimate the carbon fluxes of forest ecosystems on global scale over 1982-2011. This application of FORCCHN gave a total GPP of 59.41±5.67 and an ER of 57.21±5.32PgCyr -1 for global forest ecosystems during 1982-2011. The forest ecosystems over this same period contributed a large carbon storage, with total NEP being 2.20±0.64PgCyr -1 . These values are comparable to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chase, R.; Mcgoldrick, L.
1984-01-01
The importance of large-scale ocean movements to the moderation of Global Temperature is discussed. The observational requirements of physical oceanography are discussed. Satellite-based oceanographic observing systems are seen as central to oceanography in 1990's.
Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge
NASA Astrophysics Data System (ADS)
Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.
2017-01-01
Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Tristram O.; Le Page, Yannick LB; Huang, Maoyi
2014-06-05
Projections of land cover change generated from Integrated Assessment Models (IAM) and other economic-based models can be applied for analyses of environmental impacts at subregional and landscape scales. For those IAM and economic models that project land use at the sub-continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30m) and at the global extent with relatively coarse spatial resolution (0.5 degree).
Cachafeiro, Thais Hofmann; Escobar, Gabriela Fortes; Maldonado, Gabriela; Cestari, Tania Ferreira
2014-01-01
The "Quantitative Global Scarring Grading System for Postacne Scarring" was developed in English for acne scar grading, based on the number and severity of each type of scar. The aims of this study were to translate this scale into Brazilian Portuguese and verify its reliability and validity. The study followed five steps: Translation, Expert Panel, Back Translation, Approval of authors and Validation. The translated scale showed high internal consistency and high test-retest reliability, confirming its reproducibility. Therefore, it has been validated for our population and can be recommended as a reliable instrument to assess acne scarring. PMID:25184939
Multi-scale Modeling of Arctic Clouds
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Roesler, E. L.; Dexheimer, D.
2017-12-01
The presence and properties of clouds are critically important to the radiative budget in the Arctic, but clouds are notoriously difficult to represent in global climate models (GCMs). The challenge stems partly from a disconnect in the scales at which these models are formulated and the scale of the physical processes important to the formation of clouds (e.g., convection and turbulence). Because of this, these processes are parameterized in large-scale models. Over the past decades, new approaches have been explored in which a cloud system resolving model (CSRM), or in the extreme a large eddy simulation (LES), is embedded into each gridcell of a traditional GCM to replace the cloud and convective parameterizations to explicitly simulate more of these important processes. This approach is attractive in that it allows for more explicit simulation of small-scale processes while also allowing for interaction between the small and large-scale processes. The goal of this study is to quantify the performance of this framework in simulating Arctic clouds relative to a traditional global model, and to explore the limitations of such a framework using coordinated high-resolution (eddy-resolving) simulations. Simulations from the global model are compared with satellite retrievals of cloud fraction partioned by cloud phase from CALIPSO, and limited-area LES simulations are compared with ground-based and tethered-balloon measurements from the ARM Barrow and Oliktok Point measurement facilities.
NASA Astrophysics Data System (ADS)
Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.
2017-12-01
The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.
Planetary opportunities in crop water management: Potential to outweigh cropland expansion
NASA Astrophysics Data System (ADS)
Jägermeyr, Jonas; Gerten, Dieter; Lucht, Wolfgang; Heinke, Jens
2014-05-01
Global available land and water resources probably cannot feed projected future human populations under current productivity levels. Moreover, the planetary boundaries of both land use change and water consumption are being approached rapidly, and at the same time competition between food production, bioenergy plantations and biodiversity conservation is increasing. Global cropland is expected to expand to meet future demands, while considerable yield gaps remain in many world regions. Yield increases in Sub-Saharan Africa, for example, are currently mainly based on expansion of arable land into currently non-agricultural areas - while small-scale irrigation and water conservancy methods are considered very promising to boost yields there. In the here presented modeling study we investigate, at global scale, to what degree different on-farm options to better manage green and blue water might contribute to a global crop yield increase under conditions of current climate and projected future climate change. We consider methods aiming for a maximization of crops' water use efficiency and an optimal use of available on-farm water (precipitation): reducing unproductive soil evaporation (vapor shift, VS), collecting surface runoff after rain events to mitigate subsequent dry-spells (rain-water harvesting, RWH), increasing irrigation efficiency, and expanding irrigated area into rain-fed cropland (based on water savings from higher efficiencies). Global yield simulations based on hypothetical scenarios of these management opportunities are performed with the LPJmL ecohydrological modeling framework driven by reanalysis data and GCM ensemble simulations. We consider a range of about 20 climate change projections to cover respective uncertainties, and we analyze the effects of increasing CO2 concentration on the crops and their water demand. Crops are represented in a process-based and dynamic way by 12 crop functional types, each for rain-fed and irrigated areas, with prescribed annual fractions of cropland per 0.5° x 0.5° grid cell. We recalculate from the yield increase how much cropland expansion can be avoided in 30-yr averages. Our results show that the studied affordable low-tech solutions for small-scale farmers on water-limited croplands can have a considerable effect on yields at the global scale. A simulated global ~15% yield increase from a low-intensity water management scenario (25% of runoff used for RWH, 25% of soil evaporation avoided to achieve VS, slight irrigation efficiency improvement) could outweigh, i.e. possibly avoid, an estimated 120 Mha of cropland expansion under current climatic conditions. A (rather theoretical) maximum-intensity water management scenario (85% VS, 85% RWH, surface irrigation replaced by sprinkler systems) shows the potential to increase global yields by more than 35% without expansion or withdrawing additional irrigation water. Climate change will have adverse effects on crop yields in many regions, but as we sow such adaptation opportunities have the potential to mitigate or compensate these impacts in many countries. Overall, proper water management (sustainably maximizing on-farm water use efficiency) can substantially increase global crop yields and at the same time relax rates of land cover conversion.
Exploring Land Use and Land Cover Change and Feedbacks in the Global Change Assessment Model
NASA Astrophysics Data System (ADS)
Chen, M.; Vernon, C. R.; Huang, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.
2017-12-01
Land Use and Land Cover Change (LULCC) is a major driver of global and regional environmental change. Projections of land use change are thus an essential component in Integrated Assessment Models (IAMs) to study feedbacks between transformation of energy systems and land productivity under the context of climate change. However, the spatial scale of IAMs, e.g., the Global Change Assessment Model (GCAM), is typically larger than the scale of terrestrial processes in the human-Earth system, LULCC downscaling therefore becomes a critical linkage among these multi-scale and multi-sector processes. Parametric uncertainties in LULCC downscaling algorithms, however, have been under explored, especially in the context of how such uncertainties could propagate to affect energy systems in a changing climate. In this study, we use a LULCC downscaling model, Demeter, to downscale GCAM-based future land use scenarios into fine spatial scales, and explore the sensitivity of downscaled land allocations to key parameters. Land productivity estimates (e.g., biomass production and crop yield) based on the downscaled LULCC scenarios are then fed to GCAM to evaluate how energy systems might change due to altered water and carbon cycle dynamics and their interactions with the human system, , which would in turn affect future land use projections. We demonstrate that uncertainties in LULCC downscaling can result in significant differences in simulated scenarios, indicating the importance of quantifying parametric uncertainties in LULCC downscaling models for integrated assessment studies.
Everett, Tobias C; Ng, Elaine; Power, Daniel; Marsh, Christopher; Tolchard, Stephen; Shadrina, Anna; Bould, Matthew D
2013-12-01
The use of simulation-based assessments for high-stakes physician examinations remains controversial. The Managing Emergencies in Paediatric Anaesthesia course uses simulation to teach evidence-based management of anesthesia crises to trainee anesthetists in the United Kingdom (UK) and Canada. In this study, we investigated the feasibility and reliability of custom-designed scenario-specific performance checklists and a global rating scale (GRS) assessing readiness for independent practice. After research ethics board approval, subjects were videoed managing simulated pediatric anesthesia crises in a single Canadian teaching hospital. Each subject was randomized to two of six different scenarios. All 60 scenarios were subsequently rated by four blinded raters (two in the UK, two in Canada) using the checklists and GRS. The actual and predicted reliability of the tools was calculated for different numbers of raters using the intraclass correlation coefficient (ICC) and the Spearman-Brown prophecy formula. Average measures ICCs ranged from 'substantial' to 'near perfect' (P ≤ 0.001). The reliability of the checklists and the GRS was similar. Single measures ICCs showed more variability than average measures ICC. At least two raters would be required to achieve acceptable reliability. We have established the reliability of a GRS to assess the management of simulated crisis scenarios in pediatric anesthesia, and this tool is feasible within the setting of a research study. The global rating scale allows raters to make a judgement regarding a participant's readiness for independent practice. These tools may be used in the future research examining simulation-based assessment. © 2013 John Wiley & Sons Ltd.
Fluorotelomer-based polymers (FTPs) are the main product of the fluorotelomer industry. For nearly 10 years, whether FTPs degrade to form perfluorooctanoate (PFOA) and perfluorocarboxylate (PFCA) homologues has been vigorously contested. Here we show that circum-neutral abiotic h...
Using microwave observations to estimate land surface temperature during cloudy conditions
USDA-ARS?s Scientific Manuscript database
Land surface temperature (LST), a key ingredient for physically-based retrieval algorithms of hydrological states and fluxes, remains a poorly constrained parameter for global scale studies. The main two observational methods to remotely measure T are based on thermal infrared (TIR) observations and...
NASA Technical Reports Server (NTRS)
Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.
1998-01-01
Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.
Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database
Verdin, Kristine L.
2017-07-17
The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.
SoilGrids1km — Global Soil Information Based on Automated Mapping
Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez
2014-01-01
Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179
Global assessment of ocean carbon export by combining satellite observations and food-web models
NASA Astrophysics Data System (ADS)
Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.
2014-03-01
The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically < 10%) to factor of 2 changes in model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.
VIRTIS on Venus Express: retrieval of real surface emissivity on global scales
NASA Astrophysics Data System (ADS)
Arnold, Gabriele E.; Kappel, David; Haus, Rainer; Telléz Pedroza, Laura; Piccioni, Giuseppe; Drossart, Pierre
2015-09-01
The extraction of surface emissivity data provides the data base for surface composition analyses and enables to evaluate Venus' geology. The Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express mission measured, inter alia, the nightside thermal emission of Venus in the near infrared atmospheric windows between 1.0 and 1.2 μm. These data can be used to determine information about surface properties on global scales. This requires a sophisticated approach to understand and consider the effects and interferences of different atmospheric and surface parameters influencing the retrieved values. In the present work, results of a new technique for retrieval of the 1.0 - 1.2 μm - surface emissivity are summarized. It includes a Multi-Window Retrieval Technique, a Multi-Spectrum Retrieval technique (MSR), and a detailed reliability analysis. The MWT bases on a detailed radiative transfer model making simultaneous use of information from different atmospheric windows of an individual spectrum. MSR regularizes the retrieval by incorporating available a priori mean values, standard deviations as well as spatial-temporal correlations of parameters to be retrieved. The capability of this method is shown for a selected surface target area. Implications for geologic investigations are discussed. Based on these results, the work draws conclusions for future Venus surface composition analyses on global scales using spectral remote sensing techniques. In that context, requirements for observational scenarios and instrumental performances are investigated, and recommendations are derived to optimize spectral measurements for Venus' surface studies.
NASA Astrophysics Data System (ADS)
Dowell, M.; Moore, T.; Follows, M.; Dutkiewicz, S.
2006-12-01
In recent years there has been significant progress both in the use of satellite ocean colour remote sensing and coupled hydrodynamic biological models for producing maps of different dominant phytoplankton groups in the global ocean. In parallel to these initiatives, there is ongoing research largely following on from Alan Longhurst's seminal work on defining a template of distinct ecological and biogeochemical provinces for the oceans based on their physical and biochemical characteristics. For these products and models to be of maximum use in their subsequent inclusion in re-analysis and climate scale models, there is a need to understand how the "observed" distributions of dominant phytoplankton (realized niche) coincide with of the environmental constraints in which they occur (fundamental niche). In the current paper, we base our analysis on the recently published results on the distribution of dominant phytoplankton species at global scale, resulting both from satellite and model analysis. Furthermore, we will present research in defining biogeochemical provinces using satellite and model data inputs and a fuzzy logic based approach. This will be compared with ongoing modelling efforts, which include competitive exclusion and therefore compatible with the definition of the realized ecological niche, to define the emergent distribution of dominant phytoplankton species. Ultimately we investigate the coherence of these two distinct approaches in studying phytoplankton distributions and propose the significance of this in the context of modelling and analysis at various scales.
Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways
Galinsky, Vitaly L.; Frank, Lawrence R.
2015-01-01
We have developed a method for the simultaneous estimation of local diffusion and the global fiber tracts based upon the information entropy flow that computes the maximum entropy trajectories between locations and depends upon the global structure of the multi-dimensional and multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving a simple eigenvector problem for the probability distribution for which efficient numerical routines exist, and a straight forward integration of the probability conservation through ray tracing of the convective modes guided by a global structure of the entropy spectrum coupled with a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global information about multiple fiber crossings in every individual voxel and ranks it in the most scientifically rigorous way. This method has potential significance for a wide range of applications, including studies of brain connectivity. PMID:25532167
Global assessment of human losses due to earthquakes
Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen
2014-01-01
Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.
Stability and Scalability of the CMS Global Pool: Pushing HTCondor and GlideinWMS to New Limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcas, J.; Bockelman, B.; Hufnagel, D.
The CMS Global Pool, based on HTCondor and glideinWMS, is the main computing resource provisioning system for all CMS workflows, including analysis, Monte Carlo production, and detector data reprocessing activities. The total resources at Tier-1 and Tier-2 grid sites pledged to CMS exceed 100,000 CPU cores, while another 50,000 to 100,000 CPU cores are available opportunistically, pushing the needs of the Global Pool to higher scales each year. These resources are becoming more diverse in their accessibility and configuration over time. Furthermore, the challenge of stably running at higher and higher scales while introducing new modes of operation such asmore » multi-core pilots, as well as the chaotic nature of physics analysis workflows, places huge strains on the submission infrastructure. This paper details some of the most important challenges to scalability and stability that the CMS Global Pool has faced since the beginning of the LHC Run II and how they were overcome.« less
NASA Astrophysics Data System (ADS)
Fujii, Yoshiaki
2011-04-01
This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.
Stability and scalability of the CMS Global Pool: Pushing HTCondor and glideinWMS to new limits
NASA Astrophysics Data System (ADS)
Balcas, J.; Bockelman, B.; Hufnagel, D.; Hurtado Anampa, K.; Aftab Khan, F.; Larson, K.; Letts, J.; Marra da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.
2017-10-01
The CMS Global Pool, based on HTCondor and glideinWMS, is the main computing resource provisioning system for all CMS workflows, including analysis, Monte Carlo production, and detector data reprocessing activities. The total resources at Tier-1 and Tier-2 grid sites pledged to CMS exceed 100,000 CPU cores, while another 50,000 to 100,000 CPU cores are available opportunistically, pushing the needs of the Global Pool to higher scales each year. These resources are becoming more diverse in their accessibility and configuration over time. Furthermore, the challenge of stably running at higher and higher scales while introducing new modes of operation such as multi-core pilots, as well as the chaotic nature of physics analysis workflows, places huge strains on the submission infrastructure. This paper details some of the most important challenges to scalability and stability that the CMS Global Pool has faced since the beginning of the LHC Run II and how they were overcome.
NASA Astrophysics Data System (ADS)
Silver, W. L.; Smith, W. K.; Parton, W. J.; Wieder, W. R.; DelGrosso, S.
2016-12-01
Surface litter decomposition represents the largest annual carbon (C) flux to the atmosphere from terrestrial ecosystems (Esser et al. 1982). Using broad-scale long-term datasets we show that litter decomposition rates are largely predicted by a climate-decomposition index (CDI) at a global scale, and use CDI to estimate patterns in litter decomposition over the 110 years from 1901-2011. There were rapid changes in CDI over the last 30 y of the record amounting to a 4.3% increase globally. Boreal forests (+13.9%), tundra (+12.2%), savannas (+5.3%), and temperate (+2.4%) and tropical (+2.1%) forests all experienced accelerated decomposition. During the same period, most biomes experienced corresponding increases in a primary production index (PPI) estimated from an ensemble of long-term, observation-based productivity indices. The percent increase in PPI was only half that of decomposition globally. Tropical forests and savannas showed no increase in PPI to offset greater decomposition rates. Temperature-limited ecosystems (i.e., tundra, boreal, and temperate forests) showed the greatest differences between CDI and PPI, highlighting potentially large decoupling of C fluxes in these biomes. Precipitation and actual evapotranspiration were the best climate predictors of CDI at a global scale, while PPI varied consistently with actual evapotranspiration. As expected, temperature was the best predictor of PPI across temperature limited ecosystems. Our results show that climate change could be leading to a decoupling of C uptake and losses, potentially resulting in lower C storage in northern latitudes, temperate and tropical forests, and savannas.
Climate fails to predict wood decomposition at regional scales
NASA Astrophysics Data System (ADS)
Bradford, Mark A.; Warren, Robert J., II; Baldrian, Petr; Crowther, Thomas W.; Maynard, Daniel S.; Oldfield, Emily E.; Wieder, William R.; Wood, Stephen A.; King, Joshua R.
2014-07-01
Decomposition of organic matter strongly influences ecosystem carbon storage. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on mean responses can be irrelevant and misleading. We test whether climate controls on the decomposition rate of dead wood--a carbon stock estimated to represent 73 +/- 6 Pg carbon globally--are sensitive to the spatial scale from which they are inferred. We show that the common assumption that climate is a predominant control on decomposition is supported only when local-scale variation is aggregated into mean values. Disaggregated data instead reveal that local-scale factors explain 73% of the variation in wood decomposition, and climate only 28%. Further, the temperature sensitivity of decomposition estimated from local versus mean analyses is 1.3-times greater. Fundamental issues with mean correlations were highlighted decades ago, yet mean climate-decomposition relationships are used to generate simulations that inform management and adaptation under environmental change. Our results suggest that to predict accurately how decomposition will respond to climate change, models must account for local-scale factors that control regional dynamics.
From Gene Expression to the Earth System: Isotopic Constraints on Nitrogen Cycling Across Scales
NASA Astrophysics Data System (ADS)
Houlton, B. Z.
2015-12-01
A central motivation of the Biogeosciences is to understand the cycling of biologically essential elements over multiple scales of space and time. This charge is vital to basic knowledge of Earth system functioning. It is also relevant to many of the global challenges we face, such as climate change, biodiversity conservation, and the multifaceted role of global fertilizer use in maximizing human health and well-being. Nitrogen is connected to all of these; yet it has been one of the more vexing elements to quantitatively appraise across systems and scales. Here I discuss how research in my group has been exploring the use of natural nitrogen isotope abundance (15N/14N) as a biogeochemical tracer - from the level of gene expression to nitrogen's role in global climate change. First, I present evidence for a positive correlation between the bacterial genes that encode for gaseous nitrogen production (i.e., nirS) and the 15N/14N of soil extractable nitrate pools across an array of terrestrial ecosystems. Second, I demonstrate how these local-scale results fit with our work on ecosystem-scale nitrogen isotope budgets, where we quantify a uniformly small isotope effect (i.e., < 1 per mil) of nitrogen leaching losses from tropical rainforest to highly disturbed arid sites. Third, I present results from our global isotope model, which is based on results from our field investigations, providing a new nitrogen "benchmarking" scheme for global computational models and climate change forecasts. Finally, I move to a new research frontier where we have been developing a technique to measure the nitrogen isotope composition of ancient terrestrial plant compounds (i.e., chlorins) buried in the soil. This research aims to address the response of the nitrogen cycle to glacial-interglacial transitions over millennia, which is beyond the window of experimental testing. Together, this research highlights the utility of nitrogen isotope composition in addressing the myriad scales of this element's interaction with Earth's environment, and supports the working hypothesis that bacterial denitrification is the major fractionating pathway of nitrogen loss from the terrestrial biosphere, much like the global ocean.
NASA Technical Reports Server (NTRS)
Van Donkelaar, Aaron; Martin, Randall V.; Brauer, Michael; Hsu, N. Christina; Kahn, Ralph A.; Levy, Robert C.; Lyapustin, Alexei; Sayer, Andrew M.; Winker, David M.
2016-01-01
We estimated global fine particulate matter (PM(sub 2.5)) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically-based satellite-derived PM(sub 2.5) estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM(sub 2.5) estimates were highly consistent (R(sup 2) equals 0.81) with out-of-sample cross-validated PM(sub 2.5) concentrations from monitors. The global population-weighted annual average PM(sub 2.5) concentrations were 3-fold higher than the 10 micrograms per cubic meter WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM(sub 2.5) data sources can yield valuable improvements to PM(sub 2.5) characterization on a global scale.
ERIC Educational Resources Information Center
Reise, Steven P.; Ventura, Joseph; Keefe, Richard S. E.; Baade, Lyle E.; Gold, James M.; Green, Michael F.; Kern, Robert S.; Mesholam-Gately, Raquelle; Nuechterlein, Keith H.; Seidman, Larry J.; Bilder, Robert
2011-01-01
A psychometric analysis of 2 interview-based measures of cognitive deficits was conducted: the 21-item Clinical Global Impression of Cognition in Schizophrenia (CGI-CogS; Ventura et al., 2008), and the 20-item Schizophrenia Cognition Rating Scale (SCoRS; Keefe et al., 2006), which were administered on 2 occasions to a sample of people with…
Katharine N. Suding; Sandra Lavorel; F. Stuart Chapin; Johannes H.C. Cornelissen; Sandra Diaz; Eric Garnier; Deborah Goldberg; David U. Hooper; Stephen T. Jackson; Marie-Laure Navas
2008-01-01
Predicting ecosystem responses to global change is a major challenge in ecology. A critical step in that challenge is to understand how changing environmental conditions influence processes across levels of ecological organization. While direct scaling from individual to ecosystem dynamics can lead to robust and mechanistic predictions, new approaches are needed to...
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
Pushing HTCondor and glideinWMS to 200K+ Jobs in a Global Pool for CMS before Run 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcas, J.; Belforte, S.; Bockelman, B.
2015-12-23
The CMS experiment at the LHC relies on HTCondor and glideinWMS as its primary batch and pilot-based Grid provisioning system. So far we have been running several independent resource pools, but we are working on unifying them all to reduce the operational load and more effectively share resources between various activities in CMS. The major challenge of this unification activity is scale. The combined pool size is expected to reach 200K job slots, which is significantly bigger than any other multi-user HTCondor based system currently in production. To get there we have studied scaling limitations in our existing pools, themore » biggest of which tops out at about 70K slots, providing valuable feedback to the development communities, who have responded by delivering improvements which have helped us reach higher and higher scales with more stability. We have also worked on improving the organization and support model for this critical service during Run 2 of the LHC. This contribution will present the results of the scale testing and experiences from the first months of running the Global Pool.« less
Torsional Oscillations in a Global Solar Dynamo
NASA Astrophysics Data System (ADS)
Beaudoin, P.; Charbonneau, P.; Racine, E.; Smolarkiewicz, P. K.
2013-02-01
We characterize and analyze rotational torsional oscillations developing in a large-eddy magnetohydrodynamical simulation of solar convection (Ghizaru, Charbonneau, and Smolarkiewicz, Astrophys. J. Lett. 715, L133, 2010; Racine et al., Astrophys. J. 735, 46, 2011) producing an axisymmetric, large-scale, magnetic field undergoing periodic polarity reversals. Motivated by the many solar-like features exhibited by these oscillations, we carry out an analysis of the large-scale zonal dynamics. We demonstrate that simulated torsional oscillations are not driven primarily by the periodically varying large-scale magnetic torque, as one might have expected, but rather via the magnetic modulation of angular-momentum transport by the large-scale meridional flow. This result is confirmed by a straightforward energy analysis. We also detect a fairly sharp transition in rotational dynamics taking place as one moves from the base of the convecting layers to the base of the thin tachocline-like shear layer formed in the stably stratified fluid layers immediately below. We conclude by discussing the implications of our analyses with regard to the mechanism of amplitude saturation in the global dynamo operating in the simulation, and speculate on the possible precursor value of torsional oscillations for the forecast of solar-cycle characteristics.
Global river flood hazard maps: hydraulic modelling methods and appropriate uses
NASA Astrophysics Data System (ADS)
Townend, Samuel; Smith, Helen; Molloy, James
2014-05-01
Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some appropriate uses of global scale hazard maps and explore how this new approach can be invaluable in areas of the world where flood hazard and risk have not previously been assessed.
1km Global Terrestrial Carbon Flux: Estimations and Evaluations
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.
2017-12-01
Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed very high correlations, and slight variations were showed in precipitation data. LAI data that was another large driving factor of terrestrial carbon cycle was not included in FLUXNET2015 datasets and it could not be evaluated.
NASA Astrophysics Data System (ADS)
Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C. D.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.
2016-12-01
Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image-based measurements of the distribution and time scales of imbibition. We also characterize nm-scale structure via focused ion beam tomography to quantify sub-voxel porosity and connectivity. The multi-scale image and flow data is used to develop a framework to upscale and benchmark pore-scale models.
USDA-ARS?s Scientific Manuscript database
Thermal-infrared remote sensing of land surface temperature provides valuable information for quantifying root-zone water availability, evapotranspiration (ET) and crop condition. This paper describes a robust but relatively simple thermal-based energy balance model that parameterizes the key soil/s...
A keyword approach to finding common ground in community-based definitions of human well-being
Ecosystem-based management involves the integration of ecosystem services and their human beneficiaries into decision making. This can occur at multiple scales; addressing global issues such as climate change down to local problems such as flood protection and maintaining water q...
NASA Astrophysics Data System (ADS)
Ribera, M.; Gopal, S.
2014-12-01
Productivity hotspots are traditionally defined as concentrations of relatively high biomass compared to global reference values. These hotspots often signal atypical processes occurring in a location, and identifying them is a great first step at understanding the complexity inherent in the system. However, identifying local hotspots can be difficult when an overarching global pattern (i.e. spatial autocorrelation) already exists. This problem is particularly apparent in marine ecosystems because values of productivity in near-shore areas are consistently higher than those of the open ocean due to oceanographic processes such as upwelling. In such cases, if the global reference layer used to detect hotspots is too wide, hotspots may be only identified near the coast while missing known concentrations of organisms in offshore waters. On the other hand, if the global reference layer is too small, every single location may be considered a hotspot. We applied spatial and traditional statistics to remote sensing data to determine the optimal reference global spatial scale for identifying marine productivity hotspots in the Gulf of Maine. Our iterative process measured Getis and Ord's local G* statistic at different global scales until the variance of each hotspot was maximized. We tested this process with different full resolution MERIS chlorophyll layers (300m spatial resolution) for the whole Gulf of Maine. We concluded that the optimal global scale depends on the time of the year the remote sensing data was collected, particularly when coinciding with known seasonal phytoplankton blooms. The hotspots found through this process were also spatially heterogeneous in size, with bigger hotspots in areas offshore than in locations inshore. These results may be instructive for both managers and fisheries researchers as they adapt their fisheries management policies and methods to an ecosystem based approach (EBM).
China's emergence and the prospects for global sustainability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grumbine, R.E.
2007-03-15
China's rapid development is influencing global patterns of resource use and their associated environmental and geopolitical impacts. Trend projections suggest that China's rise will have unprecedented impacts on the rest of the world. I examine three key drivers affecting China's emergence (scale of development, government policy decisions, and globalization), along with four factors that may constrain development (environmental degradation, political instability, coal and oil consumption, and carbon dioxide emissions). China's rise represents a tipping point between fossil fuel-based economies and still emergent sustainable alternatives. Policy precedents between the United States and China over the next decade may well determine themore » future course of global sustainability.« less
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Arndt, D. S.; Brewer, M.; Heim, R. R., Jr.
2014-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a past meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around providing operational global drought monitoring products and assessments, incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
Oliveira-Maia, Albino J; Mendonça, Carina; Pessoa, Maria J; Camacho, Marta; Gago, Joaquim
2016-01-01
Within clinical psychiatry, recovery from severe mental illness (SMI) has classically been defined according to symptoms and function (service-based recovery). However, service-users have argued that recovery should be defined as the process of overcoming mental illness, regaining self-control and establishing a meaningful life (customer-based recovery). Here, we aimed to compare customer-based and service-based recovery and clarify their differential relationship with other constructs, namely needs and quality of life. The study was conducted in 101 patients suffering from SMI, recruited from a rural community mental health setting in Portugal. Customer-based recovery and function-related service-based recovery were assessed, respectively, using a shortened version of the Mental Health Recovery Measure (MHRM-20) and the Global Assessment of Functioning score. The Camberwell Assessment of Need scale was used to objectively assess needs, while subjective quality of life was measured with the TL-30s scale. Using multiple linear regression models, we found that the Global Assessment of Functioning score was incrementally predictive of the MHRM-20 score, when added to a model including only clinical and demographic factors, and that this model was further incremented by the score for quality of life. However, in an alternate model using the Global Assessment of Functioning score as the dependent variable, while the MHRM-20 score contributed significantly to the model when added to clinical and demographic factors, the model was not incremented by the score for quality of life. These results suggest that, while a more global concept of recovery from SMI may be assessed using measures for service-based and customer-based recovery, the latter, namely the MHRM-20, also provides information about subjective well-being. Pending confirmation of these findings in other populations, this instrument could thus be useful for comprehensive assessment of recovery and subjective well-being in patients suffering from SMI.
Oliveira-Maia, Albino J.; Mendonça, Carina; Pessoa, Maria J.; Camacho, Marta; Gago, Joaquim
2016-01-01
Within clinical psychiatry, recovery from severe mental illness (SMI) has classically been defined according to symptoms and function (service-based recovery). However, service-users have argued that recovery should be defined as the process of overcoming mental illness, regaining self-control and establishing a meaningful life (customer-based recovery). Here, we aimed to compare customer-based and service-based recovery and clarify their differential relationship with other constructs, namely needs and quality of life. The study was conducted in 101 patients suffering from SMI, recruited from a rural community mental health setting in Portugal. Customer-based recovery and function-related service-based recovery were assessed, respectively, using a shortened version of the Mental Health Recovery Measure (MHRM-20) and the Global Assessment of Functioning score. The Camberwell Assessment of Need scale was used to objectively assess needs, while subjective quality of life was measured with the TL-30s scale. Using multiple linear regression models, we found that the Global Assessment of Functioning score was incrementally predictive of the MHRM-20 score, when added to a model including only clinical and demographic factors, and that this model was further incremented by the score for quality of life. However, in an alternate model using the Global Assessment of Functioning score as the dependent variable, while the MHRM-20 score contributed significantly to the model when added to clinical and demographic factors, the model was not incremented by the score for quality of life. These results suggest that, while a more global concept of recovery from SMI may be assessed using measures for service-based and customer-based recovery, the latter, namely the MHRM-20, also provides information about subjective well-being. Pending confirmation of these findings in other populations, this instrument could thus be useful for comprehensive assessment of recovery and subjective well-being in patients suffering from SMI. PMID:27857698
Black, Maureen M.; Saavedra, Jose M.
2016-01-01
Interventions targeting parenting focused modifiable factors to prevent obesity and promote healthy growth in the first 1000 days of life are needed. Scale-up of interventions to global populations is necessary to reverse trends in weight status among infants and toddlers, and large scale dissemination will require understanding of effective strategies. Utilizing nutrition education theories, this paper describes the design of a digital-based nutrition guidance system targeted to first-time mothers to prevent obesity during the first two years. The multicomponent system consists of scientifically substantiated content, tools, and telephone-based professional support delivered in an anticipatory and sequential manner via the internet, email, and text messages, focusing on educational modules addressing the modifiable factors associated with childhood obesity. Digital delivery formats leverage consumer media trends and provide the opportunity for scale-up, unavailable to previous interventions reliant on resource heavy clinic and home-based counseling. Designed initially for use in the United States, this system's core features are applicable to all contexts and constitute an approach fostering healthy growth, not just obesity prevention. The multicomponent features, combined with a global concern for optimal growth and positive trends in mobile internet use, represent this system's future potential to affect change in nutrition practice in developing countries. PMID:27635257
Karanja, Sarah; Mbuagbaw, Lawrence; Ritvo, Paul; Law, Judith; Kyobutungi, Catherine; Reid, Graham; Ram, Ravi; Estambale, Benson; Lester, Richard
2011-01-01
mHealth is a term used to refer to mobile technologies such as personal digital assistants and mobile phones for healthcare. mHealth initiatives to support care and treatment of patients are emerging globally and this workshop brought together researchers, policy makers, information, communication and technology programmers, academics and civil society representatives for one and a half days synergy meeting in Kenya to review regional evidence based mHealth research for HIV care and treatment, review mHealth technologies for adherence and retention interventions in anti-retroviral therapy (ART) programs and develop a framework for scale up of evidence based mHealth interventions. The workshop was held in May 2011 in Nairobi, Kenya and was funded by the Canadian Global Health Research Initiatives (GHRI) and the US Centre for Disease Control and Prevention (CDC). At the end of the workshop participants came up with a framework to guide mHealth initiatives in the region and a plan to work together in scaling up evidence based mHealth interventions. The participants acknowledged the importance of the meeting in setting the pace for strengthening and coordinating mHealth initiatives and unanimously agreed to hold a follow up meeting after three months. PMID:22187619
The Change in Oceanic O2 Inventory Associated with Recent Global Warming
NASA Technical Reports Server (NTRS)
Keeling, Ralph; Garcia, Hernan
2002-01-01
Oceans general circulation models predict that global warming may cause a decrease in the oceanic O2 inventory and an associated O2 outgassing. An independent argument is presented here in support of this prediction based on observational evidence of the ocean's biogeochemical response to natural warming. On time scales from seasonal to centennial, natural O2 flux/heat flux ratios are shown to occur in a range of 2 to 10 nmol O2 per Joule of warming, with larger ratios typically occurring at higher latitudes and over longer time scales. The ratios are several times larger than would be expected solely from the effect of heating on the O2 solubility, indicating that most of the O2 exchange is biologically mediated through links between heating and stratification. The change in oceanic O2 inventory through the 1990's is estimated to be 0.3 - 0.4 x 10(exp 14) mol O2 per year based on scaling the observed anomalous long-term ocean warming by natural O2 flux/heating ratios and allowing for uncertainty due to decadal variability. Implications are discussed for carbon budgets based on observed changes in atmospheric O2/N2 ratio and based on observed changes in ocean dissolved inorganic carbon.
Karanja, Sarah; Mbuagbaw, Lawrence; Ritvo, Paul; Law, Judith; Kyobutungi, Catherine; Reid, Graham; Ram, Ravi; Estambale, Benson; Lester, Richard
2011-01-01
mHealth is a term used to refer to mobile technologies such as personal digital assistants and mobile phones for healthcare. mHealth initiatives to support care and treatment of patients are emerging globally and this workshop brought together researchers, policy makers, information, communication and technology programmers, academics and civil society representatives for one and a half days synergy meeting in Kenya to review regional evidence based mHealth research for HIV care and treatment, review mHealth technologies for adherence and retention interventions in anti-retroviral therapy (ART) programs and develop a framework for scale up of evidence based mHealth interventions. The workshop was held in May 2011 in Nairobi, Kenya and was funded by the Canadian Global Health Research Initiatives (GHRI) and the US Centre for Disease Control and Prevention (CDC). At the end of the workshop participants came up with a framework to guide mHealth initiatives in the region and a plan to work together in scaling up evidence based mHealth interventions. The participants acknowledged the importance of the meeting in setting the pace for strengthening and coordinating mHealth initiatives and unanimously agreed to hold a follow up meeting after three months.
Thinking big: Towards ideal strains and processes for large-scale aerobic biofuels production
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, James D.; Beckham, Gregg T.
In this study, global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants aremore » emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.« less
Thinking big: Towards ideal strains and processes for large-scale aerobic biofuels production
McMillan, James D.; Beckham, Gregg T.
2016-12-22
In this study, global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants aremore » emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.« less
Substantial inorganic carbon sink in closed drainage basins globally
NASA Astrophysics Data System (ADS)
Li, Yu; Zhang, Chengqi; Wang, Naiang; Han, Qin; Zhang, Xinzhong; Liu, Yuan; Xu, Lingmei; Ye, Wangting
2017-07-01
Arid and semi-arid ecosystems are increasingly recognized as important carbon storage sites. In these regions, extensive sequestration of dissolved inorganic carbon can occur in the terminal lakes of endorheic basins--basins that do not drain to external bodies of water. However, the global magnitude of this dissolved inorganic carbon sink is uncertain. Here we present isotopic, radiocarbon, and chemical analyses of groundwater, river water, and sediments from the terminal region of the endorheic Shiyang River drainage basin, in arid northwest China. We estimate that 0.13 Pg of dissolved inorganic carbon was stored in the basin during the mid-Holocene. Pollen-based reconstructions of basin-scale productivity suggest that the mid-Holocene dissolved inorganic carbon sink was two orders of magnitude smaller than terrestrial productivity in the basin. We use estimates of dissolved inorganic carbon storage based on sedimentary data from 11 terminal lakes of endorheic basins around the world as the basis for a global extrapolation of the sequestration of dissolved organic carbon in endorheic basins. We estimate that 0.152 Pg of dissolved inorganic carbon is buried per year today, compared to about 0.211 Pg C yr-1 during the mid-Holocene. We conclude that endorheic basins represent an important carbon sink on the global scale, with a magnitude similar to deep ocean carbon burial.
Pei, Nancai; Erickson, David L; Chen, Bufeng; Ge, Xuejun; Mi, Xiangcheng; Swenson, Nathan G; Zhang, Jin-Long; Jones, Frank A; Huang, Chun-Lin; Ye, Wanhui; Hao, Zhanqing; Hsieh, Chang-Fu; Lum, Shawn; Bourg, Norman A; Parker, John D; Zimmerman, Jess K; McShea, William J; Lopez, Ida C; Sun, I-Fang; Davies, Stuart J; Ma, Keping; Kress, W John
2015-10-12
To determine how well DNA barcodes from the chloroplast region perform in forest dynamics plots (FDPs) from global CTFS-ForestGEO network, we analyzed DNA barcoding sequences of 1277 plant species from a wide phylogenetic range (3 FDPs in tropics, 5 in subtropics and 5 in temperate zone) and compared the rates of species discrimination (RSD). We quantified RSD by two DNA barcode combinations (rbcL + matK and rbcL + matK + trnH-psbA) using a monophyly-based method (GARLI). We defined two indexes of closely-related taxa (Gm/Gt and S/G ratios) and correlated these ratios with RSD. The combination of rbcL + matK averagely discriminated 88.65%, 83.84% and 72.51% at the local, regional and global scales, respectively. An additional locus trnH-psbA increased RSD by 2.87%, 1.49% and 3.58% correspondingly. RSD varied along a latitudinal gradient and were negatively correlated with ratios of closely-related taxa. Successes of species discrimination generally depend on scales in global FDPs. We suggested that the combination of rbcL + matK + trnH-psbA is currently applicable for DNA barcoding-based phylogenetic studies on forest communities.
Evidence-based adaptation and scale-up of a mobile phone health information service.
L'Engle, Kelly; Plourde, Kate F; Zan, Trinity
2017-01-01
The research base recommending the use of mobile phone interventions for health improvement is growing at a rapid pace. The use of mobile phones to deliver health behavior change and maintenance interventions in particular is gaining a robust evidence base across geographies, populations, and health topics. However, research on best practices for successfully scaling mHealth interventions is not keeping pace, despite the availability of frameworks for adapting and scaling health programs. m4RH-Mobile for Reproductive Health-is an SMS, or text message-based, health information service that began in two countries and over a period of 7 years has been adapted and scaled to new population groups and new countries. Success can be attributed to following key principles for scaling up health programs, including continuous stakeholder engagement; ongoing monitoring, evaluation, and research including extensive content and usability testing with the target audience; strategic dissemination of results; and use of marketing and sustainability principles for social initiatives. This article investigates how these factors contributed to vertical, horizontal, and global scale-up of the m4RH program. Vertical scale of m4RH is demonstrated in Tanzania, where the early engagement of stakeholders including the Ministry of Health catalyzed expansion of m4RH content and national-level program reach. Ongoing data collection has provided real-time data for decision-making, information about the user base, and peer-reviewed publications, yielding government endorsement and partner hand-off for sustainability of the m4RH platform. Horizontal scale-up and adaptation of m4RH has occurred through expansion to new populations in Rwanda, Uganda, and Tanzania, where best practices for design and implementation of mHealth programs were followed to ensure the platform meets the needs of target populations. m4RH also has been modified and packaged for global scale-up through licensing and toolkit development, research into new business/distribution models, and serving as the foundation for derivative NGO and quasi-governmental mHealth platforms. The m4RH platform provides an excellent case study of how to apply best practices to successfully scale up mobile phone interventions for health improvement. Applying principles of scale can inform the successful scale-up, sustainability, and potential impact of mHealth programs across health topics and settings.
Cushman, Robert M; Jones, Sonja B
2002-03-01
Increasing atmospheric concentrations of greenhouse gases are widely expected to cause global warming and other climatic changes. It is important to establish priorities for reducing greenhouse-gas emissions, so that resources can be allocated efficiently and effectively. This is a global problem, and it is possible, on a global scale, to identify those activities whose emissions have the greatest potential for enhancing the greenhouse effect. However, perspectives from smaller scales must be appreciated, because it is on scales down to the local level that response measures will be implemented. This paper analyzes the relative importance of emissions from the many individual sources, on scales ranging from global to national to subnational. Individual country perspectives and proposed policy measures and those of subnational political entities exhibit some commonalities but differ among themselves and from a global-scale perspective in detail.
On the use of a physically-based baseflow timescale in land surface models.
NASA Astrophysics Data System (ADS)
Jost, A.; Schneider, A. C.; Oudin, L.; Ducharne, A.
2017-12-01
Groundwater discharge is an important component of streamflow and estimating its spatio-temporal variation in response to changes in recharge is of great value to water resource planning, and essential for modelling accurate large scale water balance in land surface models (LSMs). First-order representation of groundwater as a single linear storage element is frequently used in LSMs for the sake of simplicity, but requires a suitable parametrization of the aquifer hydraulic behaviour in the form of the baseflow characteristic timescale (τ). Such a modelling approach can be hampered by the lack of available calibration data at global scale. Hydraulic groundwater theory provides an analytical framework to relate the baseflow characteristics to catchment descriptors. In this study, we use the long-time solution of the linearized Boussinesq equation to estimate τ at global scale, as a function of groundwater flow length and aquifer hydraulic diffusivity. Our goal is to evaluate the use of this spatially variable and physically-based τ in the ORCHIDEE surface model in terms of simulated river discharges across large catchments. Aquifer transmissivity and drainable porosity stem from GLHYMPS high-resolution datasets whereas flow length is derived from an estimation of drainage density, using the GRIN global river network. ORCHIDEE is run in offline mode and its results are compared to a reference simulation using an almost spatially constant topographic-dependent τ. We discuss the limits of our approach in terms of both the relevance and accuracy of global estimates of aquifer hydraulic properties and the extent to which the underlying assumptions in the analytical method are valid.
NASA Astrophysics Data System (ADS)
Schiemann, Reinhard; Roberts, Charles J.; Bush, Stephanie; Demory, Marie-Estelle; Strachan, Jane; Vidale, Pier Luigi; Mizielinski, Matthew S.; Roberts, Malcolm J.
2015-04-01
Precipitation over land exhibits a high degree of variability due to the complex interaction of the precipitation generating atmospheric processes with coastlines, the heterogeneous land surface, and orography. Global general circulation models (GCMs) have traditionally had very limited ability to capture this variability on the mesoscale (here ~50-500 km) due to their low resolution. This has changed with recent investments in resolution and ensembles of multidecadal climate simulations of atmospheric GCMs (AGCMs) with ~25 km grid spacing are becoming increasingly available. Here, we evaluate the mesoscale precipitation distribution in one such set of simulations obtained in the UPSCALE (UK on PrACE - weather-resolving Simulations of Climate for globAL Environmental risk) modelling campaign with the HadGEM-GA3 AGCM. Increased model resolution also poses new challenges to the observational datasets used to evaluate models. Global gridded data products such as those provided by the Global Precipitation Climatology Project (GPCP) are invaluable for assessing large-scale features of the precipitation distribution but may not sufficiently resolve mesoscale structures. In the absence of independent estimates, the intercomparison of different observational datasets may be the only way to get some insight into the uncertainties associated with these observations. Here, we focus on mid-latitude continental regions where observations based on higher-density gauge networks are available in addition to the global data sets: Europe/the Alps, South and East Asia, and the continental US. The ability of GCMs to represent mesoscale variability is of interest in its own right, as climate information on this scale is required by impact studies. An additional motivation for the research proposed here arises from continuing efforts to quantify the components of the global radiation budget and water cycle. Recent estimates based on radiation measurements suggest that the global mean precipitation/evaporation may be up to 10 Wm-2 (about 0.35 mm day-1) larger than the estimate obtained from GPCP. While the main part of this discrepancy is thought to be due to the underestimation of remotely-sensed ocean precipitation, there is also considerable uncertainty about 'unobserved' precipitation over land, in particular in the form of snow in regions of high latitude/altitude. We aim to contribute to this discussion, at least at a qualitative level, by considering case studies of how area-averaged mountain precipitation is represented in different observational datasets and by HadGEM3-GA3 at different resolutions. Our results show that the AGCM simulates considerably more orographic precipitation at higher resolution. We find this at the global scale both for the winter and summer hemispheres, as well as in several case studies in mid-latitude regions. Gridded observations based on gauge measurements generally capture the mesoscale spatial variability of precipitation, but differ strongly from one another in the magnitude of area-averaged precipitation, so that they are of very limited use for evaluating this aspect of the modelled climate. We are currently conducting a sensitivity experiment (coarse-grained orography in high-resolution HadGEM3) to further investigate the resolution sensitivity seen in the model.
Satellite data based method for general survey of forest insect disturbance in British Columbia
NASA Astrophysics Data System (ADS)
Ranson, J.; Montesano, P.
2008-12-01
Regional forest disturbances caused by insects are important to monitor and quantify because of their influence on local ecosystems and the global carbon cycle. Local damage to forest trees disrupts food supplies and shelter for a variety of organisms. Changes in the global carbon budget, its sources and its sinks affect the way the earth functions as a whole, and has an impact on global climate. Furthermore, the ability to detect nascent outbreaks and monitor the spread of regional infestations helps managers mitigate the damage done by catastrophic insect outbreaks. While detection is needed at a fine scale to support local mitigation efforts, detection at a broad regional scale is important for carbon flux modeling on the landscape scale, and needed to direct the local efforts. This paper presents a method for routinely detecting insect damage to coniferous forests using MODIS vegetation indices, thermal anomalies and land cover. The technique is validated using insect outbreak maps and accounts for fire disturbance effects. The range of damage detected may be used to interpret and quantify possible forest damage by insects.
Child abuse and its legislation: the global picture.
Cutland, Michelle
2012-08-01
Amid the high income nations the first recognisable child abuse society was founded in the late 19th century in North America, but it was a century before the first global rights-based legislation in the form of the United Nations Convention on the Rights of the Child (UNCRC) came into play. In isolation, international legislation is insufficient to protect children but becoming party to international law sends a clear signal to the community and stakeholders that a country is committed to ensuring child protection. Incorporating and implementing the UNCRC and other child protection based legislation on a global scale is not without difficulty and there are many obstacles to fulfilling its principles and monitoring its progress. The author reviews the global pandemic of violence against children and provides an overview of the legislation that has evolved over the last century in response to it. The author also seeks to examine some of the practical difficulties and limitations in implementing global child abuse legislation with reference to three important areas: the prohibition of violence, professional capacity enhancement, and data collection and research. The role of the paediatrician is also discussed in applying a rights-based approach to promoting global child protection.
On the use of Schwarz-Christoffel conformal mappings to the grid generation for global ocean models
NASA Astrophysics Data System (ADS)
Xu, S.; Wang, B.; Liu, J.
2015-02-01
In this article we propose two conformal mapping based grid generation algorithms for global ocean general circulation models (OGCMs). Contrary to conventional, analytical forms based dipolar or tripolar grids, the new algorithms are based on Schwarz-Christoffel (SC) conformal mapping with prescribed boundary information. While dealing with the basic grid design problem of pole relocation, these new algorithms also address more advanced issues such as smoothed scaling factor, or the new requirements on OGCM grids arisen from the recent trend of high-resolution and multi-scale modeling. The proposed grid generation algorithm could potentially achieve the alignment of grid lines to coastlines, enhanced spatial resolution in coastal regions, and easier computational load balance. Since the generated grids are still orthogonal curvilinear, they can be readily utilized in existing Bryan-Cox-Semtner type ocean models. The proposed methodology can also be applied to the grid generation task for regional ocean modeling where complex land-ocean distribution is present.
Modeling of Urban Heat Island at Global Scale
NASA Astrophysics Data System (ADS)
KC, B.; Ruth, M.
2015-12-01
Urban Heat Island (UHI) is the temperature difference between urban and its rural background temperature. At the local level, the choice of building materials and urban geometry are vital in determining the UHI magnitude of a city. At the city scale, economic growth, population, climate, and land use dynamics are the main drivers behind changes in UHIs. The main objective of this paper is to provide a comprehensive assessment of UHI based on these "macro variables" at regional and global scale. We based our analysis on published research for Europe, North America, and Asia, reporting data for 83 cities across the globe with unique climatic, economic, and environmental conditions. Exploratory data analysis including Pearson correlation was performed to explore the relationship between UHI and PM2.5 (particulate matter with aerodynamic diameter ≤5 microns), PM10 (particulate matter with aerodynamic diameter ≤10 microns), vegetation per capita, built area, Gross Domestic Product (GDP), population density and population. Additionally, dummy variables were used to capture potential influences of climate types (based on Koppen classifications) and the ways by which UHI was measured. We developed three linear regression models, one for each of the three continents (Asia, Europe, and North America) and one model for all the cities across these continents. This study provides a unique perspective for predicting UHI magnitudes at large scales based on economic activity and pollution levels of a city, which has important implications in urban planning.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Ward, Philip; Block, Paul
2018-02-01
Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.
The Lifespan Self-Esteem Scale: Initial Validation of a New Measure of Global Self-Esteem.
Harris, Michelle A; Donnellan, M Brent; Trzesniewski, Kali H
2018-01-01
This article introduces the Lifespan Self-Esteem Scale (LSE), a short measure of global self-esteem suitable for populations drawn from across the lifespan. Many existing measures of global self-esteem cannot be used across multiple developmental periods due to changes in item content, response formats, and other scale characteristics. This creates a need for a new lifespan scale so that changes in global self-esteem over time can be studied without confounding maturational changes with alterations in the measure. The LSE is a 4-item measure with a 5-point response format using items inspired by established self-esteem scales. The scale is essentially unidimensional and internally consistent, and it converges with existing self-esteem measures across ages 5 to 93 (N = 2,714). Thus, the LSE appears to be a useful measure of global self-esteem suitable for use across the lifespan as well as contexts where a short measure is desirable, such as populations with short attention spans or large projects assessing multiple constructs. Moreover, the LSE is one of the first global self-esteem scales to be validated for children younger than age 8, which provides the opportunity to broaden the field to include research on early formation and development of global self-esteem, an area that has previously been limited.
Subramanian, Savitha; Naimoli, Joseph; Matsubayashi, Toru; Peters, David H
2011-12-14
There is widespread agreement on the need for scaling up in the health sector to achieve the Millennium Development Goals (MDGs). But many countries are not on track to reach the MDG targets. The dominant approach used by global health initiatives promotes uniform interventions and targets, assuming that specific technical interventions tested in one country can be replicated across countries to rapidly expand coverage. Yet countries scale up health services and progress against the MDGs at very different rates. Global health initiatives need to take advantage of what has been learned about scaling up. A systematic literature review was conducted to identify conceptual models for scaling up health in developing countries, with the articles assessed according to the practical concerns of how to scale up, including the planning, monitoring and implementation approaches. We identified six conceptual models for scaling up in health based on experience with expanding pilot projects and diffusion of innovations. They place importance on paying attention to enhancing organizational, functional, and political capabilities through experimentation and adaptation of strategies in addition to increasing the coverage and range of health services. These scaling up approaches focus on fostering sustainable institutions and the constructive engagement between end users and the provider and financing organizations. The current approaches to scaling up health services to reach the MDGs are overly simplistic and not working adequately. Rather than relying on blueprint planning and raising funds, an approach characteristic of current global health efforts, experience with alternative models suggests that more promising pathways involve "learning by doing" in ways that engage key stakeholders, uses data to address constraints, and incorporates results from pilot projects. Such approaches should be applied to current strategies to achieve the MDGs.
NASA Astrophysics Data System (ADS)
Moosdorf, N.; Langlotz, S. T.
2016-02-01
Submarine groundwater discharge (SGD) has been recognized as a relevant field of coastal research in the last years. Its implications on local scale have been documented by an increasing number of studies researching individual locations with SGD. The local studies also often emphasize its large variability. On the other end, global scale studies try to estimate SGD related fluxes of e.g. carbon (Cole et al., 2007) and nitrogen (Beusen et al., 2013). These studies naturally use a coarse resolution, too coarse to represent the aforementioned local variability of SGD (Moosdorf et al., 2015). A way to transfer information of the local variability of SGD to large scale flux estimates is needed. Here we discuss the upscaling of local studies based on the definition and typology of coastal catchments. Coastal catchments are those stretches of coast that do not drain into major rivers but directly into the sea. Their attributes, e.g. climate, topography, land cover, or lithology can be used to extrapolate from the local scale to larger scales. We present first results of a typology, compare coastal catchment attributes to SGD estimates from field studies and discuss upscaling as well as the associated uncertainties. This study aims at bridging the gap between the scales and enabling an improved representation of local scale variability on continental to global scale. With this, it can contribute to a recent initiative to model large scale SGD fluxes (NExT SGD). References: Beusen, A.H.W., Slomp, C.P., Bouwman, A.F., 2013. Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environmental Research Letters, 8(3): 6. Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., Melack, J., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1): 171-184. Moosdorf, N., Stieglitz, T., Waska, H., Durr, H.H., Hartmann, J., 2015. Submarine groundwater discharge from tropical islands: a review. Grundwasser, 20(1): 53-67.
Multi-scale landslide hazard assessment: Advances in global and regional methodologies
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Peters-Lidard, Christa; Adler, Robert; Hong, Yang
2010-05-01
The increasing availability of remotely sensed surface data and precipitation provides a unique opportunity to explore how smaller-scale landslide susceptibility and hazard assessment methodologies may be applicable at larger spatial scales. This research first considers an emerging satellite-based global algorithm framework, which evaluates how the landslide susceptibility and satellite derived rainfall estimates can forecast potential landslide conditions. An analysis of this algorithm using a newly developed global landslide inventory catalog suggests that forecasting errors are geographically variable due to improper weighting of surface observables, resolution of the current susceptibility map, and limitations in the availability of landslide inventory data. These methodological and data limitation issues can be more thoroughly assessed at the regional level, where available higher resolution landslide inventories can be applied to empirically derive relationships between surface variables and landslide occurrence. The regional empirical model shows improvement over the global framework in advancing near real-time landslide forecasting efforts; however, there are many uncertainties and assumptions surrounding such a methodology that decreases the functionality and utility of this system. This research seeks to improve upon this initial concept by exploring the potential opportunities and methodological structure needed to advance larger-scale landslide hazard forecasting and make it more of an operational reality. Sensitivity analysis of the surface and rainfall parameters in the preliminary algorithm indicates that surface data resolution and the interdependency of variables must be more appropriately quantified at local and regional scales. Additionally, integrating available surface parameters must be approached in a more theoretical, physically-based manner to better represent the physical processes underlying slope instability and landslide initiation. Several rainfall infiltration and hydrological flow models have been developed to model slope instability at small spatial scales. This research investigates the potential of applying a more quantitative hydrological model to larger spatial scales, utilizing satellite and surface data inputs that are obtainable over different geographic regions. Due to the significant role that data and methodological uncertainties play in the effectiveness of landslide hazard assessment outputs, the methodology and data inputs are considered within an ensemble uncertainty framework in order to better resolve the contribution and limitations of model inputs and to more effectively communicate the model skill for improved landslide hazard assessment.
Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements
NASA Astrophysics Data System (ADS)
Sweeney, Colm; Gloor, Emanuel; Jacobson, Andrew R.; Key, Robert M.; McKinley, Galen; Sarmiento, Jorge L.; Wanninkhof, Rik
2007-06-01
The 14CO2 released into the stratosphere during bomb testing in the early 1960s provides a global constraint on air-sea gas exchange of soluble atmospheric gases like CO2. Using the most complete database of dissolved inorganic radiocarbon, DI14C, available to date and a suite of ocean general circulation models in an inverse mode we recalculate the ocean inventory of bomb-produced DI14C in the global ocean and confirm that there is a 25% decrease from previous estimates using older DI14C data sets. Additionally, we find a 33% lower globally averaged gas transfer velocity for CO2 compared to previous estimates (Wanninkhof, 1992) using the NCEP/NCAR Reanalysis 1 1954-2000 where the global mean winds are 6.9 m s-1. Unlike some earlier ocean radiocarbon studies, the implied gas transfer velocity finally closes the gap between small-scale deliberate tracer studies and global-scale estimates. Additionally, the total inventory of bomb-produced radiocarbon in the ocean is now in agreement with global budgets based on radiocarbon measurements made in the stratosphere and troposphere. Using the implied relationship between wind speed and gas transfer velocity ks = 0.27
Christoph Kueffer; Curtis Daehler; Hansjörg Dietz; Keith McDougall; Catherine Parks; Aníbal Pauchard; Lisa Rew
2014-01-01
Many modern environmental problems span vastly different spatial scales, from the management of local ecosystems to understanding globally interconnected processes, and addressing them through international policy. MIREN tackles one such âglocalâ (global/local) environmental problem â plant invasions in mountains â through a transdisciplinary, multi-scale learning...
Optimal satellite sampling to resolve global-scale dynamics in the I-T system
NASA Astrophysics Data System (ADS)
Rowland, D. E.; Zesta, E.; Connor, H. K.; Pfaff, R. F., Jr.
2016-12-01
The recent Decadal Survey highlighted the need for multipoint measurements of ion-neutral coupling processes to study the pathways by which solar wind energy drives dynamics in the I-T system. The emphasis in the Decadal Survey is on global-scale dynamics and processes, and in particular, mission concepts making use of multiple identical spacecraft in low earth orbit were considered for the GDC and DYNAMIC missions. This presentation will provide quantitative assessments of the optimal spacecraft sampling needed to significantly advance our knowledge of I-T dynamics on the global scale.We will examine storm time and quiet time conditions as simulated by global circulation models, and determine how well various candidate satellite constellations and satellite schemes can quantify the plasma and neutral convection patterns and global-scale distributions of plasma density, neutral density, and composition, and their response to changes in the IMF. While the global circulation models are data-starved, and do not contain all the physics that we might expect to observe with a global-scale constellation mission, they are nonetheless an excellent "starting point" for discussions of the implementation of such a mission. The result will be of great utility for the design of future missions, such as GDC, to study the global-scale dynamics of the I-T system.
Habitat and environment of islands: primary and supplemental island sets
Matalas, Nicholas C.; Grossling, Bernardo F.
2002-01-01
The original intent of the study was to develop a first-order synopsis of island hydrology with an integrated geologic basis on a global scale. As the study progressed, the aim was broadened to provide a framework for subsequent assessments on large regional or global scales of island resources and impacts on those resources that are derived from global changes. Fundamental to the study was the development of a comprehensive framework?a wide range of parameters that describe a set of 'saltwater' islands sufficiently large to Characterize the spatial distribution of the world?s islands; Account for all major archipelagos; Account for almost all oceanically isolated islands, and Account collectively for a very large proportion of the total area of the world?s islands whereby additional islands would only marginally contribute to the representativeness and accountability of the island set. The comprehensive framework, which is referred to as the ?Primary Island Set,? is built on 122 parameters that describe 1,000 islands. To complement the investigations based on the Primary Island Set, two supplemental island sets, Set A?Other Islands (not in the Primary Island Set) and Set B?Lagoonal Atolls, are included in the study. The Primary Island Set, together with the Supplemental Island Sets A and B, provides a framework that can be used in various scientific disciplines for their island-based studies on broad regional or global scales. The study uses an informal, coherent, geophysical organization of the islands that belong to the three island sets. The organization is in the form of a global island chain, which is a particular sequential ordering of the islands referred to as the 'Alisida.' The Alisida was developed through a trial-and-error procedure by seeking to strike a balance between 'minimizing the length of the global chain' and 'maximizing the chain?s geophysical coherence.' The fact that an objective function cannot be minimized and maximized simultaneously indicates that the Alisida is not unique. Global island chains other than the Alisida may better serve disciplines other than those of hydrology and geology.
Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data
NASA Astrophysics Data System (ADS)
Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.
The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.
Hansen, Matt; Stehman, Steve; Loveland, Tom; Vogelmann, Jim; Cochrane, Mark
2009-01-01
Quantifying rates of forest-cover change is important for improved carbon accounting and climate change modeling, management of forestry and agricultural resources, and biodiversity monitoring. A practical solution to examining trends in forest cover change at global scale is to employ remotely sensed data. Satellite-based monitoring of forest cover can be implemented consistently across large regions at annual and inter-annual intervals. This research extends previous research on global forest-cover dynamics and land-cover change estimation to establish a robust, operational forest monitoring and assessment system. The approach integrates both MODIS and Landsat data to provide timely biome-scale forest change estimation. This is achieved by using annual MODIS change indicator maps to stratify biomes into low, medium and high change categories. Landsat image pairs can then be sampled within these strata and analyzed for estimating area of forest cleared.
Development of mpi_EPIC model for global agroecosystem modeling
Kang, Shujiang; Wang, Dali; Jeff A. Nichols; ...
2014-12-31
Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmentalmore » effects.« less
Li, Yong; Yuan, Gonglin; Wei, Zengxin
2015-01-01
In this paper, a trust-region algorithm is proposed for large-scale nonlinear equations, where the limited-memory BFGS (L-M-BFGS) update matrix is used in the trust-region subproblem to improve the effectiveness of the algorithm for large-scale problems. The global convergence of the presented method is established under suitable conditions. The numerical results of the test problems show that the method is competitive with the norm method.
Lin, Tzu-Hsuan; Lu, Yung-Chi; Hung, Shih-Lin
2014-01-01
This study developed an integrated global-local approach for locating damage on building structures. A damage detection approach with a novel embedded frequency response function damage index (NEFDI) was proposed and embedded in the Imote2.NET-based wireless structural health monitoring (SHM) system to locate global damage. Local damage is then identified using an electromechanical impedance- (EMI-) based damage detection method. The electromechanical impedance was measured using a single-chip impedance measurement device which has the advantages of small size, low cost, and portability. The feasibility of the proposed damage detection scheme was studied with reference to a numerical example of a six-storey shear plane frame structure and a small-scale experimental steel frame. Numerical and experimental analysis using the integrated global-local SHM approach reveals that, after NEFDI indicates the approximate location of a damaged area, the EMI-based damage detection approach can then identify the detailed damage location in the structure of the building.
Development of a Global Fire Weather Database
NASA Technical Reports Server (NTRS)
Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.;
2015-01-01
The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2/3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective- Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.
Global root zone storage capacity from satellite-based evaporation
NASA Astrophysics Data System (ADS)
Wang-Erlandsson, Lan; Bastiaanssen, Wim G. M.; Gao, Hongkai; Jägermeyr, Jonas; Senay, Gabriel B.; van Dijk, Albert I. J. M.; Guerschman, Juan P.; Keys, Patrick W.; Gordon, Line J.; Savenije, Hubert H. G.
2016-04-01
This study presents an "Earth observation-based" method for estimating root zone storage capacity - a critical, yet uncertain parameter in hydrological and land surface modelling. By assuming that vegetation optimises its root zone storage capacity to bridge critical dry periods, we were able to use state-of-the-art satellite-based evaporation data computed with independent energy balance equations to derive gridded root zone storage capacity at global scale. This approach does not require soil or vegetation information, is model independent, and is in principle scale independent. In contrast to a traditional look-up table approach, our method captures the variability in root zone storage capacity within land cover types, including in rainforests where direct measurements of root depths otherwise are scarce. Implementing the estimated root zone storage capacity in the global hydrological model STEAM (Simple Terrestrial Evaporation to Atmosphere Model) improved evaporation simulation overall, and in particular during the least evaporating months in sub-humid to humid regions with moderate to high seasonality. Our results suggest that several forest types are able to create a large storage to buffer for severe droughts (with a very long return period), in contrast to, for example, savannahs and woody savannahs (medium length return period), as well as grasslands, shrublands, and croplands (very short return period). The presented method to estimate root zone storage capacity eliminates the need for poor resolution soil and rooting depth data that form a limitation for achieving progress in the global land surface modelling community.
NASA Astrophysics Data System (ADS)
Voldoire, Aurore; Decharme, Bertrand; Pianezze, Joris; Lebeaupin Brossier, Cindy; Sevault, Florence; Seyfried, Léo; Garnier, Valérie; Bielli, Soline; Valcke, Sophie; Alias, Antoinette; Accensi, Mickael; Ardhuin, Fabrice; Bouin, Marie-Noëlle; Ducrocq, Véronique; Faroux, Stéphanie; Giordani, Hervé; Léger, Fabien; Marsaleix, Patrick; Rainaud, Romain; Redelsperger, Jean-Luc; Richard, Evelyne; Riette, Sébastien
2017-11-01
This study presents the principles of the new coupling interface based on the SURFEX multi-surface model and the OASIS3-MCT coupler. As SURFEX can be plugged into several atmospheric models, it can be used in a wide range of applications, from global and regional coupled climate systems to high-resolution numerical weather prediction systems or very fine-scale models dedicated to process studies. The objective of this development is to build and share a common structure for the atmosphere-surface coupling of all these applications, involving on the one hand atmospheric models and on the other hand ocean, ice, hydrology, and wave models. The numerical and physical principles of SURFEX interface between the different component models are described, and the different coupled systems in which the SURFEX OASIS3-MCT-based coupling interface is already implemented are presented.
NASA Astrophysics Data System (ADS)
Sinha, T.; Gangodagamage, C.; Ale, S.; Frazier, A. G.; Giambelluca, T. W.; Kumagai, T.; Nakai, T.; Sato, H.
2017-12-01
Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.
Global point signature for shape analysis of carpal bones
NASA Astrophysics Data System (ADS)
Chaudhari, Abhijit J.; Leahy, Richard M.; Wise, Barton L.; Lane, Nancy E.; Badawi, Ramsey D.; Joshi, Anand A.
2014-02-01
We present a method based on spectral theory for the shape analysis of carpal bones of the human wrist. We represent the cortical surface of the carpal bone in a coordinate system based on the eigensystem of the two-dimensional Helmholtz equation. We employ a metric—global point signature (GPS)—that exploits the scale and isometric invariance of eigenfunctions to quantify overall bone shape. We use a fast finite-element-method to compute the GPS metric. We capitalize upon the properties of GPS representation—such as stability, a standard Euclidean (ℓ2) metric definition, and invariance to scaling, translation and rotation—to perform shape analysis of the carpal bones of ten women and ten men from a publicly-available database. We demonstrate the utility of the proposed GPS representation to provide a means for comparing shapes of the carpal bones across populations.
NASA Astrophysics Data System (ADS)
Gao, H.; Zhang, S.; Nijssen, B.; Zhou, T.; Voisin, N.; Sheffield, J.; Lee, K.; Shukla, S.; Lettenmaier, D. P.
2017-12-01
Despite its errors and uncertainties, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time product (TMPA-RT) has been widely used for hydrological monitoring and forecasting due to its timely availability for real-time applications. To evaluate the utility of TMPA-RT in hydrologic predictions, many studies have compared modeled streamflows driven by TMPA-RT against gauge data. However, because of the limited availability of streamflow observations in data sparse regions, there is still a lack of comprehensive comparisons for TMPA-RT based hydrologic predictions at the global scale. Furthermore, it is expected that its skill is less optimal at the subbasin scale than the basin scale. In this study, we evaluate and characterize the utility of the TMPA-RT product over selected global river basins during the period of 1998 to 2015 using the TMPA research product (TMPA-RP) as a reference. The Variable Infiltration Capacity (VIC) model, which was calibrated and validated previously, is adopted to simulate streamflows driven by TMPA-RT and TMPA-RP, respectively. The objective of this study is to analyze the spatial and temporal characteristics of the hydrologic predictions by answering the following questions: (1) How do the precipitation errors associated with the TMPA-RT product transform into streamflow errors with respect to geographical and climatological characteristics? (2) How do streamflow errors vary across scales within a basin?
NASA Astrophysics Data System (ADS)
Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.
2014-12-01
Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.
Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y
2016-03-01
Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.
Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation
NASA Astrophysics Data System (ADS)
Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.
2016-03-01
Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.
The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)
NASA Technical Reports Server (NTRS)
Justus, C. G.; Johnson, D. L.
1999-01-01
The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).
Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.
NASA Technical Reports Server (NTRS)
Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven;
2017-01-01
Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
High resolution global flood hazard map from physically-based hydrologic and hydraulic models.
NASA Astrophysics Data System (ADS)
Begnudelli, L.; Kaheil, Y.; McCollum, J.
2017-12-01
The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak corresponds to the return period corresponding to the hazard map being produced (e.g. 100 years, 500 years). Each numerical simulation models one river reach, except for the longest reaches which are split in smaller parts. Here we show results for selected river basins worldwide.
[Review of estimation on oceanic primary productivity by using remote sensing methods.
Xu, Hong Yun; Zhou, Wei Feng; Ji, Shi Jian
2016-09-01
Accuracy estimation of oceanic primary productivity is of great significance in the assessment and management of fisheries resources, marine ecology systems, global change and other fields. The traditional measurement and estimation of oceanic primary productivity has to rely on in situ sample data by vessels. Satellite remote sensing has advantages of providing dynamic and eco-environmental parameters of ocean surface at large scale in real time. Thus, satellite remote sensing has increasingly become an important means for oceanic primary productivity estimation on large spatio-temporal scale. Combining with the development of ocean color sensors, the models to estimate the oceanic primary productivity by satellite remote sensing have been developed that could be mainly summarized as chlorophyll-based, carbon-based and phytoplankton absorption-based approach. The flexibility and complexity of the three kinds of models were presented in the paper. On this basis, the current research status for global estimation of oceanic primary productivity was analyzed and evaluated. In view of these, four research fields needed to be strengthened in further stu-dy: 1) Global oceanic primary productivity estimation should be segmented and studied, 2) to dee-pen the research on absorption coefficient of phytoplankton, 3) to enhance the technology of ocea-nic remote sensing, 4) to improve the in situ measurement of primary productivity.
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Heim, R. R.; Brewer, M.
2012-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a recent meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
Psychometric properties of the Florence CyberBullying-CyberVictimization Scales.
Palladino, Benedetta Emanuela; Nocentini, Annalaura; Menesini, Ersilia
2015-02-01
The present study tried to answer the research need for empirically validated and theoretically based instruments to assess cyberbullying and cybervictimization. The psychometric properties of the Florence CyberBullying-CyberVictimization Scales (FCBVSs) were analyzed in a sample of 1,142 adolescents (Mage=15.18 years; SD=1.12 years; 54.5% male). For both cybervictimization and cyberbullying, results support a gender invariant model involving 14 items and four factors covering four types of behaviors (written-verbal, visual, impersonation, and exclusion). The second-order confirmatory factor analysis confirmed that a "global," second-order measure of cyberbullying and cybervictimization fits the data well. Overall, the scales showed good validity (construct, concurrent, and convergent) and reliability (internal consistency and test-retest). In addition, using the global key question measure as a criterion, ROC analyses, determining the ability of a test to discriminate between groups, allowed us to identify cutoff points to classify respondents as involved/not involved starting from the continuum measure derived from the scales.
Global-Mindedness and Intercultural Competence: A Quantitative Study of Pre-Service Teachers
ERIC Educational Resources Information Center
Cui, Qi
2013-01-01
This study assessed pre-service teachers' levels of global-mindedness and intercultural competence using the Global-Mindedness Scale (GMS) and the Cultural Intelligence Scale (CQS) and investigated the correlation between the two. The study examined whether the individual scale factors such as gender, perceived competence in non-native language or…
USDA-ARS?s Scientific Manuscript database
Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and comb...
NASA Astrophysics Data System (ADS)
Stuhlmacher, M.; Wang, C.; Georgescu, M.; Tellman, B.; Balling, R.; Clinton, N. E.; Collins, L.; Goldblatt, R.; Hanson, G.
2016-12-01
Global representations of modern day urban land use and land cover (LULC) extent are becoming increasingly prevalent. Yet considerable uncertainties in the representation of built environment extent (i.e. global classifications generated from 250m resolution MODIS imagery or the United States' National Land Cover Database) remain because of the lack of a systematic, globally consistent methodological approach. We aim to increase resolution, accuracy, and improve upon past efforts by establishing a data-driven definition of the urban landscape, based on Landsat 5, 7 & 8 imagery and ancillary data sets. Continuous and discrete machine learning classification algorithms have been developed in Google Earth Engine (GEE), a powerful online cloud-based geospatial storage and parallel-computing platform. Additionally, thousands of ground truth points have been selected from high resolution imagery to fill in the previous lack of accurate data to be used for training and validation. We will present preliminary classification and accuracy assessments for select cities in the United States and Mexico. Our approach has direct implications for development of projected urban growth that is grounded on realistic identification of urbanizing hot-spots, with consequences for local to regional scale climate change, energy demand, water stress, human health, urban-ecological interactions, and efforts used to prioritize adaptation and mitigation strategies to offset large-scale climate change. Future work to apply the built-up detection algorithm globally and yearly is underway in a partnership between GEE, University of California in San Diego, and Arizona State University.
Surfing wave climate variability
NASA Astrophysics Data System (ADS)
Espejo, Antonio; Losada, Iñigo J.; Méndez, Fernando J.
2014-10-01
International surfing destinations are highly dependent on specific combinations of wind-wave formation, thermal conditions and local bathymetry. Surf quality depends on a vast number of geophysical variables, and analyses of surf quality require the consideration of the seasonal, interannual and long-term variability of surf conditions on a global scale. A multivariable standardized index based on expert judgment is proposed for this purpose. This index makes it possible to analyze surf conditions objectively over a global domain. A summary of global surf resources based on a new index integrating existing wave, wind, tides and sea surface temperature databases is presented. According to general atmospheric circulation and swell propagation patterns, results show that west-facing low to middle-latitude coasts are more suitable for surfing, especially those in the Southern Hemisphere. Month-to-month analysis reveals strong seasonal variations in the occurrence of surfable events, enhancing the frequency of such events in the North Atlantic and the North Pacific. Interannual variability was investigated by comparing occurrence values with global and regional modes of low-frequency climate variability such as El Niño and the North Atlantic Oscillation, revealing their strong influence at both the global and the regional scale. Results of the long-term trends demonstrate an increase in the probability of surfable events on west-facing coasts around the world in recent years. The resulting maps provide useful information for surfers, the surf tourism industry and surf-related coastal planners and stakeholders.
Advances in Landslide Hazard Forecasting: Evaluation of Global and Regional Modeling Approach
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia B.; Adler, Robert; Hone, Yang; Kumar, Sujay; Peters-Lidard, Christa; Lerner-Lam, Arthur
2010-01-01
A prototype global satellite-based landslide hazard algorithm has been developed to identify areas that exhibit a high potential for landslide activity by combining a calculation of landslide susceptibility with satellite-derived rainfall estimates. A recent evaluation of this algorithm framework found that while this tool represents an important first step in larger-scale landslide forecasting efforts, it requires several modifications before it can be fully realized as an operational tool. The evaluation finds that the landslide forecasting may be more feasible at a regional scale. This study draws upon a prior work's recommendations to develop a new approach for considering landslide susceptibility and forecasting at the regional scale. This case study uses a database of landslides triggered by Hurricane Mitch in 1998 over four countries in Central America: Guatemala, Honduras, EI Salvador and Nicaragua. A regional susceptibility map is calculated from satellite and surface datasets using a statistical methodology. The susceptibility map is tested with a regional rainfall intensity-duration triggering relationship and results are compared to global algorithm framework for the Hurricane Mitch event. The statistical results suggest that this regional investigation provides one plausible way to approach some of the data and resolution issues identified in the global assessment, providing more realistic landslide forecasts for this case study. Evaluation of landslide hazards for this extreme event helps to identify several potential improvements of the algorithm framework, but also highlights several remaining challenges for the algorithm assessment, transferability and performance accuracy. Evaluation challenges include representation errors from comparing susceptibility maps of different spatial resolutions, biases in event-based landslide inventory data, and limited nonlandslide event data for more comprehensive evaluation. Additional factors that may improve algorithm performance accuracy include incorporating additional triggering factors such as tectonic activity, anthropogenic impacts and soil moisture into the algorithm calculation. Despite these limitations, the methodology presented in this regional evaluation is both straightforward to calculate and easy to interpret, making results transferable between regions and allowing findings to be placed within an inter-comparison framework. The regional algorithm scenario represents an important step in advancing regional and global-scale landslide hazard assessment and forecasting.
NASA Astrophysics Data System (ADS)
Wu, Fu-Chun; Chang, Ching-Fu; Shiau, Jenq-Tzong
2015-05-01
The full range of natural flow regime is essential for sustaining the riverine ecosystems and biodiversity, yet there are still limited tools available for assessment of flow regime alterations over a spectrum of temporal scales. Wavelet analysis has proven useful for detecting hydrologic alterations at multiple scales via the wavelet power spectrum (WPS) series. The existing approach based on the global WPS (GWPS) ratio tends to be dominated by the rare high-power flows so that alterations of the more frequent low-power flows are often underrepresented. We devise a new approach based on individual deviations between WPS (DWPS) that are root-mean-squared to yield the global DWPS (GDWPS). We test these two approaches on the three reaches of the Feitsui Reservoir system (Taiwan) that are subjected to different classes of anthropogenic interventions. The GDWPS reveal unique features that are not detected with the GWPS ratios. We also segregate the effects of individual subflow components on the overall flow regime alterations using the subflow GDWPS. The results show that the daily hydropeaking waves below the reservoir not only intensified the flow oscillations at daily scale but most significantly eliminated subweekly flow variability. Alterations of flow regime were most severe below the diversion weir, where the residual hydropeaking resulted in a maximum impact at daily scale while the postdiversion null flows led to large hydrologic alterations over submonthly scales. The smallest impacts below the confluence reveal that the hydrologic alterations at scales longer than 2 days were substantially mitigated with the joining of the unregulated tributary flows, whereas the daily-scale hydrologic alteration was retained because of the hydropeaking inherited from the reservoir releases. The proposed DWPS approach unravels for the first time the details of flow regime alterations at these intermediate scales that are overridden by the low-frequency high-power flows when the long-term averaged GWPS are used.
The volume and mean depth of Earth's lakes
NASA Astrophysics Data System (ADS)
Cael, B. B.; Heathcote, A. J.; Seekell, D. A.
2017-01-01
Global lake volume estimates are scarce, highly variable, and poorly documented. We developed a rigorous method for estimating global lake depth and volume based on the Hurst coefficient of Earth's surface, which provides a mechanistic connection between lake area and volume. Volume-area scaling based on the Hurst coefficient is accurate and consistent when applied to lake data sets spanning diverse regions. We applied these relationships to a global lake area census to estimate global lake volume and depth. The volume of Earth's lakes is 199,000 km3 (95% confidence interval 196,000-202,000 km3). This volume is in the range of historical estimates (166,000-280,000 km3), but the overall mean depth of 41.8 m (95% CI 41.2-42.4 m) is significantly lower than previous estimates (62-151 m). These results highlight and constrain the relative scarcity of lake waters in the hydrosphere and have implications for the role of lakes in global biogeochemical cycles.
Developing Land Surface Type Map with Biome Classification Scheme Using Suomi NPP/JPSS VIIRS Data
NASA Astrophysics Data System (ADS)
Zhang, Rui; Huang, Chengquan; Zhan, Xiwu; Jin, Huiran
2016-08-01
Accurate representation of actual terrestrial surface types at regional to global scales is an important element for a wide range of applications, such as land surface parameterization, modeling of biogeochemical cycles, and carbon cycle studies. In this study, in order to meet the requirement of the retrieval of global leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by the vegetation (fPAR) and other studies, a global map generated from Suomi National Polar- orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) surface reflectance data in six major biome classes based on their canopy structures, which include: Grass/Cereal Crops, Shrubs, Broadleaf Crops, Savannas, Broadleaf Forests, and Needleleaf Forests, was created. The primary biome classes were converted from an International Geosphere-Biosphere Program (IGBP) legend global surface type data that was created in previous study, and the separation of two crop types are based on a secondary classification.
Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016
NASA Astrophysics Data System (ADS)
Li, Qiuping; Ma, Mingguo; Wu, Xiaodan; Yang, Hong
2018-01-01
Land surface albedo is an essential parameter in regional and global climate models, and it is markedly influenced by land cover change. Variations in the albedo can affect the surface radiation budget and further impact the global climate. In this study, the interannual variation of albedo from 2002 to 2016 was estimated on the global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) datasets. The presence and causes of the albedo changes for each specific region were also explored. From 2002 to 2016, the MODIS-based albedo decreased globally, snow cover declined by 0.970 (percent per pixel), while the seasonally integrated normalized difference vegetation index increased by 0.175. Some obvious increases in the albedo were detected in Central Asia, northeastern China, parts of the boreal forest in Canada, and the temperate steppe in North America. In contrast, noticeable decreases in the albedo were found in the Siberian tundra, Europe, southeastern Australia, and northeastern regions of North America. In the Northern Hemisphere, the greening trend at high latitudes made more contribution to the decline in the albedo. However, the dramatic fluctuation of snow-cover at midlatitudes predominated in the change of albedo. Our analysis can help to understand the roles that vegetation and snow cover play in the variation of albedo on global and regional scales.
Will surface winds weaken in response to global warming?
NASA Astrophysics Data System (ADS)
Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming
2016-12-01
The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.
A Revised Thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM Version 3.4)
NASA Technical Reports Server (NTRS)
Justus, C. G.; Johnson, D. L.; James, B. F.
1996-01-01
This report describes the newly-revised model thermosphere for the Mars Global Reference Atmospheric Model (Mars-GRAM, Version 3.4). It also provides descriptions of other changes made to the program since publication of the programmer's guide for Mars-GRAM Version 3.34. The original Mars-GRAM model thermosphere was based on the global-mean model of Stewart. The revised thermosphere is based largely on parameterizations derived from output data from the three-dimensional Mars Thermospheric Global Circulation Model (MTGCM). The new thermospheric model includes revised dependence on the 10.7 cm solar flux for the global means of exospheric temperature, temperature of the base of the thermosphere, and scale height for the thermospheric temperature variations, as well as revised dependence on orbital position for global mean height of the base of the thermosphere. Other features of the new thermospheric model are: (1) realistic variations of temperature and density with latitude and time of day, (2) more realistic wind magnitudes, based on improved estimates of horizontal pressure gradients, and (3) allowance for user-input adjustments to the model values for mean exospheric temperature and for height and temperature at the base of the thermosphere. Other new features of Mars-GRAM 3.4 include: (1) allowance for user-input values of climatic adjustment factors for temperature profiles from the surface to 75 km, and (2) a revised method for computing the sub-solar longitude position in the 'ORBIT' subroutine.
Farrar, John T.; Polomano, Rosemary C.; Berlin, Jesse A.; Strom, Brian L.
2010-01-01
Background Pain intensity is commonly reported using a 0–10 numeric rating scale in breakthrough pain clinical trials. Analysis of the change on the Pain Intensity Numerical Rating Scale as a proportion as most consistently correlated with clinically important differences reported on the Patient Global Impression of Change. The analysis of data using a different global outcome measures and the pain relief scale will extend our understanding of these measures. Use of the pain relief scale is also explored in this study Methods Data came from the open titration phase of a multiple crossover, randomized, double-blind clinical trial comparing oral transmucosal fentanyl citrate to immediate-release oral morphine sulfate for treatment of cancer-related breakthrough pain. Raw and percent changes in the pain intensity scores on 1,307 from 134 oral transmucosal fentanyl citrate-naive patients were compared to the clinically relevant secondary outcomes of the pain relief verbal response scale and the global medication performance. The changes in raw and percent change were assessed over time and compared to the ordinal pain relief verbal response scale and global medication performance scales. Results The p-value of the interaction between the raw pain intensity difference was significant but not for the percent pain intensity difference score over 4 15 minute time periods (p = 0.034 and p = 0.26 respectively), in comparison with the ordinal pain relief verbal response scale (p = 0.0048 and p = 0.36 respectively), and global medication performance categories (p = 0.048 and p = 0.45 respectively). Conclusion The change in pain intensity in breakthrough pain was more consistent over time and when compared to both the pain relief verbal response scale and global medication performance scale when the percent change is used rather than raw pain intensity difference. PMID:20463579
Farrar, John T; Polomano, Rosemary C; Berlin, Jesse A; Strom, Brian L
2010-06-01
Pain intensity is commonly reported using a 0-10 Numeric Rating Scale in pain clinical trials. Analysis of the change on the Pain Intensity Numerical Rating Scale as a proportion has most consistently correlated with clinically important differences reported on the patient's global impression of change. The correlation of data from patients with breakthrough pain with a Pain Relief Scale and a different global outcome measures will extend our understanding of these measures. Data were obtained from the open titration phase of a multiple crossover, randomized, double-blind clinical trial comparing oral transmucosal fentanyl citrate with immediate-release oral morphine sulfate for the treatment of cancer-related breakthrough pain. Raw and percentage changes in the pain intensity scores from 1,307 episodes of pain in 134 oral transmucosal fentanyl citrate-naïve patients were correlated with the clinically relevant secondary outcomes of Pain Relief Verbal Response Scale and the global medication performance scale. The changes in raw and percentage change were assessed over time and compared with the ordinal Pain Relief Verbal Response Scale and Global Medication Performance Scale. The P value of the interaction between the raw pain intensity difference was significant (P = 0.034) for four 15-min time periods but not for the percentage pain intensity difference score (P = 0.26). We found similar results in comparison with the ordinal Pain Relief Verbal Response Scale (P = 0.0048 and P = 0.36 respectively) and global medication performance categories (P = 0.048 and P = 0.45, respectively). The change in pain intensity in breakthrough pain was more consistent over time and when compared with both the Pain Relief Verbal Response Scale and the Global Medication Performance Scale when the percentage change is used rather than raw pain intensity difference.
Observation-based Estimate of Climate Sensitivity with a Scaling Climate Response Function
NASA Astrophysics Data System (ADS)
Hébert, Raphael; Lovejoy, Shaun
2016-04-01
To properly adress the anthropogenic impacts upon the earth system, an estimate of the climate sensitivity to radiative forcing is essential. Observation-based estimates of climate sensitivity are often limited by their ability to take into account the slower response of the climate system imparted mainly by the large thermal inertia of oceans, they are nevertheless essential to provide an alternative to estimates from global circulation models and increase our confidence in estimates of climate sensitivity by the multiplicity of approaches. It is straightforward to calculate the Effective Climate Sensitivity(EffCS) as the ratio of temperature change to the change in radiative forcing; the result is almost identical to the Transient Climate Response(TCR), but it underestimates the Equilibrium Climate Sensitivity(ECS). A study of global mean temperature is thus presented assuming a Scaling Climate Response Function to deterministic radiative forcing. This general form is justified as there exists a scaling symmetry respected by the dynamics, and boundary conditions, over a wide range of scales and it allows for long-range dependencies while retaining only 3 parameter which are estimated empirically. The range of memory is modulated by the scaling exponent H. We can calculate, analytically, a one-to-one relation between the scaling exponent H and the ratio of EffCS to TCR and EffCS to ECS. The scaling exponent of the power law is estimated by a regression of temperature as a function of forcing. We consider for the analysis 4 different datasets of historical global mean temperature and 100 scenario runs of the Coupled Model Intercomparison Project Phase 5 distributed among the 4 Representative Concentration Pathways(RCP) scenarios. We find that the error function for the estimate on historical temperature is very wide and thus, many scaling exponent can be used without meaningful changes in the fit residuals of historical temperatures; their response in the year 2100 on the other hand, is very broad, especially for a low-emission scenario such as RCP 2.6. CMIP5 scenario runs thus allow for a narrower estimate of H which can then be used to estimate the ECS and TCR from the EffCS estimated from the historical data.
Kebede, Abiy S; Nicholls, Robert J; Allan, Andrew; Arto, Iñaki; Cazcarro, Ignacio; Fernandes, Jose A; Hill, Chris T; Hutton, Craig W; Kay, Susan; Lázár, Attila N; Macadam, Ian; Palmer, Matthew; Suckall, Natalie; Tompkins, Emma L; Vincent, Katharine; Whitehead, Paul W
2018-09-01
To better anticipate potential impacts of climate change, diverse information about the future is required, including climate, society and economy, and adaptation and mitigation. To address this need, a global RCP (Representative Concentration Pathways), SSP (Shared Socio-economic Pathways), and SPA (Shared climate Policy Assumptions) (RCP-SSP-SPA) scenario framework has been developed by the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC-AR5). Application of this full global framework at sub-national scales introduces two key challenges: added complexity in capturing the multiple dimensions of change, and issues of scale. Perhaps for this reason, there are few such applications of this new framework. Here, we present an integrated multi-scale hybrid scenario approach that combines both expert-based and participatory methods. The framework has been developed and applied within the DECCMA 1 project with the purpose of exploring migration and adaptation in three deltas across West Africa and South Asia: (i) the Volta delta (Ghana), (ii) the Mahanadi delta (India), and (iii) the Ganges-Brahmaputra-Meghna (GBM) delta (Bangladesh/India). Using a climate scenario that encompasses a wide range of impacts (RCP8.5) combined with three SSP-based socio-economic scenarios (SSP2, SSP3, SSP5), we generate highly divergent and challenging scenario contexts across multiple scales against which robustness of the human and natural systems within the deltas are tested. In addition, we consider four distinct adaptation policy trajectories: Minimum intervention, Economic capacity expansion, System efficiency enhancement, and System restructuring, which describe alternative future bundles of adaptation actions/measures under different socio-economic trajectories. The paper highlights the importance of multi-scale (combined top-down and bottom-up) and participatory (joint expert-stakeholder) scenario methods for addressing uncertainty in adaptation decision-making. The framework facilitates improved integrated assessments of the potential impacts and plausible adaptation policy choices (including migration) under uncertain future changing conditions. The concept, methods, and processes presented are transferable to other sub-national socio-ecological settings with multi-scale challenges. Copyright © 2018. Published by Elsevier B.V.
Progress in the Development of a Global Quasi-3-D Multiscale Modeling Framework
NASA Astrophysics Data System (ADS)
Jung, J.; Konor, C. S.; Randall, D. A.
2017-12-01
The Quasi-3-D Multiscale Modeling Framework (Q3D MMF) is a second-generation MMF, which has following advances over the first-generation MMF: 1) The cloud-resolving models (CRMs) that replace conventional parameterizations are not confined to the large-scale dynamical-core grid cells, and are seamlessly connected to each other, 2) The CRMs sense the three-dimensional large- and cloud-scale environment, 3) Two perpendicular sets of CRM channels are used, and 4) The CRMs can resolve the steep surface topography along the channel direction. The basic design of the Q3D MMF has been developed and successfully tested in a limited-area modeling framework. Currently, global versions of the Q3D MMF are being developed for both weather and climate applications. The dynamical cores governing the large-scale circulation in the global Q3D MMF are selected from two cube-based global atmospheric models. The CRM used in the model is the 3-D nonhydrostatic anelastic Vector-Vorticity Model (VVM), which has been tested with the limited-area version for its suitability for this framework. As a first step of the development, the VVM has been reconstructed on the cubed-sphere grid so that it can be applied to global channel domains and also easily fitted to the large-scale dynamical cores. We have successfully tested the new VVM by advecting a bell-shaped passive tracer and simulating the evolutions of waves resulted from idealized barotropic and baroclinic instabilities. For improvement of the model, we also modified the tracer advection scheme to yield positive-definite results and plan to implement a new physics package that includes a double-moment microphysics and an aerosol physics. The interface for coupling the large-scale dynamical core and the VVM is under development. In this presentation, we shall describe the recent progress in the development and show some test results.
USDA-ARS?s Scientific Manuscript database
Globalization is a phenomenon affecting all facets of the Earth System. Within the context of ecological systems, it is becoming increasingly apparent that global connectivity among terrestrial systems, the atmosphere, and oceans is driving many ecological dynamics at finer scales and pushing thresh...
NASA Astrophysics Data System (ADS)
England, S.; Lillis, R. J.
2011-12-01
Knowledge of Mars' thermospheric mass density (~120--200 km altitude) is important for understanding the current state and evolution of the Martian atmosphere and for spacecraft such as the upcoming MAVEN mission that will fly through this region every orbit. Global-scale atmospheric models have been shown thus far to do an inconsistent job of matching mass density observations at these altitudes, especially on the nightside. Thus there is a clear need for a data-driven estimate of the mass density in this region. Given the wide range of conditions and locations over which these must be defined, the dataset of thermospheric mass densities derived from energy and angular distributions of super-thermal electrons measured by the MAG/ER experiment on Mars Global Surveyor, spanning 4 full Martian years, is an extremely valuable resource that can be used to enhance our prediction of these densities beyond what is given by such global-scale models. Here we present an empirical model of the thermospheric density structure based on the MAG/ER dataset. Using this new model, we assess the global-scale response of the thermosphere to dust storms in the lower atmosphere and show that this varies with latitude. Further, we examine the short- and longer-term variability of the thermospheric density and show that it exhibits a complex behavior with latitude and season that is indicative of both atmospheric conditions at lower altitudes and possible lower atmosphere wave sources.
NASA Astrophysics Data System (ADS)
Kozyra, J. U.; Brandt, P. C.; Cattell, C. A.; Clilverd, M.; de Zeeuw, D.; Evans, D. S.; Fang, X.; Frey, H. U.; Kavanagh, A. J.; Liemohn, M. W.; Lu, G.; Mende, S. B.; Paxton, L. J.; Ridley, A. J.; Rodger, C. J.; Soraas, F.
2010-12-01
Energetic ions and electrons that precipitate into the upper atmosphere from sources throughout geospace carry the influences of space weather disturbances deeper into the atmosphere, possibly contributing to climate variability. The three-dimensional atmospheric effects of these precipitating particles are a function of the energy and species of the particles, lifetimes of reactive species generated during collisions in the atmosphere, the nature of the driving space weather disturbance, and the large-scale transport properties (meteorology) of the atmosphere in the region of impact. Unraveling the features of system-level coupling between solar magnetic variability, space weather and stratospheric dynamics requires a global view of the precipitation, along with its temporal and spatial variation. However, observations of particle precipitation at the system level are sparse and incomplete requiring they be combined with other observations and with large-scale models to provide the global context that is needed to accelerate progress. We compare satellite and ground-based observations of geospace conditions and energetic precipitation (at ring current, radiation belt and auroral energies) to a simulation of the geospace environment during 21-22 January 2005 by the BATS-R-US MHD model coupled with a self-consistent ring current solution. The aim is to explore the extent to which regions of particle precipitation track global magnetic field distortions and ways in which global models enhance our understanding of linkages between solar wind drivers and evolution of energetic particle precipitation.
NASA Astrophysics Data System (ADS)
Carozza, D. A.; Bianchi, D.; Galbraith, E. D.
2015-12-01
Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modeling fish biomass at the global scale. The ecological model is designed to be used on an Earth System model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how the change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modeling efforts, while retaining realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.
NASA Astrophysics Data System (ADS)
Carozza, David Anthony; Bianchi, Daniele; Galbraith, Eric Douglas
2016-04-01
Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modelling fish biomass at the global scale. The ecological model is designed to be used on an Earth-system model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how they change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modelling efforts, while retaining reasonably realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies of fisheries.
The DRAGON scale concept and results for remote sensing of aerosol properties
NASA Astrophysics Data System (ADS)
Holben, B. N.; Eck, T. F.; Schafer, J.; Giles, D. M.; Kim, J.; Sano, I.; Mukai, S.; Kim, Y. J.; Reid, J. S.; Pickering, K. E.; Crawford, J. H.; Smirnov, A.; Sinyuk, A.; Slutsker, I.; Sorokin, M.; Rodriguez, J.; Liew, S.; Trevino, N.; Lim, H.; Lefer, B. L.; Nadkarni, R.; Macke, A.; Kinne, S. A.; Anderson, B. E.; Russell, P. B.; Maring, H. B.; Welton, E. J.; da Silva, A.; Toon, O. B.; Redemann, J.
2013-12-01
Aerosol processes occur at microscales but are typically observed and reported at continental to global scales. Often observable aerosol processes that have significant anthropogenic impact occur on spatial scales of tens to a few hundred km, representative of convective cloud processing, urban/megacity sources, anthropogenic burning and natural wildfires, dry lakebed dust sources etc. Historically remote sensing of aerosols has relied on relatively coarse temporal and spatial resolution satellite observations or high temporal resolution point observations from ground-based monitoring sites from networks such as AERONET, SKYNET, MPLNET and many other surface observation platforms. Airborne remote and in situ observations combined with assimilation models were/are to be the mesoscale link between the ground- and space-based RS scales. However clearly the in situ and ground-based RS characterizations of aerosols require a convergence of thought, parameterization and actual scale measurements in order to advance this goal. This has been served by periodic multidisciplinary field campaigns yet only recently has a concerted effort been made to establish these ground-based networks in an effort to capture the mesoscale processes through measurement programs such as DISCOVER AQ and NASA AERONET's effort to foster such measurements and analysis through the Distributed Regional Aerosol Gridded Observation Networks (DRAGON), short term meso-networks, with partners in Asia and Europe and N. America. This talk will review the historical need for such networks and discuss some of the results and in some cases unexpected findings from the eight DRAGON campaigns conducted the last several years. Emphasis will be placed on the most recent DISCOVER AQ campaign conducted in Houston TX and the synergism with a regional to global network plan through the SEAC4RS US campaign.
Ecosystem-based coastal defence in the face of global change.
Temmerman, Stijn; Meire, Patrick; Bouma, Tjeerd J; Herman, Peter M J; Ysebaert, Tom; De Vriend, Huib J
2013-12-05
The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
We are in the fourth year of a fiveyear effort to map the global geology of Mars at 1:20M scale using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey image and altimetry datasets. Previously, we reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. Last year, we described mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map [3].
1998-01-01
the power spectra of instrumental temperature data from the Global Summary of day database from time scales of 1 day to 100 years. Maritime sta- tions...continental-type spectrum to a maritime-type spectrum is investigated by averaging spectra from all stations in the database in 2°x2° grid squares...We present global and regional maps of the seismic intensity factor based on data from the NEIC Global Hypocenter Database from 1963-1994. The
NASA Astrophysics Data System (ADS)
Williamson, C. E.; Weathers, K. C.; Knoll, L. B.; Brentrup, J.
2012-12-01
Recent rapid advances in sensor technology and cyberinfrastructure have enabled the development of numerous environmental observatories ranging from local networks at field stations and marine laboratories (FSML) to continental scale observatories such as the National Ecological Observatory Network (NEON) to global scale observatories such as the Global Lake Ecological Observatory Network (GLEON). While divergent goals underlie the initial development of these observatories, and they are often designed to serve different communities, many opportunities for synergies exist. In addition, the use of existing infrastructure may enhance the cost-effectiveness of building and maintaining large scale observatories. For example, FSMLs are established facilities with the staff and infrastructure to host sensor nodes of larger networks. Many field stations have existing staff and long-term databases as well as smaller sensor networks that are the product of a single or small group of investigators with a unique data management system embedded in a local or regional community. These field station based facilities and data are a potentially untapped gold mine for larger continental and global scale observatories; common ecological and environmental challenges centered on understanding the impacts of changing climate, land use, and invasive species often underlie these efforts. The purpose of this talk is to stimulate a dialog on the challenges of merging efforts across these different spatial and temporal scales, as well as addressing how to develop synergies among observatory networks with divergent roots and philosophical approaches. For example, FSMLs have existing long-term databases and facilities, while NEON has sparse past data but a well-developed template and closely coordinated team working in a coherent format across a continental scale. GLEON on the other hand is a grass-roots network of experts in science, information technology, and engineering with a common goal of building a scalable network around the world to understand and predict how lakes respond to global change. Creating synergies among networks at these divergent scales requires open discussions ranging from data collection and management to data serving and sharing. Coordination of these efforts can provide an additional opportunity to educate both students and the public in innovative new ways about the broader continental to global scale of ecological and environmental challenges that they have observed in their more local ecosystems.
Jørgensen, Peter Søgaard; Böhning-Gaese, Katrin; Thorup, Kasper; Tøttrup, Anders P; Chylarecki, Przemysław; Jiguet, Frédéric; Lehikoinen, Aleksi; Noble, David G; Reif, Jiri; Schmid, Hans; van Turnhout, Chris; Burfield, Ian J; Foppen, Ruud; Voříšek, Petr; van Strien, Arco; Gregory, Richard D; Rahbek, Carsten
2016-02-01
Species attributes are commonly used to infer impacts of environmental change on multiyear species trends, e.g. decadal changes in population size. However, by themselves attributes are of limited value in global change attribution since they do not measure the changing environment. A broader foundation for attributing species responses to global change may be achieved by complementing an attributes-based approach by one estimating the relationship between repeated measures of organismal and environmental changes over short time scales. To assess the benefit of this multiscale perspective, we investigate the recent impact of multiple environmental changes on European farmland birds, here focusing on climate change and land use change. We analyze more than 800 time series from 18 countries spanning the past two decades. Analysis of long-term population growth rates documents simultaneous responses that can be attributed to both climate change and land-use change, including long-term increases in populations of hot-dwelling species and declines in long-distance migrants and farmland specialists. In contrast, analysis of annual growth rates yield novel insights into the potential mechanisms driving long-term climate induced change. In particular, we find that birds are affected by winter, spring, and summer conditions depending on the distinct breeding phenology that corresponds to their migratory strategy. Birds in general benefit from higher temperatures or higher primary productivity early on or in the peak of the breeding season with the largest effect sizes observed in cooler parts of species' climatic ranges. Our results document the potential of combining time scales and integrating both species attributes and environmental variables for global change attribution. We suggest such an approach will be of general use when high-resolution time series are available in large-scale biodiversity surveys. © 2015 John Wiley & Sons Ltd.
Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function
NASA Astrophysics Data System (ADS)
Hochberg, E. J.
2016-02-01
Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Coppola, Erika; Giorgi, Filippo
2010-05-01
Since anthropogenic climate change is a rather important factor for the future human life all over the planet and its effects are not globally uniform, climate information at regional or local scales become more and more important for an accurate assessment of the potential impact of climate change on societies and ecosystems. High resolution information with suitably fine-scale for resolving complex geographical features could be a critical factor for successful linkage between climate models and impact assessment studies. However, scale mismatch between them still remains major problem. One method for overcoming the resolution limitations of global climate models and for adding regional details to coarse-grid global projections is to use dynamical downscaling by means of a regional climate model. In this study, the ECHAM5/MPI-OM (1.875 degree) A1B scenario simulation has been dynamically downscaled by using two different approaches within the framework of RegCM3 modeling system. First, a mosaic-type parameterization of subgrid-scale topography and land use (Sub-BATS) is applied over the European Alpine region. The Sub-BATS system is composed of 15 km coarse-grid cell and 3 km sub-grid cell. Second, we developed the RegCM3 one-way double-nested system, with the mother domain encompassing the eastern regions of Asia at 60 km grid spacing and the nested domain covering the Korean Peninsula at 20 km grid spacing. By comparing the regional climate model output and the driving global model ECHAM5/MPI-OM output, it is possible to estimate the added value of physically-based dynamical downscaling when for example impact studies at hydrological scale are performed.
Coral Reef Color: Remote and In-Situ Imaging Spectroscopy of Reef Structure and Function
NASA Astrophysics Data System (ADS)
Hochberg, E. J.
2015-12-01
Coral reefs are threatened at local to global scales by a litany of anthropogenic impacts, including overfishing, coastal development, marine and watershed pollution, rising ocean temperatures, and ocean acidification. However, available data for the primary indicator of coral reef condition — proportional cover of living coral — are surprisingly sparse and show patterns that contradict the prevailing understanding of how environment impacts reef condition. Remote sensing is the only available tool for acquiring synoptic, uniform data on reef condition at regional to global scales. Discrimination between coral and other reef benthos relies on narrow wavebands afforded by imaging spectroscopy. The same spectral information allows non-invasive quantification of photosynthetic pigment composition, which shows unexpected phenological trends. There is also potential to link biodiversity with optical diversity, though there has been no effort in that direction. Imaging spectroscopy underlies the light-use efficiency model for reef primary production by quantifying light capture, which in turn indicates biochemical capacity for CO2 assimilation. Reef calcification is strongly correlated with primary production, suggesting the possibility for an optics-based model of that aspect of reef function, as well. By scaling these spectral models for use with remote sensing, we can vastly improve our understanding of reef structure, function, and overall condition across regional to global scales. By analyzing those remote sensing products against ancillary environmental data, we can construct secondary models to predict reef futures in the era of global change. This final point is the objective of CORAL (COral Reef Airborne Laboratory), a three-year project funded under NASA's Earth Venture Suborbital-2 program to investigate the relationship between coral reef condition at the ecosystem scale and various nominal biogeophysical forcing parameters.
Crossing the quality chasm in resource-limited settings.
Maru, Duncan Smith-Rohrberg; Andrews, Jason; Schwarz, Dan; Schwarz, Ryan; Acharya, Bibhav; Ramaiya, Astha; Karelas, Gregory; Rajbhandari, Ruma; Mate, Kedar; Shilpakar, Sona
2012-11-30
Over the last decade, extensive scientific and policy innovations have begun to reduce the "quality chasm"--the gulf between best practices and actual implementation that exists in resource-rich medical settings. While limited data exist, this chasm is likely to be equally acute and deadly in resource-limited areas. While health systems have begun to be scaled up in impoverished areas, scale-up is just the foundation necessary to deliver effective healthcare to the poor. This perspective piece describes a vision for a global quality improvement movement in resource-limited areas. The following action items are a first step toward achieving this vision: 1) revise global health investment mechanisms to value quality; 2) enhance human resources for improving health systems quality; 3) scale up data capacity; 4) deepen community accountability and engagement initiatives; 5) implement evidence-based quality improvement programs; 6) develop an implementation science research agenda.
Global efficiency of local immunization on complex networks
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.
2013-07-01
Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.
Global efficiency of local immunization on complex networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J
2013-01-01
Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.
Global Burden of Disease of Mercury Used in Artisanal Small-Scale Gold Mining.
Steckling, Nadine; Tobollik, Myriam; Plass, Dietrich; Hornberg, Claudia; Ericson, Bret; Fuller, Richard; Bose-O'Reilly, Stephan
Artisanal small-scale gold mining (ASGM) is the world's largest anthropogenic source of mercury emission. Gold miners are highly exposed to metallic mercury and suffer occupational mercury intoxication. The global disease burden as a result of this exposure is largely unknown because the informal character of ASGM restricts the availability of reliable data. To estimate the prevalence of occupational mercury intoxication and the disability-adjusted life years (DALYs) attributable to chronic metallic mercury vapor intoxication (CMMVI) among ASGM gold miners globally and in selected countries. Estimates of the number of artisanal small-scale gold (ASG) miners were extracted from reviews supplemented by a literature search. Prevalence of moderate CMMVI among miners was determined by compiling a dataset of available studies that assessed frequency of intoxication in gold miners using a standardized diagnostic tool and biomonitoring data on mercury in urine. Severe cases of CMMVI were not included because it was assumed that these persons can no longer be employed as miners. Cases in workers' families and communities were not considered. Years lived with disability as a result of CMMVI among ASG miners were quantified by multiplying the number of prevalent cases of CMMVI by the appropriate disability weight. No deaths are expected to result from CMMVI and therefore years of life lost were not calculated. Disease burden was calculated by multiplying the prevalence rate with the number of miners for each country and the disability weight. Sensitivity analyses were performed using different assumptions on the number of miners and the intoxication prevalence rate. Globally, 14-19 million workers are employed as ASG miners. Based on human biomonitoring data, between 25% and 33% of these miners-3.3-6.5 million miners globally-suffer from moderate CMMVI. The resulting global burden of disease is estimated to range from 1.22 (uncertainty interval [UI] 0.87-1.61) to 2.39 (UI 1.69-3.14) million DALYs. This study presents the first global and country-based estimates of disease burden caused by mercury intoxication in ASGM. Data availability and quality limit the results, and the total disease burden is likely undercounted. Despite these limitations, the data clearly indicate that mercury intoxication in ASG miners is a major, largely neglected global health problem. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
2010-01-01
Background Universal access to antiretroviral therapy (ART) in low- and middle-income countries faces numerous challenges: increasing numbers of people needing ART, new guidelines recommending more expensive antiretroviral (ARV) medicines, limited financing, and few fixed-dose combination (FDC) products. Global initiatives aim to promote efficient global ARV markets, yet little is known about market dynamics and the impact of global policy interventions. Methods We utilize several data sources, including 12,958 donor-funded, adult first-line ARV purchase transactions, to describe the market from 2002-2008. We examine relationships between market trends and: World Health Organization (WHO) HIV/AIDS treatment guidelines; WHO Prequalification Programme (WHO Prequal) and United States (US) Food and Drug Administration (FDA) approvals; and procurement policies of the Global Fund to Fight AIDS, Tuberculosis, and Malaria (GFATM), US President's Emergency Plan for AIDS Relief (PEPFAR) and UNITAID. Results WHO recommended 7, 4, 24, and 6 first-line regimens in 2002, 2003, 2006 and 2009 guidelines, respectively. 2009 guidelines replaced a stavudine-based regimen ($88/person/year) with more expensive zidovudine- ($154-260/person/year) or tenofovir-based ($244-465/person/year) regimens. Purchase volumes for ARVs newly-recommended in 2006 (emtricitabine, tenofovir) increased >15-fold from 2006 to 2008. Twenty-four generic FDCs were quality-approved for older regimens but only four for newer regimens. Generic FDCs were available to GFATM recipients in 2004 but to PEPFAR recipients only after FDA approval in 2006. Price trends for single-component generic medicines mirrored generic FDC prices. Two large-scale purchasers, PEPFAR and UNITAID, together accounted for 53%, 84%, and 77% of market volume for abacavir, emtricitabine, and tenofovir, respectively, in 2008. PEPFAR and UNITAID purchases were often split across two manufacturers. Conclusions Global initiatives facilitated the creation of fairly efficient markets for older ARVs, but markets for newer ARVs are less competitive and slower to evolve. WHO guidelines shape demand, and their complexity may help or hinder achievement of economies of scale in pharmaceutical manufacturing. Certification programs assure ARV quality but can delay uptake of new formulations. Large-scale procurement policies may decrease the numbers of buyers and sellers, rendering the market less competitive in the longer-term. Global policies must be developed with consideration for their short- and long-term impact on market dynamics. PMID:20500827
A framework for global river flood risk assessment
NASA Astrophysics Data System (ADS)
Winsemius, H. C.; Van Beek, L. P. H.; Bouwman, A.; Ward, P. J.; Jongman, B.
2012-04-01
There is an increasing need for strategic global assessments of flood risks. Such assessments may be required by: (a) International Financing Institutes and Disaster Management Agencies to evaluate where, when, and which investments in flood risk mitigation are most required; (b) (re-)insurers, who need to determine their required coverage capital; and (c) large companies to account for risks of regional investments. In this contribution, we propose a framework for global river flood risk assessment. The framework combines coarse scale resolution hazard probability distributions, derived from global hydrological model runs (typical scale about 0.5 degree resolution) with high resolution estimates of exposure indicators. The high resolution is required because floods typically occur at a much smaller scale than the typical resolution of global hydrological models, and exposure indicators such as population, land use and economic value generally are strongly variable in space and time. The framework therefore estimates hazard at a high resolution ( 1 km2) by using a) global forcing data sets of the current (or in scenario mode, future) climate; b) a global hydrological model; c) a global flood routing model, and d) importantly, a flood spatial downscaling routine. This results in probability distributions of annual flood extremes as an indicator of flood hazard, at the appropriate resolution. A second component of the framework combines the hazard probability distribution with classical flood impact models (e.g. damage, affected GDP, affected population) to establish indicators for flood risk. The framework can be applied with a large number of datasets and models and sensitivities of such choices can be evaluated by the user. The framework is applied using the global hydrological model PCR-GLOBWB, combined with a global flood routing model. Downscaling of the hazard probability distributions to 1 km2 resolution is performed with a new downscaling algorithm, applied on a number of target regions. We demonstrate the use of impact models in these regions based on global GDP, population, and land use maps. In this application, we show sensitivities of the estimated risks with regard to the use of different climate input datasets, decisions made in the downscaling algorithm, and different approaches to establish distributed estimates of GDP and asset exposure to flooding.
NASA Astrophysics Data System (ADS)
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555
We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less
NASA Astrophysics Data System (ADS)
Shugart, Herman H.; Wang, Bin; Fischer, Rico; Ma, Jianyong; Fang, Jing; Yan, Xiaodong; Huth, Andreas; Armstrong, Amanda H.
2018-03-01
Individual-based models (IBMs) of complex systems emerged in the 1960s and early 1970s, across diverse disciplines from astronomy to zoology. Ecological IBMs arose with seemingly independent origins out of the tradition of understanding the ecosystems dynamics of ecosystems from a ‘bottom-up’ accounting of the interactions of the parts. Individual trees are principal among the parts of forests. Because these models are computationally demanding, they have prospered as the power of digital computers has increased exponentially over the decades following the 1970s. This review will focus on a class of forest IBMs called gap models. Gap models simulate the changes in forests by simulating the birth, growth and death of each individual tree on a small plot of land. The summation of these plots comprise a forest (or set of sample plots on a forested landscape or region). Other, more aggregated forest IBMs have been used in global applications including cohort-based models, ecosystem demography models, etc. Gap models have been used to provide the parameters for these bulk models. Currently, gap models have grown from local-scale to continental-scale and even global-scale applications to assess the potential consequences of climate change on natural forests. Modifications to the models have enabled simulation of disturbances including fire, insect outbreak and harvest. Our objective in this review is to provide the reader with an overview of the history, motivation and applications, including theoretical applications, of these models. In a time of concern over global changes, gap models are essential tools to understand forest responses to climate change, modified disturbance regimes and other change agents. Development of forest surveys to provide the starting points for simulations and better estimates of the behavior of the diversity of tree species in response to the environment are continuing needs for improvement for these and other IBMs.
Global surface temperature change analysis based on MODIS data in recent twelve years
NASA Astrophysics Data System (ADS)
Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.
2017-01-01
Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.
Regional climates in the GISS general circulation model: Surface air temperature
NASA Technical Reports Server (NTRS)
Hewitson, Bruce
1994-01-01
One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.
The influence of large-scale wind power on global climate.
Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J
2004-11-16
Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.
NASA Technical Reports Server (NTRS)
Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal
2017-01-01
Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.
Spatial modeling of agricultural land use change at global scale
NASA Astrophysics Data System (ADS)
Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.
2014-11-01
Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling communities.
NASA Astrophysics Data System (ADS)
Swan, Chantal M.; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte
2016-03-01
Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°×1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32±5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. The results are publically accessible via
Global velocity constrained cloud motion prediction for short-term solar forecasting
NASA Astrophysics Data System (ADS)
Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping
2016-09-01
Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.
Operational Retrievals of Evapotranspiration: Are we there yet?
NASA Astrophysics Data System (ADS)
Neale, C. M. U.; Anderson, M. C.; Hain, C.; Schull, M.; Isidro, C., Sr.; Goncalves, I. Z.
2017-12-01
Remote sensing based retrievals of evapotranspiration (ET) have progressed significantly over the last two decades with the improvement of methods and algorithms and the availability of multiple satellite sensors with shortwave and thermal infrared bands on polar orbiting platforms. The modeling approaches include simpler vegetation index (VI) based methods such as the reflectance-based crop coefficient approach coupled with surface reference evapotranspiration estimates to derive actual evapotranspiration of crops or, direct inputs to the Penman-Monteith equation through VI relationships with certain input variables. Methods that are more complex include one-layer or two-layer energy balance approaches that make use of both shortwave and longwave spectral band information to estimate different inputs to the energy balance equation. These models mostly differ in the estimation of sensible heat fluxes. For continental and global scale applications, other satellite-based products such as solar radiation, vegetation leaf area and cover are used as inputs, along with gridded re-analysis weather information. This presentation will review the state-of-the-art in satellite-based evapotranspiration estimation, giving examples of existing efforts to obtain operational ET retrievals over continental and global scales and discussing difficulties and challenges.
Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Rammig, Anja; Kattge, Jens; Poorter, Lourens; Peñuelas, Josep; Thonicke, Kirsten
2015-01-22
Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N area ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects. © 2015 John Wiley & Sons Ltd.
Traveling Weather Disturbances in Mars Southern Extratropics: Sway of the Great Impact Basins
NASA Technical Reports Server (NTRS)
Hollingsworth, Jeffery L.
2016-01-01
As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e. "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e. transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e. globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e. east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.
Traveling Weather Disturbances in Mars' Southern Extratropics: Sway of the Great Impact Basins
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.
2016-04-01
As on Earth, between late autumn and early spring on Mars middle and high latitudes within its atmosphere support strong mean thermal contrasts between the equator and poles (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports vigorous, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). Within a rapidly rotating, differentially heated, shallow atmosphere such as on Earth and Mars, such large-scale, extratropical weather disturbances are critical components of the global circulation. These wave-like disturbances act as agents in the transport of heat and momentum, and moreover generalized tracer quantities (e.g., atmospheric dust, water vapor and water-ice clouds) between low and high latitudes of the planet. The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a high-resolution Mars global climate model (Mars GCM). This global circulation model imposes interactively lifted (and radiatively active) dust based on a threshold value of the instantaneous surface stress. Compared to observations, the model exhibits a reasonable "dust cycle" (i.e., globally averaged, a more dusty atmosphere during southern spring and summer occurs). In contrast to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense synoptically. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather disturbances are examined. Simulations that adapt Mars' full topography compared to simulations that utilize synthetic topographies emulating essential large-scale features of the southern middle latitudes indicate that Mars' transient barotropic/baroclinic eddies are significantly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). In addition, the occurrence of a southern storm zone in late winter and early spring is keyed particularly to the western hemisphere via orographic influences arising from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate fundamental differences amongst such simulations and these are described.
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization. PMID:28873432
Xing, Lizhi
2017-01-01
The input-output table is comprehensive and detailed in describing the national economic system with complex economic relationships, which embodies information of supply and demand among industrial sectors. This paper aims to scale the degree of competition/collaboration on the global value chain from the perspective of econophysics. Global Industrial Strongest Relevant Network models were established by extracting the strongest and most immediate industrial relevance in the global economic system with inter-country input-output tables and then transformed into Global Industrial Resource Competition Network/Global Industrial Production Collaboration Network models embodying the competitive/collaborative relationships based on bibliographic coupling/co-citation approach. Three indicators well suited for these two kinds of weighted and non-directed networks with self-loops were introduced, including unit weight for competitive/collaborative power, disparity in the weight for competitive/collaborative amplitude and weighted clustering coefficient for competitive/collaborative intensity. Finally, these models and indicators were further applied to empirically analyze the function of sectors in the latest World Input-Output Database, to reveal inter-sector competitive/collaborative status during the economic globalization.
Sea level change since 2005: importance of salinity
NASA Astrophysics Data System (ADS)
Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.
2017-12-01
Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.
A global assessment of wildfire risks to human and environmental water security
NASA Astrophysics Data System (ADS)
Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.
2017-04-01
Extreme wildfire events extensively affect hydrosystem stability and generate an important threat to the reliability of the water supply for human and natural communities. While actively studied at the watershed scale, the development of a global vision of wildfire risk to water security has only been undertaken recently, pointing at potential water security concerns in an era of global changes. In order to address this concern, we propose a global-scale analysis of the wildfire risk to surface water supplies based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. Based on the literature, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. Each indicator was assigned a DPSIR category. Then, we collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the wildfire-water risk (WWR). For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, for analysis. Overall, our results show a distinct pattern of medium-to-high risk levels in areas where sizeable wildfire activity, water resources, and water consumption are concomitant, which mainly encompasses temperate and sub-tropical zones. A closer look at hydrobelts reveals differences in the factors driving the risk, with fire activity being the primary factor of risk in the circumboreal forest, and freshwater resource density being prevalent in tropical areas. We also identified major urban areas across the world whose source waters should be protected from extreme fire events, particularly when they are dependent on mountainous headwaters. This study offers new insights towards a better understanding of global water security issues that can inform and help guide international water governance.
Global-scale modeling of groundwater recharge
NASA Astrophysics Data System (ADS)
Döll, P.; Fiedler, K.
2008-05-01
Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3/(capita yr) for the Falkland Islands, the global average in the year 2000 being 2091 m3/(capita yr). Regarding the uncertainty of estimated groundwater resources due to the two precipitation data sets, deviation from the mean is 1.1% for the global value, and less than 1% for 50 out of the 165 countries considered, between 1 and 5% for 62, between 5 and 20% for 43 and between 20 and 80% for 10 countries. Deviations at the grid scale can be much larger, ranging between 0 and 186 mm/yr.
Challenges and Opportunities in Global Mental Health: a Research-to-Practice Perspective.
Wainberg, Milton L; Scorza, Pamela; Shultz, James M; Helpman, Liat; Mootz, Jennifer J; Johnson, Karen A; Neria, Yuval; Bradford, Jean-Marie E; Oquendo, Maria A; Arbuckle, Melissa R
2017-05-01
Globally, the majority of those who need mental health care worldwide lack access to high-quality mental health services. Stigma, human resource shortages, fragmented service delivery models, and lack of research capacity for implementation and policy change contribute to the current mental health treatment gap. In this review, we describe how health systems in low- and middle-income countries (LMICs) are addressing the mental health gap and further identify challenges and priority areas for future research. Common mental disorders are responsible for the largest proportion of the global burden of disease; yet, there is sound evidence that these disorders, as well as severe mental disorders, can be successfully treated using evidence-based interventions delivered by trained lay health workers in low-resource community or primary care settings. Stigma is a barrier to service uptake. Prevention, though necessary to address the mental health gap, has not solidified as a research or programmatic focus. Research-to-practice implementation studies are required to inform policies and scale-up services. Four priority areas are identified for focused attention to diminish the mental health treatment gap and to improve access to high-quality mental health services globally: diminishing pervasive stigma, building mental health system treatment and research capacity, implementing prevention programs to decrease the incidence of mental disorders, and establishing sustainable scale up of public health systems to improve access to mental health treatment using evidence-based interventions.
NASA Astrophysics Data System (ADS)
Bolten, J.; Crow, W.; Zhan, X.; Reynolds, C.
2008-08-01
Timely and accurate monitoring of global weather anomalies and drought conditions is essential for assessing global crop conditions. Soil moisture observations are particularly important for crop yield fluctuations provided by the US Department of Agriculture (USDA) Production Estimation and Crop Assessment Division (PECAD). The current system utilized by PECAD estimates soil moisture from a 2-layer water balance model based on precipitation and temperature data from World Meteorological Organization (WMO) and US Air Force Weather Agency (AFWA). The accuracy of this system is highly dependent on the data sources used; particularly the accuracy, consistency, and spatial and temporal coverage of the land and climatic data input into the models. However, many regions of the globe lack observations at the temporal and spatial resolutions required by PECAD. This study incorporates NASA's soil moisture remote sensing product provided by the EOS Advanced Microwave Scanning Radiometer (AMSR-E) into the U.S. Department of Agriculture Crop Assessment and Data Retrieval (CADRE) decision support system. A quasi-global-scale operational data assimilation system has been designed and implemented to provide CADRE a daily product of integrated AMSR-E soil moisture observations with the PECAD two-layer soil moisture model forecasts. A methodology of the system design and a brief evaluation of the system performance over the Conterminous United States (CONUS) is presented.
Global evaluation of biofuel potential from microalgae
Moody, Jeffrey W.; McGinty, Christopher M.; Quinn, Jason C.
2014-01-01
In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m3·ha−1·y−1, corresponding to biomass yields of 13 to 15 g·m−2·d−1, are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions. PMID:24912176
Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission
NASA Technical Reports Server (NTRS)
Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.
2012-01-01
The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).
Spreading dynamics of an e-commerce preferential information model on scale-free networks
NASA Astrophysics Data System (ADS)
Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding
2017-02-01
In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.
USDA-ARS?s Scientific Manuscript database
We have developed and field-validated an annual inventory model for California landfill CH4 emissions that incorporates both site-specific soil properties and soil microclimate modeling coupled to 0.5o scale global climatic models. Based on 1-D diffusion, CALMIM (California Landfill Methane Inventor...
2007-03-01
provides a means for anyone who has access to an Internet connection to collect or disseminate information on a global scale at a very low cost. The......AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
ERIC Educational Resources Information Center
Hsieh, Feng-Jui; Law, Chiu-Keung; Shy, Haw-Yaw; Wang, Ting-Ying; Hsieh, Chia-Jui; Tang, Shu-Jyh
2011-01-01
The Teacher Education and Development Study in Mathematics, sponsored by the International Association for the Evaluation of Educational Achievement, is the first data-based study about mathematics teacher education with large-scale samples; this article is based on its data but develops a stand-alone conceptual framework to investigate the…
USDA-ARS?s Scientific Manuscript database
Real-time rainfall accumulation estimates at the global scale is useful for many applications. However, the real-time versions of satellite-based rainfall products are known to contain errors relative to real rainfall observed in situ. Recent studies have demonstrated how information about rainfall ...
Global soil-climate-biome diagram: linking soil properties to climate and biota
NASA Astrophysics Data System (ADS)
Zhao, X.; Yang, Y.; Fang, J.
2017-12-01
As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.
Recommendations for scale-up of community-based misoprostol distribution programs.
Robinson, Nuriya; Kapungu, Chisina; Carnahan, Leslie; Geller, Stacie
2014-06-01
Community-based distribution of misoprostol for prevention of postpartum hemorrhage (PPH) in resource-poor settings has been shown to be safe and effective. However, global recommendations for prenatal distribution and monitoring within a community setting are not yet available. In order to successfully translate misoprostol and PPH research into policy and practice, several critical points must be considered. A focus on engaging the community, emphasizing the safe nature of community-based misoprostol distribution, supply chain management, effective distribution, coverage, and monitoring plans are essential elements to community-based misoprostol program introduction, expansion, or scale-up. Copyright © 2014 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Vane, Deborah
1993-01-01
A discussion of the objectives of the Global Energy and Water Cycle Experiment (GEWEX) and the Continental-scale International Project (GCIP) is presented in vugraph form. The objectives of GEWEX are as follows: determine the hydrological cycle by global measurements; model the global hydrological cycle; improve observations and data assimilation; and predict response to environmental change. The objectives of GCIP are as follows: determine the time/space variability of the hydrological cycle over a continental-scale region; develop macro-scale hydrologic models that are coupled to atmospheric models; develop information retrieval schemes; and support regional climate change impact assessment.
Zumpano, Camila Eugênia; Mendonça, Tânia Maria da Silva; Silva, Carlos Henrique Martins da; Correia, Helena; Arnold, Benjamin; Pinto, Rogério de Melo Costa
2017-01-23
This study aimed to perform the cross-cultural adaptation and validation of the Patient-Reported Outcomes Measurement Information System (PROMIS) Global Health scale in the Portuguese language. The ten Global Health items were cross-culturally adapted by the method proposed in the Functional Assessment of Chronic Illness Therapy (FACIT). The instrument's final version in Portuguese was self-administered by 1,010 participants in Brazil. The scale's precision was verified by floor and ceiling effects analysis, reliability of internal consistency, and test-retest reliability. Exploratory and confirmatory factor analyses were used to assess the construct's validity and instrument's dimensionality. Calibration of the items used the Gradual Response Model proposed by Samejima. Four global items required adjustments after the pretest. Analysis of the psychometric properties showed that the Global Health scale has good reliability, with Cronbach's alpha of 0.83 and intra-class correlation of 0.89. Exploratory and confirmatory factor analyses showed good fit in the previously established two-dimensional model. The Global Physical Health and Global Mental Health scale showed good latent trait coverage according to the Gradual Response Model. The PROMIS Global Health items showed equivalence in Portuguese compared to the original version and satisfactory psychometric properties for application in clinical practice and research in the Brazilian population.
NASA Astrophysics Data System (ADS)
Zorita, E.
2009-12-01
One of the objectives when comparing simulations of past climates to proxy-based climate reconstructions is to asses the skill of climate models to simulate climate change. This comparison may accomplished at large spatial scales, for instance the evolution of simulated and reconstructed Northern Hemisphere annual temperature, or at regional or point scales. In both approaches a 'fair' comparison has to take into account different aspects that affect the inevitable uncertainties and biases in the simulations and in the reconstructions. These efforts face a trade-off: climate models are believed to be more skillful at large hemispheric scales, but climate reconstructions are these scales are burdened by the spatial distribution of available proxies and by methodological issues surrounding the statistical method used to translate the proxy information into large-spatial averages. Furthermore, the internal climatic noise at large hemispheric scales is low, so that the sampling uncertainty tends to be also low. On the other hand, the skill of climate models at regional scales is limited by the coarse spatial resolution, which hinders a faithful representation of aspects important for the regional climate. At small spatial scales, the reconstruction of past climate probably faces less methodological problems if information from different proxies is available. The internal climatic variability at regional scales is, however, high. In this contribution some examples of the different issues faced when comparing simulation and reconstructions at small spatial scales in the past millennium are discussed. These examples comprise reconstructions from dendrochronological data and from historical documentary data in Europe and climate simulations with global and regional models. These examples indicate that the centennial climate variations can offer a reasonable target to assess the skill of global climate models and of proxy-based reconstructions, even at small spatial scales. However, as the focus shifts towards higher frequency variability, decadal or multidecadal, the need for larger simulation ensembles becomes more evident. Nevertheless,the comparison at these time scales may expose some lines of research on the origin of multidecadal regional climate variability.
A globally complete map of supraglacial debris cover and a new toolkit for debris cover research
NASA Astrophysics Data System (ADS)
Herreid, Sam; Pellicciotti, Francesca
2017-04-01
A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.
Global Precipitation Analyses at Time Scales of Monthly to 3-Hourly
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)
2002-01-01
Global precipitation analysis covering the last few decades and the impact of the new TRMM precipitation observations are discussed. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to explore global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. Regional trends are also analyzed. A trend pattern that is a combination of both El Nino and La Nina precipitation features is evident in the Goodyear data set. This pattern is related to an increase with time in the number of combined months of El Nino and La Nina during the Goodyear period. Monthly anomalies of precipitation are related to ENRON variations with clear signals extending into middle and high latitudes of both hemispheres. The GPCP daily, 1 degree latitude-longitude analysis, which is available from January 1997 to the present is described and the evolution of precipitation patterns on this time scale related to El Nino and La Nina is described. Finally, a TRMM-based Based analysis is described that uses TRMM to calibrate polar-orbit microwave observations from SSM/I and geosynchronous OR observations and merges the various calibrated observations into a final, Baehr resolution map. This TRMM standard product will be available for the entire TRMM period (January Represent). A real-time version of this merged product is being produced and is available at 0.25 degree latitude-longitude resolution over the latitude range from 50 deg. N -50 deg. S. Examples will be shown, including its use in monitoring flood conditions.
NASA Technical Reports Server (NTRS)
Hong, Yang; Adler, Robert F.; Huffman, George J.; Pierce, Harold
2008-01-01
Advances in flood monitoring/forecasting have been constrained by the difficulty in estimating rainfall continuously over space (catchment-, national-, continental-, or even global-scale areas) and flood-relevant time scale. With the recent availability of satellite rainfall estimates at fine time and space resolution, this paper describes a prototype research framework for global flood monitoring by combining real-time satellite observations with a database of global terrestrial characteristics through a hydrologically relevant modeling scheme. Four major components included in the framework are (1) real-time precipitation input from NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA); (2) a central geospatial database to preprocess the land surface characteristics: water divides, slopes, soils, land use, flow directions, flow accumulation, drainage network etc.; (3) a modified distributed hydrological model to convert rainfall to runoff and route the flow through the stream network in order to predict the timing and severity of the flood wave, and (4) an open-access web interface to quickly disseminate flood alerts for potential decision-making. Retrospective simulations for 1998-2006 demonstrate that the Global Flood Monitor (GFM) system performs consistently at both station and catchment levels. The GFM website (experimental version) has been running at near real-time in an effort to offer a cost-effective solution to the ultimate challenge of building natural disaster early warning systems for the data-sparse regions of the world. The interactive GFM website shows close-up maps of the flood risks overlaid on topography/population or integrated with the Google-Earth visualization tool. One additional capability, which extends forecast lead-time by assimilating QPF into the GFM, also will be implemented in the future.
Acar, Oguz Ali; van den Ende, Jan
2015-01-01
Global prize-based science contests have great potential for tapping into diverse knowledge on a global scale and overcoming important scientific challenges. A necessary step for knowledge to be utilized in these contests is for that knowledge to be disclosed. Knowledge disclosure, however, is paradoxical in nature: in order for the value of knowledge to be assessed, inventors must disclose their knowledge, but then the person who receives that knowledge does so at no cost and may use it opportunistically. This risk of potential opportunistic behavior in turn makes the inventor fearful of disclosing knowledge, and this is a major psychological barrier to knowledge disclosure. In this project, we investigated this fear of opportunism in global prize-based science contests by surveying 630 contest participants in the InnoCentive online platform for science contests. We found that participants in these science contests experience fear of opportunism to varying degrees, and that women and older participants have significantly less fear of disclosing their scientific knowledge. Our findings highlight the importance of taking differences in such fears into account when designing global prize-based contests so that the potential of the contests for reaching solutions to important and challenging problems can be used more effectively. PMID:26230086
Acar, Oguz Ali; van den Ende, Jan
2015-01-01
Global prize-based science contests have great potential for tapping into diverse knowledge on a global scale and overcoming important scientific challenges. A necessary step for knowledge to be utilized in these contests is for that knowledge to be disclosed. Knowledge disclosure, however, is paradoxical in nature: in order for the value of knowledge to be assessed, inventors must disclose their knowledge, but then the person who receives that knowledge does so at no cost and may use it opportunistically. This risk of potential opportunistic behavior in turn makes the inventor fearful of disclosing knowledge, and this is a major psychological barrier to knowledge disclosure. In this project, we investigated this fear of opportunism in global prize-based science contests by surveying 630 contest participants in the InnoCentive online platform for science contests. We found that participants in these science contests experience fear of opportunism to varying degrees, and that women and older participants have significantly less fear of disclosing their scientific knowledge. Our findings highlight the importance of taking differences in such fears into account when designing global prize-based contests so that the potential of the contests for reaching solutions to important and challenging problems can be used more effectively.
A new world natural vegetation map for global change studies.
Lapola, David M; Oyama, Marcos D; Nobre, Carlos A; Sampaio, Gilvan
2008-06-01
We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).
Application of SIR-C SAR to Hydrology
NASA Technical Reports Server (NTRS)
Engman, Edwin T.; ONeill, Peggy; Wood, Eric; Pauwels, Valentine; Hsu, Ann; Jackson, Tom; Shi, J. C.; Prietzsch, Corinna
1996-01-01
The progress, results and future plans regarding the following objectives are presented: (1) Determine and compare soil moisture patterns within one or more humid watersheds using SAR data, ground-based measurements, and hydrologic modeling; (2) Use radar data to characterize the hydrologic regime within a catchment and to identify the runoff producing characteristics of humid zone watersheds; and (3) Use radar data as the basis for scaling up from small scale, near-point process models to larger scale water balance models necessary to define and quantify the land phase of GCM's (Global Circulation Models).
Shrimpton, Roger; du Plessis, Lisanne M; Delisle, Hélène; Blaney, Sonia; Atwood, Stephen J; Sanders, David; Margetts, Barrie; Hughes, Roger
2016-08-01
To describe why and how capacity-building systems for scaling up nutrition programmes should be constructed in low- and middle-income countries (LMIC). Position paper with task force recommendations based on literature review and joint experience of global nutrition programmes, public health nutrition (PHN) workforce size, organization, and pre-service and in-service training. The review is global but the recommendations are made for LMIC scaling up multisectoral nutrition programmes. The multitude of PHN workers, be they in the health, agriculture, education, social welfare, or water and sanitation sector, as well as the community workers who ensure outreach and coverage of nutrition-specific and -sensitive interventions. Overnutrition and undernutrition problems affect at least half of the global population, especially those in LMIC. Programme guidance exists for undernutrition and overnutrition, and priority for scaling up multisectoral programmes for tackling undernutrition in LMIC is growing. Guidance on how to organize and scale up such programmes is scarce however, and estimates of existing PHN workforce numbers - although poor - suggest they are also inadequate. Pre-service nutrition training for a PHN workforce is mostly clinical and/or food science oriented and in-service nutrition training is largely restricted to infant and young child nutrition. Unless increased priority and funding is given to building capacity for scaling up nutrition programmes in LMIC, maternal and child undernutrition rates are likely to remain high and nutrition-related non-communicable diseases to escalate. A hybrid distance learning model for PHN workforce managers' in-service training is urgently needed in LMIC.
NASA Astrophysics Data System (ADS)
Gabrielse, C.; Nishimura, T.; Lyons, L. R.; Gallardo-Lacourt, B.; Deng, Y.; McWilliams, K. A.; Ruohoniemi, J. M.
2017-12-01
NASA's Heliophysics Decadal Survey put forth several imperative, Key Science Goals. The second goal communicates the urgent need to "Determine the dynamics and coupling of Earth's magnetosphere, ionosphere, and atmosphere and their response to solar and terrestrial inputs...over a range of spatial and temporal scales." Sun-Earth connections (called Space Weather) have strong societal impacts because extreme events can disturb radio communications and satellite operations. The field's current modeling capabilities of such Space Weather phenomena include large-scale, global responses of the Earth's upper atmosphere to various inputs from the Sun, but the meso-scale ( 50-500 km) structures that are much more dynamic and powerful in the coupled system remain uncharacterized. Their influences are thus far poorly understood. We aim to quantify such structures, particularly auroral flows and streamers, in order to create an empirical model of their size, location, speed, and orientation based on activity level (AL index), season, solar cycle (F10.7), interplanetary magnetic field (IMF) inputs, etc. We present a statistical study of meso-scale flow channels in the nightside auroral oval and polar cap using SuperDARN. These results are used to inform global models such as the Global Ionosphere Thermosphere Model (GITM) in order to evaluate the role of meso-scale disturbances on the fully coupled magnetosphere-ionosphere-thermosphere system. Measuring the ionospheric footpoint of magnetospheric fast flows, our analysis technique from the ground also provides a 2D picture of flows and their characteristics during different activity levels that spacecraft alone cannot.
NASA Astrophysics Data System (ADS)
Ross, M. N.; Toohey, D.
2008-12-01
Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our understanding of the stratospheric impact of rocket emissions is significantly improved. (4) Such an improved understanding requires a concerted effort of research including new in situ measurements in a variety of rocket plumes and a multi-scale modeling program similar in scope to the effort required to address the climate and ozone impacts of aircraft emissions.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Yang, W.; Ichii, K.
2015-12-01
Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.
NASA Astrophysics Data System (ADS)
Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar
2017-02-01
Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.
Long-range persistence in the global mean surface temperature and the global warming "time bomb"
NASA Astrophysics Data System (ADS)
Rypdal, M.; Rypdal, K.
2012-04-01
Detrended Fluctuation Analysis (DFA) and Maximum Likelihood Estimations (MLE) based on instrumental data over the last 160 years indicate that there is Long-Range Persistence (LRP) in Global Mean Surface Temperature (GMST) on time scales of months to decades. The persistence is much higher in sea surface temperature than in land temperatures. Power spectral analysis of multi-model, multi-ensemble runs of global climate models indicate further that this persistence may extend to centennial and maybe even millennial time-scales. We also support these conclusions by wavelet variogram analysis, DFA, and MLE of Northern hemisphere mean surface temperature reconstructions over the last two millennia. These analyses indicate that the GMST is a strongly persistent noise with Hurst exponent H>0.9 on time scales from decades up to at least 500 years. We show that such LRP can be very important for long-term climate prediction and for the establishment of a "time bomb" in the climate system due to a growing energy imbalance caused by the slow relaxation to radiative equilibrium under rising anthropogenic forcing. We do this by the construction of a multi-parameter dynamic-stochastic model for the GMST response to deterministic and stochastic forcing, where LRP is represented by a power-law response function. Reconstructed data for total forcing and GMST over the last millennium are used with this model to estimate trend coefficients and Hurst exponent for the GMST on multi-century time scale by means of MLE. Ensembles of solutions generated from the stochastic model also allow us to estimate confidence intervals for these estimates.
Leaf optical properties shed light on foliar trait variability at individual to global scales
NASA Astrophysics Data System (ADS)
Shiklomanov, A. N.; Serbin, S.; Dietze, M.
2017-12-01
Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary among communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a rich and widely available source of information on plant traits. Here, we apply Bayesian inversion of the PROSPECT leaf radiative transfer model to a large global database of over 60,000 field spectra and plant traits to (1) comprehensively assess the accuracy of leaf trait estimation using PROSPECT spectral inversion; (2) investigate the correlations between optical traits estimable from PROSPECT and other important foliar traits such as nitrogen and lignin concentrations; and (3) identify dominant sources of variability and characterize trade-offs in optical and non-optical foliar traits. Our work provides a key methodological contribution by validating physically-based retrieval of plant traits from remote sensing observations, and provides insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.
NASA Astrophysics Data System (ADS)
Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.
2016-02-01
I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.
Satellite-Enhanced Dynamical Downscaling of Extreme Events
NASA Astrophysics Data System (ADS)
Nunes, A.
2015-12-01
Severe weather events can be the triggers of environmental disasters in regions particularly susceptible to changes in hydrometeorological conditions. In that regard, the reconstruction of past extreme weather events can help in the assessment of vulnerability and risk mitigation actions. Using novel modeling approaches, dynamical downscaling of long-term integrations from global circulation models can be useful for risk analysis, providing more accurate climate information at regional scales. Originally developed at the National Centers for Environmental Prediction (NCEP), the Regional Spectral Model (RSM) is being used in the dynamical downscaling of global reanalysis, within the South American Hydroclimate Reconstruction Project. Here, RSM combines scale-selective bias correction with assimilation of satellite-based precipitation estimates to downscale extreme weather occurrences. Scale-selective bias correction is a method employed in the downscaling, similar to the spectral nudging technique, in which the downscaled solution develops in agreement with its coarse boundaries. Precipitation assimilation acts on modeled deep-convection, drives the land-surface variables, and therefore the hydrological cycle. During the downscaling of extreme events that took place in Brazil in recent years, RSM continuously assimilated NCEP Climate Prediction Center morphing technique precipitation rates. As a result, RSM performed better than its global (reanalysis) forcing, showing more consistent hydrometeorological fields compared with more sophisticated global reanalyses. Ultimately, RSM analyses might provide better-quality initial conditions for high-resolution numerical predictions in metropolitan areas, leading to more reliable short-term forecasting of severe local storms.
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.
1997-01-01
Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al. 1994), there is no comparable study for cirrus ice crystals. In this paper a near-global survey of cirrus ice crystal sizes is conducted using ISCCP satellite data analysis. The retrieval scheme uses phase functions based upon hexagonal crystals calculated by a ray tracing technique. The results show that global mean values of D(e) are about 60 micro-m. This study also investigates the possible reasons for the significant difference between satellite retrieved effective radii (approx. 60 micro-m) and aircraft measured particle sizes (approx. 200 micro-m) during the FIRE I IFO experiment. They are (1) vertical inhomogeneity of cirrus particle sizes; (2) lower limit of the instrument used in aircraft measurements; (3) different definitions of effective particle sizes; and (4) possible inappropriate phase functions used in satellite retrieval.
Effects of Telecoupling on Global Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Viña, A.; Liu, J.
2016-12-01
With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
Wen, Haiguang; Liu, Zhongming
2016-06-01
Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed with resting-state fMRI, respectively. Copyright © 2016 the authors 0270-6474/16/366030-11$15.00/0.
LaRiccia, Patrick J; Farrar, John T; Sammel, Mary D; Gallo, Joseph J
2008-07-01
To determine the efficacy of the food supplement OPC Factor to increase energy levels in healthy adults aged 45 to 65. Randomized, placebo-controlled, triple-blind crossover study. Twenty-five (25) healthy adults recruited from the University of Pennsylvania Health System. OPC Factor,trade mark (AlivenLabs, Lebanon, TN) a food supplement that contains oligomeric proanthocyanidins from grape seeds and pine bark along with other nutrient supplements including vitamins and minerals, was in the form of an effervescent powder. The placebo was similar in appearance and taste. Five outcome measurements were performed: (1) Energy subscale scores of the Activation-Deactivation Adjective Check List (AD ACL); (2) One (1) global question of percent energy change (Global Energy Percent Change); (3) One (1) global question of energy change measured on a Likert scale (Global Energy Scale Change); 4. One (1) global question of percent overall status change (Global Overall Status Percent Change); and (5) One (1) global question of overall status change measured on a Likert scale (Global Overall Status Scale Change). There were no carryover/period effects in the groups randomized to Placebo/Active Product sequence versus Active Product/Placebo sequence. Examination of the AD ACL Energy subscale scores for the Active Product versus Placebo comparison revealed no significant difference in the intention-to-treat (IT) analysis and the treatment received (TR) analysis. However, Global Energy Percent Change (p = 0.06) and Global Energy Scale Change (p = 0.09) both closely approached conventional levels of statistical significance for the active product in the IT analysis. Global Energy Percent Change (p = 0.05) and Global Energy Scale Change (p = 0.04) reached statistical significance in the TR analysis. A cumulative percent responders analysis graph indicated greater response rates for the active product. OPC Factor may increase energy levels in healthy adults aged 45-65 years. A larger study is recommended. Clinical Trials.gov identifier: NCT03318019.
Climatic controls on the global distribution, abundance, and species richness of mangrove forests
Osland, Michael J.; Feher, Laura C.; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee
2017-01-01
Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and diversity of mangrove forests. In general, warmer winter temperatures are expected to allow mangroves to expand poleward at the expense of salt marshes. However, dispersal and habitat availability constraints may hinder expansion near certain range limits. Along arid and semi-arid coasts, decreases or increases in rainfall are expected to lead to mangrove contraction or expansion, respectively. Collectively, our analyses quantify climate-mangrove linkages and improve our understanding of the expected global- and regional-scale effects of climate change upon mangrove forests.
Research frontiers for improving our understanding of drought‐induced tree and forest mortality
Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael
2018-01-01
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015
NASA Astrophysics Data System (ADS)
Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.
2018-02-01
The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.
NASA Astrophysics Data System (ADS)
Urrutia-Cordero, Pablo; Ekvall, Mattias K.; Hansson, Lars-Anders
2016-07-01
A major challenge for ecological research is to identify ways to improve resilience to climate-induced changes in order to secure the ecosystem functions of natural systems, as well as ecosystem services for human welfare. With respect to aquatic ecosystems, interactions between climate warming and the elevated runoff of humic substances (brownification) may strongly affect ecosystem functions and services. However, we hitherto lack the adaptive management tools needed to counteract such global-scale effects on freshwater ecosystems. Here we show, both experimentally and using monitoring data, that predicted climatic warming and brownification will reduce freshwater quality by exacerbating cyanobacterial growth and toxin levels. Furthermore, in a model based on long-term data from a natural system, we demonstrate that food web management has the potential to increase the resilience of freshwater systems against the growth of harmful cyanobacteria, and thereby that local efforts offer an opportunity to secure our water resources against some of the negative impacts of climate warming and brownification. This allows for novel policy action at a local scale to counteract effects of global-scale environmental change, thereby providing a buffer period and a safer operating space until climate mitigation strategies are effectively established.
Støre-Valen, Jakob; Ryum, Truls; Pedersen, Geir A F; Pripp, Are H; Jose, Paul E; Karterud, Sigmund
2015-09-01
The Global Assessment of Functioning (GAF) Scale is used in routine clinical practice and research to estimate symptom and functional severity and longitudinal change. Concerns about poor interrater reliability have been raised, and the present study evaluated the effect of a Web-based GAF training program designed to improve interrater reliability in routine clinical practice. Clinicians rated up to 20 vignettes online, and received deviation scores as immediate feedback (i.e., own scores compared with expert raters) after each rating. Growth curves of absolute SD scores across the vignettes were modeled. A linear mixed effects model, using the clinician's deviation scores from expert raters as the dependent variable, indicated an improvement in reliability during training. Moderation by content of scale (symptoms; functioning), scale range (average; extreme), previous experience with GAF rating, profession, and postgraduate training were assessed. Training reduced deviation scores for inexperienced GAF raters, for individuals in clinical professions other than nursing and medicine, and for individuals with no postgraduate specialization. In addition, training was most beneficial for cases with average severity of symptoms compared with cases with extreme severity. The results support the use of Web-based training with feedback routines as a means to improve the reliability of GAF ratings performed by clinicians in mental health practice. These results especially pertain to clinicians in mental health practice who do not have a masters or doctoral degree. (c) 2015 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
José Polo, María; José Pérez-Palazón, María; Saénz de Rodrigáñez, Marta; Pimentel, Rafael; Arheimer, Berit
2017-04-01
Global hydrological models provide scientists and technicians with distributed data over medium to large areas from which assessment of water resource planning and use can be easily performed. However, scale conflicts between global models' spatial resolution and the local significant spatial scales in heterogeneous areas usually pose a constraint for the direct use and application of these models' results. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform developed under the Copernicus Climate Change Service (C3S) offers a wide range of both climate and hydrological indicators obtained on a global scale with different time and spatial resolutions. Among the different study cases supporting the SWICCA demonstration of local impact assessment, the Sierra Nevada study case (South Spain) is a representative example of mountainous coastal catchments in the Mediterranean region. This work shows the lessons learnt during the study case development to derive local impact indicator tailored to suit the local end-users of water resource in this snow-dominated area. Different approaches were followed to select the most accurate method to downscale the global data and variables to the local level in a highly abrupt topography, in a sequential step approach. 1) SWICCA global climate variable downscaling followed by river flow simulation from a local hydrological model in selected control points in the catchment, together with 2) SWICCA global river flow values downscaling to the control points followed by corrections with local transfer functions were both tested against the available local river flow series of observations during the reference period. This test was performed for the different models and the available spatial resolutions included in the SWICCA platform. From the results, the second option, that is, the use of SWICCA river flow variables, performed the best approximations, once the local transfer functions were applied to the global values and an additional correction was performed based on the relative anomalies obtained instead of the absolute values. This approach was used to derive the future projections of selected local indicators for each end-user in the area under different climate change scenarios. Despite the spatial scale conflicts, the SWICCA river flow indicators (simulated by the E-HYPEv3.1.2 model) succeeded in approximating the observations during the reference period 1970-2000 when provided on a catchment scale, once local transfer functions and further anomaly correction were performed. Satisfactory results were obtained on a monthly scale for river flow in the main stream of the watershed, and on a daily scale for the headwater streams. The accessibility to the hydrological model WiMMed, which includes a snow module, locally validated in the study area has been crucial to downscale the SWICCA results and prove their usefulness.
NASA Astrophysics Data System (ADS)
Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.
2015-12-01
While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.
A dual change model of life satisfaction and functioning for individuals with schizophrenia
Edmondson, Melissa; Pahwa, Rohini; Lee, Karen Kyeunghae; Hoe, Maanse; Brekke, John S.
2013-01-01
Despite the notion that increases in functioning should be associated with increases in life satisfaction in schizophrenia, research has often found no association between the two. Dual change models of global and domain-specific life satisfaction and functioning were examined in 145 individuals with schizophrenia receiving community-based services over 12 months. Functioning and satisfaction were measured using the Role Functioning Scale and Satisfaction with Life Scale. Data were analyzed using latent growth curve modeling. Improvement in global life satisfaction was associated with improvement in overall functioning over time. Satisfaction with living situation also improved as independent functioning improved. Work satisfaction did not improve as work functioning improved. Although social functioning improved, satisfaction with social relationships did not. The link between overall functioning and global life satisfaction provides support for a recovery-based orientation to community based psychosocial rehabilitation services. When examining sub-domains, the link between outcomes and subjective experience suggests a more complex picture than previously found. These findings are crucial to interventions and programs aimed at improving functioning and the subjective experiences of consumers recovering from mental illness. Interventions that show improvements in functional outcomes can assume that they will show concurrent improvements in global life satisfaction as well and in satisfaction with independent living. Interventions geared toward improving social functioning will need to consider the complexity of social relationships and how they affect satisfaction associated with personal relationships. Interventions geared towards improving work functioning will need to consider how the quality and level of work affect satisfaction with employment. PMID:22591780
Large-Scale Weather Disturbances in Mars’ Southern Extratropics
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.; Kahre, Melinda A.
2015-11-01
Between late autumn and early spring, Mars’ middle and high latitudes within its atmosphere support strong mean thermal gradients between the tropics and poles. Observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that this strong baroclinicity supports intense, large-scale eastward traveling weather systems (i.e., transient synoptic-period waves). These extratropical weather disturbances are key components of the global circulation. Such wave-like disturbances act as agents in the transport of heat and momentum, and generalized scalar/tracer quantities (e.g., atmospheric dust, water-vapor and ice clouds). The character of large-scale, traveling extratropical synoptic-period disturbances in Mars' southern hemisphere during late winter through early spring is investigated using a moderately high-resolution Mars global climate model (Mars GCM). This Mars GCM imposes interactively lifted and radiatively active dust based on a threshold value of the surface stress. The model exhibits a reasonable "dust cycle" (i.e., globally averaged, a dustier atmosphere during southern spring and summer occurs). Compared to their northern-hemisphere counterparts, southern synoptic-period weather disturbances and accompanying frontal waves have smaller meridional and zonal scales, and are far less intense. Influences of the zonally asymmetric (i.e., east-west varying) topography on southern large-scale weather are examined. Simulations that adapt Mars’ full topography compared to simulations that utilize synthetic topographies emulating key large-scale features of the southern middle latitudes indicate that Mars’ transient barotropic/baroclinic eddies are highly influenced by the great impact basins of this hemisphere (e.g., Argyre and Hellas). The occurrence of a southern storm zone in late winter and early spring appears to be anchored to the western hemisphere via orographic influences from the Tharsis highlands, and the Argyre and Hellas impact basins. Geographically localized transient-wave activity diagnostics are constructed that illuminate dynamical differences amongst the simulations and these are presented.
A Classification of Mediterranean Cyclones Based on Global Analyses
NASA Technical Reports Server (NTRS)
Reale, Oreste; Atlas, Robert
2003-01-01
The Mediterranean Sea region is dominated by baroclinic and orographic cyclogenesis. However, previous work has demonstrated the existence of rare but intense subsynoptic-scale cyclones displaying remarkable similarities to tropical cyclones and polar lows, including, but not limited to, an eye-like feature in the satellite imagery. The terms polar low and tropical cyclone have been often used interchangeably when referring to small-scale, convective Mediterranean vortices and no definitive statement has been made so far on their nature, be it sub-tropical or polar. Moreover, most of the classifications of Mediterranean cyclones have neglected the small-scale convective vortices, focusing only on the larger-scale and far more common baroclinic cyclones. A classification of all Mediterranean cyclones based on operational global analyses is proposed The classification is based on normalized horizontal shear, vertical shear, scale, low versus mid-level vorticity, low-level temperature gradients, and sea surface temperatures. In the classification system there is a continuum of possible events, according to the increasing role of barotropic instability and decreasing role of baroclinic instability. One of the main results is that the Mediterranean tropical cyclone-like vortices and the Mediterranean polar lows appear to be different types of events, in spite of the apparent similarity of their satellite imagery. A consistent terminology is adopted, stating that tropical cyclone- like vortices are the less baroclinic of all, followed by polar lows, cold small-scale cyclones and finally baroclinic lee cyclones. This classification is based on all the cyclones which occurred in a four-year period (between 1996 and 1999). Four cyclones, selected among all the ones which developed during this time-frame, are analyzed. Particularly, the classification allows to discriminate between two cyclones (occurred in October 1996 and in March 1999) which both display a very well-defined eye-like feature in the satellite imagery. According to our classification system, the two events are dynamically different and can be categorized as being respectively a tropical cyclone-like vortex and well-developed polar low.
Water Balance in the Amazon Basin from a Land Surface Model Ensemble
NASA Technical Reports Server (NTRS)
Getirana, Augusto C. V.; Dutra, Emanuel; Guimberteau, Matthieu; Kam, Jonghun; Li, Hong-Yi; Decharme, Bertrand; Zhang, Zhengqiu; Ducharne, Agnes; Boone, Aaron; Balsamo, Gianpaolo;
2014-01-01
Despite recent advances in land surfacemodeling and remote sensing, estimates of the global water budget are still fairly uncertain. This study aims to evaluate the water budget of the Amazon basin based on several state-ofthe- art land surface model (LSM) outputs. Water budget variables (terrestrial water storage TWS, evapotranspiration ET, surface runoff R, and base flow B) are evaluated at the basin scale using both remote sensing and in situ data. Meteorological forcings at a 3-hourly time step and 18 spatial resolution were used to run 14 LSMs. Precipitation datasets that have been rescaled to matchmonthly Global Precipitation Climatology Project (GPCP) andGlobal Precipitation Climatology Centre (GPCC) datasets and the daily Hydrologie du Bassin de l'Amazone (HYBAM) dataset were used to perform three experiments. The Hydrological Modeling and Analysis Platform (HyMAP) river routing scheme was forced with R and B and simulated discharges are compared against observations at 165 gauges. Simulated ET and TWS are compared against FLUXNET and MOD16A2 evapotranspiration datasets andGravity Recovery and ClimateExperiment (GRACE)TWSestimates in two subcatchments of main tributaries (Madeira and Negro Rivers).At the basin scale, simulated ET ranges from 2.39 to 3.26 mm day(exp -1) and a low spatial correlation between ET and precipitation indicates that evapotranspiration does not depend on water availability over most of the basin. Results also show that other simulated water budget components vary significantly as a function of both the LSM and precipitation dataset, but simulated TWS generally agrees with GRACE estimates at the basin scale. The best water budget simulations resulted from experiments using HYBAM, mostly explained by a denser rainfall gauge network and the rescaling at a finer temporal scale.
Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard
2018-01-01
Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions. PMID:29579129
Leaf optical properties shed light on foliar trait variability at individual to global scales
NASA Astrophysics Data System (ADS)
Shiklomanov, A. N.; Serbin, S.; Dietze, M.
2016-12-01
Recent syntheses of large trait databases have contributed immensely to our understanding of drivers of plant function at the global scale. However, the global trade-offs revealed by such syntheses, such as the trade-off between leaf productivity and resilience (i.e. "leaf economics spectrum"), are often absent at smaller scales and fail to correlate with actual functional limitations. An improved understanding of how traits vary within communities, species, and individuals is critical to accurate representations of vegetation ecophysiology and ecological dynamics in ecosystem models. Spectral data from both field observations and remote sensing platforms present a potentially rich and widely available source of information on plant traits. In particular, the inversion of physically-based radiative transfer models (RTMs) is an effective and general method for estimating plant traits from spectral measurements. Here, we apply Bayesian inversion of the PROSPECT leaf RTM to a large database of field spectra and plant traits spanning tropical, temperate, and boreal forests, agricultural plots, arid shrublands, and tundra to identify dominant sources of variability and characterize trade-offs in plant functional traits. By leveraging such a large and diverse dataset, we re-calibrate the empirical absorption coefficients underlying the PROSPECT model and expand its scope to include additional leaf biochemical components, namely leaf nitrogen content. Our work provides a key methodological contribution as a physically-based retrieval of leaf nitrogen from remote sensing observations, and provides substantial insights about trait trade-offs related to plant acclimation, adaptation, and community assembly.
GPS-based household interview survey for the Cincinnati, Ohio Region.
DOT National Transportation Integrated Search
2012-02-01
Methods for Conducting a Large-Scale GPS-Only Survey of Households: Past Household Travel Surveys (HTS) in the United States have only piloted small subsamples of Global Positioning Systems (GPS) completes compared with 1-2 day self-reported travel i...
Nunez, Paul L.; Srinivasan, Ramesh
2013-01-01
The brain is treated as a nested hierarchical complex system with substantial interactions across spatial scales. Local networks are pictured as embedded within global fields of synaptic action and action potentials. Global fields may act top-down on multiple networks, acting to bind remote networks. Because of scale-dependent properties, experimental electrophysiology requires both local and global models that match observational scales. Multiple local alpha rhythms are embedded in a global alpha rhythm. Global models are outlined in which cm-scale dynamic behaviors result largely from propagation delays in cortico-cortical axons and cortical background excitation level, controlled by neuromodulators on long time scales. The idealized global models ignore the bottom-up influences of local networks on global fields so as to employ relatively simple mathematics. The resulting models are transparently related to several EEG and steady state visually evoked potentials correlated with cognitive states, including estimates of neocortical coherence structure, traveling waves, and standing waves. The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) modes lower than about 20 Hz may easily occur in neocortical/white matter systems provided: Background cortical excitability is sufficiently high; the strength of long cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local networks on the global dynamic field is sufficiently weak. The global models provide "entry points" to more detailed studies of global top-down influences, including binding of weakly connected networks, modulation of gamma oscillations by theta or alpha rhythms, and the effects of white matter deficits. PMID:24505628
Kano, Yukiko; Kono, Toshiaki; Matsuda, Natsumi; Nonaka, Maiko; Kuwabara, Hitoshi; Shimada, Takafumi; Shishikura, Kurie; Konno, Chizue; Ohta, Masataka
2015-03-30
This study investigated the relationships between tics, obsessive-compulsive symptoms (OCS), and impulsivity, and their effects on global functioning in Japanese patients with Tourette syndrome (TS), using the dimensional approach for OCS. Fifty-three TS patients were assessed using the Yale Global Tic Severity Scale, the Dimensional Yale-Brown Obsessive-Compulsive Scale, the Impulsivity Rating Scale, and the Global Assessment of Functioning Scale. Although tic severity scores were significantly and positively correlated with OCS severity scores, impulsivity severity scores were not significantly correlated with either. The global functioning score was significantly and negatively correlated with tic and OCS severity scores. Of the 6 dimensional OCS scores, only aggression scores had a significant negative correlation with global functioning scores. A stepwise multiple regression analysis showed that only OCS severity scores were significantly associated with global functioning scores. Despite a moderate correlation between tic severity and OCS severity, the impact of OCS on global functioning was greater than that of tics. Of the OCS dimensions, only aggression had a significant impact on global functioning. Our findings suggest that it is important to examine OCS using a dimensional approach when analyzing global functioning in TS patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
A proposal to extend our understanding of the global economy
NASA Technical Reports Server (NTRS)
Hough, Robbin R.; Ehlers, Manfred
1991-01-01
Satellites acquire information on a global and repetitive basis. They are thus ideal tools for use when global scale and analysis over time is required. Data from satellites comes in digital form which means that it is ideally suited for incorporation in digital data bases and that it can be evaluated using automated techniques. The development of a global multi-source data set which integrates digital information is proposed regarding some 15,000 major industrial sites worldwide with remotely sensed images of the sites. The resulting data set would provide the basis for a wide variety of studies of the global economy. The preliminary results give promise of a new class of global policy model which is far more detailed and helpful to local policy makers than its predecessors. The central thesis of this proposal is that major industrial sites can be identified and their utilization can be tracked with the aid of satellite images.
A Global Landslide Nowcasting System using Remotely Sensed Information
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Stanely, Thomas
2017-04-01
A global Landslide Hazard Assessment model for Situational Awareness (LHASA) has been developed that combines susceptibility information with satellite-based precipitation to provide an indication of potential landslide activity at the global scale every 30 minutes. This model utilizes a 1-km global susceptibility map derived from information on slope, geology, road networks, fault zones, and forest loss. A multi-satellite dataset from the Global Precipitation Measurement (GPM) mission is used to identify the current and antecedent rainfall conditions from the past 7 days. When both rainfall and susceptibility are high, a "nowcast" is issued to indicate areas where a landslide may be likely. The global LHASA model is currently being run in near real-time every 30 minutes and the outputs are available in several different formats at https://pmm.nasa.gov/precip-apps. This talk outlines the LHASA system, discusses the performance metrics and potential applications of the LHASA system.
Global epidemiology, ecology and control of soil-transmitted helminth infections
Brooker, Simon; Clements, Archie CA; Bundy, Don AP
2007-01-01
Soil-transmitted helminth (STH) infections are among the most prevalent of chronic human infections worldwide. Based on the demonstrable impact on child development, there is a global commitment to finance and implement control strategies with a focus on school-based chemotherapy programmes. The major obstacle to the implementation of cost-effective control is the lack of accurate descriptions of the geographical distribution of infection. In recent years considerable progress has been made in the use of geographical information systems (GIS) and remote sensing (RS) to better understand helminth ecology and epidemiology, and to develop low cost ways to identify target populations for treatment. This chapter explores how this information has been used practically to guide large-scale control programmes. The use of satellite-derived environmental data has yielded new insights into the ecology of infection at a geographical scale that has proven impossible to address using more traditional approaches, and has in turn allowed spatial distributions of infection prevalence to be predicted robustly by statistical approaches. GIS/RS have increasingly been used in the context of large-scale helminth control programmes, including not only STH infections but also those focusing on schistosomiasis, filariasis and onchocerciasis. The experience indicates that GIS/RS provides a cost-effective approach to designing and monitoring programs at realistic scale. Importantly, the use of this approach has begun to transition from being a specialist approach of international vertical programs to become a routine tool in developing public sector control programs. GIS/RS is used here to describe the global distribution of STH infections and to estimate the number of infections in school age children in sub-Saharan Africa (89.9 million) and the annual cost of providing a single anthelmintic treatment using a school-based approach (US$5.0-7.6 million). These are the first estimates at a continental scale to explicitly include the fine spatial distribution of infection prevalence and population, and suggest that traditional methods have overestimated the situation. The results suggest that continent-wide control of parasites is, from a financial perspective, an attainable goal. PMID:16647972
Scaling future tropical cyclone damage with global mean temperature
NASA Astrophysics Data System (ADS)
Geiger, T.; Bresch, D.; Frieler, K.
2017-12-01
Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.
Global Perspectives On Pediatric Cardiac Critical Care.
Penny, Daniel J
2016-08-01
The objectives of this review are to discuss the global epidemiology of cardiovascular disease, emphasizing congenital heart disease; to discuss the concept of epidemiologic transition and its role in studying the evolving epidemiology of disease; and to assess and address the global burden of congenital heart disease including its prevention and treatment. MEDLINE and PubMed. Despite impressive reductions in mortality from congenital and acquired cardiovascular disease in high-income countries, these reductions have not been observed on a global scale. It will be necessary to continue our attempts to extend rational programs of care to middle- and low-income countries based on community empowerment, economics, and population health. The specialist in pediatric cardiac critical care can be a central driver of these programs.
NASA Astrophysics Data System (ADS)
Turkeltaub, T.; Ascott, M.; Gooddy, D.; Jia, X.; Shao, M.; Binley, A. M.
2017-12-01
Understanding deep percolation, travel time processes and nitrate storage in the unsaturated zone at a regional scale is crucial for sustainable management of many groundwater systems. Recently, global hydrological models have been developed to quantify the water balance at such scales and beyond. However, the coarse spatial resolution of the global hydrological models can be a limiting factor when analysing regional processes. This study compares simulations of water flow and nitrate storage based on regional and global scale approaches. The first approach was applied over the Loess Plateau of China (LPC) to investigate the water fluxes and nitrate storage and travel time to the LPC groundwater system. Using raster maps of climate variables, land use data and soil parameters enabled us to determine fluxes by employing Richards' equation and the advection - dispersion equation. These calculations were conducted for each cell on the raster map in a multiple 1-D column approach. In the second approach, vadose zone travel times and nitrate storage were estimated by coupling groundwater recharge (PCR-GLOBWB) and nitrate leaching (IMAGE) models with estimates of water table depth and unsaturated zone porosity. The simulation results of the two methods indicate similar spatial groundwater recharge, nitrate storage and travel time distribution. Intensive recharge rates are located mainly at the south central and south west parts of the aquifer's outcrops. Particularly low recharge rates were simulated in the top central area of the outcrops. However, there are significant discrepancies between the simulated absolute recharge values, which might be related to the coarse scale that is used in the PCR-GLOBWB model, leading to smoothing of the recharge estimations. Both models indicated large nitrate inventories in the south central and south west parts of the aquifer's outcrops and the shortest travel times in the vadose zone are in the south central and east parts of the outcrops. Our results suggest that, for the LPC at least, global scale models might be useful for highlighting the locations with higher recharge rates potential and nitrate contamination risk. Global modelling simulations appear ideal as a primary step in recognizing locations which require investigations at the plot, field and local scales.
Wang, Tianxing; Shi, Jiancheng; Jing, Yingying; Zhao, Tianjie; Ji, Dabin; Xiong, Chuan
2014-01-01
Global warming induced by atmospheric CO2 has attracted increasing attention of researchers all over the world. Although space-based technology provides the ability to map atmospheric CO2 globally, the number of valid CO2 measurements is generally limited for certain instruments owing to the presence of clouds, which in turn constrain the studies of global CO2 sources and sinks. Thus, it is a potentially promising work to combine the currently available CO2 measurements. In this study, a strategy for fusing SCIAMACHY and GOSAT CO2 measurements is proposed by fully considering the CO2 global bias, averaging kernel, and spatiotemporal variations as well as the CO2 retrieval errors. Based on this method, a global CO2 map with certain UTC time can also be generated by employing the pattern of the CO2 daily cycle reflected by Carbon Tracker (CT) data. The results reveal that relative to GOSAT, the global spatial coverage of the combined CO2 map increased by 41.3% and 47.7% on a daily and monthly scale, respectively, and even higher when compared with that relative to SCIAMACHY. The findings in this paper prove the effectiveness of the combination method in supporting the generation of global full-coverage XCO2 maps with higher temporal and spatial sampling by jointly using these two space-based XCO2 datasets. PMID:25119468
A unifying framework for systems modeling, control systems design, and system operation
NASA Technical Reports Server (NTRS)
Dvorak, Daniel L.; Indictor, Mark B.; Ingham, Michel D.; Rasmussen, Robert D.; Stringfellow, Margaret V.
2005-01-01
Current engineering practice in the analysis and design of large-scale multi-disciplinary control systems is typified by some form of decomposition- whether functional or physical or discipline-based-that enables multiple teams to work in parallel and in relative isolation. Too often, the resulting system after integration is an awkward marriage of different control and data mechanisms with poor end-to-end accountability. System of systems engineering, which faces this problem on a large scale, cries out for a unifying framework to guide analysis, design, and operation. This paper describes such a framework based on a state-, model-, and goal-based architecture for semi-autonomous control systems that guides analysis and modeling, shapes control system software design, and directly specifies operational intent. This paper illustrates the key concepts in the context of a large-scale, concurrent, globally distributed system of systems: NASA's proposed Array-based Deep Space Network.
East African wetland-catchment data base for sustainable wetland management
NASA Astrophysics Data System (ADS)
Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian
2016-10-01
Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.
A review of global progress toward the Millennium Development Goal 1 Hunger Target.
Fanzo, Jessica C; Pronyk, Paul M
2011-06-01
The hunger component of the first Millennium Development Goal (MDG) aims to reduce the proportion of people who suffer from hunger by half between 1990 and 2015. In low- and middle-income countries, progress has been mixed, with approximately 925 million people hungry and 125 million and 195 million children underweight and stunted, respectively. To assess global progress on the hunger component of MDG1 and evaluate the success of interventions and country programs in reducing undernutrition. We review global progress on the hunger component of MDG1, examining experience from 40 community-based programs as well as national efforts to move interventions to scale drawn from the published and gray literature, alongside personal interviews with representatives of governments and development agencies. Based on this review, most strategies being implemented and scaled are focusing on treatment of malnutrition and rooted within the health sector. While critical, these programs generally address disease-related effects and emphasize the immediate determinants of undernutrition. Other major strategies to tackle undernutrition rely on the production of staple grains within the agriculture sector. These programs address hunger, as opposed to improving the quality of diets within communities. Strategies that adopt multisectoral programming as crucial to address longer-term determinants of undernutrition, such as poverty, gender equality, and functioning food and health systems, remain underdeveloped and under-researched. This review suggests that accelerating progress toward the MDG1 targets is less about the development of novel innovations and new technologies and more about putting what is already known into practice. Success will hinge on linking clear policies with effective delivery systems in working towards an evidence-based and contextually relevant multisectoral package of interventions that can rapidly be taken to scale.
Gradient descent for robust kernel-based regression
NASA Astrophysics Data System (ADS)
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Vaaler, Arne E; Iversen, Valentina C; Morken, Gunnar; Fløvig, John C; Palmstierna, Tom; Linaker, Olav M
2011-03-18
The aims of the present study were to investigate clinically relevant patient and environment-related predictive factors for threats and violent incidents the first three days in a PICU population based on evaluations done at admittance. In 2000 and 2001 all 118 consecutive patients were assessed at admittance to a Psychiatric Intensive Care Unit (PICU). Patient-related conditions as actuarial data from present admission, global clinical evaluations by physician at admittance and clinical nurses first day, a single rating with an observer rated scale scoring behaviours that predict short-term violence in psychiatric inpatients (The Brøset Violence Checklist (BVC)) at admittance, and environment-related conditions as use of segregation or not were related to the outcome measure Staff Observation Aggression Scale-Revised (SOAS-R). A multiple logistic regression analysis with SOAS-R as outcome variable was performed. The global clinical evaluations and the BVC were effective and more suitable than actuarial data in predicting short-term aggression. The use of segregation reduced the number of SOAS-R incidents. In a naturalistic group of patients in a PICU segregation of patients lowers the number of aggressive and threatening incidents. Prediction should be based on clinical global judgment, and instruments designed to predict short-term aggression in psychiatric inpatients. NCT00184119/NCT00184132.
2011-01-01
Background The aims of the present study were to investigate clinically relevant patient and environment-related predictive factors for threats and violent incidents the first three days in a PICU population based on evaluations done at admittance. Methods In 2000 and 2001 all 118 consecutive patients were assessed at admittance to a Psychiatric Intensive Care Unit (PICU). Patient-related conditions as actuarial data from present admission, global clinical evaluations by physician at admittance and clinical nurses first day, a single rating with an observer rated scale scoring behaviours that predict short-term violence in psychiatric inpatients (The Brøset Violence Checklist (BVC)) at admittance, and environment-related conditions as use of segregation or not were related to the outcome measure Staff Observation Aggression Scale-Revised (SOAS-R). A multiple logistic regression analysis with SOAS-R as outcome variable was performed. Results The global clinical evaluations and the BVC were effective and more suitable than actuarial data in predicting short-term aggression. The use of segregation reduced the number of SOAS-R incidents. Conclusions In a naturalistic group of patients in a PICU segregation of patients lowers the number of aggressive and threatening incidents. Prediction should be based on clinical global judgment, and instruments designed to predict short-term aggression in psychiatric inpatients. Trial registrations NCT00184119/NCT00184132 PMID:21418581
Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness
NASA Astrophysics Data System (ADS)
Kirschbaum, Dalia; Stanley, Thomas
2018-03-01
Determining the time, location, and severity of natural disaster impacts is fundamental to formulating mitigation strategies, appropriate and timely responses, and robust recovery plans. A Landslide Hazard Assessment for Situational Awareness (LHASA) model was developed to indicate potential landslide activity in near real-time. LHASA combines satellite-based precipitation estimates with a landslide susceptibility map derived from information on slope, geology, road networks, fault zones, and forest loss. Precipitation data from the Global Precipitation Measurement (GPM) mission are used to identify rainfall conditions from the past 7 days. When rainfall is considered to be extreme and susceptibility values are moderate to very high, a "nowcast" is issued to indicate the times and places where landslides are more probable. When LHASA nowcasts were evaluated with a Global Landslide Catalog, the probability of detection (POD) ranged from 8% to 60%, depending on the evaluation period, precipitation product used, and the size of the spatial and temporal window considered around each landslide point. Applications of the LHASA system are also discussed, including how LHASA is used to estimate long-term trends in potential landslide activity at a nearly global scale and how it can be used as a tool to support disaster risk assessment. LHASA is intended to provide situational awareness of landslide hazards in near real-time, providing a flexible, open-source framework that can be adapted to other spatial and temporal scales based on data availability.
NOAA Coral Reef Watch: Decision Support Tools for Coral Reef Managers
NASA Astrophysics Data System (ADS)
Rauenzahn, J.; Eakin, C.; Skirving, W. J.; Burgess, T.; Christensen, T.; Heron, S. F.; Li, J.; Liu, G.; Morgan, J.; Nim, C.; Parker, B. A.; Strong, A. E.
2010-12-01
A multitude of natural and anthropogenic stressors exert substantial influence on coral reef ecosystems and contribute to bleaching events, slower coral growth, infectious disease outbreaks, and mortality. Satellite-based observations can monitor, at a global scale, environmental conditions that influence both short-term and long-term coral reef ecosystem health. From research to operations, NOAA Coral Reef Watch (CRW) incorporates paleoclimatic, in situ, and satellite-based biogeophysical data to provide near-real-time and forecast information and tools to help managers, researchers, and other stakeholders interpret coral health and stress. CRW has developed an operational, near-real-time product suite that includes sea surface temperature (SST), SST time series data, SST anomaly charts, coral bleaching HotSpots, and Degree Heating Weeks (DHW). Bi-weekly global SST analyses are based on operational nighttime-only SST at 50-km resolution. CRW is working to develop high-resolution products to better address thermal stress on finer scales and is applying climate models to develop seasonal outlooks of coral bleaching. Automated Satellite Bleaching Alerts (SBAs), available at Virtual Stations worldwide, provide the only global early-warning system to notify managers of changing reef environmental conditions. Currently, CRW is collaborating with numerous domestic and international partners to develop new tools to address ocean acidification, infectious diseases of corals, combining light and temperature to detect coral photosystem stress, and other parameters.
NASA Astrophysics Data System (ADS)
Chen, Bin
2018-04-01
Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.
Global challenges as inspiration: a classroom strategy to foster social responsibility.
Vanasupa, Linda; Slivovsky, Lynn; Chen, Katherine C
2006-04-01
Social responsibility is at the heart of the Engineer's Creed embodied in the pledge that we will dedicate [our] professional knowledge and skill to the advancement and betterment of human welfare... [placing] public welfare above all other considerations. However, half century after the original creed was written, we find ourselves in a world with great technological advances and great global-scale technologically-enabled peril. These issues can be naturally integrated into the engineering curriculum in a way that enhances the development of the technological skill set. We have found that these global challenges create a natural opportunity to foster social responsibility within the engineering students whom we educate. In freshman through senior-level materials engineering courses, we used five guiding principles to shape several different classroom activities and assignments. Upon testing an initial cohort of 28 students had classroom experiences based on these five principles, we saw a shift in attitude: before the experience, 18% of the cohort viewed engineers as playing an active role in solving global problems; after the experiences, 79% recognized the engineer's role in solving global-scale problems. In this paper, we present how global issues can be used to stimulate thinking for socially-responsible engineering solutions. We set forth five guiding principles that can foster the mindset for socially responsible actions along with examples of how these principles translate into classroom activities.
Terrestrial nitrogen–carbon cycle interactions at the global scale
Zaehle, S.
2013-01-01
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing. PMID:23713123
Terrestrial nitrogen-carbon cycle interactions at the global scale.
Zaehle, S
2013-07-05
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen-carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001-2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr(-1) (1.9 Pg C yr(-1)), of which 10 Tg N yr(-1) (0.2 Pg C yr(-1)) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen-carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr(-1) per 1°C degree climate warming) will add an important long-term climate forcing.
Fuchs, Julian E; Waldner, Birgit J; Huber, Roland G; von Grafenstein, Susanne; Kramer, Christian; Liedl, Klaus R
2015-03-10
Conformational dynamics are central for understanding biomolecular structure and function, since biological macromolecules are inherently flexible at room temperature and in solution. Computational methods are nowadays capable of providing valuable information on the conformational ensembles of biomolecules. However, analysis tools and intuitive metrics that capture dynamic information from in silico generated structural ensembles are limited. In standard work-flows, flexibility in a conformational ensemble is represented through residue-wise root-mean-square fluctuations or B-factors following a global alignment. Consequently, these approaches relying on global alignments discard valuable information on local dynamics. Results inherently depend on global flexibility, residue size, and connectivity. In this study we present a novel approach for capturing positional fluctuations based on multiple local alignments instead of one single global alignment. The method captures local dynamics within a structural ensemble independent of residue type by splitting individual local and global degrees of freedom of protein backbone and side-chains. Dependence on residue type and size in the side-chains is removed via normalization with the B-factors of the isolated residue. As a test case, we demonstrate its application to a molecular dynamics simulation of bovine pancreatic trypsin inhibitor (BPTI) on the millisecond time scale. This allows for illustrating different time scales of backbone and side-chain flexibility. Additionally, we demonstrate the effects of ligand binding on side-chain flexibility of three serine proteases. We expect our new methodology for quantifying local flexibility to be helpful in unraveling local changes in biomolecular dynamics.
Significant uncertainty in global scale hydrological modeling from precipitation data errors
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.
2015-10-01
In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.
Evaluation of a Performance-Based Expert Elicitation: WHO Global Attribution of Foodborne Diseases.
Aspinall, W P; Cooke, R M; Havelaar, A H; Hoffmann, S; Hald, T
2016-01-01
For many societally important science-based decisions, data are inadequate, unreliable or non-existent, and expert advice is sought. In such cases, procedures for eliciting structured expert judgments (SEJ) are increasingly used. This raises questions regarding validity and reproducibility. This paper presents new findings from a large-scale international SEJ study intended to estimate the global burden of foodborne disease on behalf of WHO. The study involved 72 experts distributed over 134 expert panels, with panels comprising thirteen experts on average. Elicitations were conducted in five languages. Performance-based weighted solutions for target questions of interest were formed for each panel. These weights were based on individual expert's statistical accuracy and informativeness, determined using between ten and fifteen calibration variables from the experts' field with known values. Equal weights combinations were also calculated. The main conclusions on expert performance are: (1) SEJ does provide a science-based method for attribution of the global burden of foodborne diseases; (2) equal weighting of experts per panel increased statistical accuracy to acceptable levels, but at the cost of informativeness; (3) performance-based weighting increased informativeness, while retaining accuracy; (4) due to study constraints individual experts' accuracies were generally lower than in other SEJ studies, and (5) there was a negative correlation between experts' informativeness and statistical accuracy which attenuated as accuracy improved, revealing that the least accurate experts drive the negative correlation. It is shown, however, that performance-based weighting has the ability to yield statistically accurate and informative combinations of experts' judgments, thereby offsetting this contrary influence. The present findings suggest that application of SEJ on a large scale is feasible, and motivate the development of enhanced training and tools for remote elicitation of multiple, internationally-dispersed panels.
Evaluation of a Performance-Based Expert Elicitation: WHO Global Attribution of Foodborne Diseases
Aspinall, W. P.; Cooke, R. M.; Havelaar, A. H.; Hoffmann, S.; Hald, T.
2016-01-01
For many societally important science-based decisions, data are inadequate, unreliable or non-existent, and expert advice is sought. In such cases, procedures for eliciting structured expert judgments (SEJ) are increasingly used. This raises questions regarding validity and reproducibility. This paper presents new findings from a large-scale international SEJ study intended to estimate the global burden of foodborne disease on behalf of WHO. The study involved 72 experts distributed over 134 expert panels, with panels comprising thirteen experts on average. Elicitations were conducted in five languages. Performance-based weighted solutions for target questions of interest were formed for each panel. These weights were based on individual expert’s statistical accuracy and informativeness, determined using between ten and fifteen calibration variables from the experts' field with known values. Equal weights combinations were also calculated. The main conclusions on expert performance are: (1) SEJ does provide a science-based method for attribution of the global burden of foodborne diseases; (2) equal weighting of experts per panel increased statistical accuracy to acceptable levels, but at the cost of informativeness; (3) performance-based weighting increased informativeness, while retaining accuracy; (4) due to study constraints individual experts’ accuracies were generally lower than in other SEJ studies, and (5) there was a negative correlation between experts' informativeness and statistical accuracy which attenuated as accuracy improved, revealing that the least accurate experts drive the negative correlation. It is shown, however, that performance-based weighting has the ability to yield statistically accurate and informative combinations of experts' judgments, thereby offsetting this contrary influence. The present findings suggest that application of SEJ on a large scale is feasible, and motivate the development of enhanced training and tools for remote elicitation of multiple, internationally-dispersed panels. PMID:26930595
Global health training among U.S. residency specialties: a systematic literature review.
Hau, Duncan K; Smart, Luke R; DiPace, Jennifer I; Peck, Robert N
2017-01-01
Interest in global health training during residency is increasing. Global health knowledge is also becoming essential for health-care delivery today. Many U.S. residency programs have been incorporating global health training opportunities for their residents. We performed a systematic literature review to evaluate global health training opportunities and challenges among U.S. residency specialties. We searched PubMed from its earliest dates until October 2015. Articles included were survey results of U.S. program directors on global health training opportunities, and web-based searches of U.S. residency program websites on global health training opportunities. Data extracted included percentage of residency programs offering global health training within a specialty and challenges encountered. Studies were found for twelve U.S. residency specialties. Of the survey based studies, the specialties with the highest percentage of their residency programs offering global health training were preventive medicine (83%), emergency medicine (74%), and surgery (71%); and the lowest were orthopaedic surgery (26%), obstetrics and gynecology (28%), and plastic surgery (41%). Of the web-based studies, the specialties with the highest percentage of their residency programs offering global health training were emergency medicine (41%), pediatrics (33%), and family medicine (22%); and the lowest were psychiatry (9%), obstetrics and gynecology (17%), and surgery (18%). The most common challenges were lack of funding, lack of international partnerships, lack of supervision, and scheduling. Among U.S. residency specialties, there are wide disparities for global health training. In general, there are few opportunities in psychiatry and surgical residency specialties, and greater opportunities among medical residency specialties. Further emphasis should be made to scale-up opportunities for psychiatry and surgical residency specialties.
Global health training among U.S. residency specialties: a systematic literature review
Hau, Duncan K.; Smart, Luke R.; DiPace, Jennifer I.; Peck, Robert N.
2017-01-01
ABSTRACT Background: Interest in global health training during residency is increasing. Global health knowledge is also becoming essential for health-care delivery today. Many U.S. residency programs have been incorporating global health training opportunities for their residents. We performed a systematic literature review to evaluate global health training opportunities and challenges among U.S. residency specialties. Methods: We searched PubMed from its earliest dates until October 2015. Articles included were survey results of U.S. program directors on global health training opportunities, and web-based searches of U.S. residency program websites on global health training opportunities. Data extracted included percentage of residency programs offering global health training within a specialty and challenges encountered. Results: Studies were found for twelve U.S. residency specialties. Of the survey based studies, the specialties with the highest percentage of their residency programs offering global health training were preventive medicine (83%), emergency medicine (74%), and surgery (71%); and the lowest were orthopaedic surgery (26%), obstetrics and gynecology (28%), and plastic surgery (41%). Of the web-based studies, the specialties with the highest percentage of their residency programs offering global health training were emergency medicine (41%), pediatrics (33%), and family medicine (22%); and the lowest were psychiatry (9%), obstetrics and gynecology (17%), and surgery (18%). The most common challenges were lack of funding, lack of international partnerships, lack of supervision, and scheduling. Conclusion: Among U.S. residency specialties, there are wide disparities for global health training. In general, there are few opportunities in psychiatry and surgical residency specialties, and greater opportunities among medical residency specialties. Further emphasis should be made to scale-up opportunities for psychiatry and surgical residency specialties. PMID:28178918
Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures
NASA Astrophysics Data System (ADS)
Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.
2018-03-01
A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.
Global Assessment of Groundwater Sustainability Based On Storage Anomalies
NASA Astrophysics Data System (ADS)
Thomas, Brian F.; Caineta, Júlio; Nanteza, Jamiat
2017-11-01
The world's largest aquifers are a fundamental source of freshwater used for agricultural irrigation and to meet human water needs. Therefore, their stored volume of groundwater is linked with water security, which becomes more relevant during periods of drought. This work focuses on understanding large-scale groundwater changes, where we introduce an approach to evaluate groundwater sustainability at a global scale. We employ a groundwater drought index to assess performance metrics (reliability, resilience, vulnerability, and a combined sustainability index) for the largest and most productive global aquifers. Spatiotemporal changes in total water storage are derived from remote sensing observations of gravity anomalies, from which the groundwater drought index is inferred. The results reveal a complex relationship between the indicators, while considering monthly variability in groundwater storage. Combining the drought and sustainability indexes, as presented in this work, constitutes a measure for quantifying groundwater sustainability. This framework integrates changes in groundwater resources due to human influences and climate changes, thus opening a path to assess progress toward sustainable use and water security.
Loius R. Iverson; Anantha M. G. Prasad; Charles T. Scott
1996-01-01
The USDA Forest Service's Forest Inventory and Analysis (FIA) and the Natural Resource Conservation Service's State Soil Geographic (STATSGO) data bases provide valuable natural resource data that can be analyzed at the national scale. When coupled with other data (e.g., climate), these data bases can provide insights into factors associated with current and...
Futamura, Masaki; Leshem, Yael A; Thomas, Kim S; Nankervis, Helen; Williams, Hywel C; Simpson, Eric L
2016-02-01
Investigators often use global assessments to provide a snapshot of overall disease severity in dermatologic clinical trials. Although easy to perform, the frequency of use and standardization of global assessments in studies of atopic dermatitis (AD) is unclear. We sought to assess the frequency, definitions, and methods of analysis of Investigator Global Assessment in randomized controlled trials of AD. We conducted a systematic review using all published randomized controlled trials of AD treatments in the Global Resource of Eczema Trials database (2000-2014). We determined the frequency of global scales application and defining features. Among 317 trials identified, 101 trials (32%) used an investigator-performed global assessment as an outcome measure. There was large variability in global assessments between studies in nomenclature, scale size, definitions, outcome description, and analysis. Both static and dynamic scales were identified that ranged from 4- to 7-point scales. North American studies used global assessments more commonly than studies from other countries. The search was restricted to the Global Resource of Eczema Trials database. Global assessments are used frequently in studies of AD, but their complete lack of standardized definitions and implementation preclude any meaningful comparisons between studies, which in turn impedes data synthesis to inform clinical decision-making. Standardization is urgently required. Copyright © 2015. Published by Elsevier Inc.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
Drought Persistence Errors in Global Climate Models
NASA Astrophysics Data System (ADS)
Moon, H.; Gudmundsson, L.; Seneviratne, S. I.
2018-04-01
The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.
Mapping local and global variability in plant trait distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc
2017-12-01
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusingmore » on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m) and phosphorus (P m), we characterize how traits vary within and among over 50,000 ~50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps further reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.« less
Mapping local and global variability in plant trait distributions.
Butler, Ethan E; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Ming; Wythers, Kirk R; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K; Kattge, Jens; Amiaud, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A; Byun, Chaeho; Campetella, Giandiego; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph M; Craven, Dylan; de Vries, Franciska T; Díaz, Sandra; Domingues, Tomas F; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J B; Kurokawa, Hiroko; Laughlin, Daniel C; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep; Read, Quentin; Sack, Lawren; Schamp, Brandon; Soudzilovskaia, Nadejda A; Spasojevic, Marko J; Sosinski, Enio; Thornton, Peter E; Valladares, Fernando; van Bodegom, Peter M; Williams, Mathew; Wirth, Christian; Reich, Peter B
2017-12-19
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
Tropospheric ozone simulated by a global-multi-regional two-way coupling model system
NASA Astrophysics Data System (ADS)
Yan, Y.; Lin, J.; Chen, J.; Hu, L.
2015-12-01
Current global chemical transport models are limited by horizontal resolutions (100-500 km), and they cannot capture small-scale processes affecting tropospheric ozone (O3). Here we use a recently built two-way coupling system of GEOS-Chem to simulate the global tropospheric O3 in 2009. The system couples the global model (~ 200 km) and its three nested models (~ 50 km) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68 and reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO and MOZAIC data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5%), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of the nonlinear ozone chemistry, including but not limited to urban-rural contrast. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5% with enhancements by 5% in lifetimes of methyl chloroform and methane, bringing them closer to observation-based estimates. Therefore improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.
Lewison, Rebecca L.; Crowder, Larry B.; Wallace, Bryan P.; Moore, Jeffrey E.; Cox, Tara; Zydelis, Ramunas; McDonald, Sara; DiMatteo, Andrew; Dunn, Daniel C.; Kot, Connie Y.; Bjorkland, Rhema; Kelez, Shaleyla; Soykan, Candan; Stewart, Kelly R.; Sims, Michelle; Boustany, Andre; Read, Andrew J.; Halpin, Patrick; Nichols, W. J.; Safina, Carl
2014-01-01
Recent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna. We fill this knowledge gap and present a synoptic global assessment of the distribution and intensity of bycatch of seabirds, marine mammals, and sea turtles based on empirical data from the three most commonly used types of fishing gears worldwide. We identify taxa-specific hotspots of bycatch intensity and find evidence of cumulative impacts across fishing fleets and gears. This global map of bycatch illustrates where data are particularly scarce—in coastal and small-scale fisheries and ocean regions that support developed industrial fisheries and millions of small-scale fishers—and identifies fishing areas where, given the evidence of cumulative hotspots across gear and taxa, traditional species or gear-specific bycatch management and mitigation efforts may be necessary but not sufficient. Given the global distribution of bycatch and the mitigation success achieved by some fleets, the reduction of air-breathing megafauna bycatch is both an urgent and achievable conservation priority. PMID:24639512
Lewison, Rebecca L; Crowder, Larry B; Wallace, Bryan P; Moore, Jeffrey E; Cox, Tara; Zydelis, Ramunas; McDonald, Sara; DiMatteo, Andrew; Dunn, Daniel C; Kot, Connie Y; Bjorkland, Rhema; Kelez, Shaleyla; Soykan, Candan; Stewart, Kelly R; Sims, Michelle; Boustany, Andre; Read, Andrew J; Halpin, Patrick; Nichols, W J; Safina, Carl
2014-04-08
Recent research on ocean health has found large predator abundance to be a key element of ocean condition. Fisheries can impact large predator abundance directly through targeted capture and indirectly through incidental capture of nontarget species or bycatch. However, measures of the global nature of bycatch are lacking for air-breathing megafauna. We fill this knowledge gap and present a synoptic global assessment of the distribution and intensity of bycatch of seabirds, marine mammals, and sea turtles based on empirical data from the three most commonly used types of fishing gears worldwide. We identify taxa-specific hotspots of bycatch intensity and find evidence of cumulative impacts across fishing fleets and gears. This global map of bycatch illustrates where data are particularly scarce--in coastal and small-scale fisheries and ocean regions that support developed industrial fisheries and millions of small-scale fishers--and identifies fishing areas where, given the evidence of cumulative hotspots across gear and taxa, traditional species or gear-specific bycatch management and mitigation efforts may be necessary but not sufficient. Given the global distribution of bycatch and the mitigation success achieved by some fleets, the reduction of air-breathing megafauna bycatch is both an urgent and achievable conservation priority.
Climate impacts on global hot spots of marine biodiversity.
Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S; Chiaradia, André
2017-02-01
Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world's richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation.
Climate fails to predict wood decomposition at regional scales
Mark A. Bradford; Robert J. Warren; Petr Baldrian; Thomas W. Crowther; Daniel S. Maynard; Emily E. Oldfield; William R. Wieder; Stephen A. Wood; Joshua R. King
2014-01-01
Decomposition of organic matter strongly influences ecosystem carbon storage1. In Earth-system models, climate is a predominant control on the decomposition rates of organic matter2, 3, 4, 5. This assumption is based on the mean response of decomposition to climate, yet there is a growing appreciation in other areas of global change science that projections based on...
NASA Astrophysics Data System (ADS)
Huang, Shih-Yu; Deng, Yi; Wang, Jingfeng
2017-09-01
The maximum-entropy-production (MEP) model of surface heat fluxes, based on contemporary non-equilibrium thermodynamics, information theory, and atmospheric turbulence theory, is used to re-estimate the global surface heat fluxes. The MEP model predicted surface fluxes automatically balance the surface energy budgets at all time and space scales without the explicit use of near-surface temperature and moisture gradient, wind speed and surface roughness data. The new MEP-based global annual mean fluxes over the land surface, using input data of surface radiation, temperature data from National Aeronautics and Space Administration-Clouds and the Earth's Radiant Energy System (NASA CERES) supplemented by surface specific humidity data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA), agree closely with previous estimates. The new estimate of ocean evaporation, not using the MERRA reanalysis data as model inputs, is lower than previous estimates, while the new estimate of ocean sensible heat flux is higher than previously reported. The MEP model also produces the first global map of ocean surface heat flux that is not available from existing global reanalysis products.
Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network
Wang, Minggang; Fang, Guochang; Shao, Shuai
2016-01-01
We study the overall topological structure properties of global oil trade network, such as degree, strength, cumulative distribution, information entropy and weight clustering. The structural evolution of the network is investigated as well. We find the global oil import and export networks do not show typical scale-free distribution, but display disassortative property. Furthermore, based on the monthly data of oil import values during 2005.01–2014.12, by applying random matrix theory, we investigate the complex spatiotemporal dynamic from the country level and fitness evolution of the global oil market from a demand-side analysis. Abundant information about global oil market can be obtained from deviating eigenvalues. The result shows that the oil market has experienced five different periods, which is consistent with the evolution of country clusters. Moreover, we find the changing trend of fitness function agrees with that of gross domestic product (GDP), and suggest that the fitness evolution of oil market can be predicted by forecasting GDP values. To conclude, some suggestions are provided according to the results. PMID:27706147
A novel fruit shape classification method based on multi-scale analysis
NASA Astrophysics Data System (ADS)
Gui, Jiangsheng; Ying, Yibin; Rao, Xiuqin
2005-11-01
Shape is one of the major concerns and which is still a difficult problem in automated inspection and sorting of fruits. In this research, we proposed the multi-scale energy distribution (MSED) for object shape description, the relationship between objects shape and its boundary energy distribution at multi-scale was explored for shape extraction. MSED offers not only the mainly energy which represent primary shape information at the lower scales, but also subordinate energy which represent local shape information at higher differential scales. Thus, it provides a natural tool for multi resolution representation and can be used as a feature for shape classification. We addressed the three main processing steps in the MSED-based shape classification. They are namely, 1) image preprocessing and citrus shape extraction, 2) shape resample and shape feature normalization, 3) energy decomposition by wavelet and classification by BP neural network. Hereinto, shape resample is resample 256 boundary pixel from a curve which is approximated original boundary by using cubic spline in order to get uniform raw data. A probability function was defined and an effective method to select a start point was given through maximal expectation, which overcame the inconvenience of traditional methods in order to have a property of rotation invariants. The experiment result is relatively well normal citrus and serious abnormality, with a classification rate superior to 91.2%. The global correct classification rate is 89.77%, and our method is more effective than traditional method. The global result can meet the request of fruit grading.
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.
NASA Astrophysics Data System (ADS)
Belochitski, A.; Krueger, S. K.; Moorthi, S.; Bogenschutz, P.; Cheng, A.
2017-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity, and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation, and cloudiness. Unlike other similar methods, comparatively few new prognostic variables needs to be introduced, making the technique computationally efficient. In the base version of SHOC it is SGS turbulent kinetic energy (TKE), and in the developmental version — SGS TKE, and variances of total water and moist static energy (MSE). SHOC is now incorporated into a version of GFS that will become a part of the NOAA Next Generation Global Prediction System based around NOAA GFDL's FV3 dynamical core, NOAA Environmental Modeling System (NEMS) coupled modeling infrastructure software, and a set novel physical parameterizations. Turbulent diffusion coefficients computed by SHOC are now used in place of those produced by the boundary layer turbulence and shallow convection parameterizations. Large scale microphysics scheme is no longer used to calculate cloud fraction or the large-scale condensation/deposition. Instead, SHOC provides these quantities. Radiative transfer parameterization uses cloudiness computed by SHOC. An outstanding problem with implementation of SHOC in the NCEP global models is excessively large high level tropical cloudiness. Comparison of the moments of the SGS PDF diagnosed by SHOC to the moments calculated in a GigaLES simulation of tropical deep convection case (GATE), shows that SHOC diagnoses too narrow PDF distributions of total cloud water and MSE in the areas of deep convective detrainment. A subsequent sensitivity study of SHOC's diagnosed cloud fraction (CF) to higher order input moments of the SGS PDF demonstrated that CF is improved if SHOC is provided with correct variances of total water and MSE. Consequently, SHOC was modified to include two new prognostic equations for variances of total water and MSE, and coupled with the Chikira-Sugiyama parameterization of deep convection to include effects of detrainment on the prognostic variances.
Sparse cliques trump scale-free networks in coordination and competition
Gianetto, David A.; Heydari, Babak
2016-01-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game. PMID:26899456
Large-Scale and Global Hydrology. Chapter 92
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Beaudoing, Hiroko Kato; Koster, Randal; Peters-Lidard, Christa D.; Famiglietti, James S.; Lakshmi, Venkat
2016-01-01
Powered by the sun, water moves continuously between and through Earths oceanic, atmospheric, and terrestrial reservoirs. It enables life, shapes Earths surface, and responds to and influences climate change. Scientists measure various features of the water cycle using a combination of ground, airborne, and space-based observations, and seek to characterize it at multiple scales with the aid of numerical models. Over time our understanding of the water cycle and ability to quantify it have improved, owing to advances in observational capabilities, the extension of the data record, and increases in computing power and storage. Here we present some of the most recent estimates of global and continental ocean basin scale water cycle stocks and fluxes and provide examples of modern numerical modeling systems and reanalyses.Further, we discuss prospects for predicting water cycle variability at seasonal and longer scales, which is complicated by a changing climate and direct human impacts related to water management and agriculture. Changes to the water cycle will be among the most obvious and important facets of climate change, thus it is crucial that we continue to invest in our ability to monitor it.
Cryptic biodiversity loss linked to global climate change
NASA Astrophysics Data System (ADS)
Bálint, M.; Domisch, S.; Engelhardt, C. H. M.; Haase, P.; Lehrian, S.; Sauer, J.; Theissinger, K.; Pauls, S. U.; Nowak, C.
2011-09-01
Global climate change (GCC) significantly affects distributional patterns of organisms, and considerable impacts on biodiversity are predicted for the next decades. Inferred effects include large-scale range shifts towards higher altitudes and latitudes, facilitation of biological invasions and species extinctions. Alterations of biotic patterns caused by GCC have usually been predicted on the scale of taxonomically recognized morphospecies. However, the effects of climate change at the most fundamental level of biodiversity--intraspecific genetic diversity--remain elusive. Here we show that the use of morphospecies-based assessments of GCC effects will result in underestimations of the true scale of biodiversity loss. Species distribution modelling and assessments of mitochondrial DNA variability in nine montane aquatic insect species in Europe indicate that future range contractions will be accompanied by severe losses of cryptic evolutionary lineages and genetic diversity within these lineages. These losses greatly exceed those at the scale of morphospecies. We also document that the extent of range reduction may be a useful proxy when predicting losses of genetic diversity. Our results demonstrate that intraspecific patterns of genetic diversity should be considered when estimating the effects of climate change on biodiversity.
Epidemic failure detection and consensus for extreme parallelism
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas; ...
2017-02-01
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
Sparse cliques trump scale-free networks in coordination and competition
NASA Astrophysics Data System (ADS)
Gianetto, David A.; Heydari, Babak
2016-02-01
Cooperative behavior, a natural, pervasive and yet puzzling phenomenon, can be significantly enhanced by networks. Many studies have shown how global network characteristics affect cooperation; however, it is difficult to understand how this occurs based on global factors alone, low-level network building blocks, or motifs are necessary. In this work, we systematically alter the structure of scale-free and clique networks and show, through a stochastic evolutionary game theory model, that cooperation on cliques increases linearly with community motif count. We further show that, for reactive stochastic strategies, network modularity improves cooperation in the anti-coordination Snowdrift game and the Prisoner’s Dilemma game but not in the Stag Hunt coordination game. We also confirm the negative effect of the scale-free graph on cooperation when effective payoffs are used. On the flip side, clique graphs are highly cooperative across social environments. Adding cycles to the acyclic scale-free graph increases cooperation when multiple games are considered; however, cycles have the opposite effect on how forgiving agents are when playing the Prisoner’s Dilemma game.
Relaxation of the composite Higgs little hierarchy
NASA Astrophysics Data System (ADS)
Batell, Brian; Fedderke, Michael A.; Wang, Lian-Tao
2017-12-01
We describe a composite Higgs scenario in which a cosmological relaxation mechanism naturally gives rise to a hierarchy between the weak scale and the scale of spontaneous global symmetry breaking. This is achieved through the scanning of sources of explicit global symmetry breaking by a relaxion field during an exponentially long period of inflation in the early universe. We explore this mechanism in detail in a specific composite Higgs scenario with QCD-like dynamics, based on an ultraviolet SU( N )TC `technicolor' confining gauge theory with three Dirac technifermion flavors. We find that we can successfully generate a hierarchy of scales ξ≡〈 h〉2/ F π 2 ≳ 1.2 × 10- 4 (i.e., compositeness scales F π ˜ 20 TeV) without tuning. This evades all current electroweak precision bounds on our (custodial violating) model. While directly observing the heavy composite states in this model will be challenging, a future electroweak precision measurement program can probe most of the natural parameter space for the model. We also highlight signatures of more general composite Higgs models in the cosmological relaxation framework, including some implications for flavor and dark matter.
Global-scale modeling of groundwater recharge
NASA Astrophysics Data System (ADS)
Döll, P.; Fiedler, K.
2007-11-01
Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3/(capita yr) for the Falkland Islands, the global average in the year 2000 being 2091 m3/(capita yr). Regarding the uncertainty of estimated groundwater resources due to the two precipitation data sets, deviation from the mean is less than 1% for 50 out of the 165 countries considered, between 1 and 5% for 62, between 5 and 20% for 43 and between 20 and 80% for 10 countries. Deviations at the grid scale can be much larger, ranging between 0 and 186 mm/yr.
Migration, Sociolinguistic Scale, and Educational Reproduction
ERIC Educational Resources Information Center
Collins, James
2012-01-01
Migration-based language pluralism and globalized identity conflicts pose challenges for educational research and linguistic anthropology, in particular, how we think about education and social inequality. This article proposes new conceptual tools, drawn from linguistic anthropology as well as world systems theory, for analyzing the role of…
Estimates of reservoir methane emissions based on a spatially balanced probabilistic-survey
Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; h...
Multiscale analyses of solar-induced florescence and gross primary production
USDA-ARS?s Scientific Manuscript database
Remotely sensed solar induced fluorescence (SIF) has shown great promise for probing spatiotemporal variations in terrestrial gross primary production (GPP), the largest component flux of the global carbon cycle. However, scale mismatches between SIF and ground-based GPP have posed challenges toward...
Photographic catalog of selected planetary size comparisons
NASA Technical Reports Server (NTRS)
Meszaros, S. P.
1985-01-01
Photographs taken by NASA spacecraft, and cartographic products based on these photos, are used to illustrate size comparisons of the planets and moons of the solar system. Global views and prominent geographical features are depicted at the same scale, allowing size relationships to be studied visually.
Deckel, A W; Hesselbrock, V; Bauer, L
1995-04-01
This experiment examined the relationship between anterior brain functioning and alcohol-related expectancies. Ninety-one young men at risk for developing alcoholism were assessed on the Alcohol Expectancy Questionnaire (AEQ) and administered neuropsychological and EEG tests. Three of the scales on the AEQ, including the "Enhanced Sexual Functioning" scale, the "Increased Social Assertiveness" scale, and items from the "Global/Positive Change scale," were used, because each of these scales has been found to discriminate alcohol-based expectancies adequately by at least two separate sets of investigators. Regression analysis found that anterior neuropsychological tests (including the Wisconsin Card Sorting test, the Porteus Maze test, the Controlled Oral Word Fluency test, and the Luria-Nebraska motor functioning tests) were predictive of the AEQ scale scores on regression analysis. One of the AEQ scales, "Enhanced Sexual Functioning," was also predicted by WAIS-R-Verbal scales, whereas the "Global/Positive" AEQ scale was predicted by the WAIS-R Performance scales. Regression analysis using EEG power as predictors found that left versus right hemisphere "difference" scores obtained from frontal EEG leads were predictive of the three AEQ scales. Conversely, parietal EEG power did not significantly predict any of the expectancy scales. It is concluded that anterior brain any of the expectancy scales. It is concluded that anterior brain functioning is associated with alcohol-related expectancies. These findings suggest that alcohol-related expectancy may be, in part, biologically determined by frontal/prefrontal systems, and that dysfunctioning in these systems may serve as a risk factor for the development of alcohol-related behaviors.
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia E.; Thorburn, Peter
2017-01-01
Agricultural stakeholders need more credible information on which to base adaptation and mitigation policy decisions. In order to provide this, we must improve the rigor of agricultural modelling. Ensemble approaches can be used to address scale issues and integrated teams can overcome disciplinary silos. The AgMIP Coordinated Global and Regional Assessments of Climate Change and Food Security (CGRA) has the goal to link agricultural systems models using common protocols and scenarios to significantly improve understanding of climate effects on crops, livestock and livelihoods across multiple scales. The AgMIP CGRA assessment brings together experts in climate, crop, livestock, economics, and food security to develop Protocols to guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including, socioeconomic development, greenhouse gas concentrations, and specific pathways of agricultural sector development. Through these approaches, AgMIP partners around the world are providing an evidence base for their stakeholders as they make decisions and investments.
New Opportunities in Geospace Remote Sensing
NASA Astrophysics Data System (ADS)
Solomon, S. C.
2017-12-01
This paper will discuss scientific objectives that can be addressed with the serendipitous constellation of thermosphere-ionosphere observations provided by the NASA Ionospheric Connection Explorer (ICON) and Global-scale Observations of the Limb and Disk (GOLD) missions, the international Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-2), instruments on the International Space Station and the Defense Meteorological Satellite Program, the European SWARM satellites, the NSF-sponsored AMPERE project, and the ongoing TIMED mission. The confluence of these space-based observations provide opportunities to extend the capabilities of ground-based observational networks, and to exploit opportunities for the development of numerical models and data assimilation methods. A particular focus is the global-scale context provided through GOLD mission measurements, and the challenges presented by their analysis and interpretation. GOLD can be considered a pathfinder for opportunistic instrumentation on commercial vehicles at geostationary orbit, so further speculation will be presented on what other future observations of the thermosphere-ionosphere and exosphere-plasmasphere could be made from these platforms.
NASA Astrophysics Data System (ADS)
Angelopoulos, V.; Hietala, H.; Liu, Z.; Mende, S. B.; Phan, T.; Nishimura, T.; Strangeway, R. J.; Burch, J. L.; Moore, T. E.; Giles, B. L.
2015-12-01
The recent launch of MMS, the impending launch of ERG, the continued availability of space (NASA, NOAA, International) and ground based assets (THEMIS GBOs, TREx, SuperDARN) enable a comprehensive study of global drivers of (and responses to) kinetic processes at the magnetopause, the magnetotail, the inner magnetosphere and the ionosphere. Previously unresolved questions related to the nature of the modes of magnetospheric convection (pseudobreakups, substorms, SMCs and storms) can now be addressed simultaneously at a kinetic level (with multi-spacecraft missions) and at a global level (with the emerging, powerful H/GSO). THEMIS has been tasked to perform orbital changes that will optimize the observatory, and simultaneously place its probes, along with MMS's, at the heart of where critical kinetic processes occur, near sites of magnetic reconnection and magnetic energy conversion, and in optimal view of ground based assets. I will discuss these unique alignments of the H/GSO fleet that can reveal how cross-scale coupling is manifest, allowing us to view old paradigms in a new light.
Regional Climate Sensitivity- and Historical-Based Projections to 2100
NASA Astrophysics Data System (ADS)
Hébert, Raphaël.; Lovejoy, Shaun
2018-05-01
Reliable climate projections at the regional scale are needed in order to evaluate climate change impacts and inform policy. We develop an alternative method for projections based on the transient climate sensitivity (TCS), which relies on a linear relationship between the forced temperature response and the strongly increasing anthropogenic forcing. The TCS is evaluated at the regional scale (5° by 5°), and projections are made accordingly to 2100 using the high and low Representative Concentration Pathways emission scenarios. We find that there are large spatial discrepancies between the regional TCS from 5 historical data sets and 32 global climate model (GCM) historical runs and furthermore that the global mean GCM TCS is about 15% too high. Given that the GCM Representative Concentration Pathway scenario runs are mostly linear with respect to their (inadequate) TCS, we conclude that historical methods of regional projection are better suited given that they are directly calibrated on the real world (historical) climate.
Multi-scale symbolic transfer entropy analysis of EEG
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-10-01
From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.
NASA Astrophysics Data System (ADS)
Marzeion, B.; Maussion, F.
2017-12-01
Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.
Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors
NASA Technical Reports Server (NTRS)
Hildebrand, Peter; Zaitchik, Benjamin
2007-01-01
The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.
Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange
NASA Astrophysics Data System (ADS)
Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.
2013-03-01
Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterisation, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.
Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange
NASA Astrophysics Data System (ADS)
Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.
2013-07-01
Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterization, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.
NASA Astrophysics Data System (ADS)
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.
NASA Astrophysics Data System (ADS)
Zlinszky, A.; Deák, B.; Kania, A.; Schroiff, A.; Pfeifer, N.
2016-06-01
Biodiversity is an ecological concept, which essentially involves a complex sum of several indicators. One widely accepted such set of indicators is prescribed for habitat conservation status assessment within Natura 2000, a continental-scale conservation programme of the European Union. Essential Biodiversity Variables are a set of indicators designed to be relevant for biodiversity and suitable for global-scale operational monitoring. Here we revisit a study of Natura 2000 conservation status mapping via airbone LIDAR that develops individual remote sensing-derived proxies for every parameter required by the Natura 2000 manual, from the perspective of developing regional-scale Essential Biodiversity Variables. Based on leaf-on and leaf-off point clouds (10 pt/m2) collected in an alkali grassland area, a set of data products were calculated at 0.5 ×0.5 m resolution. These represent various aspects of radiometric and geometric texture. A Random Forest machine learning classifier was developed to create fuzzy vegetation maps of classes of interest based on these data products. In the next step, either classification results or LIDAR data products were selected as proxies for individual Natura 2000 conservation status variables, and fine-tuned based on field references. These proxies showed adequate performance and were summarized to deliver Natura 2000 conservation status with 80% overall accuracy compared to field references. This study draws attention to the potential of LIDAR for regional-scale Essential Biodiversity variables, and also holds implications for global-scale mapping. These are (i) the use of sensor data products together with habitat-level classification, (ii) the utility of seasonal data, including for non-seasonal variables such as grassland canopy structure, and (iii) the potential of fuzzy mapping-derived class probabilities as proxies for species presence and absence.
Large historical growth in global terrestrial gross primary production
Campbell, J. E.; Berry, J. A.; Seibt, U.; ...
2017-04-05
Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less
Large historical growth in global terrestrial gross primary production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J. E.; Berry, J. A.; Seibt, U.
Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less
Global terrestrial N2O budget for present and future
NASA Astrophysics Data System (ADS)
Olin, Stefan; Xing, Xu-Ri; Wårlind, David; Eliasson, Peter; Smith, Ben; Arneth, Almut
2017-04-01
Nitrogen (N) plays an important role in plant productivity and physiology and is the main limiting nutrient in a majority of the terrestrial ecosystems. The enhanced input of anthropogenic reactive nitrogen (Nr) in agriculture have enhanced global food production, but with adverse effects on biodiversity and water quality, and substantially increased emissions of N trace gases that affect air quality and climate. Emissions of N gases affects the climate, either through cloud forming nitrogen oxides (NOx) gases or as greenhouse gases, where nitrous oxide (N2O) is the most important being approximately 300 times more potent than carbon dioxide (CO2). In this study we use the process-based global vegetation model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Olin et al. 2015) that recently have incorporated a new soil N transformation scheme, adopted from Xu-Ri and Prentice (2008), which makes it possible to study the N2O emission respond to changes in climate and CO2 concentration as well as anthropogenic N enhancements on a global scale. We present here results from the validation of the new model against site-scale N2O measurements from agricultural and non-agricultural ecosystems. We will also present results from a study to examine how land use, land use change and anthropogenic N fertilisation influence historical and future global N2O emissions. This new development represents a key component within future projects in CMIP6 (LUMIP) and in EC-Earth for the EU Horizon 2020 project CRESCENDO. Olin, S., Lindeskog, M., Pugh, T., Schurgers, G., Mischurow, M., Wårlind, D., Zaehle, S., Stocker, B., Smith, B. and Arneth, A. 2015. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching. Earth System Dynamics, 6, 745-768. Xu-Ri and Prentice IC. 2008. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biology, 14, 1745-1764.
Long-wave instabilities of two interlaced helical vortices
NASA Astrophysics Data System (ADS)
Quaranta, H. U.; Brynjell-Rahkola, M.; Leweke, T.; Henningson, D. S.
2016-09-01
We present a comparison between experimental observations and theoretical predictions concerning long-wave displacement instabilities of the helical vortices in the wake of a two-bladed rotor. Experiments are performed with a small-scale rotor in a water channel, using a set-up that allows the individual triggering of various instability modes at different azimuthal wave numbers, leading to local or global pairing of successive vortex loops. The initial development of the instability and the measured growth rates are in good agreement with the predictions from linear stability theory, based on an approach where the helical vortex system is represented by filaments. At later times, local pairing develops into large-scale distortions of the vortices, whereas for global pairing the non-linear evolution returns the system almost to its initial geometry.