Perspectives on magnetic reconnection
Yamada, Masaaki
2016-01-01
Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. We conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection. PMID:28119547
Perspectives on magnetic reconnection
Zweibel, Ellen G.; Yamada, Masaaki
2016-12-07
Magnetic reconnection is a topological rearrangement of magnetic field that occurs on time scales much faster than the global magnetic diffusion time. Since the field lines break on microscopic scales but energy is stored and the field is driven on macroscopic scales, reconnection is an inherently multi-scale process that often involves both magnetohydrodynamic (MHD) and kinetic phenomena. In this article, we begin with the MHD point of view and then describe the dynamics and energetics of reconnection using a two-fluid formulation. We also focus on the respective roles of global and local processes and how they are coupled. Here, wemore » conclude that the triggers for reconnection are mostly global, that the key energy conversion and dissipation processes are either local or global, and that the presence of a continuum of scales coupled from microscopic to macroscopic may be the most likely path to fast reconnection.« less
Prospects for improving the representation of coastal and shelf seas in global ocean models
NASA Astrophysics Data System (ADS)
Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard
2017-02-01
Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions < 500 m deep, but this increases to ˜ 70 % for a 1/72° model, so resolving scales globally requires substantially finer resolution than the current state of the art.We quantify the benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally refined model and that of multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1/4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5 km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1/72° global model by 2026. However, we also note that a 1/12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to ˜ 1.5 km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges.
Christoph Kueffer; Curtis Daehler; Hansjörg Dietz; Keith McDougall; Catherine Parks; Aníbal Pauchard; Lisa Rew
2014-01-01
Many modern environmental problems span vastly different spatial scales, from the management of local ecosystems to understanding globally interconnected processes, and addressing them through international policy. MIREN tackles one such âglocalâ (global/local) environmental problem â plant invasions in mountains â through a transdisciplinary, multi-scale learning...
Optimal satellite sampling to resolve global-scale dynamics in the I-T system
NASA Astrophysics Data System (ADS)
Rowland, D. E.; Zesta, E.; Connor, H. K.; Pfaff, R. F., Jr.
2016-12-01
The recent Decadal Survey highlighted the need for multipoint measurements of ion-neutral coupling processes to study the pathways by which solar wind energy drives dynamics in the I-T system. The emphasis in the Decadal Survey is on global-scale dynamics and processes, and in particular, mission concepts making use of multiple identical spacecraft in low earth orbit were considered for the GDC and DYNAMIC missions. This presentation will provide quantitative assessments of the optimal spacecraft sampling needed to significantly advance our knowledge of I-T dynamics on the global scale.We will examine storm time and quiet time conditions as simulated by global circulation models, and determine how well various candidate satellite constellations and satellite schemes can quantify the plasma and neutral convection patterns and global-scale distributions of plasma density, neutral density, and composition, and their response to changes in the IMF. While the global circulation models are data-starved, and do not contain all the physics that we might expect to observe with a global-scale constellation mission, they are nonetheless an excellent "starting point" for discussions of the implementation of such a mission. The result will be of great utility for the design of future missions, such as GDC, to study the global-scale dynamics of the I-T system.
NASA Astrophysics Data System (ADS)
Bronstert, Axel; Heistermann, Maik; Francke, Till
2017-04-01
Hydrological models aim at quantifying the hydrological cycle and its constituent processes for particular conditions, sites or periods in time. Such models have been developed for a large range of spatial and temporal scales. One must be aware that the question which is the appropriate scale to be applied depends on the overall question under study. Therefore, it is not advisable to give a general applicable guideline on what is "the best" scale for a model. This statement is even more relevant for coupled hydrological, ecological and atmospheric models. Although a general statement about the most appropriate modelling scale is not recommendable, it is worth to have a look on what are the advantages and the shortcomings of micro-, meso- and macro-scale approaches. Such an appraisal is of increasing importance, since increasingly (very) large / global scale approaches and models are under operation and therefore the question arises how far and for what purposes such methods may yield scientifically sound results. It is important to understand that in most hydrological (and ecological, atmospheric and other) studies process scale, measurement scale, and modelling scale differ from each other. In some cases, the differences between theses scales can be of different orders of magnitude (example: runoff formation, measurement and modelling). These differences are a major source of uncertainty in description and modelling of hydrological, ecological and atmospheric processes. Let us now summarize our viewpoint of the strengths (+) and weaknesses (-) of hydrological models of different scales: Micro scale (e.g. extent of a plot, field or hillslope): (+) enables process research, based on controlled experiments (e.g. infiltration; root water uptake; chemical matter transport); (+) data of state conditions (e.g. soil parameter, vegetation properties) and boundary fluxes (e.g. rainfall or evapotranspiration) are directly measurable and reproducible; (+) equations based on first principals, partly pde-type, are available for several processes (but not for all), because measurement and modelling scale are compatible (-) the spatial model domain are hardly representative for larger spatial entities, including regions for which water resources management decisions are to be taken; straightforward upsizing is also limited by data availability and computational requirements. Meso scale (e.g. extent of a small to large catchment or region): (+) the spatial extent of the model domain has approximately the same extent as the regions for which water resources management decisions are to be taken. I.e., such models enable water resources quantification at the scale of most water management decisions; (+) data of some state conditions (e.g. vegetation cover, topography, river network and cross sections) are available; (+) data of some boundary fluxes (in particular surface runoff / channel flow) are directly measurable with mostly sufficient certainty; (+) equations, partly based on simple water budgeting, partly variants of pde-type equations, are available for most hydrological processes. This enables the construction of meso-scale distributed models reflecting the spatial heterogeneity of regions/landscapes; (-) process scale, measurement scale, and modelling scale differ from each other for a number of processes, e.g., such as runoff generation; (-) the process formulation (usually derived from micro-scale studies) cannot directly be transferred to the modelling domain. Upscaling procedures for this purpose are not readily and generally available. Macro scale (e.g. extent of a continent up to global): (+) the spatial extent of the model may cover the whole Earth. This enables an attractive global display of model results; (+) model results might be technically interchangeable or at least comparable with results from other global models, such as global climate models; (-) process scale, measurement scale, and modelling scale differ heavily from each other for all hydrological and associated processes; (-) the model domain and its results are not representative regions for which water resources management decisions are to be taken. (-) both state condition and boundary flux data are hardly available for the whole model domain. Water management data and discharge data from remote regions are particular incomplete / unavailable for this scale. This undermines the model's verifiability; (-) since process formulation and resulting modelling reliability at this scale is very limited, such models can hardly show any explanatory skills or prognostic power; (-) since both the entire model domain and the spatial sub-units cover large areas, model results represent values averaged over at least the spatial sub-unit's extent. In many cases, the applied time scale implies a long-term averaging in time, too. We emphasize the importance to be aware of the above mentioned strengths and weaknesses of those scale-specific models. (Many of the) results of the current global model studies do not reflect such limitations. In particular, we consider the averaging over large model entities in space and/or time inadequate. Many hydrological processes are of a non-linear nature, including threshold-type behaviour. Such features cannot be reflected by such large scale entities. The model results therefore can be of little or no use for water resources decisions and/or even misleading for public debates or decision making. Some rather newly developed sustainability concepts, e.g. "Planetary Boundaries" in which humanity may "continue to develop and thrive for generations to come" are based on such global-scale approaches and models. However, many of the major problems regarding sustainability on Earth, e.g. water scarcity, do not exhibit on a global but on a regional scale. While on a global scale water might look like being available in sufficient quantity and quality, there are many regions where water problems already have very harmful or even devastating effects. Therefore, it is the challenge to derive models and observation programmes for regional scales. In case a global display is desired future efforts should be directed towards the development of a global picture based on a mosaic of regional sound assessments, rather than "zooming into" the results of large-scale simulations. Still, a key question remains to be discussed, i.e. for which purpose models at this (global) scale can be used.
Local and Global Auditory Processing: Behavioral and ERP Evidence
Sanders, Lisa D.; Poeppel, David
2007-01-01
Differential processing of local and global visual features is well established. Global precedence effects, differences in event-related potentials (ERPs) elicited when attention is focused on local versus global levels, and hemispheric specialization for local and global features all indicate that relative scale of detail is an important distinction in visual processing. Observing analogous differential processing of local and global auditory information would suggest that scale of detail is a general organizational principle of the brain. However, to date the research on auditory local and global processing has primarily focused on music perception or on the perceptual analysis of relatively higher and lower frequencies. The study described here suggests that temporal aspects of auditory stimuli better capture the local-global distinction. By combining short (40 ms) frequency modulated tones in series to create global auditory patterns (500 ms), we independently varied whether pitch increased or decreased over short time spans (local) and longer time spans (global). Accuracy and reaction time measures revealed better performance for global judgments and asymmetric interference that were modulated by amount of pitch change. ERPs recorded while participants listened to identical sounds and indicated the direction of pitch change at the local or global levels provided evidence for differential processing similar to that found in ERP studies employing hierarchical visual stimuli. ERP measures failed to provide evidence for lateralization of local and global auditory perception, but differences in distributions suggest preferential processing in more ventral and dorsal areas respectively. PMID:17113115
Soil organic carbon across scales.
O'Rourke, Sharon M; Angers, Denis A; Holden, Nicholas M; McBratney, Alex B
2015-10-01
Mechanistic understanding of scale effects is important for interpreting the processes that control the global carbon cycle. Greater attention should be given to scale in soil organic carbon (SOC) science so that we can devise better policy to protect/enhance existing SOC stocks and ensure sustainable use of soils. Global issues such as climate change require consideration of SOC stock changes at the global and biosphere scale, but human interaction occurs at the landscape scale, with consequences at the pedon, aggregate and particle scales. This review evaluates our understanding of SOC across all these scales in the context of the processes involved in SOC cycling at each scale and with emphasis on stabilizing SOC. Current synergy between science and policy is explored at each scale to determine how well each is represented in the management of SOC. An outline of how SOC might be integrated into a framework of soil security is examined. We conclude that SOC processes at the biosphere to biome scales are not well understood. Instead, SOC has come to be viewed as a large-scale pool subjects to carbon flux. Better understanding exists for SOC processes operating at the scales of the pedon, aggregate and particle. At the landscape scale, the influence of large- and small-scale processes has the greatest interaction and is exposed to the greatest modification through agricultural management. Policy implemented at regional or national scale tends to focus at the landscape scale without due consideration of the larger scale factors controlling SOC or the impacts of policy for SOC at the smaller SOC scales. What is required is a framework that can be integrated across a continuum of scales to optimize SOC management. © 2015 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.
2003-01-01
Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.
NASA Astrophysics Data System (ADS)
Van Loon, Anne
2017-04-01
Drought is a global challenge. To be able to manage drought effectively on global or national scales without losing smaller scale variability and local context, we need to understand what the important hydrological drought processes are at different scales. Global scale models and satellite data are providing a global overview and catchment scale studies provide detailed site-specific information. I am interested in bridging these two scale levels by learning from catchments from around the world. Much information from local case studies is currently underused on larger scales because there is too much complexity. However, some of this complexity might be crucial on the level where people are facing the consequences of drought. In this talk, I will take you on a journey around the world to unlock catchment scale information and see if the comparison of many catchments gives us additional understanding of hydrological drought processes on the global scale. I will focus on the role of storage in different compartments of the terrestrial hydrological cycle, and how we as humans interact with that storage. I will discuss aspects of spatial and temporal variability in storage that are crucial for hydrological drought development and persistence, drawing from examples of catchments with storage in groundwater, lakes and wetlands, and snow and ice. The added complexity of human activities shifts the focus from natural to catchments with anthropogenic increases in storage (reservoirs), decreases in storage (groundwater abstraction), and changes in hydrological processes (urbanisation). We learn how local information is providing valuable insights, in some cases challenging theoretical understanding or model outcomes. Despite the challenges of working across countries, with a high number of collaborators, in a multitude of languages, under data-scarce conditions, the scientific advantages of bridging scales are substantial. The comparison of catchments around the world can inform global scale models, give the needed spatial variability to satellite data, and help us make steps in understanding and managing the complex challenge of drought, now and in the future.
NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Leslie, Fred W. (Editor)
1991-01-01
The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.
NASA Astrophysics Data System (ADS)
Wieder, W. R.; Bradford, M.; Koven, C.; Talbot, J. M.; Wood, S.; Chadwick, O.
2016-12-01
High uncertainty and low confidence in terrestrial carbon (C) cycle projections reflect the incomplete understanding of how best to represent biologically-driven C cycle processes at global scales. Ecosystem theories, and consequently biogeochemical models, are based on the assumption that different belowground communities function similarly and interact with the abiotic environment in consistent ways. This assumption of "Scale Invariance" posits that environmental conditions will change the rate of ecosystem processes, but the biotic response will be consistent across sites. Indeed, cross-site comparisons and global-scale analyses suggest that climate strongly controls rates of litter mass loss and soil organic matter turnover. Alternatively, activities of belowground communities are shaped by particular local environmental conditions, such as climate and edaphic conditions. Under this assumption of "Scale Dependence", relationships generated by evolutionary trade-offs in acquiring resources and withstanding environmental stress dictate the activities of belowground communities and their functional response to environmental change. Similarly, local edaphic conditions (e.g. permafrost soils or reactive minerals that physicochemically stabilize soil organic matter on mineral surfaces) may strongly constrain the availability of substrates that biota decompose—altering the trajectory of soil biogeochemical response to perturbations. Identifying when scale invariant assumptions hold vs. where local variation in biotic communities or edaphic conditions must be considered is critical to advancing our understanding and representation of belowground processes in the face of environmental change. Here we introduce data sets that support assumptions of scale invariance and scale dependent processes and discuss their application in global-scale biogeochemical models. We identify particular domains over which assumptions of scale invariance may be appropriate and potential thresholds where shifts in ecosystem function may be expected. Finally, we discuss the mechanistic insight that can be applied in process-based models and datasets that can evaluate models across spatial and temporal scales.
NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Wilson, Greg S. (Editor); Leslie, Fred W. (Editor); Arnold, J. E. (Editor)
1989-01-01
Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.
Region effects influence local tree species diversity.
Ricklefs, Robert E; He, Fangliang
2016-01-19
Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.
ERIC Educational Resources Information Center
Aydin, Belgin; Unver, Meral Melek; Alan, Bülent; Saglam, Sercan
2017-01-01
This paper explains the process of designing a curriculum based on the Taba Model and the Global Scale of English (GSE) in an intensive language education program. The Taba Model emphasizing the involvement of the teachers and the learners in the curriculum development process was combined with the GSE, a psychometric tool measuring language…
Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kerry H.; Vizy, Edward
The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less
NASA Technical Reports Server (NTRS)
Starr, D. OC. (Editor); Melfi, S. Harvey (Editor)
1991-01-01
The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented.
Oceanography: the present and future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brewer, P.G.
This volume is the proceedings of a symposium held September 29 to October 2, 1980 at Woods Hole, Massachusetts, commemorating the 50th anniversary of the founding of the Woods Hole Oceanographic Institution. The book is the companion volume to ''Oceanography: the Past'' also published by Springer-Verlag. The papers are organized not by conventional disciplinary topics but by the ''scale'' of the oceanographic process: Part I, Small and Local Scale Oceanography; Part II, Regional Scale Oceanography; Part III, Global Scale Oceanography; and Part IV, The Human Scale. The articles presented, however, do not summarize such projects but give recognizable disciplinary summariesmore » and predictions in line with the subtitle of the book. In general, the articles are classed by this scale concept, although ''Shoreline Research'' by Pilkey and ''The Oceans Nearby'' by Murphy are better placed in the section The Human Scale and Bolin's ''Changing Global Biogeochemistry'' switched from The Human Scale to Global Scale as indicated by the title. This volume should be of value to marine geologists and geochemists, sedimentologists, and public-interest (environmental) geologists interested in oceanographic processes.« less
Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Worley, B. A. (Editor); Peslen, C. A. (Editor)
1984-01-01
Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.
Multi-scale Modeling of Arctic Clouds
NASA Astrophysics Data System (ADS)
Hillman, B. R.; Roesler, E. L.; Dexheimer, D.
2017-12-01
The presence and properties of clouds are critically important to the radiative budget in the Arctic, but clouds are notoriously difficult to represent in global climate models (GCMs). The challenge stems partly from a disconnect in the scales at which these models are formulated and the scale of the physical processes important to the formation of clouds (e.g., convection and turbulence). Because of this, these processes are parameterized in large-scale models. Over the past decades, new approaches have been explored in which a cloud system resolving model (CSRM), or in the extreme a large eddy simulation (LES), is embedded into each gridcell of a traditional GCM to replace the cloud and convective parameterizations to explicitly simulate more of these important processes. This approach is attractive in that it allows for more explicit simulation of small-scale processes while also allowing for interaction between the small and large-scale processes. The goal of this study is to quantify the performance of this framework in simulating Arctic clouds relative to a traditional global model, and to explore the limitations of such a framework using coordinated high-resolution (eddy-resolving) simulations. Simulations from the global model are compared with satellite retrievals of cloud fraction partioned by cloud phase from CALIPSO, and limited-area LES simulations are compared with ground-based and tethered-balloon measurements from the ARM Barrow and Oliktok Point measurement facilities.
NASA Technical Reports Server (NTRS)
Swift, Daniel W.
1991-01-01
The primary methodology during the grant period has been the use of micro or meso-scale simulations to address specific questions concerning magnetospheric processes related to the aurora and substorm morphology. This approach, while useful in providing some answers, has its limitations. Many of the problems relating to the magnetosphere are inherently global and kinetic. Effort during the last year of the grant period has increasingly focused on development of a global-scale hybrid code to model the entire, coupled magnetosheath - magnetosphere - ionosphere system. In particular, numerical procedures for curvilinear coordinate generation and exactly conservative differencing schemes for hybrid codes in curvilinear coordinates have been developed. The new computer algorithms and the massively parallel computer architectures now make this global code a feasible proposition. Support provided by this project has played an important role in laying the groundwork for the eventual development or a global-scale code to model and forecast magnetospheric weather.
Learning Contexts for Young Children in Chile: Process Quality Assessment in Preschool Centres
ERIC Educational Resources Information Center
Herrera, Maria Olivia; Mathiesen, Maria Elena; Merino, Jose Manuel; Recart, Isidora
2005-01-01
ITERS (Infant and Toddler Environment Rating Scale), ECERS (Early Childhood Environment Rating Scale) and SACERS (School Age Care Environment Rating Scale) are used to measure process quality. The psychometric characteristics of the three scales are established, and high reliability and adequate validity are observed. The global quality process…
NASA Astrophysics Data System (ADS)
Ribera, M.; Gopal, S.
2014-12-01
Productivity hotspots are traditionally defined as concentrations of relatively high biomass compared to global reference values. These hotspots often signal atypical processes occurring in a location, and identifying them is a great first step at understanding the complexity inherent in the system. However, identifying local hotspots can be difficult when an overarching global pattern (i.e. spatial autocorrelation) already exists. This problem is particularly apparent in marine ecosystems because values of productivity in near-shore areas are consistently higher than those of the open ocean due to oceanographic processes such as upwelling. In such cases, if the global reference layer used to detect hotspots is too wide, hotspots may be only identified near the coast while missing known concentrations of organisms in offshore waters. On the other hand, if the global reference layer is too small, every single location may be considered a hotspot. We applied spatial and traditional statistics to remote sensing data to determine the optimal reference global spatial scale for identifying marine productivity hotspots in the Gulf of Maine. Our iterative process measured Getis and Ord's local G* statistic at different global scales until the variance of each hotspot was maximized. We tested this process with different full resolution MERIS chlorophyll layers (300m spatial resolution) for the whole Gulf of Maine. We concluded that the optimal global scale depends on the time of the year the remote sensing data was collected, particularly when coinciding with known seasonal phytoplankton blooms. The hotspots found through this process were also spatially heterogeneous in size, with bigger hotspots in areas offshore than in locations inshore. These results may be instructive for both managers and fisheries researchers as they adapt their fisheries management policies and methods to an ecosystem based approach (EBM).
Estimation of Fractional Plant Lifeform Cover Using Landsat and Airborne LiDAR/hyperspectral Data
NASA Astrophysics Data System (ADS)
Parra, A. S.; Xu, Q.; Dilts, T.; Weisberg, P.; Greenberg, J. A.
2017-12-01
Land-cover change has generally been understood as the result of local, landscape or regional-scale processes with most studies focusing on case-study landscapes or smaller regions. However, as we observe similar types of land-cover change occurring across different biomes worldwide, it becomes clear that global-scale processes such as climate change and CO2 fertilization, in interaction with local influences, are underlying drivers in land-cover change patterns. Prior studies on global land-cover change may not have had a suitable spatial, temporal and thematic resolution for allowing the identification of such patterns. Furthermore, the lack of globally consistent spatial data products also constitutes a limiting factor in evaluating both proximate and ultimate causes of land-cover change. In this study, we derived a global model for broadleaf tree, needleleaf tree, shrub, herbaceous, and "other" fractional cover using Landsat imagery. Combined LiDAR/hyperspectral data sets were used for calibration and validation of the Landsat-derived products. Spatially explicit uncertainties were also created as part of the data products. Our results highlight the potential for large-scale studies that model local and global influences on land-cover transition types and rates at fine thematic, spatial, and temporal resolutions. These spatial data products are relevant for identifying patterns in land-cover change due to underlying global-scale processes and can provide valuable insights into climatic and land-use factors determining vegetation distributions.
On the limitations of General Circulation Climate Models
NASA Technical Reports Server (NTRS)
Stone, Peter H.; Risbey, James S.
1990-01-01
General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.
Particle Energization via Tearing Instability with Global Self-Organization Constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarff, John; Guo, Fan
The presentation reviews how tearing magnetic reconnection leads to powerful ion energization in reversed field pinch (RFP) plasmas. A mature MHD model for tearing instability has been developed that captures key nonlinear dynamics from the global to intermediate spatial scales. A turbulent cascade is also present that extends to at least the ion gyroradius scale, within which important particle energization mechanisms are anticipated. In summary, Ion heating and acceleration associated with magnetic reconnection from tearing instability is a powerful process in the RFP laboratory plasma (gyro-resonant and stochastic processes are likely candidates to support the observed rapid heating and othermore » features, reconnection-driven electron heating appears weaker or even absent, energetic tail formation for ions and electrons). Global self-organization strongly impacts particle energization (tearing interactions that span to core to edge, global magnetic flux change produces a larger electric field and runaway, correlations in electric and magnetic field fluctuations needed for dynamo feedback, impact of transport processes (which can be quite different for ions and electrons), inhomogeneity on the system scale, e.g., strong edge gradients).« less
NASA Technical Reports Server (NTRS)
Mohr, Karen Irene; Tao, Wei-Kuo; Chern, Jiun-Dar; Kumar, Sujay V.; Peters-Lidard, Christa D.
2013-01-01
The present generation of general circulation models (GCM) use parameterized cumulus schemes and run at hydrostatic grid resolutions. To improve the representation of cloud-scale moist processes and landeatmosphere interactions, a global, Multi-scale Modeling Framework (MMF) coupled to the Land Information System (LIS) has been developed at NASA-Goddard Space Flight Center. The MMFeLIS has three components, a finite-volume (fv) GCM (Goddard Earth Observing System Ver. 4, GEOS-4), a 2D cloud-resolving model (Goddard Cumulus Ensemble, GCE), and the LIS, representing the large-scale atmospheric circulation, cloud processes, and land surface processes, respectively. The non-hydrostatic GCE model replaces the single-column cumulus parameterization of fvGCM. The model grid is composed of an array of fvGCM gridcells each with a series of embedded GCE models. A horizontal coupling strategy, GCE4fvGCM4Coupler4LIS, offered significant computational efficiency, with the scalability and I/O capabilities of LIS permitting landeatmosphere interactions at cloud-scale. Global simulations of 2007e2008 and comparisons to observations and reanalysis products were conducted. Using two different versions of the same land surface model but the same initial conditions, divergence in regional, synoptic-scale surface pressure patterns emerged within two weeks. The sensitivity of largescale circulations to land surface model physics revealed significant functional value to using a scalable, multi-model land surface modeling system in global weather and climate prediction.
Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers
NASA Technical Reports Server (NTRS)
Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)
1996-01-01
Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.
Regional atmospheric models simulate their pertinent processes over a limited portion of the global atmosphere. This portion of the atmosphere can be a large fraction, as in the case of continental-scale modeling, or small fraction, as in the case of urban-scale modeling. Regio...
Plant leaf traits, canopy processes, and global atmospheric chemistry interactions.
NASA Astrophysics Data System (ADS)
Guenther, A. B.
2017-12-01
Plants produce and emit a diverse array of volatile metabolites into the atmosphere that participate in chemical reactions that influence distributions of air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. It is now widely accepted that accurate estimates of these emissions are required as inputs for regional air quality and global climate models. Predicting these emissions is complicated by the large number of volatile organic compounds, driving variables (e.g., temperature, solar radiation, abiotic and biotic stresses) and processes operating across a range of scales. Modeling efforts to characterize emission magnitude and variations will be described along with an assessment of the observations available for parameterizing and evaluating these models including discussion of the limitations and challenges associated with existing model approaches. A new approach for simulating canopy scale organic emissions on regional to global scales will be described and compared with leaf, canopy and regional scale flux measurements. The importance of including additional compounds and processes as well as improving estimates of existing ones will also be discussed.
This paper reviews the controls on aeolian processes and their consequences at plant-interspace, patch-landscape, and regional-global scales. Based on this review, we define the requirements for a cross-scale model of wind erosion in structurally complex arid and semiarid ecosyst...
NASA Astrophysics Data System (ADS)
Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.
2009-09-01
This contribution presents the ongoing developments of a new fully on-line chemical weather prediction system for meso to global scale applications. The modeling system consists of a mineral dust module and a gas-phase chemistry module coupled on-line to a unified global-regional atmospheric driver. This approach allows solving small scale processes and their interactions at local to global scales. Its unified environment maintains the consistency of all the physico-chemical processes involved. The atmospheric driver is the NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) developed at National Centers for Environmental Prediction (NCEP). It represents an evolution of the operational WRF-NMME model extending from meso to global scales. Its unified non-hydrostatic dynamical core supports regional and global simulations. The Barcelona Supercomputing Center is currently designing and implementing a chemistry transport model coupled online with the new global/regional NMMB. The new modeling system is intended to be a powerful tool for research and to provide efficient global and regional chemical weather forecasts at sub-synoptic and mesoscale resolutions. The online coupling of the chemistry follows the approach similar to that of the mineral dust module already coupled to the atmospheric driver, NMMB/BSC-DUST (Pérez et al., 2008). Chemical species are advected and mixed at the corresponding time steps of the meteorological tracers using the same numerical scheme. Advection is eulerian, positive definite and monotone. The chemical mechanism and chemistry solver is based on the Kinetic PreProcessor KPP (Damian et al., 2002) package with the main purpose of maintaining a wide flexibility when configuring the model. Such approach will allow using a simplified chemical mechanism for global applications or a more complete mechanism for high-resolution local or regional studies. Moreover, it will permit the implementation of a specific configuration for forecasting applications in regional or global domains. An emission process allows the coupling of different emission inventories sources such as RETRO, EDGAR and GEIA for the global domain, EMEP for Europe and HERMES for Spain. The photolysis scheme is based on the Fast-J scheme, coupled with physics of each model layer (e.g., aerosols, clouds, absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The dry deposition scheme follows the deposition velocity analogy for gases, enabling the calculation of deposition fluxes from airborne concentrations. No cloud-chemistry processes are included in the system yet (no wet deposition, scavenging and aqueous chemistry). The modeling system developments will be presented and first results of the gas-phase chemistry at global scale will be discussed. REFERENCES Janjic, Z.I., and Black, T.L., 2007. An ESMF unified model for a broad range of spatial and temporal scales, Geophysical Research Abstracts, 9, 05025. Pérez, C., Haustein, K., Janjic, Z.I., Jorba, O., Baldasano, J.M., Black, T.L., and Nickovic, S., 2008. An online dust model within the meso to global NMMB: current progress and plans. AGU Fall Meeting, San Francisco, A41K-03, 2008. Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G.R., 2002. The kinetic preprocessor KPP - A software environment for solving chemical kinetics. Comp. Chem. Eng., 26, 1567-1579. Sandu, A., and Sander, R., 2006. Technical note:Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. and Phys., 6, 187-195.
Global scale stratospheric processes as measured by the infrasound IMS network
NASA Astrophysics Data System (ADS)
Le Pichon, A.; Ceranna, L.; Kechut, P.
2012-04-01
IMS infrasound array data are routinely processed at the International Data Center (IDC). The wave parameters of the detected signals are estimated with the Progressive Multi-Channel Correlation method (PMCC). This new implementation of the PMCC algorithm allows the full frequency range of interest (0.01-5 Hz) to be processed efficiently in a single computational run. We have processed continuous recordings from 41 certified IMS stations from 2005 to 2010. We show that microbaroms are the dominant source of signals and are near-continuously globally detected. The observed azimuthal seasonal trend correlates well with the variation of the effective sound speed ratio which is a proxy for the combined effects of refraction due to sound speed gradients and advection due to along-path wind on infrasound propagation. A general trend in signal backazimuth is observed between winter and summer, driven by the seasonal reversal of the stratospheric winds. Combined with propagation modeling, we show that such an analysis enables a characterization of the wind and temperature structure above the stratosphere and may provide detailed information on upper atmospheric processes (e.g., large-scale planetary waves, stratospheric warming effects). We correlate perturbations and deviations from the seasonal trend to short time-scale variability of the atmosphere. We discuss the potential benefit of long-term infrasound monitoring to infer stratospheric processes for the first time on a global scale.
NASA Astrophysics Data System (ADS)
Braakhekke, Maarten; Rebel, Karin; Dekker, Stefan; Smith, Benjamin; Sutanudjaja, Edwin; van Beek, Rens; van Kampenhout, Leo; Wassen, Martin
2017-04-01
In up to 30% of the global land surface ecosystems are potentially influenced by the presence of a shallow groundwater table. In these regions upward water flux by capillary rise increases soil moisture availability in the root zone, which has a strong effect on evapotranspiration, vegetation dynamics, and fluxes of carbon and nitrogen. Most global hydrological models and several land surface models simulate groundwater table dynamics and their effects on land surface processes. However, these models typically have relatively simplistic representation of vegetation and do not consider changes in vegetation type and structure. Dynamic global vegetation models (DGVMs), describe land surface from an ecological perspective, combining detailed description of vegetation dynamics and structure, and biogeochemical processes and are thus more appropriate to simulate the ecological and biogeochemical effects of groundwater interactions. However, currently virtually all DGVMs ignore these effects, assuming that water tables are too deep to affect soil moisture in the root zone. We have implemented a tight coupling between the dynamic global ecosystem model LPJ-GUESS and the global hydrological model PCR-GLOBWB, which explicitly simulates groundwater dynamics. This coupled model allows us to explicitly account for groundwater effects on terrestrial ecosystem processes at global scale. Results of global simulations indicate that groundwater strongly influences fluxes of water, carbon and nitrogen, in many regions, adding up to a considerable effect at the global scale.
Taylor, Lyla L; Banwart, Steve A; Valdes, Paul J; Leake, Jonathan R; Beerling, David J
2012-02-19
Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO(2)) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean-atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal-geosphere interactions at the global scale, which constitutes a first step towards developing 'next-generation' geochemical models.
Taylor, Lyla L.; Banwart, Steve A.; Valdes, Paul J.; Leake, Jonathan R.; Beerling, David J.
2012-01-01
Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models. PMID:22232768
Geoscience Education and Global Development
ERIC Educational Resources Information Center
Locke, Sharon; Libarkin, Julie; Chang, Chun-Yen
2012-01-01
A fundamental goal of geoscience education is ensuring that all inhabitants of the planet have knowledge of the natural processes that shape the physical environment, and understand how the actions of humans have an impact on the Earth on local, regional, and global scales. Geoscientists accept that deep understanding of natural processes requires…
A CPT for Improving Turbulence and Cloud Processes in the NCEP Global Models
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Moorthi, S.; Randall, D. A.; Pincus, R.; Bogenschutz, P.; Belochitski, A.; Chikira, M.; Dazlich, D. A.; Swales, D. J.; Thakur, P. K.; Yang, F.; Cheng, A.
2016-12-01
Our Climate Process Team (CPT) is based on the premise that the NCEP (National Centers for Environmental Prediction) global models can be improved by installing an integrated, self-consistent description of turbulence, clouds, deep convection, and the interactions between clouds and radiative and microphysical processes. The goal of our CPT is to unify the representation of turbulence and subgrid-scale (SGS) cloud processes and to unify the representation of SGS deep convective precipitation and grid-scale precipitation as the horizontal resolution decreases. We aim to improve the representation of small-scale phenomena by implementing a PDF-based SGS turbulence and cloudiness scheme that replaces the boundary layer turbulence scheme, the shallow convection scheme, and the cloud fraction schemes in the GFS (Global Forecast System) and CFS (Climate Forecast System) global models. We intend to improve the treatment of deep convection by introducing a unified parameterization that scales continuously between the simulation of individual clouds when and where the grid spacing is sufficiently fine and the behavior of a conventional parameterization of deep convection when and where the grid spacing is coarse. We will endeavor to improve the representation of the interactions of clouds, radiation, and microphysics in the GFS/CFS by using the additional information provided by the PDF-based SGS cloud scheme. The team is evaluating the impacts of the model upgrades with metrics used by the NCEP short-range and seasonal forecast operations.
Multi-scale symbolic transfer entropy analysis of EEG
NASA Astrophysics Data System (ADS)
Yao, Wenpo; Wang, Jun
2017-10-01
From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.
Global-scale tectonic patterns on Pluto
NASA Astrophysics Data System (ADS)
Matsuyama, I.; Keane, J. T.; Kamata, S.
2016-12-01
The New Horizons spacecraft revealed a global-scale tectonic pattern on the surface of Pluto which is presumably related to its formation and early evolution. Changes in the rotational and tidal potentials, expansion, and loading can generate stresses capable of producing global-scale tectonic patterns. The current alignment of Sputnik Planum with the tidal axis suggests a reorientation of Pluto relative to the rotation and tidal axes, or true polar wander. This reorientation can be driven by mass loading associated with Sputnik Planum. We developed a general theoretical formalism for the calculation of tectonic patterns due to a variety of process including true polar wander, loading, and expansion. The formalism is general enough to be applicable to non-axisymmetric loads. We illustrate that the observed global-scale tectonic pattern can be explained by stresses generated by true polar wander, Sputnik Planum loading, and expansion.
The Global Distribution of Precipitation and Clouds. Chapter 2.4
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Adler, Robert; Huffman, George; Rossow, William; Ritter, Michael; Curtis, Scott
2004-01-01
The water cycle is the key circuit moving water through the Earth's system. This large system, powered by energy from the sun, is a continuous exchange of moisture between the oceans, the atmosphere, and the land. Precipitation (including rain, snow, sleet, freezing rain, and hail), is the primary mechanism for transporting water from the atmosphere back to the Earth's surface and is the key physical process that links aspects of climate, weather, and the global water cycle. Global precipitation and associate cloud processes are critical for understanding the water cycle balance on a global scale and interactions with the Earth's climate system. However, unlike measurement of less dynamic and more homogenous meteorological fields such as pressure or even temperature, accurate assessment of global precipitation is particularly challenging due to its highly stochastic and rapidly changing nature. It is not uncommon to observe a broad spectrum of precipitation rates and distributions over very localized time scales. Furthermore, precipitating systems generally exhibit nonhomogeneous spatial distributions of rain rates over local to global domains.
Global Swath and Gridded Data Tiling
NASA Technical Reports Server (NTRS)
Thompson, Charles K.
2012-01-01
This software generates cylindrically projected tiles of swath-based or gridded satellite data for the purpose of dynamically generating high-resolution global images covering various time periods, scaling ranges, and colors called "tiles." It reconstructs a global image given a set of tiles covering a particular time range, scaling values, and a color table. The program is configurable in terms of tile size, spatial resolution, format of input data, location of input data (local or distributed), number of processes run in parallel, and data conditioning.
NASA Technical Reports Server (NTRS)
Mcewen, A. S.; Soderblom, L. A.; Becker, T. L.; Lee, E. M.; Batson, R. M.
1993-01-01
About 1000 Viking Orbiter red and violet filter images have been processed to provide global color coverage of Mars at a scale of 1 km/pixel. Individual image frames acquired during a single spacecraft revolution ('rev') were first processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking. A total of 57 'single-rev' mosaics have been produced. Phase angles range from 13 to 85 degrees. All the mosaics are geometrically tied to the Mars digital image mosaic (MDIM), a black-and-white base map with a scale of 231 m/pixel.
Rapid communication: Global-local processing affects recognition of distractor emotional faces.
Srinivasan, Narayanan; Gupta, Rashmi
2011-03-01
Recent studies have shown links between happy faces and global, distributed attention as well as sad faces to local, focused attention. Emotions have been shown to affect global-local processing. Given that studies on emotion-cognition interactions have not explored the effect of perceptual processing at different spatial scales on processing stimuli with emotional content, the present study investigated the link between perceptual focus and emotional processing. The study investigated the effects of global-local processing on the recognition of distractor faces with emotional expressions. Participants performed a digit discrimination task with digits at either the global level or the local level presented against a distractor face (happy or sad) as background. The results showed that global processing associated with broad scope of attention facilitates recognition of happy faces, and local processing associated with narrow scope of attention facilitates recognition of sad faces. The novel results of the study provide conclusive evidence for emotion-cognition interactions by demonstrating the effect of perceptual processing on emotional faces. The results along with earlier complementary results on the effect of emotion on global-local processing support a reciprocal relationship between emotional processing and global-local processing. Distractor processing with emotional information also has implications for theories of selective attention.
NASA Astrophysics Data System (ADS)
Neary, L.; Kaminski, J. W.; Struzewska, J.; Ainslie, B.; McConnell, J. C.
2007-12-01
Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale model. The integrated model, GEM-AQ, has been developed as a platform to investigate chemical weather at scales from global to urban. On the global scale, the model was exercised for five years (2001-2005) to evaluate its ability to simulate seasonal variations and regional distributions of trace gases such as ozone, nitrogen dioxide and carbon monoxide. The model results are compared with observations from satellites, aircraft measurement campaigns and balloon sondes. The same model has also been evaluated on the regional (~15km resolution) and urban scale (~3km resolution). A simulation of the formation and transport of photooxidants during the European heat wave of 2006 was performed and compared with surface observations throughout central and eastern Europe. The complex topographic region of the Lower Fraser Valley in British Columbia was the focus of another model evaluation during the PACIFIC 2001 field campaign. Comparison of model results with observations during this period will be shown.
NASA Astrophysics Data System (ADS)
Wu, Y.; Shen, B. W.; Cheung, S.
2016-12-01
Recent advance in high-resolution global hurricane simulations and visualizations have collectively suggested the importance of both downscaling and upscaling processes in the formation and intensification of TCs. To reveal multiscale processes from massive volume of global data for multiple years, a scalable Parallel Ensemble Empirical Mode Decomposition (PEEMD) method has been developed for the analysis. In this study, the PEEMD is applied to analyzing 10-year (2004-2013) ERA-Interim global 0.750 resolution reanalysis data to explore the role of the downscaling processes in tropical cyclogenesis associated with African Easterly Waves (AEWs). Using the PEEMD, raw data are decomposed into oscillatory Intrinsic Function Modes (IMFs) that represent atmospheric systems of the various length scales and the trend mode that represents a non-oscillatory large scale environmental flow. Among oscillatory modes, results suggest that the third oscillatory mode (IMF3) is statistically correlated with the TC/AEW scale systems. Therefore, IMF3 and trend mode are analyzed in details. Our 10-year analysis shows that more than 50% of the AEW associated hurricanes reveal the association of storms' formation with the significant downscaling shear transfer from the larger-scale trend mode to the smaller scale IMF3. Future work will apply the PEEMD to the analysis of higher-resolution datasets to explore the role of the upscaling processes provided by the convection (or TC) in the development of the TC (or AEW). Figure caption: The tendency for horizontal wind shear for the total winds (black line), IMF3 (blue line), and trend mode (red line) and SLP (black dotted line) along the storm track of Helene (2006).
Examining the Validity of Self-Reports on Scales Measuring Students' Strategic Processing
ERIC Educational Resources Information Center
Samuelstuen, Marit S.; Braten, Ivar
2007-01-01
Background: Self-report inventories trying to measure strategic processing at a global level have been much used in both basic and applied research. However, the validity of global strategy scores is open to question because such inventories assess strategy perceptions outside the context of specific task performance. Aims: The primary aim was to…
Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system
NASA Astrophysics Data System (ADS)
Yan, Y.-Y.; Lin, J.-T.; Chen, J.; Hu, L.
2015-09-01
Small-scale nonlinear chemical and physical processes over pollution source regions affect the global ozone (O3) chemistry, but these processes are not captured by current global chemical transport models (CTMs) and chemistry-climate models that are limited by coarse horizontal resolutions (100-500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use a recently built two-way coupling system of the GEOS-Chem CTM to simulate the global tropospheric O3 in 2009. The system couples the global model (at 2.5° long. × 2° lat.) and its three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb in annual average afternoon O3. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of urban-rural contrast and other small-scale processes. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with enhancements by 5 % in the lifetimes of methyl chloroform (from 5.58 to 5.87 yr) and methane (from 9.63 to 10.12 yr), bringing them closer to observation-based estimates. Improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whicker, Jeffrey J; Field, Jason P; Belnap, Jayne
Emission and redistribution of dust due to wind erosion in drylands drives major biogeochemical dynamics and provides important aeolian environmental connectivity at scales from individual plants up to the global scale. Yet, perhaps because most relevant research on aeolian processes has been presented in a geosciences rather than ecological context, most ecological studies do not explicitly consider dust-driven processes. To bridge this disciplinary gap, we provide a general overview of the ecological importance of dust, examine complex interactions between wind erosion and ecosystem dynamics from the plant-interspace scale to regional and global scales, and highlight specific examples of how disturbancemore » affects these interactions and their consequences. Changes in climate and intensification of land use will both likely lead to increased dust production. To address these challenges, environmental scientists, land managers and policy makers need to more explicitly consider dust in resource management decisions.« less
NASA/MSFC FY90 Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Leslie, Fred W. (Editor)
1990-01-01
Research supported by the Global Atmospheric Research Program at the Marshall Space Flight Center on atmospheric remote sensing, meteorology, numerical weather forecasting, satellite data analysis, cloud precipitation, atmospheric circulation, atmospheric models and related topics is discussed.
Bringing the Global Scale to Education in Natural Resources Management
NASA Astrophysics Data System (ADS)
Turner, D. P.
2017-12-01
Given the ominous trajectory of rapid global environmental change, environmental managers must grapple with global scale structures, processes, and concepts. The concept of the Anthropocene Epoch, albeit contested, is highly integrative across disciplines and temporal scales, and thus potentially helpful in the context of educating environmental managers. It can be framed temporally in terms of the geologic history of the global environment, the initiation and acceleration of anthropogenic impacts on the environment, and a future global environment that is highly dependent on human decisions. A key lesson from Earth's pre-human geologic history is that global climate has generally been linked to greenhouse gas concentrations, and many mass extinction events were associated with high greenhouse gas concentrations. The pervasive impacts of the contemporary technosphere on the biosphere point especially to the need to conserve biosphere capital. Scenarios of Earth's future environment, based on Earth system models, suggest that business-as-usual technologies and economic practices will set the stage for a biophysical environment that is hostile (if not inimical) to a high technology global civilization. These lessons can inform and inspire sub-global management efforts to mitigate and adapt to global environmental change.
NASA Astrophysics Data System (ADS)
Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.
2015-12-01
Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.
Friend or Foe? Urbanization and the Biosphere
NASA Astrophysics Data System (ADS)
Schneider, A.
2008-12-01
The environmental influence of urban areas is still often assumed to be negligible at global scales. Although local environmental conditions such as the urban heat island effect are well-documented, surprisingly little work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, improved systems for measuring, monitoring and modeling the global environmental impacts of cities should receive far greater scientific attention. This presentation will summarize urban environmental issues and impacts at local, regional and global scales and introduce the fundamental concepts and tools needed to measure and respond to these problems. Newly available datasets for the distribution and intensity of urban land use will be introduced, demonstrating the importance of clearly defining 'urbanized' land for empirical studies at the global scale. The negative environmental impacts of urban development will be compared with the often over-looked "positives" of urban growth from a global environmental perspective. Progress in understanding and forecasting the global impacts of urban areas will require systematic global urban research designs that treat cities as urban systems, anthropogenic biomes and urban ecoregions. The challenges and opportunities of global environmental research on urban areas have important implications not only for current research but also for educating the next generation of earth system scientists.
Global scale stratospheric processes as measured by the infrasound IMS network
NASA Astrophysics Data System (ADS)
Le Pichon, A.; Ceranna, L.; Kechut, P.
2012-12-01
IMS infrasound array data are routinely processed at the International Data Center (IDC). The wave parameters of the detected signals are estimated with the Progressive Multi-Channel Correlation method (PMCC). We have processed continuous recordings from 41 certified IMS stations from 2005 to 2010 in the 0.01-5 Hz frequency band using a new implementation of the PMCC algorithm. Microbaroms are the dominant source of signals near-continuously and globally detected. The observed azimuthal seasonal trend correlates well with the variation of the effective sound speed ratio (Veff-ratio) which is a proxy for the combined effects of refraction due to sound speed gradients and advection due to along-path stratospheric wind on infrasound propagation. Systematic correlations between infrasound parameters (e.g. number of detections, amplitude) and Veff-ratio calculated at different ranges of altitudes are performed. Combined with propagation modeling, we show that such an analysis enables a characterization of the wind and temperature structure above the stratosphere and may provide detailed information on upper atmospheric processes (e.g., large-scale planetary waves, stratospheric warming effects) from the seasonal trend to short time scale variability. We discuss the potential benefit of long-term infrasound monitoring to infer stratospheric processes for the first time on a global scale. This study suggests poorly resolved stratospheric wind fluctuations at low latitude regions with strengths of horizontal wind structures underestimated by at least ~10 m/s. It is expected that this correlation between infrasound observations and the state-of-the-art atmospheric specifications will allow to statistically quantify the spatial and temporal resolutions of the wind structures at different ranges of altitudes, latitudes and time scales.
Mercury is a ubiquitous global environmental toxicant responsible for most US fish advisories. Processes governing mercury concentrations in rivers and streams are not well understood, particularly at multiple spatial scales. We investigate how insights gained from reach-scale me...
NASA Astrophysics Data System (ADS)
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
Nezhadhaghighi, Mohsen Ghasemi
2017-08-01
Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.
NASA/MSFC FY-85 Atmospheric Processes Research Review
NASA Technical Reports Server (NTRS)
Vaughan, W. W. (Compiler); Porter, F. (Compiler)
1985-01-01
The two main areas of focus for the research program are global scale processes and mesoscale processes. Geophysical fluid processes, satellite doppler lidar, satellite data analysis, atmospheric electricity, doppler lidar wind research, and mesoscale modeling are among the topics covered.
Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.
Wen, Haiguang; Liu, Zhongming
2016-06-01
Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed with resting-state fMRI, respectively. Copyright © 2016 the authors 0270-6474/16/366030-11$15.00/0.
NASA Astrophysics Data System (ADS)
Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang
2013-04-01
The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.
Aeolian Processes and the Biosphere
NASA Astrophysics Data System (ADS)
Ravi, Sujith; D'Odorico, Paolo; Breshears, David D.; Field, Jason P.; Goudie, Andrew S.; Huxman, Travis E.; Li, Junran; Okin, Gregory S.; Swap, Robert J.; Thomas, Andrew D.; Van Pelt, Scott; Whicker, Jeffrey J.; Zobeck, Ted M.
2011-08-01
Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with “hot spots” being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large-scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.
GEWEX Continental-scale International Project (GCIP)
NASA Technical Reports Server (NTRS)
Try, Paul
1993-01-01
The Global Energy and Water Cycle Experiment (GEWEX) represents the World Climate Research Program activities on clouds, radiation, and land-surface processes. The goal of the program is to reproduce and predict, by means of suitable models, the variations of the global hydrological regime and its impact on atmospheric and oceanic dynamics. However, GEWEX is also concerned with variations in regional hydrological processes and water resources and their response to changes in the environment such as increasing greenhouse gases. In fact, GEWEX contains a major new international project called the GEWEX Continental-scale International Project (GCIP), which is designed to bridge the gap between the small scales represented by hydrological models and those scales that are practical for predicting the regional impacts of climate change. The development and use of coupled mesoscale-hydrological models for this purpose is a high priority in GCIP. The objectives of GCIP are presented.
Improving Global Health Education: Development of a Global Health Competency Model
Ablah, Elizabeth; Biberman, Dorothy A.; Weist, Elizabeth M.; Buekens, Pierre; Bentley, Margaret E.; Burke, Donald; Finnegan, John R.; Flahault, Antoine; Frenk, Julio; Gotsch, Audrey R.; Klag, Michael J.; Lopez, Mario Henry Rodriguez; Nasca, Philip; Shortell, Stephen; Spencer, Harrison C.
2014-01-01
Although global health is a recommended content area for the future of education in public health, no standardized global health competency model existed for master-level public health students. Without such a competency model, academic institutions are challenged to ensure that students are able to demonstrate the knowledge, skills, and attitudes (KSAs) needed for successful performance in today's global health workforce. The Association of Schools of Public Health (ASPH) sought to address this need by facilitating the development of a global health competency model through a multistage modified-Delphi process. Practitioners and academic global health experts provided leadership and guidance throughout the competency development process. The resulting product, the Global Health Competency Model 1.1, includes seven domains and 36 competencies. The Global Health Competency Model 1.1 provides a platform for engaging educators, students, and global health employers in discussion of the KSAs needed to improve human health on a global scale. PMID:24445206
Microwave Remote Sensing and the Cold Land Processes Field Experiment
NASA Technical Reports Server (NTRS)
Kim, Edward J.; Cline, Don; Davis, Bert; Hildebrand, Peter H. (Technical Monitor)
2001-01-01
The Cold Land Processes Field Experiment (CLPX) has been designed to advance our understanding of the terrestrial cryosphere. Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise Research Strategy, the NASA Global Water and Energy Cycle (GWEC) Initiative, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantitative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. The CLPX Plan has been developed through the efforts of over 60 interested scientists that have participated in the NASA Cold Land Processes Working Group (CLPWG). This group is charged with the task of assessing, planning and implementing the required background science, technology, and application infrastructure to support successful land surface hydrology remote sensing space missions. A major product of the experiment will be a comprehensive, legacy data set that will energize many aspects of cold land processes research. The CLPX will focus on developing the quantitative understanding, models, and measurements necessary to extend our local-scale understanding of water fluxes, storage, and transformations to regional and global scales. The experiment will particularly emphasize developing a strong synergism between process-oriented understanding, land surface models and microwave remote sensing. The experimental design is a multi-sensor, multi-scale (1-ha to 160,000 km ^ {2}) approach to providing the comprehensive data set necessary to address several experiment objectives. A description focusing on the microwave remote sensing components (ground, airborne, and spaceborne) of the experiment will be presented.
Global changes in biogeochemical cycles in response to human activities
NASA Technical Reports Server (NTRS)
Moore, Berrien, III; Melillo, Jerry
1994-01-01
The main objective of our research was to characterize biogeochemical cycles at continental and global scales in both terrestrial and aquatic ecosystems. This characterization applied to both natural ecosystems and those disturbed by human activity. The primary elements of interest were carbon and nitrogen and the analysis sought to quantify standing stocks and dynamic cycling processes. The translocation of major nutrients from the terrestrial landscape to the atmosphere (via trace gases) and to fluvial systems (via leaching, erosional losses, and point source pollution) were of particular importance to this study. Our aim was to develop the first generation of Earth System Models. Our research was organized around the construction and testing of component biogeochemical models which treated terrestrial ecosystem processes, aquatic nutrient transport through drainage basins, and trace gas exchanges at the continental and global scale. A suite of three complementary models were defined within this construct. The models were organized to operate at a 1/2 degree latitude by longitude level of spatial resolution and to execute at a monthly time step. This discretization afforded us the opportunity to understand the dynamics of the biosphere down to subregional scales, while simultaneously placing these dynamics into a global context.
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
GPU Multi-Scale Particle Tracking and Multi-Fluid Simulations of the Radiation Belts
NASA Astrophysics Data System (ADS)
Ziemba, T.; Carscadden, J.; O'Donnell, D.; Winglee, R.; Harnett, E.; Cash, M.
2007-12-01
The properties of the radiation belts can vary dramatically under the influence of magnetic storms and storm-time substorms. The task of understanding and predicting radiation belt properties is made difficult because their properties determined by global processes as well as small-scale wave-particle interactions. A full solution to the problem will require major innovations in technique and computer hardware. The proposed work will demonstrates liked particle tracking codes with new multi-scale/multi-fluid global simulations that provide the first means to include small-scale processes within the global magnetospheric context. A large hurdle to the problem is having sufficient computer hardware that is able to handle the dissipate temporal and spatial scale sizes. A major innovation of the work is that the codes are designed to run of graphics processing units (GPUs). GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for little more cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. A demonstration of the code pushing more than 500,000 particles faster than real time is presented, and used to provide new insight into radiation belt dynamics.
Global terrestrial biogeochemistry: Perturbations, interactions, and time scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braswell, B.H. Jr.
1996-12-01
Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetimemore » of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.« less
Global patterns of groundwater table depth.
Fan, Y; Li, H; Miguez-Macho, G
2013-02-22
Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.
Participation, decentralisation and déjà vu: Remaking democracy in response to AIDS?
Kenworthy, Nora J
2014-01-01
Participation, decentralisation and community partnership have served as prominent motifs and driving philosophies in the global scale-up of HIV programming. Given the fraught histories of these ideas in development studies, it is surprising to encounter their broad appeal as benchmarks and moral practices in global health work. This paper examines three intertwined, government-endorsed projects to deepen democratic processes of HIV policy-making in Lesotho: (1) the 'Gateway Approach' for decentralising and coordinating local HIV responses; (2) the implementation of a community council-driven priority-setting process; and (3) the establishment of community AIDS councils. Taken together, these efforts are striking and well intentioned, but nonetheless struggle in the face of powerful global agendas to establish meaningful practices of participation and decentralisation. Examining these efforts shows that HIV scale-up conveys formidable lessons for citizens about the politics of global health and their place in the world. As global health initiatives continue to remake important dimensions of political functioning, practitioners, agencies and governments implementing similar democratising projects may find the warnings of earlier development critics both useful and necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R.; Aziz, H. M. Abdul; Coletti, Mark A.
Changing human activity within a geographical location may have significant influence on the global climate, but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes to affect global climate within that modeling framework. Additionally, we must have tools that provide decision support and inform local and regional policies regarding mitigation of and adaptation to climate change. The development of next-generation earth system models, that can produce actionable results with minimum uncertainties, depends on understanding global climate change and human activity interactions at policy implementation scales. Unfortunately, at best we currently have only limitedmore » schemes for relating high-resolution sectoral emissions to real-time weather, ultimately to become part of larger regions and well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we know about these processes, what we can model, where we have gaps in these areas and how we can rise to the challenge to fill these gaps.« less
Water dependency and water exploitation at global scale as indicators of water security
NASA Astrophysics Data System (ADS)
De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.
2015-12-01
A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.
Process-based upscaling of surface-atmosphere exchange
NASA Astrophysics Data System (ADS)
Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.
2015-12-01
Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.
The Demographic Crisis and Global Migration - Selected Issues
NASA Astrophysics Data System (ADS)
Frątczak, Ewa Zofia
2016-01-01
Currently the world is undergoing a serious demographic shift, characterised by slowing population growth in developed countries. However, the population in certain less-developed regions of the world is still increasing. According to UN data, as of 2015, (World...2015), 244 million people (or 3.3% of the global population) lived outside their country of birth. While most of these migrants travel abroad looking for better economic and social conditions, there are also those forced to move by political crises, revolutions and war. Such migration is being experienced currently in Europe, a continent which is thus going through both a demographic crisis related to the low fertility rate and population ageing, and a migration crisis. Global migrations link up inseparably with demographic transformation processes taking place globally and resulting in the changing tempo of population growth. Attracting and discouraging migration factors are changing at the same time, as is the scale and range of global migration, and with these also the global consequences. The focus of work addressed in this paper is on global population, the demographic transformation and the role of global migrations, as well as the range and scale of international migration, and selected aspects of global migrations including participation in the global labour market, the scale of monetary transfers (remittances) and the place of global migration in the UN 2030 Agenda for Sustainable Development (Transforming...2015) and the Europe of two crises (Domeny 2016).
Optimal stomatal behaviour around the world
NASA Astrophysics Data System (ADS)
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa
2015-05-01
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
All is not loss: plant biodiversity in the anthropocene.
Ellis, Erle C; Antill, Erica C; Kreft, Holger
2012-01-01
Anthropogenic global changes in biodiversity are generally portrayed in terms of massive native species losses or invasions caused by recent human disturbance. Yet these biodiversity changes and others caused directly by human populations and their use of land tend to co-occur as long-term biodiversity change processes in the Anthropocene. Here we explore contemporary anthropogenic global patterns in vascular plant species richness at regional landscape scales by combining spatially explicit models and estimates for native species loss together with gains in exotics caused by species invasions and the introduction of agricultural domesticates and ornamental exotic plants. The patterns thus derived confirm that while native losses are likely significant across at least half of Earth's ice-free land, model predictions indicate that plant species richness has increased overall in most regional landscapes, mostly because species invasions tend to exceed native losses. While global observing systems and models that integrate anthropogenic species loss, introduction and invasion at regional landscape scales remain at an early stage of development, integrating predictions from existing models within a single assessment confirms their vast global extent and significance while revealing novel patterns and their potential drivers. Effective global stewardship of plant biodiversity in the Anthropocene will require integrated frameworks for observing, modeling and forecasting the different forms of anthropogenic biodiversity change processes at regional landscape scales, towards conserving biodiversity within the novel plant communities created and sustained by human systems.
All Is Not Loss: Plant Biodiversity in the Anthropocene
Ellis, Erle C.; Antill, Erica C.; Kreft, Holger
2012-01-01
Anthropogenic global changes in biodiversity are generally portrayed in terms of massive native species losses or invasions caused by recent human disturbance. Yet these biodiversity changes and others caused directly by human populations and their use of land tend to co-occur as long-term biodiversity change processes in the Anthropocene. Here we explore contemporary anthropogenic global patterns in vascular plant species richness at regional landscape scales by combining spatially explicit models and estimates for native species loss together with gains in exotics caused by species invasions and the introduction of agricultural domesticates and ornamental exotic plants. The patterns thus derived confirm that while native losses are likely significant across at least half of Earth's ice-free land, model predictions indicate that plant species richness has increased overall in most regional landscapes, mostly because species invasions tend to exceed native losses. While global observing systems and models that integrate anthropogenic species loss, introduction and invasion at regional landscape scales remain at an early stage of development, integrating predictions from existing models within a single assessment confirms their vast global extent and significance while revealing novel patterns and their potential drivers. Effective global stewardship of plant biodiversity in the Anthropocene will require integrated frameworks for observing, modeling and forecasting the different forms of anthropogenic biodiversity change processes at regional landscape scales, towards conserving biodiversity within the novel plant communities created and sustained by human systems. PMID:22272360
A Microscale View of Mixing and Overturning Across the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Naveira Garabato, A.; Polzin, K. L.; Ferrari, R. M.; Zika, J. D.; Forryan, A.
2014-12-01
The meridional overturning circulation and stratication of the global ocean are shaped critically by processes in the Southern Ocean. The zonally unblocked nature of the Antarctic Circumpolar Current (ACC) confers the region with a set of special dynamics that ultimately results in the focussing therein of large vertical exchanges between layers spanning the global ocean pycnocline. These vertical exchanges are thought to be mediated by oceanic turbulent motions (associated with mesoscale eddies and small-scale turbulence), yet the vastness of the Southern Ocean and the sparse and intermittent nature of turbulent processes make their relative roles and large-scale impacts extremely difficult to assess.Here, we address the problem from a new angle, and use measurements of the centimetre-scale signatures of mesoscale eddies and small-scale turbulence obtained during the DIMES experiment to determine the contributions of those processes to sustaining large-scale meridional overturning across the ACC. We find that mesoscale eddies and small-scale turbulence play complementary roles in forcing a meridional circulation of O(1 mm / s) across the Southern Ocean, and that their roles are underpinned by distinct and abrupt variations in the rates at which they mix water parcels. The implications for our understanding of the Southern Ocean circulation's sensitivity to climatic change will be discussed.
Atmospheric Diabatic Heating in Different Weather States and the General Circulation
NASA Technical Reports Server (NTRS)
Rossow, William B.; Zhang, Yuanchong; Tselioudis, George
2016-01-01
Analysis of multiple global satellite products identifies distinctive weather states of the atmosphere from the mesoscale pattern of cloud properties and quantifies the associated diabatic heating/cooling by radiative flux divergence, precipitation, and surface sensible heat flux. The results show that the forcing for the atmospheric general circulation is a very dynamic process, varying strongly at weather space-time scales, comprising relatively infrequent, strong heating events by ''stormy'' weather and more nearly continuous, weak cooling by ''fair'' weather. Such behavior undercuts the value of analyses of time-averaged energy exchanges in observations or numerical models. It is proposed that an analysis of the joint time-related variations of the global weather states and the general circulation on weather space-time scales might be used to establish useful ''feedback like'' relationships between cloud processes and the large-scale circulation.
Cascading events in linked ecological and socioeconomic systems
Peters, Debra P.C.; Sala, O.E.; Allen, Craig D.; Covich, A.; Brunson, M.
2007-01-01
Cascading events that start at small spatial scales and propagate non-linearly through time to influence larger areas often have major impacts on ecosystem goods and services. Events such as wildfires and hurricanes are increasing in frequency and magnitude as systems become more connected through globalization processes. We need to improve our understanding of these events in order to predict their occurrence, minimize potential impacts, and allow for strategic recovery. Here, we synthesize information about cascading events in systems located throughout the Americas. We discuss a variety of examples of cascading events that share a common feature: they are often driven by linked ecological and human processes across scales. In this era of globalization, we recommend studies that explicitly examine connections across scales and examine the role of connectivity among non-contiguous as well as contiguous areas.
Analysis of World Economic Variables Using Multidimensional Scaling
Machado, J.A. Tenreiro; Mata, Maria Eugénia
2015-01-01
Waves of globalization reflect the historical technical progress and modern economic growth. The dynamics of this process are here approached using the multidimensional scaling (MDS) methodology to analyze the evolution of GDP per capita, international trade openness, life expectancy, and education tertiary enrollment in 14 countries. MDS provides the appropriate theoretical concepts and the exact mathematical tools to describe the joint evolution of these indicators of economic growth, globalization, welfare and human development of the world economy from 1977 up to 2012. The polarization dance of countries enlightens the convergence paths, potential warfare and present-day rivalries in the global geopolitical scene. PMID:25811177
Tropospheric ozone simulated by a global-multi-regional two-way coupling model system
NASA Astrophysics Data System (ADS)
Yan, Y.; Lin, J.; Chen, J.; Hu, L.
2015-12-01
Current global chemical transport models are limited by horizontal resolutions (100-500 km), and they cannot capture small-scale processes affecting tropospheric ozone (O3). Here we use a recently built two-way coupling system of GEOS-Chem to simulate the global tropospheric O3 in 2009. The system couples the global model (~ 200 km) and its three nested models (~ 50 km) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68 and reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO and MOZAIC data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5%), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of the nonlinear ozone chemistry, including but not limited to urban-rural contrast. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5% with enhancements by 5% in lifetimes of methyl chloroform and methane, bringing them closer to observation-based estimates. Therefore improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.
Global climate change will change environmental conditions including temperature, precipitation, surface radiation, humidity, soil moisture, and sea level, and impact significantly the regional-scale hydrologic processes such as evapotranspiration (ET), runoff, groundwater levels...
Multifractal Approach to Time Clustering of Earthquakes. Application to Mt. Vesuvio Seismicity
NASA Astrophysics Data System (ADS)
Codano, C.; Alonzo, M. L.; Vilardo, G.
The clustering structure of the Vesuvian earthquakes occurring is investigated by means of statistical tools: the inter-event time distribution, the running mean and the multifractal analysis. The first cannot clearly distinguish between a Poissonian process and a clustered one due to the difficulties of clearly distinguishing between an exponential distribution and a power law one. The running mean test reveals the clustering of the earthquakes, but looses information about the structure of the distribution at global scales. The multifractal approach can enlighten the clustering at small scales, while the global behaviour remains Poissonian. Subsequently the clustering of the events is interpreted in terms of diffusive processes of the stress in the earth crust.
Ingber, Lester; Nunez, Paul L
2011-02-01
The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.
Global-scale Ionospheric Outflow: Major Processes and Unresolved Problems
NASA Astrophysics Data System (ADS)
Liemohn, M. W.; Welling, D. T.; Ilie, R.; Khazanov, G. V.; Jahn, J. M.; Zou, S.; Ganushkina, N. Y.; Valek, P. W.; Elliott, H. A.; Gilchrist, B. E.; Hoegy, W. R.; Glocer, A.
2016-12-01
Outflow from the ionosphere is a major source of plasma to the magnetosphere. Its presence, especially that of ions heavier than He+, mass loads the magnetosphere and changes reconnection rates, current system configurations, plasma wave excitation and wave-particle interactions. It even impacts the propagation of information. We present a brief overview of the major processes and scientific history of this field. There are still major gaps, however, in our understanding of the global-scale nature of ionospheric outflow. We discuss these unresolved problems highlighting the leading questions still outstanding on this topic. First and foremost, since the measurements of ionospheric outflow have largely come from individual satellites and sounding rockets, the processes are best known on the local level, while the spatial distribution of outflow has never been simultaneously measured on more global scales. The spatial coherence and correlation of outflow across time and space have not been quantified. Furthermore, the composition of the outflow is often only measured at a coarse level of H+, He+, and O+, neglecting other species such as N+ or moleculars. However, resolving O+ from N+, as is customary in planetary research, aids in revealing the physics and altitude dependence of the energization processes in the ionosphere. Similarly, fine-resolution velocity space measurements of ionospheric outflow have been limited, yet such observations can also reveal energization processes driving the outflow. A final unresolved issue to mention is magnetically conjugate outflow and the full extent of hemispherically asymmetric outflow fluxes or fluence. Each of these open questions have substantial ramifications for magnetospheric physics; their resolution could yield sweeping changes in our understanding of nonlinear feedback and cross-scale physical interactions, magnetosphere-ionosphere coupling, and geospace system-level science.
NASA Astrophysics Data System (ADS)
Tourigny, E.; Nobre, C.; Cardoso, M. F.
2012-12-01
Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2006-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).
NASA Technical Reports Server (NTRS)
Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui;
2016-01-01
Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global scale well and thus is appropriate for global applications presented here.
The Not-So-Global Blood Oxygen Level-Dependent Signal.
Billings, Jacob; Keilholz, Shella
2018-04-01
Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.
NASA Astrophysics Data System (ADS)
Butler, Rhett; Frazer, L. Neil; Templeton, William J.
2016-05-01
We use the global rate of Mw ≥ 9.0 earthquakes, and standard Bayesian procedures, to estimate the probability of such mega events in the Aleutian Islands, where they pose a significant risk to Hawaii. We find that the probability of such an earthquake along the Aleutians island arc is 6.5% to 12% over the next 50 years (50% credibility interval) and that the annualized risk to Hawai'i is about $30 M. Our method (the regionally scaled global rate method or RSGR) is to scale the global rate of Mw 9.0+ events in proportion to the fraction of global subduction (units of area per year) that takes place in the Aleutians. The RSGR method assumes that Mw 9.0+ events are a Poisson process with a rate that is both globally and regionally stationary on the time scale of centuries, and it follows the principle of Burbidge et al. (2008) who used the product of fault length and convergence rate, i.e., the area being subducted per annum, to scale the Poisson rate for the GSS to sections of the Indonesian subduction zone. Before applying RSGR to the Aleutians, we first apply it to five other regions of the global subduction system where its rate predictions can be compared with those from paleotsunami, paleoseismic, and geoarcheology data. To obtain regional rates from paleodata, we give a closed-form solution for the probability density function of the Poisson rate when event count and observation time are both uncertain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieder, William R.; Allison, Steven D.; Davidson, Eric A.
Microbes influence soil organic matter (SOM) decomposition and the long-term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) may make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro-scale process-level understanding and measurements to macro-scale models used to make decadal- to century-long projections. Here, we review the diversity, advantages, and pitfalls of simulating soilmore » biogeochemical cycles using microbial-explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial-explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models we suggest: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model-data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well-curated repositories; and (3) the application of scaling methods to integrate microbial-explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.« less
Extending the Reach of National Assessments: Addressing Local and Regional Needs
NASA Astrophysics Data System (ADS)
Lewis, K.; Carter, T.
2016-12-01
While climate change is global in scope, many impacts of greatest societal concern (and accompanying response decisions) occur on local to regional scales. The U.S. Global Change Research Program (USGCRP) is tasked with conducting quadrennial national climate assessments, and efforts for the fourth such assessment (NCA4) are underway. Recognizing that there is a growing appetite for climate information on more local scales, however, USGCRP is actively pursuing higher-resolution scientific information, while also seeking engagement with local and regional entities to ensure that NCA4 is well-positioned to address users' needs across geospatial scales. Effectively meeting user needs at regional scales requires robust observations and projections at sub-national scales, as well as a widespread network of agencies and organizations. We discuss our efforts to leverage existing relationships to identify potential users and their needs early in the assessment process. We also discuss plans for future mechanisms to engage additional regional stakeholders from resource managers to policy makers and scientists not only for quadrennial assessment but as part of a sustained process.
Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity
Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D.
2017-01-01
Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas. PMID:29057321
Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity.
Edgar, Graham J; Alexander, Timothy J; Lefcheck, Jonathan S; Bates, Amanda E; Kininmonth, Stuart J; Thomson, Russell J; Duffy, J Emmett; Costello, Mark J; Stuart-Smith, Rick D
2017-10-01
Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.
Examining the validity of self-reports on scales measuring students' strategic processing.
Samuelstuen, Marit S; Bråten, Ivar
2007-06-01
Self-report inventories trying to measure strategic processing at a global level have been much used in both basic and applied research. However, the validity of global strategy scores is open to question because such inventories assess strategy perceptions outside the context of specific task performance. The primary aim was to examine the criterion-related and construct validity of the global strategy data obtained with the Cross-Curricular Competencies (CCC) scale. Additionally, we wanted to compare the validity of these data with the validity of data obtained with a task-specific self-report inventory focusing on the same types of strategies. The sample included 269 10th-grade students from 12 different junior high schools. Global strategy use as assessed with the CCC was compared with task-specific strategy use reported in three different reading situations. Moreover, relationships between scores on the CCC and scores on measures of text comprehension were examined and compared with relationships between scores on the task-specific strategy measure and the same comprehension measures. The comparison between the CCC strategy scores and the task-specific strategy scores suggested only modest criterion-related validity for the data obtained with the global strategy inventory. The CCC strategy scores were also not related to the text comprehension measures, indicating poor construct validity. In contrast, the task-specific strategy scores were positively related to the comprehension measures, indicating good construct validity. Attempts to measure strategic processing at a global level seem to have limited validity and utility.
Brand, John; Johnson, Aaron P
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.
Brand, John; Johnson, Aaron P.
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-05-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
NASA Astrophysics Data System (ADS)
Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.
2015-01-01
Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.
Developing and testing a global-scale regression model to quantify mean annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.
2017-01-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton III, Thomas J
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum's User Level Failure Mitigation proposal has introduced an operation, MPI_Comm_shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI_Comm_shrink operation requires a fault tolerant failure detection and consensus algorithm. This paper presents and compares two novel failure detection and consensus algorithms. The proposed algorithms are based on Gossip protocols and are inherently fault-tolerant and scalable. The proposed algorithms were implementedmore » and tested using the Extreme-scale Simulator. The results show that in both algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus.« less
The Global Emergency Observation and Warning System
NASA Technical Reports Server (NTRS)
Bukley, Angelia P.; Mulqueen, John A.
1994-01-01
Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.
Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model
NASA Technical Reports Server (NTRS)
Putnam, Williama
2011-01-01
The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.
Cross-scale interactions drive ecosystem responses to precipitation in the Chihuahuan Desert
USDA-ARS?s Scientific Manuscript database
Regime shifts from grass- to shrub-dominated states are widespread in arid and semiarid regions globally. These patterns of grass production and shifts to shrub dominance are spatially variable and correlate weakly with precipitation, suggesting that processes at different spatial and temporal scale...
Global patterns of phytoplankton dynamics in coastal ecosystems
Paerl, H.; Yin, Kedong; Cloern, J.
2011-01-01
Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".
Global controls on carbon storage in mangrove soils
NASA Astrophysics Data System (ADS)
Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.
2018-06-01
Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.
NASA Astrophysics Data System (ADS)
Switzer, A.; Yap, W.; Lauro, F.; Gouramanis, C.; Dominey-Howes, D.; Labbate, M.
2016-12-01
This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.
NASA Astrophysics Data System (ADS)
Sorooshian, S.; Nguyen, P.; Hsu, K. L.
2017-12-01
This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.
Data management for JGOFS: Theory and design
NASA Technical Reports Server (NTRS)
Flierl, Glenn R.; Bishop, James K. B.; Glover, David M.; Paranjpe, Satish
1992-01-01
The Joint Global Ocean Flux Study (JGOFS), currently being organized under the auspices of the Scientific Committee for Ocean Research (SCOR), is intended to be a decade long internationally coordinated program. The main goal of JGOFS is to determine and understand on a global scale the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean and to evaluate the related exchanges with the atmosphere, sea floor and continental boundaries. 'A long-term goal of JGOFS will be to establish strategies for observing, on long time scales, changes in ocean biogeochemical cycles in relation to climate change'. Participation from a large number of U.S. and foreign institutions is expected. JGOFS investigators have begun a set of time-series measurements and global surveys of a wide variety of biological, chemical and physical quantities, detailed process-oriented studies, satellite observations of ocean color and wind stress and modeling of the bio-geochemical processes. These experiments will generate data in amounts unprecedented in the biological and chemical communities; rapid and effortless exchange of these data will be important to the success of JGOFS.
Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N
2012-10-09
Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.
Modulation of Gravity Waves by Tides as Seen in CRISTA Temperatures
NASA Technical Reports Server (NTRS)
Preusse, P.; Eckermann, S. D.; Oberheide, J.; Hagan, M. E.; Offermann, D.
2001-01-01
During shuttle missions STS-66 (November, 1994) and STS-85 (August, 1997) the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) acquired temperature data with very high spatial resolution. These are analyzed for gravity waves (GW). The altitude range spans the whole middle atmosphere from the tropopause up to the mesopause. In the upper mesosphere tidal amplitudes exceed values of 10 K. Modulation of GW activity by the tides is observed and analyzed using CRISTA temperatures and tidal predictions of the Global Scale Wave Model (GSWM). The modulation process is identified as a tidally-induced change of the background buoyancy frequency. The findings agree well with the expectations for saturated GW and are the first global scale observations of this process.
Optimal stomatal behaviour around the world
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; ...
2015-03-02
Stomatal conductance (g s) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g s in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g s that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g s obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs accordingmore » to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model 1 and the leaf and wood economics spectrum 2,3. We also demonstrate a global relationship with climate. In conclusion, these findings provide a robust theoretical framework for understanding and predicting the behaviour of g s across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.« less
Lunar and Planetary Science XXXVI, Part 2
NASA Technical Reports Server (NTRS)
2005-01-01
Topics covered include: Ringwoodite-olivine assemblages in Dhofar L6 melt veins; Amorphization of forsterite grains due to high energy heavy ion irradiation: Implications for grain processing in ISM; Validation of AUTODYN in replicating large-scale planetary impact events; A network of geophysical observatories for mars; Modelling catastrophic floods on the surface of mars; Impact into coarse grained spheres; The diderot meteorite: The second chassignite; Galileo global color mosaics of Io; Ganymede's sulci on global and regional scales; and The cold traps near the south pole of the moon.
NASA Astrophysics Data System (ADS)
Weatherill, G. A.; Pagani, M.; Garcia, J.
2016-09-01
The creation of a magnitude-homogenized catalogue is often one of the most fundamental steps in seismic hazard analysis. The process of homogenizing multiple catalogues of earthquakes into a single unified catalogue typically requires careful appraisal of available bulletins, identification of common events within multiple bulletins and the development and application of empirical models to convert from each catalogue's native scale into the required target. The database of the International Seismological Center (ISC) provides the most exhaustive compilation of records from local bulletins, in addition to its reviewed global bulletin. New open-source tools are developed that can utilize this, or any other compiled database, to explore the relations between earthquake solutions provided by different recording networks, and to build and apply empirical models in order to harmonize magnitude scales for the purpose of creating magnitude-homogeneous earthquake catalogues. These tools are described and their application illustrated in two different contexts. The first is a simple application in the Sub-Saharan Africa region where the spatial coverage and magnitude scales for different local recording networks are compared, and their relation to global magnitude scales explored. In the second application the tools are used on a global scale for the purpose of creating an extended magnitude-homogeneous global earthquake catalogue. Several existing high-quality earthquake databases, such as the ISC-GEM and the ISC Reviewed Bulletins, are harmonized into moment magnitude to form a catalogue of more than 562 840 events. This extended catalogue, while not an appropriate substitute for a locally calibrated analysis, can help in studying global patterns in seismicity and hazard, and is therefore released with the accompanying software.
Microphysics in Multi-scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2012-01-01
Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the microphysics development and its performance for the multi-scale modeling system will be presented.
Linking soil DOC production rates and transport processes from landscapes to sub-basin scales
NASA Astrophysics Data System (ADS)
Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.
2014-12-01
Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for determining degradation rates.
NASA Astrophysics Data System (ADS)
Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.
2014-12-01
Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.
Dust storms and their impact on ocean and human health: dust in Earth's atmosphere
Griffin, Dale W.; Kellog, Christina A.
2004-01-01
Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.
1997-01-01
Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al.), there is no comparable study for cirrus ice crystals. This study is an effort to supply such a data set.
Interdisciplinary knowledge exchange across scales in a globally changing marine environment.
McDonald, Karlie S; Hobday, Alistair J; Fulton, Elizabeth A; Thompson, Peter A
2018-07-01
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species-specific regional scale climate change research is most commonly published, and "supporting" is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines. © 2018 John Wiley & Sons Ltd.
NASA/MSFC FY-84 Atmospheric Processes Research Review
NASA Technical Reports Server (NTRS)
Vaughan, W. W. (Compiler); Porter, F. (Compiler)
1984-01-01
The two main areas of focus for NASA/MSFC's atmospheric research program are: (1) global scale processes (geophysical fluid processes, satellite Doppler lidar wind profiler, and satellite data analyses) and (2) mesoscale processes (atmospheric electricity (lightning), ground/airborne Doppler lidar wind measurements, and mesoscale analyses and space sensors). Topics within these two general areas are addressed.
The relevance of phylogeny to studies of global change.
Edwards, Erika J; Still, Christopher J; Donoghue, Michael J
2007-05-01
Phylogenetic thinking has infiltrated many areas of biological research, but has had little impact on studies of global ecology or climate change. Here, we illustrate how phylogenetic information can be relevant to understanding vegetation-atmosphere dynamics at ecosystem or global scales by re-analyzing a data set of carbonic anhydrase (CA) activity in leaves that was used to estimate terrestrial gross primary productivity. The original calculations relied on what appeared to be low CA activity exclusively in C4 grasses, but our analyses indicate that such activity might instead characterize the PACCAD grass lineage, which includes many widespread C3 species. We outline how phylogenetics can guide better taxon sampling of key physiological traits, and discuss how the emerging field of phyloinformatics presents a promising new framework for scaling from organism physiology to global processes.
Globally scalable generation of high-resolution land cover from multispectral imagery
NASA Astrophysics Data System (ADS)
Stutts, S. Craig; Raskob, Benjamin L.; Wenger, Eric J.
2017-05-01
We present an automated method of generating high resolution ( 2 meter) land cover using a pattern recognition neural network trained on spatial and spectral features obtained from over 9000 WorldView multispectral images (MSI) in six distinct world regions. At this resolution, the network can classify small-scale objects such as individual buildings, roads, and irrigation ponds. This paper focuses on three key areas. First, we describe our land cover generation process, which involves the co-registration and aggregation of multiple spatially overlapping MSI, post-aggregation processing, and the registration of land cover to OpenStreetMap (OSM) road vectors using feature correspondence. Second, we discuss the generation of land cover derivative products and their impact in the areas of region reduction and object detection. Finally, we discuss the process of globally scaling land cover generation using cloud computing via Amazon Web Services (AWS).
NASA Technical Reports Server (NTRS)
Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge
1993-01-01
This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.
Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts.
Elahi, Robin; O'Connor, Mary I; Byrnes, Jarrett E K; Dunic, Jillian; Eriksson, Britas Klemens; Hensel, Marc J S; Kearns, Patrick J
2015-07-20
The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales. Reconciling the threat of global biodiversity loss with recent evidence of stability at fine spatial scales is a major challenge and requires a nuanced approach to biodiversity change that integrates ecological understanding. With a new dataset of 471 diversity time series spanning from 1962 to 2015 from marine coastal ecosystems, we tested (1) whether biodiversity changed at local scales in recent decades, and (2) whether we can ignore ecological context (e.g., proximate human impacts, trophic level, spatial scale) and still make informative inferences regarding local change. We detected a predominant signal of increasing species richness in coastal systems since 1962 in our dataset, though net species loss was associated with localized effects of anthropogenic impacts. Our geographically extensive dataset is unlikely to be a random sample of marine coastal habitats; impacted sites (3% of our time series) were underrepresented relative to their global presence. These local-scale patterns do not contradict the prospect of accelerating global extinctions but are consistent with local species loss in areas with direct human impacts and increases in diversity due to invasions and range expansions in lower impact areas. Attempts to detect and understand local biodiversity trends are incomplete without information on local human activities and ecological context. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multilevel processes and cultural adaptation: Examples from past and present small-scale societies.
Reyes-García, V; Balbo, A L; Gomez-Baggethun, E; Gueze, M; Mesoudi, A; Richerson, P; Rubio-Campillo, X; Ruiz-Mallén, I; Shennan, S
2016-12-01
Cultural adaptation has become central in the context of accelerated global change with authors increasingly acknowledging the importance of understanding multilevel processes that operate as adaptation takes place. We explore the importance of multilevel processes in explaining cultural adaptation by describing how processes leading to cultural (mis)adaptation are linked through a complex nested hierarchy, where the lower levels combine into new units with new organizations, functions, and emergent properties or collective behaviours. After a brief review of the concept of "cultural adaptation" from the perspective of cultural evolutionary theory and resilience theory, the core of the paper is constructed around the exploration of multilevel processes occurring at the temporal, spatial, social and political scales. We do so by examining small-scale societies' case studies. In each section, we discuss the importance of the selected scale for understanding cultural adaptation and then present an example that illustrates how multilevel processes in the selected scale help explain observed patterns in the cultural adaptive process. We end the paper discussing the potential of modelling and computer simulation for studying multilevel processes in cultural adaptation.
Multilevel processes and cultural adaptation: Examples from past and present small-scale societies
Reyes-García, V.; Balbo, A. L.; Gomez-Baggethun, E.; Gueze, M.; Mesoudi, A.; Richerson, P.; Rubio-Campillo, X.; Ruiz-Mallén, I.; Shennan, S.
2016-01-01
Cultural adaptation has become central in the context of accelerated global change with authors increasingly acknowledging the importance of understanding multilevel processes that operate as adaptation takes place. We explore the importance of multilevel processes in explaining cultural adaptation by describing how processes leading to cultural (mis)adaptation are linked through a complex nested hierarchy, where the lower levels combine into new units with new organizations, functions, and emergent properties or collective behaviours. After a brief review of the concept of “cultural adaptation” from the perspective of cultural evolutionary theory and resilience theory, the core of the paper is constructed around the exploration of multilevel processes occurring at the temporal, spatial, social and political scales. We do so by examining small-scale societies’ case studies. In each section, we discuss the importance of the selected scale for understanding cultural adaptation and then present an example that illustrates how multilevel processes in the selected scale help explain observed patterns in the cultural adaptive process. We end the paper discussing the potential of modelling and computer simulation for studying multilevel processes in cultural adaptation. PMID:27774109
Mapping Global Urban Extent and Intensity for Environmental Monitoring and Modeling
NASA Astrophysics Data System (ADS)
Schneider, A.; Friedl, M. A.
2007-05-01
The human dimensions of global environmental change have received increased attention in policy, decision- making, research, and even the media. However, the influence of urban areas in global change processes is still often assumed to be negligible. Although local environmental conditions such as the urban heat island effect are well-documented, little or no work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, it is becoming increasingly clear that the `ecological footprint' of cities may play a critical role in environmental changes at regional and global scales. Our understanding of the cumulative impacts of urban areas on natural systems has been limited foremost by a lack of reliable, accurate data on current urban form and extent at the global scale. The data sets that have emerged to fill this gap (LandScan, GRUMP, nighttime lights) suffer from a number of limitations that prevent widespread use. Building on our early efforts with MODIS data, our current work focuses on: (1) completing a new, validated map of global urban extent; and (2) developing methods to estimate the subpixel fraction of impervious surface, vegetation, and other land cover types within urbanized areas using coarse resolution satellite imagery. For the first task, a technique called boosting is used to improve classification accuracy and provides a means to integrate 500 m resolution MODIS data with ancillary data sources. For the second task, we present an approach for estimating percent cover that relies on continuous training data for a full range of city types. These exemplars are used as inputs to fuzzy neural network and regression tree algorithms to predict fractional amounts of land cover types with increased accuracy. Preliminary results for a global sample of 100 cities (which vary in population size, level of economic development, and spatial extent) show good agreement with the expected morphology in each region.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2007-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2006-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).
2014-09-23
View from a Chase Plane; HS3 Science Flight 8 Wraps Up The chase plane accompanying NASA's Global Hawk No. 872 captured this picture on Sept. 19 after the Global Hawk completed science flight #8 where it gathered data from a weakening Tropical Storm Edouard over the North Atlantic Ocean. Credit: NASA -- The Hurricane and Severe Storm Sentinel (HS3) is a five-year mission specifically targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. HS3 is motivated by hypotheses related to the relative roles of the large-scale environment and storm-scale internal processes. Read more: espo.nasa.gov/missions/hs3/mission-gallery NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Temporal variability of the surface and atmosphere of Mars: Viking Orbiter color observations
NASA Technical Reports Server (NTRS)
Mcewen, A. S.
1992-01-01
We are near the final stages in the processing of a large Viking Orbiter global color dataset. Mosaics from 57 spacecraft revolutions (or 'revs' hereafter) were produced, most in both red and violet or red, green, and violet filters. Phase angles range from 13 deg to 85 deg. A total of approximately 2000 frames were processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking into single-rev mosaics at a scale of 1 km/pixel. All of the mosaics are geometrically tied to the 1/256 deg/pixel Mars Digital Image Mosaic (MDIM). Photometric normalization is in progress, to be followed by production of a 'best coverage' global mosaic at a scale of 1/64 deg/pixel (0.923 km/pixel). Global coverage is near 100 percent in red-filter mosaics and 98 percent and 60 percent in corresponding violet- and green-filter mosaics, respectively. Soon after completion, all final datasets (including single-rev mosaics) will be distributed to the planetary community on compact disks.
Global high-resolution simulations of tropospheric nitrogen dioxide using CHASER V4.0
NASA Astrophysics Data System (ADS)
Sekiya, Takashi; Miyazaki, Kazuyuki; Ogochi, Koji; Sudo, Kengo; Takigawa, Masayuki
2018-03-01
We evaluate global tropospheric nitrogen dioxide (NO2) simulations using the CHASER V4.0 global chemical transport model (CTM) at horizontal resolutions of 0.56, 1.1, and 2.8°. Model evaluation was conducted using satellite tropospheric NO2 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) and aircraft observations from the 2014 Front Range Air Pollution and Photochemistry Experiment (FRAPPÉ). Agreement against satellite retrievals improved greatly at 1.1 and 0.56° resolutions (compared to 2.8° resolution) over polluted and biomass burning regions. The 1.1° simulation generally captured the regional distribution of the tropospheric NO2 column well, whereas 0.56° resolution was necessary to improve the model performance over areas with strong local sources, with mean bias reductions of 67 % over Beijing and 73 % over San Francisco in summer. Validation using aircraft observations indicated that high-resolution simulations reduced negative NO2 biases below 700 hPa over the Denver metropolitan area. These improvements in high-resolution simulations were attributable to (1) closer spatial representativeness between simulations and observations and (2) better representation of large-scale concentration fields (i.e., at 2.8°) through the consideration of small-scale processes. Model evaluations conducted at 0.5 and 2.8° bin grids indicated that the contributions of both these processes were comparable over most polluted regions, whereas the latter effect (2) made a larger contribution over eastern China and biomass burning areas. The evaluations presented in this paper demonstrate the potential of using a high-resolution global CTM for studying megacity-scale air pollutants across the entire globe, potentially also contributing to global satellite retrievals and chemical data assimilation.
Using friends as sensors to detect global-scale contagious outbreaks.
Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A; Fowler, James H
2014-01-01
Recent research has focused on the monitoring of global-scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global-scale networks.
Strengthening Clean Energy Technology Cooperation under the UNFCCC: Steps toward Implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benioff, R.; de Coninck, H.; Dhar, S.
2010-08-01
Development of a comprehensive and effective global clean technology cooperation framework will require years of experimenting and evaluation with new instruments and institutional arrangements before it is clear what works on which scale and in which region or country. In presenting concrete examples, this paper aims to set the first step in that process by highlighting successful models and innovative approaches that can inform efforts to ramp up clean energy technology cooperation. This paper reviews current mechanisms and international frameworks for global cooperation on clean energy technologies, both within and outside of the UNFCCC, and provides selected concrete options formore » scaling up global cooperation on clean energy technology RD&D, enabling environment, and financing.« less
Efficient collective influence maximization in cascading processes with first-order transitions
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-01-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches. PMID:28349988
Efficient collective influence maximization in cascading processes with first-order transitions
NASA Astrophysics Data System (ADS)
Pei, Sen; Teng, Xian; Shaman, Jeffrey; Morone, Flaviano; Makse, Hernán A.
2017-03-01
In many social and biological networks, the collective dynamics of the entire system can be shaped by a small set of influential units through a global cascading process, manifested by an abrupt first-order transition in dynamical behaviors. Despite its importance in applications, efficient identification of multiple influential spreaders in cascading processes still remains a challenging task for large-scale networks. Here we address this issue by exploring the collective influence in general threshold models of cascading process. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given the same number of seeds compared with other scalable heuristic approaches.
Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.
Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M
2016-04-27
Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. © 2016 The Author(s).
Biotic and abiotic variables influencing plant litter breakdown in streams: a global study
Pearson, Richard G.; Hui, Cang; Gessner, Mark O.; Pérez, Javier; Alexandrou, Markos A.; Graça, Manuel A. S.; Cardinale, Bradley J.; Albariño, Ricardo J.; Arunachalam, Muthukumarasamy; Barmuta, Leon A.; Boulton, Andrew J.; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G.; Dudgeon, David; Encalada, Andrea C.; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S.; Gonçalves, José F.; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S.; Pringle, Catherine M.; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M.
2016-01-01
Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551
Angeler, David G.; Allen, Craig R.; Johnson, Richard K.
2013-01-01
1. Ecosystems at high altitudes and latitudes are expected to be particularly vulnerable to the effects of global change. We assessed the responses of littoral invertebrate communities to changing abiotic conditions in subarctic Swedish lakes with long-term data (1988–2010) and compared the responses of subarctic lakes with those of more southern, hemiboreal lakes. 2. We used a complex systems approach, based on multivariate time-series modelling, and identified dominant and distinct temporal frequencies in the data; that is, we tracked community change at distinct temporal scales. We determined the distribution of functional feeding groups of invertebrates within and across temporal scales. Within and cross-scale distributions of functions have been considered to confer resilience to ecosystems, despite changing environmental conditions. 3. Two patterns of temporal change within the invertebrate communities were identified that were consistent across the lakes. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second was one of showing fluctuation patterns largely unrelated to gradual environmental change. Thus, two dominant and distinct temporal frequencies (temporal scales) were present in all lakes analysed. 4. Although the contribution of individual feeding groups varied between subarctic and hemiboreal lakes, they shared overall similar functional attributes (richness, evenness, diversity) and redundancies of functions within and between the observed temporal scales. This highlights similar resilience characteristics in subarctic and hemiboreal lakes. 5. Synthesis and applications. The effects of global change can be particularly strong at a single scale in ecosystems. Over time, this can cause monotonic change in communities and eventually lead to a loss of important ecosystem services upon reaching a critical threshold. Dynamics at other spatial or temporal scales can be unrelated to environmental change. The relative ‘intactness’ of these scales that are unaffected by global change and the persistence of functions at those scales may safeguard the whole system from the potential loss of functions at the scale at which global change impacts can be substantial. Thus, an understanding of scale-specific processes provides managers with a realistic assessment of vulnerabilities and the relative resilience of ecosystems to environmental change. Explicit consideration of ‘intact’ and ‘affected’ scales in analyses of global change impacts provides opportunities to tailor more specific management plans.
Devaraju, N; Bala, G; Nemani, R
2015-09-01
Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.
Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael
2016-08-01
The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured characterization to enable fast and agile process transfers, scale up and troubleshooting.
Concepts for a global resources information system
NASA Technical Reports Server (NTRS)
Billingsley, F. C.; Urena, J. L.
1984-01-01
The objective of the Global Resources Information System (GRIS) is to establish an effective and efficient information management system to meet the data access requirements of NASA and NASA-related scientists conducting large-scale, multi-disciplinary, multi-mission scientific investigations. Using standard interfaces and operating guidelines, diverse data systems can be integrated to provide the capabilities to access and process multiple geographically dispersed data sets and to develop the necessary procedures and algorithms to derive global resource information.
Coordinated Approaches to Quantify Long-Term Ecosystem dynamics in Response to Global Change
USDA-ARS?s Scientific Manuscript database
Climate change and its impact on ecosystems are usually assessed at decadal and century time scales. Ecological responses to climate change at those scales are strongly regulated by long-term processes, such as changes in species composition, carbon dynamics in soil and by big trees, and nutrient r...
Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh; D. Todd Jones-Farland
2013-01-01
Efforts to conserve regional biodiversity in the face of global climate change, habitat loss and fragmentation will depend on approaches that consider population processes at multiple scales. By combining habitat and demographic modeling, landscape-based population viability models effectively relate small-scale habitat and landscape patterns to regional population...
Epidemic failure detection and consensus for extreme parallelism
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas; ...
2017-02-01
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petäjä, T
Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth’s surface. In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great challenges remain in the analysis of related processes on a global scale. Boreal forests, situated in a circumpolar belt in the northern latitudes throughout the United States, Canada, Russia and Scandinavia, are among the most active areas of atmospheric aerosol formation among all biomes. Themore » formation of aerosol particles and their growth to the sizes of cloud condensation nuclei in these areas are associated with biogenic volatile organic emissions from vegetation and soil.« less
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)
2000-01-01
A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke
2017-04-01
Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.
Campbell, Fiona M; Balabanova, Dina; Howard, Natasha
2018-01-01
The paper presents a case study that critically assesses the role of global strategy 'Public Health on the Frontline 2014-2015' ('the Strategy') in supporting Merlin and Save the Children's organisational change and future programme of the combined organisation in Myanmar. Research was undertaken in 2014 in Myanmar. Twenty-six individual and three group interviews were conducted with stakeholders, and 10 meetings relevant to the country organisational transition process were observed. A conceptual framework was developed to assess the role of the global strategy in supporting the country change process. Several positive aspects of the global strategy were found, as well as critical shortcomings in its support to the organisational change process at country level. The strategy was useful in signalling Save the Children's intention to scale up humanitarian health provision. However, it had only limited influence on the early change process and outcomes in Myanmar. Results highlight several aspects that would enhance the role of a global strategy at country level. Lessons can be applied by organisations undertaking a similar process. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh
2016-09-01
Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.
Assessing global vegetation activity using spatio-temporal Bayesian modelling
NASA Astrophysics Data System (ADS)
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.
Colizza, Vittoria; Barrat, Alain; Barthélemy, Marc; Vespignani, Alessandro
2006-02-14
The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large-scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this article, we present a stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: (i) we study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; and (ii) we evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. To address these issues we define a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.
Continental scale data assimilation of discharge and its effect on flow predictions
NASA Astrophysics Data System (ADS)
Weerts, Albrecht; Schellekens, Jaap; van Dijk, Albert
2017-04-01
Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) and Europe into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.
NASA Astrophysics Data System (ADS)
Weerts, A.; Schellekens, J.; van Dijk, A.; Molenaar, R.
2016-12-01
Floods are the most frequent of natural disasters, affecting millions of people across the globe every year. The anticipation and forecasting of floods at the global scale is crucial to preparing for severe events and providing early awareness where local flood models and warning services may not exist (Emmerton et al., 2016). Current global flood forecasting system heavily rely on forecast forcing (precipitation, temperature, reference potential evaporation) to derive initial state estimates of the hydrological model for the next forecast (e.g. by glueing the first day of subsequent forecast as proxy for the historical observed forcing). It is clear that this approach is not perfect and that data assimilation can help to overcome some of the weaknesses of this approach. So far most hydrologic da studies have focused mostly on catchment scale. Here we conduct a da experiment by assimilating multiple streamflow observations across the contiguous united states (CONUS) into a global hydrological model (W3RA) and run with and without localization method using OpenDA in the global flood forecasting information system (GLOFFIS). It is shown that assimilation of streamflow holds considerable potential for improving global scale flood forecasting (improving NSE scores from 0 to 0.7 and beyond). Weakness in the model (e.g. structural problems and missing processes) and forcing that influence the performance will be highlighted.
Nonlinear dynamics of global atmospheric and earth system processes
NASA Technical Reports Server (NTRS)
Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu
1995-01-01
During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.
Error characterization of microwave satellite soil moisture data sets using fourier analysis
USDA-ARS?s Scientific Manuscript database
Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over meso to global scales used as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these processes. ...
NASA Astrophysics Data System (ADS)
Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.
2012-12-01
Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and comparing upper tropospheric budgets of NOx from aircraft and lightning sources in the modeling domain.
The fluid dynamics of atmospheric clouds
NASA Astrophysics Data System (ADS)
Randall, David A.
2017-11-01
Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.
Ecosystem stressors in southern Nevada [Chapter 2] (Executive Summary)
Burton K. Pendleton; Jeanne C. Chambers; Matthew L. Brooks; Steven M. Ostoja
2013-01-01
Southern Nevada ecosystems are subject to a number of stressors that range in scope from local to regional to global. At the regional scale, human population growth and related activities constitute a major stressor. Nevada has undergone significant change due to unprecedented population growth and ongoing global change processes. Nevadaâs growth rate has been the...
Satellite-enhanced dynamical downscaling for the analysis of extreme events
NASA Astrophysics Data System (ADS)
Nunes, Ana M. B.
2016-09-01
The use of regional models in the downscaling of general circulation models provides a strategy to generate more detailed climate information. In that case, boundary-forcing techniques can be useful to maintain the large-scale features from the coarse-resolution global models in agreement with the inner modes of the higher-resolution regional models. Although those procedures might improve dynamics, downscaling via regional modeling still aims for better representation of physical processes. With the purpose of improving dynamics and physical processes in regional downscaling of global reanalysis, the Regional Spectral Model—originally developed at the National Centers for Environmental Prediction—employs a newly reformulated scale-selective bias correction, together with the 3-hourly assimilation of the satellite-based precipitation estimates constructed from the Climate Prediction Center morphing technique. The two-scheme technique for the dynamical downscaling of global reanalysis can be applied in analyses of environmental disasters and risk assessment, with hourly outputs, and resolution of about 25 km. Here the satellite-enhanced dynamical downscaling added value is demonstrated in simulations of the first reported hurricane in the western South Atlantic Ocean basin through comparisons with global reanalyses and satellite products available in ocean areas.
NASA Astrophysics Data System (ADS)
Ruin, Isabelle
2014-05-01
How do people answer to heavy precipitation and flood warnings? How do they adapt their daily schedule and activity to the fast evolution of the environmental circumstances? More generally, how do social processes interact with physical ones? Such questions address the dynamical interactions between hydro-meteorological variables, human perception and representation of the environment, and actual individual and social behavioral responses. It also poses the question of scales and hierarchy issues through seamless interactions between smaller and larger scales. These questions are relevant for both social and physical scientists. They are more and more pertinently addressed in the Global Environmental Change perspective through the concepts of Coupled Human And Natural Systems (CHANS), resilience or panarchy developped in the context of interdisciplinary collaborations. Nevertheless those concepts are complex and not easy to handle, specially when facing with operational goals. One of the main difficulty to advance these integrated approaches is the access to empirical data informing the processes at various scales. In fact, if physical and social processes are well studied by distinct disciplines, they are rarely jointly explored within similar spatial and temporal resolutions. Such coupled observation and analysis poses methodological challenges, specially when dealing with responses to short-fuse and extreme weather events. In fact, if such coupled approach is quite common to study large scale phenomenon like global change (for instance using historical data on green house gaz emissions and the evolution of temperatures worldwide), it is rarer for studing smaller nested sets of scales of human-nature systems where finer resolution data are sparse. Another problem arise from the need to produce comparable analysis on different case studies where social, physical and even cultural contexts may be diverse. Generic and robust framework for data collection, modeling and analysis are needed to allow cross comparison and deeper understanding of the processes accross scales. This presentation will address these issues based on concrete exemples from empirical studies on past flash flooding events across Europe and USA.
Stucky, Brian J; Guralnick, Rob; Deck, John; Denny, Ellen G; Bolmgren, Kjell; Walls, Ramona
2018-01-01
Plant phenology - the timing of plant life-cycle events, such as flowering or leafing out - plays a fundamental role in the functioning of terrestrial ecosystems, including human agricultural systems. Because plant phenology is often linked with climatic variables, there is widespread interest in developing a deeper understanding of global plant phenology patterns and trends. Although phenology data from around the world are currently available, truly global analyses of plant phenology have so far been difficult because the organizations producing large-scale phenology data are using non-standardized terminologies and metrics during data collection and data processing. To address this problem, we have developed the Plant Phenology Ontology (PPO). The PPO provides the standardized vocabulary and semantic framework that is needed for large-scale integration of heterogeneous plant phenology data. Here, we describe the PPO, and we also report preliminary results of using the PPO and a new data processing pipeline to build a large dataset of phenology information from North America and Europe.
NASA Astrophysics Data System (ADS)
Graells, Robert Casals i.; Sibilla, Anna; Bohle, Martin
2016-04-01
Anthropogenic global change is a composite process. It consists of societal processes (in the 'noosphere') and natural processes (in the 'bio-geosphere'). The 'noosphere' is the ensemble of social, cultural or political insights ('shared subjective mental concepts') of people. Understanding the composite of societal and natural processes ('human geo-biosphere intersections'), which shapes the features of anthropogenic global change, would benefit from a description that draws equally on natural sciences, social sciences and humanities. To that end it is suggested to develop a concept of 'geo-humanities': This essay presents some aspects of its scope, discussing "knowledge that is to manage", "intentions that are to shape", "choices that are to justify" and "complexity that is to handle". Managing knowledge: That people understand anthropogenic global change requires their insights into how 'human geosphere intersections' function. Insights are formed ('processed') in the noosphere by means of interactions between people. Understanding how 'human geosphere intersections' functions combines scientific, engineering and economic studies with studies of the dynamics of the noosphere. Shaping intentions: During the last century anthropogenic global change developed as the collateral outcome of humankind's accumulated actions. It is caused by the number of people, the patterns of their consumption of resources, and the alterations of their environments. Nowadays, anthropogenic global chance is either an intentional negligence or a conscious act. Justifying choices: Humanity has alternatives how to alter Earth at planetary scale consciously. For example, there is a choice to alter the geo-biosphere or to adjust the noosphere. Whatever the choice, it will depend on people's world-views, cultures and preferences. Thus beyond issues whether science and technology are 'sound' overarching societal issues are to tackle, such as: (i) how to appropriate and distribute natural resources for what cost, (ii) what are intended collateral effects, or (iii) what is the risk of non-intended collateral effects? Handling complexity: Consciously altering Earth at a planetary scale is ambitious, although it fits well into the historical development of industrialised societies and their paradigms how to handle change. Still, action at a planetary scale goes beyond any actual use-case that may serve as a reference. Furthermore, the available technological means, scientific understanding and resources impose limits, and, second, the noosphere is complex given the variety of interacting world-views, cultures and preferences. Summarizing, geo-humanities would study human geosphere intersections. Geo-humanities would address societal and natural process within one frame of reference to understand how attributes of the geo-biosphere and artefacts of the noosphere are aggregated to anthropogenic global change.
Globalization and multi-spatial trends in the coverage of protected-area conservation (1980-2000).
Zimmerer, Karl S; Galt, Ryan E; Buck, Margaret V
2004-12-01
This study is focused on the global expansion of protected-area coverage that occurred during the 1980--2000 period. We examine the multi-scale patterning of four of the basic facets of this expansion: i) estimated increases at the world-regional and country-level scales of total protected-area coverage; ii) transboundary protected areas; iii) conservation corridor projects; and iv) type of conservation management. Geospatial patterning of protected-area designations is a reflection of the priorities of global conservation organizations and the globalization of post-Cold War political and economic arrangements. Local and national-level factors (political leadership and infrastructure) as well as international relations such as multilateral and bilateral aid combine with these globalization processes to impact the extent, type, and location of protected-area designations. We conclude that the interaction of these factors led to the creation and reinforcement of marked spatial differences (rather than tendencies toward worldwide evenness or homogenization) in the course of protected-area expansion during the 1980--2000 period.
Sea-level variability in the Common Era along the Atlantic coast of North America
NASA Astrophysics Data System (ADS)
Kemp, A.; Kopp, R. E.; Horton, B.; Little, C. M.; Engelhart, S. E.; Mitrovica, J. X.
2017-12-01
Common Era relative sea-level trends on the margins of the North Atlantic Ocean vary through time and across space as a result of simultaneous global (basin-wide)-, regional- (linear and non-linear), and local-scale processes. A growing suite of relative sea-level reconstructions derived from dated salt-marsh (and mangrove) sediment on the Atlantic coast of North America provides an opportunity to quantify the contributions from several physical processes to Common Era sea-level trends. In particular, this coastline is susceptible to relative sea-level changes caused by melting of the Greenland Ice Sheet and redistribution of existing ocean mass on timescales of days to centuries by evolving patterns and strengths of atmospheric and oceanic circulation. Using a case study from Newfoundland, Canada, we demonstrate how high-resolution (decadal- and decimeter-scale) relative sea level reconstructions are produced from sequences of salt-marsh sediment that were deposited under conditions of long-term sea-level rise. We use an expanded database of Common Era relative sea-level reconstructions from the Atlantic coast of North America that spans locations from Newfoundland to the southern Florida to identify spatial and temporal patterns of change. A spatio-temporal statistical model enables us to decompose each reconstruction (with uncertainty) into contributions from global-, regional- (linear and non-linear), and local-scale processes. This analysis shows that spatially-variable glacio-isostatic adjustment was the primary driver of sea-level change. The global signal is dominated by the onset of anthropogenic sea-level rise in the late 19th century, which caused the 20th century to experience a faster rate of rise than any of the preceding 26 centuries. Differentiating between regional non-linear and local-scale processes is a challenging using an inherently sparse network of reconstructions. However, we show that sites south of Cape Hatteras have sea-level histories distinct to those from more northward locations and propose that this spatial pattern is best explained by dynamic processes that could include century-scale NAO-driven circulation changes. Complementary paleoenvironmental reconstructions from diverse proxies support this interpretation.
NASA Astrophysics Data System (ADS)
Hua, H.; Owen, S. E.; Yun, S. H.; Agram, P. S.; Manipon, G.; Starch, M.; Sacco, G. F.; Bue, B. D.; Dang, L. B.; Linick, J. P.; Malarout, N.; Rosen, P. A.; Fielding, E. J.; Lundgren, P.; Moore, A. W.; Liu, Z.; Farr, T.; Webb, F.; Simons, M.; Gurrola, E. M.
2017-12-01
With the increased availability of open SAR data (e.g. Sentinel-1 A/B), new challenges are being faced with processing and analyzing the voluminous SAR datasets to make geodetic measurements. Upcoming SAR missions such as NISAR are expected to generate close to 100TB per day. The Advanced Rapid Imaging and Analysis (ARIA) project can now generate geocoded unwrapped phase and coherence products from Sentinel-1 TOPS mode data in an automated fashion, using the ISCE software. This capability is currently being exercised on various study sites across the United States and around the globe, including Hawaii, Central California, Iceland and South America. The automated and large-scale SAR data processing and analysis capabilities use cloud computing techniques to speed the computations and provide scalable processing power and storage. Aspects such as how to processing these voluminous SLCs and interferograms at global scales, keeping up with the large daily SAR data volumes, and how to handle the voluminous data rates are being explored. Scene-partitioning approaches in the processing pipeline help in handling global-scale processing up to unwrapped interferograms with stitching done at a late stage. We have built an advanced science data system with rapid search functions to enable access to the derived data products. Rapid image processing of Sentinel-1 data to interferograms and time series is already being applied to natural hazards including earthquakes, floods, volcanic eruptions, and land subsidence due to fluid withdrawal. We will present the status of the ARIA science data system for generating science-ready data products and challenges that arise from being able to process SAR datasets to derived time series data products at large scales. For example, how do we perform large-scale data quality screening on interferograms? What approaches can be used to minimize compute, storage, and data movement costs for time series analysis in the cloud? We will also present some of our findings from applying machine learning and data analytics on the processed SAR data streams. We will also present lessons learned on how to ease the SAR community onto interfacing with these cloud-based SAR science data systems.
NASA Astrophysics Data System (ADS)
Turkeltaub, T.; Ascott, M.; Gooddy, D.; Jia, X.; Shao, M.; Binley, A. M.
2017-12-01
Understanding deep percolation, travel time processes and nitrate storage in the unsaturated zone at a regional scale is crucial for sustainable management of many groundwater systems. Recently, global hydrological models have been developed to quantify the water balance at such scales and beyond. However, the coarse spatial resolution of the global hydrological models can be a limiting factor when analysing regional processes. This study compares simulations of water flow and nitrate storage based on regional and global scale approaches. The first approach was applied over the Loess Plateau of China (LPC) to investigate the water fluxes and nitrate storage and travel time to the LPC groundwater system. Using raster maps of climate variables, land use data and soil parameters enabled us to determine fluxes by employing Richards' equation and the advection - dispersion equation. These calculations were conducted for each cell on the raster map in a multiple 1-D column approach. In the second approach, vadose zone travel times and nitrate storage were estimated by coupling groundwater recharge (PCR-GLOBWB) and nitrate leaching (IMAGE) models with estimates of water table depth and unsaturated zone porosity. The simulation results of the two methods indicate similar spatial groundwater recharge, nitrate storage and travel time distribution. Intensive recharge rates are located mainly at the south central and south west parts of the aquifer's outcrops. Particularly low recharge rates were simulated in the top central area of the outcrops. However, there are significant discrepancies between the simulated absolute recharge values, which might be related to the coarse scale that is used in the PCR-GLOBWB model, leading to smoothing of the recharge estimations. Both models indicated large nitrate inventories in the south central and south west parts of the aquifer's outcrops and the shortest travel times in the vadose zone are in the south central and east parts of the outcrops. Our results suggest that, for the LPC at least, global scale models might be useful for highlighting the locations with higher recharge rates potential and nitrate contamination risk. Global modelling simulations appear ideal as a primary step in recognizing locations which require investigations at the plot, field and local scales.
Forest forming process and dynamic vegetation models under global change
A. Shvidenko; E. Gustafson
2009-01-01
The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...
Multiple-Scale Physics During Magnetic Reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jara-Almonte, Jonathan
Magnetic reconnection is a key fundamental process in magnetized plasmas wherein the global magnetic topology is modified and stored energy is transferred from fields to particles. Reconnection is an inherently local process, and mechanisms to couple global-scale dynamics are not well understood. This dissertation explores two different mechanisms for cross-scale coupling during magnetic reconnection. As one example, we theoretically examine reconnection in a collisionless plasma using particle-in-cell simulations and demonstrate that large scale reconnection physics can couple to and drive microscopic instabilities, even in two-dimensional systems if significant scale separation exists between the Debye length and the electron skin depth.more » The physics underlying these instabilities is explained using simple theoretical models, and their potential connection to existing discrepancies between laboratory experiments and numerical simulations is explored. In three-dimensional systems, these instabilities are shown to generate anomalous resistivity that balances a substantial fraction of the electric field. In contrast, we also use experiments to investigate cross-scale couplings during reconnection in a collisional plasma. A leading candidate for coupling global and local scales is the hierarchical breakdown of elongated, reconnecting current sheets into numerous smaller current sheets -– the plasmoid instability. In the Magnetic Reconnection Experiment (MRX), recent hardware improvements have extended the accessible parameter space allowing for the study of long-lived, elongated current sheets. Moreover, by using Argon, reproducible and collisional plasmas are produced, which allow for a detailed statistical study of collisional reconnection. As a result, we have conclusively measured the onset of sub-ion-scale plasmoids during resistive, anti-parallel reconnection for the first time. The current sheet thickness is intermediate between ion and electron kinetic scales such that the plasma is in the Hall-MHD regime. Surprisingly, plasmoids are observed at Lundquist numbers < 100 well below theoretical predictions (> 10,000). The number of plasmoids scales with both Lundquist number and current sheet aspect ratio. The Hall quadrupolar fields are shown to suppress plasmoids. Finally, plasmoids are shown to couple local and global physics by enhancing the reconnection rate. These results are compared with prior studies of tearing and plasmoid instability, and implications for astrophysical plasmas, laboratory experiments, and theoretical studies of reconnection are discussed.« less
A Goddard Multi-Scale Modeling System with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.;
2008-01-01
Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.
Integrated modelling of anthropogenic land-use and land-cover change on the global scale
NASA Astrophysics Data System (ADS)
Schaldach, R.; Koch, J.; Alcamo, J.
2009-04-01
In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information that can serve as basis for further impact analysis. An exemplary simulation study with LandSHIFT is presented, based on scenario assumptions from the UNEP Global Environmental Outlook 4. Time horizon of the analysis is the year 2050. Changes of future food production on country level are computed by the agro-economy model IMPACT as a function of demography, economic development and global trade pattern. Together with scenario assumptions on climatic change and population growth, this data serves as model input to compute the changing land-use und land-cover. The continental and global scale model results are then analysed with respect to changes in the spatial pattern of natural vegetation as well as the resulting effects on evapotranspiration processes and land surface parameters. Furthermore, possible linkages of LandSHIFT to the different components of Earth System models (e.g. climate and natural vegetation) are discussed.
Attention to Hierarchical Level Influences Attentional Selection of Spatial Scale
ERIC Educational Resources Information Center
Flevaris, Anastasia V.; Bentin, Shlomo; Robertson, Lynn C.
2011-01-01
Ample evidence suggests that global perception may involve low spatial frequency (LSF) processing and that local perception may involve high spatial frequency (HSF) processing (Shulman, Sullivan, Gish, & Sakoda, 1986; Shulman & Wilson, 1987; Robertson, 1996). It is debated whether SF selection is a low-level mechanism associating global…
Modelling the Air–Surface Exchange of Ammonia from the Field to Global Scale
The Working Group addressed the current understanding and uncertainties in the processes controlling ammonia (NH3) bi-directional exchange, and in the application of numerical models to describe these processes. As a starting point for the discussion, the Working Group drew on th...
ERIC Educational Resources Information Center
Knight, B. Caleb; And Others
1990-01-01
Examined the concurrent validity of the composite and area scores of the Stanford-Binet Intelligence Scale: Fourth Edition (SBIV) and the Mental Processing Composite and global scale scores of the Kaufman Assessment Battery for Children in Black, learning-disabled elementary school students (N=30). Findings demonstrated adequate concurrent…
USDA-ARS?s Scientific Manuscript database
As a primary flux in the global water cycle, evapotranspiration (ET) connects hydrologic and biological processes and is directly affected by water management, land use change and climate change. The two source energy balance (TSEB) model has been widely applied to quantify field scale ET using sate...
Recovery dynamics and climate change effects to future New England forests
Matthew J. Duveneck; Jonathan R. Thompson; Eric J. Gustafson; Yu Liang; Arjan M. G. de Bruijn
2017-01-01
Context. Forests throughout eastern North America continue to recover from broad-scale intensive land use that peaked in the nineteenth century. These forests provide essential goods and services at local to global scales. It is uncertain how recovery dynamics, the processes by which forests respond to past forest land use, will continue to...
Understanding protected area resilience: a multi-scale, social-ecological approach.
Cumming, Graeme S; Allen, Craig R; Ban, Natalie C; Biggs, Duan; Biggs, Harry C; Cumming, David H M; De Vos, Alta; Epstein, Graham; Etienne, Michel; Maciejewski, Kristine; Mathevet, Raphaël; Moore, Christine; Nenadovic, Mateja; Schoon, Michael
2015-03-01
Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern. We extend Ostrom's social-ecological systems framework to consider the long-term persistence of PAs, as a form of land use embedded in social-ecological systems, with important cross-scale feedbacks. Most notably, we highlight the cross-scale influences and feedbacks on PAs that exist from the local to the global scale, contextualizing PAs within multi-scale social-ecological functional landscapes. Such functional landscapes are integral to understand and manage individual PAs for long-term sustainability. We illustrate our conceptual contribution with three case studies that highlight cross-scale feedbacks and social-ecological interactions in the functioning of PAs and in relation to regional resilience. Our analysis suggests that while ecological, economic, and social processes are often directly relevant to PAs at finer scales, at broader scales, the dominant processes that shape and alter PA resilience are primarily social and economic.
Understanding protected area resilience: a multi-scale, social-ecological approach
Cumming, Graeme S.; Allen, Craig R.; Ban, Natalie C.; Biggs, Duan; Biggs, Harry C.; Cumming, David H.M; De Vos, Alta; Epstein, Graham; Etienne, Michel; Maciejewski, Kristine; Mathevet, Raphael; Moore, Christine; Nenadovic, Mateja; Schoon, Michael
2015-01-01
Protected areas (PAs) remain central to the conservation of biodiversity. Classical PAs were conceived as areas that would be set aside to maintain a natural state with minimal human influence. However, global environmental change and growing cross-scale anthropogenic influences mean that PAs can no longer be thought of as ecological islands that function independently of the broader social-ecological system in which they are located. For PAs to be resilient (and to contribute to broader social-ecological resilience), they must be able to adapt to changing social and ecological conditions over time in a way that supports the long-term persistence of populations, communities, and ecosystems of conservation concern. We extend Ostrom's social-ecological systems framework to consider the long-term persistence of PAs, as a form of land use embedded in social-ecological systems, with important cross-scale feedbacks. Most notably, we highlight the cross-scale influences and feedbacks on PAs that exist from the local to the global scale, contextualizing PAs within multi-scale social-ecological functional landscapes. Such functional landscapes are integral to understand and manage individual PAs for long-term sustainability. We illustrate our conceptual contribution with three case studies that highlight cross-scale feedbacks and social-ecological interactions in the functioning of PAs and in relation to regional resilience. Our analysis suggests that while ecological, economic, and social processes are often directly relevant to PAs at finer scales, at broader scales, the dominant processes that shape and alter PA resilience are primarily social and economic.
Satellite observed global variations in ecosystem-scale plant water storage
NASA Astrophysics Data System (ADS)
Tian, F.; Wigneron, J. P.; Brandt, M.; Fensholt, R.
2017-12-01
Plant water storage is a key component in ecohydrological processes and tightly coupled with global carbon and energy budgets. Field measurements of individual trees have revealed diurnal and seasonal variations in plant water storage across different tree species and sizes. However, global estimation of plant water storage is challenged by up-scaling from individual trees to an ecosystem scale. The L-band passive microwaves are sensitive to water stored in the stems, branches and leaves, with dependence on the vegetation structure. Thus, the L-band vegetation optical depth (L-VOD) parameter retrieved from satellite passive microwave observations can be used as a proxy for ecosystem-scale plant water storage. Here, we employ the recently developed SMOS (Soil Moisture and Ocean Salinity) L-VOD dataset to investigate spatial patterns in global plant water storage and its diurnal and seasonal variations. In addition, we compare the spatiotemporal patterns between plant water storage and canopy greenness (i.e., enhanced vegetation indices, EVI) to gain ecohydrological insights among different territorial biomes, including boreal forest and tropical woodland. Generally, seasonal dynamics of plant water storage is much smaller than canopy greenness, yet the temporal coupling of these two traits is totally different between boreal and tropical regions, which could be related to their strategies in plant water regulation.
Linking Belowground Plant Traits With Ecosystem Processes: A Multi-Biome Perspective
NASA Astrophysics Data System (ADS)
Iversen, C. M.; Norby, R. J.; Childs, J.; McCormack, M. L.; Walker, A. P.; Hanson, P. J.; Warren, J.; Sloan, V. L.; Sullivan, P. F.; Wullschleger, S.; Powell, A. S.
2015-12-01
Fine plant roots are short-lived, narrow-diameter roots that play an important role in ecosystem carbon, water, and nutrient cycling in biomes ranging from the tundra to the tropics. Root ecologists make measurements at a millimeter scale to answer a question with global implications: In response to a changing climate, how do fine roots modulate the exchange of carbon between soils and the atmosphere and how will this response affect our future climate? In a Free-Air CO2 Enrichment experiment in Oak Ridge, TN, elevated [CO2] caused fine roots to dive deeper into the soil profile in search of limiting nitrogen, which led to increased soil C storage in deep soils. In contrast, the fine roots of trees and shrubs in an ombrotrophic bog are constrained to nutrient-poor, oxic soils above the average summer water table depth, though this may change with warmer, drier conditions. Tundra plant species are similarly constrained to surface organic soils by permafrost or waterlogged soils, but have many adaptations that alter ecosystem C fluxes, including aerenchyma that oxygenate the rhizosphere but also allow direct methane flux to the atmosphere. FRED, a global root trait database, will allow terrestrial biosphere models to represent the complexity of root traits across the globe, informing both model representation of ecosystem C and nutrient fluxes, but also the gaps where measurements are needed on plant-soil interactions (for example, in the tropical biome). While the complexity of mm-scale measurements may never have a place in large-scale global models, close collaboration between empiricists and modelers can help to guide the scaling of important, yet small-scale, processes to quantify their important roles in larger-scale ecosystem fluxes.
Solar Activity Across the Scales: From Small-Scale Quiet-Sun Dynamics to Magnetic Activity Cycles
NASA Technical Reports Server (NTRS)
Kitiashvili, Irina N.; Collins, Nancy N.; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.
2017-01-01
Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.
Solar activity across the scales: from small-scale quiet-Sun dynamics to magnetic activity cycles
NASA Astrophysics Data System (ADS)
Kitiashvili, I.; Collins, N.; Kosovichev, A. G.; Mansour, N. N.; Wray, A. A.
2017-12-01
Observations as well as numerical and theoretical models show that solar dynamics is characterized by complicated interactions and energy exchanges among different temporal and spatial scales. It reveals magnetic self-organization processes from the smallest scale magnetized vortex tubes to the global activity variation known as the solar cycle. To understand these multiscale processes and their relationships, we use a two-fold approach: 1) realistic 3D radiative MHD simulations of local dynamics together with high-resolution observations by IRIS, Hinode, and SDO; and 2) modeling of solar activity cycles by using simplified MHD dynamo models and mathematical data assimilation techniques. We present recent results of this approach, including the interpretation of observational results from NASA heliophysics missions and predictive capabilities. In particular, we discuss the links between small-scale dynamo processes in the convection zone and atmospheric dynamics, as well as an early prediction of Solar Cycle 25.
NASA Astrophysics Data System (ADS)
Manduca, C. A.; Mogk, D. W.
2002-12-01
One of the hallmarks of geoscience research is the process of moving between observations and interpretations on local and global scales to develop an integrated understanding of Earth processes. Understanding this interplay is an important aspect of student geoscience learning which leads to an understanding of the fundamental principles of science and geoscience and of the connections between local natural phenomena or human activity and global processes. Several techniques that engage students in inquiry and discovery (as recommended in the National Science Education Standards, NRC 1996, Shaping the Future of Undergraduate Earth Science Education, AGU, 1997) hold promise for helping students make these connections. These include the development of global data sets from local observations (e.g. GLOBE); studying small scale or local phenomenon in the context of global models (e.g. carbon storage in local vegetation and its role in the carbon cycle); or an analysis of local environmental issues in a global context (e.g. a comparison of local flooding to flooding in other countries and analysis in the context of weather, geology and development patterns). Research on learning suggests that data-rich activities linking the local and global have excellent potential for enhancing student learning because 1) students have already developed observations and interpretations of their local environment which can serve as a starting point for constructing new knowledge and 2) this context may motivate learning and develop understanding that can be transferred to other situations. (How People Learn, NRC, 2001). Faculty and teachers at two recent workshops confirm that projects that involve local or global data can engage students in learning by providing real world context, creating student ownership of the learning process, and developing scientific skills applicable to the complex problems that characterize modern science and society. Workshop participants called for increased dissemination of examples of effective practice, evaluation of the impact of data-rich activities on learning, and further development of data access infrastructure and services. (for additional workshop results and discussion see http://serc.carleton.edu/research_education/usingdata)
NASA Astrophysics Data System (ADS)
Antle, J. M.; Valdivia, R. O.; Claessens, L.; Nelson, G. C.; Rosenzweig, C.; Ruane, A. C.; Vervoort, J.
2013-12-01
The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment that is logically consistent across local, regional and global scales. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts are being developed. Representative Agricultural Pathways (RAPs) are designed to extend global pathways to provide the detail needed for global and regional assessment of agricultural systems. In addition, research by the Agricultural Model Inter-comparison and Improvement Project (AgMIP) shows that RAPs provide a powerful way to engage stakeholders in climate-related research throughout the research process and in communication of research results. RAPs are based on the integrated assessment framework developed by AgMIP. This framework shows that both bio-physical and socio-economic drivers are essential components of agricultural pathways and logically precede the definition of adaptation and mitigation scenarios that embody associated capabilities and challenges. This approach is based on a trans-disciplinary process for designing pathways and then translating them into parameter sets for bio-physical and economic models that are components of agricultural integrated assessments of climate impact, adaptation and mitigation. RAPs must be designed to be part of a logically consistent set of drivers and outcomes from global to regional and local. Global RAPs are designed to be consistent with higher-level global socio-economic pathways, but add key agricultural drivers such as agricultural growth trends that are not specified in more general pathways, as illustrated in a recent inter-comparison of global agricultural models. To create pathways at regional or local scales, further detail is needed. At this level, teams of scientists and other experts with knowledge of the agricultural systems and regions work together through a step-wise process. Experiences from AgMIP Regional Teams, and from the project on Regional Approaches to Climate Change in the Pacific Northwest, are used to discuss how the RAPs procedures can be further developed and improved, and how RAPs can help engage stakeholders in climate-related research throughout the research process and in communication of research results.
NASA Astrophysics Data System (ADS)
Neuburger, Martina; Gurgiser, Wolfgang; Maussion, Fabien; Singer, Katrin; Kaser, Georg
2017-04-01
Natural scientists observe and project changes in precipitation and temperature at different spatio-temporal scales and investigate impacts on glaciers and hydrological regimes. Simultaneously, social groups experience ecological phenomena as linked to climate change and integrate them into their understanding of nature and their logics of action, while political actors refer to scientific results as legitimization to focus on adaptation and mitigation strategies on global, national and regional/local level. However, natural and socio-political changes on various scales (regarding time and space) are not directly interlinked, but are communicated by energy and material flows, by discourses, power relations and institutional regulations. In this context, it remains still unclear how natural dynamics are (dis)entangled with societal processes in their historical dimensions and in their interrelations from global via national to regional and local scales. Considering the Cordillera Blanca region in Peru as an example, we analyze the intertwining of scales (global, national, regional, local) and spheres (natural, political, societal) to detect entanglements and disconnections of observed processes. Using the methodology of a time line, we present precipitation variability and glacier recession at different scales, estimate qualitative water availability and investigate the links to the implementation of international and national political programs on climate change adaptation in the Cordillera Blanca region focusing on water and agrarian programs. Finally, we include supposedly contradictory reports of rural population on climate change and related impacts on water availability and agricultural production to analyze the (dis)entanglement due to changing power relations and dominant discourses.
Weak Hydrological Sensitivity to Temperature Change over Land, Independent of Climate Forcing
NASA Technical Reports Server (NTRS)
Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, O.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaeschner, D.; Kasoar, M.; Kharin, V.;
2018-01-01
We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2-3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3-5%/K, while the slow land HS is only 0-2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.
Pasco, Paul Matthew D; Jamora, Roland Dominic G; Rosales, Raymond L; Diesta, Cid Czarina E; Ng, Arlene R; Teleg, Rosalia A; Go, Criscely L; Lee, Lillian; Fernandez, Hubert H
2017-01-01
X-linked dystonia-parkinsonism(XDP) is a neurodegenerative disorder endemic to the Philippines. A rating scale was developed by the authors under the guidance of the Movement Disorder Society of the Philippines (MDSP) to assess XDP severity and progression, functional impact, and response to treatment in future clinical trials. Our main objective was to validate our new scale, the XDP-MDSP scale. The initial validation process included pragmatic testing to XDP patients followed by a modified Delphi procedure with an international advisory panel of dystonia, parkinsonism and scale development experts. Pearson correlation was used to assess construct validity of our new scale versus the assess construct validity of our new scale versus standard dystonia, parkinsonism, non-motor and functional scales; and also to assess divergent validity against behavioral and cognitive scales. The 37-item XDP-MDSP scale has five parts: I-dystonia, II-parkinsonism, III-non-motor features, IV-ADL, and V-global impression. After initial validation, the scale was administered to 204 XDP patients. Inter-domain correlation for the first four parts was acceptable. The correlation between these domains and the global rating was slightly lower. Correlations between Parts I, II, III, and IV versus standard dystonia, parkinsonism, non-motor and functional scales were acceptable with values ranging from 0.323 to 0.428. For divergent validity, a significant correlation was seen with behavioral scales. No significant correlation was noted with the cognitive scale. The proposed XDP-MDSP scale is internally valid but the global rating subscale may need to be modified or eliminated. While there is convergent validity, divergent validation was successful only on cognitive and not behavioral scales. The frequent co-occurrence of anxiety and depression, and its effect on the motor and functional state, may explain this finding.
NASA Technical Reports Server (NTRS)
Elliott, Joshua; Muller, Christoff
2015-01-01
Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and future periods. Implementation differences in these and other modeling choices contribute to significant variation among global-scale crop model assessments in addition to differences in crop model implementations that also cause large differences in site-specific crop modeling (Asseng et al., 2013; Bassu et al., 2014).
NASA Technical Reports Server (NTRS)
Boering, Kristie A.; Connell, Peter; Rotman, Douglas
2005-01-01
Until recently, the stable isotopic composition of chemically and datively important stratospheric species, such as ozone (O3), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), was largely unexplored, despite indications from the few measurements available and theoretical studies that global-scale isotopic variations will provide a unique tool for quantifying rates of global-scale mass transport into, within, and out of the stratosphere and for understanding the mechanisms of chemical reactions involved in ozone production. The number and geographical extent of observations are beginning to increase rapidly, however, as access to the stratosphere, both directly and by remote-sensing, has increased over the last 10 years and as new analytical techniques have been developed that make global-scale isotope measurements by whole-air sampling more feasible. The objective of this study, begun in April 1999, is to incorporate into the Livermore 2D model the likely photochemical fractionation processes that determine the isotopic compositions of stratospheric CO2, N2O, CH4, and O3, and to use the model results and new observations from NASA field campaigns in 1996 and 1997 to investigate stratospheric chemistry and mass transport. Additionally, since isotopic signatures from the stratosphere are transferred to the troposphere by downward transport at middle and high latitudes, the isotopic compositions may also serve as sensitive tracers of stratosphere-totroposphere transport. Comparisons of model results with stratospheric and upper tropospheric observations from these campaigns, as well as with ground-based observations from new NOAA and NSF-sponsored studies, will help determine whether the magnitudes of the stratospheric fractionation processes are large enough to use as global-scale tracers of transport into the troposphere and, if so, will be used to help constrain the degree of coupling between the troposphere and the stratosphere.
Biogenic Aerosols—Effects on Clouds and Climate (BAECC) Final Campaign Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petäjä, T; Moisseev, D; Sinclair, V
Atmospheric aerosol particles impact human health in urban environments, while on regional and global scales they can affect climate patterns, the hydrological cycle, and the intensity of radiation that reaches the Earth’s surface. In spite of recent advances in the understanding of aerosol formation processes and the links between aerosol dynamics and biosphere-atmosphere-climate interactions, great challenges remain in the analysis of related processes on a global scale. Boreal forests, situated in a circumpolar belt in the Northern latitudes throughout the United States, Canada, Russia, and Scandinavia, are, of all biomes, among the most active areas of atmospheric aerosol formation. Themore » formation of aerosol particles and their growth to cloud condensation nuclei sizes in these areas are associated with biogenic volatile organic emissions (BVOC) from vegetation and soil.« less
Lessons Learned While Exploring Cloud-Native Architectures for NASA EOSDIS Applications and Systems
NASA Technical Reports Server (NTRS)
Pilone, Dan; Mclaughlin, Brett; Plofchan, Peter
2017-01-01
NASA's Earth Observing System (EOS) is a coordinated series of satellites for long term global observations. NASA's Earth Observing System Data and Information System (EOSDIS) is a multi-petabyte-scale archive of environmental data that supports global climate change research by providing end-to-end services from EOS instrument data collection to science data processing to full access to EOS and other earth science data. On a daily basis, the EOSDIS ingests, processes, archives and distributes over 3 terabytes of data from NASA's Earth Science missions representing over 6000 data products ranging from various types of science disciplines. EOSDIS has continually evolved to improve the discoverability, accessibility, and usability of high-impact NASA data spanning the multi-petabyte-scale archive of Earth science data products. Reviewed and approved by Chris Lynnes.
NASA Technical Reports Server (NTRS)
Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming
2012-01-01
Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.
Peatland hydrology and carbon release: why small-scale process matters.
Holden, Joseph
2005-12-15
Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon.
Mechanics of aeolian processes: Soil erosion and dust production
NASA Technical Reports Server (NTRS)
Mehrabadi, M. M.
1989-01-01
Aeolian (wind) processes occur as a result of atmosphere/land-surface system interactions. A thorough understanding of these processes and their physical/mechanical characterization on a global scale is essential to monitoring global change and, hence, is imperative to the fundamental goal of the Earth observing system (Eos) program. Soil erosion and dust production by wind are of consequence mainly in arid and semi arid regions which cover 36 percent of the Earth's land surface. Some recent models of dust production due to wind erosion of agricultural soils and the mechanics of wind erosion in deserts are reviewed and the difficulties of modeling the aeolian transport are discussed.
What if we took a global look?
NASA Astrophysics Data System (ADS)
Ouellet Dallaire, C.; Lehner, B.
2014-12-01
Freshwater resources are facing unprecedented pressures. In hope to cope with this, Environmental Hydrology, Freshwater Biology, and Fluvial Geomorphology have defined conceptual approaches such as "environmental flow requirements", "instream flow requirements" or "normative flow regime" to define appropriate flow regime to maintain a given ecological status. These advances in the fields of freshwater resources management are asking scientists to create bridges across disciplines. Holistic and multi-scales approaches are becoming more and more common in water sciences research. The intrinsic nature of river systems demands these approaches to account for the upstream-downstream link of watersheds. Before recent technological developments, large scale analyses were cumbersome and, often, the necessary data was unavailable. However, new technologies, both for information collection and computing capacity, enable a high resolution look at the global scale. For rivers around the world, this new outlook is facilitated by the hydrologically relevant geo-spatial database HydroSHEDS. This database now offers more than 24 millions of kilometers of rivers, some never mapped before, at the click of a fingertip. Large and, even, global scale assessments can now be used to compare rivers around the world. A river classification framework was developed using HydroSHEDS called GloRiC (Global River Classification). This framework advocates for holistic approach to river systems by using sub-classifications drawn from six disciplines related to river sciences: Hydrology, Physiography and climate, Geomorphology, Chemistry, Biology and Human impact. Each of these disciplines brings complementary information on the rivers that is relevant at different scales. A first version of a global river reach classification was produced at the 500m resolution. Variables used in the classification have influence on processes involved at different scales (ex. topography index vs. pH). However, all variables are computed at the same high spatial resolution. This way, we can have a global look at local phenomenon.
Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1
NASA Technical Reports Server (NTRS)
Shepherd, Marshall; Starr, David OC. (Technical Monitor)
2001-01-01
The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.
NASA Technical Reports Server (NTRS)
Johnson, B.
1988-01-01
The Coastal Zone Color Scanner (CZCS) spacecraft ocean color instrument is capable of measuring and mapping global ocean surface chlorophyll concentration. It is a scanning radiometer with multiband capability. With new electronics and some mechanical, and optical re-work, it probably can be made flight worthy. Some additional components of a second flight model are also available. An engineering study and further tests are necessary to determine exactly what effort is required to properly prepare the instrument for spaceflight and the nature of interfaces to prospective spacecraft. The CZCS provides operational instrument capability for monitoring of ocean productivity and currents. It could be a simple, low cost alternative to developing new instruments for ocean color imaging. Researchers have determined that with global ocean color data they can: specify quantitatively the role of oceans in the global carbon cycle and other major biogeochemical cycles; determine the magnitude and variability of annual primary production by marine phytoplankton on a global scale; understand the fate of fluvial nutrients and their possible affect on carbon budgets; elucidate the coupling mechanism between upwelling and large scale patterns in ocean basins; answer questions concerning the large scale distribution and timing of spring blooms in the global ocean; acquire a better understanding of the processes associated with mixing along the edge of eddies, coastal currents, western boundary currents, etc., and acquire global data on marine optical properties.
Science Formulation of Global Precipitation Mission (gpm)
NASA Astrophysics Data System (ADS)
Smith, Eric A.
In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally-sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.
Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research
NASA Astrophysics Data System (ADS)
Smith, Eric A.
start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally- sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.
Science Formulation of Global Precipitation Mission (GPM)
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Mehta, Amita; Shepherd, Marshall; Starr, David O. (Technical Monitor)
2002-01-01
In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.
Estimating global cropland production from 1961 to 2010
NASA Astrophysics Data System (ADS)
Han, Pengfei; Zeng, Ning; Zhao, Fang; Lin, Xiaohui
2017-09-01
Global cropland net primary production (NPP) has tripled over the last 50 years, contributing 17-45 % to the increase in global atmospheric CO2 seasonal amplitude. Although many regional-scale comparisons have been made between statistical data and modeling results, long-term national comparisons across global croplands are scarce due to the lack of detailed spatiotemporal management data. Here, we conducted a simulation study of global cropland NPP from 1961 to 2010 using a process-based model called Vegetation-Global Atmosphere-Soil (VEGAS) and compared the results with Food and Agriculture Organization of the United Nations (FAO) statistical data on both continental and country scales. According to the FAO data, the global cropland NPP was 1.3, 1.8, 2.2, 2.6, 3.0, and 3.6 PgC yr-1 in the 1960s, 1970s, 1980s, 1990s, 2000s, and 2010s, respectively. The VEGAS model captured these major trends on global and continental scales. The NPP increased most notably in the US Midwest, western Europe, and the North China Plain and increased modestly in Africa and Oceania. However, significant biases remained in some regions such as Africa and Oceania, especially in temporal evolution. This finding is not surprising as VEGAS is the first global carbon cycle model with full parameterization representing the Green Revolution. To improve model performance for different major regions, we modified the default values of management intensity associated with the agricultural Green Revolution differences across various regions to better match the FAO statistical data at the continental level and for selected countries. Across all the selected countries, the updated results reduced the RMSE from 19.0 to 10.5 TgC yr-1 (˜ 45 % decrease). The results suggest that these regional differences in model parameterization are due to differences in socioeconomic development. To better explain the past changes and predict the future trends, it is important to calibrate key parameters on regional scales and develop data sets for land management history.
Water balance creates a threshold in soil pH at the global scale.
Slessarev, E W; Lin, Y; Bingham, N L; Johnson, J E; Dai, Y; Schimel, J P; Chadwick, O A
2016-11-21
Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility-rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.
Water balance creates a threshold in soil pH at the global scale
NASA Astrophysics Data System (ADS)
Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.
2016-12-01
Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.
A High-Resolution View of Global Seismicity
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.
2014-12-01
We present high-precision earthquake relocation results from our global-scale re-analysis of the combined seismic archives of parametric data for the years 1964 to present from the International Seismological Centre (ISC), the USGS's Earthquake Data Report (EDR), and selected waveform data from IRIS. We employed iterative, multistep relocation procedures that initially correct for large location errors present in standard global earthquake catalogs, followed by a simultaneous inversion of delay times formed from regional and teleseismic arrival times of first and later arriving phases. An efficient multi-scale double-difference (DD) algorithm is used to solve for relative event locations to the precision of a few km or less, while incorporating information on absolute hypocenter locations from catalogs such as EHB and GEM. We run the computations on both a 40-core cluster geared towards HTC problems (data processing) and a 500-core HPC cluster for data inversion. Currently, we are incorporating waveform correlation delay time measurements available for events in selected regions, but are continuously building up a comprehensive, global correlation database for densely distributed events recorded at stations with a long history of high-quality waveforms. The current global DD catalog includes nearly one million earthquakes, equivalent to approximately 70% of the number of events in the ISC/EDR catalogs initially selected for relocation. The relocations sharpen the view of seismicity in most active regions around the world, in particular along subduction zones where event density is high, but also along mid-ocean ridges where existing hypocenters are especially poorly located. The new data offers the opportunity to investigate earthquake processes and fault structures along entire plate boundaries at the ~km scale, and provides a common framework that facilitates analysis and comparisons of findings across different plate boundary systems.
NASA Technical Reports Server (NTRS)
Gregg, Watson W.
1999-01-01
A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.
The impact of ARM on climate modeling
Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...
2016-07-15
Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less
Bioremediation at a global scale: from the test tube to planet Earth.
de Lorenzo, Víctor; Marlière, Philippe; Solé, Ricard
2016-09-01
Planet Earth's biosphere has evolved over billions of years as a balanced bio-geological system ultimately sustained by sunpower and the large-scale cycling of elements largely run by the global environmental microbiome. Humans have been part of this picture for much of their existence. But the industrial revolution started in the XIX century and the subsequent advances in medicine, chemistry, agriculture and communications have impacted such balances to an unprecedented degree - and the problem has nothing but exacerbated in the last 20 years. Human overpopulation, industrial growth along with unsustainable use of natural resources have driven many sites and perhaps the planetary ecosystem as a whole, beyond recovery by spontaneous natural means, even if the immediate causes could be stopped. The most conspicuous indications of such a state of affairs include the massive change in land use, the accelerated increase in the levels of greenhouse gases, the frequent natural disasters associated to climate change and the growing non-recyclable waste (e.g. plastics and recalcitrant chemicals) that we release to the Environment. While the whole planet is afflicted at a global scale by chemical pollution and anthropogenic emissions, the ongoing development of systems and synthetic biology, metagenomics, modern chemistry and some key concepts from ecological theory allow us to tackle this phenomenal challenge and propose large-scale interventions aimed at reversing and even improving the situation. This involves (i) identification of key reactions or processes that need to be re-established (or altogether created) for ecosystem reinstallation, (ii) implementation of such reactions in natural or designer hosts able to self-replicate and deliver the corresponding activities when/where needed in a fashion guided by sound ecological modelling, (iii) dispersal of niche-creating agents at a global scale and (iv) containment, monitoring and risk assessment of the whole process. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Parameterization Interactions in Global Aquaplanet Simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Suselj, Kay; Teixeira, João.
2018-02-01
Global climate simulations rely on parameterizations of physical processes that have scales smaller than the resolved ones. In the atmosphere, these parameterizations represent moist convection, boundary layer turbulence and convection, cloud microphysics, longwave and shortwave radiation, and the interaction with the land and ocean surface. These parameterizations can generate different climates involving a wide range of interactions among parameterizations and between the parameterizations and the resolved dynamics. To gain a simplified understanding of a subset of these interactions, we perform aquaplanet simulations with the global version of the Weather Research and Forecasting (WRF) model employing a range (in terms of properties) of moist convection and boundary layer (BL) parameterizations. Significant differences are noted in the simulated precipitation amounts, its partitioning between convective and large-scale precipitation, as well as in the radiative impacts. These differences arise from the way the subcloud physics interacts with convection, both directly and through various pathways involving the large-scale dynamics and the boundary layer, convection, and clouds. A detailed analysis of the profiles of the different tendencies (from the different physical processes) for both potential temperature and water vapor is performed. While different combinations of convection and boundary layer parameterizations can lead to different climates, a key conclusion of this study is that similar climates can be simulated with model versions that are different in terms of the partitioning of the tendencies: the vertically distributed energy and water balances in the tropics can be obtained with significantly different profiles of large-scale, convection, and cloud microphysics tendencies.
Exploring Land Use and Land Cover Change and Feedbacks in the Global Change Assessment Model
NASA Astrophysics Data System (ADS)
Chen, M.; Vernon, C. R.; Huang, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.
2017-12-01
Land Use and Land Cover Change (LULCC) is a major driver of global and regional environmental change. Projections of land use change are thus an essential component in Integrated Assessment Models (IAMs) to study feedbacks between transformation of energy systems and land productivity under the context of climate change. However, the spatial scale of IAMs, e.g., the Global Change Assessment Model (GCAM), is typically larger than the scale of terrestrial processes in the human-Earth system, LULCC downscaling therefore becomes a critical linkage among these multi-scale and multi-sector processes. Parametric uncertainties in LULCC downscaling algorithms, however, have been under explored, especially in the context of how such uncertainties could propagate to affect energy systems in a changing climate. In this study, we use a LULCC downscaling model, Demeter, to downscale GCAM-based future land use scenarios into fine spatial scales, and explore the sensitivity of downscaled land allocations to key parameters. Land productivity estimates (e.g., biomass production and crop yield) based on the downscaled LULCC scenarios are then fed to GCAM to evaluate how energy systems might change due to altered water and carbon cycle dynamics and their interactions with the human system, , which would in turn affect future land use projections. We demonstrate that uncertainties in LULCC downscaling can result in significant differences in simulated scenarios, indicating the importance of quantifying parametric uncertainties in LULCC downscaling models for integrated assessment studies.
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present preliminary results from NASA NeMO-Net, the first neural multi-modal observation and training network for global coral reef assessment. NeMO-Net is an open-source deep convolutional neural network (CNN) and interactive active learning training software in development which will assess the present and past dynamics of coral reef ecosystems. NeMO-Net exploits active learning and data fusion of mm-scale remotely sensed 3D images of coral reefs captured using fluid lensing with the NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as hyperspectral airborne remote sensing data from the ongoing NASA CORAL mission and lower-resolution satellite data to determine coral reef ecosystem makeup globally at unprecedented spatial and temporal scales. Aquatic ecosystems, particularly coral reefs, remain quantitatively misrepresented by low-resolution remote sensing as a result of refractive distortion from ocean waves, optical attenuation, and remoteness. Machine learning classification of coral reefs using FluidCam mm-scale 3D data show that present satellite and airborne remote sensing techniques poorly characterize coral reef percent living cover, morphology type, and species breakdown at the mm, cm, and meter scales. Indeed, current global assessments of coral reef cover and morphology classification based on km-scale satellite data alone can suffer from segmentation errors greater than 40%, capable of change detection only on yearly temporal scales and decameter spatial scales, significantly hindering our understanding of patterns and processes in marine biodiversity at a time when these ecosystems are experiencing unprecedented anthropogenic pressures, ocean acidification, and sea surface temperature rise. NeMO-Net leverages our augmented machine learning algorithm that demonstrates data fusion of regional FluidCam (mm, cm-scale) airborne remote sensing with global low-resolution (m, km-scale) airborne and spaceborne imagery to reduce classification errors up to 80% over regional scales. Such technologies can substantially enhance our ability to assess coral reef ecosystems dynamics.
Pathways of Understanding: the Interactions of Humanity and Global Environmental Change
NASA Technical Reports Server (NTRS)
Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen
1992-01-01
How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.
NASA Astrophysics Data System (ADS)
Breach, Patrick A.; Simonovic, Slobodan P.
2018-04-01
Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.
Breach, Patrick A; Simonovic, Slobodan P
2018-04-01
Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.
Thinking big: Towards ideal strains and processes for large-scale aerobic biofuels production
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, James D.; Beckham, Gregg T.
In this study, global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants aremore » emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.« less
Thinking big: Towards ideal strains and processes for large-scale aerobic biofuels production
McMillan, James D.; Beckham, Gregg T.
2016-12-22
In this study, global concerns about anthropogenic climate change, energy security and independence, and environmental consequences of continued fossil fuel exploitation are driving significant public and private sector interest and financing to hasten development and deployment of processes to produce renewable fuels, as well as bio-based chemicals and materials, towards scales commensurate with current fossil fuel-based production. Over the past two decades, anaerobic microbial production of ethanol from first-generation hexose sugars derived primarily from sugarcane and starch has reached significant market share worldwide, with fermentation bioreactor sizes often exceeding the million litre scale. More recently, industrial-scale lignocellulosic ethanol plants aremore » emerging that produce ethanol from pentose and hexose sugars using genetically engineered microbes and bioreactor scales similar to first-generation biorefineries.« less
Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Julie L.
The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less
On the causes of mid-Pliocene warmth and polar amplification
Lunt, Daniel J.; Haywood, Alan M.; Schmidt, Gavin A.; Salzmann, Ulrich; Valdes, Paul J.; Dowsett, Harry J.; Loptson, Claire A.
2012-01-01
The mid-Pliocene (~ 3 to 3.3 Ma ago), is a period of sustained global warmth in comparison to the late Quaternary (0 to ~ 1 Ma ago), and has potential to inform predictions of long-term future climate change. However, given that several processes potentially contributed, relatively little is understood about the reasons for the observed warmth, or the associated polar amplification. Here, using a modelling approach and a novel factorisation method, we assess the relative contributions to mid-Pliocene warmth from: elevated CO2, lowered orography, and vegetation and ice sheet changes. The results show that on a global scale, the largest contributor to mid-Pliocene warmth is elevated CO2. However, in terms of polar amplification, changes to ice sheets contribute significantly in the Southern Hemisphere, and orographic changes contribute significantly in the Northern Hemisphere. We also carry out an energy balance analysis which indicates that that on a global scale, surface albedo and atmospheric emmissivity changes dominate over cloud changes. We investigate the sensitivity of our results to uncertainties in the prescribed CO2 and orographic changes, to derive uncertainty ranges for the various contributing processes.
Agricultural modifications of hydrological flows create ecological surprises.
Gordon, Line J; Peterson, Garry D; Bennett, Elena M
2008-04-01
Agricultural expansion and intensification have altered the quantity and quality of global water flows. Research suggests that these changes have increased the risk of catastrophic ecosystem regime shifts. We identify and review evidence for agriculture-related regime shifts in three parts of the hydrological cycle: interactions between agriculture and aquatic systems, agriculture and soil, and agriculture and the atmosphere. We describe the processes that shape these regime shifts and the scales at which they operate. As global demands for agriculture and water continue to grow, it is increasingly urgent for ecologists to develop new ways of anticipating, analyzing and managing nonlinear changes across scales in human-dominated landscapes.
Is central dogma a global property of cellular information flow?
Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar
2012-01-01
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information. PMID:23189060
Is central dogma a global property of cellular information flow?
Piras, Vincent; Tomita, Masaru; Selvarajoo, Kumar
2012-01-01
The central dogma of molecular biology has come under scrutiny in recent years. Here, we reviewed high-throughput mRNA and protein expression data of Escherichia coli, Saccharomyces cerevisiae, and several mammalian cells. At both single cell and population scales, the statistical comparisons between the entire transcriptomes and proteomes show clear correlation structures. In contrast, the pair-wise correlations of single transcripts to proteins show nullity. These data suggest that the organizing structure guiding cellular processes is observed at omics-wide scale, and not at single molecule level. The central dogma, thus, globally emerges as an average integrated flow of cellular information.
NASA Astrophysics Data System (ADS)
Wendler, Ines
2013-11-01
Climate variability is driven by a complex interplay of global-scale processes and our understanding of them depends on sufficient temporal resolution of the geologic records and their precise inter-regional correlation, which in most cases cannot be obtained with biostratigraphic methods alone. Chemostratigraphic correlation based on bulk sediment carbon isotopes is increasingly used to facilitate high-resolution correlation over large distances, but complications arise from a multitude of possible influences from local differences in biological, diagenetic and physico-chemical factors on individual δ13C records that can mask the global signal. To better assess the global versus local contribution in a δ13C record it is necessary to compare numerous isotopic records on a global scale. As a contribution to this objective, this paper reviews bulk sediment δ13Ccarb records from the Late Cretaceous in order to identify differences and similarities in secular δ13C trends that help establish a global reference δ13C record for this period. The study presents a global-scale comparison of twenty δ13C records from sections representing various palaeo-latitudes in both hemispheres and different oceanic settings from the Boreal, Tethys, Western Interior, Indian Ocean and Pacific Ocean, and with various diagenetic overprinting. The isotopic patterns are correlated based on independent dating with biostratigraphic and paleomagnetic data and reveal good agreement of the major isotope events despite offsets in absolute δ13C values and variation in amplitude between the sites. These differences reflect the varying local influences e.g. from depositional settings, bottom water age and diagenetic history, whereas the concordant patterns in δ13C shifts might represent δ13C fluctuations in the global seawater dissolved inorganic carbon. The latter is modulated by variations in organic matter burial relative to re-mineralization, in the global-scale formation of authigenic carbonate, and in partitioning of carbon between organic carbon and carbonate sinks. These variations are mainly controlled by changes in climate and eustasy. Additionally, some globally synchronous shifts in the bulk δ13Ccarb records could result from parallel variation in the contribution of authigenic carbonate to the sediment. Formation of these cements through biologically mediated early diagenetic processes is related to availability of oxygen and organic material and, thus, can be globally synchronized by fluctuations in eustasy, atmospheric and oceanic oxygen levels or in large-scale oceanic circulation. Because the influence of early diagenetic cements on the bulk δ13Ccarb signal can, but need not be synchronized, chemostratigraphy should not be used as a stand-alone method for trans-continental correlation, and especially minor isotopic shifts have to be interpreted with utmost care. Nevertheless, the observed consistency of the δ13C correlations confirms global scale applicability of bulk sediment δ13C chemostratigraphy for the Late Cretaceous, including sediments that underwent lithification and burial diagenesis such as the sediments from the Himalayan and Alpine sections. Limitations arise from increased uncertainties (1) in sediments with very low carbonate content, (2) from larger δ13C variability in sediments from very shallow marine environments, (3) from unrecognized hiatuses or strong changes in sedimentation rates, and (4) in sections with short stratigraphic coverage or with few biostratigraphic marker horizons.
Theoretical and global scale model studies of the atmospheric sulfur/aerosol system
NASA Technical Reports Server (NTRS)
Kasibhatla, Prasad
1996-01-01
The primary focus during the third-phase of our on-going multi-year research effort has been on 3 activities. These are: (1) a global-scale model study of the anthropogenic component of the tropospheric sulfur cycle; (2) process-scale model studies of the factors influencing the distribution of aerosols in the remote marine atmosphere; and (3) an investigation of the mechanism of the OH-initiated oxidation of DMS in the remote marine boundary layer. In this paper, we describe in more detail our research activities in each of these areas. A major portion of our activities during the fourth and final phase of this project will involve the preparation and submission of manuscripts describing the results from our model studies of marine boundary-layer aerosols and DMS-oxidation mechanisms.
Anthropogenic impacts on marine ecosystems in Antarctica.
Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A
2011-03-01
Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.
Regional scale patterns of fine root lifespan and turnover under current and future climate
M. Luke McCormack; David M. Eissenstat; Anantha M. Prasad; Erica A. Smithwick
2013-01-01
Fine root dynamics control a dominant flux of carbon from plants and into soils and mediate potential uptake and cycling of nutrients and water in terrestrial ecosystems. Understanding of these patterns is needed to accurately describe critical processes like productivity and carbon storage from ecosystem to global scales. However, limited observations of root dynamics...
Katharine N. Suding; Sandra Lavorel; F. Stuart Chapin; Johannes H.C. Cornelissen; Sandra Diaz; Eric Garnier; Deborah Goldberg; David U. Hooper; Stephen T. Jackson; Marie-Laure Navas
2008-01-01
Predicting ecosystem responses to global change is a major challenge in ecology. A critical step in that challenge is to understand how changing environmental conditions influence processes across levels of ecological organization. While direct scaling from individual to ecosystem dynamics can lead to robust and mechanistic predictions, new approaches are needed to...
Mantle convection on modern supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, Jens; Gmeiner, Björn; Mohr, Marcus; Waluga, Christian; Wohlmuth, Barbara; Rüde, Ulrich; Bunge, Hans-Peter
2015-04-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures demand an interdisciplinary co-design. Here we report about recent advances of the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups in computer sciences, mathematics and geophysical application under the leadership of FAU Erlangen. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection assessing the impact of small scale processes on global mantle flow.
NASA Technical Reports Server (NTRS)
Stephens, Graeme L.; Im, Eastwood; Vane, Deborah
2012-01-01
Summary Global - mean precipitation - is controlled by Earth's energy balance and is a quantifiable consequence of the water vapor feedback. Predictability rests on the degree to which the water vapor feedback is predictable. Regional scale - to a significant extent, changes are shaped by atmospheric circulation changes but we do not know the extent to which regional scale changes are predictable. The impacts of changes to atmospheric circulation on regional scale water cycle changes can be dramatic. Process - scale - significant biases to the CHARACTER of precipitation (frequency and intensity) is related to how the precipitation process is parameterized in models. Aerosol - We still do not know the extent to which the water cycle is influenced by aerosol but anecdotal evidence is building. The character of precipitation is affected by the way aerosol influence clouds and thus affects the forcing of the climate system through the albedo effect. Observations - we still have a way to go and need to approach the problem in a more integrated way (tie clouds, aerosol and precipitation together and then link to soil moisture, etc). Globally our capabilities seriously lag behind the science and model development.
Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Starr, David OC. (Technical Monitor)
2002-01-01
In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.
A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data sets (or cloud library) stored at Goddard.
Martens, Pim; Akin, Su-Mia; Maud, Huynen; Mohsin, Raza
2010-09-17
It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all.
Is globalization healthy: a statistical indicator analysis of the impacts of globalization on health
2010-01-01
It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all. PMID:20849605
A suite of global, cross-scale topographic variables for environmental and biodiversity modeling
NASA Astrophysics Data System (ADS)
Amatulli, Giuseppe; Domisch, Sami; Tuanmu, Mao-Ning; Parmentier, Benoit; Ranipeta, Ajay; Malczyk, Jeremy; Jetz, Walter
2018-03-01
Topographic variation underpins a myriad of patterns and processes in hydrology, climatology, geography and ecology and is key to understanding the variation of life on the planet. A fully standardized and global multivariate product of different terrain features has the potential to support many large-scale research applications, however to date, such datasets are unavailable. Here we used the digital elevation model products of global 250 m GMTED2010 and near-global 90 m SRTM4.1dev to derive a suite of topographic variables: elevation, slope, aspect, eastness, northness, roughness, terrain roughness index, topographic position index, vector ruggedness measure, profile/tangential curvature, first/second order partial derivative, and 10 geomorphological landform classes. We aggregated each variable to 1, 5, 10, 50 and 100 km spatial grains using several aggregation approaches. While a cross-correlation underlines the high similarity of many variables, a more detailed view in four mountain regions reveals local differences, as well as scale variations in the aggregated variables at different spatial grains. All newly-developed variables are available for download at Data Citation 1 and for download and visualization at http://www.earthenv.org/topography.
Satellite orbit and data sampling requirements
NASA Technical Reports Server (NTRS)
Rossow, William
1993-01-01
Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.
The use of imprecise processing to improve accuracy in weather & climate prediction
NASA Astrophysics Data System (ADS)
Düben, Peter D.; McNamara, Hugh; Palmer, T. N.
2014-08-01
The use of stochastic processing hardware and low precision arithmetic in atmospheric models is investigated. Stochastic processors allow hardware-induced faults in calculations, sacrificing bit-reproducibility and precision in exchange for improvements in performance and potentially accuracy of forecasts, due to a reduction in power consumption that could allow higher resolution. A similar trade-off is achieved using low precision arithmetic, with improvements in computation and communication speed and savings in storage and memory requirements. As high-performance computing becomes more massively parallel and power intensive, these two approaches may be important stepping stones in the pursuit of global cloud-resolving atmospheric modelling. The impact of both hardware induced faults and low precision arithmetic is tested using the Lorenz '96 model and the dynamical core of a global atmosphere model. In the Lorenz '96 model there is a natural scale separation; the spectral discretisation used in the dynamical core also allows large and small scale dynamics to be treated separately within the code. Such scale separation allows the impact of lower-accuracy arithmetic to be restricted to components close to the truncation scales and hence close to the necessarily inexact parametrised representations of unresolved processes. By contrast, the larger scales are calculated using high precision deterministic arithmetic. Hardware faults from stochastic processors are emulated using a bit-flip model with different fault rates. Our simulations show that both approaches to inexact calculations do not substantially affect the large scale behaviour, provided they are restricted to act only on smaller scales. By contrast, results from the Lorenz '96 simulations are superior when small scales are calculated on an emulated stochastic processor than when those small scales are parametrised. This suggests that inexact calculations at the small scale could reduce computation and power costs without adversely affecting the quality of the simulations. This would allow higher resolution models to be run at the same computational cost.
Evidence for a Global Martian Soil Composition Extends to Gale Crater
NASA Technical Reports Server (NTRS)
Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; King, P. L.; Schmidt, M. E.; Leshin, L.; Morris, R. V.; Squyres, S. W.; Campbell, J. L.
2013-01-01
The eolian bedform within Gale Crater referred to as "Rocknest" was investigated by the science instruments of the Curiosity Mars rover. Physical, chemical and mineralogical results are consistent with data collected from soils at other landing sites, suggesting a globally-similar composition. Results from the Curiosity payload from Rocknest should be considered relevant beyond a single, localized region with Gale Crater, providing key insights into planetary scale processes.
A molecular dawn for biogeochemistry
Zak, D.R.; Blackwood, C.B.; Waldrop, M.P.
2006-01-01
Biogeochemistry is at the dawn of an era in which molecular advances enable the discovery of novel microorganisms having unforeseen metabolic capabilities, revealing new insight into the underlying processes regulating elemental cycles at local to global scales. Traditionally, biogeochemical inquiry began by studying a process of interest, and then focusing downward to uncover the microorganisms and metabolic pathways mediating that process. With the ability to sequence functional genes from the environment, molecular approaches now enable the flow of inquiry in the opposite direction. Here, we argue that a focus on functional genes, the microorganisms in which they reside, and the interaction of those organisms with the broader microbial community could transform our understanding of many globally important biogeochemical processes. ?? 2006 Elsevier Ltd. All rights reserved.
Climate Change and Fish Availability
NASA Astrophysics Data System (ADS)
Teng, Paul P. S.; Lassa, Jonatan; Caballero-Anthony, Mely
Human consumption of fish has been trending upwards in the past decades and this is projected to continue. The main sources of fish are from wild fisheries (marine and freshwater) and aquaculture. Climate change is anticipated to affect the availability of fish through its effect on these two sources as well as on supply chain processes such as storage, transport, processing and retail. Climate change is known to result in warmer and more acid oceans. Ocean acidification due to higher CO2 concentration levels at sea modifies the distribution of phytoplankton and zooplankton to affect wild, capture fisheries. Higher temperature causes warm-water coral reefs to respond with species replacement and bleaching, leading to coral cover loss and habitat loss. Global changes in climatic systems may also cause fish invasion, extinction and turnover. While this may be catastrophic for small scale fish farming in poor tropical communities, there are also potential effects on animal protein supply shifts at local and global scales with food security consequences. This paper discusses the potential impacts of climate change on fisheries and aquaculture in the Asian Pacific region, with special emphasis on Southeast Asia. The key question to be addressed is “What are the impacts of global climate change on global fish harvests and what does it mean to the availability of fish?”
NASA Astrophysics Data System (ADS)
Kiyani, Khurom; Chapman, Sandra; Osman, Kareem; Sahraoui, Fouad; Hnat, Bogdan
2014-05-01
The anisotropic nature of the scaling properties of solar wind magnetic turbulence fluctuations is investigated scale by scale using high cadence in situ magnetic field measurements from the Cluster, ACE and STEREO spacecraft missions in both fast and slow quiet solar wind conditions. The data span five decades in scales from the inertial range to the electron Larmor radius. We find a clear transition in scaling behaviour between the inertial and kinetic range of scales, which provides a direct, quantitative constraint on the physical processes that mediate the cascade of energy through these scales. In the inertial (magnetohydrodynamic) range the statistical nature of turbulent fluctuations are known to be anisotropic, both in the vector components of the magnetic field fluctuations (variance anisotropy) and in the spatial scales of these fluctuations (wavevector or k-anisotropy). We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations suggest the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. In contrast to the inertial range, there is a successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius, with isotropy being achieved at the electron Larmor radius. Computing higher-order statistics, we show that the full statistical signature of both parallel, and perpendicular fluctuations at scales below the ion Larmor radius are that of an isotropic globally scale-invariant non-Gaussian process. Lastly, we perform a survey of multiple intervals of quiet solar wind sampled under different plasma conditions (fast, slow wind; plasma beta etc.) and find that the above results on the scaling transition between inertial and kinetic range scales are qualitatively robust, and that quantitatively, there is a spread in the values of the scaling exponents.
Magliocca, Nicholas R; Brown, Daniel G; Ellis, Erle C
2014-01-01
Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement.
Magliocca, Nicholas R.; Brown, Daniel G.; Ellis, Erle C.
2014-01-01
Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement. PMID:24489696
Advances in understanding, models and parameterisations of biosphere-atmosphere ammonia exchange
NASA Astrophysics Data System (ADS)
Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.
2013-03-01
Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of air-borne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphereem NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterisation, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.
Advances in understanding, models and parameterizations of biosphere-atmosphere ammonia exchange
NASA Astrophysics Data System (ADS)
Flechard, C. R.; Massad, R.-S.; Loubet, B.; Personne, E.; Simpson, D.; Bash, J. O.; Cooter, E. J.; Nemitz, E.; Sutton, M. A.
2013-07-01
Atmospheric ammonia (NH3) dominates global emissions of total reactive nitrogen (Nr), while emissions from agricultural production systems contribute about two-thirds of global NH3 emissions; the remaining third emanates from oceans, natural vegetation, humans, wild animals and biomass burning. On land, NH3 emitted from the various sources eventually returns to the biosphere by dry deposition to sink areas, predominantly semi-natural vegetation, and by wet and dry deposition as ammonium (NH4+) to all surfaces. However, the land/atmosphere exchange of gaseous NH3 is in fact bi-directional over unfertilized as well as fertilized ecosystems, with periods and areas of emission and deposition alternating in time (diurnal, seasonal) and space (patchwork landscapes). The exchange is controlled by a range of environmental factors, including meteorology, surface layer turbulence, thermodynamics, air and surface heterogeneous-phase chemistry, canopy geometry, plant development stage, leaf age, organic matter decomposition, soil microbial turnover, and, in agricultural systems, by fertilizer application rate, fertilizer type, soil type, crop type, and agricultural management practices. We review the range of processes controlling NH3 emission and uptake in the different parts of the soil-canopy-atmosphere continuum, with NH3 emission potentials defined at the substrate and leaf levels by different [NH4+] / [H+] ratios (Γ). Surface/atmosphere exchange models for NH3 are necessary to compute the temporal and spatial patterns of emissions and deposition at the soil, plant, field, landscape, regional and global scales, in order to assess the multiple environmental impacts of airborne and deposited NH3 and NH4+. Models of soil/vegetation/atmosphere NH3 exchange are reviewed from the substrate and leaf scales to the global scale. They range from simple steady-state, "big leaf" canopy resistance models, to dynamic, multi-layer, multi-process, multi-chemical species schemes. Their level of complexity depends on their purpose, the spatial scale at which they are applied, the current level of parameterization, and the availability of the input data they require. State-of-the-art solutions for determining the emission/sink Γ potentials through the soil/canopy system include coupled, interactive chemical transport models (CTM) and soil/ecosystem modelling at the regional scale. However, it remains a matter for debate to what extent realistic options for future regional and global models should be based on process-based mechanistic versus empirical and regression-type models. Further discussion is needed on the extent and timescale by which new approaches can be used, such as integration with ecosystem models and satellite observations.
NASA Technical Reports Server (NTRS)
Sellers, Piers J.
1991-01-01
The Boreal Ecosystems Atmosphere Study (BOREAS) is a cooperative field and analysis project involving elements of land surface climatology, tropospheric chemistry, and terrestrial ecology. The goal of the study is to understand the interactions between the boreal forest biome and the atmosphere in order to clarify their roles in global change. The study will be centered on two 20 by 20 km sites within the North American boreal forest region, located near the northern and southern limits of the biome. Studies based at these sites will be used to explore the roles of various environmental factors in controlling the extent and character of the biome. The sites will be the subject of surface, airborne, and satellite based observations which aim to improve understanding of the biological and physical processes and states which govern the exchanges of energy, water, carbon, and trace gases between boreal forest ecosystems and the atmosphere. Particular reference will be made to those processes and states that may be sensitive to global change. The study also aims to develop the use of remote sensing techniques to transfer understanding of the above process from local scales out to regional scales. The BOREAS project is being planned for 1992-1996, with a major field effort in 1994.
Macrosystems ecology: novel methods and new understanding of multi-scale patterns and processes
Songlin Fei; Qinfeng Guo; Kevin Potter
2016-01-01
As the global biomes are increasingly threatened by human activities, understanding of macroscale patterns and processes is pressingly needed for effective management and policy making. Macrosystems ecology, which studies multiscale ecologicalpatterns and processes, has gained growing interest in the research community. However, as a relatively new field in...
Jones, Catherine M; Clavier, Carole; Potvin, Louise
2017-03-01
National policies on global health appear as one way that actors from health, development and foreign affairs sectors in a country coordinate state action on global health. Next to a burgeoning literature in which international relations and global governance theories are employed to understand global health policy and global health diplomacy at the international level, little is known about policy processes for global health at the national scale. We propose a framework of the policy process to understand how such policies are developed, and we identify challenges for public health researchers integrating conceptual tools from political science. We developed the framework using a two-step process: 1) reviewing literature to establish criteria for selecting a theoretical framework fit for this purpose, and 2) adapting Real-Dato's synthesis framework to integrate a cognitive approach to public policy within a constructivist perspective. Our framework identifies multiple contexts as part of the policy process, focuses on situations where actors work together to make national policy on global health, considers these interactive situations as spaces for observing external influences on policy change and proposes policy design as the output of the process. We suggest that this framework makes three contributions to the conceptualisation of national policy on global health as a research object. First, it emphasizes collective action over decisions of individual policy actors. Second, it conceptualises the policy process as organised interactive spaces for collaboration rather than as stages of a policy cycle. Third, national decision-making spaces are opportunities for transferring ideas and knowledge from different sectors and settings, and represent opportunities to identify international influences on a country's global health policy. We discuss two sets of challenges for public health researchers using interdisciplinary approaches in policy research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change
NASA Astrophysics Data System (ADS)
Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.
2011-12-01
Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This work demonstrates the importance of land use in shaping future patterns of climate change, both globally and regionally.
NASA Technical Reports Server (NTRS)
Baker, V. R.
1985-01-01
Geomorphology is entering a new era of discovery and scientific excitement centered on expanding scales of concern in both time and space. The catalysts for this development include technological advances in global remote sensing systems, mathematical modeling, and the dating of geomorphic surfaces and processes. Even more important are new scientific questions centered on comparative planetary geomorphology, the interaction of tectonism with landscapes, the dynamics of late Cenozoic climatic changes, the influence of cataclysmic processes, the recognition of extremely ancient landforms, and the history of the world's hydrologic systems. These questions all involve feedback relationships with allied sciences that have recently yielded profound developments.
Alessa, L.; Kliskey, A.; Lammers, R.; Arp, C.; White, D.; Hinzman, L.; Busey, R.
2008-01-01
People in the Arctic face uncertainty in their daily lives as they contend with environmental changes at a range of scales from local to global. Freshwater is a critical resource to people, and although water resource indicators have been developed that operate from regional to global scales and for midlatitude to equatorial environments, no appropriate index exists for assessing the vulnerability of Arctic communities to changing water resources at the local scale. The Arctic Water Resource Vulnerability Index (AWRVI) is proposed as a tool that Arctic communities can use to assess their relative vulnerability-resilience to changes in their water resources from a variety of biophysical and socioeconomic processes. The AWRVI is based on a social-ecological systems perspective that includes physical and social indicators of change and is demonstrated in three case study communities/watersheds in Alaska. These results highlight the value of communities engaging in the process of using the AWRVI and the diagnostic capability of examining the suite of constituent physical and social scores rather than the total AWRVI score alone. ?? 2008 Springer Science+Business Media, LLC.
From global circulation to flood loss: Coupling models across the scales
NASA Astrophysics Data System (ADS)
Felder, Guido; Gomez-Navarro, Juan Jose; Bozhinova, Denica; Zischg, Andreas; Raible, Christoph C.; Ole, Roessler; Martius, Olivia; Weingartner, Rolf
2017-04-01
The prediction and the prevention of flood losses requires an extensive understanding of underlying meteorological, hydrological, hydraulic and damage processes. Coupled models help to improve the understanding of such underlying processes and therefore contribute the understanding of flood risk. Using such a modelling approach to determine potentially flood-affected areas and damages requires a complex coupling between several models operating at different spatial and temporal scales. Although the isolated parts of the single modelling components are well established and commonly used in the literature, a full coupling including a mesoscale meteorological model driven by a global circulation one, a hydrologic model, a hydrodynamic model and a flood impact and loss model has not been reported so far. In the present study, we tackle the application of such a coupled model chain in terms of computational resources, scale effects, and model performance. From a technical point of view, results show the general applicability of such a coupled model, as well as good model performance. From a practical point of view, such an approach enables the prediction of flood-induced damages, although some future challenges have been identified.
Alessa, Lilian; Kliskey, Andrew; Lammers, Richard; Arp, Chris; White, Dan; Hinzman, Larry; Busey, Robert
2008-09-01
People in the Arctic face uncertainty in their daily lives as they contend with environmental changes at a range of scales from local to global. Freshwater is a critical resource to people, and although water resource indicators have been developed that operate from regional to global scales and for midlatitude to equatorial environments, no appropriate index exists for assessing the vulnerability of Arctic communities to changing water resources at the local scale. The Arctic Water Resource Vulnerability Index (AWRVI) is proposed as a tool that Arctic communities can use to assess their relative vulnerability-resilience to changes in their water resources from a variety of biophysical and socioeconomic processes. The AWRVI is based on a social-ecological systems perspective that includes physical and social indicators of change and is demonstrated in three case study communities/watersheds in Alaska. These results highlight the value of communities engaging in the process of using the AWRVI and the diagnostic capability of examining the suite of constituent physical and social scores rather than the total AWRVI score alone.
NASA Astrophysics Data System (ADS)
Sayre, N. F.; Bestelmeyer, B.
2015-12-01
Global livestock production is heterogeneous, and its benefits and costs vary widely across global contexts. Extensive grazing lands (or rangelands) constitute the vast majority of the land dedicated to livestock production globally, but they are relatively minor contributors to livestock-related environmental impacts. Indeed, the greatest potential for environmental damage in these lands lies in their potential for conversion to other uses, including agriculture, mining, energy production and urban development. Managing such conversion requires improving the sustainability of livestock production in the face of fragmentation, ecological and economic marginality and climate change. We present research from Mongolia and the United States demonstrating methods of improving outcomes on rangelands by improving the fit between the scales of social and biophysical processes. Especially in arid and semi-arid settings, rangelands exhibit highly variable productivity over space and time and non-linear or threshold dynamics in vegetation; climate change is projected to exacerbate these challenges and, in some cases, diminish overall productivity. Policy and governance frameworks that enable landscape-scale management and administration enable range livestock producers to adapt to these conditions. Similarly, livestock breeds that have evolved to withstand climate and vegetation change improve producers' prospects in the face of increasing variability and declining productivity. A focus on the relationships among primary production, animal production, spatial connectivity, and scale must underpin adaptation strategies in rangelands.
The DRAGON scale concept and results for remote sensing of aerosol properties
NASA Astrophysics Data System (ADS)
Holben, B. N.; Eck, T. F.; Schafer, J.; Giles, D. M.; Kim, J.; Sano, I.; Mukai, S.; Kim, Y. J.; Reid, J. S.; Pickering, K. E.; Crawford, J. H.; Smirnov, A.; Sinyuk, A.; Slutsker, I.; Sorokin, M.; Rodriguez, J.; Liew, S.; Trevino, N.; Lim, H.; Lefer, B. L.; Nadkarni, R.; Macke, A.; Kinne, S. A.; Anderson, B. E.; Russell, P. B.; Maring, H. B.; Welton, E. J.; da Silva, A.; Toon, O. B.; Redemann, J.
2013-12-01
Aerosol processes occur at microscales but are typically observed and reported at continental to global scales. Often observable aerosol processes that have significant anthropogenic impact occur on spatial scales of tens to a few hundred km, representative of convective cloud processing, urban/megacity sources, anthropogenic burning and natural wildfires, dry lakebed dust sources etc. Historically remote sensing of aerosols has relied on relatively coarse temporal and spatial resolution satellite observations or high temporal resolution point observations from ground-based monitoring sites from networks such as AERONET, SKYNET, MPLNET and many other surface observation platforms. Airborne remote and in situ observations combined with assimilation models were/are to be the mesoscale link between the ground- and space-based RS scales. However clearly the in situ and ground-based RS characterizations of aerosols require a convergence of thought, parameterization and actual scale measurements in order to advance this goal. This has been served by periodic multidisciplinary field campaigns yet only recently has a concerted effort been made to establish these ground-based networks in an effort to capture the mesoscale processes through measurement programs such as DISCOVER AQ and NASA AERONET's effort to foster such measurements and analysis through the Distributed Regional Aerosol Gridded Observation Networks (DRAGON), short term meso-networks, with partners in Asia and Europe and N. America. This talk will review the historical need for such networks and discuss some of the results and in some cases unexpected findings from the eight DRAGON campaigns conducted the last several years. Emphasis will be placed on the most recent DISCOVER AQ campaign conducted in Houston TX and the synergism with a regional to global network plan through the SEAC4RS US campaign.
Time variable eddy mixing in the global Sea Surface Salinity maxima
NASA Astrophysics Data System (ADS)
Busecke, J. J. M.; Abernathey, R.; Gordon, A. L.
2016-12-01
Lateral mixing by mesoscale eddies is widely recognized as a crucial mechanism for the global ocean circulation and the associated heat/salt/tracer transports. The Salinity in the Upper Ocean Processes Study (SPURS) confirmed the importance of eddy mixing for the surface salinity fields even in the center of the subtropical gyre of the North Atlantic. We focus on the global salinity maxima due to their role as indicators for global changes in the hydrological cycle as well as providing the source water masses for the shallow overturning circulation. We introduce a novel approach to estimate the contribution of eddy mixing to the global sea surface salinity maxima. Using a global 2D tracer experiments in a 1/10 degree MITgcm setup driven by observed surface velocities, we analyze the effect of eddy mixing using a water mass framework, thus focussing on the diffusive flux across surface isohalines. This enables us to diagnose temporal variability on seasonal to inter annual time scales, revealing regional differences in the mechanism causing temporal variability.Sensitivity experiments with various salinity backgrounds reveal robust inter annual variability caused by changes in the surface velocity fields potentially forced by large scale climate.
NASA Technical Reports Server (NTRS)
1992-01-01
An improved predictive understanding of the integrated Earth system, including human interactions, will provide direct benefits by anticipating and planning for possible impacts on commerce, agriculture, energy, resource utilization, human safety, and environmental quality. The central goal of the U.S. Global Change Research Program (USGCRP) is to help establish the scientific understanding and the basis for national and international policymaking related to natural and human-induced changes in the global Earth system. This will be accomplished through: (1) establishing an integrated, comprehensive, long-term program of documenting the Earth system on a global scale; (2) conducting a program of focused studies to improve our understanding of the physical, geological, chemical, biological, and social processes that influence the Earth system processes; and (3) developing integrated conceptual and predictive Earth system models.
Historical foundations and future directions in macrosystems ecology.
Rose, Kevin C; Graves, Rose A; Hansen, Winslow D; Harvey, Brian J; Qiu, Jiangxiao; Wood, Stephen A; Ziter, Carly; Turner, Monica G
2017-02-01
Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and extends previous theories. We trace the rise of macrosystems ecology with respect to preceding theories and present a new hypothesis that integrates the multiple components of macrosystems theory. The spatio-temporal anthropogenic rescaling (STAR) hypothesis suggests that human activities are altering the scales of ecological processes, resulting in interactions at novel space-time scale combinations that are diverse and predictable. We articulate four predictions about how human actions are "expanding", "shrinking", "speeding up" and "slowing down" ecological processes and interactions, and thereby generating new scaling relationships for ecological patterns and processes. We provide examples of these rescaling processes and describe ecological consequences across terrestrial, freshwater and marine ecosystems. Rescaling depends in part on characteristics including connectivity, stability and heterogeneity. Our STAR hypothesis challenges traditional assumptions about how the spatial and temporal scales of processes and interactions operate in different types of ecosystems and provides a lens through which to understand macrosystem-scale environmental change. © 2016 John Wiley & Sons Ltd/CNRS.
Large-Scale Production of Fuel and Feed from Marine Microalgae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntley, Mark
2015-09-30
In summary, this Consortium has demonstrated a fully integrated process for the production of biofuels and high-value nutritional bioproducts at pre-commercial scale. We have achieved unprecedented yields of algal oil, and converted the oil to viable fuels. We have demonstrated the potential value of the residual product as a viable feed ingredient for many important animals in the global food supply.
Design and analysis of a global sub-mesoscale and tidal dynamics admitting virtual ocean.
NASA Astrophysics Data System (ADS)
Menemenlis, D.; Hill, C. N.
2016-02-01
We will describe the techniques used to realize a global kilometerscale ocean model configuration that includes representation of sea-ice and tidal excitation, and spans scales from planetary gyres to internal tides. A simulation using this model configuration provides a virtual ocean that admits some sub-mesoscale dynamics and tidal energetics not normally represented in global calculations. This extends simulated ocean behavior beyond broadly quasi-geostrophic flows and provides a preliminary example of a next generation computational approach to explicitly probing the interactions between instabilities that are usually parameterized and dominant energetic scales in the ocean. From previous process studies we have ascertained that this can lead to a qualitative improvement in the realism of many significant processes including geostrophic eddy dynamics, shelf-break exchange and topographic mixing. Computationally we exploit high-degrees of parallelism in both numerical evaluation and in recording model state to persistent disk storage. Together this allows us to compute and record a full three-dimensional model trajectory at hourly frequency for a timeperiod of 5 months with less than 9 million core hours of parallel computer time, using the present generation NASA Ames Research Center facilities. We have used this capability to create a 5 month trajectory archive, sampled at high spatial and temporal frequency for an ocean configuration that is initialized from a realistic data-assimilated state and driven with reanalysis surface forcing from ECMWF. The resulting database of model state provides a novel virtual laboratory for exploring coupling across scales in the ocean, and for testing ideas on the relationship between small scale fluxes and large scale state. The computation is complemented by counterpart computations that are coarsened two and four times respectively. In this presentation we will review the computational and numerical technologies employed and show how the high spatio-temporal frequency archive of model state can provide a new and promising tool for researching richer ocean dynamics at scale. We will also outline how computations of this nature could be combined with next generation computer hardware plans to help inform important climate process questions.
NASA Astrophysics Data System (ADS)
Ma, Zhanshan; Liu, Qijun; Zhao, Chuanfeng; Shen, Xueshun; Wang, Yuan; Jiang, Jonathan H.; Li, Zhe; Yung, Yuk
2018-03-01
An explicit prognostic cloud-cover scheme (PROGCS) is implemented into the Global/Regional Assimilation and Prediction System (GRAPES) for global middle-range numerical weather predication system (GRAPES_GFS) to improve the model performance in simulating cloud cover and radiation. Unlike the previous diagnostic cloud-cover scheme (DIAGCS), PROGCS considers the formation and dissipation of cloud cover by physically connecting it to the cumulus convection and large-scale stratiform condensation processes. Our simulation results show that clouds in mid-high latitudes arise mainly from large-scale stratiform condensation processes, while cumulus convection and large-scale condensation processes jointly determine cloud cover in low latitudes. Compared with DIAGCS, PROGCS captures more consistent vertical distributions of cloud cover with the observations from Atmospheric Radiation Measurements (ARM) program at the Southern Great Plains (SGP) site and simulates more realistic diurnal cycle of marine stratocumulus with the ERA-Interim reanalysis data. The low, high, and total cloud covers that are determined via PROGCS appear to be more realistic than those simulated via DIAGCS when both are compared with satellite retrievals though the former maintains slight negative biases. In addition, the simulations of outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from PROGCS runs have been considerably improved as well, resulting in less biases in radiative heating rates at heights below 850 hPa and above 400 hPa of GRAPES_GFS. Our results indicate that a prognostic method of cloud-cover calculation has significant advantage over the conventional diagnostic one, and it should be adopted in both weather and climate simulation and forecast.
The direction of evolution: the rise of cooperative organization.
Stewart, John E
2014-09-01
Two great trends are evident in the evolution of life on Earth: towards increasing diversification and towards increasing integration. Diversification has spread living processes across the planet, progressively increasing the range of environments and free energy sources exploited by life. Integration has proceeded through a stepwise process in which living entities at one level are integrated into cooperative groups that become larger-scale entities at the next level, and so on, producing cooperative organizations of increasing scale (for example, cooperative groups of simple cells gave rise to the more complex eukaryote cells, groups of these gave rise to multi-cellular organisms, and cooperative groups of these organisms produced animal societies). The trend towards increasing integration has continued during human evolution with the progressive increase in the scale of human groups and societies. The trends towards increasing diversification and integration are both driven by selection. An understanding of the trajectory and causal drivers of the trends suggests that they are likely to culminate in the emergence of a global entity. This entity would emerge from the integration of the living processes, matter, energy and technology of the planet into a global cooperative organization. Such an integration of the results of previous diversifications would enable the global entity to exploit the widest possible range of resources across the varied circumstances of the planet. This paper demonstrates that it's case for directionality meets the tests and criticisms that have proven fatal to previous claims for directionality in evolution. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Global change and conservation triage on National Wildlife Refuges
Johnson, Fred A.; Eaton, Mitchell; McMahon, Gerard; Raye Nilius,; Mike Bryant,; Dave Case,; Martin, Julien; Wood, Nathan J.; Laura Taylor,
2015-01-01
National Wildlife Refuges (NWRs) in the United States play an important role in the adaptation of social-ecological systems to climate change, land-use change, and other global-change processes. Coastal refuges are already experiencing threats from sea-level rise and other change processes that are largely beyond their ability to influence, while at the same time facing tighter budgets and reduced staff. We engaged in workshops with NWR managers along the U.S. Atlantic coast to understand the problems they face from global-change processes and began a multidisciplinary collaboration to use decision science to help address them. We are applying a values-focused approach to base management decisions on the resource objectives of land managers, as well as those of stakeholders who may benefit from the goods and services produced by a refuge. Two insights that emerged from our workshops were a conspicuous mismatch between the scale at which management can influence outcomes and the scale of environmental processes, and the need to consider objectives related to ecosystem goods and services that traditionally have not been explicitly considered by refuges (e.g., protection from storm surge). The broadening of objectives complicates the decision-making process, but also provides opportunities for collaboration with stakeholders who may have agendas different from those of the refuge, as well as an opportunity for addressing problems across scales. From a practical perspective, we recognized the need to (1) efficiently allocate limited staff time and budgets for short-term management of existing programs and resources under the current refuge design and (2) develop long-term priorities for acquiring or protecting new land/habitat to supplement or replace the existing refuge footprint and thus sustain refuge values as the system evolves over time. Structuring the decision-making problem in this manner facilitated a better understanding of the issues of scale and suggested that a long-term solution will require a significant reassessment of objectives to better reflect the comprehensive values of refuges to society. We discuss some future considerations to integrate these two problems into a single framework by developing novel optimization approaches for dynamic problems that account for uncertainty in future conditions.
Climate Process Team "Representing calving and iceberg dynamics in global climate models"
NASA Astrophysics Data System (ADS)
Sergienko, O. V.; Adcroft, A.; Amundson, J. M.; Bassis, J. N.; Hallberg, R.; Pollard, D.; Stearns, L. A.; Stern, A. A.
2016-12-01
Iceberg calving accounts for approximately 50% of the ice mass loss from the Greenland and Antarctic ice sheets. By changing a glacier's geometry, calving can also significantly perturb the glacier's stress-regime far upstream of the grounding line. This process can enhance discharge of ice across the grounding line. Once calved, icebergs drift into the open ocean where they melt, injecting freshwater to the ocean and affecting the large-scale ocean circulation. The spatial redistribution of the freshwater flux have strong impact on sea-ice formation and its spatial variability. A Climate Process Team "Representing calving and iceberg dynamics in global climate models" was established in the fall 2014. The major objectives of the CPT are: (1) develop parameterizations of calving processes that are suitable for continental-scale ice-sheet models that simulate the evolution of the Antarctic and Greenland ice sheets; (2) compile the data sets of the glaciological and oceanographic observations that are necessary to test, validate and constrain the developed parameterizations and models; (3) develop a physically based iceberg component for inclusion in the large-scale ocean circulation model. Several calving parameterizations based suitable for various glaciological settings have been developed and implemented in a continental-scale ice sheet model. Simulations of the present-day Antarctic and Greenland ice sheets show that the ice-sheet geometric configurations (thickness and extent) are sensitive to the calving process. In order to guide the development as well as to test calving parameterizations, available observations (of various kinds) have been compiled and organized into a database. Monthly estimates of iceberg distribution around the coast of Greenland have been produced with a goal of constructing iceberg size distribution and probability functions for iceberg occurrence in particular regions. A physically based iceberg model component was used in a GFDL global climate model. The simulation results show that the Antarctic iceberg calving-size distribution affects iceberg trajectories, determines where iceberg meltwater enters the ocean and the increased ice-berg freshwater transport leads to increased sea-ice growth around much of the East Antarctic coastline.
Measuring river from the cloud - River width algorithm development on Google Earth Engine
NASA Astrophysics Data System (ADS)
Yang, X.; Pavelsky, T.; Allen, G. H.; Donchyts, G.
2017-12-01
Rivers are some of the most dynamic features of the terrestrial land surface. They help distribute freshwater, nutrients, sediment, and they are also responsible for some of the greatest natural hazards. Despite their importance, our understanding of river behavior is limited at the global scale, in part because we do not have a river observational dataset that spans both time and space. Remote sensing data represent a rich, largely untapped resource for observing river dynamics. In particular, publicly accessible archives of satellite optical imagery, which date back to the 1970s, can be used to study the planview morphodynamics of rivers at the global scale. Here we present an image processing algorithm developed using the Google Earth Engine cloud-based platform, that can automatically extracts river centerlines and widths from Landsat 5, 7, and 8 scenes at 30 m resolution. Our algorithm makes use of the latest monthly global surface water history dataset and an existing Global River Width from Landsat (GRWL) dataset to efficiently extract river masks from each Landsat scene. Then a combination of distance transform and skeletonization techniques are used to extract river centerlines. Finally, our algorithm calculates wetted river width at each centerline pixel perpendicular to its local centerline direction. We validated this algorithm using in situ data estimated from 16 USGS gauge stations (N=1781). We find that 92% of the width differences are within 60 m (i.e. the minimum length of 2 Landsat pixels). Leveraging Earth Engine's infrastructure of collocated data and processing power, our goal is to use this algorithm to reconstruct the morphodynamic history of rivers globally by processing over 100,000 Landsat 5 scenes, covering from 1984 to 2013.
NASA Astrophysics Data System (ADS)
Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.
2017-12-01
The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.
Integrated Modeling of Aerosol, Cloud, Precipitation and Land Processes at Satellite-Resolved Scales
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa; Tao, Wei-Kuo; Chin, Mian; Braun, Scott; Case, Jonathan; Hou, Arthur; Kumar, Anil; Kumar, Sujay; Lau, William; Matsui, Toshihisa;
2012-01-01
In this talk, I will present recent results from a project led at NASA/GSFC, in collaboration with NASA/MSFC and JHU, focused on the development and application of an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. The project, known as the NASA Unified WRF (NU-WRF), is funded by NASA's Modeling and Analysis Program, and leverages prior investments from the Air Force Weather Agency and NASA's Earth Science Technology Office (ESTO). We define "satellite-resolved" scales as being within a typical mesoscale atmospheric modeling grid (roughly 1-25 km), although this work is designed to bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the standard NCAR Advanced Research WRF model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the Goddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (SDSU), and boundary/initial condition preprocessors for MERRA and GEOS-5 into a single software release (with source code available by agreement with NASA/GSFC). I will show examples where the full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local, regional, and global water and energy cycles, including some high-impact phenomena such as floods, hurricanes, mesoscale convective systems, droughts, and monsoons.
NASA Astrophysics Data System (ADS)
Pi, X.; Vergados, P.
2017-12-01
GPS data from more than 2000 globally distributed ground-based stations are processed to generate Global Map of Ionospheric Irregularities and Scintillation (GMIIS) at 5-minite cadence for the 2015 St. Patrick's Day Storm. The time sequence of GMIIS provides global snapshots of evolving ionospheric irregularities that are helpful in investigations of small-scale ionospheric perturbations globally. Such data from selected stations at longitudes distributed around the globe are also analyzed to investigate longitudinal variations of low-latitude ionospheric irregularities (LLII) during the storm. Prior to the storm day, The GPS data show typical seasonal (March equinox) activities of LLII during evening hours in different longitude regions, i.e., active in American through Asian longitudes but relatively inactive in the Pacific sector. The data also reveal dramatic changes in LLII during the storm main phase (17 March 2015) and recovery phase (18-19 March 2015). While remaining inactive in the Pacific region, LLII have gone through complicated variations in the longitude regions of high scintillation season. The variations include active, weakened or suppressed, or post-midnight triggering during the storm main phase and recovery phase depending on specific longitude. To understand possible responsible causes of these variations in different longitudes, the Global Assimilative Ionospheric Model (GAIM) is used to reproduce ambient ionospheric state and its disturbances. For this storm study, GAIM assimilates GPS data from about 650 globally distributed stations and from spaceborne receivers onboard the COSMIC satellites. The global assimilative modeling enables us to investigate the changes of the equatorial ionospheric anomaly (EIA) and corresponding ionospheric dynamical processes in the concerned longitudes. This presentation will combine pictures of small- and large-scale ionospheric perturbations and attempt to obtain insight into mechanisms that drive LLII changes during the major storm.
A human-driven decline in global burned area
NASA Astrophysics Data System (ADS)
Andela, N.; Morton, D. C.; Chen, Y.; van der Werf, G.; Giglio, L.; Kasibhatla, P. S.; Randerson, J. T.
2016-12-01
Fire is an important and dynamic ecosystem process that influences many aspects of the global Earth system. Here, we used several different satellite datasets to assess trends in global burned area during 1998 to 2014. Global burned area decreased by about 21.6 ± 8.5% over the period from 1998-2014, with large regional declines observed in savanna and grassland ecosystems in northern Africa, Eurasia, and South America. The decrease in burned area remained robust after removing the influence of climate (16.0 ± 6.0%), implicating human activity as a likely driver. To further investigate the mechanisms contributing to regional and global trends, we conducted several kinds of analysis, including separation of burned area into ignition and fire size components and geospatial analysis of fire trends in relationship with demographic and land use variables. We found that fire number was a more important factor contributing to burned area trends than fire size, suggesting a reduction in the use of fire for management purposes. Concurrent decreases in fire size also contributed to the trend outside of North and South America, suggesting a role for greater landscape fragmentation. From our geospatial analysis, we developed a conceptual model that incorporates a range of drivers for human-driven changes in biomass burning that can be used to guide global fire models, currently unable to reproduce these large scale recent trends. Patterns of agricultural expansion and land use intensification are likely to further contribute to declining burned area trends in future decades, with important consequences for Earth system processes mediated by surface albedo, greenhouse gas emissions, and aerosols. Our results also highlight the vulnerability of savannas and grassland to land use changes with unprecedented global scale consequences for vegetation structure and the carbon cycle.
Global Boreal Forest Mapping with JERS-1: North America
NASA Technical Reports Server (NTRS)
Williams, Cynthia L.; McDonald, Kyle; Chapman, Bruce
2000-01-01
Collaborative effort is underway to map boreal forests worldwide using L-band, single polarization Synthetic Aperture Radar (SAR) imagery from the Japanese Earth Resources (JERS-1) satellite. Final products of the North American Boreal Forest Mapping Project will include two continental scale radar mosaics and supplementary multitemporal mosaics for Alaska, central Canada, and eastern Canada. For selected sites, we are also producing local scale (100 km x 100 km) and regional scale maps (1000 km x 1000 km). As with the nearly completed Amazon component of the Global Rain Forest Mapping project, SAR imagery, radar image mosaics and SAR-derived texture image products will be available to the scientific community on the World Wide Web. Image acquisition for this project has been completed and processing and image interpretation is underway at the Alaska SAR Facility.
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
Multi-scale predictions of coniferous forest mortality in the northern hemisphere
NASA Astrophysics Data System (ADS)
McDowell, N. G.
2015-12-01
Global temperature rise and extremes accompanying drought threaten forests and their associated climatic feedbacks. Our incomplete understanding of the fundamental physiological thresholds of vegetation mortality during drought limits our ability to accurately simulate future vegetation distributions and associated climate feedbacks. Here we integrate experimental evidence with models to show potential widespread loss of needleleaf evergreen trees (NET; ~ conifers) within the Southwest USA by 2100; with rising temperature being the primary cause of mortality. Experimentally, dominant Southwest USA NET species died when they fell below predawn water potential (Ypd) thresholds (April-August mean) beyond which photosynthesis, stomatal and hydraulic conductance, and carbohydrate availability approached zero. Empirical and mechanistic models accurately predicted NET Ypd, and 91% of predictions (10/11) exceeded mortality thresholds within the 21st century due to temperature rise. Completely independent global models predicted >50% loss of northern hemisphere NET by 2100, consistent with the findings for Southwest USA. The global models disagreed with the ecosystem process models in regards to future mortality in Southwest USA, however, highlighting the potential underestimates of future NET mortality as simulated by the global models and signifying the importance of improving regional predictions. Taken together, these results from the validated regional predictions and the global simulations predict global-scale conifer loss in coming decades under projected global warming.
Visual and Experiential Learning Opportunities through Geospatial Data
NASA Astrophysics Data System (ADS)
Gardiner, N.; Bulletins, S.
2007-12-01
Global observation data from satellites are essential for both research and education about Earth's climate because they help convey the temporal and spatial scales inherent to the subject, which are beyond most people's experience. Experts in the development of visualizations using spatial data distinguish the process of learning through data exploration from the process of learning by absorbing a story told from beginning to end. The former requires the viewer to absorb complex spatial and temporal dynamics inherent to visualized data and therefore is a process best undertaken by those familiar with the data and processes represented. The latter requires that the viewer understand the intended presentation of concepts, so story telling can be employed to educate viewers with varying backgrounds and familiarity with a given subject. Three examples of climate science education, drawn from the current science program Science Bulletins (American Museum of Natural History, New York, USA), demonstrate the power of visualized global earth observations for climate science education. The first example seeks to explain the potential for sea level rise on a global basis. A short feature film includes the visualized, projected effects of sea level rise at local to global scales; this visualization complements laboratory and field observations of glacier retreat and paleoclimatic reconstructions based on fossilized coral reef analysis, each of which is also depicted in the film. The narrative structure keeps learners focused on discrete scientific concepts. The second example utilizes half-hourly cloud observations to demonstrate weather and climate patterns to audiences on a global basis. Here, the scientific messages are qualitatively simpler, but the viewer must deduce his own complex visual understanding of the visualized data. Finally, we present plans for distributing climate science education products via mediated public events whereby participants learn from climate and geovisualization experts working collaboratively. This last example provides an opportunity for deep exploration of patterns and processes in a live setting and makes full use of complementary talents, including computer science, internet-enabled data sharing, remote sensing image processing, and meteorology. These innovative examples from informal educators serve as powerful pedagogical models to consider for the classroom of the future.
Development of mpi_EPIC model for global agroecosystem modeling
Kang, Shujiang; Wang, Dali; Jeff A. Nichols; ...
2014-12-31
Models that address policy-maker concerns about multi-scale effects of food and bioenergy production systems are computationally demanding. We integrated the message passing interface algorithm into the process-based EPIC model to accelerate computation of ecosystem effects. Simulation performance was further enhanced by applying the Vampir framework. When this enhanced mpi_EPIC model was tested, total execution time for a global 30-year simulation of a switchgrass cropping system was shortened to less than 0.5 hours on a supercomputer. The results illustrate that mpi_EPIC using parallel design can balance simulation workloads and facilitate large-scale, high-resolution analysis of agricultural production systems, management alternatives and environmentalmore » effects.« less
Global silicate mineralogy of the Moon from the Diviner lunar radiometer.
Greenhagen, Benjamin T; Lucey, Paul G; Wyatt, Michael B; Glotch, Timothy D; Allen, Carlton C; Arnold, Jessica A; Bandfield, Joshua L; Bowles, Neil E; Donaldson Hanna, Kerri L; Hayne, Paul O; Song, Eugenie; Thomas, Ian R; Paige, David A
2010-09-17
We obtained direct global measurements of the lunar surface using multispectral thermal emission mapping with the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Most lunar terrains have spectral signatures that are consistent with known lunar anorthosite and basalt compositions. However, the data have also revealed the presence of highly evolved, silica-rich lunar soils in kilometer-scale and larger exposures, expanded the compositional range of the anorthosites that dominate the lunar crust, and shown that pristine lunar mantle is not exposed at the lunar surface at the kilometer scale. Together, these observations provide compelling evidence that the Moon is a complex body that has experienced a diverse set of igneous processes.
Fluctuations of global energy release and crackling in nominally brittle heterogeneous fracture.
Barés, J; Hattali, M L; Dalmas, D; Bonamy, D
2014-12-31
The temporal evolution of mechanical energy and spatially averaged crack speed are both monitored in slowly fracturing artificial rocks. Both signals display an irregular burstlike dynamics, with power-law distributed fluctuations spanning a broad range of scales. Yet, the elastic power released at each time step is proportional to the global velocity all along the process, which enables defining a material-constant fracture energy. We characterize the intermittent dynamics by computing the burst statistics. This latter displays the scale-free features signature of crackling dynamics, in qualitative but not quantitative agreement with the depinning interface models derived for fracture problems. The possible sources of discrepancies are pointed out and discussed.
Decadal variability of precipitation over Western North America
Cayan, D.R.; Dettinger, M.D.; Diaz, Henry F.; Graham, N.E.
1998-01-01
Decadal (>7- yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation 'modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate proceses. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.Decadal (>7-yr period) variations of precipitation over western North America account for 20%-50% of the variance of annual precipitation. Spatially, the decadal variability is broken into several regional [O(1000 km)] components. These decadal variations are contributed by fluctuations in precipitation from seasons of the year that vary from region to region and that are not necessarily concentrated in the wettest season(s) alone. The precipitation variations are linked to various decadal atmospheric circulation and SST anomaly patterns where scales range from regional to global scales and that emphasize tropical or extratropical connections, depending upon which precipitation region is considered. Further, wet or dry decades are associated with changes in frequency of at least a few short-period circulation `modes' such as the Pacific-North American pattern. Precipitation fluctuations over the southwestern United States and the Saskatchewan region of western Canada are associated with extensive shifts of sea level pressure and SST anomalies, suggesting that they are components of low-frequency precipitation variability from global-scale climate processes. Consistent with the global scale of its pressure and SST connection, the Southwest decadal precipitation is aligned with opposing precipitation fluctuations in northern Africa.
Remote sensing of the energetic status of plants and ecosystems: optical and odorous signals
NASA Astrophysics Data System (ADS)
Penuelas, J.; Bartrons, M.; Llusia, J.; Filella, I.
2016-12-01
The optical and odorous signals emitted by plants and ecosystems present consistent relationships. They offer promising prospects for continuous local and global monitoring of the energetic status of plants and ecosystems, and therefore of their processing of energy and matter. We will discuss how the energetic status of plants (and ecosystems) resulting from the balance between the supply and demand of reducing power can be assessed biochemically, by the cellular NADPH/NADP ratio, optically, by using the photochemical reflectance index and sun-induced fluorescence as indicators of the dissipation of excess energy and associated physiological processes, and "odorously", by the emission of volatile organic compounds such as isoprenoids, as indicators of an excess of reducing equivalents and also of enhancement of protective converging physiological processes. These signals thus provide information on the energetic status, associated health status, and the functioning of plants and ecosystems. We will present the links among the three signals and will especially discuss the possibility of remotely sense the optical signals linked to carbon uptake and VOCs exchange by plants and ecosystems. These signals and their integration may have multiple applications for environmental and agricultural monitoring, for example, by extending the spatial coverage of carbon-flux and VOCs emission observations to most places and times, and/or for improving the process-based modeling of carbon fixation and isoprenoid emissions from terrestrial vegetation on plant, ecosystemic and global scales. Considerable challenges remain for a wide-scale and routine implementation of these biochemical, optical, and odorous signals for ecosystemic and/or agronomic monitoring and modeling, but its interest for making further steps forward in global ecology, agricultural applications, global carbon cycle, atmospheric science, and earth science warrants further research efforts in this line.
Groundwater development stress: Global-scale indices compared to regional modeling
Alley, William; Clark, Brian R.; Ely, Matt; Faunt, Claudia
2018-01-01
The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem.
NASA Astrophysics Data System (ADS)
Benedict, Sam; van Oevelen, Peter
2014-05-01
To improve understanding of the various processes at work on spatial and temporal scales from regional to global the Regional Hydroclimate Projects (RHP's) are established as part of the Global Energy and Water Exchanges (GEWEX)Project to link the regional observations and process understanding to the global scale. This is done through exchange of observations, data, modeling, transferability studies etc. In this presentation the series of RHP's that were underway over North and South America, Europe and Asia continuously from the early 1990's up to the present will be examined, the reasons they were established, how they evolved and how they are evolving or are likely to evolve in the future, with an emphasis on where they can and should benefit similar work proposed for the TPE. The results will be presented in the context of the World Climate Research Programme (WCRP) Grand Challenge related to the development of a water strategy that addresses the issue of past and future changes in Water, in general, and the GEWEX science question on global water resource systems, in particular. This material will address issues associated with how changes in land surface and hydrology influence past and future changes in water availability and security, how new observations lead to improvements in water management and how models become better in global and regional climate predictions and projections of precipitation and how these outcomes relate to the TPE Water and Energy Exchanges Studies.
Allen, Michael H; Daniel, David G; Revicki, Dennis A; Canuso, Carla M; Turkoz, Ibrahim; Fu, Dong-Jing; Alphs, Larry; Ishak, K Jack; Bartko, John J; Lindenmayer, Jean-Pierre
2012-01-01
The Clinical Global Impression for Schizoaffective Disorder scale is a new rating scale adapted from the Clinical Global Impression scale for use in patients with schizoaffective disorder. The psychometric characteristics of the Clinical Global Impression for Schizoaffective Disorder are described. Content validity was assessed using an investigator questionnaire. Inter-rater reliability was determined with 12 sets of videotaped interviews rated independently by two trained individuals. Test-retest reliability was assessed using 30 randomly selected raters from clinical trials who evaluated the same videos on separate occasions two weeks apart. Convergent and divergent validity and effect size were evaluated by comparing scores between the Clinical Global Impression for Schizoaffective Disorder and the Positive and Negative Syndrome Scale, 21-item Hamilton Rating Scale for Depression, and Young Mania Rating Scale scales using pooled patient data from two clinical trials. Clinical Global Impression for Schizoaffective Disorder scores were then linked to corresponding Positive and Negative Syndrome Scale scores. Content validity was strong. Inter-rater agreement was good to excellent for most scales and subscales (intra-class correlation coefficient ≥ 0.50). Test-retest showed good reproducibility, with intraclass correlation coefficients ranging from 0.444 to 0.898. Spearman correlations between Clinical Global Impression for Schizoaffective Disorder domains and corresponding symptom scales were 0.60 or greater, and effect sizes for Clinical Global Impression for Schizoaffective Disorder overall and domain scores were similar to Positive and Negative Syndrome Scale Young Mania Rating Scale, and 21-item Hamilton Rating Scale for Depression scores. Raters anticipated that the scale might be less effective in distinguishing negative from depressive symptoms, and, in fact, the results here may reflect that clinical reality. Multiple lines of evidence support the reliability and validity of the Clinical Global Impression for Schizoaffective Disorder for studies in schizoaffective disorder.
Lin, Yong; Franzke, Christian L E
2015-08-11
Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.
Mobility, expansion and management of a multi-species scuba diving fishery in East Africa.
Eriksson, Hampus; de la Torre-Castro, Maricela; Olsson, Per
2012-01-01
Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation.
Mobility, Expansion and Management of a Multi-Species Scuba Diving Fishery in East Africa
Eriksson, Hampus; de la Torre-Castro, Maricela; Olsson, Per
2012-01-01
Background Scuba diving fishing, predominantly targeting sea cucumbers, has been documented to occur in an uncontrolled manner in the Western Indian Ocean and in other tropical regions. Although this type of fishing generally indicates a destructive activity, little attention has been directed towards this category of fishery, a major knowledge gap and barrier to management. Methodology and Principal Findings With the aim to capture geographic scales, fishing processes and social aspects the scuba diving fishery that operate out of Zanzibar was studied using interviews, discussions, participant observations and catch monitoring. The diving fishery was resilient to resource declines and had expanded to new species, new depths and new fishing grounds, sometimes operating approximately 250 km away from Zanzibar at depths down to 50 meters, as a result of depleted easy-access stock. The diving operations were embedded in a regional and global trade network, and its actors operated in a roving manner on multiple spatial levels, taking advantage of unfair patron-client relationships and of the insufficient management in Zanzibar. Conclusions and Significance This study illustrates that roving dynamics in fisheries, which have been predominantly addressed on a global scale, also take place at a considerably smaller spatial scale. Importantly, while proposed management of the sea cucumber fishery is often generic to a simplified fishery situation, this study illustrates a multifaceted fishery with diverse management requirements. The documented spatial scales and processes in the scuba diving fishery emphasize the need for increased regional governance partnerships to implement management that fit the spatial scales and processes of the operation. PMID:22530034
NASA Astrophysics Data System (ADS)
Bilitza, Dieter; Huang, Xueqin; Reinisch, Bodo W.; Benson, Robert F.; Hills, H. Kent; Schar, William B.
2004-02-01
The United States/Canadian ISIS-1 and ISIS-2 satellites collected several million topside ionograms in the 1960s and 1970s with a multinational network of ground stations that provided good global coverage. However, processing of these ionograms into electron density profiles required time-consuming manual scaling of the traces from the analog ionograms, and as a result, only a few percent of the ionograms had been processed into electron density profiles. In recent years an effort began to digitize the analog recordings to prepare the ionograms for computerized analysis. As of November 2002, approximately 390,000 ISIS-1 and ISIS-2 digital topside-sounder ionograms have been produced. The Topside Ionogram Scaler With True Height Algorithm (TOPIST) program was developed for the automated scaling of the echo traces and for the inversion of these traces into topside electron density profiles. The program is based on the techniques that have been successfully applied in the analysis of ground-based Digisonde ionograms. The TOPIST software also includes an "editing option" for manual scaling of the more difficult ionograms, which could not be scaled during the automated TOPIST run. TOPIST is now successfully scaling ˜60% of the ISIS ionograms, and the electron density profiles are available through the online archive of the National Space Science Data Center at ftp://nssdcftp.gsfc.nasa.gov/spacecraft_data/isis/topside_sounder. This data restoration effort is producing a unique global database of topside electron densities over more than one solar cycle, which will be of particular importance for improvements of topside ionosphere models, especially the International Reference Ionosphere.
NASA Astrophysics Data System (ADS)
Bloom, A. A.; Exbrayat, J. F.; van der Velde, I.; Peters, W.; Williams, M.
2014-12-01
Large uncertainties preside over terrestrial carbon flux estimates on a global scale. In particular, the strongly coupled dynamics between net ecosystem productivity and disturbance C losses are poorly constrained. To gain an improved understanding of ecosystem C dynamics from regional to global scale, we apply a Markov Chain Monte Carlo based model-data-fusion approach into the CArbon DAta-MOdel fraMework (CARDAMOM). We assimilate MODIS LAI and burned area, plant-trait data, and use the Harmonized World Soil Database (HWSD) and maps of above ground biomass as prior knowledge for initial conditions. We optimize model parameters based on (a) globally spanning observations and (b) ecological and dynamic constraints that force single parameter values and parameter inter-dependencies to be representative of real world processes. We determine the spatial and temporal dynamics of major terrestrial C fluxes and model parameter values on a global scale (GPP = 123 +/- 8 Pg C yr-1 & NEE = -1.8 +/- 2.7 Pg C yr-1). We further show that the incorporation of disturbance fluxes, and accounting for their instantaneous or delayed effect, is of critical importance in constraining global C cycle dynamics, particularly in the tropics. In a higher resolution case study centred on the Amazon Basin we show how fires not only trigger large instantaneous emissions of burned matter, but also how they are responsible for a sustained reduction of up to 50% in plant uptake following the depletion of biomass stocks. The combination of these two fire-induced effects leads to a 1 g C m-2 d-1reduction in the strength of the net terrestrial carbon sink. Through our simulations at regional and global scale, we advocate the need to assimilate disturbance metrics in global terrestrial carbon cycle models to bridge the gap between globally spanning terrestrial carbon cycle data and the full dynamics of the ecosystem C cycle. Disturbances are especially important because their quick occurrence may have long-term effects on ecosystems. Our synthetic simulations show that while tropical ecosystems uptake may reach pre-disturbance level after a decade, biomass stocks would most likely need more than a century to recover from a single extreme disturbance event.
How global extinctions impact regional biodiversity in mammals.
Huang, Shan; Davies, T Jonathan; Gittleman, John L
2012-04-23
Phylogenetic diversity (PD) represents the evolutionary history of a species assemblage and is a valuable measure of biodiversity because it captures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the functional integrity of the world's ecosystems, and species extinction will have a large impact on ecosystems in areas where the ecosystem cost per species extinction is high. Here, we show that impacts from global extinctions are linked to spatial location. Using a phylogeny of all mammals, we compare regional losses of PD against a model of random extinction. At regional scales, losses differ dramatically: several biodiversity hotspots in southern Asia and Amazonia will lose an unexpectedly large proportion of PD. Global analyses may therefore underestimate the impacts of extinction on ecosystem processes and function because they occur at finer spatial scales within the context of natural biogeography.
Local communities obstruct global consensus: Naming game on multi-local-world networks
NASA Astrophysics Data System (ADS)
Lou, Yang; Chen, Guanrong; Fan, Zhengping; Xiang, Luna
2018-02-01
Community structure is essential for social communications, where individuals belonging to the same community are much more actively interacting and communicating with each other than those in different communities within the human society. Naming game, on the other hand, is a social communication model that simulates the process of learning a name of an object within a community of humans, where the individuals can generally reach global consensus asymptotically through iterative pair-wise conversations. The underlying network indicates the relationships among the individuals. In this paper, three typical topologies, namely random-graph, small-world and scale-free networks, are employed, which are embedded with the multi-local-world community structure, to study the naming game. Simulations show that (1) the convergence process to global consensus is getting slower as the community structure becomes more prominent, and eventually might fail; (2) if the inter-community connections are sufficiently dense, neither the number nor the size of the communities affects the convergence process; and (3) for different topologies with the same (or similar) average node-degree, local clustering of individuals obstruct or prohibit global consensus to take place. The results reveal the role of local communities in a global naming game in social network studies.
Ultrascalable petaflop parallel supercomputer
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY
2010-07-20
A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.
NASA Astrophysics Data System (ADS)
Montañez, Isabel P.; Osleger, Dillon J.; Chen, Jitao; Wortham, Barbara E.; Stamm, Robert G.; Nemyrovska, Tamara I.; Griffin, Julie M.; Poletaev, Vladislav I.; Wardlaw, Bruce R.
2018-06-01
Reconstructions of paleo-seawater chemistry are largely inferred from biogenic records of epicontinental seas. Recent studies provide considerable evidence for large-scale spatial and temporal variability in the environmental dynamics of these semi-restricted seas that leads to the decoupling of epicontinental isotopic records from those of the open ocean. We present conodont apatite δ18OPO4 and 87Sr/86Sr records spanning 24 Myr of the late Mississippian through Pennsylvanian derived from the U-Pb calibrated cyclothemic succession of the Donets Basin, eastern Ukraine. On a 2 to 6 Myr-scale, systematic fluctuations in bioapatite δ18OPO4 and 87Sr/86Sr broadly follow major shifts in the Donets onlap-offlap history and inferred regional climate, but are distinct from contemporaneous more open-water δ18OPO4 and global seawater Sr isotope trends. A -1 to -6‰ offset in Donets δ18OPO4 values from those of more open-water conodonts and greater temporal variability in δ18OPO4 and 87Sr/86Sr records are interpreted to primarily record climatically driven changes in local environmental processes in the Donets sea. Systematic isotopic shifts associated with Myr-scale sea-level fluctuations, however, indicate an extrabasinal driver. We propose a mechanistic link to glacioeustasy through a teleconnection between high-latitude ice changes and atmospheric pCO2 and regional monsoonal circulation in the Donets region. Inferred large-magnitude changes in Donets seawater salinity and temperature, not archived in the more open-water or global contemporaneous records, indicate a modification of the global climate signal in the epicontinental sea through amplification or dampening of the climate signal by local and regional environmental processes. This finding of global climate change filtered through local processes has implications for the use of conodont δ18OPO4 and 87Sr/86Sr values as proxies of paleo-seawater composition, mean temperature, and glacioeustasy.
Montanez, Isabel P.; Osleger, Dillon J.; Chen, J.-H.; Wortham, Barbara E.; Stamm, Robert G.; Nemyrovska, Tamara I.; Griffin, Julie M.; Poletaev, Vladislav I.; Wardlaw, Bruce R.
2018-01-01
Reconstructions of paleo-seawater chemistry are largely inferred from biogenic records of epicontinental seas. Recent studies provide considerable evidence for large-scale spatial and temporal variability in the environmental dynamics of these semi-restricted seas that leads to the decoupling of epicontinental isotopic records from those of the open ocean. We present conodont apatite δ18OPO4 and 87Sr/86Sr records spanning 24 Myr of the late Mississippian through Pennsylvanian derived from the U–Pb calibrated cyclothemic succession of the Donets Basin, eastern Ukraine. On a 2 to 6 Myr-scale, systematic fluctuations in bioapatite δ18OPO4 and 87Sr/86Sr broadly follow major shifts in the Donets onlap–offlap history and inferred regional climate, but are distinct from contemporaneous more open-water δ18OPO4 and global seawater Sr isotope trends. A −1 to −6‰ offset in Donets δ18OPO4 values from those of more open-water conodonts and greater temporal variability in δ18OPO4 and 87Sr/86Sr records are interpreted to primarily record climatically driven changes in local environmental processes in the Donets sea. Systematic isotopic shifts associated with Myr-scale sea-level fluctuations, however, indicate an extrabasinal driver. We propose a mechanistic link to glacioeustasy through a teleconnection between high-latitude ice changes and atmospheric pCO2 and regional monsoonal circulation in the Donets region. Inferred large-magnitude changes in Donets seawater salinity and temperature, not archived in the more open-water or global contemporaneous records, indicate a modification of the global climate signal in the epicontinental sea through amplification or dampening of the climate signal by local and regional environmental processes. This finding of global climate change filtered through local processes has implications for the use of conodont δ18OPO4 and 87Sr/86Sr values as proxies of paleo-seawater composition, mean temperature, and glacioeustasy.
A NEW LAND-SURFACE MODEL IN MM5
There has recently been a general realization that more sophisticated modeling of land-surface processes can be important for mesoscale meteorology models. Land-surface models (LSMs) have long been important components in global-scale climate models because of their more compl...
The role of forest disturbance in global forest mortality and terrestrial carbon fluxes
NASA Astrophysics Data System (ADS)
Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin
2017-04-01
Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon stocks is very large, illustrating the importance of further efforts to distinguish disturbance drivers at the global scale. Setting our knowledge of forest disturbance into the wider uncertainty in forest mortality processes generally, we offer a perspective for improving understanding of the role of disturbance in global forest carbon cycling.
1km Global Terrestrial Carbon Flux: Estimations and Evaluations
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Saito, M.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.
2017-12-01
Estimating global scale of the terrestrial carbon flux change with high accuracy and high resolution is important to understand global environmental changes. Furthermore the estimations of the global spatiotemporal distribution may contribute to the political and social activities such as REDD+. In order to reveal the current state of terrestrial carbon fluxes covering all over the world and a decadal scale. The satellite-based diagnostic biosphere model is suitable for achieving this purpose owing to observing on the present global land surface condition uniformly at some time interval. In this study, we estimated the global terrestrial carbon fluxes with 1km grids by using the terrestrial biosphere model (BEAMS). And we evaluated our new carbon flux estimations on various spatial scales and showed the transition of forest carbon stocks in some regions. Because BEAMS required high resolution meteorological data and satellite data as input data, we made 1km interpolated data using a kriging method. The data used in this study were JRA-55, GPCP, GOSAT L4B atmospheric CO2 data as meteorological data, and MODIS land product as land surface satellite data. Interpolating process was performed on the meteorological data because of insufficient resolution, but not on MODIS data. We evaluated our new carbon flux estimations using the flux tower measurement (FLUXNET2015 Datasets) in a point scale. We used 166 sites data for evaluating our model results. These flux sites are classified following vegetation type (DBF, EBF, ENF, mixed forests, grass lands, croplands, shrub lands, Savannas, wetlands). In global scale, the BEAMS estimations was underestimated compared to the flux measurements in the case of carbon uptake and release. The monthly variations of NEP showed relatively high correlations in DBF and mixed forests, but the correlation coefficients of EBF, ENF, and grass lands were less than 0.5. In the meteorological factors, air temperature and solar radiation showed very high correlations, and slight variations were showed in precipitation data. LAI data that was another large driving factor of terrestrial carbon cycle was not included in FLUXNET2015 datasets and it could not be evaluated.
Global change technology architecture trade study
NASA Technical Reports Server (NTRS)
Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)
1991-01-01
Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.
NASA Astrophysics Data System (ADS)
Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.
2015-12-01
The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained National Climate Assessment process.
Water circulation and global mantle dynamics: Insight from numerical modeling
NASA Astrophysics Data System (ADS)
Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru
2015-05-01
We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.
On the Causes of Mid-Pliocene Warmth and Polar Amplification
NASA Technical Reports Server (NTRS)
Lunt, Daniel J.; Haywood, Alan M.; Schmidt, Gavin A.; Salzmann, Ulrich; Valdes, Paul J.; Dowsett, Harry J.; Loptson, Claire A.
2012-01-01
The mid-Pliocene (approximately 3 to 3.3 Ma ago), is a period of sustained global warmth in comparison to the late Quaternary (0 to approximately 1 Ma ago), and has potential to inform predictions of long-term future climate change. However, given that several processes potentially contributed, relatively little is understood about the reasons for the observed warmth, or the associated polar amplification. Here, using a modelling approach and a novel factorisation method, we assess the relative contributions to mid-Pliocene warmth from: elevated CO2, lowered orography, and vegetation and ice sheet changes. The results show that on a global scale, the largest contributor to mid-Pliocene warmth is elevated CO2. However, in terms of polar amplification, changes to ice sheets contribute significantly in the Southern Hemisphere, and orographic changes contribute significantly in the Northern Hemisphere. We also carry out an energy balance analysis which indicates that that on a global scale, surface albedo and atmospheric emmissivity changes dominate over cloud changes. We investigate the sensitivity of our results to uncertainties in the prescribed CO2 and orographic changes, to derive uncertainty ranges for the various contributing processes.
Early Results from the Odyssey THEMIS Investigation
NASA Technical Reports Server (NTRS)
Christensen, Philip R.; Bandfield, Joshua L.; Bell, James F., III; Hamilton, Victoria E.; Ivanov, Anton; Jakosky, Bruce M.; Kieffer, Hugh H.; Lane, Melissa D.; Malin, Michael C.; McConnochie, Timothy
2003-01-01
The Thermal Emission Imaging System (THEMIS) began studying the surface and atmosphere of Mars in February, 2002 using thermal infrared (IR) multi-spectral imaging between 6.5 and 15 m, and visible/near-IR images from 450 to 850 nm. The infrared observations continue a long series of spacecraft observations of Mars, including the Mariner 6/7 Infrared Spectrometer, the Mariner 9 Infrared Interferometer Spectrometer (IRIS), the Viking Infrared Thermal Mapper (IRTM) investigations, the Phobos Termoscan, and the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). The THEMIS investigation's specific objectives are to: (1) determine the mineralogy of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; (4) investigate polar cap processes at all seasons; and (5) provide a high spatial resolution link to the global hyperspectral mineral mapping from the TES investigation. THEMIS provides substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MGS cameras.
Clouds in ECMWF's 30 KM Resolution Global Atmospheric Forecast Model (TL639)
NASA Technical Reports Server (NTRS)
Cahalan, R. F.; Morcrette, J. J.
1999-01-01
Global models of the general circulation of the atmosphere resolve a wide range of length scales, and in particular cloud structures extend from planetary scales to the smallest scales resolvable, now down to 30 km in state-of-the-art models. Even the highest resolution models do not resolve small-scale cloud phenomena seen, for example, in Landsat and other high-resolution satellite images of clouds. Unresolved small-scale disturbances often grow into larger ones through non-linear processes that transfer energy upscale. Understanding upscale cascades is of crucial importance in predicting current weather, and in parameterizing cloud-radiative processes that control long term climate. Several movie animations provide examples of the temporal and spatial variation of cloud fields produced in 4-day runs of the forecast model at the European Centre for Medium-Range Weather Forecasts (ECMWF) in Reading, England, at particular times and locations of simultaneous measurement field campaigns. model resolution is approximately 30 km horizontally (triangular truncation TL639) with 31 vertical levels from surface to stratosphere. Timestep of the model is about 10 minutes, but animation frames are 3 hours apart, at timesteps when the radiation is computed. The animations were prepared from an archive of several 4-day runs at the highest available model resolution, and archived at ECMWF. Cloud, wind and temperature fields in an approximately 1000 km X 1000 km box were retrieved from the archive, then approximately 60 Mb Vis5d files were prepared with the help of Graeme Kelly of ECMWF, and were compressed into MPEG files each less than 3 Mb. We discuss the interaction of clouds and radiation in the model, and compare the variability of cloud liquid as a function of scale to that seen in cloud observations made in intensive field campaigns. Comparison of high-resolution global runs to cloud-resolving models, and to lower resolution climate models is leading to better understanding of the upscale cascade and suggesting new cloud-radiation parameterizations for climate models.
Growing water scarcity in agriculture: future challenge to global water security.
Falkenmark, Malin
2013-11-13
As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems.
3D Reconnection and SEP Considerations in the CME-Flare Problem
NASA Astrophysics Data System (ADS)
Moschou, S. P.; Cohen, O.; Drake, J. J.; Sokolov, I.; Borovikov, D.; Alvarado Gomez, J. D.; Garraffo, C.
2017-12-01
Reconnection is known to play a major role in particle acceleration in both solar and astrophysical regimes, yet little is known about its connection with the global scales and its comparative contribution in the generation of SEPs with respect to other acceleration mechanisms, such as the shock at a fast CME front, in the presence of a global structure such as a CME. Coupling efforts, combining both particle and global scales, are necessary to answer questions about the fundamentals of the energetic processes evolved. We present such a coupling modeling effort that looks into particle acceleration through reconnection in a self-consistent CME-flare model in both particle and fluid regimes. Of special interest is the supra-thermal component of the acceleration due to the reconnection that will at a later time interact colliding with the solar atmospheric material of the more dense chromospheric layer and radiate in hard X- and γ-rays for super-thermal electrons and protons respectively. Two cutting edge computational codes are used to capture the global CME and flare dynamics, specifically a two fluid MHD code and a 3D PIC code for the flare scales. Finally, we are connecting the simulations with current observations in different wavelengths in an effort to shed light to the unified CME-flare picture.
Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system
NASA Astrophysics Data System (ADS)
Yan, Yingying; Lin, Jintai; Chen, Jinxuan; Hu, Lu
2016-02-01
Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone (O3), but these processes are not captured by current global chemical transport models (CTMs) and chemistry-climate models that are limited by coarse horizontal resolutions (100-500 km, typically 200 km). These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use the recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3 in 2009. The system couples the global model (at 2.5° long. × 2° lat.) and its three nested models (at 0.667° long. × 0.5° lat.) covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions (LBCs) from the global model, better capture small-scale processes and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from the World Data Centre for Greenhouse Gases (WDCGG), the United States National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory Global Monitoring Division (GMD), the Chemical Coordination Centre of European Monitoring and Evaluation Programme (EMEP), and the United States Environmental Protection Agency Air Quality System (AQS)), aircraft (the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) and Measurement of Ozone and Water Vapor by Airbus In- Service Aircraft (MOZAIC)) and satellite measurements (two Ozone Monitoring Instrument (OMI) products). The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled system reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5 %, annual mean), bringing them closer to the OMI data in all seasons. Additionally, the two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5 % with improved estimates of methyl chloroform and methane lifetimes. Simulation improvements are more significant in the Northern Hemisphere, and are mainly driven by improved representation of spatial inhomogeneity in chemistry/emissions. Within the nested domains, the two-way coupled simulation reduces surface ozone biases relative to typical GEOS-Chem one-way nested simulations, due to much improved LBCs. The bias reduction is 1-7 times the bias reduction from the global to the one-way nested simulation. Improving model representations of small-scale processes is important for understanding the global and regional tropospheric chemistry.
Fungal biogeography. Global diversity and geography of soil fungi.
Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S; Wijesundera, Ravi; Villarreal Ruiz, Luis; Vasco-Palacios, Aída M; Thu, Pham Quang; Suija, Ave; Smith, Matthew E; Sharp, Cathy; Saluveer, Erki; Saitta, Alessandro; Rosas, Miguel; Riit, Taavi; Ratkowsky, David; Pritsch, Karin; Põldmaa, Kadri; Piepenbring, Meike; Phosri, Cherdchai; Peterson, Marko; Parts, Kaarin; Pärtel, Kadri; Otsing, Eveli; Nouhra, Eduardo; Njouonkou, André L; Nilsson, R Henrik; Morgado, Luis N; Mayor, Jordan; May, Tom W; Majuakim, Luiza; Lodge, D Jean; Lee, Su See; Larsson, Karl-Henrik; Kohout, Petr; Hosaka, Kentaro; Hiiesalu, Indrek; Henkel, Terry W; Harend, Helery; Guo, Liang-dong; Greslebin, Alina; Grelet, Gwen; Geml, Jozsef; Gates, Genevieve; Dunstan, William; Dunk, Chris; Drenkhan, Rein; Dearnaley, John; De Kesel, André; Dang, Tan; Chen, Xin; Buegger, Franz; Brearley, Francis Q; Bonito, Gregory; Anslan, Sten; Abell, Sandra; Abarenkov, Kessy
2014-11-28
Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. Copyright © 2014, American Association for the Advancement of Science.
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Arndt, D. S.; Brewer, M.; Heim, R. R., Jr.
2014-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a past meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around providing operational global drought monitoring products and assessments, incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
Do Europa's Mountains Have Roots? Modeling Flow Along the Ice-Water Interface
NASA Astrophysics Data System (ADS)
Cutler, B. B.; Goodman, J. C.
2016-12-01
Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. In this work we demonstrate that local shell thickness perturbations will relax due to viscous flow in centuries. We present a model of Europa's ice crust which includes thermal conduction, viscous flow of ice, and a mobile ice/water interface: the topography along the ice-water interface varies in response to melting, freezing, and ice flow. Temperature-dependent viscosity, conductivity, and density lead to glacier-like flow along the base of the ice shell, as well as solid-state convection in its interior. We considered both small scale processes, such as an isostatically-compensated ridge or lenticula, or heat flux from a hydrothermal plume; and a larger model focusing on melting and flow on the global scale. Our local model shows that ice-basal topographic features 5 kilometers deep and 4 kilometers wide can be filled in by glacial flow in about 200 years; even very large cavities can be infilled in 1000 years. "Hills" (locally thick areas) are removed faster than "holes". If a strong local heat flux (10x global average) is applied to the base of the ice, local melting will be prevented by rapid inflow of ice from nearby. On the large scale, global ice flow from the thick cool pole to the warmer and thinner equator removes global-scale topography in about 1 Ma; melting and freezing from this process may lead to a coupled feedback with the ocean flow. We find that glacial flow at the base of the ice shell is so rapid that Europa's ice-water interface is likely to be very flat. Local surface topography probably cannot be isostatically compensated by thickness variations: Europa's mountains may have no roots.
Hartwell H. Welsh Jr.; Garth R. Hodgson; Amy J. Lind
2005-01-01
Ecosystems are rapidly being altered and destabilized on a global scale, threatening native biota and compromising vital services provided to human society. We need to better understand the processes that can undermine ecosystem integrity (resistance-resilience) in order to devise strategies to ameliorate this trend. We used a herpetofaunal assemblage to first assess...
Topics in geophysical fluid dynamics: Atmospheric dynamics, dynamo theory, and climate dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Childress, S.
1987-01-01
This text is the first study to apply systematically the successive bifurcations approach to complex time-dependent processes in large scale atmospheric dynamics, geomagnetism, and theoretical climate dynamics. The presentation of recent results on planetary-scale phenomena in the earth's atmosphere, ocean, cryosphere, mantle and core provides an integral account of mathematical theory and methods together with physical phenomena and processes. The authors address a number of problems in rapidly developing areas of geophysics, bringing into closer contact the modern tools of nonlinear mathematics and the novel problems of global change in the environment.
A Multi-scale Modeling System: Developments, Applications and Critical Issues
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Randall, David; Lin, Xin; Khairoutdinov, Marat; Li, Jui-Lin; Waliser, Duane E.; Hou, Arthur; Peters-Lidard, Christa;
2006-01-01
A multi-scale modeling framework (MMF), which replaces the conventional cloud parameterizations with a cloud-resolving model (CRM) in each grid column of a GCM, constitutes a new and promising approach. The MMF can provide for global coverage and two-way interactions between the CRMs and their parent GCM. The GCM allows global coverage and the CRM allows explicit simulation of cloud processes and their interactions with radiation and surface processes. A new MMF has been developed that is based the Goddard finite volume GCM (fvGCM) and the Goddard Cumulus Ensemble (GCE) model. This Goddard MMF produces many features that are similar to another MMF that was developed at Colorado State University (CSU), such as an improved .surface precipitation pattern, better cloudiness, improved diurnal variability over both oceans and continents, and a stronger, propagating Madden-Julian oscillation (MJO) compared to their parent GCMs using conventional cloud parameterizations. Both MMFs also produce a precipitation bias in the western Pacific during Northern Hemisphere summer. However, there are also notable differences between two MMFs. For example, the CSU MMF simulates less rainfall over land than its parent GCM. This is why the CSU MMF simulated less overall global rainfall than its parent GCM. The Goddard MMF overestimates global rainfall because of its oceanic component. Some critical issues associated with the Goddard MMF are presented in this paper.
Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.
Simplifiying global biogeochemistry models to evaluate methane emissions
NASA Astrophysics Data System (ADS)
Gerber, S.; Alonso-Contes, C.
2017-12-01
Process-based models are important tools to quantify wetland methane emissions, particularly also under climate change scenarios, evaluating these models is often cumbersome as they are embedded in larger land-surface models where fluctuating water table and the carbon cycle (including new readily decomposable plant material) are predicted variables. Here, we build on these large scale models but instead of modeling water table and plant productivity we provide values as boundary conditions. In contrast, aerobic and anaerobic decomposition, as well as soil column transport of oxygen and methane are predicted by the model. Because of these simplifications, the model has the potential to be more readily adaptable to the analysis of field-scale data. Here we determine the sensitivity of the model to specific setups, parameter choices, and to boundary conditions in order to determine set-up needs and inform what critical auxiliary variables need to be measured in order to better predict field-scale methane emissions from wetland soils. To that end we performed a global sensitivity analysis that also considers non-linear interactions between processes. The global sensitivity analysis revealed, not surprisingly, that water table dynamics (both mean level and amplitude of fluctuations), and the rate of the carbon cycle (i.e. net primary productivity) are critical determinants of methane emissions. The depth-scale where most of the potential decomposition occurs also affects methane emissions. Different transport mechanisms are compensating each other to some degree: If plant conduits are constrained, methane emissions by diffusive flux and ebullition compensate to some degree, however annual emissions are higher when plants help to bypass methanotrophs in temporally unsaturated upper layers. Finally, while oxygen consumption by plant roots help creating anoxic conditions it has little effect on overall methane emission. Our initial sensitivity analysis helps guiding further model development and improvement. However, an important goal for our model is to use it in field settings as a tool to deconvolve the different processes that contribute to the net transfer of methane from soils to atmosphere.
Ecosystem evapotranspiration: Challenges in measurements, estimates, and modeling
USDA-ARS?s Scientific Manuscript database
Evapotranspiration (ET) processes at the leaf-to-landscape scales in multiple land uses have important controls and feedbacks for the local, regional and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and cro...
Scale-Independent Relational Query Processing
2013-10-04
source options are also available, including Postgresql, MySQL , and SQLite. These mod- ern relational databases are generally very complex software systems...and Their Application to Data Stream Management. IGI Global, 2010. [68] George Reese. Database Programming with JDBC and Java , Second Edition. Ed. by
NASA Astrophysics Data System (ADS)
Wang, F.; Gu, L.; Guha, A.; Han, J.; Warren, J.
2017-12-01
The current projections for global climate change forecast an increase in the intensity and frequency of extreme climatic events, such as droughts and short-term heat waves. Understanding the effects of short-term heat wave on photosynthesis process is of critical importance to predict global impacts of extreme weather event on vegetation. The diurnal and seasonal characteristics of SIF emitted from natural vegetation, e.g., forest and crop, have been studied at the ecosystem-scale, regional-scale and global-scale. However, the detailed response of SIF from different plant species under extremely weather event, especially short-term heat wave, have not been reported. The purpose of this study was to study the response of solar-induced chlorophyll fluorescence, gas exchange and continuous fluorescence at leaf scale for different temperate tree species. The short-term heatwave experiment was conducted using plant growth chamber (CMP6050, Conviron Inc., Canada). We developed an advanced spectral fitting method to obtain the plant SIF in the plant growth chamber. We compared SIF variation among different wavelength and chlorophyll difference among four temperate tree species. The diurnal variation of SIF signals at leaf-scales for temperate tree species are different under heat stress. The SIF response at leaf-scales and their difference for four temperate tree species are different during a cycle of short-term heatwave stress. We infer that SIF be used as a measure of heat tolerance for temperate tree species.
Global efficiency of local immunization on complex networks
NASA Astrophysics Data System (ADS)
Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.
2013-07-01
Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.
Global efficiency of local immunization on complex networks.
Hébert-Dufresne, Laurent; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J
2013-01-01
Epidemics occur in all shapes and forms: infections propagating in our sparse sexual networks, rumours and diseases spreading through our much denser social interactions, or viruses circulating on the Internet. With the advent of large databases and efficient analysis algorithms, these processes can be better predicted and controlled. In this study, we use different characteristics of network organization to identify the influential spreaders in 17 empirical networks of diverse nature using 2 epidemic models. We find that a judicious choice of local measures, based either on the network's connectivity at a microscopic scale or on its community structure at a mesoscopic scale, compares favorably to global measures, such as betweenness centrality, in terms of efficiency, practicality and robustness. We also develop an analytical framework that highlights a transition in the characteristic scale of different epidemic regimes. This allows to decide which local measure should govern immunization in a given scenario.
How Did Climate and Humans Respond to Past Volcanic Eruptions?
NASA Technical Reports Server (NTRS)
Toohey, Matthew; Ludlow, Francis; Legrande, Allegra N.
2016-01-01
To predict and prepare for future climate change, scientists are striving to understand how global-scale climatic change manifests itself on regional scales and also how societies adapt or don't to sometimes subtle and complex climatic changes. In this regard, the strongest volcanic eruptions of the past are powerful test cases, showcasing how the broad climate system responds to sudden changes in radiative forcing and how societies have responded to the resulting climatic shocks. These issues were at the heart of the inaugural workshop of the Volcanic Impacts on Climate and Society (VICS) Working Group, convened in June 2016 at the Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y. The 3-day meeting gathered approximately 50 researchers, who presented work intertwining the history of volcanic eruptions and the physical processes that connect eruptions with human and natural systems on a global scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, M. F.; Ershadi, A.; Jimenez, C.
Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less
McCabe, M. F.; Ershadi, A.; Jimenez, C.; ...
2016-01-26
Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less
Huberle, Elisabeth; Karnath, Hans-Otto
2006-01-01
Simultanagnosia is a rare deficit that impairs individuals in perceiving several objects at the same time. It is usually observed following bilateral parieto-occipital brain damage. Despite the restrictions in perceiving the global aspect of a scene, processing of individual objects remains unaffected. The mechanisms underlying simultanagnosia are not well understood. Previous findings indicated that the integration of multiple objects into a holistic representation of the environment is not impossible per se, but might depend on the spatial relationship between individual objects. The present study examined the influence of inter-element distances between individual objects on the recognition of global shapes in two patients with simultanagnosia. We presented Navon hierarchical letter stimuli with different inter-element distances between letters at the Local Scale. Improved recognition at the Global Scale was observed in both patients by reducing the inter-element distance. Global shape recognition in simultanagnosia thus seems to be modulated by the spatial distance of local elements and does not appear to be an all-or-nothing phenomenon depending on spatial continuity. The findings seem to argue against a deficit in visual working memory capacity as the primary deficit in simultanagnosia. However, further research is necessary to investigate alternative interpretations.
NASA Astrophysics Data System (ADS)
Ackleson, S. G.
2012-12-01
Ocean observatories (systems of coordinated sensors and platforms providing real-time in situ observations across multiple temporal and spatial scales) have advanced rapidly during the past several decades with the integration of novel hardware, development of advanced cyber-infrastructures and data management software, and the formation of researcher networks employing fixed, drifting, and mobile assets. These advances have provided persistent, real-time, multi-disciplinary observations representing even the most extreme environmental conditions, enabled unique and informative views of complicated ocean processes, and aided in the development of more accurate and higher fidelity ocean models. Combined with traditional ship-based and remotely sensed observations, ocean observatories have yielded new knowledge across a broad spectrum of earth-ocean scales that would likely not exist otherwise. These developments come at a critical time in human history when the demands of global population growth are creating unprecedented societal challenges associated with rapid climatic change and unsustainable consumption of key ocean resources. Successfully meeting and overcoming these challenges and avoiding the ultimate tragedy of the commons will require greater knowledge of environmental processes than currently exists, including interactions between the ocean, the overlying atmosphere, and the adjacent land and synthesizing new knowledge into effective policy and management structures. To achieve this, researchers must have free and ready access to comprehensive data streams (oceanic, atmospheric, and terrestrial), regardless of location and collection system. While the precedent for the concept of free and open access to environmental data is not new (it traces back to the International Geophysical Year, 1957), implementing procedures and standards on a global scale is proving to be difficult, both logistically and politically. Observatories have been implemented in many parts of the global ocean, inspiring researchers to begin planning and developing connected regional observing systems that are networked into a Global Ocean Observing System as part of a comprehensive Global Earth Observation System of Systems. However, much remains to be accomplished, especially in the areas of standardizing observation methods and metadata, implementing procedures to assure an acceptable level of data quality, and defining and producing key derived products. This paper will briefly discuss the evolution of ocean observatories, summarize current efforts to develop local, regional and global observing networks, and suggest future steps towards a global ocean observing system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, J.; Amthor, J.; Dahlman, R.
2008-12-01
One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biologicalmore » components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.« less
Many shades of green: the dynamic tropical forest–savannah transition zones
Oliveras, Immaculada; Malhi, Yadvinder
2016-01-01
The forest–savannah transition is the most widespread ecotone in tropical areas, separating two of the most productive terrestrial ecosystems. Here, we review current understanding of the factors that shape this transition, and how it may change under various drivers of local or global change. At broadest scales, the location of the transition is shaped by water availability, mediated strongly at local scales by fire regimes, herbivory pressure and spatial variation in soil properties. The frequently dynamic nature of this transition suggests that forest and savannah can exist as alternative stable states, maintained and separated by fire–grass feedbacks and tree shade–fire suppression feedback. However, this theory is still contested and the relative contributions of the main biotic and abiotic drivers and their interactions are yet not fully understood. These drivers interplay with a wide range of ecological processes and attributes at the global, continental, regional and local scales. The evolutionary history of the biotic and abiotic drivers and processes plays an important role in the current distributions of these transitions as well as in their species composition and ecosystem functioning. This ecotone can be sensitive to shifts in climate and other driving factors, but is also potentially stabilized by negative feedback processes. There is abundant evidence that these transitions are shifting under contemporary global and local changes, but the direction of shift varies according to region. However, it still remains uncertain how these transitions will respond to rapid and multi-faceted ongoing current changes, and how increasing human influence will interact with these shifts. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502373
Influences of the MJO on the space-time organization of tropical convection
NASA Astrophysics Data System (ADS)
Dias, Juliana; Sakaeda, Naoko; Kiladis, George N.; Kikuchi, Kazuyoshi
2017-08-01
The fact that the Madden-Julian Oscillation (MJO) is characterized by large-scale patterns of enhanced tropical rainfall has been widely recognized for decades. However, the precise nature of any two-way feedback between the MJO and the properties of smaller-scale organization that makes up its convective envelope is not well understood. Satellite estimates of brightness temperature are used here as a proxy for tropical rainfall, and a variety of diagnostics are applied to determine the degree to which tropical convection is affected either locally or globally by the MJO. To address the multiscale nature of tropical convective organization, the approach ranges from space-time spectral analysis to an object-tracking algorithm. In addition to the intensity and distribution of global tropical rainfall, the relationship between the MJO and other tropical processes such as convectively coupled equatorial waves, mesoscale convective systems, and the diurnal cycle of tropical convection is also analyzed. The main findings of this paper are that, aside from the well-known increase in rainfall activity across scales within the MJO convective envelope, the MJO does not favor any particular scale or type of organization, and there is no clear signature of the MJO in terms of the globally integrated distribution of brightness temperature or rainfall.
NASA Technical Reports Server (NTRS)
Wood, Eric F.
1993-01-01
The objectives of the research were as follows: (1) Extend the Representative Elementary Area (RE) concept, first proposed and developed in Wood et al, (1988), to the water balance fluxes of the interstorm period (redistribution, evapotranspiration and baseflow) necessary for the analysis of long-term water balance processes. (2) Derive spatially averaged water balance model equations for spatially variable soil, topography and vegetation, over A RANGE OF CLIMATES. This is a necessary step in our goal to derive consistent hydrologic results up to GCM grid scales necessary for global climate modeling. (3) Apply the above macroscale water balance equations with remotely sensed data and begin to explore the feasibility of parameterizing the water balance constitutive equations at GCM grid scale.
Daniel, David G; Revicki, Dennis A; Canuso, Carla M; Turkoz, Ibrahim; Fu, Dong-Jing; Alphs, Larry; Ishak, K. Jack; Bartko, John J; Lindenmayer, Jean-Pierre
2012-01-01
Objective: The Clinical Global Impression for Schizoaffective Disorder scale is a new rating scale adapted from the Clinical Global Impression scale for use in patients with schizoaffective disorder. The psychometric characteristics of the Clinical Global Impression for Schizoaffective Disorder are described. Design: Content validity was assessed using an investigator questionnaire. Inter-rater reliability was determined with 12 sets of videotaped interviews rated independently by two trained individuals. Test-retest reliability was assessed using 30 randomly selected raters from clinical trials who evaluated the same videos on separate occasions two weeks apart. Convergent and divergent validity and effect size were evaluated by comparing scores between the Clinical Global Impression for Schizoaffective Disorder and the Positive and Negative Syndrome Scale, 21-item Hamilton Rating Scale for Depression, and Young Mania Rating Scale scales using pooled patient data from two clinical trials. Clinical Global Impression for Schizoaffective Disorder scores were then linked to corresponding Positive and Negative Syndrome Scale scores. Results: Content validity was strong. Inter-rater agreement was good to excellent for most scales and subscales (intra-class correlation coefficient ≥0.50). Test-retest showed good reproducibility, with intraclass correlation coefficients ranging from 0.444 to 0.898. Spearman correlations between Clinical Global Impression for Schizoaffective Disorder domains and corresponding symptom scales were 0.60 or greater, and effect sizes for Clinical Global Impression for Schizoaffective Disorder overall and domain scores were similar to Positive and Negative Syndrome Scale Young Mania Rating Scale, and 21-item Hamilton Rating Scale for Depression scores. Raters anticipated that the scale might be less effective in distinguishing negative from depressive symptoms, and, in fact, the results here may reflect that clinical reality. Conclusion: Multiple lines of evidence support the reliability and validity of the Clinical Global Impression for Schizoaffective Disorder for studies in schizoaffective disorder. PMID:22347687
Application of SIR-C SAR to Hydrology
NASA Technical Reports Server (NTRS)
Engman, Edwin T.; ONeill, Peggy; Wood, Eric; Pauwels, Valentine; Hsu, Ann; Jackson, Tom; Shi, J. C.; Prietzsch, Corinna
1996-01-01
The progress, results and future plans regarding the following objectives are presented: (1) Determine and compare soil moisture patterns within one or more humid watersheds using SAR data, ground-based measurements, and hydrologic modeling; (2) Use radar data to characterize the hydrologic regime within a catchment and to identify the runoff producing characteristics of humid zone watersheds; and (3) Use radar data as the basis for scaling up from small scale, near-point process models to larger scale water balance models necessary to define and quantify the land phase of GCM's (Global Circulation Models).
Towards quantifying the arc-scale and global magmatic response to deglaciation
NASA Astrophysics Data System (ADS)
Watt, S. F.; Pyle, D. M.; Mather, T. A.
2012-12-01
There is a growing body of evidence that the retreat of ice sheets after the last glacial maximum resulted in temporarily enhanced levels of volcanism. This has been postulated on the scale of individual edifices, and on regional scales in intraplate and rift settings. It has been proposed that this pattern was of global significance in contributing to rising atmospheric CO2 concentrations, and thereby formed a feedback process for global warming. However, the impact of deglaciation on volcanic arcs has been incompletely explored. Volcanic arcs account for 90% of present-day subaerial volcanic eruptions, and for volcanically-sourced volatiles they are therefore of first-order significance. Without a proper understanding of fluctuations in arc volcanic output, an assessment of global changes in volcanic activity cannot be made. Here, we present the first systematic assessment of the response of glaciated volcanic arcs to deglaciation. By using comprehensive compilations of eruption records from southern Chile, augmented by records from the Cascade and Kamchatka arcs, we show that the post-glacial increase in volcanism was relatively small in comparison to non-arc volcano-tectonic settings. Where ice unloading was at its greatest, eruption frequency approximately doubled for ~5 kyr, but this pattern is at the limit of statistical significance. The same period coincides with a few notably large explosive eruptions. In less heavily glaciated regions, no pattern can be deduced at the resolution of available data. While eruption patterns are commonly episodic, the timing of increases in activity does not always show a clear link to deglaciation. In light of the above, we critically examine available eruption records in an effort to constrain global-scale changes in volcanic output. We show that great caution must be exercised when attempting to quantify variation in volcanism from such data. Due to extremely sparse sampling (i.e. highly incomplete records), both temporal and spatial sampling biases must be corrected. Spatial variation in sampling rates is particularly significant. In some highly active volcanic regions, such as Indonesia, as few as 1 in 20,000 VEI ≥2 eruptions have been identified during the 5-20 ka time period. Globally, >99% of all eruptions of VEI ≥2 have not been identified. Because of this, variations in eruption rate between glaciated and non-glaciated regions cannot be precisely quantified. We attempt to account for such uncertainties, and suggest that, at most, global eruption rates may have doubled after the last glaciation, from 13-7 ka. This suggests that, although volcanism may have been an important source of CO2 in the early Holocene, it cannot have been a dominant control on changes in atmospheric CO2 after the last glacial maximum. To improve our ability to constrain global-scale patterns in magmatic processes, there is a need for improved records of past volcanic activity, particularly from several low-latitude regions, where data are extremely sparse.
Current and future levels of mercury atmospheric pollution on a global scale
NASA Astrophysics Data System (ADS)
Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin
2016-10-01
An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important research instrument for supporting the scientific justification for the Minamata Convention and monitoring of the implementation of targets of this convention, as well as the EU Mercury Strategy. This project provided the state of the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric mercury on a global and regional scale, and source-receptor techniques for mercury emission apportionment on a global scale.
AgMIP 1.5°C Assessment: Mitigation and Adaptation at Coordinated Global and Regional Scales
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2016-12-01
The AgMIP 1.5°C Coordinated Global and Regional Integrated Assessments of Climate Change and Food Security (AgMIP 1.5 CGRA) is linking site-based crop and livestock models with similar models run on global grids, and then links these biophysical components with economics models and nutrition metrics at regional and global scales. The AgMIP 1.5 CGRA assessment brings together experts in climate, crop, livestock, economics, nutrition, and food security to define the 1.5°C Protocols and guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including socioeconomic development (Shared Socioeconomic Pathways), greenhouse gas concentrations (Representative Concentration Pathways), and specific pathways of agricultural sector development (Representative Agricultural Pathways). Shared Climate Policy Assumptions will be extended to provide additional agricultural detail on mitigation and adaptation strategies. The multi-model, multi-disciplinary, multi-scale integrated assessment framework is using scenarios of economic development, adaptation, mitigation, food policy, and food security. These coordinated assessments are grounded in the expertise of AgMIP partners around the world, leading to more consistent results and messages for stakeholders, policymakers, and the scientific community. The early inclusion of nutrition and food security experts has helped to ensure that assessment outputs include important metrics upon which investment and policy decisions may be based. The CGRA builds upon existing AgMIP research groups (e.g., the AgMIP Wheat Team and the AgMIP Global Gridded Crop Modeling Initiative; GGCMI) and regional programs (e.g., AgMIP Regional Teams in Sub-Saharan Africa and South Asia), with new protocols for cross-scale and cross-disciplinary linkages to ensure the propagation of expert judgment and consistent assumptions.
Global Neuromagnetic Cortical Fields Have Non-Zero Velocity
Alexander, David M.; Nikolaev, Andrey R.; Jurica, Peter; Zvyagintsev, Mikhail; Mathiak, Klaus; van Leeuwen, Cees
2016-01-01
Globally coherent patterns of phase can be obscured by analysis techniques that aggregate brain activity measures across-trials, whether prior to source localization or for estimating inter-areal coherence. We analyzed, at single-trial level, whole head MEG recorded during an observer-triggered apparent motion task. Episodes of globally coherent activity occurred in the delta, theta, alpha and beta bands of the signal in the form of large-scale waves, which propagated with a variety of velocities. Their mean speed at each frequency band was proportional to temporal frequency, giving a range of 0.06 to 4.0 m/s, from delta to beta. The wave peaks moved over the entire measurement array, during both ongoing activity and task-relevant intervals; direction of motion was more predictable during the latter. A large proportion of the cortical signal, measurable at the scalp, exists as large-scale coherent motion. We argue that the distribution of observable phase velocities in MEG is dominated by spatial filtering considerations in combination with group velocity of cortical activity. Traveling waves may index processes involved in global coordination of cortical activity. PMID:26953886
Tail reconnection in the global magnetospheric context: Vlasiator first results
NASA Astrophysics Data System (ADS)
Palmroth, Minna; Hoilijoki, Sanni; Juusola, Liisa; Pulkkinen, Tuija I.; Hietala, Heli; Pfau-Kempf, Yann; Ganse, Urs; von Alfthan, Sebastian; Vainio, Rami; Hesse, Michael
2017-11-01
The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.
The Global Hawk Unmanned Aerial Vehicle Acquisition Process: A Summary of Phase I Experience,
1997-01-01
8217 ]p ßSTEIM ■ nvrmim ü f ATX » LJ^P^ iiaiiiiiiaJ Mm MM» .. VHP The research described in this report was sponsored by the Defense Advanced...Flight Sciences, Northrop Grumman, Boeing, Raytheon, Westinghouse, Scaled Composites , Teledyne Ryan Aeronautical, and E-Systems, without whose...Corporation, Westinghouse, Northrop Grumman, Scaled Composites , Raytheon, Boeing, Teledyne Ryan, E-Systems, and Aurora Flight Sciences. It should be noted
Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein; Daniel L. Welsch
2008-01-01
Soil CO2 efflux is a large respiratory flux from terrestrial ecosystems and a critical component of the global carbon (C) cycle. Lack of process understanding of the spatiotemporal controls on soil CO2 efflux limits our ability to extrapolate from fluxes measured at point scales to scales useful for corroboration with other ecosystem level measures of C exchange....
2010-04-01
scale needed can be proven. As an example, GE Healthcare’s Gemstone scintillator underwent years of laboratory development on a small scale until GE...GE Healthcare provides another example of proving out manufacturing processes prior to production in their development of the Gemstone scintillator...including the development and manufacturing of their Gemstone scintillator for use on advanced CT scanners. • Honeywell Aerospace, a global provider
NASA Technical Reports Server (NTRS)
Paegle, J.; Kalnay, E.; Baker, W. E.
1981-01-01
The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.
The Global Drought Information System - A Decision Support Tool with Global Applications
NASA Astrophysics Data System (ADS)
Heim, R. R.; Brewer, M.
2012-12-01
Drought is a natural hazard which can cause famine in developing countries and severe economic hardship in developed countries. Given current concerns with the increasing frequency and magnitude of droughts in many regions of the world, especially in the light of expected climate change, drought monitoring and dissemination of early warning information in a timely fashion on a global scale is a critical concern as an important adaptation and mitigation strategy. While a number of nations, and a few continental-scale activities have developed drought information system activities, a global drought early warning system (GDEWS) remains elusive, despite the benefits highlighted by ministers to the Global Earth Observation System of System in 2008. In an effort to begin a process of drought monitoring with international collaboration, the National Integrated Drought Information System's (NIDIS) U.S. Drought Portal, a web-based information system created to address drought services and early warning in the United States, including drought monitoring, forecasting, impacts, mitigation, research, and education, volunteered to develop a prototype Global Drought Monitoring Portal (GDMP). Through integration of data and information at the global level, and with four continental-level partners, the GDMP has proven successful as a tool to monitor drought around the globe. At a recent meeting between NIDIS, the World Meteorological Organization, and the Global Earth Observation System of Systems, it was recommended that the GDMP form the basis for a Global Drought Information System (GDIS). Currently, GDIS activities are focused around incorporating additional drought monitoring information, especially from those areas without regional or continental-scale input, and incorporating drought-specific climate forecast information from the World Climate Research Programme. Additional GDIS pilot activities are underway with an emphasis on information and decision making, and how to effectively provide drought early warning. This talk will provide an update on the status of GDIS and its role in international drought monitoring.
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2018-01-01
In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.
NASA Astrophysics Data System (ADS)
Lin, Shian-Jiann; Harris, Lucas; Chen, Jan-Huey; Zhao, Ming
2014-05-01
A multi-scale High-Resolution Atmosphere Model (HiRAM) is being developed at NOAA/Geophysical Fluid Dynamics Laboratory. The model's dynamical framework is the non-hydrostatic extension of the vertically Lagrangian finite-volume dynamical core (Lin 2004, Monthly Wea. Rev.) constructed on a stretchable (via Schmidt transformation) cubed-sphere grid. Physical parametrizations originally designed for IPCC-type climate predictions are in the process of being modified and made more "scale-aware", in an effort to make the model suitable for multi-scale weather-climate applications, with horizontal resolution ranging from 1 km (near the target high-resolution region) to as low as 400 km (near the antipodal point). One of the main goals of this development is to enable simulation of high impact weather phenomena (such as tornadoes, thunderstorms, category-5 hurricanes) within an IPCC-class climate modeling system previously thought impossible. We will present preliminary results, covering a very wide spectrum of temporal-spatial scales, ranging from simulation of tornado genesis (hours), Madden-Julian Oscillations (intra-seasonal), topical cyclones (seasonal), to Quasi Biennial Oscillations (intra-decadal), using the same global multi-scale modeling system.
NASA Astrophysics Data System (ADS)
Angelopoulos, V.; Hietala, H.; Liu, Z.; Mende, S. B.; Phan, T.; Nishimura, T.; Strangeway, R. J.; Burch, J. L.; Moore, T. E.; Giles, B. L.
2015-12-01
The recent launch of MMS, the impending launch of ERG, the continued availability of space (NASA, NOAA, International) and ground based assets (THEMIS GBOs, TREx, SuperDARN) enable a comprehensive study of global drivers of (and responses to) kinetic processes at the magnetopause, the magnetotail, the inner magnetosphere and the ionosphere. Previously unresolved questions related to the nature of the modes of magnetospheric convection (pseudobreakups, substorms, SMCs and storms) can now be addressed simultaneously at a kinetic level (with multi-spacecraft missions) and at a global level (with the emerging, powerful H/GSO). THEMIS has been tasked to perform orbital changes that will optimize the observatory, and simultaneously place its probes, along with MMS's, at the heart of where critical kinetic processes occur, near sites of magnetic reconnection and magnetic energy conversion, and in optimal view of ground based assets. I will discuss these unique alignments of the H/GSO fleet that can reveal how cross-scale coupling is manifest, allowing us to view old paradigms in a new light.
ERIC Educational Resources Information Center
Sunderlin, David
2009-01-01
The complexity and interrelatedness of aspects of the geosciences is an important concept to convey in an undergraduate geoscience curriculum. A synthesis capstone project has served to integrate pattern-based learning of an introductory Earth History course into an active and process-based exercise in hypothesis production. In this exercise,…
The solar magnetic field: from complexity to simplicity (and back)
NASA Astrophysics Data System (ADS)
Schüssler, Manfred
2017-06-01
The Sun is the only astrophysical object that permits a detailed study of the basic processes governing its magnetic field. Observations reveal stunning complexity due to the interaction with turbulent convection. Numerical simulations and observations strongly suggest that most of the small-scale field is generated by a process called small-scale dynamo action. The fundamental nature of this process makes it a candidate for magnetic field generation in a broad variety of astrophysical settings.On the other hand, the global nature of the 11-year cycle (as exhibited, for instance, by the polarity laws of sunspot groups and the regularly reversing axial dipole field) reveals a surprising simplicity. This suggests a description of the global dynamo process underlying the solar cycle in terms of relatively simple concepts. Insufficient knowledge about the structure of magnetic field and flows in the convection zone requires the introduction of a variety of free parameters (or even free functions), which severely impairs the explanatory power of most such models. However, during the last decades, surface observations of plasma flows and magnetic flux emergence, together with studies of magnetic flux transport, provided crucial information aboutthe workings of the dynamo process. They confirm the visionary approach proposed already in the 1960s by Babcock and Leighton. A recent update of their model permits a full study of the space spanned by the few remaining parameters in order to identify the regions with solar-like solutions.Observations of other cool stars show that the magnetic activity level decreases strongly with stellar rotation rate. The relatively slow rotation of the Sun puts it near to the threshold at which global dynamo action ceases. This suggests a further simplification of the dynamo model in terms of a generic normal form for a weakly nonlinear system. Including the inherent randomness brought about by the flux emergence process leads to a stochastic model whose parameters are fixed by observations. The model results explain the variability of the solar cycle amplitudes from decadal to millennial time scales.
Scientific Overview of Temporal Experiment for Storms and Tropical Systems (TEMPEST) Program
NASA Astrophysics Data System (ADS)
Chandra, C. V.; Reising, S. C.; Kummerow, C. D.; van den Heever, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Haddad, Z. S.; Koch, T.; Berg, G.; L'Ecuyer, T.; Munchak, S. J.; Luo, Z. J.; Boukabara, S. A.; Ruf, C. S.
2014-12-01
Over the past decade and a half, we have gained a better understanding of the role of clouds and precipitation on Earth's water cycle, energy budget and climate, from focused Earth science observational satellite missions. However, these missions provide only a snapshot at one point in time of the cloud's development. Processes that govern cloud system development occur primarily on time scales of the order of 5-30 minutes that are generally not observable from low Earth orbiting satellites. Geostationary satellites, in contrast, have higher temporal resolution but at present are limited to visible and infrared wavelengths that observe only the tops of clouds. This observing gap was noted by the National Research Council's Earth Science Decadal Survey in 2007. Uncertainties in global climate models are significantly affected by processes that govern the formation and dissipation of clouds that largely control the global water and energy budgets. Current uncertainties in cloud parameterization within climate models lead to drastically different climate outcomes. With all evidence suggesting that the precipitation onset may be governed by factors such atmospheric stability, it becomes critical to have at least first-order observations globally in diverse climate regimes. Similar arguments are valid for ice processes where more efficient ice formation and precipitation have a tendency to leave fewer ice clouds behind that have different but equally important impacts on the Earth's energy budget and resulting temperature trends. TEMPEST is a unique program that will provide a small constellation of inexpensive CubeSats with millimeter-wave radiometers to address key science needs related to cloud and precipitation processes. Because these processes are most critical in the development of climate models that will soon run at scales that explicitly resolve clouds, the TEMPEST program will directly focus on examining, validating and improving the parameterizations currently used in cloud scale models. The time evolution of cloud and precipitation microphysics is dependent upon parameterized process rates. The outcome of TEMPEST will provide a first-order understanding of how individual assumptions in current cloud model parameterizations behave in diverse climate regimes.
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Gavrishchaka, Valeriy V.
1999-01-01
Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.
NASA Astrophysics Data System (ADS)
Dutta, Dushmanta; Vaze, Jai; Kim, Shaun; Hughes, Justin; Yang, Ang; Teng, Jin; Lerat, Julien
2017-04-01
Existing global and continental scale river models, mainly designed for integrating with global climate models, are of very coarse spatial resolutions and lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing water accounts, which have become increasingly important for water resources planning and management at regional and national scales. A continental scale river system model called Australian Water Resource Assessment River System model (AWRA-R) has been developed and implemented for national water accounting in Australia using a node-link architecture. The model includes major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. Two key components of the model are an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. The results in the Murray-Darling Basin shows highly satisfactory performance of the model with median daily Nash-Sutcliffe Efficiency (NSE) of 0.64 and median annual bias of less than 1% for the period of calibration (1970-1991) and median daily NSE of 0.69 and median annual bias of 12% for validation period (1992-2014). The results have demonstrated that the performance of the model is less satisfactory when the key processes such as overbank flow, groundwater seepage and irrigation diversion are switched off. The AWRA-R model, which has been operationalised by the Australian Bureau of Meteorology for continental scale water accounting, has contributed to improvements in the national water account by substantially reducing accounted different volume (gain/loss).
Quantitative mapping of rainfall rates over the oceans utilizing Nimbus-5 ESMR data
NASA Technical Reports Server (NTRS)
Rao, M. S. V.; Abbott, W. V.
1976-01-01
The electrically scanning microwave radiometer (ESMR) data from the Nimbus 5 satellite was used to deduce estimates of precipitation amount over the oceans. An atlas of the global oceanic rainfall was prepared and the global rainfall maps analyzed and related to available ground truth information as well as to large scale processes in the atmosphere. It was concluded that the ESMR system provides the most reliable and direct approach yet known for the estimation of rainfall over sparsely documented, wide oceanic regions.
NASA Astrophysics Data System (ADS)
Wu, M. J.; Guo, P.; Fu, N. F.; Xu, T. L.; Xu, X. S.; Jin, H. L.; Hu, X. G.
2016-06-01
The ionosphere scale height is one of the most significant ionospheric parameters, which contains information about the ion and electron temperatures and dynamics in upper ionosphere. In this paper, an empirical orthogonal function (EOF) analysis method is applied to process all the ionospheric radio occultations of GPS/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) from the year 2007 to 2011 to reconstruct a global ionospheric scale height model. This monthly medium model has spatial resolution of 5° in geomagnetic latitude (-87.5° ~ 87.5°) and temporal resolution of 2 h in local time. EOF analysis preserves the characteristics of scale height quite well in the geomagnetic latitudinal, anural, seasonal, and diurnal variations. In comparison with COSMIC measurements of the year of 2012, the reconstructed model indicates a reasonable accuracy. In order to improve the topside model of International Reference Ionosphere (IRI), we attempted to adopt the scale height model in the Bent topside model by applying a scale factor q as an additional constraint. With the factor q functioning in the exponent profile of topside ionosphere, the IRI scale height should be forced equal to the precise COSMIC measurements. In this way, the IRI topside profile can be improved to get closer to the realistic density profiles. Internal quality check of this approach is carried out by comparing COSMIC realistic measurements and IRI with or without correction, respectively. In general, the initial IRI model overestimates the topside electron density to some extent, and with the correction introduced by COSMIC scale height model, the deviation of vertical total electron content (VTEC) between them is reduced. Furthermore, independent validation with Global Ionospheric Maps VTEC implies a reasonable improvement in the IRI VTEC with the topside model correction.
NASA Astrophysics Data System (ADS)
Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.
2015-12-01
Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.
Alink, Arjen; Krugliak, Alexandra; Walther, Alexander; Kriegeskorte, Nikolaus
2013-01-01
The orientation of a large grating can be decoded from V1 functional magnetic resonance imaging (fMRI) data, even at low resolution (3-mm isotropic voxels). This finding has suggested that columnar-level neuronal information might be accessible to fMRI at 3T. However, orientation decodability might alternatively arise from global orientation-preference maps. Such global maps across V1 could result from bottom-up processing, if the preferences of V1 neurons were biased toward particular orientations (e.g., radial from fixation, or cardinal, i.e., vertical or horizontal). Global maps could also arise from local recurrent or top-down processing, reflecting pre-attentive perceptual grouping, attention spreading, or predictive coding of global form. Here we investigate whether fMRI orientation decoding with 2-mm voxels requires (a) globally coherent orientation stimuli and/or (b) global-scale patterns of V1 activity. We used opposite-orientation gratings (balanced about the cardinal orientations) and spirals (balanced about the radial orientation), along with novel patch-swapped variants of these stimuli. The two stimuli of a patch-swapped pair have opposite orientations everywhere (like their globally coherent parent stimuli). However, the two stimuli appear globally similar, a patchwork of opposite orientations. We find that all stimulus pairs are robustly decodable, demonstrating that fMRI orientation decoding does not require globally coherent orientation stimuli. Furthermore, decoding remained robust after spatial high-pass filtering for all stimuli, showing that fine-grained components of the fMRI patterns reflect visual orientations. Consistent with previous studies, we found evidence for global radial and vertical preference maps in V1. However, these were weak or absent for patch-swapped stimuli, suggesting that global preference maps depend on globally coherent orientations and might arise through recurrent or top-down processes related to the perception of global form.
Microenvironmental change as a mechanism to study global change.
NASA Astrophysics Data System (ADS)
Lortie, C. J.
2016-12-01
Global change is a set of significant processes that influence all aspects of ecosystem functioning and often-natural services within Santa Barbara County. The sensitivity of coastal and urban systems is certainly very high. However, profound changes are also predicted for arid and semi-arid systems globally, and California is no exception. These dryland systems are less buffered by oceanic processes and typically express high inter-annual variation in precipitation and temperatures in addition to perturbations associated with long-term droughts. However, climate estimates and downscaled values can present challenges in providing evidence at the scale relevant to individual species or individuals, and the importance of biotic interactions must be coupled to these estimates in space and time. Coupled indicators of key micro-environmental measures to both positive and negative interactions between foundation species and other organisms provide a metric of buffering capacity and resilience to global change at fine spatial scales. Consequently, the primary objective of this research project is to provide both the a well-articulated, ecologically relevant micro-environmental big data measure of global change within Santa Barbara County and a coupled estimate of concurrent changes in interactions in key species within the region. Shrubs directly and indirectly buffered local changes in the microenvironment thereby functioning as refuges for other species within arid and semi-arid regions subject to dramatic global change drivers. The following major patterns were identified: (i) shrub micro-environments reduce the level of stress and amplitude of variation associated with temperature and moisture, (ii) many plant and animal species including threatened lizards are relatively more common with shrubs within the region, and (iii) the variation in the interaction patterns between species relates to the extent of amelioration provided by shrub-biodiversity complexes within the region. The ecological theory of positive plant interactions scaling to other species as a restoration and management tool is a dominant and rapidly evolving field of research. Micro-environmental sensor arrays are a scientifically valid approach to identify meaningful localized change with biotic interactions.
Massive Cloud-Based Big Data Processing for Ocean Sensor Networks and Remote Sensing
NASA Astrophysics Data System (ADS)
Schwehr, K. D.
2017-12-01
Until recently, the work required to integrate and analyze data for global-scale environmental issues was prohibitive both in cost and availability. Traditional desktop processing systems are not able to effectively store and process all the data, and super computer solutions are financially out of the reach of most people. The availability of large-scale cloud computing has created tools that are usable by small groups and individuals regardless of financial resources or locally available computational resources. These systems give scientists and policymakers the ability to see how critical resources are being used across the globe with little or no barrier to entry. Google Earth Engine has the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra, MODIS Aqua, and Global Land Data Assimilation Systems (GLDAS) data catalogs available live online. Here we demonstrate these data to calculate the correlation between lagged chlorophyll and rainfall to identify areas of eutrophication, matching these events to ocean currents from datasets like HYbrid Coordinate Ocean Model (HYCOM) to check if there are constraints from oceanographic configurations. The system can provide addition ground truth with observations from sensor networks like the International Comprehensive Ocean-Atmosphere Data Set / Voluntary Observing Ship (ICOADS/VOS) and Argo floats. This presentation is intended to introduce users to the datasets, programming idioms, and functionality of Earth Engine for large-scale, data-driven oceanography.
Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J
2016-08-01
Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dynamical organization towards consensus in the Axelrod model on complex networks
NASA Astrophysics Data System (ADS)
Guerra, Beniamino; Poncela, Julia; Gómez-Gardeñes, Jesús; Latora, Vito; Moreno, Yamir
2010-05-01
We analyze the dynamics toward cultural consensus in the Axelrod model on scale-free networks. By looking at the microscopic dynamics of the model, we are able to show how culture traits spread across different cultural features. We compare the diffusion at the level of cultural features to the growth of cultural consensus at the global level, finding important differences between these two processes. In particular, we show that even when most of the cultural features have reached macroscopic consensus, there are still no signals of globalization. Finally, we analyze the topology of consensus clusters both for global culture and at the feature level of representation.
Mission to Planet Earth. The living ocean: Observing ocean color from space
NASA Technical Reports Server (NTRS)
1994-01-01
Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.
Karst medium characterization and simulation of groundwater flow in Lijiang Riversed, China
NASA Astrophysics Data System (ADS)
Hu, B. X.
2015-12-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
Simulation of groundwater flow and evaluation of carbon sink in Lijiang Rivershed, China
NASA Astrophysics Data System (ADS)
Hu, Bill X.; Cao, Jianhua; Tong, Juxiu; Gao, Bing
2016-04-01
It is important to study water and carbon cycle processes for water resource management, pollution prevention and global warming influence on southwest karst region of China. Lijiang river basin is selected as our study region. Interdisciplinary field and laboratory experiments with various technologies are conducted to characterize the karst aquifers in detail. Key processes in the karst water cycle and carbon cycle are determined. Based on the MODFLOW-CFP model, new watershed flow and carbon cycle models are developed coupled subsurface and surface water flow models, flow and chemical/biological models. Our study is focused on the karst springshed in Mao village. The mechanisms coupling carbon cycle and water cycle are explored. Parallel computing technology is used to construct the numerical model for the carbon cycle and water cycle in the small scale watershed, which are calibrated and verified by field observations. The developed coupling model for the small scale watershed is extended to a large scale watershed considering the scale effect of model parameters and proper model structure simplification. The large scale watershed model is used to study water cycle and carbon cycle in Lijiang rivershed, and to calculate the carbon flux and carbon sinks in the Lijiang river basin. The study results provide scientific methods for water resources management and environmental protection in southwest karst region corresponding to global climate change. This study could provide basic theory and simulation method for geological carbon sequestration in China karst region.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less
Error characterization of microwave satellite soil moisture data sets using fourier analysis
USDA-ARS?s Scientific Manuscript database
Abstract: Soil moisture is a key geophysical variable in hydrological and meteorological processes. Accurate and current observations of soil moisture over mesoscale to global scales as inputs to hydrological, weather and climate modelling will benefit the predictability and understanding of these p...
Psychometric assessment of the processes of change scale for sun protection.
Sillice, Marie A; Babbin, Steven F; Redding, Colleen A; Rossi, Joseph S; Paiva, Andrea L; Velicer, Wayne F
2018-01-01
The fourteen-factor Processes of Change Scale for Sun Protection assesses behavioral and experiential strategies that underlie the process of sun protection acquisition and maintenance. Variations of this measure have been used effectively in several randomized sun protection trials, both for evaluation and as a basis for intervention. However, there are no published studies, to date, that evaluate the psychometric properties of the scale. The present study evaluated factorial invariance and scale reliability in a national sample (N = 1360) of adults involved in a Transtheoretical model tailored intervention for exercise and sun protection, at baseline. Invariance testing ranged from least to most restrictive: Configural Invariance (constraints only factor structure and zero loadings); Pattern Identity Invariance (equal factor loadings across target groups); and Strong Factorial Invariance (equal factor loadings and measurement errors). Multi-sample structural equation modeling tested the invariance of the measurement model across seven subgroups: age, education, ethnicity, gender, race, skin tone, and Stage of Change for Sun Protection. Strong factorial invariance was found across all subgroups. Internal consistency coefficient Alpha and factor rho reliability, respectively, were .83 and .80 for behavioral processes, .91 and .89 for experiential processes, and .93 and .91 for the global scale. These results provide strong empirical evidence that the scale is consistent, has internal validity and can be used in research interventions with population-based adult samples.
NASA Astrophysics Data System (ADS)
Faes, Luca; Nollo, Giandomenico; Stramaglia, Sebastiano; Marinazzo, Daniele
2017-10-01
In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared to pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.
Research frontiers for improving our understanding of drought‐induced tree and forest mortality
Hartmann, Henrik; Moura, Catarina; Anderegg, William R. L.; Ruehr, Nadine; Salmon, Yann; Allen, Craig D.; Arndt, Stefan K.; Breshears, David D.; Davi, Hendrik; Galbraith, David; Ruthrof, Katinka X.; Wunder, Jan; Adams, Henry D.; Bloemen, Jasper; Cailleret, Maxime; Cobb, Richard; Gessler, Arthur; Grams, Thorsten E. E.; Jansen, Steven; Kautz, Markus; Lloret, Francisco; O’Brien, Michael
2018-01-01
Accumulating evidence highlights increased mortality risks for trees during severe drought, particularly under warmer temperatures and increasing vapour pressure deficit (VPD). Resulting forest die‐off events have severe consequences for ecosystem services, biophysical and biogeochemical land–atmosphere processes. Despite advances in monitoring, modelling and experimental studies of the causes and consequences of tree death from individual tree to ecosystem and global scale, a general mechanistic understanding and realistic predictions of drought mortality under future climate conditions are still lacking. We update a global tree mortality map and present a roadmap to a more holistic understanding of forest mortality across scales. We highlight priority research frontiers that promote: (1) new avenues for research on key tree ecophysiological responses to drought; (2) scaling from the tree/plot level to the ecosystem and region; (3) improvements of mortality risk predictions based on both empirical and mechanistic insights; and (4) a global monitoring network of forest mortality. In light of recent and anticipated large forest die‐off events such a research agenda is timely and needed to achieve scientific understanding for realistic predictions of drought‐induced tree mortality. The implementation of a sustainable network will require support by stakeholders and political authorities at the international level.
Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia
2012-01-01
Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.
Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)
2001-01-01
Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.
Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015
NASA Astrophysics Data System (ADS)
Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.
2018-02-01
The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.
Implications of climate change for agricultural productivity in the early twenty-first century.
Gornall, Jemma; Betts, Richard; Burke, Eleanor; Clark, Robin; Camp, Joanne; Willett, Kate; Wiltshire, Andrew
2010-09-27
This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO(2) rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified.
Implications of climate change for agricultural productivity in the early twenty-first century
Gornall, Jemma; Betts, Richard; Burke, Eleanor; Clark, Robin; Camp, Joanne; Willett, Kate; Wiltshire, Andrew
2010-01-01
This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified. PMID:20713397
Multi-petascale highly efficient parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less
Heterogeneous delivering capability promotes traffic efficiency in complex networks
NASA Astrophysics Data System (ADS)
Zhu, Yan-Bo; Guan, Xiang-Min; Zhang, Xue-Jun
2015-12-01
Traffic is one of the most fundamental dynamical processes in networked systems. With the homogeneous delivery capability of nodes, the global dynamic routing strategy proposed by Ling et al. [Phys. Rev. E81, 016113 (2010)] adequately uses the dynamic information during the process and thus it can reach a quite high network capacity. In this paper, based on the global dynamic routing strategy, we proposed a heterogeneous delivery allocation strategy of nodes on scale-free networks with consideration of nodes degree. It is found that the network capacity as well as some other indexes reflecting transportation efficiency are further improved. Our work may be useful for the design of more efficient routing strategies in communication or transportation systems.
An appraisal of China's progress toward the Millennium Development Goals as they relate to children.
Strand, Mark A; Fischer, Philip R
2014-08-01
Since their inception in 2000, the Millennium Development Goals (MDGs) have improved understanding of the global development process. Although the goals will not be significantly achieved on a global scale, each country has had accomplishments deserving of attention and analysis. With regard to the MDGs as they relate to children, China has made significant achievements, the deeper understanding of which might help in the process of refreshing the MDGs beyond 2015. China's accomplishments in economic development and human welfare, and the benefits this has brought to its children potentially teach lessons that can be modelled by other countries moving from low- to middle-income status.
NASA Astrophysics Data System (ADS)
Brumby, S. P.; Warren, M. S.; Keisler, R.; Chartrand, R.; Skillman, S.; Franco, E.; Kontgis, C.; Moody, D.; Kelton, T.; Mathis, M.
2016-12-01
Cloud computing, combined with recent advances in machine learning for computer vision, is enabling understanding of the world at a scale and at a level of space and time granularity never before feasible. Multi-decadal Earth remote sensing datasets at the petabyte scale (8×10^15 bits) are now available in commercial cloud, and new satellite constellations will generate daily global coverage at a few meters per pixel. Public and commercial satellite observations now provide a wide range of sensor modalities, from traditional visible/infrared to dual-polarity synthetic aperture radar (SAR). This provides the opportunity to build a continuously updated map of the world supporting the academic community and decision-makers in government, finanace and industry. We report on work demonstrating country-scale agricultural forecasting, and global-scale land cover/land, use mapping using a range of public and commercial satellite imagery. We describe processing over a petabyte of compressed raw data from 2.8 quadrillion pixels (2.8 petapixels) acquired by the US Landsat and MODIS programs over the past 40 years. Using commodity cloud computing resources, we convert the imagery to a calibrated, georeferenced, multiresolution tiled format suited for machine-learning analysis. We believe ours is the first application to process, in less than a day, on generally available resources, over a petabyte of scientific image data. We report on work combining this imagery with time-series SAR collected by ESA Sentinel 1. We report on work using this reprocessed dataset for experiments demonstrating country-scale food production monitoring, an indicator for famine early warning. We apply remote sensing science and machine learning algorithms to detect and classify agricultural crops and then estimate crop yields and detect threats to food security (e.g., flooding, drought). The software platform and analysis methodology also support monitoring water resources, forests and other general indicators of environmental health, and can detect growth and changes in cities that are displacing historical agricultural zones.
High-resolution RCMs as pioneers for future GCMs
NASA Astrophysics Data System (ADS)
Schar, C.; Ban, N.; Arteaga, A.; Charpilloz, C.; Di Girolamo, S.; Fuhrer, O.; Hoefler, T.; Leutwyler, D.; Lüthi, D.; Piaget, N.; Ruedisuehli, S.; Schlemmer, L.; Schulthess, T. C.; Wernli, H.
2017-12-01
Currently large efforts are underway to refine the horizontal resolution of global and regional climate models to O(1 km), with the intent to represent convective clouds explicitly rather than using semi-empirical parameterizations. This refinement will move the governing equations closer to first principles and is expected to reduce the uncertainties of climate models. High resolution is particularly attractive in order to better represent critical cloud feedback processes (e.g. related to global climate sensitivity and extratropical summer convection) and extreme events (such as heavy precipitation events, floods, and hurricanes). The presentation will be illustrated using decade-long simulations at 2 km horizontal grid spacing, some of these covering the European continent on a computational mesh with 1536x1536x60 grid points. To accomplish such simulations, use is made of emerging heterogeneous supercomputing architectures, using a version of the COSMO limited-area weather and climate model that is able to run entirely on GPUs. Results show that kilometer-scale resolution dramatically improves the simulation of precipitation in terms of the diurnal cycle and short-term extremes. The modeling framework is used to address changes of precipitation scaling with climate change. It is argued that already today, modern supercomputers would in principle enable global atmospheric convection-resolving climate simulations, provided appropriately refactored codes were available, and provided solutions were found to cope with the rapidly growing output volume. A discussion will be provided of key challenges affecting the design of future high-resolution climate models. It is suggested that km-scale RCMs should be exploited to pioneer this terrain, at a time when GCMs are not yet available at such resolutions. Areas of interest include the development of new parameterization schemes adequate for km-scale resolution, the exploration of new validation methodologies and data sets, the assessment of regional-scale climate feedback processes, and the development of alternative output analysis methodologies.
NASA Astrophysics Data System (ADS)
Oliver, G. C. M.; Cario, A.; Rogers, K. L.
2015-12-01
A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.
Incorporating microbes into large-scale biogeochemical models
NASA Astrophysics Data System (ADS)
Allison, S. D.; Martiny, J. B.
2008-12-01
Micro-organisms, including Bacteria, Archaea, and Fungi, control major processes throughout the Earth system. Recent advances in microbial ecology and microbiology have revealed an astounding level of genetic and metabolic diversity in microbial communities. However, a framework for interpreting the meaning of this diversity has lagged behind the initial discoveries. Microbial communities have yet to be included explicitly in any major biogeochemical models in terrestrial ecosystems, and have only recently broken into ocean models. Although simplification of microbial communities is essential in complex systems, omission of community parameters may seriously compromise model predictions of biogeochemical processes. Two key questions arise from this tradeoff: 1) When and where must microbial community parameters be included in biogeochemical models? 2) If microbial communities are important, how should they be simplified, aggregated, and parameterized in models? To address these questions, we conducted a meta-analysis to determine if microbial communities are sensitive to four environmental disturbances that are associated with global change. In all cases, we found that community composition changed significantly following disturbance. However, the implications for ecosystem function were unclear in most of the published studies. Therefore, we developed a simple model framework to illustrate the situations in which microbial community changes would affect rates of biogeochemical processes. We found that these scenarios could be quite common, but powerful predictive models cannot be developed without much more information on the functions and disturbance responses of microbial taxa. Small-scale models that explicitly incorporate microbial communities also suggest that process rates strongly depend on microbial interactions and disturbance responses. The challenge is to scale up these models to make predictions at the ecosystem and global scales based on measurable parameters. We argue that meeting this challenge will require a coordinated effort to develop a series of nested models at scales ranging from the micron to the globe in order to optimize the tradeoff between model realism and feasibility.
Xiong, Wei; Hupert, Nathaniel; Hollingsworth, Eric B; O'Brien, Megan E; Fast, Jessica; Rodriguez, William R
2008-01-01
Background Mathematical modeling has been applied to a range of policy-level decisions on resource allocation for HIV care and treatment. We describe the application of classic operations research (OR) techniques to address logistical and resource management challenges in HIV treatment scale-up activities in resource-limited countries. Methods We review and categorize several of the major logistical and operational problems encountered over the last decade in the global scale-up of HIV care and antiretroviral treatment for people with AIDS. While there are unique features of HIV care and treatment that pose significant challenges to effective modeling and service improvement, we identify several analogous OR-based solutions that have been developed in the service, industrial, and health sectors. Results HIV treatment scale-up includes many processes that are amenable to mathematical and simulation modeling, including forecasting future demand for services; locating and sizing facilities for maximal efficiency; and determining optimal staffing levels at clinical centers. Optimization of clinical and logistical processes through modeling may improve outcomes, but successful OR-based interventions will require contextualization of response strategies, including appreciation of both existing health care systems and limitations in local health workforces. Conclusion The modeling techniques developed in the engineering field of operations research have wide potential application to the variety of logistical problems encountered in HIV treatment scale-up in resource-limited settings. Increasing the number of cross-disciplinary collaborations between engineering and public health will help speed the appropriate development and application of these tools. PMID:18680594
Mantle Convection on Modern Supercomputers
NASA Astrophysics Data System (ADS)
Weismüller, J.; Gmeiner, B.; Huber, M.; John, L.; Mohr, M.; Rüde, U.; Wohlmuth, B.; Bunge, H. P.
2015-12-01
Mantle convection is the cause for plate tectonics, the formation of mountains and oceans, and the main driving mechanism behind earthquakes. The convection process is modeled by a system of partial differential equations describing the conservation of mass, momentum and energy. Characteristic to mantle flow is the vast disparity of length scales from global to microscopic, turning mantle convection simulations into a challenging application for high-performance computing. As system size and technical complexity of the simulations continue to increase, design and implementation of simulation models for next generation large-scale architectures is handled successfully only in an interdisciplinary context. A new priority program - named SPPEXA - by the German Research Foundation (DFG) addresses this issue, and brings together computer scientists, mathematicians and application scientists around grand challenges in HPC. Here we report from the TERRA-NEO project, which is part of the high visibility SPPEXA program, and a joint effort of four research groups. TERRA-NEO develops algorithms for future HPC infrastructures, focusing on high computational efficiency and resilience in next generation mantle convection models. We present software that can resolve the Earth's mantle with up to 1012 grid points and scales efficiently to massively parallel hardware with more than 50,000 processors. We use our simulations to explore the dynamic regime of mantle convection and assess the impact of small scale processes on global mantle flow.
Fluctuation scaling in the visual cortex at threshold
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2016-05-01
Fluctuation scaling relates trial-to-trial variability to the average response by a power function in many physical processes. Here we address whether fluctuation scaling holds in sensory psychophysics and its functional role in visual processing. We report experimental evidence of fluctuation scaling in human color vision and form perception at threshold. Subjects detected thresholds in a psychophysical masking experiment that is considered a standard reference for studying suppression between neurons in the visual cortex. For all subjects, the analysis of threshold variability that results from the masking task indicates that fluctuation scaling is a global property that modulates detection thresholds with a scaling exponent that departs from 2, β =2.48 ±0.07 . We also examine a generalized version of fluctuation scaling between the sample kurtosis K and the sample skewness S of threshold distributions. We find that K and S are related and follow a unique quadratic form K =(1.19 ±0.04 ) S2+(2.68 ±0.06 ) that departs from the expected 4/3 power function regime. A random multiplicative process with weak additive noise is proposed based on a Langevin-type equation. The multiplicative process provides a unifying description of fluctuation scaling and the quadratic S -K relation and is related to on-off intermittency in sensory perception. Our findings provide an insight into how the human visual system interacts with the external environment. The theoretical methods open perspectives for investigating fluctuation scaling and intermittency effects in a wide variety of natural, economic, and cognitive phenomena.
Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature
NASA Technical Reports Server (NTRS)
Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning;
2017-01-01
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.
NASA Technical Reports Server (NTRS)
Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.
1997-01-01
Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al. 1994), there is no comparable study for cirrus ice crystals. In this paper a near-global survey of cirrus ice crystal sizes is conducted using ISCCP satellite data analysis. The retrieval scheme uses phase functions based upon hexagonal crystals calculated by a ray tracing technique. The results show that global mean values of D(e) are about 60 micro-m. This study also investigates the possible reasons for the significant difference between satellite retrieved effective radii (approx. 60 micro-m) and aircraft measured particle sizes (approx. 200 micro-m) during the FIRE I IFO experiment. They are (1) vertical inhomogeneity of cirrus particle sizes; (2) lower limit of the instrument used in aircraft measurements; (3) different definitions of effective particle sizes; and (4) possible inappropriate phase functions used in satellite retrieval.
Effects of Telecoupling on Global Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Viña, A.; Liu, J.
2016-12-01
With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.
From Dynamic Global Vegetation Modelling to Real-World regional and local Application
NASA Astrophysics Data System (ADS)
Steinkamp, J.; Forrest, M.; Kamm, K.; Leiblein-Wild, M.; Pachzelt, A.; Werner, C.; Hickler, T.
2015-12-01
Dynamic (global) vegetation models (DGVM) can be applied to any spatial resolution on the local, national, continental and global scale given suitable climatic and geographic input forcing data. LPJ-GUESS, the main DGVM applied in our research group, uses the plant functional type (PFT) concept in the global setup with typically about 10-20 tree PFTs (subdivided into tropical, temperate and boreal) and two herbaceous PFTs by default. When modelling smaller spatial extents, such as continental (e.g. Europe/North America) national domains, or individual sites (e.g. Frankfurt, Germany), i.e. the scale of decision making, it becomes necessary to refine the PFT representation, the model initialization and validation and, in some case, to include additional processes. I will present examples of LPJ-GUESS applications at the continental to local scale performed by our working group including i.) a European simulation representing the main tree species and Mediterranean shrubs, ii.) a climate impact study for Turkey, iii.) coupled dynamic large grazer-vegetation modelling across Africa and, iv.) modelling an allergenic and in Europe invasive shrub (Ambrosia artemisiifolia), iv.) simulating water usage by an oak-pine forest stand near Frankfurt, and v.) stand specific differences in modelling at the FACE sites. Finally, I will present some thoughts on how to advance the models in terms of more detailed and realistic PFT or species parameterizations accounting for adaptive functional trait responses also within species.
Climate Controls AM Fungal Distributions from Global to Local Scales
NASA Astrophysics Data System (ADS)
Kivlin, S. N.; Hawkes, C.; Muscarella, R.; Treseder, K. K.; Kazenel, M.; Lynn, J.; Rudgers, J.
2016-12-01
Arbuscular mycorrhizal (AM) fungi have key functions in terrestrial biogeochemical processes; thus, determining the relative importance of climate, edaphic factors, and plant community composition on their geographic distributions can improve predictions of their sensitivity to global change. Local adaptation by AM fungi to plant hosts, soil nutrients, and climate suggests that all of these factors may control fungal geographic distributions, but their relative importance is unknown. We created species distribution models for 142 AM fungal taxa at the global scale with data from GenBank. We compared climate variables (BioClim and soil moisture), edaphic variables (phosphorus, carbon, pH, and clay content), and plant variables using model selection on models with (1) all variables, (2) climatic variables only (including soil moisture) and (3) resource-related variables only (all other soil parameters and NPP) using the MaxEnt algorithm evaluated with ENMEval. We also evaluated whether drivers of AM fungal distributions were phylogenetically conserved. To test whether global correlates of AM fungal distributions were reflected at local scales, we then surveyed AM fungi in nine plant hosts along three elevation gradients in the Upper Gunnison Basin, Colorado, USA. At the global scale, the distributions of 55% of AM fungal taxa were affected by both climate and soil resources, whereas 16% were only affected by climate and 29% were only affected by soil resources. Even for AM fungi that were affected by both climate and resources, the effects of climatic variables nearly always outweighed those of resources. Soil moisture and isothermality were the main climatic and NPP and soil carbon the main resource related factors influencing AM fungal distributions. Distributions of closely related AM fungal taxa were similarly affected by climate, but not by resources. Local scale surveys of AM fungi across elevations confirmed that climate was a key driver of AM fungal composition and root colonization, with weaker influences of plant identity and soil nutrients. These two studies across scales suggest prevailing effects of climate on AM fungal distributions. Thus, incorporating climate when forecasting future ranges of AM fungi will enhance predictions of AM fungal abundance and associated ecosystem functions.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.
Gannotti, Mary E; Law, Mary; Bailes, Amy F; OʼNeil, Margaret E; Williams, Uzma; DiRezze, Briano
2016-01-01
A step toward advancing research about rehabilitation service associated with positive outcomes for children with cerebral palsy is consensus about a conceptual framework and measures. A Delphi process was used to establish consensus among clinicians and researchers in North America. Directors of large pediatric rehabilitation centers, clinicians from large hospitals, and researchers with expertise in outcomes participated (N = 18). Andersen's model of health care utilization framed outcomes: consumer satisfaction, activity, participation, quality of life, and pain. Measures agreed upon included Participation and Environment Measure for Children and Youth, Measure of Processes of Care, PEDI-CAT, KIDSCREEN-10, PROMIS Pediatric Pain Interference Scale, Visual Analog Scale for pain intensity, PROMIS Global Health Short Form, Family Environment Scale, Family Support Scale, and functional classification levels for gross motor, manual ability, and communication. Universal forms for documenting service use are needed. Findings inform clinicians and researchers concerned with outcome assessment.
Towards an purely data driven view on the global carbon cycle and its spatiotemporal variability
NASA Astrophysics Data System (ADS)
Zscheischler, Jakob; Mahecha, Miguel; Reichstein, Markus; Avitabile, Valerio; Carvalhais, Nuno; Ciais, Philippe; Gans, Fabian; Gruber, Nicolas; Hartmann, Jens; Herold, Martin; Jung, Martin; Landschützer, Peter; Laruelle, Goulven; Lauerwald, Ronny; Papale, Dario; Peylin, Philippe; Regnier, Pierre; Rödenbeck, Christian; Cuesta, Rosa Maria Roman; Valentini, Ricardo
2015-04-01
Constraining carbon (C) fluxes between the Earth's surface and the atmosphere at regional scale via observations is essential for understanding the Earth's carbon budget and predicting future atmospheric C concentrations. Carbon budgets have often been derived based on merging observations, statistical models and process-based models, for example in the Global Carbon Project (GCP). However, it would be helpful to derive global C budgets and fluxes at global scale as independent as possible from model assumptions to obtain an independent reference. Long-term in-situ measurements of land and ocean C stocks and fluxes have enabled the derivation of a new generation of data driven upscaled data products. Here, we combine a wide range of in-situ derived estimates of terrestrial and aquatic C fluxes for one decade. The data were produced and/or collected during the FP7 project GEOCARBON and include surface-atmosphere C fluxes from the terrestrial biosphere, fossil fuels, fires, land use change, rivers, lakes, estuaries and open ocean. By including spatially explicit uncertainties in each dataset we are able to identify regions that are well constrained by observations and areas where more measurements are required. Although the budget cannot be closed at the global scale, we provide, for the first time, global time-varying maps of the most important C fluxes, which are all directly derived from observations. The resulting spatiotemporal patterns of C fluxes and their uncertainties inform us about the needs for intensifying global C observation activities. Likewise, we provide priors for inversion exercises or to identify regions of high (and low) uncertainty of integrated C fluxes. We discuss the reasons for regions of high observational uncertainties, and for biases in the budget. Our data synthesis might also be used as empirical reference for other local and global C budgeting exercises.
On the use of integrating FLUXNET eddy covariance and remote sensing data for model evaluation
NASA Astrophysics Data System (ADS)
Reichstein, Markus; Jung, Martin; Beer, Christian; Carvalhais, Nuno; Tomelleri, Enrico; Lasslop, Gitta; Baldocchi, Dennis; Papale, Dario
2010-05-01
The current FLUXNET database (www.fluxdata.org) of CO2, water and energy exchange between the terrestrial biosphere and the atmosphere contains almost 1000 site-years with data from more than 250 sites, encompassing all major biomes of the world and being processed in a standardized way (1-3). In this presentation we show that the information in the data is sufficient to derive generalized empirical relationships between vegetation/respective remote sensing information, climate and the biosphere-atmosphere exchanges across global biomes. These empirical patterns are used to generate global grids of the respective fluxes and derived properties (e.g. radiation and water-use efficiencies or climate sensitivities in general, bowen-ratio, AET/PET ratio). For example we revisit global 'text-book' numbers such as global Gross Primary Productivity (GPP) estimated since the 70's as ca. 120PgC (4), or global evapotranspiration (ET) estimated at 65km3/yr-1 (5) - for the first time with a more solid and direct empirical basis. Evaluation against independent data at regional to global scale (e.g. atmospheric CO2 inversions, runoff data) lends support to the validity of our almost purely empirical up-scaling approaches. Moreover climate factors such as radiation, temperature and water balance are identified as driving factors for variations and trends of carbon and water fluxes, with distinctly different sensitivities between different vegetation types. Hence, these global fields of biosphere-atmosphere exchange and the inferred relations between climate, vegetation type and fluxes should be used for evaluation or benchmarking of climate models or their land-surface components, while overcoming scale-issues with classical point-to-grid-cell comparisons. 1. M. Reichstein et al., Global Change Biology 11, 1424 (2005). 2. D. Baldocchi, Australian Journal of Botany 56, 1 (2008). 3. D. Papale et al., Biogeosciences 3, 571 (2006). 4. D. E. Alexander, R. W. Fairbridge, Encyclopedia of Environmental Science (Springer, Heidelberg, 1999), pp. 741. 5. T. Oki, S. Kanae, Science 313, 1068 (Aug 25, 2006)
Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures
NASA Astrophysics Data System (ADS)
Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.
2018-03-01
A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.
NASA Astrophysics Data System (ADS)
Fuhrer, Oliver; Chadha, Tarun; Hoefler, Torsten; Kwasniewski, Grzegorz; Lapillonne, Xavier; Leutwyler, David; Lüthi, Daniel; Osuna, Carlos; Schär, Christoph; Schulthess, Thomas C.; Vogt, Hannes
2018-05-01
The best hope for reducing long-standing global climate model biases is by increasing resolution to the kilometer scale. Here we present results from an ultrahigh-resolution non-hydrostatic climate model for a near-global setup running on the full Piz Daint supercomputer on 4888 GPUs (graphics processing units). The dynamical core of the model has been completely rewritten using a domain-specific language (DSL) for performance portability across different hardware architectures. Physical parameterizations and diagnostics have been ported using compiler directives. To our knowledge this represents the first complete atmospheric model being run entirely on accelerators on this scale. At a grid spacing of 930 m (1.9 km), we achieve a simulation throughput of 0.043 (0.23) simulated years per day and an energy consumption of 596 MWh per simulated year. Furthermore, we propose a new memory usage efficiency (MUE) metric that considers how efficiently the memory bandwidth - the dominant bottleneck of climate codes - is being used.
Stefanini, M C; Martino, A; Allori, P; Galeotti, F; Tani, F
2015-02-01
The aim of this study was to compare the effects of Animal-Assisted Therapy (AAT) with a standard treatment protocol in children and adolescents admitted to the psychiatry hospital for acute mental disorders. We used a methodology involving high quality standards for AAT research. A pre-post experimental design with a randomized controlled trial (RCT) in 34 hospitalized patients (17 treatment, 17 control) was carried out. The study focused on improvement in clinical status including, global functioning measured by the Children Global Assessment Scale (C GAS), format of care and ordinary school attendance measured by a rating scale. Our results indicate a statistically significant improvement in global functioning, reduction in format of care and increased ordinary school attendance in the treatment group, but not in the control group. Our results verify that AAT can have significant positive effects on therapeutic progress and the recovery process. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Szklarz, Zbigniew; Bisztyga, Magdalena; Krawiec, Halina; Lityńska-Dobrzyńska, Lidia; Rogal, Łukasz
2017-05-01
The influence of semi-solid metal processing (SSM called also as thixoforming) of ZE41A magnesium alloy on the electrochemical behavior in 0.1 M NaCl solution was investigated. To describe the corrosion behavior of ZE41A alloy, the electrochemical measurements were conducted in global and local scale for two types of specimens: (1) ingot-feedstock, (2) specimen after thixoforming and T6 treatment. The heat treatment and thixoforming significantly improved mechanical properties of ZE41A alloy. The global corrosion potential is slightly higher for treated sample what is related to the presence of Zr-Zn nanoparticles distributed in solid solution. The corrosion behavior differences between feedstock and thixo-cast after T6 samples are also visible in local scale, what has been revealed by using microcapillary technique. However there is no improvement in corrosion behavior after treatment. Corrosion morphology of the treated sample indicate higher susceptibility to pitting and filiform corrosion. Corrosion rate is also slightly higher.
NASA Astrophysics Data System (ADS)
MacLean, L. S.; Romanowicz, B. A.; French, S.
2015-12-01
Seismic wavefield computations using the Spectral Element Method are now regularly used to recover tomographic images of the upper mantle and crust at the local, regional, and global scales (e.g. Fichtner et al., GJI, 2009; Tape et al., Science 2010; Lekic and Romanowicz, GJI, 2011; French and Romanowicz, GJI, 2014). However, the heaviness of the computations remains a challenge, and contributes to limiting the resolution of the produced images. Using source stacking, as suggested by Capdeville et al. (GJI,2005), can considerably speed up the process by reducing the wavefield computations to only one per each set of N sources. This method was demonstrated through synthetic tests on low frequency datasets, and therefore should work for global mantle tomography. However, the large amplitudes of surface waves dominates the stacked seismograms and these cases can no longer be separated by windowing in the time domain. We have developed a processing approach that helps address this issue and demonstrate its usefulness through a series of synthetic tests performed at long periods (T >60 s) on toy upper mantle models. The summed synthetics are computed using the CSEM code (Capdeville et al., 2002). As for the inverse part of the procedure, we use a quasi-Newton method, computing Frechet derivatives and Hessian using normal mode perturbation theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, P.A.
1993-03-01
The global geochemical cycle for an element tracks its path from its various sources to its sinks via processes of weathering and transportation. The cycle may then be quantified in a necessarily approximate manner. The geochemical cycle (thus quantified) reveals constraints (known and unknown) on an element's behavior imposed by the various processes which act on it. In the context of a global geochemical cycle, a continent becomes essentially a source term. If, however, an element's behavior is examined in a local or regional context, sources and their related sinks may be identified. This suggests that small-scale geochemical cycles maymore » be superimposed on global geochemical cycles. Definition of such sub-cycles may clarify the distribution of an element in the earth's near-surface environment. In Florida, phosphate minerals of the Hawthorn Group act as a widely distributed source of uranium. Uranium is transported by surface- and ground-waters. Florida is the site of extensive wetlands and peatlands. The organic matter associated with these deposits adsorbs uranium and may act as a local sink depending on its hydrogeologic setting. This work examines the role of organic matter in the distribution of uranium in the surface and shallow subsurface environments of central and north Florida.« less
Using Friends as Sensors to Detect Global-Scale Contagious Outbreaks
Garcia-Herranz, Manuel; Moro, Esteban; Cebrian, Manuel; Christakis, Nicholas A.; Fowler, James H.
2014-01-01
Recent research has focused on the monitoring of global–scale online data for improved detection of epidemics, mood patterns, movements in the stock market political revolutions, box-office revenues, consumer behaviour and many other important phenomena. However, privacy considerations and the sheer scale of data available online are quickly making global monitoring infeasible, and existing methods do not take full advantage of local network structure to identify key nodes for monitoring. Here, we develop a model of the contagious spread of information in a global-scale, publicly-articulated social network and show that a simple method can yield not just early detection, but advance warning of contagious outbreaks. In this method, we randomly choose a small fraction of nodes in the network and then we randomly choose a friend of each node to include in a group for local monitoring. Using six months of data from most of the full Twittersphere, we show that this friend group is more central in the network and it helps us to detect viral outbreaks of the use of novel hashtags about 7 days earlier than we could with an equal-sized randomly chosen group. Moreover, the method actually works better than expected due to network structure alone because highly central actors are both more active and exhibit increased diversity in the information they transmit to others. These results suggest that local monitoring is not just more efficient, but also more effective, and it may be applied to monitor contagious processes in global–scale networks. PMID:24718030
Homogenization of regional river dynamics by dams and global biodiversity implications.
Poff, N Leroy; Olden, Julian D; Merritt, David M; Pepin, David M
2007-04-03
Global biodiversity in river and riparian ecosystems is generated and maintained by geographic variation in stream processes and fluvial disturbance regimes, which largely reflect regional differences in climate and geology. Extensive construction of dams by humans has greatly dampened the seasonal and interannual streamflow variability of rivers, thereby altering natural dynamics in ecologically important flows on continental to global scales. The cumulative effects of modification to regional-scale environmental templates caused by dams is largely unexplored but of critical conservation importance. Here, we use 186 long-term streamflow records on intermediate-sized rivers across the continental United States to show that dams have homogenized the flow regimes on third- through seventh-order rivers in 16 historically distinctive hydrologic regions over the course of the 20th century. This regional homogenization occurs chiefly through modification of the magnitude and timing of ecologically critical high and low flows. For 317 undammed reference rivers, no evidence for homogenization was found, despite documented changes in regional precipitation over this period. With an estimated average density of one dam every 48 km of third- through seventh-order river channel in the United States, dams arguably have a continental scale effect of homogenizing regionally distinct environmental templates, thereby creating conditions that favor the spread of cosmopolitan, nonindigenous species at the expense of locally adapted native biota. Quantitative analyses such as ours provide the basis for conservation and management actions aimed at restoring and maintaining native biodiversity and ecosystem function and resilience for regionally distinct ecosystems at continental to global scales.
Towards a New Assessment of Urban Areas from Local to Global Scales
NASA Astrophysics Data System (ADS)
Bhaduri, B. L.; Roy Chowdhury, P. K.; McKee, J.; Weaver, J.; Bright, E.; Weber, E.
2015-12-01
Since early 2000s, starting with NASA MODIS, satellite based remote sensing has facilitated collection of imagery with medium spatial resolution but high temporal resolution (daily). This trend continues with an increasing number of sensors and data products. Increasing spatial and temporal resolutions of remotely sensed data archives, from both public and commercial sources, have significantly enhanced the quality of mapping and change data products. However, even with automation of such analysis on evolving computing platforms, rates of data processing have been suboptimal largely because of the ever-increasing pixel to processor ratio coupled with limitations of the computing architectures. Novel approaches utilizing spatiotemporal data mining techniques and computational architectures have emerged that demonstrates the potential for sustained and geographically scalable landscape monitoring to be operational. We exemplify this challenge with two broad research initiatives on High Performance Geocomputation at Oak Ridge National Laboratory: (a) mapping global settlement distribution; (b) developing national critical infrastructure databases. Our present effort, on large GPU based architectures, to exploit high resolution (1m or less) satellite and airborne imagery for extracting settlements at global scale is yielding understanding of human settlement patterns and urban areas at unprecedented resolution. Comparison of such urban land cover database, with existing national and global land cover products, at various geographic scales in selected parts of the world is revealing intriguing patterns and insights for urban assessment. Early results, from the USA, Taiwan, and Egypt, indicate closer agreements (5-10%) in urban area assessments among databases at larger, aggregated geographic extents. However, spatial variability at local scales could be significantly different (over 50% disagreement).
NASA Astrophysics Data System (ADS)
Exports Science Definition Team
2016-04-01
Ocean ecosystems play a critical role in the Earth's carbon cycle and its quantification on global scales remains one of the greatest challenges in global ocean biogeochemistry. The goal of the EXport Processes in the Ocean from Remote Sensing (EXPORTS) science plan is to develop a predictive understanding of the export and fate of global ocean primary production and its implications for the Earth's carbon cycle in present and future climates. NASA's satellite ocean-color data record has revolutionized our understanding of global marine systems. EXPORTS is designed to advance the utility of NASA ocean color assets to predict how changes in ocean primary production will impact the global carbon cycle. EXPORTS will create a predictive understanding of both the export of organic carbon from the euphotic zone and its fate in the underlying "twilight zone" (depths of 500 m or more) where variable fractions of exported organic carbon are respired back to CO2. Ultimately, it is the sequestration of deep organic carbon transport that defines the impact of ocean biota on atmospheric CO2 levels and hence climate. EXPORTS will generate a new, detailed understanding of ocean carbon transport processes and pathways linking upper ocean phytoplankton processes to the export and fate of organic matter in the underlying twilight zone using a combination of field campaigns, remote sensing and numerical modeling. The overarching objective for EXPORTS is to ensure the success of future satellite missions by establishing mechanistic relationships between remotely sensed signals and carbon cycle processes. Through a process-oriented approach, EXPORTS will foster new insights on ocean carbon cycling that will maximize its societal relevance and be a key component in the U.S. investment to understand Earth as an integrated system.
NASA Astrophysics Data System (ADS)
Shevyrnogov, Anatoly; Larko, Aleksandr
The most important task for humankind is to study and understand global processes on Earth. Large factual material on the dynamics of the optical spectral characteristics of the land surface has been accumulated in recent decades. This has been only made possible due to the use of satellite information. The development of satellite measurement technologies and new methods for pre-processing and interpretation of satellite data allowed the research adequate to the scale of the Earth. This adequacy includes the compliance of scale terrestrial objects to the scale of satellite measurements. Research is not limited by any latitude or longitude of the objects studied. The second most important quality is the adequacy of the technologies used to velocities of processes on Earth. This is enabled by long-term continuous satellite measurements at almost all latitudes. Effectiveness of this approach to the study of natural systems has been shown by the authors in ASR publications (AP Shevyrnogov, GS Vysotskaya, JI Gitelson, Quasistationary areas of chlorophyll concentration in the world ocean as observed satellite data Advances in Space Research, Volume 18, Issue 7, Pages 129-132, 1996), which reported a method for determining the ocean surface quasistationary zones. This approach allowed us to identify different types of phytopigment dynamics and the hydrological structure of the ocean. We proposed a similar approach for the study of land vegetation. In some aspects, it is similar to the previously published approach, despite the different nature of terrestrial and aquatic ecosystems. The results are based on the processing of satellite data from 1981 to 2006. Dynamics is the most interesting and important parameter of ecosystems, especially their trends. Therefore, it has been chosen for the analysis of spatial patterns of plant biota. The first results showed great heterogeneity of variances in nonlinear trends of the study areas of the Earth's surface. They corresponded to different natural systems. Various scales of temporal and spatial windows highlight different features of land vegetation. Methods for normalization of the initial information are also effective for highlighting the features of the spatial structure of vegetation. Thus, we have a powerful tool to analyze the spatial distribution and dynamics of terrestrial vegetation based on satellite data. This approach provides a great opportunity to get fundamental knowledge on the functioning of the biosphere. This is global warming, shifts in permafrost boundaries, global gas exchange, etc. It can be used for practical applications in various fields of human activity: forestry, environmental protection, agriculture, etc. We show the illustration of this method: the global maps of land surface dynamics of trends with different parameters of data processing.
Challenges in understanding past and present eolian dust dynamics
NASA Astrophysics Data System (ADS)
Stuut, Jan-Berend; Merkel, Ute; Rousseau, Denis-Didier
2012-05-01
Dust Workshop 2011: Processes and Quaternary History of Dust Dynamics; Bremen, Germany, 31 October to 3 November 2011 Mineral dust is now generally recognized as a key element in global climate. However, many open questions need to be addressed to reduce the large uncertainties that still exist regarding the global dust cycle. The Atmospheric Dust During the Last Glacial Cycle: Observations and Modeling initiative (ADOM; see http://www.pages-igbp.org/workinggroups/adom) of the Past Global Changes (PAGES) tackles these questions from both modern and paleo perspectives. A 3-day workshop funded by PAGES and the Center for Marine Environmental Sciences (MARUM) in Germany brought together 50 international experts on marine, terrestrial, and polar dust archives; meteorology; remote sensing; and climate modeling. The workshop aimed to bridge gaps between disciplines and to cover all temporal and spatial scales involved in dust processes.
Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?
NASA Astrophysics Data System (ADS)
Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.
2016-12-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.
Murguía, Diego I; Bringezu, Stefan; Schaldach, Rüdiger
2016-09-15
Biodiversity loss is widely recognized as a serious global environmental change process. While large-scale metal mining activities do not belong to the top drivers of such change, these operations exert or may intensify pressures on biodiversity by adversely changing habitats, directly and indirectly, at local and regional scales. So far, analyses of global spatial dynamics of mining and its burden on biodiversity focused on the overlap between mines and protected areas or areas of high value for conservation. However, it is less clear how operating metal mines are globally exerting pressure on zones of different biodiversity richness; a similar gap exists for unmined but known mineral deposits. By using vascular plants' diversity as a proxy to quantify overall biodiversity, this study provides a first examination of the global spatial distribution of mines and deposits for five key metals across different biodiversity zones. The results indicate that mines and deposits are not randomly distributed, but concentrated within intermediate and high diversity zones, especially bauxite and silver. In contrast, iron, gold, and copper mines and deposits are closer to a more proportional distribution while showing a high concentration in the intermediate biodiversity zone. Considering the five metals together, 63% and 61% of available mines and deposits, respectively, are located in intermediate diversity zones, comprising 52% of the global land terrestrial surface. 23% of mines and 20% of ore deposits are located in areas of high plant diversity, covering 17% of the land. 13% of mines and 19% of deposits are in areas of low plant diversity, comprising 31% of the land surface. Thus, there seems to be potential for opening new mines in areas of low biodiversity in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
A climatology of gravity wave parameters based on satellite limb soundings
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin
2017-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.
Ocean color - Availability of the global data set
NASA Technical Reports Server (NTRS)
Feldman, Gene; Kuring, Norman; Ng, Carolyn; Esaias, Wayne; Mcclain, Chuck; Elrod, Jane; Maynard, Nancy; Endres, Dan
1989-01-01
The use of satellite observations of ocean color to provide reliable estimates of marine phytoplankton biomass on synoptic scales is examined. An overview is given of the Coastal Zone Color Scanner data processing system. The archiving and distribution of ocean color data are discussed, and NASA-sponsored archive sites are listed.
Performing Internationalization of Higher Education in Canadian National Policy
ERIC Educational Resources Information Center
Viczko, Melody; Tascón, Clara I.
2016-01-01
Internationalization processes are at the fore of university strategic plans on a global scale. However, the work of internationalization is being performed through the connections between many actors at different policy levels. Our purpose here is to ask, what is happening with internationalization of higher education at the Canadian national…
Historical foundations and future directions in macrosystems ecology
Kevin C. Rose; Rose A. Graves; Winslow D. Hansen; Brian J. Harvey; Jiangxiao Qiu; Stephen A. Wood; Carly Ziter; Monica G. Turner; Wilfried Thuiller
2017-01-01
Macrosystems ecology is an effort to understand ecological processes and interactions at the broadest spatial scales and has potential to help solve globally important social and ecological challenges. It is important to understand the intellectual legacies underpinning macrosystems ecology: How the subdiscipline fits within, builds upon, differs from and...
Chapter 9: Carbon fluxes across regions.
Beverly E. Law; Dave Turner; John Campbell; Michael Lefsky; Michael Guzy; Osbert Sun; Steve Van Tuyl; Warren Cohen
2006-01-01
Scaling biogeochemical processes to regions, continents, and the globe is critical for understanding feedbacks between the biosphere and atmosphere in the analysis of global change. This includes the effects of changing atmospheric carbon dioxide, climate, disturbances, and increasing nitrogen deposition from air pollution (Ehleringer and Field 1993, Vitousek et al....
NASA Astrophysics Data System (ADS)
Hood, Alan W.; Hughes, David W.
2011-08-01
This review provides an introduction to the generation and evolution of the Sun's magnetic field, summarising both observational evidence and theoretical models. The eleven year solar cycle, which is well known from a variety of observed quantities, strongly supports the idea of a large-scale solar dynamo. Current theoretical ideas on the location and mechanism of this dynamo are presented. The solar cycle influences the behaviour of the global coronal magnetic field and it is the eruptions of this field that can impact on the Earth's environment. These global coronal variations can be modelled to a surprising degree of accuracy. Recent high resolution observations of the Sun's magnetic field in quiet regions, away from sunspots, show that there is a continual evolution of a small-scale magnetic field, presumably produced by small-scale dynamo action in the solar interior. Sunspots, a natural consequence of the large-scale dynamo, emerge, evolve and disperse over a period of several days. Numerical simulations can help to determine the physical processes governing the emergence of sunspots. We discuss the interaction of these emerging fields with the pre-existing coronal field, resulting in a variety of dynamic phenomena.
NASA Astrophysics Data System (ADS)
Häyhä, Tiina; Cornell, Sarah; Lucas, Paul; van Vuuren, Detlef; Hoff, Holger
2016-04-01
The planetary boundaries framework proposes precautionary quantitative global limits to the anthropogenic perturbation of crucial Earth system processes. In this way, it marks out a planetary 'safe operating space' for human activities. However, decisions regarding resource use and emissions are mostly made at much smaller scales, mostly by (sub-)national and regional governments, businesses, and other local actors. To operationalize the planetary boundaries, they need to be translated into and aligned with targets that are relevant at these smaller scales. In this paper, we develop a framework that addresses the three dimension of bridging across scales: biophysical, socio-economic and ethical, to provide a consistent universally applicable approach for translating the planetary boundaries into national level context-specific and fair shares of the safe operating space. We discuss our findings in the context of previous studies and their implications for future analyses and policymaking. In this way, we help link the planetary boundaries framework to widely- applied operational and policy concepts for more robust strong sustainability decision-making.
Wolford, E; Pesonen, A-K; Heinonen, K; Lahti, M; Pyhälä, R; Lahti, J; Hovi, P; Strang-Karlsson, S; Eriksson, J G; Andersson, S; Järvenpää, A-L; Kajantie, E; Räikkönen, K
2017-04-01
Visual processing problems may be one underlying factor for cognitive impairments related to autism spectrum disorders (ASDs). We examined associations between ASD-traits (Autism-Spectrum Quotient) and visual processing performance (Rey-Osterrieth Complex Figure Test; Block Design task of the Wechsler Adult Intelligence Scale-III) in young adults (mean age=25.0, s.d.=2.1 years) born preterm at very low birth weight (VLBW; <1500 g) (n=101) or at term (n=104). A higher level of ASD-traits was associated with slower global visual processing speed among the preterm VLBW, but not among the term-born group (P<0.04 for interaction). Our findings suggest that the associations between ASD-traits and visual processing may be restricted to individuals born preterm, and related specifically to global, not local visual processing. Our findings point to cumulative social and neurocognitive problems in those born preterm at VLBW.
NASA Astrophysics Data System (ADS)
Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus
2016-09-01
Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.
New tuberculosis technologies: challenges for retooling and scale-up.
Pai, M; Palamountain, K M
2012-10-01
The availability of new tools does not mean that they will be adopted, used correctly, scaled up or have public health impact. Experience to date with new diagnostics suggests that many national tuberculosis programmes (NTPs) in high-burden countries are reluctant to adopt and scale up new tools, even when these are backed by evidence and global policy recommendations. We suggest that there are several common barriers to effective national adoption and scale-up of new technologies: global policy recommendations that do not provide sufficient information for scale-up, complex decision-making processes and weak political commitment at the country level, limited engagement of and support to NTP managers, high cost of tools and poor fit with user needs, unregulated markets and inadequate business models, limited capacity for laboratory strengthening and implementation research, and insufficient advocacy and donor support. Overcoming these barriers will require enhanced country-level advocacy, resources, technical assistance and political commitment. Some of the BRICS (Brazil, Russia, India, China, South Africa) countries are emerging as early adopters of policies and technologies, and are increasing their investments in TB control. They may provide the first opportunities to fully assess the public health impact of new tools.
NASA Astrophysics Data System (ADS)
Montzka, S. A.
2016-12-01
Measurements from global surface-based air sampling networks provide a fundamental understanding of how and why concentrations of long-lived trace gases are changing over time. Results from these networks are used to quantify trace-gas concentrations and their time-dependent changes on global and smaller scales, and thus provide a means to quantify emission rates, loss frequencies, and mixing processes. Substantial advances in measurement and sampling technologies and the ability of these programs to create and maintain reliable gas standards mean that spatial concentration gradients and time-dependent changes are often very reliably measured. The presence of multiple independent networks allows an assessment of this reliability. Furthermore, recent global `snap-shot' surveys (e.g., HIPPO and ATom) and ongoing atmospheric profiling programs help us assess the ability of surface-based data to describe concentration distributions throughout most of the atmosphere ( 80% of its mass). In this overview talk, I'll explore the usefulness and limitations of existing long-term, ongoing sampling network programs and their advantages and disadvantages for characterizing concentrations on global and regional scales, and how recent advances (and short-term sampling programs) help us assess the accuracy of the surface networks to provide estimates of source and sink magnitudes, and inter-annual variability in both.
Climate impacts on global hot spots of marine biodiversity.
Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S; Chiaradia, André
2017-02-01
Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world's richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation.
AgMIP: Next Generation Models and Assessments
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2014-12-01
Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.
NASA Astrophysics Data System (ADS)
Villegas, J. C.; Salazar, J. F.; Arias, P. A.; León, J. D.
2017-12-01
Land cover transformation is currently one of the most important challenges in tropical South America. These transformations occur both because of climate-related ecological perturbations, as well as in response to ongoing socio-economic processes. A fundamental difference between those two drivers is the spatial and temporal scale at which they operate. However, when considered in a larger context, both drivers affect the ability of ecosystems to provide fundamental services to society. In this work, we use a multi-scale approach to identify key-mechanisms through which land cover transformation significantly affects ecological, hydrological and ecoclimatological dynamics, potentially leading to loss of societally-critical regulation services. We propose a suite of examples spanning multiple spatial and temporal scales that illustrate the effects of land cover trnasformations in ecological, hydrological, biogeochemical and climatic functions in tropical South America. These examples highlight important global-change-effects management challenges, as well as the need to consider the feedbacks and interactions between multi-scale processes.
NASA Astrophysics Data System (ADS)
Bański, Jerzy
2013-01-01
The aim of this article is to evaluate the effect of contemporary transformations in the population of Central European countries on climate change, in addition to singling out the primary points of interaction between demographic processes and the climate. In analyzing the interactions between climate and demographics, we can formulate three basic hypotheses regarding the region in question: 1) as a result of current demographic trends in Central Europe, the influence of the region on its climate will probably diminish, 2) the importance of the "climatically displaced" in global migratory movements will increase, and some of those concerned will move to Central Europe, 3) the contribution of the region to global food security will increase. In the last decade most of what comprises the region of Central Europe has reported a decline in population growth and a negative migration balance. As a process, this loss of population may have a positive effect on the environment and the climate. We can expect ongoing climate change to intensify migration processes, particularly from countries outside Europe. Interactions between climate and demographic processes can also be viewed in the context of food security. The global warming most sources foresee for the coming decades is the process most likely to result in spatial polarization of food production in agriculture. Central Europe will then face the challenge of assuring and improving food security, albeit this time on a global scale.
Multi-Scale Models for the Scale Interaction of Organized Tropical Convection
NASA Astrophysics Data System (ADS)
Yang, Qiu
Assessing the upscale impact of organized tropical convection from small spatial and temporal scales is a research imperative, not only for having a better understanding of the multi-scale structures of dynamical and convective fields in the tropics, but also for eventually helping in the design of new parameterization strategies to improve the next-generation global climate models. Here self-consistent multi-scale models are derived systematically by following the multi-scale asymptotic methods and used to describe the hierarchical structures of tropical atmospheric flows. The advantages of using these multi-scale models lie in isolating the essential components of multi-scale interaction and providing assessment of the upscale impact of the small-scale fluctuations onto the large-scale mean flow through eddy flux divergences of momentum and temperature in a transparent fashion. Specifically, this thesis includes three research projects about multi-scale interaction of organized tropical convection, involving tropical flows at different scaling regimes and utilizing different multi-scale models correspondingly. Inspired by the observed variability of tropical convection on multiple temporal scales, including daily and intraseasonal time scales, the goal of the first project is to assess the intraseasonal impact of the diurnal cycle on the planetary-scale circulation such as the Hadley cell. As an extension of the first project, the goal of the second project is to assess the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden-Julian Oscillation. In the third project, the goals are to simulate the baroclinic aspects of the ITCZ breakdown and assess its upscale impact on the planetary-scale circulation over the eastern Pacific. These simple multi-scale models should be useful to understand the scale interaction of organized tropical convection and help improve the parameterization of unresolved processes in global climate models.
Significant uncertainty in global scale hydrological modeling from precipitation data errors
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.
2015-10-01
In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.
NASA Astrophysics Data System (ADS)
Vanclooster, Marnik
2010-05-01
The current societal demand for sustainable soil and water management is very large. The drivers of global and climate change exert many pressures on the soil and water ecosystems, endangering appropriate ecosystem functioning. The unsaturated soil transport processes play a key role in soil-water system functioning as it controls the fluxes of water and nutrients from the soil to plants (the pedo-biosphere link), the infiltration flux of precipitated water to groundwater and the evaporative flux, and hence the feed back from the soil to the climate system. Yet, unsaturated soil transport processes are difficult to quantify since they are affected by huge variability of the governing properties at different space-time scales and the intrinsic non-linearity of the transport processes. The incompatibility of the scales between the scale at which processes reasonably can be characterized, the scale at which the theoretical process correctly can be described and the scale at which the soil and water system need to be managed, calls for further development of scaling procedures in unsaturated zone science. It also calls for a better integration of theoretical and modelling approaches to elucidate transport processes at the appropriate scales, compatible with the sustainable soil and water management objective. Moditoring science, i.e the interdisciplinary research domain where modelling and monitoring science are linked, is currently evolving significantly in the unsaturated zone hydrology area. In this presentation, a review of current moditoring strategies/techniques will be given and illustrated for solving large scale soil and water management problems. This will also allow identifying research needs in the interdisciplinary domain of modelling and monitoring and to improve the integration of unsaturated zone science in solving soil and water management issues. A focus will be given on examples of large scale soil and water management problems in Europe.
Grand challenges in understanding the interplay of climate and land changes
Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.; Ford, James D.; Fox, Andrew; Gallo, Kevin; Hatfield, Jerry L.; Henebry, Geoffrey M.; Huntington, Thomas G.; Liu, Zhihua; Loveland, Thomas R.; Norby, Richard J.; Sohl, Terry L.; Steiner, Allison L.; Yuan, Wenping; Zhang, Zhao; Zhao, Shuqing
2017-01-01
Half of Earth’s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affect a myriad of land surface processes and the adaptation behaviors. This study reviews the status and major knowledge gaps in the interactions of land and atmospheric changes and present 11 grand challenge areas for the scientific research and adaptation community in the coming decade. These land-cover and land-use change (LCLUC)-related areas include 1) impacts on weather and climate, 2) carbon and other biogeochemical cycles, 3) biospheric emissions, 4) the water cycle, 5) agriculture, 6) urbanization, 7) acclimation of biogeochemical processes to climate change, 8) plant migration, 9) land-use projections, 10) model and data uncertainties, and, finally, 11) adaptation strategies. Numerous studies have demonstrated the effects of LCLUC on local to global climate and weather systems, but these putative effects vary greatly in magnitude and even sign across space, time, and scale and thus remain highly uncertain. At the same time, many challenges exist toward improved understanding of the consequences of atmospheric and climate change on land process dynamics and services. Future effort must improve the understanding of the scale-dependent, multifaceted perturbations and feedbacks between land and climate changes in both reality and models. To this end, one critical cross-disciplinary need is to systematically quantify and better understand measurement and model uncertainties. Finally, LCLUC mitigation and adaptation assessments must be strengthened to identify implementation barriers, evaluate and prioritize opportunities, and examine how decision-making processes work in specific contexts.
NASA Astrophysics Data System (ADS)
Clavijo, H. W.
2016-12-01
Modeling the soil-plant-atmosphere continuum has been central part of understanding interrelationships among biogeochemical and hydrological processes. Theory behind of couplings Land Surface Models (LSM) and Dynamical Global Vegetation Models (DGVM) are based on physical and physiological processes connected by input-output interactions mainly. This modeling framework could be improved by the application of non-equilibrium thermodynamic basis that could encompass the majority of biophysical processes in a standard fashion. This study presents an alternative model for plant-water-atmosphere based on energy-mass thermodynamics. The system of dynamic equations derived is based on the total entropy, the total energy balance for the plant, the biomass dynamics at metabolic level and the water-carbon-nitrogen fluxes and balances. One advantage of this formulation is the capability to describe adaptation and evolution of dynamics of plant as a bio-system coupled to the environment. Second, it opens a window for applications on specific conditions from individual plant scale, to watershed scale, to global scale. Third, it enhances the possibility of analyzing anthropogenic impacts on the system, benefiting from the mathematical formulation and its non-linearity. This non-linear model formulation is analyzed under the concepts of qualitative system dynamics theory, for different state-space phase portraits. The attractors and sources are pointed out with its stability analysis. Possibility of bifurcations are explored and reported. Simulations for the system dynamics under different conditions are presented. These results show strong consistency and applicability that validates the use of the non-equilibrium thermodynamic theory.
Nguyen, Trung T; Barber, Andrew R; Corbin, Kendall; Zhang, Wei
2017-01-01
The worldwide annual production of lobster was 165,367 tons valued over $3.32 billion in 2004, but this figure rose up to 304,000 tons in 2012. Over half the volume of the worldwide lobster production has been processed to meet the rising global demand in diversified lobster products. Lobster processing generates a large amount of by-products (heads, shells, livers, and eggs) which account for 50-70% of the starting material. Continued production of these lobster processing by-products (LPBs) without corresponding process development for efficient utilization has led to disposal issues associated with costs and pollutions. This review presents the promising opportunities to maximize the utilization of LPBs by economic recovery of their valuable components to produce high value-added products. More than 50,000 tons of LPBs are globally generated, which costs lobster processing companies upward of about $7.5 million/year for disposal. This not only presents financial and environmental burdens to the lobster processors but also wastes a valuable bioresource. LPBs are rich in a range of high-value compounds such as proteins, chitin, lipids, minerals, and pigments. Extracts recovered from LPBs have been demonstrated to possess several functionalities and bioactivities, which are useful for numerous applications in water treatment, agriculture, food, nutraceutical, pharmaceutical products, and biomedicine. Although LPBs have been studied for recovery of valuable components, utilization of these materials for the large-scale production is still very limited. Extraction of lobster components using microwave, ultrasonic, and supercritical fluid extraction were found to be promising techniques that could be used for large-scale production. LPBs are rich in high-value compounds that are currently being underutilized. These compounds can be extracted for being used as functional ingredients, nutraceuticals, and pharmaceuticals in a wide range of commercial applications. The efficient utilization of LPBs would not only generate significant economic benefits but also reduce the problems of waste management associated with the lobster industry. This comprehensive review highlights the availability of the global LPBs, the key components in LPBs and their current applications, the limitations to the extraction techniques used, and the suggested emerging techniques which may be promising on an industrial scale for the maximized utilization of LPBs. Graphical abstractLobster processing by-product as bioresource of several functional and bioactive compounds used in various value-added products.
Aeolian and fluvial processes in dryland regions: the need for integrated studies
Belnap, Jayne; Munson, Seth M.; Field, Jason P.
2011-01-01
Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.
NASA Astrophysics Data System (ADS)
Potirakis, Stelios M.; Contoyiannis, Yiannis; Kopanas, John; Kalimeris, Anastasios; Antonopoulos, George; Peratzakis, Athanasios; Eftaxias, Konstantinos; Nomicos, Constantinos
2014-05-01
Under natural conditions, it is practically impossible to install an experimental network on the geophysical scale using the same instrumentations as in laboratory experiments for understanding, through the states of stress and strain and their time variation, the laws that govern the friction during the last stages of EQ generation, or to monitor (much less to control) the principal characteristics of a fracture process. Fracture-induced electromagnetic emissions (EME) in a wide range of frequency bands are sensitive to the micro-structural chances. Thus, their study constitutes a nondestructive method for the monitoring of the evolution of damage process at the laboratory scale. It has been suggested that fracture induced MHz-kHz electromagnetic (EM) emissions, which emerge from a few days up to a few hours before the main seismic shock occurrence permit a real time monitoring of the damage process during the last stages of earthquake preparation, as it happens at the laboratory scale. Since the EME are produced both in the case of the laboratory scale fracture and the EQ preparation process (geophysical scale fracture) they should present similar characteristics in these two scales. Therefore, both the laboratory experimenting scientists and the experimental scientists studying the pre-earthquake EME could benefit from each- other's results. Importantly, it is noted that when studying the fracture process by means of laboratory experiments, the fault growth process normally occurs violently in a fraction of a second. However, a major difference between the laboratory and natural processes is the order-of-magnitude differences in scale (in space and time), allowing the possibility of experimental observation at the geophysical scale for a range of physical processes which are not observable at the laboratory scale. Therefore, the study of fracture-induced EME is expected to reveal more information, especially for the last stages of the fracture process, when it is conducted at the geophysical scale. As a characteristic example, we discuss about the case of electromagnetic silence before the global rupture that was first observed in preseismic EME and recently was also observed in the EME measured during laboratory fracture experiments, completely revising the earlier views about the fracture-induced electromagnetic emissions.
Clein, Joy S.; Kwiatkowski, B.L.; McGuire, A.D.; Hobbie, J.E.; Rastetter, E.B.; Melillo, J.M.; Kicklighter, D.W.
2000-01-01
We are developing a process-based modelling approach to investigate how carbon (C) storage of tundra across the entire Arctic will respond to projected climate change. To implement the approach, the processes that are least understood, and thus have the most uncertainty, need to be identified and studied. In this paper, we identified a key uncertainty by comparing the responses of C storage in tussock tundra at one site between the simulations of two models - one a global-scale ecosystem model (Terrestrial Ecosystem Model, TEM) and one a plot-scale ecosystem model (General Ecosystem Model, GEM). The simulations spanned the historical period (1921-94) and the projected period (1995-2100). In the historical period, the model simulations of net primary production (NPP) differed in their sensitivity to variability in climate. However, the long-term changes in C storage were similar in both simulations, because the dynamics of heterotrophic respiration (RH) were similar in both models. In contrast, the responses of C storage in the two model simulations diverged during the projected period. In the GEM simulation for this period, increases in RH tracked increases in NPP, whereas in the TEM simulation increases in RH lagged increases in NPP. We were able to make the long-term C dynamics of the two simulations agree by parameterizing TEM to the fast soil C pools of GEM. We concluded that the differences between the long-term C dynamics of the two simulations lay in modelling the role of the recalcitrant soil C. These differences, which reflect an incomplete understanding of soil processes, lead to quite different projections of the response of pan-Arctic C storage to global change. For example, the reference parameterization of TEM resulted in an estimate of cumulative C storage of 2032 g C m-2 for moist tundra north of 50??N, which was substantially higher than the 463 g C m-2 estimated for a parameterization of fast soil C dynamics. This uncertainty in the depiction of the role of recalcitrant soil C in long-term ecosystem C dynamics resulted from our incomplete understanding of controls over C and N transformations in Arctic soils. Mechanistic studies of these issues are needed to improve our ability to model the response of Arctic ecosystems to global change.
Applications of Parallel Process HiMAP for Large Scale Multidisciplinary Problems
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Potsdam, Mark; Rodriguez, David; Kwak, Dochay (Technical Monitor)
2000-01-01
HiMAP is a three level parallel middleware that can be interfaced to a large scale global design environment for code independent, multidisciplinary analysis using high fidelity equations. Aerospace technology needs are rapidly changing. Computational tools compatible with the requirements of national programs such as space transportation are needed. Conventional computation tools are inadequate for modern aerospace design needs. Advanced, modular computational tools are needed, such as those that incorporate the technology of massively parallel processors (MPP).
NASA Astrophysics Data System (ADS)
Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.
2014-12-01
Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.
a Model Study of Small-Scale World Map Generalization
NASA Astrophysics Data System (ADS)
Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.
2018-04-01
With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.
Cushman, Robert M; Jones, Sonja B
2002-03-01
Increasing atmospheric concentrations of greenhouse gases are widely expected to cause global warming and other climatic changes. It is important to establish priorities for reducing greenhouse-gas emissions, so that resources can be allocated efficiently and effectively. This is a global problem, and it is possible, on a global scale, to identify those activities whose emissions have the greatest potential for enhancing the greenhouse effect. However, perspectives from smaller scales must be appreciated, because it is on scales down to the local level that response measures will be implemented. This paper analyzes the relative importance of emissions from the many individual sources, on scales ranging from global to national to subnational. Individual country perspectives and proposed policy measures and those of subnational political entities exhibit some commonalities but differ among themselves and from a global-scale perspective in detail.
He, Xueqin; Chen, Longjian; Han, Lujia; Liu, Ning; Cui, Ruxiu; Yin, Hongjie; Huang, Guangqun
2017-12-01
This study investigated the effects of biochar powder on oxygen supply efficiency and global warming potential (GWP) in the large-scale aerobic composting pattern which includes cyclical forced-turning with aeration at the bottom of composting tanks in China. A 55-day large-scale aerobic composting experiment was conducted in two different groups without and with 10% biochar powder addition (by weight). The results show that biochar powder improves the holding ability of oxygen, and the duration time (O 2 >5%) is around 80%. The composting process with above pattern significantly reduce CH 4 and N 2 O emissions compared to the static or turning-only styles. Considering the average GWP of the BC group was 19.82% lower than that of the CK group, it suggests that rational addition of biochar powder has the potential to reduce the energy consumption of turning, improve effectiveness of the oxygen supply, and reduce comprehensive greenhouse effects. Copyright © 2017. Published by Elsevier Ltd.
A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations
Miller, Scot M.; Miller, Charles E.; Commane, Roisin; Chang, Rachel Y.-W.; Dinardo, Steven J.; Henderson, John M.; Karion, Anna; Lindaas, Jakob; Melton, Joe R.; Miller, John B.; Sweeney, Colm; Wofsy, Steven C.; Michalak, Anna M.
2016-01-01
Methane (CH4) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH4 fluxes across Alaska for 2012–2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH4 observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH4 flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH4 observations. In addition, we find that CH4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CH4 (for May–Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH4 fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH4 fluxes than in process estimates. Lastly, we find that the seasonality of CH4 fluxes varied during 2012–2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not affect obvious changes in total CH4 fluxes from the state. PMID:28066129
A multi-year estimate of methane fluxes in Alaska from CARVE atmospheric observations.
Miller, Scot M; Miller, Charles E; Commane, Roisin; Chang, Rachel Y-W; Dinardo, Steven J; Henderson, John M; Karion, Anna; Lindaas, Jakob; Melton, Joe R; Miller, John B; Sweeney, Colm; Wofsy, Steven C; Michalak, Anna M
2016-10-01
Methane (CH 4 ) fluxes from Alaska and other arctic regions may be sensitive to thawing permafrost and future climate change, but estimates of both current and future fluxes from the region are uncertain. This study estimates CH 4 fluxes across Alaska for 2012-2014 using aircraft observations from the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) and a geostatistical inverse model (GIM). We find that a simple flux model based on a daily soil temperature map and a static map of wetland extent reproduces the atmospheric CH 4 observations at the state-wide, multi-year scale more effectively than global-scale, state-of-the-art process-based models. This result points to a simple and effective way of representing CH 4 flux patterns across Alaska. It further suggests that contemporary process-based models can improve their representation of key processes that control fluxes at regional scales, and that more complex processes included in these models cannot be evaluated given the information content of available atmospheric CH 4 observations. In addition, we find that CH 4 emissions from the North Slope of Alaska account for 24% of the total statewide flux of 1.74 ± 0.44 Tg CH 4 ( for May-Oct.). Contemporary global-scale process models only attribute an average of 3% of the total flux to this region. This mismatch occurs for two reasons: process models likely underestimate wetland area in regions without visible surface water, and these models prematurely shut down CH 4 fluxes at soil temperatures near 0°C. As a consequence, wetlands covered by vegetation and wetlands with persistently cold soils could be larger contributors to natural CH 4 fluxes than in process estimates. Lastly, we find that the seasonality of CH 4 fluxes varied during 2012-2014, but that total emissions did not differ significantly among years, despite substantial differences in soil temperature and precipitation; year-to-year variability in these environmental conditions did not affect obvious changes in total CH 4 fluxes from the state.
Munition Burial by Local Scour and Sandwaves: large-scale laboratory experiments
NASA Astrophysics Data System (ADS)
Garcia, M. H.
2017-12-01
Our effort has been the direct observation and monitoring of the burial process of munitions induced by the combined action of waves, currents and pure oscillatory flows. The experimental conditions have made it possible to observe the burial process due to both local scour around model munitions as well as the passage of sandwaves. One experimental facility is the Large Oscillating Water Sediment Tunnel (LOWST) constructed with DURIP support. LOWST can reproduce field-like conditions near the sea bed. The second facility is a multipurpose wave-current flume which is 4 feet (1.20 m) deep, 6 feet (1.8 m) wide, and 161 feet (49.2 m) long. More than two hundred experiments were carried out in the wave-current flume. The main task completed within this effort has been the characterization of the burial process induced by local scour as well in the presence of dynamic sandwaves with superimposed ripples. It is found that the burial of a finite-length model munition (cylinder) is determined by local scour around the cylinder and by a more global process associated with the formation and evolution of sandwaves having superimposed ripples on them. Depending on the ratio of the amplitude of these features and the body's diameter (D), a model munition can progressively get partially or totally buried as such bedforms migrate. Analysis of the experimental data indicates that existing semi-empirical formulae for prediction of equilibrium-burial-depth, geometry of the scour hole around a cylinder, and time-scales developed for pipelines are not suitable for the case of a cylinder of finite length. Relative burial depth (Bd / D) is found to be mainly a function of two parameters. One is the Keulegan-Carpenter number, KC, and the Shields parameter, θ. Munition burial under either waves or combined flow, is influenced by two different processes. One is related to the local scour around the object, which takes place within the first few hundred minutes of flow action (i.e. short time scale). 2nd process is related to the development of sandwaves which in turn may partially or totally cover a given mine as they migrate (i.e. long time scales), leading to global burial. A third process occurring at a much shorter time scale is related to fluidization. Existing formulations for munition burial do not account for long sandwaves as well as bed fluidization.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Kirstetter, P.; Hong, Y.; Turk, J.
2016-12-01
The overland precipitation retrievals from satellite passive microwave (PMW) sensors such as the Global Precipitation Mission (GPM) microwave imager (GMI) are impacted by the land surface emissivity. The estimation of PMW emissivity faces challenges because it is highly variable under the influence of surface properties such as soil moisture, surface roughness and vegetation. This study proposes an improved quantitative understanding of the relationship between the emissivity and surface parameters. Surface parameter information is obtained through (i) in-situ measurements from the International Soil Moisture Network and (ii) satellite measurements from the Soil Moisture Active and Passive mission (SMAP) which provides global scale soil moisture estimates. The variation of emissivity is quantified with soil moisture, surface temperature and vegetation at various frequencies/polarization and over different types of land surfaces to sheds light into the processes governing the emission of the land. This analysis is used to estimate the emissivity under rainy conditions. The framework built with in-situ measurements serves as a benchmark for satellite-based analyses, which paves a way toward global scale emissivity estimates using SMAP.
NASA Astrophysics Data System (ADS)
Perkins, D. K.
2006-08-01
Microbes swarming on a sand grain planet or integral complex organisms evolving consciousness at the forefront of cosmic evolution? How is our new cosmology contributing to redefining who we see ourselves to be at the edge of the 21^st century, as globalization and capitalism speed forward? How is the evolution of stardust and the universe offering new paradigms of process and identity regarding the role, function and emergence of life in space-time? What are the cultural and philosophical questions that are arising and how might astronomy be contributing to the creation of new visions for cooperation and community at a global scale? What is the significance of including astronomy in K-12 education and what can it offer youth regarding values in light of the present world situation? Exploring our new cosmological concepts and the emergence of life at astronomical scales may offer much of valuable orientation toward reframing the human role in global evolution. Considering new insight from astrobiology each diverse species has a definitive role to play in the facilitation and functioning of the biosphere. Thus the question may arise: Is there any sort of ethic implied by natural science and offered by our rapidly expanding cosmic frontier?
Global lake response to the recent warming hiatus
NASA Astrophysics Data System (ADS)
Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.
2018-05-01
Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louvat, D.; Lacoste, A.C.
The Joint Convention on the Safety of Spent Fuel management and on the Safety of Radioactive Waste Management is the first legal instrument to directly address the safety of spent fuel and radioactive waste management on a global scale. The Joint Convention entered into force in 2001. This paper describes its process and its main achievements to date. The perspectives to establish of a Global Waste Safety Regime based on the Joint Convention are also discussed. (authors)
NASA Astrophysics Data System (ADS)
Bamzai, A.
2003-04-01
This talk will highlight science and application activities of the CDEP and RISA programs at NOAA OGP. CDEP, through a set of Applied Research Centers (ARCs), supports NOAA's program of quantitative assessments and predictions of global climate variability and its regional implications on time scales of seasons to centuries. The RISA program consolidates results from ongoing disciplinary process research under an integrative framework. Examples of joint CDEP-RISA activities will be presented. Future directions and programmatic challenges will also be discussed.
Werner, Annette
2014-11-01
Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of small scale transport processes on phytoplankton distribution in coastal seas.
Hernández-Carrasco, Ismael; Orfila, Alejandro; Rossi, Vincent; Garçon, Veronique
2018-06-05
Coastal ocean ecosystems are major contributors to the global biogeochemical cycles and biological productivity. Physical factors induced by the turbulent flow play a crucial role in regulating marine ecosystems. However, while large-scale open-ocean dynamics is well described by geostrophy, the role of multiscale transport processes in coastal regions is still poorly understood due to the lack of continuous high-resolution observations. Here, the influence of small-scale dynamics (O(3.5-25) km, i.e. spanning upper submesoscale and mesoscale processes) on surface phytoplankton derived from satellite chlorophyll-a (Chl-a) is studied using Lagrangian metrics computed from High-Frequency Radar currents. The combination of complementary Lagrangian diagnostics, including the Lagrangian divergence along fluid trajectories, provides an improved description of the 3D flow geometry which facilitates the interpretation of two non-exclusive physical mechanisms affecting phytoplankton dynamics and patchiness. Attracting small-scale fronts, unveiled by backwards Lagrangian Coherent Structures, are associated to negative divergence where particles and Chl-a standing stocks cluster. Filaments of positive divergence, representing large accumulated upward vertical velocities and suggesting accrued injection of subsurface nutrients, match areas with large Chl-a concentrations. Our findings demonstrate that an accurate characterization of small-scale transport processes is necessary to comprehend bio-physical interactions in coastal seas.
NASA Astrophysics Data System (ADS)
Lee, Donghoon; Ward, Philip; Block, Paul
2018-02-01
Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.
The Lifespan Self-Esteem Scale: Initial Validation of a New Measure of Global Self-Esteem.
Harris, Michelle A; Donnellan, M Brent; Trzesniewski, Kali H
2018-01-01
This article introduces the Lifespan Self-Esteem Scale (LSE), a short measure of global self-esteem suitable for populations drawn from across the lifespan. Many existing measures of global self-esteem cannot be used across multiple developmental periods due to changes in item content, response formats, and other scale characteristics. This creates a need for a new lifespan scale so that changes in global self-esteem over time can be studied without confounding maturational changes with alterations in the measure. The LSE is a 4-item measure with a 5-point response format using items inspired by established self-esteem scales. The scale is essentially unidimensional and internally consistent, and it converges with existing self-esteem measures across ages 5 to 93 (N = 2,714). Thus, the LSE appears to be a useful measure of global self-esteem suitable for use across the lifespan as well as contexts where a short measure is desirable, such as populations with short attention spans or large projects assessing multiple constructs. Moreover, the LSE is one of the first global self-esteem scales to be validated for children younger than age 8, which provides the opportunity to broaden the field to include research on early formation and development of global self-esteem, an area that has previously been limited.
NASA Astrophysics Data System (ADS)
Ise, T.; Litton, C. M.; Giardina, C. P.; Ito, A.
2009-12-01
Plant partitioning of carbon (C) to above- vs. belowground, to growth vs. respiration, and to short vs. long lived tissues exerts a large influence on ecosystem structure and function with implications for the global C budget. Importantly, outcomes of process-based terrestrial vegetation models are likely to vary substantially with different C partitioning algorithms. However, controls on C partitioning patterns remain poorly quantified, and studies have yielded variable, and at times contradictory, results. A recent meta-analysis of forest studies suggests that the ratio of net primary production (NPP) and gross primary production (GPP) is fairly conservative across large scales. To illustrate the effect of this unique meta-analysis-based partitioning scheme (MPS), we compared an application of MPS to a terrestrial satellite-based (MODIS) GPP to estimate NPP vs. two global process-based vegetation models (Biome-BGC and VISIT) to examine the influence of C partitioning on C budgets of woody plants. Due to the temperature dependence of maintenance respiration, NPP/GPP predicted by the process-based models increased with latitude while the ratio remained constant with MPS. Overall, global NPP estimated with MPS was 17 and 27% lower than the process-based models for temperate and boreal biomes, respectively, with smaller differences in the tropics. Global equilibrium biomass of woody plants was then calculated from the NPP estimates and tissue turnover rates from VISIT. Since turnover rates differed greatly across tissue types (i.e., metabolically active vs. structural), global equilibrium biomass estimates were sensitive to the partitioning scheme employed. The MPS estimate of global woody biomass was 7-21% lower than that of the process-based models. In summary, we found that model output for NPP and equilibrium biomass was quite sensitive to the choice of C partitioning schemes. Carbon use efficiency (CUE; NPP/GPP) by forest biome and the globe. Values are means for 2001-2006.
An analysis of IGBP global land-cover characterization process
Loveland, Thomas R.; Zhu, Zhiliang; Ohlen, Donald O.; Brown, Jesslyn F.; Reed, Bradley C.; Yang, Limin
1999-01-01
The international Geosphere Biosphere Programme (IGBP) has called for the development of improved global land-cover data for use in increasingly sophisticated global environmental models. To meet this need, the staff of the U.S. Geological Survey and the University of Nebraska-Lincoln developed and applied a global land-cover characterization methodology using 1992-1993 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) and other spatial data. The methodology, based on unsupervised classification with extensive postclassification refinement, yielded a multi-layer database consisting of eight land-cover data sets, descriptive attributes, and source data. An independent IGBP accuracy assessment reports a global accuracy of 73.5 percent, and continental results vary from 63 percent to 83 percent. Although data quality, methodology, interpreter performance, and logistics affected the results, significant problems were associated with the relationship between AVHRR data and fine-scale, spectrally similar land-cover patterns in complex natural or disturbed landscapes.
Necessary conditions for the globalization of traditional Chinese medicine.
Yu, Bei-Bei; Gong, Xiu-Lin
2011-03-01
With the current trend of globalization, unprecedented opportunities and enormous changes have emerged for the global development of traditional Chinese medicine (TCM). However, many old and new challenges and problems still remain, including partial or limited comprehension of acupuncture, oriental medicine and TCM, the existence of non-standardized institutes of TCM and acupuncture training schools, unqualified TCM practitioners, and problems concerning Chinese herbal medicine and inexperience in conducting TCM business. These problems will doubtlessly impede the further development of TCM worldwide in the foreseeable future. It is also clear that the globalization of TCM will require a large scale systematic project and constitute an arduous historical task. This paper aims to consolidate 6 strategic development modes to reinforce and facilitate the process of TCM globalization through a detailed analysis of both the present status and existing problems concerning the development of TCM in the United States.
Variable order fractional Fokker-Planck equations derived from Continuous Time Random Walks
NASA Astrophysics Data System (ADS)
Straka, Peter
2018-08-01
Continuous Time Random Walk models (CTRW) of anomalous diffusion are studied, where the anomalous exponent β(x) ∈(0 , 1) varies in space. This type of situation occurs e.g. in biophysics, where the density of the intracellular matrix varies throughout a cell. Scaling limits of CTRWs are known to have probability distributions which solve fractional Fokker-Planck type equations (FFPE). This correspondence between stochastic processes and FFPE solutions has many useful extensions e.g. to nonlinear particle interactions and reactions, but has not yet been sufficiently developed for FFPEs of the "variable order" type with non-constant β(x) . In this article, variable order FFPEs (VOFFPE) are derived from scaling limits of CTRWs. The key mathematical tool is the 1-1 correspondence of a CTRW scaling limit to a bivariate Langevin process, which tracks the cumulative sum of jumps in one component and the cumulative sum of waiting times in the other. The spatially varying anomalous exponent is modelled by spatially varying β(x) -stable Lévy noise in the waiting time component. The VOFFPE displays a spatially heterogeneous temporal scaling behaviour, with generalized diffusivity and drift coefficients whose units are length2/timeβ(x) resp. length/timeβ(x). A global change of the time scale results in a spatially varying change in diffusivity and drift. A consequence of the mathematical derivation of a VOFFPE from CTRW limits in this article is that a solution of a VOFFPE can be approximated via Monte Carlo simulations. Based on such simulations, we are able to confirm that the VOFFPE is consistent under a change of the global time scale.
Improved simulation of tropospheric ozone by a global-multi-regional two-way coupling model system
NASA Astrophysics Data System (ADS)
Yan, Y.; Lin, J.; Hu, L.; Chen, J.
2016-12-01
Small-scale nonlinear chemical and physical processes over pollution source regions affect the tropospheric ozone, but these processes are not captured by current global chemical transport models and chemistry-climate models that are limited by coarse horizontal resolutions. These models tend to contain large (and mostly positive) tropospheric O3 biases in the Northern Hemisphere. Here we use a recently built two-way coupling system of the GEOS-Chem CTM to simulate the regional and global tropospheric O3in 2009. The system couples the global model (at 2.5º long. x 2º lat.) and its three nested models (at 0.667º long. x 0.5º lat.) covering Asia, North America and Europe, respectively. Specifically, the nested models take lateral boundary conditions from the global model, better capture small-scale processes, and feed back to modify the global model simulation within the nested domains, with a subsequent effect on their LBCs. Compared to the global model alone, the two-way coupled system better simulates the tropospheric O3 both within and outside the nested domains, as found by evaluation against a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). The two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean surface O3 with the ground measurements from 0.53 to 0.68, and it reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled system reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3vertical profiles much closer to the HIPPO (for remote areas) and MOZAIC (for polluted regions) data, reducing the tropospheric mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5%, annual mean), bringing them closer to the OMI data in all seasons. Additionally, the two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5% with improved estimates of methyl chloroform and methane lifetimes. Simulation improvements are more significant in the Northern Hemisphere, and are mainly driven by improved representation of spatial inhomogeneity in chemistry/emissions.
NASA/MSFC FY92 Earth Science and Applications Program Research Review
NASA Technical Reports Server (NTRS)
Arnold, James E. (Editor); Leslie, Fred W. (Editor)
1993-01-01
A large amount of attention has recently been given to global issues such as the ozone hole, tropospheric temperature variability, etc. A scientific challenge is to better understand atmospheric processes on a variety of spatial and temporal scales in order to predict environmental changes. Measurement of geophysical parameters such as wind, temperature, and moisture are needed to validate theories, provide analyzed data sets, and initialize or constrain numerical models. One of NASA's initiatives is the Mission to Planet Earth Program comprised of an Earth Observation System (EOS) and the scientific strategy to analyze these data. This work describes these efforts in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.
AIRS Maps from Space Processing Software
NASA Technical Reports Server (NTRS)
Thompson, Charles K.; Licata, Stephen J.
2012-01-01
This software package processes Atmospheric Infrared Sounder (AIRS) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various AIRS Level 2 swath geophysical parameters. It also generates AIRS input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to AIRS Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing AIRS-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Parallel processing for pitch splitting decomposition
NASA Astrophysics Data System (ADS)
Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris
2009-10-01
Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.
Used planet: a global history.
Ellis, Erle C; Kaplan, Jed O; Fuller, Dorian Q; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H
2013-05-14
Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human-environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects.
Ellis, Erle C.; Kaplan, Jed O.; Fuller, Dorian Q.; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H.
2013-01-01
Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human–environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects. PMID:23630271
Global terrestrial N2O budget for present and future
NASA Astrophysics Data System (ADS)
Olin, Stefan; Xing, Xu-Ri; Wårlind, David; Eliasson, Peter; Smith, Ben; Arneth, Almut
2017-04-01
Nitrogen (N) plays an important role in plant productivity and physiology and is the main limiting nutrient in a majority of the terrestrial ecosystems. The enhanced input of anthropogenic reactive nitrogen (Nr) in agriculture have enhanced global food production, but with adverse effects on biodiversity and water quality, and substantially increased emissions of N trace gases that affect air quality and climate. Emissions of N gases affects the climate, either through cloud forming nitrogen oxides (NOx) gases or as greenhouse gases, where nitrous oxide (N2O) is the most important being approximately 300 times more potent than carbon dioxide (CO2). In this study we use the process-based global vegetation model Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Olin et al. 2015) that recently have incorporated a new soil N transformation scheme, adopted from Xu-Ri and Prentice (2008), which makes it possible to study the N2O emission respond to changes in climate and CO2 concentration as well as anthropogenic N enhancements on a global scale. We present here results from the validation of the new model against site-scale N2O measurements from agricultural and non-agricultural ecosystems. We will also present results from a study to examine how land use, land use change and anthropogenic N fertilisation influence historical and future global N2O emissions. This new development represents a key component within future projects in CMIP6 (LUMIP) and in EC-Earth for the EU Horizon 2020 project CRESCENDO. Olin, S., Lindeskog, M., Pugh, T., Schurgers, G., Mischurow, M., Wårlind, D., Zaehle, S., Stocker, B., Smith, B. and Arneth, A. 2015. Soil carbon management in large-scale Earth system modelling: implications for crop yields and nitrogen leaching. Earth System Dynamics, 6, 745-768. Xu-Ri and Prentice IC. 2008. Terrestrial nitrogen cycle simulation with a dynamic global vegetation model. Global Change Biology, 14, 1745-1764.
NASA Astrophysics Data System (ADS)
Ashworth, K.; Folberth, G.; Hewitt, C. N.; Wild, O.
2011-09-01
Large-scale production of feedstock crops for biofuels will lead to land-use changes. We quantify the effects of realistic land use change scenarios for biofuel feedstock production on isoprene emissions and hence atmospheric composition and chemistry using the HadGEM2 model. Two feedstocks are considered: oil palm for biodiesel in the tropics and short rotation coppice (SRC) in the mid-latitudes. In total, 69 Mha of oil palm and 92 Mha of SRC are planted, each sufficient to replace just over 1 % of projected global fossil fuel demand in 2020. Both planting scenarios result in increases in total global annual isoprene emissions of about 1 %. In each case, changes in surface concentrations of ozone and biogenic secondary organic aerosol (bSOA) are significant at the regional scale and are detectable even at a global scale with implications for air quality standards. However, the changes in tropospheric burden of ozone and the OH radical, and hence effects on global climate, are negligible. The oil palm plantations and processing plants result in global average annual mean increases in ozone and bSOA of 38 pptv and 2 ng m-3 respectively. Over SE Asia, one region of planting, increases reach over 2 ppbv and 300 ng m-3 for large parts of Borneo. Planting of SRC causes global annual mean changes of 46 pptv and 3 ng m-3. Europe experiences peak monthly mean changes of almost 0.6 ppbv and 90 ng m-3 in June and July. Large areas of Central and Eastern Europe see changes of over 1.5 ppbv and 200 ng m-3 in the summer. That such significant atmospheric impacts from low level planting scenarios are discernible globally clearly demonstrates the need to include changes in emissions of reactive trace gases such as isoprene in life cycle assessments performed on potential biofuel feedstocks.
Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes
USDA-ARS?s Scientific Manuscript database
A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to earth system models is relative...
Grand challenges in understanding the interplay of climate and land changes
USDA-ARS?s Scientific Manuscript database
Half of the Earth’s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affects a myriad of land surface processes and our adaptation behaviors. After reviewing the status and major knowledge gap...
Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.
1982-01-01
Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.
Representing climate, disturbance, and vegetation interactions in landscape models
Robert E. Keane; Donald McKenzie; Donald A. Falk; Erica A.H. Smithwick; Carol Miller; Lara-Karena B. Kellogg
2015-01-01
The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special...
A simple predictive model for the structure of the oceanic pycnocline
Gnanadesikan
1999-03-26
A simple theory for the large-scale oceanic circulation is developed, relating pycnocline depth, Northern Hemisphere sinking, and low-latitude upwelling to pycnocline diffusivity and Southern Ocean winds and eddies. The results show that Southern Ocean processes help maintain the global ocean structure and that pycnocline diffusion controls low-latitude upwelling.
(abstract) The EOS SAR Mission: A New Approach
NASA Technical Reports Server (NTRS)
Way, JoBea
1993-01-01
The goal of the Earth Orbiting System Synthetic Aperture Radar (EOS SAR) program is to help develop the modeling and observational capabilities to predict and monitor terrestrial and oceanic processes that are either causing global change or resulting from global change. Specifically, the EOS SAR will provide important geophysical products to the EOS data set to improve our understanding of the state and functioning of the Earth system. The strategy for the EOS SAR program is to define the instrument requirements based on required input to geophysical algorithms, provide the processing capability and algorithms to generate such products on the required spatial (global) and temporal (3-5 days) scales, and to provide the spaceborne instrumentation with international partnerships. Initially this partnership has been with Germany; currently we are exploring broader international partnerships. A MultiSAR approach to the EOS SAR which includes a number of SARs provided by Japan, ESA, Germany, Canada, and the US in synergistic orbits could be used to attain a truly global monitoring capability using multifrequency polarimetric signatures. These concepts and several options for mission scenarios will be presented.
Global Change and the Earth System
NASA Astrophysics Data System (ADS)
Pollack, Henry N.
2004-08-01
The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''
NASA Astrophysics Data System (ADS)
Moore, J. K.
2016-02-01
The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.
Scale dependence of the alignment between strain rate and rotation in turbulent shear flow
NASA Astrophysics Data System (ADS)
Fiscaletti, D.; Elsinga, G. E.; Attili, A.; Bisetti, F.; Buxton, O. R. H.
2016-10-01
The scale dependence of the statistical alignment tendencies of the eigenvectors of the strain-rate tensor ei, with the vorticity vector ω , is examined in the self-preserving region of a planar turbulent mixing layer. Data from a direct numerical simulation are filtered at various length scales and the probability density functions of the magnitude of the alignment cosines between the two unit vectors | ei.ω ̂| are examined. It is observed that the alignment tendencies are insensitive to the concurrent large-scale velocity fluctuations, but are quantitatively affected by the nature of the concurrent large-scale velocity-gradient fluctuations. It is confirmed that the small-scale (local) vorticity vector is preferentially aligned in parallel with the large-scale (background) extensive strain-rate eigenvector e1, in contrast to the global tendency for ω to be aligned in parallel with the intermediate strain-rate eigenvector [Hamlington et al., Phys. Fluids 20, 111703 (2008), 10.1063/1.3021055]. When only data from regions of the flow that exhibit strong swirling are included, the so-called high-enstrophy worms, the alignment tendencies are exaggerated with respect to the global picture. These findings support the notion that the production of enstrophy, responsible for a net cascade of turbulent kinetic energy from large scales to small scales, is driven by vorticity stretching due to the preferential parallel alignment between ω and nonlocal e1 and that the strongly swirling worms are kinematically significant to this process.
Quantifying the Terrestrial Surface Energy Fluxes Using Remotely-Sensed Satellite Data
NASA Astrophysics Data System (ADS)
Siemann, Amanda Lynn
The dynamics of the energy fluxes between the land surface and the atmosphere drive local and regional climate and are paramount to understand the past, present, and future changes in climate. Although global reanalysis datasets, land surface models (LSMs), and climate models estimate these fluxes by simulating the physical processes involved, they merely simulate our current understanding of these processes. Global estimates of the terrestrial, surface energy fluxes based on observations allow us to capture the dynamics of the full climate system. Remotely-sensed satellite data is the source of observations of the land surface which provide the widest spatial coverage. Although net radiation and latent heat flux global, terrestrial, surface estimates based on remotely-sensed satellite data have progressed, comparable sensible heat data products and ground heat flux products have not progressed at this scale. Our primary objective is quantifying and understanding the terrestrial energy fluxes at the Earth's surface using remotely-sensed satellite data with consistent development among all energy budget components [through the land surface temperature (LST) and input meteorology], including validation of these products against in-situ data, uncertainty assessments, and long-term trend analysis. The turbulent fluxes are constrained by the available energy using the Bowen ratio of the un-constrained products to ensure energy budget closure. All final products are within uncertainty ranges of literature values, globally. When validated against the in-situ estimates, the sensible heat flux estimates using the CFSR air temperature and constrained with the products using the MODIS albedo produce estimates closest to the FLUXNET in-situ observations. Poor performance over South America is consistent with the largest uncertainties in the energy budget. From 1984-2007, the longwave upward flux increase due to the LST increase drives the net radiation decrease, and the decrease in the available energy balances the decrease in the sensible heat flux. These datasets are useful for benchmarking climate models and LSM output at the global annual scale and the regional scale subject to the regional uncertainties and performance. Future work should improve the input data, particularly the temperature gradient and Zilitinkevich empirical constant, to reduce uncertainties.
Global Manufacturing of CAR T Cell Therapy.
Levine, Bruce L; Miskin, James; Wonnacott, Keith; Keir, Christopher
2017-03-17
Immunotherapy using chimeric antigen receptor-modified T cells has demonstrated high response rates in patients with B cell malignancies, and chimeric antigen receptor T cell therapy is now being investigated in several hematologic and solid tumor types. Chimeric antigen receptor T cells are generated by removing T cells from a patient's blood and engineering the cells to express the chimeric antigen receptor, which reprograms the T cells to target tumor cells. As chimeric antigen receptor T cell therapy moves into later-phase clinical trials and becomes an option for more patients, compliance of the chimeric antigen receptor T cell manufacturing process with global regulatory requirements becomes a topic for extensive discussion. Additionally, the challenges of taking a chimeric antigen receptor T cell manufacturing process from a single institution to a large-scale multi-site manufacturing center must be addressed. We have anticipated such concerns in our experience with the CD19 chimeric antigen receptor T cell therapy CTL019. In this review, we discuss steps involved in the cell processing of the technology, including the use of an optimal vector for consistent cell processing, along with addressing the challenges of expanding chimeric antigen receptor T cell therapy to a global patient population.
NASA Astrophysics Data System (ADS)
Bodegom, P. V.
2015-12-01
Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.
Dynamical ocean-atmospheric drivers of floods and droughts
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.; Hall, Julia
2014-05-01
The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological extremes are investigated and the findings supported with spatiotemporal geostatistical analysis and nonlinear geophysical models. Overall, the study provides a three-fold contribution to the research on hydrological extremes: Firstly, it improves their physical attribution by better understanding the dynamical reasons behind the meteorological drivers. Secondly, it brings out fundamental early warning signs for potential hydrological extremes, by bringing out global ocean-atmospheric features that manifest themselves much earlier than the regional weather patterns. Thirdly, it provides tools for addressing and understanding hydrological regime changes at wider spatiotemporal scales, by providing links to planetary-scale dynamical processes that play a crucial role in multi-decadal global climate variability.
NASA Astrophysics Data System (ADS)
Yiran, P.; Li, J.; von Salzen, K.; Dai, T.; Liu, D.
2014-12-01
Mineral dust is a significant contributor to global and Asian aerosol burden. Currently, large uncertainties still exist in simulated aerosol processes in global climate models (GCMs), which lead to a diversity in dust mass loading and spatial distribution of GCM projections. In this study, satellite measurements from CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) and observed aerosol data from Asian stations are compared with modelled aerosol in the Canadian Atmospheric Global Climate Model (CanAM4.2). Both seasonal and annual variations in Asian dust distribution are investigated. Vertical profile of simulated aerosol in troposphere is evaluated with CALIOP Level 3 products and local observed extinction for dust and total aerosols. Physical processes in GCM such as horizontal advection, vertical mixing, dry and wet removals are analyzed according to model simulation and available measurements of aerosol. This work aims to improve current understanding of Asian dust transport and vertical exchange on a large scale, which may help to increase the accuracy of GCM simulation on aerosols.
NASA Astrophysics Data System (ADS)
Leutwyler, David; Fuhrer, Oliver; Cumming, Benjamin; Lapillonne, Xavier; Gysi, Tobias; Lüthi, Daniel; Osuna, Carlos; Schär, Christoph
2014-05-01
The representation of moist convection is a major shortcoming of current global and regional climate models. State-of-the-art global models usually operate at grid spacings of 10-300 km, and therefore cannot fully resolve the relevant upscale and downscale energy cascades. Therefore parametrization of the relevant sub-grid scale processes is required. Several studies have shown that this approach entails major uncertainties for precipitation processes, which raises concerns about the model's ability to represent precipitation statistics and associated feedback processes, as well as their sensitivities to large-scale conditions. Further refining the model resolution to the kilometer scale allows representing these processes much closer to first principles and thus should yield an improved representation of the water cycle including the drivers of extreme events. Although cloud-resolving simulations are very useful tools for climate simulations and numerical weather prediction, their high horizontal resolution and consequently the small time steps needed, challenge current supercomputers to model large domains and long time scales. The recent innovations in the domain of hybrid supercomputers have led to mixed node designs with a conventional CPU and an accelerator such as a graphics processing unit (GPU). GPUs relax the necessity for cache coherency and complex memory hierarchies, but have a larger system memory-bandwidth. This is highly beneficial for low compute intensity codes such as atmospheric stencil-based models. However, to efficiently exploit these hybrid architectures, climate models need to be ported and/or redesigned. Within the framework of the Swiss High Performance High Productivity Computing initiative (HP2C) a project to port the COSMO model to hybrid architectures has recently come to and end. The product of these efforts is a version of COSMO with an improved performance on traditional x86-based clusters as well as hybrid architectures with GPUs. We present our redesign and porting approach as well as our experience and lessons learned. Furthermore, we discuss relevant performance benchmarks obtained on the new hybrid Cray XC30 system "Piz Daint" installed at the Swiss National Supercomputing Centre (CSCS), both in terms of time-to-solution as well as energy consumption. We will demonstrate a first set of short cloud-resolving climate simulations at the European-scale using the GPU-enabled COSMO prototype and elaborate our future plans on how to exploit this new model capability.
Weak hydrological sensitivity to temperature change over land, independent of climate forcing
NASA Astrophysics Data System (ADS)
Samset, Bjorn H.
2017-04-01
As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.
NASA Astrophysics Data System (ADS)
Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.
2014-12-01
In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that mechanistic representation of leaf-level nitrogen allocation and a theoretically consistent treatment of competition with belowground consumers leads to overall improvements in CLM4.5's global carbon cycling predictions.
Evaluation of Diagnostic CO2 Flux and Transport Modeling in NU-WRF and GEOS-5
NASA Astrophysics Data System (ADS)
Kawa, S. R.; Collatz, G. J.; Tao, Z.; Wang, J. S.; Ott, L. E.; Liu, Y.; Andrews, A. E.; Sweeney, C.
2015-12-01
We report on recent diagnostic (constrained by observations) model simulations of atmospheric CO2 flux and transport using a newly developed facility in the NASA Unified-Weather Research and Forecast (NU-WRF) model. The results are compared to CO2 data (ground-based, airborne, and GOSAT) and to corresponding simulations from a global model that uses meteorology from the NASA GEOS-5 Modern Era Retrospective analysis for Research and Applications (MERRA). The objective of these intercomparisons is to assess the relative strengths and weaknesses of the respective models in pursuit of an overall carbon process improvement at both regional and global scales. Our guiding hypothesis is that the finer resolution and improved land surface representation in NU-WRF will lead to better comparisons with CO2 data than those using global MERRA, which will, in turn, inform process model development in global prognostic models. Initial intercomparison results, however, have generally been mixed: NU-WRF is better at some sites and times but not uniformly. We are examining the model transport processes in detail to diagnose differences in the CO2 behavior. These comparisons are done in the context of a long history of simulations from the Parameterized Chemistry and Transport Model, based on GEOS-5 meteorology and Carnegie Ames-Stanford Approach-Global Fire Emissions Database (CASA-GFED) fluxes, that capture much of the CO2 variation from synoptic to seasonal to global scales. We have run the NU-WRF model using unconstrained, internally generated meteorology within the North American domain, and with meteorological 'nudging' from Global Forecast System and North American Regional Reanalysis (NARR) in an effort to optimize the CO2 simulations. Output results constrained by NARR show the best comparisons to data. Discrepancies, of course, may arise either from flux or transport errors and compensating errors are possible. Resolving their interplay is also important to using the data in inverse models. Recent analysis is focused on planetary boundary depth, which can be significantly different between MERRA and NU-WRF, along with subgrid transport differences. Characterization of transport differences between the models will allow us to better constrain the CO2 fluxes, which is the major objective of this work.
NASA Astrophysics Data System (ADS)
Moore, R. T.; Hansen, M. C.
2011-12-01
Google Earth Engine is a new technology platform that enables monitoring and measurement of changes in the earth's environment, at planetary scale, on a large catalog of earth observation data. The platform offers intrinsically-parallel computational access to thousands of computers in Google's data centers. Initial efforts have focused primarily on global forest monitoring and measurement, in support of REDD+ activities in the developing world. The intent is to put this platform into the hands of scientists and developing world nations, in order to advance the broader operational deployment of existing scientific methods, and strengthen the ability for public institutions and civil society to better understand, manage and report on the state of their natural resources. Earth Engine currently hosts online nearly the complete historical Landsat archive of L5 and L7 data collected over more than twenty-five years. Newly-collected Landsat imagery is downloaded from USGS EROS Center into Earth Engine on a daily basis. Earth Engine also includes a set of historical and current MODIS data products. The platform supports generation, on-demand, of spatial and temporal mosaics, "best-pixel" composites (for example to remove clouds and gaps in satellite imagery), as well as a variety of spectral indices. Supervised learning methods are available over the Landsat data catalog. The platform also includes a new application programming framework, or "API", that allows scientists access to these computational and data resources, to scale their current algorithms or develop new ones. Under the covers of the Google Earth Engine API is an intrinsically-parallel image-processing system. Several forest monitoring applications powered by this API are currently in development and expected to be operational in 2011. Combining science with massive data and technology resources in a cloud-computing framework can offer advantages of computational speed, ease-of-use and collaboration, as well as transparency in data and methods. Methods developed for global processing of MODIS data to map land cover are being adopted for use with Landsat data. Specifically, the MODIS Vegetation Continuous Field product methodology has been applied for mapping forest extent and change at national scales using Landsat time-series data sets. Scaling this method to continental and global scales is enabled by Google Earth Engine computing capabilities. By combining the supervised learning VCF approach with the Landsat archive and cloud computing, unprecedented monitoring of land cover dynamics is enabled.
NASA Astrophysics Data System (ADS)
Keenan, T. F.
2017-12-01
Global terrestrial ecosystems absorb about a third of anthropogenic emissions each year, due to the difference between two key processes: photosynthesis and respiration. Despite the importance of these two processes at the global scale, no direct measurement exists of either. Eddy-covariance (EC) measurements have been widely used as the closest `quasi-direct' observation, and the resulting estimates have been used to produce global budgets of photosynthesis and respiration. Recent research, however, suggests that current estimates may be biased by up to 25%, as the methods used to partition observed net carbon fluxes to photosynthesis and respiration do not take into account any inhibition of leaf respiration in light. Yet the prevalence of light-inhibition of leaf respiration remains debated, and impacts on global estimates of photosynthesis and respiration unquantified. Here, we use novel approaches to estimate the extent of light-inhibition across the global FLUXNET EC network, and find strong evidence for an inhibition effect on ecosystem respiration, which varies by season and plant functional type. We develop partitioning methods that allow for inhibition, and find that that diurnal patterns of ecosystem respiration might be markedly different than previously thought. The results call for the reevaluation of global terrestrial carbon cycle models, and also suggest that current global budgets of photosynthesis and respiration may be biased on the order of magnitude of anthropogenic fossil fuel emissions.
Large Scale Flood Risk Analysis using a New Hyper-resolution Population Dataset
NASA Astrophysics Data System (ADS)
Smith, A.; Neal, J. C.; Bates, P. D.; Quinn, N.; Wing, O.
2017-12-01
Here we present the first national scale flood risk analyses, using high resolution Facebook Connectivity Lab population data and data from a hyper resolution flood hazard model. In recent years the field of large scale hydraulic modelling has been transformed by new remotely sensed datasets, improved process representation, highly efficient flow algorithms and increases in computational power. These developments have allowed flood risk analysis to be undertaken in previously unmodeled territories and from continental to global scales. Flood risk analyses are typically conducted via the integration of modelled water depths with an exposure dataset. Over large scales and in data poor areas, these exposure data typically take the form of a gridded population dataset, estimating population density using remotely sensed data and/or locally available census data. The local nature of flooding dictates that for robust flood risk analysis to be undertaken both hazard and exposure data should sufficiently resolve local scale features. Global flood frameworks are enabling flood hazard data to produced at 90m resolution, resulting in a mis-match with available population datasets which are typically more coarsely resolved. Moreover, these exposure data are typically focused on urban areas and struggle to represent rural populations. In this study we integrate a new population dataset with a global flood hazard model. The population dataset was produced by the Connectivity Lab at Facebook, providing gridded population data at 5m resolution, representing a resolution increase over previous countrywide data sets of multiple orders of magnitude. Flood risk analysis undertaken over a number of developing countries are presented, along with a comparison of flood risk analyses undertaken using pre-existing population datasets.
NASA Astrophysics Data System (ADS)
Buaria, D.; Yeung, P. K.
2017-12-01
A new parallel algorithm utilizing a partitioned global address space (PGAS) programming model to achieve high scalability is reported for particle tracking in direct numerical simulations of turbulent fluid flow. The work is motivated by the desire to obtain Lagrangian information necessary for the study of turbulent dispersion at the largest problem sizes feasible on current and next-generation multi-petaflop supercomputers. A large population of fluid particles is distributed among parallel processes dynamically, based on instantaneous particle positions such that all of the interpolation information needed for each particle is available either locally on its host process or neighboring processes holding adjacent sub-domains of the velocity field. With cubic splines as the preferred interpolation method, the new algorithm is designed to minimize the need for communication, by transferring between adjacent processes only those spline coefficients determined to be necessary for specific particles. This transfer is implemented very efficiently as a one-sided communication, using Co-Array Fortran (CAF) features which facilitate small data movements between different local partitions of a large global array. The cost of monitoring transfer of particle properties between adjacent processes for particles migrating across sub-domain boundaries is found to be small. Detailed benchmarks are obtained on the Cray petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign. For operations on the particles in a 81923 simulation (0.55 trillion grid points) on 262,144 Cray XE6 cores, the new algorithm is found to be orders of magnitude faster relative to a prior algorithm in which each particle is tracked by the same parallel process at all times. This large speedup reduces the additional cost of tracking of order 300 million particles to just over 50% of the cost of computing the Eulerian velocity field at this scale. Improving support of PGAS models on major compilers suggests that this algorithm will be of wider applicability on most upcoming supercomputers.
Single-random-phase holographic encryption of images
NASA Astrophysics Data System (ADS)
Tsang, P. W. M.
2017-02-01
In this paper, a method is proposed for encrypting an optical image onto a phase-only hologram, utilizing a single random phase mask as the private encryption key. The encryption process can be divided into 3 stages. First the source image to be encrypted is scaled in size, and pasted onto an arbitrary position in a larger global image. The remaining areas of the global image that are not occupied by the source image could be filled with randomly generated contents. As such, the global image as a whole is very different from the source image, but at the same time the visual quality of the source image is preserved. Second, a digital Fresnel hologram is generated from the new image, and converted into a phase-only hologram based on bi-directional error diffusion. In the final stage, a fixed random phase mask is added to the phase-only hologram as the private encryption key. In the decryption process, the global image together with the source image it contained, can be reconstructed from the phase-only hologram if it is overlaid with the correct decryption key. The proposed method is highly resistant to different forms of Plain-Text-Attacks, which are commonly used to deduce the encryption key in existing holographic encryption process. In addition, both the encryption and the decryption processes are simple and easy to implement.
Global Particle-in-Cell Simulations of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.
2017-12-01
Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.
Global-Mindedness and Intercultural Competence: A Quantitative Study of Pre-Service Teachers
ERIC Educational Resources Information Center
Cui, Qi
2013-01-01
This study assessed pre-service teachers' levels of global-mindedness and intercultural competence using the Global-Mindedness Scale (GMS) and the Cultural Intelligence Scale (CQS) and investigated the correlation between the two. The study examined whether the individual scale factors such as gender, perceived competence in non-native language or…
USDA-ARS?s Scientific Manuscript database
Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and comb...
High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician
NASA Astrophysics Data System (ADS)
Porada, Philipp; Lenton, Tim; Pohl, Alexandre; Weber, Bettina; Mander, Luke; Donnadieu, Yannick; Beer, Christian; Pöschl, Ulrich; Kleidon, Axel
2017-04-01
Early non-vascular vegetation in the Late Ordovician may have strongly increased chemical weathering rates of surface rocks at the global scale. This could have led to a drawdown of atmospheric CO2 and, consequently, a decrease in global temperature and an interval of glaciations. Under current climatic conditions, usually field or laboratory experiments are used to quantify enhancement of chemical weathering rates by non-vascular vegetation. However, these experiments are constrained to a small spatial scale and a limited number of species. This complicates the extrapolation to the global scale, even more so for the geological past, where physiological properties of non-vascular vegetation may have differed from current species. Here we present a spatially explicit modelling approach to simulate large-scale chemical weathering by non-vascular vegetation in the Late Ordovician. For this purpose, we use a process-based model of lichens and bryophytes, since these organisms are probably the closest living analogue to Late Ordovician vegetation. The model explicitly represents multiple physiological strategies, which enables the simulated vegetation to adapt to Ordovician climatic conditions. We estimate productivity of Ordovician vegetation with the model, and relate it to chemical weathering by assuming that the organisms dissolve rocks to extract phosphorus for the production of new biomass. Thereby we account for limits on weathering due to reduced supply of unweathered rock material in shallow regions, as well as decreased transport capacity of runoff for dissolved weathered material in dry areas. We simulate a potential global weathering flux of 2.8 km3 (rock) per year, which we define as volume of primary minerals affected by chemical transformation. Our estimate is around 3 times larger than today's global chemical weathering flux. Furthermore, chemical weathering rates simulated by our model are highly sensitive to atmospheric CO2 concentration, which implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate.
Hydrodynamic modelling and global datasets: Flow connectivity and SRTM data, a Bangkok case study.
NASA Astrophysics Data System (ADS)
Trigg, M. A.; Bates, P. B.; Michaelides, K.
2012-04-01
The rise in the global interconnected manufacturing supply chains requires an understanding and consistent quantification of flood risk at a global scale. Flood risk is often better quantified (or at least more precisely defined) in regions where there has been an investment in comprehensive topographical data collection such as LiDAR coupled with detailed hydrodynamic modelling. Yet in regions where these data and modelling are unavailable, the implications of flooding and the knock on effects for global industries can be dramatic, as evidenced by the recent floods in Bangkok, Thailand. There is a growing momentum in terms of global modelling initiatives to address this lack of a consistent understanding of flood risk and they will rely heavily on the application of available global datasets relevant to hydrodynamic modelling, such as Shuttle Radar Topography Mission (SRTM) data and its derivatives. These global datasets bring opportunities to apply consistent methodologies on an automated basis in all regions, while the use of coarser scale datasets also brings many challenges such as sub-grid process representation and downscaled hydrology data from global climate models. There are significant opportunities for hydrological science in helping define new, realistic and physically based methodologies that can be applied globally as well as the possibility of gaining new insights into flood risk through analysis of the many large datasets that will be derived from this work. We use Bangkok as a case study to explore some of the issues related to using these available global datasets for hydrodynamic modelling, with particular focus on using SRTM data to represent topography. Research has shown that flow connectivity on the floodplain is an important component in the dynamics of flood flows on to and off the floodplain, and indeed within different areas of the floodplain. A lack of representation of flow connectivity, often due to data resolution limitations, means that important subgrid processes are missing from hydrodynamic models leading to poor model predictive capabilities. Specifically here, the issue of flow connectivity during flood events is explored using geostatistical techniques to quantify the change of flow connectivity on floodplains due to grid rescaling methods. We also test whether this method of assessing connectivity can be used as new tool in the quantification of flood risk that moves beyond the simple flood extent approach, encapsulating threshold changes and data limitations.
NASA Technical Reports Server (NTRS)
Guimond, Stephen R.; Heymsfield, Gerald M.; Reasor, Paul; Didlake, Anthony C., Jr.
2016-01-01
The evolution of rapidly intensifying Hurricane Karl (2010) is examined from a suite of remote sensing observations during the NASA Genesis and Rapid Intensification Processes (GRIP) field experiment. The novelties of this study are in the analysis of data from the airborne Doppler radar HIWRAP and the new Global Hawk airborne platform that allows long endurance sampling of hurricanes. Supporting data from the HAMSR microwave sounder coincident with HIWRAP and coordinated flights with the NOAA WP-3D aircraft help to provide a comprehensive understanding of the storm. The focus of the analysis is on documenting and understanding the structure, evolution and role of small scale, deep convective forcing in the storm intensification process. Deep convective bursts are sporadically initiated in the downshear quadrants of the storm and rotate into the upshear quadrants for a period of 12 h during the rapid intensification. The aircraft data analysis indicates that the bursts are being formed and maintained through a combination of two main processes: (1) convergence generated from counter-rotating mesovortex circulations and the larger vortex-scale flow and (2) the turbulent (scales of 25 km) transport of anomalously warm, buoyant air from the eye to the eyewall at low levels. The turbulent mixing across the eyewall interface and forced convective descent adjacent to the bursts assists in carving out the eye of Karl, which leads to an asymmetric enhancement of the warm core. The mesovortices play a key role in the evolution of the features described above.The Global Hawk aircraft allowed an examination of the vortex response and axisymmetrization period in addition to the burst pulsing phase. A pronounced axisymmetric development of the vortex is observed following the pulsing phase that includes a sloped eyewall structure and formation of a clear, wide eye.
NASA Astrophysics Data System (ADS)
Brown, S. M.; Behn, M. D.; Grove, T. L.
2017-12-01
We present results of a combined petrologic - geochemical (major and trace element) - geodynamical forward model for mantle melting and subsequent melt modification. The model advances Behn & Grove (2015), and is calibrated using experimental petrology. Our model allows for melting in the plagioclase, spinel, and garnet fields with a flexible retained melt fraction (from pure batch to pure fractional), tracks residual mantle composition, and includes melting with water, variable melt productivity, and mantle mode calculations. This approach is valuable for understanding oceanic crustal accretion, which involves mantle melting and melt modification by migration and aggregation. These igneous processes result in mid-ocean ridge basalts that vary in composition at the local (segment) and global scale. The important variables are geophysical and geochemical and include mantle composition, potential temperature, mantle flow, and spreading rate. Accordingly, our model allows us to systematically quantify the importance of each of these external variables. In addition to discriminating melt generation effects, we are able to discriminate the effects of different melt modification processes (inefficient pooling, melt-rock reaction, and fractional crystallization) in generating both local, segment-scale and global-scale compositional variability. We quantify the influence of a specific igneous process on the generation of oceanic crust as a function of variations in the external variables. We also find that it is unlikely that garnet lherzolite melting produces a signature in either major or trace element compositions formed from aggregated melts, because when melting does occur in the garnet field at high mantle temperature, it contributes a relatively small, uniform fraction (< 10%) of the pooled melt compositions at all spreading rates. Additionally, while increasing water content and/or temperature promote garnet melting, they also increase melt extent, pushing the pooled composition to lower Sm/Yb and higher Lu/Hf.
Farrar, John T.; Polomano, Rosemary C.; Berlin, Jesse A.; Strom, Brian L.
2010-01-01
Background Pain intensity is commonly reported using a 0–10 numeric rating scale in breakthrough pain clinical trials. Analysis of the change on the Pain Intensity Numerical Rating Scale as a proportion as most consistently correlated with clinically important differences reported on the Patient Global Impression of Change. The analysis of data using a different global outcome measures and the pain relief scale will extend our understanding of these measures. Use of the pain relief scale is also explored in this study Methods Data came from the open titration phase of a multiple crossover, randomized, double-blind clinical trial comparing oral transmucosal fentanyl citrate to immediate-release oral morphine sulfate for treatment of cancer-related breakthrough pain. Raw and percent changes in the pain intensity scores on 1,307 from 134 oral transmucosal fentanyl citrate-naive patients were compared to the clinically relevant secondary outcomes of the pain relief verbal response scale and the global medication performance. The changes in raw and percent change were assessed over time and compared to the ordinal pain relief verbal response scale and global medication performance scales. Results The p-value of the interaction between the raw pain intensity difference was significant but not for the percent pain intensity difference score over 4 15 minute time periods (p = 0.034 and p = 0.26 respectively), in comparison with the ordinal pain relief verbal response scale (p = 0.0048 and p = 0.36 respectively), and global medication performance categories (p = 0.048 and p = 0.45 respectively). Conclusion The change in pain intensity in breakthrough pain was more consistent over time and when compared to both the pain relief verbal response scale and global medication performance scale when the percent change is used rather than raw pain intensity difference. PMID:20463579
Farrar, John T; Polomano, Rosemary C; Berlin, Jesse A; Strom, Brian L
2010-06-01
Pain intensity is commonly reported using a 0-10 Numeric Rating Scale in pain clinical trials. Analysis of the change on the Pain Intensity Numerical Rating Scale as a proportion has most consistently correlated with clinically important differences reported on the patient's global impression of change. The correlation of data from patients with breakthrough pain with a Pain Relief Scale and a different global outcome measures will extend our understanding of these measures. Data were obtained from the open titration phase of a multiple crossover, randomized, double-blind clinical trial comparing oral transmucosal fentanyl citrate with immediate-release oral morphine sulfate for the treatment of cancer-related breakthrough pain. Raw and percentage changes in the pain intensity scores from 1,307 episodes of pain in 134 oral transmucosal fentanyl citrate-naïve patients were correlated with the clinically relevant secondary outcomes of Pain Relief Verbal Response Scale and the global medication performance scale. The changes in raw and percentage change were assessed over time and compared with the ordinal Pain Relief Verbal Response Scale and Global Medication Performance Scale. The P value of the interaction between the raw pain intensity difference was significant (P = 0.034) for four 15-min time periods but not for the percentage pain intensity difference score (P = 0.26). We found similar results in comparison with the ordinal Pain Relief Verbal Response Scale (P = 0.0048 and P = 0.36 respectively) and global medication performance categories (P = 0.048 and P = 0.45, respectively). The change in pain intensity in breakthrough pain was more consistent over time and when compared with both the Pain Relief Verbal Response Scale and the Global Medication Performance Scale when the percentage change is used rather than raw pain intensity difference.
Introducing the Global Register of Introduced and Invasive Species
Pagad, Shyama; Genovesi, Piero; Carnevali, Lucilla; Schigel, Dmitry; McGeoch, Melodie A.
2018-01-01
Harmonised, representative data on the state of biological invasions remain inadequate at country and global scales, particularly for taxa that affect biodiversity and ecosystems. Information is not readily available in a form suitable for policy and reporting. The Global Register of Introduced and Invasive Species (GRIIS) provides the first country-wise checklists of introduced (naturalised) and invasive species. GRIIS was conceived to provide a sustainable platform for information delivery to support national governments. We outline the rationale and methods underpinning GRIIS, to facilitate transparent, repeatable analysis and reporting. Twenty country checklists are presented as exemplars; GRIIS Checklists for close to all countries globally will be submitted through the same process shortly. Over 11000 species records are currently in the 20 country exemplars alone, with environmental impact evidence for just over 20% of these. GRIIS provides significant support for countries to identify and prioritise invasive alien species, and establishes national and global baselines. In future this will enable a global system for sustainable monitoring of trends in biological invasions that affect the environment. PMID:29360103
NASA Astrophysics Data System (ADS)
Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.
2015-12-01
While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.
Regional-scale calculation of the LS factor using parallel processing
NASA Astrophysics Data System (ADS)
Liu, Kai; Tang, Guoan; Jiang, Ling; Zhu, A.-Xing; Yang, Jianyi; Song, Xiaodong
2015-05-01
With the increase of data resolution and the increasing application of USLE over large areas, the existing serial implementation of algorithms for computing the LS factor is becoming a bottleneck. In this paper, a parallel processing model based on message passing interface (MPI) is presented for the calculation of the LS factor, so that massive datasets at a regional scale can be processed efficiently. The parallel model contains algorithms for calculating flow direction, flow accumulation, drainage network, slope, slope length and the LS factor. According to the existence of data dependence, the algorithms are divided into local algorithms and global algorithms. Parallel strategy are designed according to the algorithm characters including the decomposition method for maintaining the integrity of the results, optimized workflow for reducing the time taken for exporting the unnecessary intermediate data and a buffer-communication-computation strategy for improving the communication efficiency. Experiments on a multi-node system show that the proposed parallel model allows efficient calculation of the LS factor at a regional scale with a massive dataset.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
USDA-ARS?s Scientific Manuscript database
Globalization is a phenomenon affecting all facets of the Earth System. Within the context of ecological systems, it is becoming increasingly apparent that global connectivity among terrestrial systems, the atmosphere, and oceans is driving many ecological dynamics at finer scales and pushing thresh...
Process thresholds: Report of Working Group Number 3
NASA Technical Reports Server (NTRS)
Williams, R. S., Jr.
1985-01-01
The Process Thresholds Working Group concerned itself with whether a geomorphic process to be monitored on satellite imagery must be global, regional, or local in its effect on the landscape. It was pointed out that major changes in types and magnitudes of processes operating in an area are needed to be detectable on a global scale. It was concluded from a review of geomorphic studies which used satellite images that they do record change in landscape over time (on a time-lapse basis) as a result of one or more processes. In fact, this may be one of the most important attributes of space imagery, in that one can document land form changes in the form of a permanent historical record. The group also discussed the important subject of the acquisition of basic data sets by different satellite imaging systems. Geomorphologists already have available one near-global basis data set resulting from the early LANDSAT program, especially images acquired by LANDSATs 1 and 2. Such historic basic data sets can serve as a benchmark for comparison with landscape changes that take place in the future. They can also serve as a benchmark for comparison with landscape changes that have occurred in the past (as recorded) by images, photography and maps.
Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach
Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey K.
2017-11-14
A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This study describes how the framework can be applied to ocean flows.
Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aluie, Hussein; Hecht, Matthew; Vallis, Geoffrey K.
A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This study describes how the framework can be applied to ocean flows.
A Time Series of Sea Surface Nitrate and Nitrate based New Production in the Global Oceans
NASA Astrophysics Data System (ADS)
Goes, J. I.; Fargion, G. S.; Gomes, H. R.; Franz, B. A.
2014-12-01
With support from NASA's MEaSUREs program, we are developing algorithms for two innovative satellite-based Earth Science Data Records (ESDRs), one Sea Surface Nitrate (SSN) and the other, Nitrate based new Production (NnP). Newly developed algorithms will be applied to mature ESDRs of Chlorophyll a and SST available from NASA, to generate maps of SSN and NnP. Our proposed ESDRs offer the potential of greatly improving our understanding of the role of the oceans in global carbon cycling, earth system processes and climate change, especially for regions and seasons which are inaccessible to traditional shipboard studies. They also provide an innovative means for validating and improving coupled ecosystem models that currently rely on global maps of nitrate generated from multi-year data sets. To aid in our algorithm development efforts and to ensure that our ESDRs are truly global in nature, we are currently in the process of assembling a large database of nutrients from oceanographic institutions all over the world. Once our products are developed and our algorithms are fine-tuned, large-scale data production will be undertaken in collaboration with NASA's Ocean Biology Processing Group (OPBG), who will make the data publicly available first as evaluation products and then as mature ESDRs.
Electromagnetic studies of global geodynamic processes
NASA Astrophysics Data System (ADS)
Tarits, Pascal
1994-03-01
The deep electromagnetic sounding (DES) technique is one of the few geophysical methods, along with seismology, gravity, heat flow, which may be use to probe the structure of the Earth's mantle directly. The interpretation of the DESs may provide electrical conductivity profiles down to the upper part of the lower mantle. The electrical conductivity is extremely sensitive to most of the thermodynamic processes we believe are acting in the Earth's mantle (temperature increases, partial melting, phase transition and to a lesser extent pressure). Therefore, in principle, results from DES along with laboratory measurements could be used to constrain models of these processes. The DES technique is reviewed in the light of recent results obtained in a variety of domains: data acquisition and analysis, global induction modeling and data inversion and interpretation. The mechanisms and the importance of surface distortions of the DES data are reviewed and techniques to model them are discussed. The recent results in terms of the conductivity distribution in the mantle from local and global DES are presented and a tentative synthesis is proposed. The geodynamic interpretations of the deep conductivity structures are reviewed. The existence of mantle lateral heterogeneities in conductivity at all scales and depths for which electromagnetic data are available is now well documented. A comparison with global results from seismology is presented.
GC13I-0860: An Assessment of Surface Water Detection Methods for the Tahoua Region, Niger
NASA Technical Reports Server (NTRS)
Herndon, Kelsey E.; Muench, Rebekke; Cherrington, Emil; Griffin, Robert
2017-01-01
The recent release of several global surface water datasets derived from remotely sensed data has allowed for unprecedented analysis of the earth's hydrologic processes at a global scale. However, some of these datasets fail to identify important sources of surface water, especially small ponds, in the Sahel, an arid region of Africa that forms a border zone between the Sahara Desert to the north, and the savannah to the south. These ponds may seem insignificant in the context of wider, global-scale hydrologic processes, but smaller sources of water are important for local and regional hydrologic assessments. Particularly, these smaller water bodies are significant sources of hydration and irrigation for nomadic pastoralists and smallholder farmers throughout the Sahel. For this study, several methods of identifying surface water from Landsat 8 OLI, Sentinel 1 SAR, Sentinel 2 MSI, and Planet Dove data were compared to determine the most effective means of delineating these features in the Tahoua Region of Niger. The Automated Water Extraction Index (AWEInsh) had the best performance when validated against very high resolution Digital Globe imagery, with an overall accuracy of 98.6%. This study reiterates the importance of region-specific algorithms and suggests that the AWEInsh method may be the best for delineating surface water in the Sahelian ecozone, likely due to the nature of the exposed geology and lack of dense green vegetation.
An Assessment of Surface Water Detection Algorithms for the Tahoua Region, Niger
NASA Astrophysics Data System (ADS)
Herndon, K. E.; Muench, R.; Cherrington, E. A.; Griffin, R.
2017-12-01
The recent release of several global surface water datasets derived from remotely sensed data has allowed for unprecedented analysis of the earth's hydrologic processes at a global scale. However, some of these datasets fail to identify important sources of surface water, especially small ponds, in the Sahel, an arid region of Africa that forms a border zone between the Sahara Desert to the north, and the savannah to the south. These ponds may seem insignificant in the context of wider, global-scale hydrologic processes, but smaller sources of water are important for local and regional assessments. Particularly, these smaller water bodies are significant sources of hydration and irrigation for nomadic pastoralists and smallholder farmers throughout the Sahel. For this study, several methods of identifying surface water from Landsat 8 OLI and Sentinel 1 SAR data were compared to determine the most effective means of delineating these features in the Tahoua Region of Niger. The Modified Normalized Difference Water Index (MNDWI) had the best performance when validated against very high resolution World View 3 imagery, with an overall accuracy of 99.48%. This study reiterates the importance of region-specific algorithms and suggests that the MNDWI method may be the best for delineating surface water in the Sahelian ecozone, likely due to the nature of the exposed geology and lack of dense green vegetation.
NASA Astrophysics Data System (ADS)
Desai, Darshak A.; Kotadiya, Parth; Makwana, Nikheel; Patel, Sonalinkumar
2015-03-01
Indian industries need overall operational excellence for sustainable profitability and growth in the present age of global competitiveness. Among different quality and productivity improvement techniques, Six Sigma has emerged as one of the most effective breakthrough improvement strategies. Though Indian industries are exploring this improvement methodology to their advantage and reaping the benefits, not much has been presented and published regarding experience of Six Sigma in the food-processing industries. This paper is an effort to exemplify the application of Six Sigma quality improvement drive to one of the large-scale food-processing sectors in India. The paper discusses the phase wiz implementation of define, measure, analyze, improve, and control (DMAIC) on one of the chronic problems, variations in the weight of milk powder pouch. The paper wraps up with the improvements achieved and projected bottom-line gain to the unit by application of Six Sigma methodology.